1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Machine check handler.
4 *
5 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6 * Rest from unknown author(s).
7 * 2004 Andi Kleen. Rewrote most of it.
8 * Copyright 2008 Intel Corporation
9 * Author: Andi Kleen
10 */
11
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/set_memory.h>
44 #include <linux/sync_core.h>
45 #include <linux/task_work.h>
46 #include <linux/hardirq.h>
47 #include <linux/kexec.h>
48
49 #include <asm/fred.h>
50 #include <asm/cpu_device_id.h>
51 #include <asm/processor.h>
52 #include <asm/traps.h>
53 #include <asm/tlbflush.h>
54 #include <asm/mce.h>
55 #include <asm/msr.h>
56 #include <asm/reboot.h>
57 #include <asm/tdx.h>
58
59 #include "internal.h"
60
61 /* sysfs synchronization */
62 static DEFINE_MUTEX(mce_sysfs_mutex);
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/mce.h>
66
67 #define SPINUNIT 100 /* 100ns */
68
69 DEFINE_PER_CPU(unsigned, mce_exception_count);
70
71 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
72
73 DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
74
75 #define ATTR_LEN 16
76 /* One object for each MCE bank, shared by all CPUs */
77 struct mce_bank_dev {
78 struct device_attribute attr; /* device attribute */
79 char attrname[ATTR_LEN]; /* attribute name */
80 u8 bank; /* bank number */
81 };
82 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
83
84 struct mce_vendor_flags mce_flags __read_mostly;
85
86 struct mca_config mca_cfg __read_mostly = {
87 .bootlog = -1,
88 .monarch_timeout = -1
89 };
90
91 static DEFINE_PER_CPU(struct mce_hw_err, hw_errs_seen);
92 static unsigned long mce_need_notify;
93
94 /*
95 * MCA banks polled by the period polling timer for corrected events.
96 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
97 */
98 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
99 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
100 };
101
102 /*
103 * MCA banks controlled through firmware first for corrected errors.
104 * This is a global list of banks for which we won't enable CMCI and we
105 * won't poll. Firmware controls these banks and is responsible for
106 * reporting corrected errors through GHES. Uncorrected/recoverable
107 * errors are still notified through a machine check.
108 */
109 mce_banks_t mce_banks_ce_disabled;
110
111 static struct work_struct mce_work;
112 static struct irq_work mce_irq_work;
113
114 /*
115 * CPU/chipset specific EDAC code can register a notifier call here to print
116 * MCE errors in a human-readable form.
117 */
118 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
119
mce_prep_record_common(struct mce * m)120 void mce_prep_record_common(struct mce *m)
121 {
122 m->cpuid = cpuid_eax(1);
123 m->cpuvendor = boot_cpu_data.x86_vendor;
124 m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP);
125 /* need the internal __ version to avoid deadlocks */
126 m->time = __ktime_get_real_seconds();
127 }
128
mce_prep_record_per_cpu(unsigned int cpu,struct mce * m)129 void mce_prep_record_per_cpu(unsigned int cpu, struct mce *m)
130 {
131 m->cpu = cpu;
132 m->extcpu = cpu;
133 m->apicid = cpu_data(cpu).topo.initial_apicid;
134 m->microcode = cpu_data(cpu).microcode;
135 m->ppin = topology_ppin(cpu);
136 m->socketid = topology_physical_package_id(cpu);
137 }
138
139 /* Do initial initialization of struct mce_hw_err */
mce_prep_record(struct mce_hw_err * err)140 void mce_prep_record(struct mce_hw_err *err)
141 {
142 struct mce *m = &err->m;
143
144 memset(err, 0, sizeof(struct mce_hw_err));
145 mce_prep_record_common(m);
146 mce_prep_record_per_cpu(smp_processor_id(), m);
147 }
148
149 DEFINE_PER_CPU(struct mce, injectm);
150 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
151
mce_log(struct mce_hw_err * err)152 void mce_log(struct mce_hw_err *err)
153 {
154 if (mce_gen_pool_add(err))
155 irq_work_queue(&mce_irq_work);
156 }
157 EXPORT_SYMBOL_GPL(mce_log);
158
mce_register_decode_chain(struct notifier_block * nb)159 void mce_register_decode_chain(struct notifier_block *nb)
160 {
161 if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
162 nb->priority > MCE_PRIO_HIGHEST))
163 return;
164
165 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
166 }
167 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
168
mce_unregister_decode_chain(struct notifier_block * nb)169 void mce_unregister_decode_chain(struct notifier_block *nb)
170 {
171 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
172 }
173 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
174
__print_mce(struct mce_hw_err * err)175 static void __print_mce(struct mce_hw_err *err)
176 {
177 struct mce *m = &err->m;
178
179 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
180 m->extcpu,
181 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
182 m->mcgstatus, m->bank, m->status);
183
184 if (m->ip) {
185 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
186 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
187 m->cs, m->ip);
188
189 if (m->cs == __KERNEL_CS)
190 pr_cont("{%pS}", (void *)(unsigned long)m->ip);
191 pr_cont("\n");
192 }
193
194 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
195 if (m->addr)
196 pr_cont("ADDR %llx ", m->addr);
197 if (m->misc)
198 pr_cont("MISC %llx ", m->misc);
199 if (m->ppin)
200 pr_cont("PPIN %llx ", m->ppin);
201
202 if (mce_flags.smca) {
203 if (m->synd)
204 pr_cont("SYND %llx ", m->synd);
205 if (err->vendor.amd.synd1)
206 pr_cont("SYND1 %llx ", err->vendor.amd.synd1);
207 if (err->vendor.amd.synd2)
208 pr_cont("SYND2 %llx ", err->vendor.amd.synd2);
209 if (m->ipid)
210 pr_cont("IPID %llx ", m->ipid);
211 }
212
213 pr_cont("\n");
214
215 /*
216 * Note this output is parsed by external tools and old fields
217 * should not be changed.
218 */
219 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
220 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
221 m->microcode);
222 }
223
print_mce(struct mce_hw_err * err)224 static void print_mce(struct mce_hw_err *err)
225 {
226 struct mce *m = &err->m;
227
228 __print_mce(err);
229
230 if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
231 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
232 }
233
234 #define PANIC_TIMEOUT 5 /* 5 seconds */
235
236 static atomic_t mce_panicked;
237
238 static int fake_panic;
239 static atomic_t mce_fake_panicked;
240
241 /* Panic in progress. Enable interrupts and wait for final IPI */
wait_for_panic(void)242 static void wait_for_panic(void)
243 {
244 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
245
246 preempt_disable();
247 local_irq_enable();
248 while (timeout-- > 0)
249 udelay(1);
250 if (panic_timeout == 0)
251 panic_timeout = mca_cfg.panic_timeout;
252 panic("Panicing machine check CPU died");
253 }
254
mce_dump_aux_info(struct mce * m)255 static const char *mce_dump_aux_info(struct mce *m)
256 {
257 if (boot_cpu_has_bug(X86_BUG_TDX_PW_MCE))
258 return tdx_dump_mce_info(m);
259
260 return NULL;
261 }
262
mce_panic(const char * msg,struct mce_hw_err * final,char * exp)263 static noinstr void mce_panic(const char *msg, struct mce_hw_err *final, char *exp)
264 {
265 struct llist_node *pending;
266 struct mce_evt_llist *l;
267 int apei_err = 0;
268 const char *memmsg;
269
270 /*
271 * Allow instrumentation around external facilities usage. Not that it
272 * matters a whole lot since the machine is going to panic anyway.
273 */
274 instrumentation_begin();
275
276 if (!fake_panic) {
277 /*
278 * Make sure only one CPU runs in machine check panic
279 */
280 if (atomic_inc_return(&mce_panicked) > 1)
281 wait_for_panic();
282 barrier();
283
284 bust_spinlocks(1);
285 console_verbose();
286 } else {
287 /* Don't log too much for fake panic */
288 if (atomic_inc_return(&mce_fake_panicked) > 1)
289 goto out;
290 }
291 pending = mce_gen_pool_prepare_records();
292 /* First print corrected ones that are still unlogged */
293 llist_for_each_entry(l, pending, llnode) {
294 struct mce_hw_err *err = &l->err;
295 struct mce *m = &err->m;
296 if (!(m->status & MCI_STATUS_UC)) {
297 print_mce(err);
298 if (!apei_err)
299 apei_err = apei_write_mce(m);
300 }
301 }
302 /* Now print uncorrected but with the final one last */
303 llist_for_each_entry(l, pending, llnode) {
304 struct mce_hw_err *err = &l->err;
305 struct mce *m = &err->m;
306 if (!(m->status & MCI_STATUS_UC))
307 continue;
308 if (!final || mce_cmp(m, &final->m)) {
309 print_mce(err);
310 if (!apei_err)
311 apei_err = apei_write_mce(m);
312 }
313 }
314 if (final) {
315 print_mce(final);
316 if (!apei_err)
317 apei_err = apei_write_mce(&final->m);
318 }
319 if (exp)
320 pr_emerg(HW_ERR "Machine check: %s\n", exp);
321
322 memmsg = mce_dump_aux_info(&final->m);
323 if (memmsg)
324 pr_emerg(HW_ERR "Machine check: %s\n", memmsg);
325
326 if (!fake_panic) {
327 if (panic_timeout == 0)
328 panic_timeout = mca_cfg.panic_timeout;
329
330 /*
331 * Kdump skips the poisoned page in order to avoid
332 * touching the error bits again. Poison the page even
333 * if the error is fatal and the machine is about to
334 * panic.
335 */
336 if (kexec_crash_loaded()) {
337 if (final && (final->m.status & MCI_STATUS_ADDRV)) {
338 struct page *p;
339 p = pfn_to_online_page(final->m.addr >> PAGE_SHIFT);
340 if (p)
341 SetPageHWPoison(p);
342 }
343 }
344 panic(msg);
345 } else
346 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
347
348 out:
349 instrumentation_end();
350 }
351
352 /* Support code for software error injection */
353
msr_to_offset(u32 msr)354 static int msr_to_offset(u32 msr)
355 {
356 unsigned bank = __this_cpu_read(injectm.bank);
357
358 if (msr == mca_cfg.rip_msr)
359 return offsetof(struct mce, ip);
360 if (msr == mca_msr_reg(bank, MCA_STATUS))
361 return offsetof(struct mce, status);
362 if (msr == mca_msr_reg(bank, MCA_ADDR))
363 return offsetof(struct mce, addr);
364 if (msr == mca_msr_reg(bank, MCA_MISC))
365 return offsetof(struct mce, misc);
366 if (msr == MSR_IA32_MCG_STATUS)
367 return offsetof(struct mce, mcgstatus);
368 return -1;
369 }
370
ex_handler_msr_mce(struct pt_regs * regs,bool wrmsr)371 void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr)
372 {
373 if (wrmsr) {
374 pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
375 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
376 regs->ip, (void *)regs->ip);
377 } else {
378 pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
379 (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
380 }
381
382 show_stack_regs(regs);
383
384 panic("MCA architectural violation!\n");
385
386 while (true)
387 cpu_relax();
388 }
389
390 /* MSR access wrappers used for error injection */
mce_rdmsrl(u32 msr)391 noinstr u64 mce_rdmsrl(u32 msr)
392 {
393 DECLARE_ARGS(val, low, high);
394
395 if (__this_cpu_read(injectm.finished)) {
396 int offset;
397 u64 ret;
398
399 instrumentation_begin();
400
401 offset = msr_to_offset(msr);
402 if (offset < 0)
403 ret = 0;
404 else
405 ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
406
407 instrumentation_end();
408
409 return ret;
410 }
411
412 /*
413 * RDMSR on MCA MSRs should not fault. If they do, this is very much an
414 * architectural violation and needs to be reported to hw vendor. Panic
415 * the box to not allow any further progress.
416 */
417 asm volatile("1: rdmsr\n"
418 "2:\n"
419 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE)
420 : EAX_EDX_RET(val, low, high) : "c" (msr));
421
422
423 return EAX_EDX_VAL(val, low, high);
424 }
425
mce_wrmsrl(u32 msr,u64 v)426 static noinstr void mce_wrmsrl(u32 msr, u64 v)
427 {
428 u32 low, high;
429
430 if (__this_cpu_read(injectm.finished)) {
431 int offset;
432
433 instrumentation_begin();
434
435 offset = msr_to_offset(msr);
436 if (offset >= 0)
437 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
438
439 instrumentation_end();
440
441 return;
442 }
443
444 low = (u32)v;
445 high = (u32)(v >> 32);
446
447 /* See comment in mce_rdmsrl() */
448 asm volatile("1: wrmsr\n"
449 "2:\n"
450 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE)
451 : : "c" (msr), "a"(low), "d" (high) : "memory");
452 }
453
454 /*
455 * Collect all global (w.r.t. this processor) status about this machine
456 * check into our "mce" struct so that we can use it later to assess
457 * the severity of the problem as we read per-bank specific details.
458 */
mce_gather_info(struct mce_hw_err * err,struct pt_regs * regs)459 static noinstr void mce_gather_info(struct mce_hw_err *err, struct pt_regs *regs)
460 {
461 struct mce *m;
462 /*
463 * Enable instrumentation around mce_prep_record() which calls external
464 * facilities.
465 */
466 instrumentation_begin();
467 mce_prep_record(err);
468 instrumentation_end();
469
470 m = &err->m;
471 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
472 if (regs) {
473 /*
474 * Get the address of the instruction at the time of
475 * the machine check error.
476 */
477 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
478 m->ip = regs->ip;
479 m->cs = regs->cs;
480
481 /*
482 * When in VM86 mode make the cs look like ring 3
483 * always. This is a lie, but it's better than passing
484 * the additional vm86 bit around everywhere.
485 */
486 if (v8086_mode(regs))
487 m->cs |= 3;
488 }
489 /* Use accurate RIP reporting if available. */
490 if (mca_cfg.rip_msr)
491 m->ip = mce_rdmsrl(mca_cfg.rip_msr);
492 }
493 }
494
mce_available(struct cpuinfo_x86 * c)495 bool mce_available(struct cpuinfo_x86 *c)
496 {
497 if (mca_cfg.disabled)
498 return false;
499 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
500 }
501
mce_schedule_work(void)502 static void mce_schedule_work(void)
503 {
504 if (!mce_gen_pool_empty())
505 schedule_work(&mce_work);
506 }
507
mce_irq_work_cb(struct irq_work * entry)508 static void mce_irq_work_cb(struct irq_work *entry)
509 {
510 mce_schedule_work();
511 }
512
mce_usable_address(struct mce * m)513 bool mce_usable_address(struct mce *m)
514 {
515 if (!(m->status & MCI_STATUS_ADDRV))
516 return false;
517
518 switch (m->cpuvendor) {
519 case X86_VENDOR_AMD:
520 return amd_mce_usable_address(m);
521
522 case X86_VENDOR_INTEL:
523 case X86_VENDOR_ZHAOXIN:
524 return intel_mce_usable_address(m);
525
526 default:
527 return true;
528 }
529 }
530 EXPORT_SYMBOL_GPL(mce_usable_address);
531
mce_is_memory_error(struct mce * m)532 bool mce_is_memory_error(struct mce *m)
533 {
534 switch (m->cpuvendor) {
535 case X86_VENDOR_AMD:
536 case X86_VENDOR_HYGON:
537 return amd_mce_is_memory_error(m);
538
539 case X86_VENDOR_INTEL:
540 case X86_VENDOR_ZHAOXIN:
541 /*
542 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
543 *
544 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
545 * indicating a memory error. Bit 8 is used for indicating a
546 * cache hierarchy error. The combination of bit 2 and bit 3
547 * is used for indicating a `generic' cache hierarchy error
548 * But we can't just blindly check the above bits, because if
549 * bit 11 is set, then it is a bus/interconnect error - and
550 * either way the above bits just gives more detail on what
551 * bus/interconnect error happened. Note that bit 12 can be
552 * ignored, as it's the "filter" bit.
553 */
554 return (m->status & 0xef80) == BIT(7) ||
555 (m->status & 0xef00) == BIT(8) ||
556 (m->status & 0xeffc) == 0xc;
557
558 default:
559 return false;
560 }
561 }
562 EXPORT_SYMBOL_GPL(mce_is_memory_error);
563
whole_page(struct mce * m)564 static bool whole_page(struct mce *m)
565 {
566 if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
567 return true;
568
569 return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
570 }
571
mce_is_correctable(struct mce * m)572 bool mce_is_correctable(struct mce *m)
573 {
574 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
575 return false;
576
577 if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
578 return false;
579
580 if (m->status & MCI_STATUS_UC)
581 return false;
582
583 return true;
584 }
585 EXPORT_SYMBOL_GPL(mce_is_correctable);
586
587 /*
588 * Notify the user(s) about new machine check events.
589 * Can be called from interrupt context, but not from machine check/NMI
590 * context.
591 */
mce_notify_irq(void)592 static bool mce_notify_irq(void)
593 {
594 /* Not more than two messages every minute */
595 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
596
597 if (test_and_clear_bit(0, &mce_need_notify)) {
598 mce_work_trigger();
599
600 if (__ratelimit(&ratelimit))
601 pr_info(HW_ERR "Machine check events logged\n");
602
603 return true;
604 }
605
606 return false;
607 }
608
mce_early_notifier(struct notifier_block * nb,unsigned long val,void * data)609 static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
610 void *data)
611 {
612 struct mce_hw_err *err = to_mce_hw_err(data);
613
614 if (!err)
615 return NOTIFY_DONE;
616
617 /* Emit the trace record: */
618 trace_mce_record(err);
619
620 set_bit(0, &mce_need_notify);
621
622 mce_notify_irq();
623
624 return NOTIFY_DONE;
625 }
626
627 static struct notifier_block early_nb = {
628 .notifier_call = mce_early_notifier,
629 .priority = MCE_PRIO_EARLY,
630 };
631
uc_decode_notifier(struct notifier_block * nb,unsigned long val,void * data)632 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
633 void *data)
634 {
635 struct mce *mce = (struct mce *)data;
636 unsigned long pfn;
637
638 if (!mce || !mce_usable_address(mce))
639 return NOTIFY_DONE;
640
641 if (mce->severity != MCE_AO_SEVERITY &&
642 mce->severity != MCE_DEFERRED_SEVERITY)
643 return NOTIFY_DONE;
644
645 pfn = (mce->addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
646 if (!memory_failure(pfn, 0)) {
647 set_mce_nospec(pfn);
648 mce->kflags |= MCE_HANDLED_UC;
649 }
650
651 return NOTIFY_OK;
652 }
653
654 static struct notifier_block mce_uc_nb = {
655 .notifier_call = uc_decode_notifier,
656 .priority = MCE_PRIO_UC,
657 };
658
mce_default_notifier(struct notifier_block * nb,unsigned long val,void * data)659 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
660 void *data)
661 {
662 struct mce_hw_err *err = to_mce_hw_err(data);
663
664 if (!err)
665 return NOTIFY_DONE;
666
667 if (mca_cfg.print_all || !(err->m.kflags))
668 __print_mce(err);
669
670 return NOTIFY_DONE;
671 }
672
673 static struct notifier_block mce_default_nb = {
674 .notifier_call = mce_default_notifier,
675 /* lowest prio, we want it to run last. */
676 .priority = MCE_PRIO_LOWEST,
677 };
678
679 /*
680 * Read ADDR and MISC registers.
681 */
mce_read_aux(struct mce_hw_err * err,int i)682 static noinstr void mce_read_aux(struct mce_hw_err *err, int i)
683 {
684 struct mce *m = &err->m;
685
686 if (m->status & MCI_STATUS_MISCV)
687 m->misc = mce_rdmsrl(mca_msr_reg(i, MCA_MISC));
688
689 if (m->status & MCI_STATUS_ADDRV) {
690 m->addr = mce_rdmsrl(mca_msr_reg(i, MCA_ADDR));
691
692 /*
693 * Mask the reported address by the reported granularity.
694 */
695 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
696 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
697 m->addr >>= shift;
698 m->addr <<= shift;
699 }
700
701 smca_extract_err_addr(m);
702 }
703
704 if (mce_flags.smca) {
705 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
706
707 if (m->status & MCI_STATUS_SYNDV) {
708 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
709 err->vendor.amd.synd1 = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND1(i));
710 err->vendor.amd.synd2 = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND2(i));
711 }
712 }
713 }
714
715 DEFINE_PER_CPU(unsigned, mce_poll_count);
716
717 /*
718 * Poll for corrected events or events that happened before reset.
719 * Those are just logged through /dev/mcelog.
720 *
721 * This is executed in standard interrupt context.
722 *
723 * Note: spec recommends to panic for fatal unsignalled
724 * errors here. However this would be quite problematic --
725 * we would need to reimplement the Monarch handling and
726 * it would mess up the exclusion between exception handler
727 * and poll handler -- * so we skip this for now.
728 * These cases should not happen anyways, or only when the CPU
729 * is already totally * confused. In this case it's likely it will
730 * not fully execute the machine check handler either.
731 */
machine_check_poll(enum mcp_flags flags,mce_banks_t * b)732 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
733 {
734 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
735 struct mce_hw_err err;
736 struct mce *m;
737 int i;
738
739 this_cpu_inc(mce_poll_count);
740
741 mce_gather_info(&err, NULL);
742 m = &err.m;
743
744 if (flags & MCP_TIMESTAMP)
745 m->tsc = rdtsc();
746
747 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
748 if (!mce_banks[i].ctl || !test_bit(i, *b))
749 continue;
750
751 m->misc = 0;
752 m->addr = 0;
753 m->bank = i;
754
755 barrier();
756 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
757
758 /*
759 * Update storm tracking here, before checking for the
760 * MCI_STATUS_VAL bit. Valid corrected errors count
761 * towards declaring, or maintaining, storm status. No
762 * error in a bank counts towards avoiding, or ending,
763 * storm status.
764 */
765 if (!mca_cfg.cmci_disabled)
766 mce_track_storm(m);
767
768 /* If this entry is not valid, ignore it */
769 if (!(m->status & MCI_STATUS_VAL))
770 continue;
771
772 /*
773 * If we are logging everything (at CPU online) or this
774 * is a corrected error, then we must log it.
775 */
776 if ((flags & MCP_UC) || !(m->status & MCI_STATUS_UC))
777 goto log_it;
778
779 /*
780 * Newer Intel systems that support software error
781 * recovery need to make additional checks. Other
782 * CPUs should skip over uncorrected errors, but log
783 * everything else.
784 */
785 if (!mca_cfg.ser) {
786 if (m->status & MCI_STATUS_UC)
787 continue;
788 goto log_it;
789 }
790
791 /* Log "not enabled" (speculative) errors */
792 if (!(m->status & MCI_STATUS_EN))
793 goto log_it;
794
795 /*
796 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
797 * UC == 1 && PCC == 0 && S == 0
798 */
799 if (!(m->status & MCI_STATUS_PCC) && !(m->status & MCI_STATUS_S))
800 goto log_it;
801
802 /*
803 * Skip anything else. Presumption is that our read of this
804 * bank is racing with a machine check. Leave the log alone
805 * for do_machine_check() to deal with it.
806 */
807 continue;
808
809 log_it:
810 if (flags & MCP_DONTLOG)
811 goto clear_it;
812
813 mce_read_aux(&err, i);
814 m->severity = mce_severity(m, NULL, NULL, false);
815 /*
816 * Don't get the IP here because it's unlikely to
817 * have anything to do with the actual error location.
818 */
819
820 if (mca_cfg.dont_log_ce && !mce_usable_address(m))
821 goto clear_it;
822
823 if (flags & MCP_QUEUE_LOG)
824 mce_gen_pool_add(&err);
825 else
826 mce_log(&err);
827
828 clear_it:
829 /*
830 * Clear state for this bank.
831 */
832 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
833 }
834
835 /*
836 * Don't clear MCG_STATUS here because it's only defined for
837 * exceptions.
838 */
839
840 sync_core();
841 }
842 EXPORT_SYMBOL_GPL(machine_check_poll);
843
844 /*
845 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
846 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
847 * Vol 3B Table 15-20). But this confuses both the code that determines
848 * whether the machine check occurred in kernel or user mode, and also
849 * the severity assessment code. Pretend that EIPV was set, and take the
850 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
851 */
852 static __always_inline void
quirk_sandybridge_ifu(int bank,struct mce * m,struct pt_regs * regs)853 quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
854 {
855 if (bank != 0)
856 return;
857 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
858 return;
859 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
860 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
861 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
862 MCACOD)) !=
863 (MCI_STATUS_UC|MCI_STATUS_EN|
864 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
865 MCI_STATUS_AR|MCACOD_INSTR))
866 return;
867
868 m->mcgstatus |= MCG_STATUS_EIPV;
869 m->ip = regs->ip;
870 m->cs = regs->cs;
871 }
872
873 /*
874 * Disable fast string copy and return from the MCE handler upon the first SRAR
875 * MCE on bank 1 due to a CPU erratum on Intel Skylake/Cascade Lake/Cooper Lake
876 * CPUs.
877 * The fast string copy instructions ("REP; MOVS*") could consume an
878 * uncorrectable memory error in the cache line _right after_ the desired region
879 * to copy and raise an MCE with RIP pointing to the instruction _after_ the
880 * "REP; MOVS*".
881 * This mitigation addresses the issue completely with the caveat of performance
882 * degradation on the CPU affected. This is still better than the OS crashing on
883 * MCEs raised on an irrelevant process due to "REP; MOVS*" accesses from a
884 * kernel context (e.g., copy_page).
885 *
886 * Returns true when fast string copy on CPU has been disabled.
887 */
quirk_skylake_repmov(void)888 static noinstr bool quirk_skylake_repmov(void)
889 {
890 u64 mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
891 u64 misc_enable = mce_rdmsrl(MSR_IA32_MISC_ENABLE);
892 u64 mc1_status;
893
894 /*
895 * Apply the quirk only to local machine checks, i.e., no broadcast
896 * sync is needed.
897 */
898 if (!(mcgstatus & MCG_STATUS_LMCES) ||
899 !(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING))
900 return false;
901
902 mc1_status = mce_rdmsrl(MSR_IA32_MCx_STATUS(1));
903
904 /* Check for a software-recoverable data fetch error. */
905 if ((mc1_status &
906 (MCI_STATUS_VAL | MCI_STATUS_OVER | MCI_STATUS_UC | MCI_STATUS_EN |
907 MCI_STATUS_ADDRV | MCI_STATUS_MISCV | MCI_STATUS_PCC |
908 MCI_STATUS_AR | MCI_STATUS_S)) ==
909 (MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
910 MCI_STATUS_ADDRV | MCI_STATUS_MISCV |
911 MCI_STATUS_AR | MCI_STATUS_S)) {
912 misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING;
913 mce_wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
914 mce_wrmsrl(MSR_IA32_MCx_STATUS(1), 0);
915
916 instrumentation_begin();
917 pr_err_once("Erratum detected, disable fast string copy instructions.\n");
918 instrumentation_end();
919
920 return true;
921 }
922
923 return false;
924 }
925
926 /*
927 * Some Zen-based Instruction Fetch Units set EIPV=RIPV=0 on poison consumption
928 * errors. This means mce_gather_info() will not save the "ip" and "cs" registers.
929 *
930 * However, the context is still valid, so save the "cs" register for later use.
931 *
932 * The "ip" register is truly unknown, so don't save it or fixup EIPV/RIPV.
933 *
934 * The Instruction Fetch Unit is at MCA bank 1 for all affected systems.
935 */
quirk_zen_ifu(int bank,struct mce * m,struct pt_regs * regs)936 static __always_inline void quirk_zen_ifu(int bank, struct mce *m, struct pt_regs *regs)
937 {
938 if (bank != 1)
939 return;
940 if (!(m->status & MCI_STATUS_POISON))
941 return;
942
943 m->cs = regs->cs;
944 }
945
946 /*
947 * Do a quick check if any of the events requires a panic.
948 * This decides if we keep the events around or clear them.
949 */
mce_no_way_out(struct mce_hw_err * err,char ** msg,unsigned long * validp,struct pt_regs * regs)950 static __always_inline int mce_no_way_out(struct mce_hw_err *err, char **msg, unsigned long *validp,
951 struct pt_regs *regs)
952 {
953 struct mce *m = &err->m;
954 char *tmp = *msg;
955 int i;
956
957 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
958 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
959 if (!(m->status & MCI_STATUS_VAL))
960 continue;
961
962 arch___set_bit(i, validp);
963 if (mce_flags.snb_ifu_quirk)
964 quirk_sandybridge_ifu(i, m, regs);
965
966 if (mce_flags.zen_ifu_quirk)
967 quirk_zen_ifu(i, m, regs);
968
969 m->bank = i;
970 if (mce_severity(m, regs, &tmp, true) >= MCE_PANIC_SEVERITY) {
971 mce_read_aux(err, i);
972 *msg = tmp;
973 return 1;
974 }
975 }
976 return 0;
977 }
978
979 /*
980 * Variable to establish order between CPUs while scanning.
981 * Each CPU spins initially until executing is equal its number.
982 */
983 static atomic_t mce_executing;
984
985 /*
986 * Defines order of CPUs on entry. First CPU becomes Monarch.
987 */
988 static atomic_t mce_callin;
989
990 /*
991 * Track which CPUs entered the MCA broadcast synchronization and which not in
992 * order to print holdouts.
993 */
994 static cpumask_t mce_missing_cpus = CPU_MASK_ALL;
995
996 /*
997 * Check if a timeout waiting for other CPUs happened.
998 */
mce_timed_out(u64 * t,const char * msg)999 static noinstr int mce_timed_out(u64 *t, const char *msg)
1000 {
1001 int ret = 0;
1002
1003 /* Enable instrumentation around calls to external facilities */
1004 instrumentation_begin();
1005
1006 /*
1007 * The others already did panic for some reason.
1008 * Bail out like in a timeout.
1009 * rmb() to tell the compiler that system_state
1010 * might have been modified by someone else.
1011 */
1012 rmb();
1013 if (atomic_read(&mce_panicked))
1014 wait_for_panic();
1015 if (!mca_cfg.monarch_timeout)
1016 goto out;
1017 if ((s64)*t < SPINUNIT) {
1018 if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus))
1019 pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n",
1020 cpumask_pr_args(&mce_missing_cpus));
1021 mce_panic(msg, NULL, NULL);
1022
1023 ret = 1;
1024 goto out;
1025 }
1026 *t -= SPINUNIT;
1027
1028 out:
1029 touch_nmi_watchdog();
1030
1031 instrumentation_end();
1032
1033 return ret;
1034 }
1035
1036 /*
1037 * The Monarch's reign. The Monarch is the CPU who entered
1038 * the machine check handler first. It waits for the others to
1039 * raise the exception too and then grades them. When any
1040 * error is fatal panic. Only then let the others continue.
1041 *
1042 * The other CPUs entering the MCE handler will be controlled by the
1043 * Monarch. They are called Subjects.
1044 *
1045 * This way we prevent any potential data corruption in a unrecoverable case
1046 * and also makes sure always all CPU's errors are examined.
1047 *
1048 * Also this detects the case of a machine check event coming from outer
1049 * space (not detected by any CPUs) In this case some external agent wants
1050 * us to shut down, so panic too.
1051 *
1052 * The other CPUs might still decide to panic if the handler happens
1053 * in a unrecoverable place, but in this case the system is in a semi-stable
1054 * state and won't corrupt anything by itself. It's ok to let the others
1055 * continue for a bit first.
1056 *
1057 * All the spin loops have timeouts; when a timeout happens a CPU
1058 * typically elects itself to be Monarch.
1059 */
mce_reign(void)1060 static void mce_reign(void)
1061 {
1062 struct mce_hw_err *err = NULL;
1063 struct mce *m = NULL;
1064 int global_worst = 0;
1065 char *msg = NULL;
1066 int cpu;
1067
1068 /*
1069 * This CPU is the Monarch and the other CPUs have run
1070 * through their handlers.
1071 * Grade the severity of the errors of all the CPUs.
1072 */
1073 for_each_possible_cpu(cpu) {
1074 struct mce_hw_err *etmp = &per_cpu(hw_errs_seen, cpu);
1075 struct mce *mtmp = &etmp->m;
1076
1077 if (mtmp->severity > global_worst) {
1078 global_worst = mtmp->severity;
1079 err = &per_cpu(hw_errs_seen, cpu);
1080 m = &err->m;
1081 }
1082 }
1083
1084 /*
1085 * Cannot recover? Panic here then.
1086 * This dumps all the mces in the log buffer and stops the
1087 * other CPUs.
1088 */
1089 if (m && global_worst >= MCE_PANIC_SEVERITY) {
1090 /* call mce_severity() to get "msg" for panic */
1091 mce_severity(m, NULL, &msg, true);
1092 mce_panic("Fatal machine check", err, msg);
1093 }
1094
1095 /*
1096 * For UC somewhere we let the CPU who detects it handle it.
1097 * Also must let continue the others, otherwise the handling
1098 * CPU could deadlock on a lock.
1099 */
1100
1101 /*
1102 * No machine check event found. Must be some external
1103 * source or one CPU is hung. Panic.
1104 */
1105 if (global_worst <= MCE_KEEP_SEVERITY)
1106 mce_panic("Fatal machine check from unknown source", NULL, NULL);
1107
1108 /*
1109 * Now clear all the hw_errs_seen so that they don't reappear on
1110 * the next mce.
1111 */
1112 for_each_possible_cpu(cpu)
1113 memset(&per_cpu(hw_errs_seen, cpu), 0, sizeof(struct mce_hw_err));
1114 }
1115
1116 static atomic_t global_nwo;
1117
1118 /*
1119 * Start of Monarch synchronization. This waits until all CPUs have
1120 * entered the exception handler and then determines if any of them
1121 * saw a fatal event that requires panic. Then it executes them
1122 * in the entry order.
1123 * TBD double check parallel CPU hotunplug
1124 */
mce_start(int * no_way_out)1125 static noinstr int mce_start(int *no_way_out)
1126 {
1127 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1128 int order, ret = -1;
1129
1130 if (!timeout)
1131 return ret;
1132
1133 raw_atomic_add(*no_way_out, &global_nwo);
1134 /*
1135 * Rely on the implied barrier below, such that global_nwo
1136 * is updated before mce_callin.
1137 */
1138 order = raw_atomic_inc_return(&mce_callin);
1139 arch_cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus);
1140
1141 /* Enable instrumentation around calls to external facilities */
1142 instrumentation_begin();
1143
1144 /*
1145 * Wait for everyone.
1146 */
1147 while (raw_atomic_read(&mce_callin) != num_online_cpus()) {
1148 if (mce_timed_out(&timeout,
1149 "Timeout: Not all CPUs entered broadcast exception handler")) {
1150 raw_atomic_set(&global_nwo, 0);
1151 goto out;
1152 }
1153 ndelay(SPINUNIT);
1154 }
1155
1156 /*
1157 * mce_callin should be read before global_nwo
1158 */
1159 smp_rmb();
1160
1161 if (order == 1) {
1162 /*
1163 * Monarch: Starts executing now, the others wait.
1164 */
1165 raw_atomic_set(&mce_executing, 1);
1166 } else {
1167 /*
1168 * Subject: Now start the scanning loop one by one in
1169 * the original callin order.
1170 * This way when there are any shared banks it will be
1171 * only seen by one CPU before cleared, avoiding duplicates.
1172 */
1173 while (raw_atomic_read(&mce_executing) < order) {
1174 if (mce_timed_out(&timeout,
1175 "Timeout: Subject CPUs unable to finish machine check processing")) {
1176 raw_atomic_set(&global_nwo, 0);
1177 goto out;
1178 }
1179 ndelay(SPINUNIT);
1180 }
1181 }
1182
1183 /*
1184 * Cache the global no_way_out state.
1185 */
1186 *no_way_out = raw_atomic_read(&global_nwo);
1187
1188 ret = order;
1189
1190 out:
1191 instrumentation_end();
1192
1193 return ret;
1194 }
1195
1196 /*
1197 * Synchronize between CPUs after main scanning loop.
1198 * This invokes the bulk of the Monarch processing.
1199 */
mce_end(int order)1200 static noinstr int mce_end(int order)
1201 {
1202 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1203 int ret = -1;
1204
1205 /* Allow instrumentation around external facilities. */
1206 instrumentation_begin();
1207
1208 if (!timeout)
1209 goto reset;
1210 if (order < 0)
1211 goto reset;
1212
1213 /*
1214 * Allow others to run.
1215 */
1216 atomic_inc(&mce_executing);
1217
1218 if (order == 1) {
1219 /*
1220 * Monarch: Wait for everyone to go through their scanning
1221 * loops.
1222 */
1223 while (atomic_read(&mce_executing) <= num_online_cpus()) {
1224 if (mce_timed_out(&timeout,
1225 "Timeout: Monarch CPU unable to finish machine check processing"))
1226 goto reset;
1227 ndelay(SPINUNIT);
1228 }
1229
1230 mce_reign();
1231 barrier();
1232 ret = 0;
1233 } else {
1234 /*
1235 * Subject: Wait for Monarch to finish.
1236 */
1237 while (atomic_read(&mce_executing) != 0) {
1238 if (mce_timed_out(&timeout,
1239 "Timeout: Monarch CPU did not finish machine check processing"))
1240 goto reset;
1241 ndelay(SPINUNIT);
1242 }
1243
1244 /*
1245 * Don't reset anything. That's done by the Monarch.
1246 */
1247 ret = 0;
1248 goto out;
1249 }
1250
1251 /*
1252 * Reset all global state.
1253 */
1254 reset:
1255 atomic_set(&global_nwo, 0);
1256 atomic_set(&mce_callin, 0);
1257 cpumask_setall(&mce_missing_cpus);
1258 barrier();
1259
1260 /*
1261 * Let others run again.
1262 */
1263 atomic_set(&mce_executing, 0);
1264
1265 out:
1266 instrumentation_end();
1267
1268 return ret;
1269 }
1270
mce_clear_state(unsigned long * toclear)1271 static __always_inline void mce_clear_state(unsigned long *toclear)
1272 {
1273 int i;
1274
1275 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1276 if (arch_test_bit(i, toclear))
1277 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1278 }
1279 }
1280
1281 /*
1282 * Cases where we avoid rendezvous handler timeout:
1283 * 1) If this CPU is offline.
1284 *
1285 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1286 * skip those CPUs which remain looping in the 1st kernel - see
1287 * crash_nmi_callback().
1288 *
1289 * Note: there still is a small window between kexec-ing and the new,
1290 * kdump kernel establishing a new #MC handler where a broadcasted MCE
1291 * might not get handled properly.
1292 */
mce_check_crashing_cpu(void)1293 static noinstr bool mce_check_crashing_cpu(void)
1294 {
1295 unsigned int cpu = smp_processor_id();
1296
1297 if (arch_cpu_is_offline(cpu) ||
1298 (crashing_cpu != -1 && crashing_cpu != cpu)) {
1299 u64 mcgstatus;
1300
1301 mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS);
1302
1303 if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1304 if (mcgstatus & MCG_STATUS_LMCES)
1305 return false;
1306 }
1307
1308 if (mcgstatus & MCG_STATUS_RIPV) {
1309 __wrmsr(MSR_IA32_MCG_STATUS, 0, 0);
1310 return true;
1311 }
1312 }
1313 return false;
1314 }
1315
1316 static __always_inline int
__mc_scan_banks(struct mce_hw_err * err,struct pt_regs * regs,struct mce_hw_err * final,unsigned long * toclear,unsigned long * valid_banks,int no_way_out,int * worst)1317 __mc_scan_banks(struct mce_hw_err *err, struct pt_regs *regs,
1318 struct mce_hw_err *final, unsigned long *toclear,
1319 unsigned long *valid_banks, int no_way_out, int *worst)
1320 {
1321 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1322 struct mca_config *cfg = &mca_cfg;
1323 int severity, i, taint = 0;
1324 struct mce *m = &err->m;
1325
1326 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1327 arch___clear_bit(i, toclear);
1328 if (!arch_test_bit(i, valid_banks))
1329 continue;
1330
1331 if (!mce_banks[i].ctl)
1332 continue;
1333
1334 m->misc = 0;
1335 m->addr = 0;
1336 m->bank = i;
1337
1338 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
1339 if (!(m->status & MCI_STATUS_VAL))
1340 continue;
1341
1342 /*
1343 * Corrected or non-signaled errors are handled by
1344 * machine_check_poll(). Leave them alone, unless this panics.
1345 */
1346 if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1347 !no_way_out)
1348 continue;
1349
1350 /* Set taint even when machine check was not enabled. */
1351 taint++;
1352
1353 severity = mce_severity(m, regs, NULL, true);
1354
1355 /*
1356 * When machine check was for corrected/deferred handler don't
1357 * touch, unless we're panicking.
1358 */
1359 if ((severity == MCE_KEEP_SEVERITY ||
1360 severity == MCE_UCNA_SEVERITY) && !no_way_out)
1361 continue;
1362
1363 arch___set_bit(i, toclear);
1364
1365 /* Machine check event was not enabled. Clear, but ignore. */
1366 if (severity == MCE_NO_SEVERITY)
1367 continue;
1368
1369 mce_read_aux(err, i);
1370
1371 /* assuming valid severity level != 0 */
1372 m->severity = severity;
1373
1374 /*
1375 * Enable instrumentation around the mce_log() call which is
1376 * done in #MC context, where instrumentation is disabled.
1377 */
1378 instrumentation_begin();
1379 mce_log(err);
1380 instrumentation_end();
1381
1382 if (severity > *worst) {
1383 *final = *err;
1384 *worst = severity;
1385 }
1386 }
1387
1388 /* mce_clear_state will clear *final, save locally for use later */
1389 *err = *final;
1390
1391 return taint;
1392 }
1393
kill_me_now(struct callback_head * ch)1394 static void kill_me_now(struct callback_head *ch)
1395 {
1396 struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me);
1397
1398 p->mce_count = 0;
1399 force_sig(SIGBUS);
1400 }
1401
kill_me_maybe(struct callback_head * cb)1402 static void kill_me_maybe(struct callback_head *cb)
1403 {
1404 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1405 int flags = MF_ACTION_REQUIRED;
1406 unsigned long pfn;
1407 int ret;
1408
1409 p->mce_count = 0;
1410 pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1411
1412 if (!p->mce_ripv)
1413 flags |= MF_MUST_KILL;
1414
1415 pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
1416 ret = memory_failure(pfn, flags);
1417 if (!ret) {
1418 set_mce_nospec(pfn);
1419 sync_core();
1420 return;
1421 }
1422
1423 /*
1424 * -EHWPOISON from memory_failure() means that it already sent SIGBUS
1425 * to the current process with the proper error info,
1426 * -EOPNOTSUPP means hwpoison_filter() filtered the error event,
1427 *
1428 * In both cases, no further processing is required.
1429 */
1430 if (ret == -EHWPOISON || ret == -EOPNOTSUPP)
1431 return;
1432
1433 pr_err("Memory error not recovered");
1434 kill_me_now(cb);
1435 }
1436
kill_me_never(struct callback_head * cb)1437 static void kill_me_never(struct callback_head *cb)
1438 {
1439 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1440 unsigned long pfn;
1441
1442 p->mce_count = 0;
1443 pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr);
1444 pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
1445 if (!memory_failure(pfn, 0))
1446 set_mce_nospec(pfn);
1447 }
1448
queue_task_work(struct mce_hw_err * err,char * msg,void (* func)(struct callback_head *))1449 static void queue_task_work(struct mce_hw_err *err, char *msg, void (*func)(struct callback_head *))
1450 {
1451 int count = ++current->mce_count;
1452 struct mce *m = &err->m;
1453
1454 /* First call, save all the details */
1455 if (count == 1) {
1456 current->mce_addr = m->addr;
1457 current->mce_kflags = m->kflags;
1458 current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
1459 current->mce_whole_page = whole_page(m);
1460 current->mce_kill_me.func = func;
1461 }
1462
1463 /* Ten is likely overkill. Don't expect more than two faults before task_work() */
1464 if (count > 10)
1465 mce_panic("Too many consecutive machine checks while accessing user data",
1466 err, msg);
1467
1468 /* Second or later call, make sure page address matches the one from first call */
1469 if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT))
1470 mce_panic("Consecutive machine checks to different user pages", err, msg);
1471
1472 /* Do not call task_work_add() more than once */
1473 if (count > 1)
1474 return;
1475
1476 task_work_add(current, ¤t->mce_kill_me, TWA_RESUME);
1477 }
1478
1479 /* Handle unconfigured int18 (should never happen) */
unexpected_machine_check(struct pt_regs * regs)1480 static noinstr void unexpected_machine_check(struct pt_regs *regs)
1481 {
1482 instrumentation_begin();
1483 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1484 smp_processor_id());
1485 instrumentation_end();
1486 }
1487
1488 /*
1489 * The actual machine check handler. This only handles real exceptions when
1490 * something got corrupted coming in through int 18.
1491 *
1492 * This is executed in #MC context not subject to normal locking rules.
1493 * This implies that most kernel services cannot be safely used. Don't even
1494 * think about putting a printk in there!
1495 *
1496 * On Intel systems this is entered on all CPUs in parallel through
1497 * MCE broadcast. However some CPUs might be broken beyond repair,
1498 * so be always careful when synchronizing with others.
1499 *
1500 * Tracing and kprobes are disabled: if we interrupted a kernel context
1501 * with IF=1, we need to minimize stack usage. There are also recursion
1502 * issues: if the machine check was due to a failure of the memory
1503 * backing the user stack, tracing that reads the user stack will cause
1504 * potentially infinite recursion.
1505 *
1506 * Currently, the #MC handler calls out to a number of external facilities
1507 * and, therefore, allows instrumentation around them. The optimal thing to
1508 * have would be to do the absolutely minimal work required in #MC context
1509 * and have instrumentation disabled only around that. Further processing can
1510 * then happen in process context where instrumentation is allowed. Achieving
1511 * that requires careful auditing and modifications. Until then, the code
1512 * allows instrumentation temporarily, where required. *
1513 */
do_machine_check(struct pt_regs * regs)1514 noinstr void do_machine_check(struct pt_regs *regs)
1515 {
1516 int worst = 0, order, no_way_out, kill_current_task, lmce, taint = 0;
1517 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS) = { 0 };
1518 DECLARE_BITMAP(toclear, MAX_NR_BANKS) = { 0 };
1519 struct mce_hw_err *final;
1520 struct mce_hw_err err;
1521 char *msg = NULL;
1522 struct mce *m;
1523
1524 if (unlikely(mce_flags.p5))
1525 return pentium_machine_check(regs);
1526 else if (unlikely(mce_flags.winchip))
1527 return winchip_machine_check(regs);
1528 else if (unlikely(!mca_cfg.initialized))
1529 return unexpected_machine_check(regs);
1530
1531 if (mce_flags.skx_repmov_quirk && quirk_skylake_repmov())
1532 goto clear;
1533
1534 /*
1535 * Establish sequential order between the CPUs entering the machine
1536 * check handler.
1537 */
1538 order = -1;
1539
1540 /*
1541 * If no_way_out gets set, there is no safe way to recover from this
1542 * MCE.
1543 */
1544 no_way_out = 0;
1545
1546 /*
1547 * If kill_current_task is not set, there might be a way to recover from this
1548 * error.
1549 */
1550 kill_current_task = 0;
1551
1552 /*
1553 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1554 * on Intel.
1555 */
1556 lmce = 1;
1557
1558 this_cpu_inc(mce_exception_count);
1559
1560 mce_gather_info(&err, regs);
1561 m = &err.m;
1562 m->tsc = rdtsc();
1563
1564 final = this_cpu_ptr(&hw_errs_seen);
1565 *final = err;
1566
1567 no_way_out = mce_no_way_out(&err, &msg, valid_banks, regs);
1568
1569 barrier();
1570
1571 /*
1572 * When no restart IP might need to kill or panic.
1573 * Assume the worst for now, but if we find the
1574 * severity is MCE_AR_SEVERITY we have other options.
1575 */
1576 if (!(m->mcgstatus & MCG_STATUS_RIPV))
1577 kill_current_task = 1;
1578 /*
1579 * Check if this MCE is signaled to only this logical processor,
1580 * on Intel, Zhaoxin only.
1581 */
1582 if (m->cpuvendor == X86_VENDOR_INTEL ||
1583 m->cpuvendor == X86_VENDOR_ZHAOXIN)
1584 lmce = m->mcgstatus & MCG_STATUS_LMCES;
1585
1586 /*
1587 * Local machine check may already know that we have to panic.
1588 * Broadcast machine check begins rendezvous in mce_start()
1589 * Go through all banks in exclusion of the other CPUs. This way we
1590 * don't report duplicated events on shared banks because the first one
1591 * to see it will clear it.
1592 */
1593 if (lmce) {
1594 if (no_way_out)
1595 mce_panic("Fatal local machine check", &err, msg);
1596 } else {
1597 order = mce_start(&no_way_out);
1598 }
1599
1600 taint = __mc_scan_banks(&err, regs, final, toclear, valid_banks, no_way_out, &worst);
1601
1602 if (!no_way_out)
1603 mce_clear_state(toclear);
1604
1605 /*
1606 * Do most of the synchronization with other CPUs.
1607 * When there's any problem use only local no_way_out state.
1608 */
1609 if (!lmce) {
1610 if (mce_end(order) < 0) {
1611 if (!no_way_out)
1612 no_way_out = worst >= MCE_PANIC_SEVERITY;
1613
1614 if (no_way_out)
1615 mce_panic("Fatal machine check on current CPU", &err, msg);
1616 }
1617 } else {
1618 /*
1619 * If there was a fatal machine check we should have
1620 * already called mce_panic earlier in this function.
1621 * Since we re-read the banks, we might have found
1622 * something new. Check again to see if we found a
1623 * fatal error. We call "mce_severity()" again to
1624 * make sure we have the right "msg".
1625 */
1626 if (worst >= MCE_PANIC_SEVERITY) {
1627 mce_severity(m, regs, &msg, true);
1628 mce_panic("Local fatal machine check!", &err, msg);
1629 }
1630 }
1631
1632 /*
1633 * Enable instrumentation around the external facilities like task_work_add()
1634 * (via queue_task_work()), fixup_exception() etc. For now, that is. Fixing this
1635 * properly would need a lot more involved reorganization.
1636 */
1637 instrumentation_begin();
1638
1639 if (taint)
1640 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1641
1642 if (worst != MCE_AR_SEVERITY && !kill_current_task)
1643 goto out;
1644
1645 /* Fault was in user mode and we need to take some action */
1646 if ((m->cs & 3) == 3) {
1647 /* If this triggers there is no way to recover. Die hard. */
1648 BUG_ON(!on_thread_stack() || !user_mode(regs));
1649
1650 if (!mce_usable_address(m))
1651 queue_task_work(&err, msg, kill_me_now);
1652 else
1653 queue_task_work(&err, msg, kill_me_maybe);
1654
1655 } else if (m->mcgstatus & MCG_STATUS_SEAM_NR) {
1656 /*
1657 * Saved RIP on stack makes it look like the machine check
1658 * was taken in the kernel on the instruction following
1659 * the entry to SEAM mode. But MCG_STATUS_SEAM_NR indicates
1660 * that the machine check was taken inside SEAM non-root
1661 * mode. CPU core has already marked that guest as dead.
1662 * It is OK for the kernel to resume execution at the
1663 * apparent point of the machine check as the fault did
1664 * not occur there. Mark the page as poisoned so it won't
1665 * be added to free list when the guest is terminated.
1666 */
1667 if (mce_usable_address(m)) {
1668 struct page *p = pfn_to_online_page(m->addr >> PAGE_SHIFT);
1669
1670 if (p)
1671 SetPageHWPoison(p);
1672 }
1673 } else {
1674 /*
1675 * Handle an MCE which has happened in kernel space but from
1676 * which the kernel can recover: ex_has_fault_handler() has
1677 * already verified that the rIP at which the error happened is
1678 * a rIP from which the kernel can recover (by jumping to
1679 * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1680 * corresponding exception handler which would do that is the
1681 * proper one.
1682 */
1683 if (m->kflags & MCE_IN_KERNEL_RECOV) {
1684 if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1685 mce_panic("Failed kernel mode recovery", &err, msg);
1686 }
1687
1688 if (m->kflags & MCE_IN_KERNEL_COPYIN)
1689 queue_task_work(&err, msg, kill_me_never);
1690 }
1691
1692 out:
1693 instrumentation_end();
1694
1695 clear:
1696 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1697 }
1698 EXPORT_SYMBOL_GPL(do_machine_check);
1699
1700 #ifndef CONFIG_MEMORY_FAILURE
memory_failure(unsigned long pfn,int flags)1701 int memory_failure(unsigned long pfn, int flags)
1702 {
1703 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1704 BUG_ON(flags & MF_ACTION_REQUIRED);
1705 pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1706 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1707 pfn);
1708
1709 return 0;
1710 }
1711 #endif
1712
1713 /*
1714 * Periodic polling timer for "silent" machine check errors. If the
1715 * poller finds an MCE, poll 2x faster. When the poller finds no more
1716 * errors, poll 2x slower (up to check_interval seconds).
1717 */
1718 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1719
1720 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1721 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1722
__start_timer(struct timer_list * t,unsigned long interval)1723 static void __start_timer(struct timer_list *t, unsigned long interval)
1724 {
1725 unsigned long when = jiffies + interval;
1726 unsigned long flags;
1727
1728 local_irq_save(flags);
1729
1730 if (!timer_pending(t) || time_before(when, t->expires))
1731 mod_timer(t, round_jiffies(when));
1732
1733 local_irq_restore(flags);
1734 }
1735
mc_poll_banks_default(void)1736 static void mc_poll_banks_default(void)
1737 {
1738 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1739 }
1740
1741 void (*mc_poll_banks)(void) = mc_poll_banks_default;
1742
mce_timer_fn(struct timer_list * t)1743 static void mce_timer_fn(struct timer_list *t)
1744 {
1745 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1746 unsigned long iv;
1747
1748 WARN_ON(cpu_t != t);
1749
1750 iv = __this_cpu_read(mce_next_interval);
1751
1752 if (mce_available(this_cpu_ptr(&cpu_info)))
1753 mc_poll_banks();
1754
1755 /*
1756 * Alert userspace if needed. If we logged an MCE, reduce the polling
1757 * interval, otherwise increase the polling interval.
1758 */
1759 if (mce_notify_irq())
1760 iv = max(iv / 2, (unsigned long) HZ/100);
1761 else
1762 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1763
1764 if (mce_get_storm_mode()) {
1765 __start_timer(t, HZ);
1766 } else {
1767 __this_cpu_write(mce_next_interval, iv);
1768 __start_timer(t, iv);
1769 }
1770 }
1771
1772 /*
1773 * When a storm starts on any bank on this CPU, switch to polling
1774 * once per second. When the storm ends, revert to the default
1775 * polling interval.
1776 */
mce_timer_kick(bool storm)1777 void mce_timer_kick(bool storm)
1778 {
1779 struct timer_list *t = this_cpu_ptr(&mce_timer);
1780
1781 mce_set_storm_mode(storm);
1782
1783 if (storm)
1784 __start_timer(t, HZ);
1785 else
1786 __this_cpu_write(mce_next_interval, check_interval * HZ);
1787 }
1788
1789 /* Must not be called in IRQ context where timer_delete_sync() can deadlock */
mce_timer_delete_all(void)1790 static void mce_timer_delete_all(void)
1791 {
1792 int cpu;
1793
1794 for_each_online_cpu(cpu)
1795 timer_delete_sync(&per_cpu(mce_timer, cpu));
1796 }
1797
__mcheck_cpu_mce_banks_init(void)1798 static void __mcheck_cpu_mce_banks_init(void)
1799 {
1800 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1801 u8 n_banks = this_cpu_read(mce_num_banks);
1802 int i;
1803
1804 for (i = 0; i < n_banks; i++) {
1805 struct mce_bank *b = &mce_banks[i];
1806
1807 /*
1808 * Init them all, __mcheck_cpu_apply_quirks() is going to apply
1809 * the required vendor quirks before
1810 * __mcheck_cpu_init_clear_banks() does the final bank setup.
1811 */
1812 b->ctl = -1ULL;
1813 b->init = true;
1814 }
1815 }
1816
1817 /*
1818 * Initialize Machine Checks for a CPU.
1819 */
__mcheck_cpu_cap_init(void)1820 static void __mcheck_cpu_cap_init(void)
1821 {
1822 u64 cap;
1823 u8 b;
1824
1825 rdmsrl(MSR_IA32_MCG_CAP, cap);
1826
1827 b = cap & MCG_BANKCNT_MASK;
1828
1829 if (b > MAX_NR_BANKS) {
1830 pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1831 smp_processor_id(), MAX_NR_BANKS, b);
1832 b = MAX_NR_BANKS;
1833 }
1834
1835 this_cpu_write(mce_num_banks, b);
1836
1837 __mcheck_cpu_mce_banks_init();
1838
1839 /* Use accurate RIP reporting if available. */
1840 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1841 mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1842
1843 if (cap & MCG_SER_P)
1844 mca_cfg.ser = 1;
1845 }
1846
__mcheck_cpu_init_generic(void)1847 static void __mcheck_cpu_init_generic(void)
1848 {
1849 enum mcp_flags m_fl = 0;
1850 mce_banks_t all_banks;
1851 u64 cap;
1852
1853 if (!mca_cfg.bootlog)
1854 m_fl = MCP_DONTLOG;
1855
1856 /*
1857 * Log the machine checks left over from the previous reset. Log them
1858 * only, do not start processing them. That will happen in mcheck_late_init()
1859 * when all consumers have been registered on the notifier chain.
1860 */
1861 bitmap_fill(all_banks, MAX_NR_BANKS);
1862 machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks);
1863
1864 cr4_set_bits(X86_CR4_MCE);
1865
1866 rdmsrl(MSR_IA32_MCG_CAP, cap);
1867 if (cap & MCG_CTL_P)
1868 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1869 }
1870
__mcheck_cpu_init_clear_banks(void)1871 static void __mcheck_cpu_init_clear_banks(void)
1872 {
1873 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1874 int i;
1875
1876 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1877 struct mce_bank *b = &mce_banks[i];
1878
1879 if (!b->init)
1880 continue;
1881 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
1882 wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1883 }
1884 }
1885
1886 /*
1887 * Do a final check to see if there are any unused/RAZ banks.
1888 *
1889 * This must be done after the banks have been initialized and any quirks have
1890 * been applied.
1891 *
1892 * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs.
1893 * Otherwise, a user who disables a bank will not be able to re-enable it
1894 * without a system reboot.
1895 */
__mcheck_cpu_check_banks(void)1896 static void __mcheck_cpu_check_banks(void)
1897 {
1898 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1899 u64 msrval;
1900 int i;
1901
1902 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1903 struct mce_bank *b = &mce_banks[i];
1904
1905 if (!b->init)
1906 continue;
1907
1908 rdmsrl(mca_msr_reg(i, MCA_CTL), msrval);
1909 b->init = !!msrval;
1910 }
1911 }
1912
apply_quirks_amd(struct cpuinfo_x86 * c)1913 static void apply_quirks_amd(struct cpuinfo_x86 *c)
1914 {
1915 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1916
1917 /* This should be disabled by the BIOS, but isn't always */
1918 if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
1919 /*
1920 * disable GART TBL walk error reporting, which
1921 * trips off incorrectly with the IOMMU & 3ware
1922 * & Cerberus:
1923 */
1924 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1925 }
1926
1927 if (c->x86 < 0x11 && mca_cfg.bootlog < 0) {
1928 /*
1929 * Lots of broken BIOS around that don't clear them
1930 * by default and leave crap in there. Don't log:
1931 */
1932 mca_cfg.bootlog = 0;
1933 }
1934
1935 /*
1936 * Various K7s with broken bank 0 around. Always disable
1937 * by default.
1938 */
1939 if (c->x86 == 6 && this_cpu_read(mce_num_banks))
1940 mce_banks[0].ctl = 0;
1941
1942 /*
1943 * overflow_recov is supported for F15h Models 00h-0fh
1944 * even though we don't have a CPUID bit for it.
1945 */
1946 if (c->x86 == 0x15 && c->x86_model <= 0xf)
1947 mce_flags.overflow_recov = 1;
1948
1949 if (c->x86 >= 0x17 && c->x86 <= 0x1A)
1950 mce_flags.zen_ifu_quirk = 1;
1951 }
1952
apply_quirks_intel(struct cpuinfo_x86 * c)1953 static void apply_quirks_intel(struct cpuinfo_x86 *c)
1954 {
1955 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1956
1957 /* Older CPUs (prior to family 6) don't need quirks. */
1958 if (c->x86_vfm < INTEL_PENTIUM_PRO)
1959 return;
1960
1961 /*
1962 * SDM documents that on family 6 bank 0 should not be written
1963 * because it aliases to another special BIOS controlled
1964 * register.
1965 * But it's not aliased anymore on model 0x1a+
1966 * Don't ignore bank 0 completely because there could be a
1967 * valid event later, merely don't write CTL0.
1968 */
1969 if (c->x86_vfm < INTEL_NEHALEM_EP && this_cpu_read(mce_num_banks))
1970 mce_banks[0].init = false;
1971
1972 /*
1973 * All newer Intel systems support MCE broadcasting. Enable
1974 * synchronization with a one second timeout.
1975 */
1976 if (c->x86_vfm >= INTEL_CORE_YONAH && mca_cfg.monarch_timeout < 0)
1977 mca_cfg.monarch_timeout = USEC_PER_SEC;
1978
1979 /*
1980 * There are also broken BIOSes on some Pentium M and
1981 * earlier systems:
1982 */
1983 if (c->x86_vfm < INTEL_CORE_YONAH && mca_cfg.bootlog < 0)
1984 mca_cfg.bootlog = 0;
1985
1986 if (c->x86_vfm == INTEL_SANDYBRIDGE_X)
1987 mce_flags.snb_ifu_quirk = 1;
1988
1989 /*
1990 * Skylake, Cascacde Lake and Cooper Lake require a quirk on
1991 * rep movs.
1992 */
1993 if (c->x86_vfm == INTEL_SKYLAKE_X)
1994 mce_flags.skx_repmov_quirk = 1;
1995 }
1996
apply_quirks_zhaoxin(struct cpuinfo_x86 * c)1997 static void apply_quirks_zhaoxin(struct cpuinfo_x86 *c)
1998 {
1999 /*
2000 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
2001 * synchronization with a one second timeout.
2002 */
2003 if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
2004 if (mca_cfg.monarch_timeout < 0)
2005 mca_cfg.monarch_timeout = USEC_PER_SEC;
2006 }
2007 }
2008
2009 /* Add per CPU specific workarounds here */
__mcheck_cpu_apply_quirks(struct cpuinfo_x86 * c)2010 static bool __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
2011 {
2012 struct mca_config *cfg = &mca_cfg;
2013
2014 switch (c->x86_vendor) {
2015 case X86_VENDOR_UNKNOWN:
2016 pr_info("unknown CPU type - not enabling MCE support\n");
2017 return false;
2018 case X86_VENDOR_AMD:
2019 apply_quirks_amd(c);
2020 break;
2021 case X86_VENDOR_INTEL:
2022 apply_quirks_intel(c);
2023 break;
2024 case X86_VENDOR_ZHAOXIN:
2025 apply_quirks_zhaoxin(c);
2026 break;
2027 }
2028
2029 if (cfg->monarch_timeout < 0)
2030 cfg->monarch_timeout = 0;
2031 if (cfg->bootlog != 0)
2032 cfg->panic_timeout = 30;
2033
2034 return true;
2035 }
2036
__mcheck_cpu_ancient_init(struct cpuinfo_x86 * c)2037 static bool __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
2038 {
2039 if (c->x86 != 5)
2040 return false;
2041
2042 switch (c->x86_vendor) {
2043 case X86_VENDOR_INTEL:
2044 intel_p5_mcheck_init(c);
2045 mce_flags.p5 = 1;
2046 return true;
2047 case X86_VENDOR_CENTAUR:
2048 winchip_mcheck_init(c);
2049 mce_flags.winchip = 1;
2050 return true;
2051 default:
2052 return false;
2053 }
2054
2055 return false;
2056 }
2057
2058 /*
2059 * Init basic CPU features needed for early decoding of MCEs.
2060 */
__mcheck_cpu_init_early(struct cpuinfo_x86 * c)2061 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
2062 {
2063 if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
2064 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
2065 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR);
2066 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA);
2067 mce_flags.amd_threshold = 1;
2068 }
2069 }
2070
mce_centaur_feature_init(struct cpuinfo_x86 * c)2071 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
2072 {
2073 struct mca_config *cfg = &mca_cfg;
2074
2075 /*
2076 * All newer Centaur CPUs support MCE broadcasting. Enable
2077 * synchronization with a one second timeout.
2078 */
2079 if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
2080 c->x86 > 6) {
2081 if (cfg->monarch_timeout < 0)
2082 cfg->monarch_timeout = USEC_PER_SEC;
2083 }
2084 }
2085
mce_zhaoxin_feature_init(struct cpuinfo_x86 * c)2086 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
2087 {
2088 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2089
2090 /*
2091 * These CPUs have MCA bank 8 which reports only one error type called
2092 * SVAD (System View Address Decoder). The reporting of that error is
2093 * controlled by IA32_MC8.CTL.0.
2094 *
2095 * If enabled, prefetching on these CPUs will cause SVAD MCE when
2096 * virtual machines start and result in a system panic. Always disable
2097 * bank 8 SVAD error by default.
2098 */
2099 if ((c->x86 == 7 && c->x86_model == 0x1b) ||
2100 (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
2101 if (this_cpu_read(mce_num_banks) > 8)
2102 mce_banks[8].ctl = 0;
2103 }
2104
2105 intel_init_cmci();
2106 intel_init_lmce();
2107 }
2108
mce_zhaoxin_feature_clear(struct cpuinfo_x86 * c)2109 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
2110 {
2111 intel_clear_lmce();
2112 }
2113
__mcheck_cpu_init_vendor(struct cpuinfo_x86 * c)2114 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
2115 {
2116 switch (c->x86_vendor) {
2117 case X86_VENDOR_INTEL:
2118 mce_intel_feature_init(c);
2119 break;
2120
2121 case X86_VENDOR_AMD:
2122 case X86_VENDOR_HYGON:
2123 mce_amd_feature_init(c);
2124 break;
2125
2126 case X86_VENDOR_CENTAUR:
2127 mce_centaur_feature_init(c);
2128 break;
2129
2130 case X86_VENDOR_ZHAOXIN:
2131 mce_zhaoxin_feature_init(c);
2132 break;
2133
2134 default:
2135 break;
2136 }
2137 }
2138
__mcheck_cpu_clear_vendor(struct cpuinfo_x86 * c)2139 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
2140 {
2141 switch (c->x86_vendor) {
2142 case X86_VENDOR_INTEL:
2143 mce_intel_feature_clear(c);
2144 break;
2145
2146 case X86_VENDOR_ZHAOXIN:
2147 mce_zhaoxin_feature_clear(c);
2148 break;
2149
2150 default:
2151 break;
2152 }
2153 }
2154
mce_start_timer(struct timer_list * t)2155 static void mce_start_timer(struct timer_list *t)
2156 {
2157 unsigned long iv = check_interval * HZ;
2158
2159 if (mca_cfg.ignore_ce || !iv)
2160 return;
2161
2162 this_cpu_write(mce_next_interval, iv);
2163 __start_timer(t, iv);
2164 }
2165
__mcheck_cpu_setup_timer(void)2166 static void __mcheck_cpu_setup_timer(void)
2167 {
2168 struct timer_list *t = this_cpu_ptr(&mce_timer);
2169
2170 timer_setup(t, mce_timer_fn, TIMER_PINNED);
2171 }
2172
__mcheck_cpu_init_timer(void)2173 static void __mcheck_cpu_init_timer(void)
2174 {
2175 struct timer_list *t = this_cpu_ptr(&mce_timer);
2176
2177 timer_setup(t, mce_timer_fn, TIMER_PINNED);
2178 mce_start_timer(t);
2179 }
2180
filter_mce(struct mce * m)2181 bool filter_mce(struct mce *m)
2182 {
2183 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
2184 return amd_filter_mce(m);
2185 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2186 return intel_filter_mce(m);
2187
2188 return false;
2189 }
2190
exc_machine_check_kernel(struct pt_regs * regs)2191 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
2192 {
2193 irqentry_state_t irq_state;
2194
2195 WARN_ON_ONCE(user_mode(regs));
2196
2197 /*
2198 * Only required when from kernel mode. See
2199 * mce_check_crashing_cpu() for details.
2200 */
2201 if (mca_cfg.initialized && mce_check_crashing_cpu())
2202 return;
2203
2204 irq_state = irqentry_nmi_enter(regs);
2205
2206 do_machine_check(regs);
2207
2208 irqentry_nmi_exit(regs, irq_state);
2209 }
2210
exc_machine_check_user(struct pt_regs * regs)2211 static __always_inline void exc_machine_check_user(struct pt_regs *regs)
2212 {
2213 irqentry_enter_from_user_mode(regs);
2214
2215 do_machine_check(regs);
2216
2217 irqentry_exit_to_user_mode(regs);
2218 }
2219
2220 #ifdef CONFIG_X86_64
2221 /* MCE hit kernel mode */
DEFINE_IDTENTRY_MCE(exc_machine_check)2222 DEFINE_IDTENTRY_MCE(exc_machine_check)
2223 {
2224 unsigned long dr7;
2225
2226 dr7 = local_db_save();
2227 exc_machine_check_kernel(regs);
2228 local_db_restore(dr7);
2229 }
2230
2231 /* The user mode variant. */
DEFINE_IDTENTRY_MCE_USER(exc_machine_check)2232 DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
2233 {
2234 unsigned long dr7;
2235
2236 dr7 = local_db_save();
2237 exc_machine_check_user(regs);
2238 local_db_restore(dr7);
2239 }
2240
2241 #ifdef CONFIG_X86_FRED
2242 /*
2243 * When occurred on different ring level, i.e., from user or kernel
2244 * context, #MCE needs to be handled on different stack: User #MCE
2245 * on current task stack, while kernel #MCE on a dedicated stack.
2246 *
2247 * This is exactly how FRED event delivery invokes an exception
2248 * handler: ring 3 event on level 0 stack, i.e., current task stack;
2249 * ring 0 event on the #MCE dedicated stack specified in the
2250 * IA32_FRED_STKLVLS MSR. So unlike IDT, the FRED machine check entry
2251 * stub doesn't do stack switch.
2252 */
DEFINE_FREDENTRY_MCE(exc_machine_check)2253 DEFINE_FREDENTRY_MCE(exc_machine_check)
2254 {
2255 unsigned long dr7;
2256
2257 dr7 = local_db_save();
2258 if (user_mode(regs))
2259 exc_machine_check_user(regs);
2260 else
2261 exc_machine_check_kernel(regs);
2262 local_db_restore(dr7);
2263 }
2264 #endif
2265 #else
2266 /* 32bit unified entry point */
DEFINE_IDTENTRY_RAW(exc_machine_check)2267 DEFINE_IDTENTRY_RAW(exc_machine_check)
2268 {
2269 unsigned long dr7;
2270
2271 dr7 = local_db_save();
2272 if (user_mode(regs))
2273 exc_machine_check_user(regs);
2274 else
2275 exc_machine_check_kernel(regs);
2276 local_db_restore(dr7);
2277 }
2278 #endif
2279
2280 /*
2281 * Called for each booted CPU to set up machine checks.
2282 * Must be called with preempt off:
2283 */
mcheck_cpu_init(struct cpuinfo_x86 * c)2284 void mcheck_cpu_init(struct cpuinfo_x86 *c)
2285 {
2286 if (mca_cfg.disabled)
2287 return;
2288
2289 if (__mcheck_cpu_ancient_init(c))
2290 return;
2291
2292 if (!mce_available(c))
2293 return;
2294
2295 __mcheck_cpu_cap_init();
2296
2297 if (!__mcheck_cpu_apply_quirks(c)) {
2298 mca_cfg.disabled = 1;
2299 return;
2300 }
2301
2302 if (!mce_gen_pool_init()) {
2303 mca_cfg.disabled = 1;
2304 pr_emerg("Couldn't allocate MCE records pool!\n");
2305 return;
2306 }
2307
2308 mca_cfg.initialized = 1;
2309
2310 __mcheck_cpu_init_early(c);
2311 __mcheck_cpu_init_generic();
2312 __mcheck_cpu_init_vendor(c);
2313 __mcheck_cpu_init_clear_banks();
2314 __mcheck_cpu_check_banks();
2315 __mcheck_cpu_setup_timer();
2316 }
2317
2318 /*
2319 * Called for each booted CPU to clear some machine checks opt-ins
2320 */
mcheck_cpu_clear(struct cpuinfo_x86 * c)2321 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2322 {
2323 if (mca_cfg.disabled)
2324 return;
2325
2326 if (!mce_available(c))
2327 return;
2328
2329 /*
2330 * Possibly to clear general settings generic to x86
2331 * __mcheck_cpu_clear_generic(c);
2332 */
2333 __mcheck_cpu_clear_vendor(c);
2334
2335 }
2336
__mce_disable_bank(void * arg)2337 static void __mce_disable_bank(void *arg)
2338 {
2339 int bank = *((int *)arg);
2340 __clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2341 cmci_disable_bank(bank);
2342 }
2343
mce_disable_bank(int bank)2344 void mce_disable_bank(int bank)
2345 {
2346 if (bank >= this_cpu_read(mce_num_banks)) {
2347 pr_warn(FW_BUG
2348 "Ignoring request to disable invalid MCA bank %d.\n",
2349 bank);
2350 return;
2351 }
2352 set_bit(bank, mce_banks_ce_disabled);
2353 on_each_cpu(__mce_disable_bank, &bank, 1);
2354 }
2355
2356 /*
2357 * mce=off Disables machine check
2358 * mce=no_cmci Disables CMCI
2359 * mce=no_lmce Disables LMCE
2360 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2361 * mce=print_all Print all machine check logs to console
2362 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2363 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2364 * monarchtimeout is how long to wait for other CPUs on machine
2365 * check, or 0 to not wait
2366 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2367 and older.
2368 * mce=nobootlog Don't log MCEs from before booting.
2369 * mce=bios_cmci_threshold Don't program the CMCI threshold
2370 * mce=recovery force enable copy_mc_fragile()
2371 */
mcheck_enable(char * str)2372 static int __init mcheck_enable(char *str)
2373 {
2374 struct mca_config *cfg = &mca_cfg;
2375
2376 if (*str == 0) {
2377 enable_p5_mce();
2378 return 1;
2379 }
2380 if (*str == '=')
2381 str++;
2382 if (!strcmp(str, "off"))
2383 cfg->disabled = 1;
2384 else if (!strcmp(str, "no_cmci"))
2385 cfg->cmci_disabled = true;
2386 else if (!strcmp(str, "no_lmce"))
2387 cfg->lmce_disabled = 1;
2388 else if (!strcmp(str, "dont_log_ce"))
2389 cfg->dont_log_ce = true;
2390 else if (!strcmp(str, "print_all"))
2391 cfg->print_all = true;
2392 else if (!strcmp(str, "ignore_ce"))
2393 cfg->ignore_ce = true;
2394 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2395 cfg->bootlog = (str[0] == 'b');
2396 else if (!strcmp(str, "bios_cmci_threshold"))
2397 cfg->bios_cmci_threshold = 1;
2398 else if (!strcmp(str, "recovery"))
2399 cfg->recovery = 1;
2400 else if (isdigit(str[0]))
2401 get_option(&str, &(cfg->monarch_timeout));
2402 else {
2403 pr_info("mce argument %s ignored. Please use /sys\n", str);
2404 return 0;
2405 }
2406 return 1;
2407 }
2408 __setup("mce", mcheck_enable);
2409
mcheck_init(void)2410 int __init mcheck_init(void)
2411 {
2412 mce_register_decode_chain(&early_nb);
2413 mce_register_decode_chain(&mce_uc_nb);
2414 mce_register_decode_chain(&mce_default_nb);
2415
2416 INIT_WORK(&mce_work, mce_gen_pool_process);
2417 init_irq_work(&mce_irq_work, mce_irq_work_cb);
2418
2419 return 0;
2420 }
2421
2422 /*
2423 * mce_syscore: PM support
2424 */
2425
2426 /*
2427 * Disable machine checks on suspend and shutdown. We can't really handle
2428 * them later.
2429 */
mce_disable_error_reporting(void)2430 static void mce_disable_error_reporting(void)
2431 {
2432 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2433 int i;
2434
2435 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2436 struct mce_bank *b = &mce_banks[i];
2437
2438 if (b->init)
2439 wrmsrl(mca_msr_reg(i, MCA_CTL), 0);
2440 }
2441 return;
2442 }
2443
vendor_disable_error_reporting(void)2444 static void vendor_disable_error_reporting(void)
2445 {
2446 /*
2447 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2448 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2449 * is bad, since it will inhibit reporting for all shared resources on
2450 * the socket like the last level cache (LLC), the integrated memory
2451 * controller (iMC), etc.
2452 */
2453 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2454 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2455 boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2456 boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2457 return;
2458
2459 mce_disable_error_reporting();
2460 }
2461
mce_syscore_suspend(void)2462 static int mce_syscore_suspend(void)
2463 {
2464 vendor_disable_error_reporting();
2465 return 0;
2466 }
2467
mce_syscore_shutdown(void)2468 static void mce_syscore_shutdown(void)
2469 {
2470 vendor_disable_error_reporting();
2471 }
2472
2473 /*
2474 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2475 * Only one CPU is active at this time, the others get re-added later using
2476 * CPU hotplug:
2477 */
mce_syscore_resume(void)2478 static void mce_syscore_resume(void)
2479 {
2480 __mcheck_cpu_init_generic();
2481 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2482 __mcheck_cpu_init_clear_banks();
2483 }
2484
2485 static struct syscore_ops mce_syscore_ops = {
2486 .suspend = mce_syscore_suspend,
2487 .shutdown = mce_syscore_shutdown,
2488 .resume = mce_syscore_resume,
2489 };
2490
2491 /*
2492 * mce_device: Sysfs support
2493 */
2494
mce_cpu_restart(void * data)2495 static void mce_cpu_restart(void *data)
2496 {
2497 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2498 return;
2499 __mcheck_cpu_init_generic();
2500 __mcheck_cpu_init_clear_banks();
2501 __mcheck_cpu_init_timer();
2502 }
2503
2504 /* Reinit MCEs after user configuration changes */
mce_restart(void)2505 static void mce_restart(void)
2506 {
2507 mce_timer_delete_all();
2508 on_each_cpu(mce_cpu_restart, NULL, 1);
2509 mce_schedule_work();
2510 }
2511
2512 /* Toggle features for corrected errors */
mce_disable_cmci(void * data)2513 static void mce_disable_cmci(void *data)
2514 {
2515 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2516 return;
2517 cmci_clear();
2518 }
2519
mce_enable_ce(void * all)2520 static void mce_enable_ce(void *all)
2521 {
2522 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2523 return;
2524 cmci_reenable();
2525 cmci_recheck();
2526 if (all)
2527 __mcheck_cpu_init_timer();
2528 }
2529
2530 static const struct bus_type mce_subsys = {
2531 .name = "machinecheck",
2532 .dev_name = "machinecheck",
2533 };
2534
2535 DEFINE_PER_CPU(struct device *, mce_device);
2536
attr_to_bank(struct device_attribute * attr)2537 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2538 {
2539 return container_of(attr, struct mce_bank_dev, attr);
2540 }
2541
show_bank(struct device * s,struct device_attribute * attr,char * buf)2542 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2543 char *buf)
2544 {
2545 u8 bank = attr_to_bank(attr)->bank;
2546 struct mce_bank *b;
2547
2548 if (bank >= per_cpu(mce_num_banks, s->id))
2549 return -EINVAL;
2550
2551 b = &per_cpu(mce_banks_array, s->id)[bank];
2552
2553 if (!b->init)
2554 return -ENODEV;
2555
2556 return sprintf(buf, "%llx\n", b->ctl);
2557 }
2558
set_bank(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2559 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2560 const char *buf, size_t size)
2561 {
2562 u8 bank = attr_to_bank(attr)->bank;
2563 struct mce_bank *b;
2564 u64 new;
2565
2566 if (kstrtou64(buf, 0, &new) < 0)
2567 return -EINVAL;
2568
2569 if (bank >= per_cpu(mce_num_banks, s->id))
2570 return -EINVAL;
2571
2572 b = &per_cpu(mce_banks_array, s->id)[bank];
2573 if (!b->init)
2574 return -ENODEV;
2575
2576 b->ctl = new;
2577
2578 mutex_lock(&mce_sysfs_mutex);
2579 mce_restart();
2580 mutex_unlock(&mce_sysfs_mutex);
2581
2582 return size;
2583 }
2584
set_ignore_ce(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2585 static ssize_t set_ignore_ce(struct device *s,
2586 struct device_attribute *attr,
2587 const char *buf, size_t size)
2588 {
2589 u64 new;
2590
2591 if (kstrtou64(buf, 0, &new) < 0)
2592 return -EINVAL;
2593
2594 mutex_lock(&mce_sysfs_mutex);
2595 if (mca_cfg.ignore_ce ^ !!new) {
2596 if (new) {
2597 /* disable ce features */
2598 mce_timer_delete_all();
2599 on_each_cpu(mce_disable_cmci, NULL, 1);
2600 mca_cfg.ignore_ce = true;
2601 } else {
2602 /* enable ce features */
2603 mca_cfg.ignore_ce = false;
2604 on_each_cpu(mce_enable_ce, (void *)1, 1);
2605 }
2606 }
2607 mutex_unlock(&mce_sysfs_mutex);
2608
2609 return size;
2610 }
2611
set_cmci_disabled(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2612 static ssize_t set_cmci_disabled(struct device *s,
2613 struct device_attribute *attr,
2614 const char *buf, size_t size)
2615 {
2616 u64 new;
2617
2618 if (kstrtou64(buf, 0, &new) < 0)
2619 return -EINVAL;
2620
2621 mutex_lock(&mce_sysfs_mutex);
2622 if (mca_cfg.cmci_disabled ^ !!new) {
2623 if (new) {
2624 /* disable cmci */
2625 on_each_cpu(mce_disable_cmci, NULL, 1);
2626 mca_cfg.cmci_disabled = true;
2627 } else {
2628 /* enable cmci */
2629 mca_cfg.cmci_disabled = false;
2630 on_each_cpu(mce_enable_ce, NULL, 1);
2631 }
2632 }
2633 mutex_unlock(&mce_sysfs_mutex);
2634
2635 return size;
2636 }
2637
store_int_with_restart(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2638 static ssize_t store_int_with_restart(struct device *s,
2639 struct device_attribute *attr,
2640 const char *buf, size_t size)
2641 {
2642 unsigned long old_check_interval = check_interval;
2643 ssize_t ret = device_store_ulong(s, attr, buf, size);
2644
2645 if (check_interval == old_check_interval)
2646 return ret;
2647
2648 mutex_lock(&mce_sysfs_mutex);
2649 mce_restart();
2650 mutex_unlock(&mce_sysfs_mutex);
2651
2652 return ret;
2653 }
2654
2655 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2656 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2657 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2658
2659 static struct dev_ext_attribute dev_attr_check_interval = {
2660 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2661 &check_interval
2662 };
2663
2664 static struct dev_ext_attribute dev_attr_ignore_ce = {
2665 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2666 &mca_cfg.ignore_ce
2667 };
2668
2669 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2670 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2671 &mca_cfg.cmci_disabled
2672 };
2673
2674 static struct device_attribute *mce_device_attrs[] = {
2675 &dev_attr_check_interval.attr,
2676 #ifdef CONFIG_X86_MCELOG_LEGACY
2677 &dev_attr_trigger,
2678 #endif
2679 &dev_attr_monarch_timeout.attr,
2680 &dev_attr_dont_log_ce.attr,
2681 &dev_attr_print_all.attr,
2682 &dev_attr_ignore_ce.attr,
2683 &dev_attr_cmci_disabled.attr,
2684 NULL
2685 };
2686
2687 static cpumask_var_t mce_device_initialized;
2688
mce_device_release(struct device * dev)2689 static void mce_device_release(struct device *dev)
2690 {
2691 kfree(dev);
2692 }
2693
2694 /* Per CPU device init. All of the CPUs still share the same bank device: */
mce_device_create(unsigned int cpu)2695 static int mce_device_create(unsigned int cpu)
2696 {
2697 struct device *dev;
2698 int err;
2699 int i, j;
2700
2701 dev = per_cpu(mce_device, cpu);
2702 if (dev)
2703 return 0;
2704
2705 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2706 if (!dev)
2707 return -ENOMEM;
2708 dev->id = cpu;
2709 dev->bus = &mce_subsys;
2710 dev->release = &mce_device_release;
2711
2712 err = device_register(dev);
2713 if (err) {
2714 put_device(dev);
2715 return err;
2716 }
2717
2718 for (i = 0; mce_device_attrs[i]; i++) {
2719 err = device_create_file(dev, mce_device_attrs[i]);
2720 if (err)
2721 goto error;
2722 }
2723 for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2724 err = device_create_file(dev, &mce_bank_devs[j].attr);
2725 if (err)
2726 goto error2;
2727 }
2728 cpumask_set_cpu(cpu, mce_device_initialized);
2729 per_cpu(mce_device, cpu) = dev;
2730
2731 return 0;
2732 error2:
2733 while (--j >= 0)
2734 device_remove_file(dev, &mce_bank_devs[j].attr);
2735 error:
2736 while (--i >= 0)
2737 device_remove_file(dev, mce_device_attrs[i]);
2738
2739 device_unregister(dev);
2740
2741 return err;
2742 }
2743
mce_device_remove(unsigned int cpu)2744 static void mce_device_remove(unsigned int cpu)
2745 {
2746 struct device *dev = per_cpu(mce_device, cpu);
2747 int i;
2748
2749 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2750 return;
2751
2752 for (i = 0; mce_device_attrs[i]; i++)
2753 device_remove_file(dev, mce_device_attrs[i]);
2754
2755 for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2756 device_remove_file(dev, &mce_bank_devs[i].attr);
2757
2758 device_unregister(dev);
2759 cpumask_clear_cpu(cpu, mce_device_initialized);
2760 per_cpu(mce_device, cpu) = NULL;
2761 }
2762
2763 /* Make sure there are no machine checks on offlined CPUs. */
mce_disable_cpu(void)2764 static void mce_disable_cpu(void)
2765 {
2766 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2767 return;
2768
2769 if (!cpuhp_tasks_frozen)
2770 cmci_clear();
2771
2772 vendor_disable_error_reporting();
2773 }
2774
mce_reenable_cpu(void)2775 static void mce_reenable_cpu(void)
2776 {
2777 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2778 int i;
2779
2780 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2781 return;
2782
2783 if (!cpuhp_tasks_frozen)
2784 cmci_reenable();
2785 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2786 struct mce_bank *b = &mce_banks[i];
2787
2788 if (b->init)
2789 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
2790 }
2791 }
2792
mce_cpu_dead(unsigned int cpu)2793 static int mce_cpu_dead(unsigned int cpu)
2794 {
2795 /* intentionally ignoring frozen here */
2796 if (!cpuhp_tasks_frozen)
2797 cmci_rediscover();
2798 return 0;
2799 }
2800
mce_cpu_online(unsigned int cpu)2801 static int mce_cpu_online(unsigned int cpu)
2802 {
2803 struct timer_list *t = this_cpu_ptr(&mce_timer);
2804 int ret;
2805
2806 mce_device_create(cpu);
2807
2808 ret = mce_threshold_create_device(cpu);
2809 if (ret) {
2810 mce_device_remove(cpu);
2811 return ret;
2812 }
2813 mce_reenable_cpu();
2814 mce_start_timer(t);
2815 return 0;
2816 }
2817
mce_cpu_pre_down(unsigned int cpu)2818 static int mce_cpu_pre_down(unsigned int cpu)
2819 {
2820 struct timer_list *t = this_cpu_ptr(&mce_timer);
2821
2822 mce_disable_cpu();
2823 timer_delete_sync(t);
2824 mce_threshold_remove_device(cpu);
2825 mce_device_remove(cpu);
2826 return 0;
2827 }
2828
mce_init_banks(void)2829 static __init void mce_init_banks(void)
2830 {
2831 int i;
2832
2833 for (i = 0; i < MAX_NR_BANKS; i++) {
2834 struct mce_bank_dev *b = &mce_bank_devs[i];
2835 struct device_attribute *a = &b->attr;
2836
2837 b->bank = i;
2838
2839 sysfs_attr_init(&a->attr);
2840 a->attr.name = b->attrname;
2841 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2842
2843 a->attr.mode = 0644;
2844 a->show = show_bank;
2845 a->store = set_bank;
2846 }
2847 }
2848
2849 /*
2850 * When running on XEN, this initcall is ordered against the XEN mcelog
2851 * initcall:
2852 *
2853 * device_initcall(xen_late_init_mcelog);
2854 * device_initcall_sync(mcheck_init_device);
2855 */
mcheck_init_device(void)2856 static __init int mcheck_init_device(void)
2857 {
2858 int err;
2859
2860 /*
2861 * Check if we have a spare virtual bit. This will only become
2862 * a problem if/when we move beyond 5-level page tables.
2863 */
2864 MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2865
2866 if (!mce_available(&boot_cpu_data)) {
2867 err = -EIO;
2868 goto err_out;
2869 }
2870
2871 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2872 err = -ENOMEM;
2873 goto err_out;
2874 }
2875
2876 mce_init_banks();
2877
2878 err = subsys_system_register(&mce_subsys, NULL);
2879 if (err)
2880 goto err_out_mem;
2881
2882 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2883 mce_cpu_dead);
2884 if (err)
2885 goto err_out_mem;
2886
2887 /*
2888 * Invokes mce_cpu_online() on all CPUs which are online when
2889 * the state is installed.
2890 */
2891 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2892 mce_cpu_online, mce_cpu_pre_down);
2893 if (err < 0)
2894 goto err_out_online;
2895
2896 register_syscore_ops(&mce_syscore_ops);
2897
2898 return 0;
2899
2900 err_out_online:
2901 cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2902
2903 err_out_mem:
2904 free_cpumask_var(mce_device_initialized);
2905
2906 err_out:
2907 pr_err("Unable to init MCE device (rc: %d)\n", err);
2908
2909 return err;
2910 }
2911 device_initcall_sync(mcheck_init_device);
2912
2913 /*
2914 * Old style boot options parsing. Only for compatibility.
2915 */
mcheck_disable(char * str)2916 static int __init mcheck_disable(char *str)
2917 {
2918 mca_cfg.disabled = 1;
2919 return 1;
2920 }
2921 __setup("nomce", mcheck_disable);
2922
2923 #ifdef CONFIG_DEBUG_FS
mce_get_debugfs_dir(void)2924 struct dentry *mce_get_debugfs_dir(void)
2925 {
2926 static struct dentry *dmce;
2927
2928 if (!dmce)
2929 dmce = debugfs_create_dir("mce", NULL);
2930
2931 return dmce;
2932 }
2933
mce_reset(void)2934 static void mce_reset(void)
2935 {
2936 atomic_set(&mce_fake_panicked, 0);
2937 atomic_set(&mce_executing, 0);
2938 atomic_set(&mce_callin, 0);
2939 atomic_set(&global_nwo, 0);
2940 cpumask_setall(&mce_missing_cpus);
2941 }
2942
fake_panic_get(void * data,u64 * val)2943 static int fake_panic_get(void *data, u64 *val)
2944 {
2945 *val = fake_panic;
2946 return 0;
2947 }
2948
fake_panic_set(void * data,u64 val)2949 static int fake_panic_set(void *data, u64 val)
2950 {
2951 mce_reset();
2952 fake_panic = val;
2953 return 0;
2954 }
2955
2956 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2957 "%llu\n");
2958
mcheck_debugfs_init(void)2959 static void __init mcheck_debugfs_init(void)
2960 {
2961 struct dentry *dmce;
2962
2963 dmce = mce_get_debugfs_dir();
2964 debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2965 &fake_panic_fops);
2966 }
2967 #else
mcheck_debugfs_init(void)2968 static void __init mcheck_debugfs_init(void) { }
2969 #endif
2970
mcheck_late_init(void)2971 static int __init mcheck_late_init(void)
2972 {
2973 if (mca_cfg.recovery)
2974 enable_copy_mc_fragile();
2975
2976 mcheck_debugfs_init();
2977
2978 /*
2979 * Flush out everything that has been logged during early boot, now that
2980 * everything has been initialized (workqueues, decoders, ...).
2981 */
2982 mce_schedule_work();
2983
2984 return 0;
2985 }
2986 late_initcall(mcheck_late_init);
2987