xref: /linux/include/linux/power_supply.h (revision 07b43820437bd96f31f5d7f9baf4453fcb7dedbf)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  *  Universal power supply monitor class
4  *
5  *  Copyright © 2007  Anton Vorontsov <cbou@mail.ru>
6  *  Copyright © 2004  Szabolcs Gyurko
7  *  Copyright © 2003  Ian Molton <spyro@f2s.com>
8  *
9  *  Modified: 2004, Oct     Szabolcs Gyurko
10  */
11 
12 #ifndef __LINUX_POWER_SUPPLY_H__
13 #define __LINUX_POWER_SUPPLY_H__
14 
15 #include <linux/device.h>
16 #include <linux/workqueue.h>
17 #include <linux/leds.h>
18 #include <linux/rwsem.h>
19 #include <linux/list.h>
20 #include <linux/spinlock.h>
21 #include <linux/notifier.h>
22 
23 /*
24  * All voltages, currents, charges, energies, time and temperatures in uV,
25  * µA, µAh, µWh, seconds and tenths of degree Celsius unless otherwise
26  * stated. It's driver's job to convert its raw values to units in which
27  * this class operates.
28  */
29 
30 /*
31  * For systems where the charger determines the maximum battery capacity
32  * the min and max fields should be used to present these values to user
33  * space. Unused/unknown fields will not appear in sysfs.
34  */
35 
36 enum {
37 	POWER_SUPPLY_STATUS_UNKNOWN = 0,
38 	POWER_SUPPLY_STATUS_CHARGING,
39 	POWER_SUPPLY_STATUS_DISCHARGING,
40 	POWER_SUPPLY_STATUS_NOT_CHARGING,
41 	POWER_SUPPLY_STATUS_FULL,
42 };
43 
44 /* What algorithm is the charger using? */
45 enum power_supply_charge_type {
46 	POWER_SUPPLY_CHARGE_TYPE_UNKNOWN = 0,
47 	POWER_SUPPLY_CHARGE_TYPE_NONE,
48 	POWER_SUPPLY_CHARGE_TYPE_TRICKLE,	/* slow speed */
49 	POWER_SUPPLY_CHARGE_TYPE_FAST,		/* fast speed */
50 	POWER_SUPPLY_CHARGE_TYPE_STANDARD,	/* normal speed */
51 	POWER_SUPPLY_CHARGE_TYPE_ADAPTIVE,	/* dynamically adjusted speed */
52 	POWER_SUPPLY_CHARGE_TYPE_CUSTOM,	/* use CHARGE_CONTROL_* props */
53 	POWER_SUPPLY_CHARGE_TYPE_LONGLIFE,	/* slow speed, longer life */
54 	POWER_SUPPLY_CHARGE_TYPE_BYPASS,	/* bypassing the charger */
55 };
56 
57 enum {
58 	POWER_SUPPLY_HEALTH_UNKNOWN = 0,
59 	POWER_SUPPLY_HEALTH_GOOD,
60 	POWER_SUPPLY_HEALTH_OVERHEAT,
61 	POWER_SUPPLY_HEALTH_DEAD,
62 	POWER_SUPPLY_HEALTH_OVERVOLTAGE,
63 	POWER_SUPPLY_HEALTH_UNDERVOLTAGE,
64 	POWER_SUPPLY_HEALTH_UNSPEC_FAILURE,
65 	POWER_SUPPLY_HEALTH_COLD,
66 	POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE,
67 	POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE,
68 	POWER_SUPPLY_HEALTH_OVERCURRENT,
69 	POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED,
70 	POWER_SUPPLY_HEALTH_WARM,
71 	POWER_SUPPLY_HEALTH_COOL,
72 	POWER_SUPPLY_HEALTH_HOT,
73 	POWER_SUPPLY_HEALTH_NO_BATTERY,
74 	POWER_SUPPLY_HEALTH_BLOWN_FUSE,
75 	POWER_SUPPLY_HEALTH_CELL_IMBALANCE,
76 };
77 
78 enum {
79 	POWER_SUPPLY_TECHNOLOGY_UNKNOWN = 0,
80 	POWER_SUPPLY_TECHNOLOGY_NiMH,
81 	POWER_SUPPLY_TECHNOLOGY_LION,
82 	POWER_SUPPLY_TECHNOLOGY_LIPO,
83 	POWER_SUPPLY_TECHNOLOGY_LiFe,
84 	POWER_SUPPLY_TECHNOLOGY_NiCd,
85 	POWER_SUPPLY_TECHNOLOGY_LiMn,
86 };
87 
88 enum {
89 	POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN = 0,
90 	POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL,
91 	POWER_SUPPLY_CAPACITY_LEVEL_LOW,
92 	POWER_SUPPLY_CAPACITY_LEVEL_NORMAL,
93 	POWER_SUPPLY_CAPACITY_LEVEL_HIGH,
94 	POWER_SUPPLY_CAPACITY_LEVEL_FULL,
95 };
96 
97 enum {
98 	POWER_SUPPLY_SCOPE_UNKNOWN = 0,
99 	POWER_SUPPLY_SCOPE_SYSTEM,
100 	POWER_SUPPLY_SCOPE_DEVICE,
101 };
102 
103 enum power_supply_property {
104 	/* Properties of type `int' */
105 	POWER_SUPPLY_PROP_STATUS = 0,
106 	POWER_SUPPLY_PROP_CHARGE_TYPE,
107 	POWER_SUPPLY_PROP_CHARGE_TYPES,
108 	POWER_SUPPLY_PROP_HEALTH,
109 	POWER_SUPPLY_PROP_PRESENT,
110 	POWER_SUPPLY_PROP_ONLINE,
111 	POWER_SUPPLY_PROP_AUTHENTIC,
112 	POWER_SUPPLY_PROP_TECHNOLOGY,
113 	POWER_SUPPLY_PROP_CYCLE_COUNT,
114 	POWER_SUPPLY_PROP_VOLTAGE_MAX,
115 	POWER_SUPPLY_PROP_VOLTAGE_MIN,
116 	POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
117 	POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
118 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
119 	POWER_SUPPLY_PROP_VOLTAGE_AVG,
120 	POWER_SUPPLY_PROP_VOLTAGE_OCV,
121 	POWER_SUPPLY_PROP_VOLTAGE_BOOT,
122 	POWER_SUPPLY_PROP_CURRENT_MAX,
123 	POWER_SUPPLY_PROP_CURRENT_NOW,
124 	POWER_SUPPLY_PROP_CURRENT_AVG,
125 	POWER_SUPPLY_PROP_CURRENT_BOOT,
126 	POWER_SUPPLY_PROP_POWER_NOW,
127 	POWER_SUPPLY_PROP_POWER_AVG,
128 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
129 	POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN,
130 	POWER_SUPPLY_PROP_CHARGE_FULL,
131 	POWER_SUPPLY_PROP_CHARGE_EMPTY,
132 	POWER_SUPPLY_PROP_CHARGE_NOW,
133 	POWER_SUPPLY_PROP_CHARGE_AVG,
134 	POWER_SUPPLY_PROP_CHARGE_COUNTER,
135 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT,
136 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
137 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
138 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
139 	POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT,
140 	POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX,
141 	POWER_SUPPLY_PROP_CHARGE_CONTROL_START_THRESHOLD, /* in percents! */
142 	POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD, /* in percents! */
143 	POWER_SUPPLY_PROP_CHARGE_BEHAVIOUR,
144 	POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT,
145 	POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT,
146 	POWER_SUPPLY_PROP_INPUT_POWER_LIMIT,
147 	POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
148 	POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN,
149 	POWER_SUPPLY_PROP_ENERGY_FULL,
150 	POWER_SUPPLY_PROP_ENERGY_EMPTY,
151 	POWER_SUPPLY_PROP_ENERGY_NOW,
152 	POWER_SUPPLY_PROP_ENERGY_AVG,
153 	POWER_SUPPLY_PROP_CAPACITY, /* in percents! */
154 	POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN, /* in percents! */
155 	POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX, /* in percents! */
156 	POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN, /* in percents! */
157 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
158 	POWER_SUPPLY_PROP_TEMP,
159 	POWER_SUPPLY_PROP_TEMP_MAX,
160 	POWER_SUPPLY_PROP_TEMP_MIN,
161 	POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
162 	POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
163 	POWER_SUPPLY_PROP_TEMP_AMBIENT,
164 	POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN,
165 	POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX,
166 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
167 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
168 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
169 	POWER_SUPPLY_PROP_TIME_TO_FULL_AVG,
170 	POWER_SUPPLY_PROP_TYPE, /* use power_supply.type instead */
171 	POWER_SUPPLY_PROP_USB_TYPE,
172 	POWER_SUPPLY_PROP_SCOPE,
173 	POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
174 	POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
175 	POWER_SUPPLY_PROP_CALIBRATE,
176 	POWER_SUPPLY_PROP_MANUFACTURE_YEAR,
177 	POWER_SUPPLY_PROP_MANUFACTURE_MONTH,
178 	POWER_SUPPLY_PROP_MANUFACTURE_DAY,
179 	/* Properties of type `const char *' */
180 	POWER_SUPPLY_PROP_MODEL_NAME,
181 	POWER_SUPPLY_PROP_MANUFACTURER,
182 	POWER_SUPPLY_PROP_SERIAL_NUMBER,
183 };
184 
185 enum power_supply_type {
186 	POWER_SUPPLY_TYPE_UNKNOWN = 0,
187 	POWER_SUPPLY_TYPE_BATTERY,
188 	POWER_SUPPLY_TYPE_UPS,
189 	POWER_SUPPLY_TYPE_MAINS,
190 	POWER_SUPPLY_TYPE_USB,			/* Standard Downstream Port */
191 	POWER_SUPPLY_TYPE_USB_DCP,		/* Dedicated Charging Port */
192 	POWER_SUPPLY_TYPE_USB_CDP,		/* Charging Downstream Port */
193 	POWER_SUPPLY_TYPE_USB_ACA,		/* Accessory Charger Adapters */
194 	POWER_SUPPLY_TYPE_USB_TYPE_C,		/* Type C Port */
195 	POWER_SUPPLY_TYPE_USB_PD,		/* Power Delivery Port */
196 	POWER_SUPPLY_TYPE_USB_PD_DRP,		/* PD Dual Role Port */
197 	POWER_SUPPLY_TYPE_APPLE_BRICK_ID,	/* Apple Charging Method */
198 	POWER_SUPPLY_TYPE_WIRELESS,		/* Wireless */
199 };
200 
201 enum power_supply_usb_type {
202 	POWER_SUPPLY_USB_TYPE_UNKNOWN = 0,
203 	POWER_SUPPLY_USB_TYPE_SDP,		/* Standard Downstream Port */
204 	POWER_SUPPLY_USB_TYPE_DCP,		/* Dedicated Charging Port */
205 	POWER_SUPPLY_USB_TYPE_CDP,		/* Charging Downstream Port */
206 	POWER_SUPPLY_USB_TYPE_ACA,		/* Accessory Charger Adapters */
207 	POWER_SUPPLY_USB_TYPE_C,		/* Type C Port */
208 	POWER_SUPPLY_USB_TYPE_PD,		/* Power Delivery Port */
209 	POWER_SUPPLY_USB_TYPE_PD_DRP,		/* PD Dual Role Port */
210 	POWER_SUPPLY_USB_TYPE_PD_PPS,		/* PD Programmable Power Supply */
211 	POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID,	/* Apple Charging Method */
212 };
213 
214 enum power_supply_charge_behaviour {
215 	POWER_SUPPLY_CHARGE_BEHAVIOUR_AUTO = 0,
216 	POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE,
217 	POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE_AWAKE,
218 	POWER_SUPPLY_CHARGE_BEHAVIOUR_FORCE_DISCHARGE,
219 };
220 
221 enum power_supply_notifier_events {
222 	PSY_EVENT_PROP_CHANGED,
223 };
224 
225 union power_supply_propval {
226 	int intval;
227 	const char *strval;
228 };
229 
230 struct device_node;
231 struct power_supply;
232 
233 /* Run-time specific power supply configuration */
234 struct power_supply_config {
235 	struct fwnode_handle *fwnode;
236 
237 	/* Driver private data */
238 	void *drv_data;
239 
240 	/* Device specific sysfs attributes */
241 	const struct attribute_group **attr_grp;
242 
243 	char **supplied_to;
244 	size_t num_supplicants;
245 
246 	bool no_wakeup_source;
247 };
248 
249 /* Description of power supply */
250 struct power_supply_desc {
251 	const char *name;
252 	enum power_supply_type type;
253 	u8 charge_behaviours;
254 	u32 charge_types;
255 	u32 usb_types;
256 	const enum power_supply_property *properties;
257 	size_t num_properties;
258 
259 	/*
260 	 * Functions for drivers implementing power supply class.
261 	 * These shouldn't be called directly by other drivers for accessing
262 	 * this power supply. Instead use power_supply_*() functions (for
263 	 * example power_supply_get_property()).
264 	 */
265 	int (*get_property)(struct power_supply *psy,
266 			    enum power_supply_property psp,
267 			    union power_supply_propval *val);
268 	int (*set_property)(struct power_supply *psy,
269 			    enum power_supply_property psp,
270 			    const union power_supply_propval *val);
271 	/*
272 	 * property_is_writeable() will be called during registration
273 	 * of power supply. If this happens during device probe then it must
274 	 * not access internal data of device (because probe did not end).
275 	 */
276 	int (*property_is_writeable)(struct power_supply *psy,
277 				     enum power_supply_property psp);
278 	void (*external_power_changed)(struct power_supply *psy);
279 
280 	/*
281 	 * Set if thermal zone should not be created for this power supply.
282 	 * For example for virtual supplies forwarding calls to actual
283 	 * sensors or other supplies.
284 	 */
285 	bool no_thermal;
286 	/* For APM emulation, think legacy userspace. */
287 	int use_for_apm;
288 };
289 
290 struct power_supply_ext {
291 	const char *const name;
292 	u8 charge_behaviours;
293 	u32 charge_types;
294 	const enum power_supply_property *properties;
295 	size_t num_properties;
296 
297 	int (*get_property)(struct power_supply *psy,
298 			    const struct power_supply_ext *ext,
299 			    void *data,
300 			    enum power_supply_property psp,
301 			    union power_supply_propval *val);
302 	int (*set_property)(struct power_supply *psy,
303 			    const struct power_supply_ext *ext,
304 			    void *data,
305 			    enum power_supply_property psp,
306 			    const union power_supply_propval *val);
307 	int (*property_is_writeable)(struct power_supply *psy,
308 				     const struct power_supply_ext *ext,
309 				     void *data,
310 				     enum power_supply_property psp);
311 };
312 
313 struct power_supply {
314 	const struct power_supply_desc *desc;
315 
316 	char **supplied_to;
317 	size_t num_supplicants;
318 
319 	char **supplied_from;
320 	size_t num_supplies;
321 
322 	/* Driver private data */
323 	void *drv_data;
324 
325 	/* private */
326 	struct device dev;
327 	struct work_struct changed_work;
328 	struct delayed_work deferred_register_work;
329 	spinlock_t changed_lock;
330 	bool changed;
331 	bool update_groups;
332 	bool initialized;
333 	bool removing;
334 	atomic_t use_cnt;
335 	struct power_supply_battery_info *battery_info;
336 	struct rw_semaphore extensions_sem; /* protects "extensions" */
337 	struct list_head extensions;
338 #ifdef CONFIG_THERMAL
339 	struct thermal_zone_device *tzd;
340 	struct thermal_cooling_device *tcd;
341 #endif
342 
343 #ifdef CONFIG_LEDS_TRIGGERS
344 	struct led_trigger *trig;
345 	struct led_trigger *charging_trig;
346 	struct led_trigger *full_trig;
347 	struct led_trigger *charging_blink_full_solid_trig;
348 	struct led_trigger *charging_orange_full_green_trig;
349 #endif
350 };
351 
352 #define dev_to_psy(__dev)	container_of_const(__dev, struct power_supply, dev)
353 
354 /*
355  * This is recommended structure to specify static power supply parameters.
356  * Generic one, parametrizable for different power supplies. Power supply
357  * class itself does not use it, but that's what implementing most platform
358  * drivers, should try reuse for consistency.
359  */
360 
361 struct power_supply_info {
362 	const char *name;
363 	int technology;
364 	int voltage_max_design;
365 	int voltage_min_design;
366 	int charge_full_design;
367 	int charge_empty_design;
368 	int energy_full_design;
369 	int energy_empty_design;
370 	int use_for_apm;
371 };
372 
373 struct power_supply_battery_ocv_table {
374 	int ocv;	/* microVolts */
375 	int capacity;	/* percent */
376 };
377 
378 struct power_supply_resistance_temp_table {
379 	int temp;	/* celsius */
380 	int resistance;	/* internal resistance percent */
381 };
382 
383 struct power_supply_vbat_ri_table {
384 	int vbat_uv;	/* Battery voltage in microvolt */
385 	int ri_uohm;	/* Internal resistance in microohm */
386 };
387 
388 /**
389  * struct power_supply_maintenance_charge_table - setting for maintenace charging
390  * @charge_current_max_ua: maintenance charging current that is used to keep
391  *   the charge of the battery full as current is consumed after full charging.
392  *   The corresponding charge_voltage_max_uv is used as a safeguard: when we
393  *   reach this voltage the maintenance charging current is turned off. It is
394  *   turned back on if we fall below this voltage.
395  * @charge_voltage_max_uv: maintenance charging voltage that is usually a bit
396  *   lower than the constant_charge_voltage_max_uv. We can apply this settings
397  *   charge_current_max_ua until we get back up to this voltage.
398  * @safety_timer_minutes: maintenance charging safety timer, with an expiry
399  *   time in minutes. We will only use maintenance charging in this setting
400  *   for a certain amount of time, then we will first move to the next
401  *   maintenance charge current and voltage pair in respective array and wait
402  *   for the next safety timer timeout, or, if we reached the last maintencance
403  *   charging setting, disable charging until we reach
404  *   charge_restart_voltage_uv and restart ordinary CC/CV charging from there.
405  *   These timers should be chosen to align with the typical discharge curve
406  *   for the battery.
407  *
408  * Ordinary CC/CV charging will stop charging when the charge current goes
409  * below charge_term_current_ua, and then restart it (if the device is still
410  * plugged into the charger) at charge_restart_voltage_uv. This happens in most
411  * consumer products because the power usage while connected to a charger is
412  * not zero, and devices are not manufactured to draw power directly from the
413  * charger: instead they will at all times dissipate the battery a little, like
414  * the power used in standby mode. This will over time give a charge graph
415  * such as this:
416  *
417  * Energy
418  *  ^      ...        ...      ...      ...      ...      ...      ...
419  *  |    .   .       .  .     .  .     .  .     .  .     .  .     .
420  *  |  ..     .   ..     .  ..    .  ..    .  ..    .  ..    .  ..
421  *  |.          ..        ..       ..       ..       ..       ..
422  *  +-------------------------------------------------------------------> t
423  *
424  * Practically this means that the Li-ions are wandering back and forth in the
425  * battery and this causes degeneration of the battery anode and cathode.
426  * To prolong the life of the battery, maintenance charging is applied after
427  * reaching charge_term_current_ua to hold up the charge in the battery while
428  * consuming power, thus lowering the wear on the battery:
429  *
430  * Energy
431  *  ^      .......................................
432  *  |    .                                        ......................
433  *  |  ..
434  *  |.
435  *  +-------------------------------------------------------------------> t
436  *
437  * Maintenance charging uses the voltages from this table: a table of settings
438  * is traversed using a slightly lower current and voltage than what is used for
439  * CC/CV charging. The maintenance charging will for safety reasons not go on
440  * indefinately: we lower the current and voltage with successive maintenance
441  * settings, then disable charging completely after we reach the last one,
442  * and after that we do not restart charging until we reach
443  * charge_restart_voltage_uv (see struct power_supply_battery_info) and restart
444  * ordinary CC/CV charging from there.
445  *
446  * As an example, a Samsung EB425161LA Lithium-Ion battery is CC/CV charged
447  * at 900mA to 4340mV, then maintenance charged at 600mA and 4150mV for up to
448  * 60 hours, then maintenance charged at 600mA and 4100mV for up to 200 hours.
449  * After this the charge cycle is restarted waiting for
450  * charge_restart_voltage_uv.
451  *
452  * For most mobile electronics this type of maintenance charging is enough for
453  * the user to disconnect the device and make use of it before both maintenance
454  * charging cycles are complete, if the current and voltage has been chosen
455  * appropriately. These need to be determined from battery discharge curves
456  * and expected standby current.
457  *
458  * If the voltage anyway drops to charge_restart_voltage_uv during maintenance
459  * charging, ordinary CC/CV charging is restarted. This can happen if the
460  * device is e.g. actively used during charging, so more current is drawn than
461  * the expected stand-by current. Also overvoltage protection will be applied
462  * as usual.
463  */
464 struct power_supply_maintenance_charge_table {
465 	int charge_current_max_ua;
466 	int charge_voltage_max_uv;
467 	int charge_safety_timer_minutes;
468 };
469 
470 #define POWER_SUPPLY_OCV_TEMP_MAX 20
471 
472 /**
473  * struct power_supply_battery_info - information about batteries
474  * @technology: from the POWER_SUPPLY_TECHNOLOGY_* enum
475  * @energy_full_design_uwh: energy content when fully charged in microwatt
476  *   hours
477  * @charge_full_design_uah: charge content when fully charged in microampere
478  *   hours
479  * @voltage_min_design_uv: minimum voltage across the poles when the battery
480  *   is at minimum voltage level in microvolts. If the voltage drops below this
481  *   level the battery will need precharging when using CC/CV charging.
482  * @voltage_max_design_uv: voltage across the poles when the battery is fully
483  *   charged in microvolts. This is the "nominal voltage" i.e. the voltage
484  *   printed on the label of the battery.
485  * @tricklecharge_current_ua: the tricklecharge current used when trickle
486  *   charging the battery in microamperes. This is the charging phase when the
487  *   battery is completely empty and we need to carefully trickle in some
488  *   charge until we reach the precharging voltage.
489  * @precharge_current_ua: current to use in the precharge phase in microamperes,
490  *   the precharge rate is limited by limiting the current to this value.
491  * @precharge_voltage_max_uv: the maximum voltage allowed when precharging in
492  *   microvolts. When we pass this voltage we will nominally switch over to the
493  *   CC (constant current) charging phase defined by constant_charge_current_ua
494  *   and constant_charge_voltage_max_uv.
495  * @charge_term_current_ua: when the current in the CV (constant voltage)
496  *   charging phase drops below this value in microamperes the charging will
497  *   terminate completely and not restart until the voltage over the battery
498  *   poles reach charge_restart_voltage_uv unless we use maintenance charging.
499  * @charge_restart_voltage_uv: when the battery has been fully charged by
500  *   CC/CV charging and charging has been disabled, and the voltage subsequently
501  *   drops below this value in microvolts, the charging will be restarted
502  *   (typically using CV charging).
503  * @overvoltage_limit_uv: If the voltage exceeds the nominal voltage
504  *   voltage_max_design_uv and we reach this voltage level, all charging must
505  *   stop and emergency procedures take place, such as shutting down the system
506  *   in some cases.
507  * @constant_charge_current_max_ua: current in microamperes to use in the CC
508  *   (constant current) charging phase. The charging rate is limited
509  *   by this current. This is the main charging phase and as the current is
510  *   constant into the battery the voltage slowly ascends to
511  *   constant_charge_voltage_max_uv.
512  * @constant_charge_voltage_max_uv: voltage in microvolts signifying the end of
513  *   the CC (constant current) charging phase and the beginning of the CV
514  *   (constant voltage) charging phase.
515  * @maintenance_charge: an array of maintenance charging settings to be used
516  *   after the main CC/CV charging phase is complete.
517  * @maintenance_charge_size: the number of maintenance charging settings in
518  *   maintenance_charge.
519  * @alert_low_temp_charge_current_ua: The charging current to use if the battery
520  *   enters low alert temperature, i.e. if the internal temperature is between
521  *   temp_alert_min and temp_min. No matter the charging phase, this
522  *   and alert_high_temp_charge_voltage_uv will be applied.
523  * @alert_low_temp_charge_voltage_uv: Same as alert_low_temp_charge_current_ua,
524  *   but for the charging voltage.
525  * @alert_high_temp_charge_current_ua: The charging current to use if the
526  *   battery enters high alert temperature, i.e. if the internal temperature is
527  *   between temp_alert_max and temp_max. No matter the charging phase, this
528  *   and alert_high_temp_charge_voltage_uv will be applied, usually lowering
529  *   the charging current as an evasive manouver.
530  * @alert_high_temp_charge_voltage_uv: Same as
531  *   alert_high_temp_charge_current_ua, but for the charging voltage.
532  * @factory_internal_resistance_uohm: the internal resistance of the battery
533  *   at fabrication time, expressed in microohms. This resistance will vary
534  *   depending on the lifetime and charge of the battery, so this is just a
535  *   nominal ballpark figure. This internal resistance is given for the state
536  *   when the battery is discharging.
537  * @factory_internal_resistance_charging_uohm: the internal resistance of the
538  *   battery at fabrication time while charging, expressed in microohms.
539  *   The charging process will affect the internal resistance of the battery
540  *   so this value provides a better resistance under these circumstances.
541  *   This resistance will vary depending on the lifetime and charge of the
542  *   battery, so this is just a nominal ballpark figure.
543  * @ocv_temp: array indicating the open circuit voltage (OCV) capacity
544  *   temperature indices. This is an array of temperatures in degrees Celsius
545  *   indicating which capacity table to use for a certain temperature, since
546  *   the capacity for reasons of chemistry will be different at different
547  *   temperatures. Determining capacity is a multivariate problem and the
548  *   temperature is the first variable we determine.
549  * @temp_ambient_alert_min: the battery will go outside of operating conditions
550  *   when the ambient temperature goes below this temperature in degrees
551  *   Celsius.
552  * @temp_ambient_alert_max: the battery will go outside of operating conditions
553  *   when the ambient temperature goes above this temperature in degrees
554  *   Celsius.
555  * @temp_alert_min: the battery should issue an alert if the internal
556  *   temperature goes below this temperature in degrees Celsius.
557  * @temp_alert_max: the battery should issue an alert if the internal
558  *   temperature goes above this temperature in degrees Celsius.
559  * @temp_min: the battery will go outside of operating conditions when
560  *   the internal temperature goes below this temperature in degrees Celsius.
561  *   Normally this means the system should shut down.
562  * @temp_max: the battery will go outside of operating conditions when
563  *   the internal temperature goes above this temperature in degrees Celsius.
564  *   Normally this means the system should shut down.
565  * @ocv_table: for each entry in ocv_temp there is a corresponding entry in
566  *   ocv_table and a size for each entry in ocv_table_size. These arrays
567  *   determine the capacity in percent in relation to the voltage in microvolts
568  *   at the indexed temperature.
569  * @ocv_table_size: for each entry in ocv_temp this array is giving the size of
570  *   each entry in the array of capacity arrays in ocv_table.
571  * @resist_table: this is a table that correlates a battery temperature to the
572  *   expected internal resistance at this temperature. The resistance is given
573  *   as a percentage of factory_internal_resistance_uohm. Knowing the
574  *   resistance of the battery is usually necessary for calculating the open
575  *   circuit voltage (OCV) that is then used with the ocv_table to calculate
576  *   the capacity of the battery. The resist_table must be ordered descending
577  *   by temperature: highest temperature with lowest resistance first, lowest
578  *   temperature with highest resistance last.
579  * @resist_table_size: the number of items in the resist_table.
580  * @vbat2ri_discharging: this is a table that correlates Battery voltage (VBAT)
581  *   to internal resistance (Ri). The resistance is given in microohm for the
582  *   corresponding voltage in microvolts. The internal resistance is used to
583  *   determine the open circuit voltage so that we can determine the capacity
584  *   of the battery. These voltages to resistance tables apply when the battery
585  *   is discharging. The table must be ordered descending by voltage: highest
586  *   voltage first.
587  * @vbat2ri_discharging_size: the number of items in the vbat2ri_discharging
588  *   table.
589  * @vbat2ri_charging: same function as vbat2ri_discharging but for the state
590  *   when the battery is charging. Being under charge changes the battery's
591  *   internal resistance characteristics so a separate table is needed.*
592  *   The table must be ordered descending by voltage: highest voltage first.
593  * @vbat2ri_charging_size: the number of items in the vbat2ri_charging
594  *   table.
595  * @bti_resistance_ohm: The Battery Type Indicator (BIT) nominal resistance
596  *   in ohms for this battery, if an identification resistor is mounted
597  *   between a third battery terminal and ground. This scheme is used by a lot
598  *   of mobile device batteries.
599  * @bti_resistance_tolerance: The tolerance in percent of the BTI resistance,
600  *   for example 10 for +/- 10%, if the bti_resistance is set to 7000 and the
601  *   tolerance is 10% we will detect a proper battery if the BTI resistance
602  *   is between 6300 and 7700 Ohm.
603  *
604  * This is the recommended struct to manage static battery parameters,
605  * populated by power_supply_get_battery_info(). Most platform drivers should
606  * use these for consistency.
607  *
608  * Its field names must correspond to elements in enum power_supply_property.
609  * The default field value is -EINVAL or NULL for pointers.
610  *
611  * CC/CV CHARGING:
612  *
613  * The charging parameters here assume a CC/CV charging scheme. This method
614  * is most common with Lithium Ion batteries (other methods are possible) and
615  * looks as follows:
616  *
617  * ^ Battery voltage
618  * |                                               --- overvoltage_limit_uv
619  * |
620  * |                    ...................................................
621  * |                 .. constant_charge_voltage_max_uv
622  * |              ..
623  * |             .
624  * |            .
625  * |           .
626  * |          .
627  * |         .
628  * |     .. precharge_voltage_max_uv
629  * |  ..
630  * |. (trickle charging)
631  * +------------------------------------------------------------------> time
632  *
633  * ^ Current into the battery
634  * |
635  * |      ............. constant_charge_current_max_ua
636  * |      .            .
637  * |      .             .
638  * |      .              .
639  * |      .               .
640  * |      .                ..
641  * |      .                  ....
642  * |      .                       .....
643  * |    ... precharge_current_ua       .......  charge_term_current_ua
644  * |    .                                    .
645  * |    .                                    .
646  * |.... tricklecharge_current_ua            .
647  * |                                         .
648  * +-----------------------------------------------------------------> time
649  *
650  * These diagrams are synchronized on time and the voltage and current
651  * follow each other.
652  *
653  * With CC/CV charging commence over time like this for an empty battery:
654  *
655  * 1. When the battery is completely empty it may need to be charged with
656  *    an especially small current so that electrons just "trickle in",
657  *    this is the tricklecharge_current_ua.
658  *
659  * 2. Next a small initial pre-charge current (precharge_current_ua)
660  *    is applied if the voltage is below precharge_voltage_max_uv until we
661  *    reach precharge_voltage_max_uv. CAUTION: in some texts this is referred
662  *    to as "trickle charging" but the use in the Linux kernel is different
663  *    see below!
664  *
665  * 3. Then the main charging current is applied, which is called the constant
666  *    current (CC) phase. A current regulator is set up to allow
667  *    constant_charge_current_max_ua of current to flow into the battery.
668  *    The chemical reaction in the battery will make the voltage go up as
669  *    charge goes into the battery. This current is applied until we reach
670  *    the constant_charge_voltage_max_uv voltage.
671  *
672  * 4. At this voltage we switch over to the constant voltage (CV) phase. This
673  *    means we allow current to go into the battery, but we keep the voltage
674  *    fixed. This current will continue to charge the battery while keeping
675  *    the voltage the same. A chemical reaction in the battery goes on
676  *    storing energy without affecting the voltage. Over time the current
677  *    will slowly drop and when we reach charge_term_current_ua we will
678  *    end the constant voltage phase.
679  *
680  * After this the battery is fully charged, and if we do not support maintenance
681  * charging, the charging will not restart until power dissipation makes the
682  * voltage fall so that we reach charge_restart_voltage_uv and at this point
683  * we restart charging at the appropriate phase, usually this will be inside
684  * the CV phase.
685  *
686  * If we support maintenance charging the voltage is however kept high after
687  * the CV phase with a very low current. This is meant to let the same charge
688  * go in for usage while the charger is still connected, mainly for
689  * dissipation for the power consuming entity while connected to the
690  * charger.
691  *
692  * All charging MUST terminate if the overvoltage_limit_uv is ever reached.
693  * Overcharging Lithium Ion cells can be DANGEROUS and lead to fire or
694  * explosions.
695  *
696  * DETERMINING BATTERY CAPACITY:
697  *
698  * Several members of the struct deal with trying to determine the remaining
699  * capacity in the battery, usually as a percentage of charge. In practice
700  * many chargers uses a so-called fuel gauge or coloumb counter that measure
701  * how much charge goes into the battery and how much goes out (+/- leak
702  * consumption). This does not help if we do not know how much capacity the
703  * battery has to begin with, such as when it is first used or was taken out
704  * and charged in a separate charger. Therefore many capacity algorithms use
705  * the open circuit voltage with a look-up table to determine the rough
706  * capacity of the battery. The open circuit voltage can be conceptualized
707  * with an ideal voltage source (V) in series with an internal resistance (Ri)
708  * like this:
709  *
710  *      +-------> IBAT >----------------+
711  *      |                    ^          |
712  *     [ ] Ri                |          |
713  *      |                    | VBAT     |
714  *      o <----------        |          |
715  *     +|           ^        |         [ ] Rload
716  *    .---.         |        |          |
717  *    | V |         | OCV    |          |
718  *    '---'         |        |          |
719  *      |           |        |          |
720  *  GND +-------------------------------+
721  *
722  * If we disconnect the load (here simplified as a fixed resistance Rload)
723  * and measure VBAT with a infinite impedance voltage meter we will get
724  * VBAT = OCV and this assumption is sometimes made even under load, assuming
725  * Rload is insignificant. However this will be of dubious quality because the
726  * load is rarely that small and Ri is strongly nonlinear depending on
727  * temperature and how much capacity is left in the battery due to the
728  * chemistry involved.
729  *
730  * In many practical applications we cannot just disconnect the battery from
731  * the load, so instead we often try to measure the instantaneous IBAT (the
732  * current out from the battery), estimate the Ri and thus calculate the
733  * voltage drop over Ri and compensate like this:
734  *
735  *   OCV = VBAT - (IBAT * Ri)
736  *
737  * The tables vbat2ri_discharging and vbat2ri_charging are used to determine
738  * (by interpolation) the Ri from the VBAT under load. These curves are highly
739  * nonlinear and may need many datapoints but can be found in datasheets for
740  * some batteries. This gives the compensated open circuit voltage (OCV) for
741  * the battery even under load. Using this method will also compensate for
742  * temperature changes in the environment: this will also make the internal
743  * resistance change, and it will affect the VBAT under load, so correlating
744  * VBAT to Ri takes both remaining capacity and temperature into consideration.
745  *
746  * Alternatively a manufacturer can specify how the capacity of the battery
747  * is dependent on the battery temperature which is the main factor affecting
748  * Ri. As we know all checmical reactions are faster when it is warm and slower
749  * when it is cold. You can put in 1500mAh and only get 800mAh out before the
750  * voltage drops too low for example. This effect is also highly nonlinear and
751  * the purpose of the table resist_table: this will take a temperature and
752  * tell us how big percentage of Ri the specified temperature correlates to.
753  * Usually we have 100% of the factory_internal_resistance_uohm at 25 degrees
754  * Celsius.
755  *
756  * The power supply class itself doesn't use this struct as of now.
757  */
758 
759 struct power_supply_battery_info {
760 	unsigned int technology;
761 	int energy_full_design_uwh;
762 	int charge_full_design_uah;
763 	int voltage_min_design_uv;
764 	int voltage_max_design_uv;
765 	int tricklecharge_current_ua;
766 	int precharge_current_ua;
767 	int precharge_voltage_max_uv;
768 	int charge_term_current_ua;
769 	int charge_restart_voltage_uv;
770 	int overvoltage_limit_uv;
771 	int constant_charge_current_max_ua;
772 	int constant_charge_voltage_max_uv;
773 	const struct power_supply_maintenance_charge_table *maintenance_charge;
774 	int maintenance_charge_size;
775 	int alert_low_temp_charge_current_ua;
776 	int alert_low_temp_charge_voltage_uv;
777 	int alert_high_temp_charge_current_ua;
778 	int alert_high_temp_charge_voltage_uv;
779 	int factory_internal_resistance_uohm;
780 	int factory_internal_resistance_charging_uohm;
781 	int ocv_temp[POWER_SUPPLY_OCV_TEMP_MAX];
782 	int temp_ambient_alert_min;
783 	int temp_ambient_alert_max;
784 	int temp_alert_min;
785 	int temp_alert_max;
786 	int temp_min;
787 	int temp_max;
788 	const struct power_supply_battery_ocv_table *ocv_table[POWER_SUPPLY_OCV_TEMP_MAX];
789 	int ocv_table_size[POWER_SUPPLY_OCV_TEMP_MAX];
790 	const struct power_supply_resistance_temp_table *resist_table;
791 	int resist_table_size;
792 	const struct power_supply_vbat_ri_table *vbat2ri_discharging;
793 	int vbat2ri_discharging_size;
794 	const struct power_supply_vbat_ri_table *vbat2ri_charging;
795 	int vbat2ri_charging_size;
796 	int bti_resistance_ohm;
797 	int bti_resistance_tolerance;
798 };
799 
800 extern int power_supply_reg_notifier(struct notifier_block *nb);
801 extern void power_supply_unreg_notifier(struct notifier_block *nb);
802 #if IS_ENABLED(CONFIG_POWER_SUPPLY)
803 extern struct power_supply *power_supply_get_by_name(const char *name);
804 extern void power_supply_put(struct power_supply *psy);
805 #else
power_supply_put(struct power_supply * psy)806 static inline void power_supply_put(struct power_supply *psy) {}
power_supply_get_by_name(const char * name)807 static inline struct power_supply *power_supply_get_by_name(const char *name)
808 { return NULL; }
809 #endif
810 extern struct power_supply *power_supply_get_by_reference(struct fwnode_handle *fwnode,
811 							  const char *property);
812 extern struct power_supply *devm_power_supply_get_by_reference(
813 				    struct device *dev, const char *property);
814 
815 extern const enum power_supply_property power_supply_battery_info_properties[];
816 extern const size_t power_supply_battery_info_properties_size;
817 extern int power_supply_get_battery_info(struct power_supply *psy,
818 					 struct power_supply_battery_info **info_out);
819 extern void power_supply_put_battery_info(struct power_supply *psy,
820 					  struct power_supply_battery_info *info);
821 extern bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info,
822 					       enum power_supply_property psp);
823 extern int power_supply_battery_info_get_prop(struct power_supply_battery_info *info,
824 					      enum power_supply_property psp,
825 					      union power_supply_propval *val);
826 extern int power_supply_ocv2cap_simple(const struct power_supply_battery_ocv_table *table,
827 				       int table_len, int ocv);
828 extern const struct power_supply_battery_ocv_table *
829 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
830 				int temp, int *table_len);
831 extern int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
832 					int ocv, int temp);
833 extern int
834 power_supply_temp2resist_simple(const struct power_supply_resistance_temp_table *table,
835 				int table_len, int temp);
836 extern int power_supply_vbat2ri(struct power_supply_battery_info *info,
837 				int vbat_uv, bool charging);
838 extern const struct power_supply_maintenance_charge_table *
839 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, int index);
840 extern bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
841 					      int resistance);
842 extern void power_supply_changed(struct power_supply *psy);
843 extern int power_supply_am_i_supplied(struct power_supply *psy);
844 int power_supply_get_property_from_supplier(struct power_supply *psy,
845 					    enum power_supply_property psp,
846 					    union power_supply_propval *val);
847 
848 static inline bool
power_supply_supports_maintenance_charging(struct power_supply_battery_info * info)849 power_supply_supports_maintenance_charging(struct power_supply_battery_info *info)
850 {
851 	const struct power_supply_maintenance_charge_table *mt;
852 
853 	mt = power_supply_get_maintenance_charging_setting(info, 0);
854 
855 	return (mt != NULL);
856 }
857 
858 static inline bool
power_supply_supports_vbat2ri(struct power_supply_battery_info * info)859 power_supply_supports_vbat2ri(struct power_supply_battery_info *info)
860 {
861 	return ((info->vbat2ri_discharging != NULL) &&
862 		info->vbat2ri_discharging_size > 0);
863 }
864 
865 static inline bool
power_supply_supports_temp2ri(struct power_supply_battery_info * info)866 power_supply_supports_temp2ri(struct power_supply_battery_info *info)
867 {
868 	return ((info->resist_table != NULL) &&
869 		info->resist_table_size > 0);
870 }
871 
872 #ifdef CONFIG_POWER_SUPPLY
873 extern int power_supply_is_system_supplied(void);
874 #else
power_supply_is_system_supplied(void)875 static inline int power_supply_is_system_supplied(void) { return -ENOSYS; }
876 #endif
877 
878 extern int power_supply_get_property(struct power_supply *psy,
879 			    enum power_supply_property psp,
880 			    union power_supply_propval *val);
881 int power_supply_get_property_direct(struct power_supply *psy, enum power_supply_property psp,
882 				     union power_supply_propval *val);
883 #if IS_ENABLED(CONFIG_POWER_SUPPLY)
884 extern int power_supply_set_property(struct power_supply *psy,
885 			    enum power_supply_property psp,
886 			    const union power_supply_propval *val);
887 int power_supply_set_property_direct(struct power_supply *psy, enum power_supply_property psp,
888 				     const union power_supply_propval *val);
889 #else
power_supply_set_property(struct power_supply * psy,enum power_supply_property psp,const union power_supply_propval * val)890 static inline int power_supply_set_property(struct power_supply *psy,
891 			    enum power_supply_property psp,
892 			    const union power_supply_propval *val)
893 { return 0; }
power_supply_set_property_direct(struct power_supply * psy,enum power_supply_property psp,const union power_supply_propval * val)894 static inline int power_supply_set_property_direct(struct power_supply *psy,
895 						   enum power_supply_property psp,
896 						   const union power_supply_propval *val)
897 { return 0; }
898 #endif
899 extern void power_supply_external_power_changed(struct power_supply *psy);
900 
901 extern struct power_supply *__must_check
902 power_supply_register(struct device *parent,
903 				 const struct power_supply_desc *desc,
904 				 const struct power_supply_config *cfg);
905 extern struct power_supply *__must_check
906 devm_power_supply_register(struct device *parent,
907 				 const struct power_supply_desc *desc,
908 				 const struct power_supply_config *cfg);
909 extern void power_supply_unregister(struct power_supply *psy);
910 extern int power_supply_powers(struct power_supply *psy, struct device *dev);
911 
912 extern int __must_check
913 power_supply_register_extension(struct power_supply *psy,
914 				const struct power_supply_ext *ext,
915 				struct device *dev,
916 				void *data);
917 extern void power_supply_unregister_extension(struct power_supply *psy,
918 					      const struct power_supply_ext *ext);
919 
920 #define to_power_supply(device) container_of(device, struct power_supply, dev)
921 
922 extern void *power_supply_get_drvdata(struct power_supply *psy);
923 extern int power_supply_for_each_psy(void *data, int (*fn)(struct power_supply *psy, void *data));
924 
power_supply_is_amp_property(enum power_supply_property psp)925 static inline bool power_supply_is_amp_property(enum power_supply_property psp)
926 {
927 	switch (psp) {
928 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
929 	case POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN:
930 	case POWER_SUPPLY_PROP_CHARGE_FULL:
931 	case POWER_SUPPLY_PROP_CHARGE_EMPTY:
932 	case POWER_SUPPLY_PROP_CHARGE_NOW:
933 	case POWER_SUPPLY_PROP_CHARGE_AVG:
934 	case POWER_SUPPLY_PROP_CHARGE_COUNTER:
935 	case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
936 	case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
937 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
938 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
939 	case POWER_SUPPLY_PROP_CURRENT_MAX:
940 	case POWER_SUPPLY_PROP_CURRENT_NOW:
941 	case POWER_SUPPLY_PROP_CURRENT_AVG:
942 	case POWER_SUPPLY_PROP_CURRENT_BOOT:
943 		return true;
944 	default:
945 		break;
946 	}
947 
948 	return false;
949 }
950 
power_supply_is_watt_property(enum power_supply_property psp)951 static inline bool power_supply_is_watt_property(enum power_supply_property psp)
952 {
953 	switch (psp) {
954 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
955 	case POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN:
956 	case POWER_SUPPLY_PROP_ENERGY_FULL:
957 	case POWER_SUPPLY_PROP_ENERGY_EMPTY:
958 	case POWER_SUPPLY_PROP_ENERGY_NOW:
959 	case POWER_SUPPLY_PROP_ENERGY_AVG:
960 	case POWER_SUPPLY_PROP_VOLTAGE_MAX:
961 	case POWER_SUPPLY_PROP_VOLTAGE_MIN:
962 	case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
963 	case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
964 	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
965 	case POWER_SUPPLY_PROP_VOLTAGE_AVG:
966 	case POWER_SUPPLY_PROP_VOLTAGE_OCV:
967 	case POWER_SUPPLY_PROP_VOLTAGE_BOOT:
968 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
969 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
970 	case POWER_SUPPLY_PROP_POWER_NOW:
971 		return true;
972 	default:
973 		break;
974 	}
975 
976 	return false;
977 }
978 
979 #ifdef CONFIG_SYSFS
980 ssize_t power_supply_charge_behaviour_show(struct device *dev,
981 					   unsigned int available_behaviours,
982 					   enum power_supply_charge_behaviour behaviour,
983 					   char *buf);
984 
985 int power_supply_charge_behaviour_parse(unsigned int available_behaviours, const char *buf);
986 ssize_t power_supply_charge_types_show(struct device *dev,
987 				       unsigned int available_types,
988 				       enum power_supply_charge_type current_type,
989 				       char *buf);
990 int power_supply_charge_types_parse(unsigned int available_types, const char *buf);
991 #else
992 static inline
power_supply_charge_behaviour_show(struct device * dev,unsigned int available_behaviours,enum power_supply_charge_behaviour behaviour,char * buf)993 ssize_t power_supply_charge_behaviour_show(struct device *dev,
994 					   unsigned int available_behaviours,
995 					   enum power_supply_charge_behaviour behaviour,
996 					   char *buf)
997 {
998 	return -EOPNOTSUPP;
999 }
1000 
power_supply_charge_behaviour_parse(unsigned int available_behaviours,const char * buf)1001 static inline int power_supply_charge_behaviour_parse(unsigned int available_behaviours,
1002 						      const char *buf)
1003 {
1004 	return -EOPNOTSUPP;
1005 }
1006 
1007 static inline
power_supply_charge_types_show(struct device * dev,unsigned int available_types,enum power_supply_charge_type current_type,char * buf)1008 ssize_t power_supply_charge_types_show(struct device *dev,
1009 				       unsigned int available_types,
1010 				       enum power_supply_charge_type current_type,
1011 				       char *buf)
1012 {
1013 	return -EOPNOTSUPP;
1014 }
1015 
power_supply_charge_types_parse(unsigned int available_types,const char * buf)1016 static inline int power_supply_charge_types_parse(unsigned int available_types, const char *buf)
1017 {
1018 	return -EOPNOTSUPP;
1019 }
1020 #endif
1021 
1022 #endif /* __LINUX_POWER_SUPPLY_H__ */
1023