1
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25 /*
26 * Copyright (c) 2009-2010, Intel Corporation.
27 * All rights reserved.
28 */
29
30 #define PSMI_1_7
31 #include <sys/smp_impldefs.h>
32 #include <sys/psm.h>
33 #include <sys/psm_modctl.h>
34 #include <sys/pit.h>
35 #include <sys/cmn_err.h>
36 #include <sys/strlog.h>
37 #include <sys/clock.h>
38 #include <sys/debug.h>
39 #include <sys/rtc.h>
40 #include <sys/x86_archext.h>
41 #include <sys/cpupart.h>
42 #include <sys/cpuvar.h>
43 #include <sys/cpu_event.h>
44 #include <sys/cmt.h>
45 #include <sys/cpu.h>
46 #include <sys/disp.h>
47 #include <sys/archsystm.h>
48 #include <sys/machsystm.h>
49 #include <sys/sysmacros.h>
50 #include <sys/memlist.h>
51 #include <sys/param.h>
52 #include <sys/promif.h>
53 #include <sys/cpu_pm.h>
54 #if defined(__xpv)
55 #include <sys/hypervisor.h>
56 #endif
57 #include <sys/mach_intr.h>
58 #include <vm/hat_i86.h>
59 #include <sys/kdi_machimpl.h>
60 #include <sys/sdt.h>
61 #include <sys/hpet.h>
62 #include <sys/sunddi.h>
63 #include <sys/sunndi.h>
64 #include <sys/cpc_pcbe.h>
65
66 #define OFFSETOF(s, m) (size_t)(&(((s *)0)->m))
67
68 /*
69 * Local function prototypes
70 */
71 static int mp_disable_intr(processorid_t cpun);
72 static void mp_enable_intr(processorid_t cpun);
73 static void mach_init();
74 static void mach_picinit();
75 static int machhztomhz(uint64_t cpu_freq_hz);
76 static uint64_t mach_getcpufreq(void);
77 static void mach_fixcpufreq(void);
78 static int mach_clkinit(int, int *);
79 static void mach_smpinit(void);
80 static int mach_softlvl_to_vect(int ipl);
81 static void mach_get_platform(int owner);
82 static void mach_construct_info();
83 static int mach_translate_irq(dev_info_t *dip, int irqno);
84 static int mach_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *,
85 psm_intr_op_t, int *);
86 static void mach_notify_error(int level, char *errmsg);
87 static hrtime_t dummy_hrtime(void);
88 static void dummy_scalehrtime(hrtime_t *);
89 static uint64_t dummy_unscalehrtime(hrtime_t);
90 void cpu_idle(void);
91 static void cpu_wakeup(cpu_t *, int);
92 #ifndef __xpv
93 void cpu_idle_mwait(void);
94 static void cpu_wakeup_mwait(cpu_t *, int);
95 #endif
96 static int mach_cpu_create_devinfo(cpu_t *cp, dev_info_t **dipp);
97
98 /*
99 * External reference functions
100 */
101 extern void return_instr();
102 extern uint64_t freq_tsc(uint32_t *);
103 #if defined(__i386)
104 extern uint64_t freq_notsc(uint32_t *);
105 #endif
106 extern void pc_gethrestime(timestruc_t *);
107 extern int cpuid_get_coreid(cpu_t *);
108 extern int cpuid_get_chipid(cpu_t *);
109
110 /*
111 * PSM functions initialization
112 */
113 void (*psm_shutdownf)(int, int) = (void (*)(int, int))return_instr;
114 void (*psm_preshutdownf)(int, int) = (void (*)(int, int))return_instr;
115 void (*psm_notifyf)(int) = (void (*)(int))return_instr;
116 void (*psm_set_idle_cpuf)(int) = (void (*)(int))return_instr;
117 void (*psm_unset_idle_cpuf)(int) = (void (*)(int))return_instr;
118 void (*psminitf)() = mach_init;
119 void (*picinitf)() = return_instr;
120 int (*clkinitf)(int, int *) = (int (*)(int, int *))return_instr;
121 int (*ap_mlsetup)() = (int (*)(void))return_instr;
122 void (*send_dirintf)() = return_instr;
123 void (*setspl)(int) = (void (*)(int))return_instr;
124 int (*addspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr;
125 int (*delspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr;
126 int (*get_pending_spl)(void) = (int (*)(void))return_instr;
127 int (*addintr)(void *, int, avfunc, char *, int, caddr_t, caddr_t,
128 uint64_t *, dev_info_t *) = NULL;
129 void (*remintr)(void *, int, avfunc, int) = NULL;
130 void (*kdisetsoftint)(int, struct av_softinfo *)=
131 (void (*)(int, struct av_softinfo *))return_instr;
132 void (*setsoftint)(int, struct av_softinfo *)=
133 (void (*)(int, struct av_softinfo *))return_instr;
134 int (*slvltovect)(int) = (int (*)(int))return_instr;
135 int (*setlvl)(int, int *) = (int (*)(int, int *))return_instr;
136 void (*setlvlx)(int, int) = (void (*)(int, int))return_instr;
137 int (*psm_disable_intr)(int) = mp_disable_intr;
138 void (*psm_enable_intr)(int) = mp_enable_intr;
139 hrtime_t (*gethrtimef)(void) = dummy_hrtime;
140 hrtime_t (*gethrtimeunscaledf)(void) = dummy_hrtime;
141 void (*scalehrtimef)(hrtime_t *) = dummy_scalehrtime;
142 uint64_t (*unscalehrtimef)(hrtime_t) = dummy_unscalehrtime;
143 int (*psm_translate_irq)(dev_info_t *, int) = mach_translate_irq;
144 void (*gethrestimef)(timestruc_t *) = pc_gethrestime;
145 void (*psm_notify_error)(int, char *) = (void (*)(int, char *))NULL;
146 int (*psm_get_clockirq)(int) = NULL;
147 int (*psm_get_ipivect)(int, int) = NULL;
148 uchar_t (*psm_get_ioapicid)(uchar_t) = NULL;
149 uint32_t (*psm_get_localapicid)(uint32_t) = NULL;
150 uchar_t (*psm_xlate_vector_by_irq)(uchar_t) = NULL;
151
152 int (*psm_clkinit)(int) = NULL;
153 void (*psm_timer_reprogram)(hrtime_t) = NULL;
154 void (*psm_timer_enable)(void) = NULL;
155 void (*psm_timer_disable)(void) = NULL;
156 void (*psm_post_cyclic_setup)(void *arg) = NULL;
157 int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *, psm_intr_op_t,
158 int *) = mach_intr_ops;
159 int (*psm_state)(psm_state_request_t *) = (int (*)(psm_state_request_t *))
160 return_instr;
161
162 void (*notify_error)(int, char *) = (void (*)(int, char *))return_instr;
163 void (*hrtime_tick)(void) = return_instr;
164
165 int (*psm_cpu_create_devinfo)(cpu_t *, dev_info_t **) = mach_cpu_create_devinfo;
166 int (*psm_cpu_get_devinfo)(cpu_t *, dev_info_t **) = NULL;
167
168 /* global IRM pool for APIX (PSM) module */
169 ddi_irm_pool_t *apix_irm_pool_p = NULL;
170
171 /*
172 * True if the generic TSC code is our source of hrtime, rather than whatever
173 * the PSM can provide.
174 */
175 #ifdef __xpv
176 int tsc_gethrtime_enable = 0;
177 #else
178 int tsc_gethrtime_enable = 1;
179 #endif
180 int tsc_gethrtime_initted = 0;
181
182 /*
183 * True if the hrtime implementation is "hires"; namely, better than microdata.
184 */
185 int gethrtime_hires = 0;
186
187 /*
188 * Local Static Data
189 */
190 static struct psm_ops mach_ops;
191 static struct psm_ops *mach_set[4] = {&mach_ops, NULL, NULL, NULL};
192 static ushort_t mach_ver[4] = {0, 0, 0, 0};
193
194 /*
195 * virtualization support for psm
196 */
197 void *psm_vt_ops = NULL;
198 /*
199 * If non-zero, idle cpus will become "halted" when there's
200 * no work to do.
201 */
202 int idle_cpu_use_hlt = 1;
203
204 #ifndef __xpv
205 /*
206 * If non-zero, idle cpus will use mwait if available to halt instead of hlt.
207 */
208 int idle_cpu_prefer_mwait = 1;
209 /*
210 * Set to 0 to avoid MONITOR+CLFLUSH assertion.
211 */
212 int idle_cpu_assert_cflush_monitor = 1;
213
214 /*
215 * If non-zero, idle cpus will not use power saving Deep C-States idle loop.
216 */
217 int idle_cpu_no_deep_c = 0;
218 /*
219 * Non-power saving idle loop and wakeup pointers.
220 * Allows user to toggle Deep Idle power saving feature on/off.
221 */
222 void (*non_deep_idle_cpu)() = cpu_idle;
223 void (*non_deep_idle_disp_enq_thread)(cpu_t *, int);
224
225 /*
226 * Object for the kernel to access the HPET.
227 */
228 hpet_t hpet;
229
230 #endif /* ifndef __xpv */
231
232 uint_t cp_haltset_fanout = 0;
233
234 /*ARGSUSED*/
235 int
pg_plat_hw_shared(cpu_t * cp,pghw_type_t hw)236 pg_plat_hw_shared(cpu_t *cp, pghw_type_t hw)
237 {
238 switch (hw) {
239 case PGHW_IPIPE:
240 if (is_x86_feature(x86_featureset, X86FSET_HTT)) {
241 /*
242 * Hyper-threading is SMT
243 */
244 return (1);
245 } else {
246 return (0);
247 }
248 case PGHW_FPU:
249 if (cpuid_get_cores_per_compunit(cp) > 1)
250 return (1);
251 else
252 return (0);
253 case PGHW_PROCNODE:
254 if (cpuid_get_procnodes_per_pkg(cp) > 1)
255 return (1);
256 else
257 return (0);
258 case PGHW_CHIP:
259 if (is_x86_feature(x86_featureset, X86FSET_CMP) ||
260 is_x86_feature(x86_featureset, X86FSET_HTT))
261 return (1);
262 else
263 return (0);
264 case PGHW_CACHE:
265 if (cpuid_get_ncpu_sharing_last_cache(cp) > 1)
266 return (1);
267 else
268 return (0);
269 case PGHW_POW_ACTIVE:
270 if (cpupm_domain_id(cp, CPUPM_DTYPE_ACTIVE) != (id_t)-1)
271 return (1);
272 else
273 return (0);
274 case PGHW_POW_IDLE:
275 if (cpupm_domain_id(cp, CPUPM_DTYPE_IDLE) != (id_t)-1)
276 return (1);
277 else
278 return (0);
279 default:
280 return (0);
281 }
282 }
283
284 /*
285 * Compare two CPUs and see if they have a pghw_type_t sharing relationship
286 * If pghw_type_t is an unsupported hardware type, then return -1
287 */
288 int
pg_plat_cpus_share(cpu_t * cpu_a,cpu_t * cpu_b,pghw_type_t hw)289 pg_plat_cpus_share(cpu_t *cpu_a, cpu_t *cpu_b, pghw_type_t hw)
290 {
291 id_t pgp_a, pgp_b;
292
293 pgp_a = pg_plat_hw_instance_id(cpu_a, hw);
294 pgp_b = pg_plat_hw_instance_id(cpu_b, hw);
295
296 if (pgp_a == -1 || pgp_b == -1)
297 return (-1);
298
299 return (pgp_a == pgp_b);
300 }
301
302 /*
303 * Return a physical instance identifier for known hardware sharing
304 * relationships
305 */
306 id_t
pg_plat_hw_instance_id(cpu_t * cpu,pghw_type_t hw)307 pg_plat_hw_instance_id(cpu_t *cpu, pghw_type_t hw)
308 {
309 switch (hw) {
310 case PGHW_IPIPE:
311 return (cpuid_get_coreid(cpu));
312 case PGHW_CACHE:
313 return (cpuid_get_last_lvl_cacheid(cpu));
314 case PGHW_FPU:
315 return (cpuid_get_compunitid(cpu));
316 case PGHW_PROCNODE:
317 return (cpuid_get_procnodeid(cpu));
318 case PGHW_CHIP:
319 return (cpuid_get_chipid(cpu));
320 case PGHW_POW_ACTIVE:
321 return (cpupm_domain_id(cpu, CPUPM_DTYPE_ACTIVE));
322 case PGHW_POW_IDLE:
323 return (cpupm_domain_id(cpu, CPUPM_DTYPE_IDLE));
324 default:
325 return (-1);
326 }
327 }
328
329 /*
330 * Express preference for optimizing for sharing relationship
331 * hw1 vs hw2
332 */
333 pghw_type_t
pg_plat_hw_rank(pghw_type_t hw1,pghw_type_t hw2)334 pg_plat_hw_rank(pghw_type_t hw1, pghw_type_t hw2)
335 {
336 int i, rank1, rank2;
337
338 static pghw_type_t hw_hier[] = {
339 PGHW_IPIPE,
340 PGHW_CACHE,
341 PGHW_FPU,
342 PGHW_PROCNODE,
343 PGHW_CHIP,
344 PGHW_POW_IDLE,
345 PGHW_POW_ACTIVE,
346 PGHW_NUM_COMPONENTS
347 };
348
349 for (i = 0; hw_hier[i] != PGHW_NUM_COMPONENTS; i++) {
350 if (hw_hier[i] == hw1)
351 rank1 = i;
352 if (hw_hier[i] == hw2)
353 rank2 = i;
354 }
355
356 if (rank1 > rank2)
357 return (hw1);
358 else
359 return (hw2);
360 }
361
362 /*
363 * Override the default CMT dispatcher policy for the specified
364 * hardware sharing relationship
365 */
366 pg_cmt_policy_t
pg_plat_cmt_policy(pghw_type_t hw)367 pg_plat_cmt_policy(pghw_type_t hw)
368 {
369 /*
370 * For shared caches, also load balance across them to
371 * maximize aggregate cache capacity
372 *
373 * On AMD family 0x15 CPUs, cores come in pairs called
374 * compute units, sharing the FPU and the I$ and L2
375 * caches. Use balancing and cache affinity.
376 */
377 switch (hw) {
378 case PGHW_FPU:
379 case PGHW_CACHE:
380 return (CMT_BALANCE|CMT_AFFINITY);
381 default:
382 return (CMT_NO_POLICY);
383 }
384 }
385
386 id_t
pg_plat_get_core_id(cpu_t * cpu)387 pg_plat_get_core_id(cpu_t *cpu)
388 {
389 return ((id_t)cpuid_get_coreid(cpu));
390 }
391
392 void
cmp_set_nosteal_interval(void)393 cmp_set_nosteal_interval(void)
394 {
395 /* Set the nosteal interval (used by disp_getbest()) to 100us */
396 nosteal_nsec = 100000UL;
397 }
398
399 /*
400 * Routine to ensure initial callers to hrtime gets 0 as return
401 */
402 static hrtime_t
dummy_hrtime(void)403 dummy_hrtime(void)
404 {
405 return (0);
406 }
407
408 /* ARGSUSED */
409 static void
dummy_scalehrtime(hrtime_t * ticks)410 dummy_scalehrtime(hrtime_t *ticks)
411 {}
412
413 static uint64_t
dummy_unscalehrtime(hrtime_t nsecs)414 dummy_unscalehrtime(hrtime_t nsecs)
415 {
416 return ((uint64_t)nsecs);
417 }
418
419 /*
420 * Supports Deep C-State power saving idle loop.
421 */
422 void
cpu_idle_adaptive(void)423 cpu_idle_adaptive(void)
424 {
425 (*CPU->cpu_m.mcpu_idle_cpu)();
426 }
427
428 /*
429 * Function called by CPU idle notification framework to check whether CPU
430 * has been awakened. It will be called with interrupt disabled.
431 * If CPU has been awakened, call cpu_idle_exit() to notify CPU idle
432 * notification framework.
433 */
434 /*ARGSUSED*/
435 static void
cpu_idle_check_wakeup(void * arg)436 cpu_idle_check_wakeup(void *arg)
437 {
438 /*
439 * Toggle interrupt flag to detect pending interrupts.
440 * If interrupt happened, do_interrupt() will notify CPU idle
441 * notification framework so no need to call cpu_idle_exit() here.
442 */
443 sti();
444 SMT_PAUSE();
445 cli();
446 }
447
448 /*
449 * Idle the present CPU until wakened via an interrupt
450 */
451 void
cpu_idle(void)452 cpu_idle(void)
453 {
454 cpu_t *cpup = CPU;
455 processorid_t cpu_sid = cpup->cpu_seqid;
456 cpupart_t *cp = cpup->cpu_part;
457 int hset_update = 1;
458
459 /*
460 * If this CPU is online, and there's multiple CPUs
461 * in the system, then we should notate our halting
462 * by adding ourselves to the partition's halted CPU
463 * bitmap. This allows other CPUs to find/awaken us when
464 * work becomes available.
465 */
466 if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1)
467 hset_update = 0;
468
469 /*
470 * Add ourselves to the partition's halted CPUs bitmap
471 * and set our HALTED flag, if necessary.
472 *
473 * When a thread becomes runnable, it is placed on the queue
474 * and then the halted CPU bitmap is checked to determine who
475 * (if anyone) should be awakened. We therefore need to first
476 * add ourselves to the bitmap, and and then check if there
477 * is any work available. The order is important to prevent a race
478 * that can lead to work languishing on a run queue somewhere while
479 * this CPU remains halted.
480 *
481 * Either the producing CPU will see we're halted and will awaken us,
482 * or this CPU will see the work available in disp_anywork().
483 *
484 * Note that memory barriers after updating the HALTED flag
485 * are not necessary since an atomic operation (updating the bitset)
486 * immediately follows. On x86 the atomic operation acts as a
487 * memory barrier for the update of cpu_disp_flags.
488 */
489 if (hset_update) {
490 cpup->cpu_disp_flags |= CPU_DISP_HALTED;
491 bitset_atomic_add(&cp->cp_haltset, cpu_sid);
492 }
493
494 /*
495 * Check to make sure there's really nothing to do.
496 * Work destined for this CPU may become available after
497 * this check. We'll be notified through the clearing of our
498 * bit in the halted CPU bitmap, and a poke.
499 */
500 if (disp_anywork()) {
501 if (hset_update) {
502 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
503 bitset_atomic_del(&cp->cp_haltset, cpu_sid);
504 }
505 return;
506 }
507
508 /*
509 * We're on our way to being halted.
510 *
511 * Disable interrupts now, so that we'll awaken immediately
512 * after halting if someone tries to poke us between now and
513 * the time we actually halt.
514 *
515 * We check for the presence of our bit after disabling interrupts.
516 * If it's cleared, we'll return. If the bit is cleared after
517 * we check then the poke will pop us out of the halted state.
518 *
519 * This means that the ordering of the poke and the clearing
520 * of the bit by cpu_wakeup is important.
521 * cpu_wakeup() must clear, then poke.
522 * cpu_idle() must disable interrupts, then check for the bit.
523 */
524 cli();
525
526 if (hset_update && bitset_in_set(&cp->cp_haltset, cpu_sid) == 0) {
527 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
528 sti();
529 return;
530 }
531
532 /*
533 * The check for anything locally runnable is here for performance
534 * and isn't needed for correctness. disp_nrunnable ought to be
535 * in our cache still, so it's inexpensive to check, and if there
536 * is anything runnable we won't have to wait for the poke.
537 */
538 if (cpup->cpu_disp->disp_nrunnable != 0) {
539 if (hset_update) {
540 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
541 bitset_atomic_del(&cp->cp_haltset, cpu_sid);
542 }
543 sti();
544 return;
545 }
546
547 if (cpu_idle_enter(IDLE_STATE_C1, 0,
548 cpu_idle_check_wakeup, NULL) == 0) {
549 mach_cpu_idle();
550 cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
551 }
552
553 /*
554 * We're no longer halted
555 */
556 if (hset_update) {
557 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
558 bitset_atomic_del(&cp->cp_haltset, cpu_sid);
559 }
560 }
561
562
563 /*
564 * If "cpu" is halted, then wake it up clearing its halted bit in advance.
565 * Otherwise, see if other CPUs in the cpu partition are halted and need to
566 * be woken up so that they can steal the thread we placed on this CPU.
567 * This function is only used on MP systems.
568 */
569 static void
cpu_wakeup(cpu_t * cpu,int bound)570 cpu_wakeup(cpu_t *cpu, int bound)
571 {
572 uint_t cpu_found;
573 processorid_t cpu_sid;
574 cpupart_t *cp;
575
576 cp = cpu->cpu_part;
577 cpu_sid = cpu->cpu_seqid;
578 if (bitset_in_set(&cp->cp_haltset, cpu_sid)) {
579 /*
580 * Clear the halted bit for that CPU since it will be
581 * poked in a moment.
582 */
583 bitset_atomic_del(&cp->cp_haltset, cpu_sid);
584 /*
585 * We may find the current CPU present in the halted cpuset
586 * if we're in the context of an interrupt that occurred
587 * before we had a chance to clear our bit in cpu_idle().
588 * Poking ourself is obviously unnecessary, since if
589 * we're here, we're not halted.
590 */
591 if (cpu != CPU)
592 poke_cpu(cpu->cpu_id);
593 return;
594 } else {
595 /*
596 * This cpu isn't halted, but it's idle or undergoing a
597 * context switch. No need to awaken anyone else.
598 */
599 if (cpu->cpu_thread == cpu->cpu_idle_thread ||
600 cpu->cpu_disp_flags & CPU_DISP_DONTSTEAL)
601 return;
602 }
603
604 /*
605 * No need to wake up other CPUs if this is for a bound thread.
606 */
607 if (bound)
608 return;
609
610 /*
611 * The CPU specified for wakeup isn't currently halted, so check
612 * to see if there are any other halted CPUs in the partition,
613 * and if there are then awaken one.
614 */
615 do {
616 cpu_found = bitset_find(&cp->cp_haltset);
617 if (cpu_found == (uint_t)-1)
618 return;
619 } while (bitset_atomic_test_and_del(&cp->cp_haltset, cpu_found) < 0);
620
621 if (cpu_found != CPU->cpu_seqid) {
622 poke_cpu(cpu_seq[cpu_found]->cpu_id);
623 }
624 }
625
626 #ifndef __xpv
627 /*
628 * Function called by CPU idle notification framework to check whether CPU
629 * has been awakened. It will be called with interrupt disabled.
630 * If CPU has been awakened, call cpu_idle_exit() to notify CPU idle
631 * notification framework.
632 */
633 static void
cpu_idle_mwait_check_wakeup(void * arg)634 cpu_idle_mwait_check_wakeup(void *arg)
635 {
636 volatile uint32_t *mcpu_mwait = (volatile uint32_t *)arg;
637
638 ASSERT(arg != NULL);
639 if (*mcpu_mwait != MWAIT_HALTED) {
640 /*
641 * CPU has been awakened, notify CPU idle notification system.
642 */
643 cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
644 } else {
645 /*
646 * Toggle interrupt flag to detect pending interrupts.
647 * If interrupt happened, do_interrupt() will notify CPU idle
648 * notification framework so no need to call cpu_idle_exit()
649 * here.
650 */
651 sti();
652 SMT_PAUSE();
653 cli();
654 }
655 }
656
657 /*
658 * Idle the present CPU until awakened via touching its monitored line
659 */
660 void
cpu_idle_mwait(void)661 cpu_idle_mwait(void)
662 {
663 volatile uint32_t *mcpu_mwait = CPU->cpu_m.mcpu_mwait;
664 cpu_t *cpup = CPU;
665 processorid_t cpu_sid = cpup->cpu_seqid;
666 cpupart_t *cp = cpup->cpu_part;
667 int hset_update = 1;
668
669 /*
670 * Set our mcpu_mwait here, so we can tell if anyone tries to
671 * wake us between now and when we call mwait. No other cpu will
672 * attempt to set our mcpu_mwait until we add ourself to the halted
673 * CPU bitmap.
674 */
675 *mcpu_mwait = MWAIT_HALTED;
676
677 /*
678 * If this CPU is online, and there's multiple CPUs
679 * in the system, then we should note our halting
680 * by adding ourselves to the partition's halted CPU
681 * bitmap. This allows other CPUs to find/awaken us when
682 * work becomes available.
683 */
684 if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1)
685 hset_update = 0;
686
687 /*
688 * Add ourselves to the partition's halted CPUs bitmap
689 * and set our HALTED flag, if necessary.
690 *
691 * When a thread becomes runnable, it is placed on the queue
692 * and then the halted CPU bitmap is checked to determine who
693 * (if anyone) should be awakened. We therefore need to first
694 * add ourselves to the bitmap, and and then check if there
695 * is any work available.
696 *
697 * Note that memory barriers after updating the HALTED flag
698 * are not necessary since an atomic operation (updating the bitmap)
699 * immediately follows. On x86 the atomic operation acts as a
700 * memory barrier for the update of cpu_disp_flags.
701 */
702 if (hset_update) {
703 cpup->cpu_disp_flags |= CPU_DISP_HALTED;
704 bitset_atomic_add(&cp->cp_haltset, cpu_sid);
705 }
706
707 /*
708 * Check to make sure there's really nothing to do.
709 * Work destined for this CPU may become available after
710 * this check. We'll be notified through the clearing of our
711 * bit in the halted CPU bitmap, and a write to our mcpu_mwait.
712 *
713 * disp_anywork() checks disp_nrunnable, so we do not have to later.
714 */
715 if (disp_anywork()) {
716 if (hset_update) {
717 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
718 bitset_atomic_del(&cp->cp_haltset, cpu_sid);
719 }
720 return;
721 }
722
723 /*
724 * We're on our way to being halted.
725 * To avoid a lost wakeup, arm the monitor before checking if another
726 * cpu wrote to mcpu_mwait to wake us up.
727 */
728 i86_monitor(mcpu_mwait, 0, 0);
729 if (*mcpu_mwait == MWAIT_HALTED) {
730 if (cpu_idle_enter(IDLE_STATE_C1, 0,
731 cpu_idle_mwait_check_wakeup, (void *)mcpu_mwait) == 0) {
732 if (*mcpu_mwait == MWAIT_HALTED) {
733 i86_mwait(0, 0);
734 }
735 cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
736 }
737 }
738
739 /*
740 * We're no longer halted
741 */
742 if (hset_update) {
743 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
744 bitset_atomic_del(&cp->cp_haltset, cpu_sid);
745 }
746 }
747
748 /*
749 * If "cpu" is halted in mwait, then wake it up clearing its halted bit in
750 * advance. Otherwise, see if other CPUs in the cpu partition are halted and
751 * need to be woken up so that they can steal the thread we placed on this CPU.
752 * This function is only used on MP systems.
753 */
754 static void
cpu_wakeup_mwait(cpu_t * cp,int bound)755 cpu_wakeup_mwait(cpu_t *cp, int bound)
756 {
757 cpupart_t *cpu_part;
758 uint_t cpu_found;
759 processorid_t cpu_sid;
760
761 cpu_part = cp->cpu_part;
762 cpu_sid = cp->cpu_seqid;
763
764 /*
765 * Clear the halted bit for that CPU since it will be woken up
766 * in a moment.
767 */
768 if (bitset_in_set(&cpu_part->cp_haltset, cpu_sid)) {
769 /*
770 * Clear the halted bit for that CPU since it will be
771 * poked in a moment.
772 */
773 bitset_atomic_del(&cpu_part->cp_haltset, cpu_sid);
774 /*
775 * We may find the current CPU present in the halted cpuset
776 * if we're in the context of an interrupt that occurred
777 * before we had a chance to clear our bit in cpu_idle().
778 * Waking ourself is obviously unnecessary, since if
779 * we're here, we're not halted.
780 *
781 * monitor/mwait wakeup via writing to our cache line is
782 * harmless and less expensive than always checking if we
783 * are waking ourself which is an uncommon case.
784 */
785 MWAIT_WAKEUP(cp); /* write to monitored line */
786 return;
787 } else {
788 /*
789 * This cpu isn't halted, but it's idle or undergoing a
790 * context switch. No need to awaken anyone else.
791 */
792 if (cp->cpu_thread == cp->cpu_idle_thread ||
793 cp->cpu_disp_flags & CPU_DISP_DONTSTEAL)
794 return;
795 }
796
797 /*
798 * No need to wake up other CPUs if the thread we just enqueued
799 * is bound.
800 */
801 if (bound || ncpus == 1)
802 return;
803
804 /*
805 * See if there's any other halted CPUs. If there are, then
806 * select one, and awaken it.
807 * It's possible that after we find a CPU, somebody else
808 * will awaken it before we get the chance.
809 * In that case, look again.
810 */
811 do {
812 cpu_found = bitset_find(&cpu_part->cp_haltset);
813 if (cpu_found == (uint_t)-1)
814 return;
815 } while (bitset_atomic_test_and_del(&cpu_part->cp_haltset,
816 cpu_found) < 0);
817
818 /*
819 * Do not check if cpu_found is ourself as monitor/mwait
820 * wakeup is cheap.
821 */
822 MWAIT_WAKEUP(cpu_seq[cpu_found]); /* write to monitored line */
823 }
824
825 #endif
826
827 void (*cpu_pause_handler)(volatile char *) = NULL;
828
829 static int
mp_disable_intr(int cpun)830 mp_disable_intr(int cpun)
831 {
832 /*
833 * switch to the offline cpu
834 */
835 affinity_set(cpun);
836 /*
837 * raise ipl to just below cross call
838 */
839 splx(XC_SYS_PIL - 1);
840 /*
841 * set base spl to prevent the next swtch to idle from
842 * lowering back to ipl 0
843 */
844 CPU->cpu_intr_actv |= (1 << (XC_SYS_PIL - 1));
845 set_base_spl();
846 affinity_clear();
847 return (DDI_SUCCESS);
848 }
849
850 static void
mp_enable_intr(int cpun)851 mp_enable_intr(int cpun)
852 {
853 /*
854 * switch to the online cpu
855 */
856 affinity_set(cpun);
857 /*
858 * clear the interrupt active mask
859 */
860 CPU->cpu_intr_actv &= ~(1 << (XC_SYS_PIL - 1));
861 set_base_spl();
862 (void) spl0();
863 affinity_clear();
864 }
865
866 static void
mach_get_platform(int owner)867 mach_get_platform(int owner)
868 {
869 void **srv_opsp;
870 void **clt_opsp;
871 int i;
872 int total_ops;
873
874 /* fix up psm ops */
875 srv_opsp = (void **)mach_set[0];
876 clt_opsp = (void **)mach_set[owner];
877 if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01)
878 total_ops = sizeof (struct psm_ops_ver01) /
879 sizeof (void (*)(void));
880 else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_1)
881 /* no psm_notify_func */
882 total_ops = OFFSETOF(struct psm_ops, psm_notify_func) /
883 sizeof (void (*)(void));
884 else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_2)
885 /* no psm_timer funcs */
886 total_ops = OFFSETOF(struct psm_ops, psm_timer_reprogram) /
887 sizeof (void (*)(void));
888 else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_3)
889 /* no psm_preshutdown function */
890 total_ops = OFFSETOF(struct psm_ops, psm_preshutdown) /
891 sizeof (void (*)(void));
892 else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_4)
893 /* no psm_intr_ops function */
894 total_ops = OFFSETOF(struct psm_ops, psm_intr_ops) /
895 sizeof (void (*)(void));
896 else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_5)
897 /* no psm_state function */
898 total_ops = OFFSETOF(struct psm_ops, psm_state) /
899 sizeof (void (*)(void));
900 else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_6)
901 /* no psm_cpu_ops function */
902 total_ops = OFFSETOF(struct psm_ops, psm_cpu_ops) /
903 sizeof (void (*)(void));
904 else
905 total_ops = sizeof (struct psm_ops) / sizeof (void (*)(void));
906
907 /*
908 * Save the version of the PSM module, in case we need to
909 * behave differently based on version.
910 */
911 mach_ver[0] = mach_ver[owner];
912
913 for (i = 0; i < total_ops; i++)
914 if (clt_opsp[i] != NULL)
915 srv_opsp[i] = clt_opsp[i];
916 }
917
918 static void
mach_construct_info()919 mach_construct_info()
920 {
921 struct psm_sw *swp;
922 int mach_cnt[PSM_OWN_OVERRIDE+1] = {0};
923 int conflict_owner = 0;
924
925 if (psmsw->psw_forw == psmsw)
926 panic("No valid PSM modules found");
927 mutex_enter(&psmsw_lock);
928 for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) {
929 if (!(swp->psw_flag & PSM_MOD_IDENTIFY))
930 continue;
931 mach_set[swp->psw_infop->p_owner] = swp->psw_infop->p_ops;
932 mach_ver[swp->psw_infop->p_owner] = swp->psw_infop->p_version;
933 mach_cnt[swp->psw_infop->p_owner]++;
934 }
935 mutex_exit(&psmsw_lock);
936
937 mach_get_platform(PSM_OWN_SYS_DEFAULT);
938
939 /* check to see are there any conflicts */
940 if (mach_cnt[PSM_OWN_EXCLUSIVE] > 1)
941 conflict_owner = PSM_OWN_EXCLUSIVE;
942 if (mach_cnt[PSM_OWN_OVERRIDE] > 1)
943 conflict_owner = PSM_OWN_OVERRIDE;
944 if (conflict_owner) {
945 /* remove all psm modules except uppc */
946 cmn_err(CE_WARN,
947 "Conflicts detected on the following PSM modules:");
948 mutex_enter(&psmsw_lock);
949 for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) {
950 if (swp->psw_infop->p_owner == conflict_owner)
951 cmn_err(CE_WARN, "%s ",
952 swp->psw_infop->p_mach_idstring);
953 }
954 mutex_exit(&psmsw_lock);
955 cmn_err(CE_WARN,
956 "Setting the system back to SINGLE processor mode!");
957 cmn_err(CE_WARN,
958 "Please edit /etc/mach to remove the invalid PSM module.");
959 return;
960 }
961
962 if (mach_set[PSM_OWN_EXCLUSIVE])
963 mach_get_platform(PSM_OWN_EXCLUSIVE);
964
965 if (mach_set[PSM_OWN_OVERRIDE])
966 mach_get_platform(PSM_OWN_OVERRIDE);
967 }
968
969 static void
mach_init()970 mach_init()
971 {
972 struct psm_ops *pops;
973
974 mach_construct_info();
975
976 pops = mach_set[0];
977
978 /* register the interrupt and clock initialization rotuines */
979 picinitf = mach_picinit;
980 clkinitf = mach_clkinit;
981 psm_get_clockirq = pops->psm_get_clockirq;
982
983 /* register the interrupt setup code */
984 slvltovect = mach_softlvl_to_vect;
985 addspl = pops->psm_addspl;
986 delspl = pops->psm_delspl;
987
988 if (pops->psm_translate_irq)
989 psm_translate_irq = pops->psm_translate_irq;
990 if (pops->psm_intr_ops)
991 psm_intr_ops = pops->psm_intr_ops;
992
993 #if defined(PSMI_1_2) || defined(PSMI_1_3) || defined(PSMI_1_4)
994 /*
995 * Time-of-day functionality now handled in TOD modules.
996 * (Warn about PSM modules that think that we're going to use
997 * their ops vectors.)
998 */
999 if (pops->psm_tod_get)
1000 cmn_err(CE_WARN, "obsolete psm_tod_get op %p",
1001 (void *)pops->psm_tod_get);
1002
1003 if (pops->psm_tod_set)
1004 cmn_err(CE_WARN, "obsolete psm_tod_set op %p",
1005 (void *)pops->psm_tod_set);
1006 #endif
1007
1008 if (pops->psm_notify_error) {
1009 psm_notify_error = mach_notify_error;
1010 notify_error = pops->psm_notify_error;
1011 }
1012
1013 (*pops->psm_softinit)();
1014
1015 /*
1016 * Initialize the dispatcher's function hooks to enable CPU halting
1017 * when idle. Set both the deep-idle and non-deep-idle hooks.
1018 *
1019 * Assume we can use power saving deep-idle loop cpu_idle_adaptive.
1020 * Platform deep-idle driver will reset our idle loop to
1021 * non_deep_idle_cpu if power saving deep-idle feature is not available.
1022 *
1023 * Do not use monitor/mwait if idle_cpu_use_hlt is not set(spin idle)
1024 * or idle_cpu_prefer_mwait is not set.
1025 * Allocate monitor/mwait buffer for cpu0.
1026 */
1027 #ifndef __xpv
1028 non_deep_idle_disp_enq_thread = disp_enq_thread;
1029 #endif
1030 if (idle_cpu_use_hlt) {
1031 idle_cpu = cpu_idle_adaptive;
1032 CPU->cpu_m.mcpu_idle_cpu = cpu_idle;
1033 #ifndef __xpv
1034 if (is_x86_feature(x86_featureset, X86FSET_MWAIT) &&
1035 idle_cpu_prefer_mwait) {
1036 CPU->cpu_m.mcpu_mwait = cpuid_mwait_alloc(CPU);
1037 /*
1038 * Protect ourself from insane mwait size.
1039 */
1040 if (CPU->cpu_m.mcpu_mwait == NULL) {
1041 #ifdef DEBUG
1042 cmn_err(CE_NOTE, "Using hlt idle. Cannot "
1043 "handle cpu 0 mwait size.");
1044 #endif
1045 idle_cpu_prefer_mwait = 0;
1046 CPU->cpu_m.mcpu_idle_cpu = cpu_idle;
1047 } else {
1048 CPU->cpu_m.mcpu_idle_cpu = cpu_idle_mwait;
1049 }
1050 } else {
1051 CPU->cpu_m.mcpu_idle_cpu = cpu_idle;
1052 }
1053 non_deep_idle_cpu = CPU->cpu_m.mcpu_idle_cpu;
1054
1055 /*
1056 * Disable power saving deep idle loop?
1057 */
1058 if (idle_cpu_no_deep_c) {
1059 idle_cpu = non_deep_idle_cpu;
1060 }
1061 #endif
1062 }
1063
1064 mach_smpinit();
1065 }
1066
1067 static void
mach_smpinit(void)1068 mach_smpinit(void)
1069 {
1070 struct psm_ops *pops;
1071 processorid_t cpu_id;
1072 int cnt;
1073 cpuset_t cpumask;
1074
1075 pops = mach_set[0];
1076 CPUSET_ZERO(cpumask);
1077
1078 cpu_id = -1;
1079 cpu_id = (*pops->psm_get_next_processorid)(cpu_id);
1080 /*
1081 * Only add boot_ncpus CPUs to mp_cpus. Other CPUs will be handled
1082 * by CPU DR driver at runtime.
1083 */
1084 for (cnt = 0; cpu_id != -1 && cnt < boot_ncpus; cnt++) {
1085 CPUSET_ADD(cpumask, cpu_id);
1086 cpu_id = (*pops->psm_get_next_processorid)(cpu_id);
1087 }
1088
1089 mp_cpus = cpumask;
1090
1091 /* MP related routines */
1092 ap_mlsetup = pops->psm_post_cpu_start;
1093 send_dirintf = pops->psm_send_ipi;
1094
1095 /* optional MP related routines */
1096 if (pops->psm_shutdown)
1097 psm_shutdownf = pops->psm_shutdown;
1098 if (pops->psm_preshutdown)
1099 psm_preshutdownf = pops->psm_preshutdown;
1100 if (pops->psm_notify_func)
1101 psm_notifyf = pops->psm_notify_func;
1102 if (pops->psm_set_idlecpu)
1103 psm_set_idle_cpuf = pops->psm_set_idlecpu;
1104 if (pops->psm_unset_idlecpu)
1105 psm_unset_idle_cpuf = pops->psm_unset_idlecpu;
1106
1107 psm_clkinit = pops->psm_clkinit;
1108
1109 if (pops->psm_timer_reprogram)
1110 psm_timer_reprogram = pops->psm_timer_reprogram;
1111
1112 if (pops->psm_timer_enable)
1113 psm_timer_enable = pops->psm_timer_enable;
1114
1115 if (pops->psm_timer_disable)
1116 psm_timer_disable = pops->psm_timer_disable;
1117
1118 if (pops->psm_post_cyclic_setup)
1119 psm_post_cyclic_setup = pops->psm_post_cyclic_setup;
1120
1121 if (pops->psm_state)
1122 psm_state = pops->psm_state;
1123
1124 /*
1125 * Set these vectors here so they can be used by Suspend/Resume
1126 * on UP machines.
1127 */
1128 if (pops->psm_disable_intr)
1129 psm_disable_intr = pops->psm_disable_intr;
1130 if (pops->psm_enable_intr)
1131 psm_enable_intr = pops->psm_enable_intr;
1132
1133 /* check for multiple CPUs */
1134 if (cnt < 2 && plat_dr_support_cpu() == B_FALSE)
1135 return;
1136
1137 /* check for MP platforms */
1138 if (pops->psm_cpu_start == NULL)
1139 return;
1140
1141 /*
1142 * Set the dispatcher hook to enable cpu "wake up"
1143 * when a thread becomes runnable.
1144 */
1145 if (idle_cpu_use_hlt) {
1146 disp_enq_thread = cpu_wakeup;
1147 #ifndef __xpv
1148 if (is_x86_feature(x86_featureset, X86FSET_MWAIT) &&
1149 idle_cpu_prefer_mwait)
1150 disp_enq_thread = cpu_wakeup_mwait;
1151 non_deep_idle_disp_enq_thread = disp_enq_thread;
1152 #endif
1153 }
1154
1155 psm_get_ipivect = pops->psm_get_ipivect;
1156
1157 (void) add_avintr((void *)NULL, XC_HI_PIL, xc_serv, "xc_intr",
1158 (*pops->psm_get_ipivect)(XC_HI_PIL, PSM_INTR_IPI_HI),
1159 NULL, NULL, NULL, NULL);
1160
1161 (void) (*pops->psm_get_ipivect)(XC_CPUPOKE_PIL, PSM_INTR_POKE);
1162 }
1163
1164 static void
mach_picinit()1165 mach_picinit()
1166 {
1167 struct psm_ops *pops;
1168
1169 pops = mach_set[0];
1170
1171 /* register the interrupt handlers */
1172 setlvl = pops->psm_intr_enter;
1173 setlvlx = pops->psm_intr_exit;
1174
1175 /* initialize the interrupt hardware */
1176 (*pops->psm_picinit)();
1177
1178 /* set interrupt mask for current ipl */
1179 setspl = pops->psm_setspl;
1180 cli();
1181 setspl(CPU->cpu_pri);
1182 }
1183
1184 uint_t cpu_freq; /* MHz */
1185 uint64_t cpu_freq_hz; /* measured (in hertz) */
1186
1187 #define MEGA_HZ 1000000
1188
1189 #ifdef __xpv
1190
1191 int xpv_cpufreq_workaround = 1;
1192 int xpv_cpufreq_verbose = 0;
1193
1194 #else /* __xpv */
1195
1196 static uint64_t
mach_calchz(uint32_t pit_counter,uint64_t * processor_clks)1197 mach_calchz(uint32_t pit_counter, uint64_t *processor_clks)
1198 {
1199 uint64_t cpu_hz;
1200
1201 if ((pit_counter == 0) || (*processor_clks == 0) ||
1202 (*processor_clks > (((uint64_t)-1) / PIT_HZ)))
1203 return (0);
1204
1205 cpu_hz = ((uint64_t)PIT_HZ * *processor_clks) / pit_counter;
1206
1207 return (cpu_hz);
1208 }
1209
1210 #endif /* __xpv */
1211
1212 static uint64_t
mach_getcpufreq(void)1213 mach_getcpufreq(void)
1214 {
1215 #if defined(__xpv)
1216 vcpu_time_info_t *vti = &CPU->cpu_m.mcpu_vcpu_info->time;
1217 uint64_t cpu_hz;
1218
1219 /*
1220 * During dom0 bringup, it was noted that on at least one older
1221 * Intel HT machine, the hypervisor initially gives a tsc_to_system_mul
1222 * value that is quite wrong (the 3.06GHz clock was reported
1223 * as 4.77GHz)
1224 *
1225 * The curious thing is, that if you stop the kernel at entry,
1226 * breakpoint here and inspect the value with kmdb, the value
1227 * is correct - but if you don't stop and simply enable the
1228 * printf statement (below), you can see the bad value printed
1229 * here. Almost as if something kmdb did caused the hypervisor to
1230 * figure it out correctly. And, note that the hypervisor
1231 * eventually -does- figure it out correctly ... if you look at
1232 * the field later in the life of dom0, it is correct.
1233 *
1234 * For now, on dom0, we employ a slightly cheesy workaround of
1235 * using the DOM0_PHYSINFO hypercall.
1236 */
1237 if (DOMAIN_IS_INITDOMAIN(xen_info) && xpv_cpufreq_workaround) {
1238 cpu_hz = 1000 * xpv_cpu_khz();
1239 } else {
1240 cpu_hz = (UINT64_C(1000000000) << 32) / vti->tsc_to_system_mul;
1241
1242 if (vti->tsc_shift < 0)
1243 cpu_hz <<= -vti->tsc_shift;
1244 else
1245 cpu_hz >>= vti->tsc_shift;
1246 }
1247
1248 if (xpv_cpufreq_verbose)
1249 printf("mach_getcpufreq: system_mul 0x%x, shift %d, "
1250 "cpu_hz %" PRId64 "Hz\n",
1251 vti->tsc_to_system_mul, vti->tsc_shift, cpu_hz);
1252
1253 return (cpu_hz);
1254 #else /* __xpv */
1255 uint32_t pit_counter;
1256 uint64_t processor_clks;
1257
1258 if (is_x86_feature(x86_featureset, X86FSET_TSC)) {
1259 /*
1260 * We have a TSC. freq_tsc() knows how to measure the number
1261 * of clock cycles sampled against the PIT.
1262 */
1263 ulong_t flags = clear_int_flag();
1264 processor_clks = freq_tsc(&pit_counter);
1265 restore_int_flag(flags);
1266 return (mach_calchz(pit_counter, &processor_clks));
1267 } else if (x86_vendor == X86_VENDOR_Cyrix || x86_type == X86_TYPE_P5) {
1268 #if defined(__amd64)
1269 panic("mach_getcpufreq: no TSC!");
1270 #elif defined(__i386)
1271 /*
1272 * We are a Cyrix based on a 6x86 core or an Intel Pentium
1273 * for which freq_notsc() knows how to measure the number of
1274 * elapsed clock cycles sampled against the PIT
1275 */
1276 ulong_t flags = clear_int_flag();
1277 processor_clks = freq_notsc(&pit_counter);
1278 restore_int_flag(flags);
1279 return (mach_calchz(pit_counter, &processor_clks));
1280 #endif /* __i386 */
1281 }
1282
1283 /* We do not know how to calculate cpu frequency for this cpu. */
1284 return (0);
1285 #endif /* __xpv */
1286 }
1287
1288 /*
1289 * If the clock speed of a cpu is found to be reported incorrectly, do not add
1290 * to this array, instead improve the accuracy of the algorithm that determines
1291 * the clock speed of the processor or extend the implementation to support the
1292 * vendor as appropriate. This is here only to support adjusting the speed on
1293 * older slower processors that mach_fixcpufreq() would not be able to account
1294 * for otherwise.
1295 */
1296 static int x86_cpu_freq[] = { 60, 75, 80, 90, 120, 160, 166, 175, 180, 233 };
1297
1298 /*
1299 * On fast processors the clock frequency that is measured may be off by
1300 * a few MHz from the value printed on the part. This is a combination of
1301 * the factors that for such fast parts being off by this much is within
1302 * the tolerances for manufacture and because of the difficulties in the
1303 * measurement that can lead to small error. This function uses some
1304 * heuristics in order to tweak the value that was measured to match what
1305 * is most likely printed on the part.
1306 *
1307 * Some examples:
1308 * AMD Athlon 1000 mhz measured as 998 mhz
1309 * Intel Pentium III Xeon 733 mhz measured as 731 mhz
1310 * Intel Pentium IV 1500 mhz measured as 1495mhz
1311 *
1312 * If in the future this function is no longer sufficient to correct
1313 * for the error in the measurement, then the algorithm used to perform
1314 * the measurement will have to be improved in order to increase accuracy
1315 * rather than adding horrible and questionable kludges here.
1316 *
1317 * This is called after the cyclics subsystem because of the potential
1318 * that the heuristics within may give a worse estimate of the clock
1319 * frequency than the value that was measured.
1320 */
1321 static void
mach_fixcpufreq(void)1322 mach_fixcpufreq(void)
1323 {
1324 uint32_t freq, mul, near66, delta66, near50, delta50, fixed, delta, i;
1325
1326 freq = (uint32_t)cpu_freq;
1327
1328 /*
1329 * Find the nearest integer multiple of 200/3 (about 66) MHz to the
1330 * measured speed taking into account that the 667 MHz parts were
1331 * the first to round-up.
1332 */
1333 mul = (uint32_t)((3 * (uint64_t)freq + 100) / 200);
1334 near66 = (uint32_t)((200 * (uint64_t)mul + ((mul >= 10) ? 1 : 0)) / 3);
1335 delta66 = (near66 > freq) ? (near66 - freq) : (freq - near66);
1336
1337 /* Find the nearest integer multiple of 50 MHz to the measured speed */
1338 mul = (freq + 25) / 50;
1339 near50 = mul * 50;
1340 delta50 = (near50 > freq) ? (near50 - freq) : (freq - near50);
1341
1342 /* Find the closer of the two */
1343 if (delta66 < delta50) {
1344 fixed = near66;
1345 delta = delta66;
1346 } else {
1347 fixed = near50;
1348 delta = delta50;
1349 }
1350
1351 if (fixed > INT_MAX)
1352 return;
1353
1354 /*
1355 * Some older parts have a core clock frequency that is not an
1356 * integral multiple of 50 or 66 MHz. Check if one of the old
1357 * clock frequencies is closer to the measured value than any
1358 * of the integral multiples of 50 an 66, and if so set fixed
1359 * and delta appropriately to represent the closest value.
1360 */
1361 i = sizeof (x86_cpu_freq) / sizeof (int);
1362 while (i > 0) {
1363 i--;
1364
1365 if (x86_cpu_freq[i] <= freq) {
1366 mul = freq - x86_cpu_freq[i];
1367
1368 if (mul < delta) {
1369 fixed = x86_cpu_freq[i];
1370 delta = mul;
1371 }
1372
1373 break;
1374 }
1375
1376 mul = x86_cpu_freq[i] - freq;
1377
1378 if (mul < delta) {
1379 fixed = x86_cpu_freq[i];
1380 delta = mul;
1381 }
1382 }
1383
1384 /*
1385 * Set a reasonable maximum for how much to correct the measured
1386 * result by. This check is here to prevent the adjustment made
1387 * by this function from being more harm than good. It is entirely
1388 * possible that in the future parts will be made that are not
1389 * integral multiples of 66 or 50 in clock frequency or that
1390 * someone may overclock a part to some odd frequency. If the
1391 * measured value is farther from the corrected value than
1392 * allowed, then assume the corrected value is in error and use
1393 * the measured value.
1394 */
1395 if (6 < delta)
1396 return;
1397
1398 cpu_freq = (int)fixed;
1399 }
1400
1401
1402 static int
machhztomhz(uint64_t cpu_freq_hz)1403 machhztomhz(uint64_t cpu_freq_hz)
1404 {
1405 uint64_t cpu_mhz;
1406
1407 /* Round to nearest MHZ */
1408 cpu_mhz = (cpu_freq_hz + (MEGA_HZ / 2)) / MEGA_HZ;
1409
1410 if (cpu_mhz > INT_MAX)
1411 return (0);
1412
1413 return ((int)cpu_mhz);
1414
1415 }
1416
1417
1418 static int
mach_clkinit(int preferred_mode,int * set_mode)1419 mach_clkinit(int preferred_mode, int *set_mode)
1420 {
1421 struct psm_ops *pops;
1422 int resolution;
1423
1424 pops = mach_set[0];
1425
1426 cpu_freq_hz = mach_getcpufreq();
1427
1428 cpu_freq = machhztomhz(cpu_freq_hz);
1429
1430 if (!is_x86_feature(x86_featureset, X86FSET_TSC) || (cpu_freq == 0))
1431 tsc_gethrtime_enable = 0;
1432
1433 #ifndef __xpv
1434 if (tsc_gethrtime_enable) {
1435 tsc_hrtimeinit(cpu_freq_hz);
1436 } else
1437 #endif
1438 {
1439 if (pops->psm_hrtimeinit)
1440 (*pops->psm_hrtimeinit)();
1441 gethrtimef = pops->psm_gethrtime;
1442 gethrtimeunscaledf = gethrtimef;
1443 /* scalehrtimef will remain dummy */
1444 }
1445
1446 mach_fixcpufreq();
1447
1448 if (mach_ver[0] >= PSM_INFO_VER01_3) {
1449 if (preferred_mode == TIMER_ONESHOT) {
1450
1451 resolution = (*pops->psm_clkinit)(0);
1452 if (resolution != 0) {
1453 *set_mode = TIMER_ONESHOT;
1454 return (resolution);
1455 }
1456 }
1457
1458 /*
1459 * either periodic mode was requested or could not set to
1460 * one-shot mode
1461 */
1462 resolution = (*pops->psm_clkinit)(hz);
1463 /*
1464 * psm should be able to do periodic, so we do not check
1465 * for return value of psm_clkinit here.
1466 */
1467 *set_mode = TIMER_PERIODIC;
1468 return (resolution);
1469 } else {
1470 /*
1471 * PSMI interface prior to PSMI_3 does not define a return
1472 * value for psm_clkinit, so the return value is ignored.
1473 */
1474 (void) (*pops->psm_clkinit)(hz);
1475 *set_mode = TIMER_PERIODIC;
1476 return (nsec_per_tick);
1477 }
1478 }
1479
1480
1481 /*ARGSUSED*/
1482 static int
mach_softlvl_to_vect(int ipl)1483 mach_softlvl_to_vect(int ipl)
1484 {
1485 setsoftint = av_set_softint_pending;
1486 kdisetsoftint = kdi_av_set_softint_pending;
1487
1488 return (PSM_SV_SOFTWARE);
1489 }
1490
1491 #ifdef DEBUG
1492 /*
1493 * This is here to allow us to simulate cpus that refuse to start.
1494 */
1495 cpuset_t cpufailset;
1496 #endif
1497
1498 int
mach_cpu_start(struct cpu * cp,void * ctx)1499 mach_cpu_start(struct cpu *cp, void *ctx)
1500 {
1501 struct psm_ops *pops = mach_set[0];
1502 processorid_t id = cp->cpu_id;
1503
1504 #ifdef DEBUG
1505 if (CPU_IN_SET(cpufailset, id))
1506 return (0);
1507 #endif
1508 return ((*pops->psm_cpu_start)(id, ctx));
1509 }
1510
1511 int
mach_cpuid_start(processorid_t id,void * ctx)1512 mach_cpuid_start(processorid_t id, void *ctx)
1513 {
1514 struct psm_ops *pops = mach_set[0];
1515
1516 #ifdef DEBUG
1517 if (CPU_IN_SET(cpufailset, id))
1518 return (0);
1519 #endif
1520 return ((*pops->psm_cpu_start)(id, ctx));
1521 }
1522
1523 int
mach_cpu_stop(cpu_t * cp,void * ctx)1524 mach_cpu_stop(cpu_t *cp, void *ctx)
1525 {
1526 struct psm_ops *pops = mach_set[0];
1527 psm_cpu_request_t request;
1528
1529 if (pops->psm_cpu_ops == NULL) {
1530 return (ENOTSUP);
1531 }
1532
1533 ASSERT(cp->cpu_id != -1);
1534 request.pcr_cmd = PSM_CPU_STOP;
1535 request.req.cpu_stop.cpuid = cp->cpu_id;
1536 request.req.cpu_stop.ctx = ctx;
1537
1538 return ((*pops->psm_cpu_ops)(&request));
1539 }
1540
1541 int
mach_cpu_add(mach_cpu_add_arg_t * argp,processorid_t * cpuidp)1542 mach_cpu_add(mach_cpu_add_arg_t *argp, processorid_t *cpuidp)
1543 {
1544 int rc;
1545 struct psm_ops *pops = mach_set[0];
1546 psm_cpu_request_t request;
1547
1548 if (pops->psm_cpu_ops == NULL) {
1549 return (ENOTSUP);
1550 }
1551
1552 request.pcr_cmd = PSM_CPU_ADD;
1553 request.req.cpu_add.argp = argp;
1554 request.req.cpu_add.cpuid = -1;
1555 rc = (*pops->psm_cpu_ops)(&request);
1556 if (rc == 0) {
1557 ASSERT(request.req.cpu_add.cpuid != -1);
1558 *cpuidp = request.req.cpu_add.cpuid;
1559 }
1560
1561 return (rc);
1562 }
1563
1564 int
mach_cpu_remove(processorid_t cpuid)1565 mach_cpu_remove(processorid_t cpuid)
1566 {
1567 struct psm_ops *pops = mach_set[0];
1568 psm_cpu_request_t request;
1569
1570 if (pops->psm_cpu_ops == NULL) {
1571 return (ENOTSUP);
1572 }
1573
1574 request.pcr_cmd = PSM_CPU_REMOVE;
1575 request.req.cpu_remove.cpuid = cpuid;
1576
1577 return ((*pops->psm_cpu_ops)(&request));
1578 }
1579
1580 /*
1581 * Default handler to create device node for CPU.
1582 * One reference count will be held on created device node.
1583 */
1584 static int
mach_cpu_create_devinfo(cpu_t * cp,dev_info_t ** dipp)1585 mach_cpu_create_devinfo(cpu_t *cp, dev_info_t **dipp)
1586 {
1587 int rv, circ;
1588 dev_info_t *dip;
1589 static kmutex_t cpu_node_lock;
1590 static dev_info_t *cpu_nex_devi = NULL;
1591
1592 ASSERT(cp != NULL);
1593 ASSERT(dipp != NULL);
1594 *dipp = NULL;
1595
1596 if (cpu_nex_devi == NULL) {
1597 mutex_enter(&cpu_node_lock);
1598 /* First check whether cpus exists. */
1599 cpu_nex_devi = ddi_find_devinfo("cpus", -1, 0);
1600 /* Create cpus if it doesn't exist. */
1601 if (cpu_nex_devi == NULL) {
1602 ndi_devi_enter(ddi_root_node(), &circ);
1603 rv = ndi_devi_alloc(ddi_root_node(), "cpus",
1604 (pnode_t)DEVI_SID_NODEID, &dip);
1605 if (rv != NDI_SUCCESS) {
1606 mutex_exit(&cpu_node_lock);
1607 cmn_err(CE_CONT,
1608 "?failed to create cpu nexus device.\n");
1609 return (PSM_FAILURE);
1610 }
1611 ASSERT(dip != NULL);
1612 (void) ndi_devi_online(dip, 0);
1613 ndi_devi_exit(ddi_root_node(), circ);
1614 cpu_nex_devi = dip;
1615 }
1616 mutex_exit(&cpu_node_lock);
1617 }
1618
1619 /*
1620 * create a child node for cpu identified as 'cpu_id'
1621 */
1622 ndi_devi_enter(cpu_nex_devi, &circ);
1623 dip = ddi_add_child(cpu_nex_devi, "cpu", DEVI_SID_NODEID, -1);
1624 if (dip == NULL) {
1625 cmn_err(CE_CONT,
1626 "?failed to create device node for cpu%d.\n", cp->cpu_id);
1627 rv = PSM_FAILURE;
1628 } else {
1629 *dipp = dip;
1630 (void) ndi_hold_devi(dip);
1631 rv = PSM_SUCCESS;
1632 }
1633 ndi_devi_exit(cpu_nex_devi, circ);
1634
1635 return (rv);
1636 }
1637
1638 /*
1639 * Create cpu device node in device tree and online it.
1640 * Return created dip with reference count held if requested.
1641 */
1642 int
mach_cpu_create_device_node(struct cpu * cp,dev_info_t ** dipp)1643 mach_cpu_create_device_node(struct cpu *cp, dev_info_t **dipp)
1644 {
1645 int rv;
1646 dev_info_t *dip = NULL;
1647
1648 ASSERT(psm_cpu_create_devinfo != NULL);
1649 rv = psm_cpu_create_devinfo(cp, &dip);
1650 if (rv == PSM_SUCCESS) {
1651 cpuid_set_cpu_properties(dip, cp->cpu_id, cp->cpu_m.mcpu_cpi);
1652 /* Recursively attach driver for parent nexus device. */
1653 if (i_ddi_attach_node_hierarchy(ddi_get_parent(dip)) ==
1654 DDI_SUCCESS) {
1655 /* Configure cpu itself and descendants. */
1656 (void) ndi_devi_online(dip,
1657 NDI_ONLINE_ATTACH | NDI_CONFIG);
1658 }
1659 if (dipp != NULL) {
1660 *dipp = dip;
1661 } else {
1662 (void) ndi_rele_devi(dip);
1663 }
1664 }
1665
1666 return (rv);
1667 }
1668
1669 /*
1670 * The dipp contains one of following values on return:
1671 * - NULL if no device node found
1672 * - pointer to device node if found
1673 */
1674 int
mach_cpu_get_device_node(struct cpu * cp,dev_info_t ** dipp)1675 mach_cpu_get_device_node(struct cpu *cp, dev_info_t **dipp)
1676 {
1677 *dipp = NULL;
1678 if (psm_cpu_get_devinfo != NULL) {
1679 if (psm_cpu_get_devinfo(cp, dipp) == PSM_SUCCESS) {
1680 return (PSM_SUCCESS);
1681 }
1682 }
1683
1684 return (PSM_FAILURE);
1685 }
1686
1687 /*ARGSUSED*/
1688 static int
mach_translate_irq(dev_info_t * dip,int irqno)1689 mach_translate_irq(dev_info_t *dip, int irqno)
1690 {
1691 return (irqno); /* default to NO translation */
1692 }
1693
1694 static void
mach_notify_error(int level,char * errmsg)1695 mach_notify_error(int level, char *errmsg)
1696 {
1697 /*
1698 * SL_FATAL is pass in once panicstr is set, deliver it
1699 * as CE_PANIC. Also, translate SL_ codes back to CE_
1700 * codes for the psmi handler
1701 */
1702 if (level & SL_FATAL)
1703 (*notify_error)(CE_PANIC, errmsg);
1704 else if (level & SL_WARN)
1705 (*notify_error)(CE_WARN, errmsg);
1706 else if (level & SL_NOTE)
1707 (*notify_error)(CE_NOTE, errmsg);
1708 else if (level & SL_CONSOLE)
1709 (*notify_error)(CE_CONT, errmsg);
1710 }
1711
1712 /*
1713 * It provides the default basic intr_ops interface for the new DDI
1714 * interrupt framework if the PSM doesn't have one.
1715 *
1716 * Input:
1717 * dip - pointer to the dev_info structure of the requested device
1718 * hdlp - pointer to the internal interrupt handle structure for the
1719 * requested interrupt
1720 * intr_op - opcode for this call
1721 * result - pointer to the integer that will hold the result to be
1722 * passed back if return value is PSM_SUCCESS
1723 *
1724 * Output:
1725 * return value is either PSM_SUCCESS or PSM_FAILURE
1726 */
1727 static int
mach_intr_ops(dev_info_t * dip,ddi_intr_handle_impl_t * hdlp,psm_intr_op_t intr_op,int * result)1728 mach_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp,
1729 psm_intr_op_t intr_op, int *result)
1730 {
1731 struct intrspec *ispec;
1732
1733 switch (intr_op) {
1734 case PSM_INTR_OP_CHECK_MSI:
1735 *result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI |
1736 DDI_INTR_TYPE_MSIX);
1737 break;
1738 case PSM_INTR_OP_ALLOC_VECTORS:
1739 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1740 *result = 1;
1741 else
1742 *result = 0;
1743 break;
1744 case PSM_INTR_OP_FREE_VECTORS:
1745 break;
1746 case PSM_INTR_OP_NAVAIL_VECTORS:
1747 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1748 *result = 1;
1749 else
1750 *result = 0;
1751 break;
1752 case PSM_INTR_OP_XLATE_VECTOR:
1753 ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp;
1754 *result = psm_translate_irq(dip, ispec->intrspec_vec);
1755 break;
1756 case PSM_INTR_OP_GET_CAP:
1757 *result = 0;
1758 break;
1759 case PSM_INTR_OP_GET_PENDING:
1760 case PSM_INTR_OP_CLEAR_MASK:
1761 case PSM_INTR_OP_SET_MASK:
1762 case PSM_INTR_OP_GET_SHARED:
1763 case PSM_INTR_OP_SET_PRI:
1764 case PSM_INTR_OP_SET_CAP:
1765 case PSM_INTR_OP_SET_CPU:
1766 case PSM_INTR_OP_GET_INTR:
1767 default:
1768 return (PSM_FAILURE);
1769 }
1770 return (PSM_SUCCESS);
1771 }
1772 /*
1773 * Return 1 if CMT load balancing policies should be
1774 * implemented across instances of the specified hardware
1775 * sharing relationship.
1776 */
1777 int
pg_cmt_load_bal_hw(pghw_type_t hw)1778 pg_cmt_load_bal_hw(pghw_type_t hw)
1779 {
1780 if (hw == PGHW_IPIPE ||
1781 hw == PGHW_FPU ||
1782 hw == PGHW_PROCNODE ||
1783 hw == PGHW_CHIP)
1784 return (1);
1785 else
1786 return (0);
1787 }
1788 /*
1789 * Return 1 if thread affinity polices should be implemented
1790 * for instances of the specifed hardware sharing relationship.
1791 */
1792 int
pg_cmt_affinity_hw(pghw_type_t hw)1793 pg_cmt_affinity_hw(pghw_type_t hw)
1794 {
1795 if (hw == PGHW_CACHE)
1796 return (1);
1797 else
1798 return (0);
1799 }
1800
1801 /*
1802 * Return number of counter events requested to measure hardware capacity and
1803 * utilization and setup CPC requests for specified CPU as needed
1804 *
1805 * May return 0 when platform or processor specific code knows that no CPC
1806 * events should be programmed on this CPU or -1 when platform or processor
1807 * specific code doesn't know which counter events are best to use and common
1808 * code should decide for itself
1809 */
1810 int
1811 /* LINTED E_FUNC_ARG_UNUSED */
cu_plat_cpc_init(cpu_t * cp,kcpc_request_list_t * reqs,int nreqs)1812 cu_plat_cpc_init(cpu_t *cp, kcpc_request_list_t *reqs, int nreqs)
1813 {
1814 const char *impl_name;
1815
1816 /*
1817 * Return error if pcbe_ops not set
1818 */
1819 if (pcbe_ops == NULL)
1820 return (-1);
1821
1822 /*
1823 * Return that no CPC events should be programmed on hyperthreaded
1824 * Pentium 4 and return error for all other x86 processors to tell
1825 * common code to decide what counter events to program on those CPUs
1826 * for measuring hardware capacity and utilization
1827 */
1828 impl_name = pcbe_ops->pcbe_impl_name();
1829 if (impl_name != NULL && strcmp(impl_name, PCBE_IMPL_NAME_P4HT) == 0)
1830 return (0);
1831 else
1832 return (-1);
1833 }
1834