1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2019 Joyent, Inc.
25 * Copyright 2015 Garrett D'Amore <garrett@damore.org>
26 */
27
28 /*
29 * MAC Services Module
30 *
31 * The GLDv3 framework locking - The MAC layer
32 * --------------------------------------------
33 *
34 * The MAC layer is central to the GLD framework and can provide the locking
35 * framework needed for itself and for the use of MAC clients. MAC end points
36 * are fairly disjoint and don't share a lot of state. So a coarse grained
37 * multi-threading scheme is to single thread all create/modify/delete or set
38 * type of control operations on a per mac end point while allowing data threads
39 * concurrently.
40 *
41 * Control operations (set) that modify a mac end point are always serialized on
42 * a per mac end point basis, We have at most 1 such thread per mac end point
43 * at a time.
44 *
45 * All other operations that are not serialized are essentially multi-threaded.
46 * For example a control operation (get) like getting statistics which may not
47 * care about reading values atomically or data threads sending or receiving
48 * data. Mostly these type of operations don't modify the control state. Any
49 * state these operations care about are protected using traditional locks.
50 *
51 * The perimeter only serializes serial operations. It does not imply there
52 * aren't any other concurrent operations. However a serialized operation may
53 * sometimes need to make sure it is the only thread. In this case it needs
54 * to use reference counting mechanisms to cv_wait until any current data
55 * threads are done.
56 *
57 * The mac layer itself does not hold any locks across a call to another layer.
58 * The perimeter is however held across a down call to the driver to make the
59 * whole control operation atomic with respect to other control operations.
60 * Also the data path and get type control operations may proceed concurrently.
61 * These operations synchronize with the single serial operation on a given mac
62 * end point using regular locks. The perimeter ensures that conflicting
63 * operations like say a mac_multicast_add and a mac_multicast_remove on the
64 * same mac end point don't interfere with each other and also ensures that the
65 * changes in the mac layer and the call to the underlying driver to say add a
66 * multicast address are done atomically without interference from a thread
67 * trying to delete the same address.
68 *
69 * For example, consider
70 * mac_multicst_add()
71 * {
72 * mac_perimeter_enter(); serialize all control operations
73 *
74 * grab list lock protect against access by data threads
75 * add to list
76 * drop list lock
77 *
78 * call driver's mi_multicst
79 *
80 * mac_perimeter_exit();
81 * }
82 *
83 * To lessen the number of serialization locks and simplify the lock hierarchy,
84 * we serialize all the control operations on a per mac end point by using a
85 * single serialization lock called the perimeter. We allow recursive entry into
86 * the perimeter to facilitate use of this mechanism by both the mac client and
87 * the MAC layer itself.
88 *
89 * MAC client means an entity that does an operation on a mac handle
90 * obtained from a mac_open/mac_client_open. Similarly MAC driver means
91 * an entity that does an operation on a mac handle obtained from a
92 * mac_register. An entity could be both client and driver but on different
93 * handles eg. aggr. and should only make the corresponding mac interface calls
94 * i.e. mac driver interface or mac client interface as appropriate for that
95 * mac handle.
96 *
97 * General rules.
98 * -------------
99 *
100 * R1. The lock order of upcall threads is natually opposite to downcall
101 * threads. Hence upcalls must not hold any locks across layers for fear of
102 * recursive lock enter and lock order violation. This applies to all layers.
103 *
104 * R2. The perimeter is just another lock. Since it is held in the down
105 * direction, acquiring the perimeter in an upcall is prohibited as it would
106 * cause a deadlock. This applies to all layers.
107 *
108 * Note that upcalls that need to grab the mac perimeter (for example
109 * mac_notify upcalls) can still achieve that by posting the request to a
110 * thread, which can then grab all the required perimeters and locks in the
111 * right global order. Note that in the above example the mac layer iself
112 * won't grab the mac perimeter in the mac_notify upcall, instead the upcall
113 * to the client must do that. Please see the aggr code for an example.
114 *
115 * MAC client rules
116 * ----------------
117 *
118 * R3. A MAC client may use the MAC provided perimeter facility to serialize
119 * control operations on a per mac end point. It does this by by acquring
120 * and holding the perimeter across a sequence of calls to the mac layer.
121 * This ensures atomicity across the entire block of mac calls. In this
122 * model the MAC client must not hold any client locks across the calls to
123 * the mac layer. This model is the preferred solution.
124 *
125 * R4. However if a MAC client has a lot of global state across all mac end
126 * points the per mac end point serialization may not be sufficient. In this
127 * case the client may choose to use global locks or use its own serialization.
128 * To avoid deadlocks, these client layer locks held across the mac calls
129 * in the control path must never be acquired by the data path for the reason
130 * mentioned below.
131 *
132 * (Assume that a control operation that holds a client lock blocks in the
133 * mac layer waiting for upcall reference counts to drop to zero. If an upcall
134 * data thread that holds this reference count, tries to acquire the same
135 * client lock subsequently it will deadlock).
136 *
137 * A MAC client may follow either the R3 model or the R4 model, but can't
138 * mix both. In the former, the hierarchy is Perim -> client locks, but in
139 * the latter it is client locks -> Perim.
140 *
141 * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able
142 * context since they may block while trying to acquire the perimeter.
143 * In addition some calls may block waiting for upcall refcnts to come down to
144 * zero.
145 *
146 * R6. MAC clients must make sure that they are single threaded and all threads
147 * from the top (in particular data threads) have finished before calling
148 * mac_client_close. The MAC framework does not track the number of client
149 * threads using the mac client handle. Also mac clients must make sure
150 * they have undone all the control operations before calling mac_client_close.
151 * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding
152 * mac_unicast_add/mac_multicast_add.
153 *
154 * MAC framework rules
155 * -------------------
156 *
157 * R7. The mac layer itself must not hold any mac layer locks (except the mac
158 * perimeter) across a call to any other layer from the mac layer. The call to
159 * any other layer could be via mi_* entry points, classifier entry points into
160 * the driver or via upcall pointers into layers above. The mac perimeter may
161 * be acquired or held only in the down direction, for e.g. when calling into
162 * a mi_* driver enty point to provide atomicity of the operation.
163 *
164 * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across
165 * mac driver interfaces, the MAC layer must provide a cut out for control
166 * interfaces like upcall notifications and start them in a separate thread.
167 *
168 * R9. Note that locking order also implies a plumbing order. For example
169 * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt
170 * to plumb in any other order must be failed at mac_open time, otherwise it
171 * could lead to deadlocks due to inverse locking order.
172 *
173 * R10. MAC driver interfaces must not block since the driver could call them
174 * in interrupt context.
175 *
176 * R11. Walkers must preferably not hold any locks while calling walker
177 * callbacks. Instead these can operate on reference counts. In simple
178 * callbacks it may be ok to hold a lock and call the callbacks, but this is
179 * harder to maintain in the general case of arbitrary callbacks.
180 *
181 * R12. The MAC layer must protect upcall notification callbacks using reference
182 * counts rather than holding locks across the callbacks.
183 *
184 * R13. Given the variety of drivers, it is preferable if the MAC layer can make
185 * sure that any pointers (such as mac ring pointers) it passes to the driver
186 * remain valid until mac unregister time. Currently the mac layer achieves
187 * this by using generation numbers for rings and freeing the mac rings only
188 * at unregister time. The MAC layer must provide a layer of indirection and
189 * must not expose underlying driver rings or driver data structures/pointers
190 * directly to MAC clients.
191 *
192 * MAC driver rules
193 * ----------------
194 *
195 * R14. It would be preferable if MAC drivers don't hold any locks across any
196 * mac call. However at a minimum they must not hold any locks across data
197 * upcalls. They must also make sure that all references to mac data structures
198 * are cleaned up and that it is single threaded at mac_unregister time.
199 *
200 * R15. MAC driver interfaces don't block and so the action may be done
201 * asynchronously in a separate thread as for example handling notifications.
202 * The driver must not assume that the action is complete when the call
203 * returns.
204 *
205 * R16. Drivers must maintain a generation number per Rx ring, and pass it
206 * back to mac_rx_ring(); They are expected to increment the generation
207 * number whenever the ring's stop routine is invoked.
208 * See comments in mac_rx_ring();
209 *
210 * R17 Similarly mi_stop is another synchronization point and the driver must
211 * ensure that all upcalls are done and there won't be any future upcall
212 * before returning from mi_stop.
213 *
214 * R18. The driver may assume that all set/modify control operations via
215 * the mi_* entry points are single threaded on a per mac end point.
216 *
217 * Lock and Perimeter hierarchy scenarios
218 * ---------------------------------------
219 *
220 * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify]
221 *
222 * ft_lock -> fe_lock [mac_flow_lookup]
223 *
224 * mi_rw_lock -> fe_lock [mac_bcast_send]
225 *
226 * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw]
227 *
228 * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind]
229 *
230 * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename]
231 *
232 * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac
233 * client to driver. In the case of clients that explictly use the mac provided
234 * perimeter mechanism for its serialization, the hierarchy is
235 * Perimeter -> mac layer locks, since the client never holds any locks across
236 * the mac calls. In the case of clients that use its own locks the hierarchy
237 * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly
238 * calls mac_perim_enter/exit in this case.
239 *
240 * Subflow creation rules
241 * ---------------------------
242 * o In case of a user specified cpulist present on underlying link and flows,
243 * the flows cpulist must be a subset of the underlying link.
244 * o In case of a user specified fanout mode present on link and flow, the
245 * subflow fanout count has to be less than or equal to that of the
246 * underlying link. The cpu-bindings for the subflows will be a subset of
247 * the underlying link.
248 * o In case if no cpulist specified on both underlying link and flow, the
249 * underlying link relies on a MAC tunable to provide out of box fanout.
250 * The subflow will have no cpulist (the subflow will be unbound)
251 * o In case if no cpulist is specified on the underlying link, a subflow can
252 * carry either a user-specified cpulist or fanout count. The cpu-bindings
253 * for the subflow will not adhere to restriction that they need to be subset
254 * of the underlying link.
255 * o In case where the underlying link is carrying either a user specified
256 * cpulist or fanout mode and for a unspecified subflow, the subflow will be
257 * created unbound.
258 * o While creating unbound subflows, bandwidth mode changes attempt to
259 * figure a right fanout count. In such cases the fanout count will override
260 * the unbound cpu-binding behavior.
261 * o In addition to this, while cycling between flow and link properties, we
262 * impose a restriction that if a link property has a subflow with
263 * user-specified attributes, we will not allow changing the link property.
264 * The administrator needs to reset all the user specified properties for the
265 * subflows before attempting a link property change.
266 * Some of the above rules can be overridden by specifying additional command
267 * line options while creating or modifying link or subflow properties.
268 *
269 * Datapath
270 * --------
271 *
272 * For information on the datapath, the world of soft rings, hardware rings, how
273 * it is structured, and the path of an mblk_t between a driver and a mac
274 * client, see mac_sched.c.
275 */
276
277 #include <sys/types.h>
278 #include <sys/conf.h>
279 #include <sys/id_space.h>
280 #include <sys/esunddi.h>
281 #include <sys/stat.h>
282 #include <sys/mkdev.h>
283 #include <sys/stream.h>
284 #include <sys/strsun.h>
285 #include <sys/strsubr.h>
286 #include <sys/dlpi.h>
287 #include <sys/list.h>
288 #include <sys/modhash.h>
289 #include <sys/mac_provider.h>
290 #include <sys/mac_client_impl.h>
291 #include <sys/mac_soft_ring.h>
292 #include <sys/mac_stat.h>
293 #include <sys/mac_impl.h>
294 #include <sys/mac.h>
295 #include <sys/dls.h>
296 #include <sys/dld.h>
297 #include <sys/modctl.h>
298 #include <sys/fs/dv_node.h>
299 #include <sys/thread.h>
300 #include <sys/proc.h>
301 #include <sys/callb.h>
302 #include <sys/cpuvar.h>
303 #include <sys/atomic.h>
304 #include <sys/bitmap.h>
305 #include <sys/sdt.h>
306 #include <sys/mac_flow.h>
307 #include <sys/ddi_intr_impl.h>
308 #include <sys/disp.h>
309 #include <sys/sdt.h>
310 #include <sys/vnic.h>
311 #include <sys/vnic_impl.h>
312 #include <sys/vlan.h>
313 #include <inet/ip.h>
314 #include <inet/ip6.h>
315 #include <sys/exacct.h>
316 #include <sys/exacct_impl.h>
317 #include <inet/nd.h>
318 #include <sys/ethernet.h>
319 #include <sys/pool.h>
320 #include <sys/pool_pset.h>
321 #include <sys/cpupart.h>
322 #include <inet/wifi_ioctl.h>
323 #include <net/wpa.h>
324
325 #define IMPL_HASHSZ 67 /* prime */
326
327 kmem_cache_t *i_mac_impl_cachep;
328 mod_hash_t *i_mac_impl_hash;
329 krwlock_t i_mac_impl_lock;
330 uint_t i_mac_impl_count;
331 static kmem_cache_t *mac_ring_cache;
332 static id_space_t *minor_ids;
333 static uint32_t minor_count;
334 static pool_event_cb_t mac_pool_event_reg;
335
336 /*
337 * Logging stuff. Perhaps mac_logging_interval could be broken into
338 * mac_flow_log_interval and mac_link_log_interval if we want to be
339 * able to schedule them differently.
340 */
341 uint_t mac_logging_interval;
342 boolean_t mac_flow_log_enable;
343 boolean_t mac_link_log_enable;
344 timeout_id_t mac_logging_timer;
345
346 #define MACTYPE_KMODDIR "mac"
347 #define MACTYPE_HASHSZ 67
348 static mod_hash_t *i_mactype_hash;
349 /*
350 * i_mactype_lock synchronizes threads that obtain references to mactype_t
351 * structures through i_mactype_getplugin().
352 */
353 static kmutex_t i_mactype_lock;
354
355 /*
356 * mac_tx_percpu_cnt
357 *
358 * Number of per cpu locks per mac_client_impl_t. Used by the transmit side
359 * in mac_tx to reduce lock contention. This is sized at boot time in mac_init.
360 * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2.
361 * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1.
362 */
363 int mac_tx_percpu_cnt;
364 int mac_tx_percpu_cnt_max = 128;
365
366 /*
367 * Call back functions for the bridge module. These are guaranteed to be valid
368 * when holding a reference on a link or when holding mip->mi_bridge_lock and
369 * mi_bridge_link is non-NULL.
370 */
371 mac_bridge_tx_t mac_bridge_tx_cb;
372 mac_bridge_rx_t mac_bridge_rx_cb;
373 mac_bridge_ref_t mac_bridge_ref_cb;
374 mac_bridge_ls_t mac_bridge_ls_cb;
375
376 static int i_mac_constructor(void *, void *, int);
377 static void i_mac_destructor(void *, void *);
378 static int i_mac_ring_ctor(void *, void *, int);
379 static void i_mac_ring_dtor(void *, void *);
380 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *);
381 void mac_tx_client_flush(mac_client_impl_t *);
382 void mac_tx_client_block(mac_client_impl_t *);
383 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t);
384 static int mac_start_group_and_rings(mac_group_t *);
385 static void mac_stop_group_and_rings(mac_group_t *);
386 static void mac_pool_event_cb(pool_event_t, int, void *);
387
388 typedef struct netinfo_s {
389 list_node_t ni_link;
390 void *ni_record;
391 int ni_size;
392 int ni_type;
393 } netinfo_t;
394
395 /*
396 * Module initialization functions.
397 */
398
399 void
mac_init(void)400 mac_init(void)
401 {
402 mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus :
403 boot_max_ncpus);
404
405 /* Upper bound is mac_tx_percpu_cnt_max */
406 if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max)
407 mac_tx_percpu_cnt = mac_tx_percpu_cnt_max;
408
409 if (mac_tx_percpu_cnt < 1) {
410 /* Someone set max_tx_percpu_cnt_max to 0 or less */
411 mac_tx_percpu_cnt = 1;
412 }
413
414 ASSERT(mac_tx_percpu_cnt >= 1);
415 mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1));
416 /*
417 * Make it of the form 2**N - 1 in the range
418 * [0 .. mac_tx_percpu_cnt_max - 1]
419 */
420 mac_tx_percpu_cnt--;
421
422 i_mac_impl_cachep = kmem_cache_create("mac_impl_cache",
423 sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor,
424 NULL, NULL, NULL, 0);
425 ASSERT(i_mac_impl_cachep != NULL);
426
427 mac_ring_cache = kmem_cache_create("mac_ring_cache",
428 sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL,
429 NULL, NULL, 0);
430 ASSERT(mac_ring_cache != NULL);
431
432 i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash",
433 IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor,
434 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
435 rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL);
436
437 mac_flow_init();
438 mac_soft_ring_init();
439 mac_bcast_init();
440 mac_client_init();
441
442 i_mac_impl_count = 0;
443
444 i_mactype_hash = mod_hash_create_extended("mactype_hash",
445 MACTYPE_HASHSZ,
446 mod_hash_null_keydtor, mod_hash_null_valdtor,
447 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
448
449 /*
450 * Allocate an id space to manage minor numbers. The range of the
451 * space will be from MAC_MAX_MINOR+1 to MAC_PRIVATE_MINOR-1. This
452 * leaves half of the 32-bit minors available for driver private use.
453 */
454 minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1,
455 MAC_PRIVATE_MINOR-1);
456 ASSERT(minor_ids != NULL);
457 minor_count = 0;
458
459 /* Let's default to 20 seconds */
460 mac_logging_interval = 20;
461 mac_flow_log_enable = B_FALSE;
462 mac_link_log_enable = B_FALSE;
463 mac_logging_timer = 0;
464
465 /* Register to be notified of noteworthy pools events */
466 mac_pool_event_reg.pec_func = mac_pool_event_cb;
467 mac_pool_event_reg.pec_arg = NULL;
468 pool_event_cb_register(&mac_pool_event_reg);
469 }
470
471 int
mac_fini(void)472 mac_fini(void)
473 {
474
475 if (i_mac_impl_count > 0 || minor_count > 0)
476 return (EBUSY);
477
478 pool_event_cb_unregister(&mac_pool_event_reg);
479
480 id_space_destroy(minor_ids);
481 mac_flow_fini();
482
483 mod_hash_destroy_hash(i_mac_impl_hash);
484 rw_destroy(&i_mac_impl_lock);
485
486 mac_client_fini();
487 kmem_cache_destroy(mac_ring_cache);
488
489 mod_hash_destroy_hash(i_mactype_hash);
490 mac_soft_ring_finish();
491
492
493 return (0);
494 }
495
496 /*
497 * Initialize a GLDv3 driver's device ops. A driver that manages its own ops
498 * (e.g. softmac) may pass in a NULL ops argument.
499 */
500 void
mac_init_ops(struct dev_ops * ops,const char * name)501 mac_init_ops(struct dev_ops *ops, const char *name)
502 {
503 major_t major = ddi_name_to_major((char *)name);
504
505 /*
506 * By returning on error below, we are not letting the driver continue
507 * in an undefined context. The mac_register() function will faill if
508 * DN_GLDV3_DRIVER isn't set.
509 */
510 if (major == DDI_MAJOR_T_NONE)
511 return;
512 LOCK_DEV_OPS(&devnamesp[major].dn_lock);
513 devnamesp[major].dn_flags |= (DN_GLDV3_DRIVER | DN_NETWORK_DRIVER);
514 UNLOCK_DEV_OPS(&devnamesp[major].dn_lock);
515 if (ops != NULL)
516 dld_init_ops(ops, name);
517 }
518
519 void
mac_fini_ops(struct dev_ops * ops)520 mac_fini_ops(struct dev_ops *ops)
521 {
522 dld_fini_ops(ops);
523 }
524
525 /*ARGSUSED*/
526 static int
i_mac_constructor(void * buf,void * arg,int kmflag)527 i_mac_constructor(void *buf, void *arg, int kmflag)
528 {
529 mac_impl_t *mip = buf;
530
531 bzero(buf, sizeof (mac_impl_t));
532
533 mip->mi_linkstate = LINK_STATE_UNKNOWN;
534
535 rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL);
536 mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL);
537 mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL);
538 mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL);
539
540 mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock;
541 cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
542 mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock;
543 cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
544
545 mutex_init(&mip->mi_bridge_lock, NULL, MUTEX_DEFAULT, NULL);
546
547 return (0);
548 }
549
550 /*ARGSUSED*/
551 static void
i_mac_destructor(void * buf,void * arg)552 i_mac_destructor(void *buf, void *arg)
553 {
554 mac_impl_t *mip = buf;
555 mac_cb_info_t *mcbi;
556
557 ASSERT(mip->mi_ref == 0);
558 ASSERT(mip->mi_active == 0);
559 ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN);
560 ASSERT(mip->mi_devpromisc == 0);
561 ASSERT(mip->mi_ksp == NULL);
562 ASSERT(mip->mi_kstat_count == 0);
563 ASSERT(mip->mi_nclients == 0);
564 ASSERT(mip->mi_nactiveclients == 0);
565 ASSERT(mip->mi_single_active_client == NULL);
566 ASSERT(mip->mi_state_flags == 0);
567 ASSERT(mip->mi_factory_addr == NULL);
568 ASSERT(mip->mi_factory_addr_num == 0);
569 ASSERT(mip->mi_default_tx_ring == NULL);
570
571 mcbi = &mip->mi_notify_cb_info;
572 ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0);
573 ASSERT(mip->mi_notify_bits == 0);
574 ASSERT(mip->mi_notify_thread == NULL);
575 ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock);
576 mcbi->mcbi_lockp = NULL;
577
578 mcbi = &mip->mi_promisc_cb_info;
579 ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL);
580 ASSERT(mip->mi_promisc_list == NULL);
581 ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock);
582 mcbi->mcbi_lockp = NULL;
583
584 ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL);
585 ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0);
586
587 rw_destroy(&mip->mi_rw_lock);
588
589 mutex_destroy(&mip->mi_promisc_lock);
590 cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv);
591 mutex_destroy(&mip->mi_notify_lock);
592 cv_destroy(&mip->mi_notify_cb_info.mcbi_cv);
593 mutex_destroy(&mip->mi_ring_lock);
594
595 ASSERT(mip->mi_bridge_link == NULL);
596 }
597
598 /* ARGSUSED */
599 static int
i_mac_ring_ctor(void * buf,void * arg,int kmflag)600 i_mac_ring_ctor(void *buf, void *arg, int kmflag)
601 {
602 mac_ring_t *ring = (mac_ring_t *)buf;
603
604 bzero(ring, sizeof (mac_ring_t));
605 cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL);
606 mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL);
607 ring->mr_state = MR_FREE;
608 return (0);
609 }
610
611 /* ARGSUSED */
612 static void
i_mac_ring_dtor(void * buf,void * arg)613 i_mac_ring_dtor(void *buf, void *arg)
614 {
615 mac_ring_t *ring = (mac_ring_t *)buf;
616
617 cv_destroy(&ring->mr_cv);
618 mutex_destroy(&ring->mr_lock);
619 }
620
621 /*
622 * Common functions to do mac callback addition and deletion. Currently this is
623 * used by promisc callbacks and notify callbacks. List addition and deletion
624 * need to take care of list walkers. List walkers in general, can't hold list
625 * locks and make upcall callbacks due to potential lock order and recursive
626 * reentry issues. Instead list walkers increment the list walker count to mark
627 * the presence of a walker thread. Addition can be carefully done to ensure
628 * that the list walker always sees either the old list or the new list.
629 * However the deletion can't be done while the walker is active, instead the
630 * deleting thread simply marks the entry as logically deleted. The last walker
631 * physically deletes and frees up the logically deleted entries when the walk
632 * is complete.
633 */
634 void
mac_callback_add(mac_cb_info_t * mcbi,mac_cb_t ** mcb_head,mac_cb_t * mcb_elem)635 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
636 mac_cb_t *mcb_elem)
637 {
638 mac_cb_t *p;
639 mac_cb_t **pp;
640
641 /* Verify it is not already in the list */
642 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
643 if (p == mcb_elem)
644 break;
645 }
646 VERIFY(p == NULL);
647
648 /*
649 * Add it to the head of the callback list. The membar ensures that
650 * the following list pointer manipulations reach global visibility
651 * in exactly the program order below.
652 */
653 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
654
655 mcb_elem->mcb_nextp = *mcb_head;
656 membar_producer();
657 *mcb_head = mcb_elem;
658 }
659
660 /*
661 * Mark the entry as logically deleted. If there aren't any walkers unlink
662 * from the list. In either case return the corresponding status.
663 */
664 boolean_t
mac_callback_remove(mac_cb_info_t * mcbi,mac_cb_t ** mcb_head,mac_cb_t * mcb_elem)665 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
666 mac_cb_t *mcb_elem)
667 {
668 mac_cb_t *p;
669 mac_cb_t **pp;
670
671 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
672 /*
673 * Search the callback list for the entry to be removed
674 */
675 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
676 if (p == mcb_elem)
677 break;
678 }
679 VERIFY(p != NULL);
680
681 /*
682 * If there are walkers just mark it as deleted and the last walker
683 * will remove from the list and free it.
684 */
685 if (mcbi->mcbi_walker_cnt != 0) {
686 p->mcb_flags |= MCB_CONDEMNED;
687 mcbi->mcbi_del_cnt++;
688 return (B_FALSE);
689 }
690
691 ASSERT(mcbi->mcbi_del_cnt == 0);
692 *pp = p->mcb_nextp;
693 p->mcb_nextp = NULL;
694 return (B_TRUE);
695 }
696
697 /*
698 * Wait for all pending callback removals to be completed
699 */
700 void
mac_callback_remove_wait(mac_cb_info_t * mcbi)701 mac_callback_remove_wait(mac_cb_info_t *mcbi)
702 {
703 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
704 while (mcbi->mcbi_del_cnt != 0) {
705 DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi);
706 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
707 }
708 }
709
710 /*
711 * The last mac callback walker does the cleanup. Walk the list and unlik
712 * all the logically deleted entries and construct a temporary list of
713 * removed entries. Return the list of removed entries to the caller.
714 */
715 mac_cb_t *
mac_callback_walker_cleanup(mac_cb_info_t * mcbi,mac_cb_t ** mcb_head)716 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head)
717 {
718 mac_cb_t *p;
719 mac_cb_t **pp;
720 mac_cb_t *rmlist = NULL; /* List of removed elements */
721 int cnt = 0;
722
723 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
724 ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0);
725
726 pp = mcb_head;
727 while (*pp != NULL) {
728 if ((*pp)->mcb_flags & MCB_CONDEMNED) {
729 p = *pp;
730 *pp = p->mcb_nextp;
731 p->mcb_nextp = rmlist;
732 rmlist = p;
733 cnt++;
734 continue;
735 }
736 pp = &(*pp)->mcb_nextp;
737 }
738
739 ASSERT(mcbi->mcbi_del_cnt == cnt);
740 mcbi->mcbi_del_cnt = 0;
741 return (rmlist);
742 }
743
744 boolean_t
mac_callback_lookup(mac_cb_t ** mcb_headp,mac_cb_t * mcb_elem)745 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
746 {
747 mac_cb_t *mcb;
748
749 /* Verify it is not already in the list */
750 for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) {
751 if (mcb == mcb_elem)
752 return (B_TRUE);
753 }
754
755 return (B_FALSE);
756 }
757
758 boolean_t
mac_callback_find(mac_cb_info_t * mcbi,mac_cb_t ** mcb_headp,mac_cb_t * mcb_elem)759 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
760 {
761 boolean_t found;
762
763 mutex_enter(mcbi->mcbi_lockp);
764 found = mac_callback_lookup(mcb_headp, mcb_elem);
765 mutex_exit(mcbi->mcbi_lockp);
766
767 return (found);
768 }
769
770 /* Free the list of removed callbacks */
771 void
mac_callback_free(mac_cb_t * rmlist)772 mac_callback_free(mac_cb_t *rmlist)
773 {
774 mac_cb_t *mcb;
775 mac_cb_t *mcb_next;
776
777 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
778 mcb_next = mcb->mcb_nextp;
779 kmem_free(mcb->mcb_objp, mcb->mcb_objsize);
780 }
781 }
782
783 /*
784 * The promisc callbacks are in 2 lists, one off the 'mip' and another off the
785 * 'mcip' threaded by mpi_mi_link and mpi_mci_link respectively. However there
786 * is only a single shared total walker count, and an entry can't be physically
787 * unlinked if a walker is active on either list. The last walker does this
788 * cleanup of logically deleted entries.
789 */
790 void
i_mac_promisc_walker_cleanup(mac_impl_t * mip)791 i_mac_promisc_walker_cleanup(mac_impl_t *mip)
792 {
793 mac_cb_t *rmlist;
794 mac_cb_t *mcb;
795 mac_cb_t *mcb_next;
796 mac_promisc_impl_t *mpip;
797
798 /*
799 * Construct a temporary list of deleted callbacks by walking the
800 * the mi_promisc_list. Then for each entry in the temporary list,
801 * remove it from the mci_promisc_list and free the entry.
802 */
803 rmlist = mac_callback_walker_cleanup(&mip->mi_promisc_cb_info,
804 &mip->mi_promisc_list);
805
806 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
807 mcb_next = mcb->mcb_nextp;
808 mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
809 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info,
810 &mpip->mpi_mcip->mci_promisc_list, &mpip->mpi_mci_link));
811 mcb->mcb_flags = 0;
812 mcb->mcb_nextp = NULL;
813 kmem_cache_free(mac_promisc_impl_cache, mpip);
814 }
815 }
816
817 void
i_mac_notify(mac_impl_t * mip,mac_notify_type_t type)818 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type)
819 {
820 mac_cb_info_t *mcbi;
821
822 /*
823 * Signal the notify thread even after mi_ref has become zero and
824 * mi_disabled is set. The synchronization with the notify thread
825 * happens in mac_unregister and that implies the driver must make
826 * sure it is single-threaded (with respect to mac calls) and that
827 * all pending mac calls have returned before it calls mac_unregister
828 */
829 rw_enter(&i_mac_impl_lock, RW_READER);
830 if (mip->mi_state_flags & MIS_DISABLED)
831 goto exit;
832
833 /*
834 * Guard against incorrect notifications. (Running a newer
835 * mac client against an older implementation?)
836 */
837 if (type >= MAC_NNOTE)
838 goto exit;
839
840 mcbi = &mip->mi_notify_cb_info;
841 mutex_enter(mcbi->mcbi_lockp);
842 mip->mi_notify_bits |= (1 << type);
843 cv_broadcast(&mcbi->mcbi_cv);
844 mutex_exit(mcbi->mcbi_lockp);
845
846 exit:
847 rw_exit(&i_mac_impl_lock);
848 }
849
850 /*
851 * Mac serialization primitives. Please see the block comment at the
852 * top of the file.
853 */
854 void
i_mac_perim_enter(mac_impl_t * mip)855 i_mac_perim_enter(mac_impl_t *mip)
856 {
857 mac_client_impl_t *mcip;
858
859 if (mip->mi_state_flags & MIS_IS_VNIC) {
860 /*
861 * This is a VNIC. Return the lower mac since that is what
862 * we want to serialize on.
863 */
864 mcip = mac_vnic_lower(mip);
865 mip = mcip->mci_mip;
866 }
867
868 mutex_enter(&mip->mi_perim_lock);
869 if (mip->mi_perim_owner == curthread) {
870 mip->mi_perim_ocnt++;
871 mutex_exit(&mip->mi_perim_lock);
872 return;
873 }
874
875 while (mip->mi_perim_owner != NULL)
876 cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock);
877
878 mip->mi_perim_owner = curthread;
879 ASSERT(mip->mi_perim_ocnt == 0);
880 mip->mi_perim_ocnt++;
881 #ifdef DEBUG
882 mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack,
883 MAC_PERIM_STACK_DEPTH);
884 #endif
885 mutex_exit(&mip->mi_perim_lock);
886 }
887
888 int
i_mac_perim_enter_nowait(mac_impl_t * mip)889 i_mac_perim_enter_nowait(mac_impl_t *mip)
890 {
891 /*
892 * The vnic is a special case, since the serialization is done based
893 * on the lower mac. If the lower mac is busy, it does not imply the
894 * vnic can't be unregistered. But in the case of other drivers,
895 * a busy perimeter or open mac handles implies that the mac is busy
896 * and can't be unregistered.
897 */
898 if (mip->mi_state_flags & MIS_IS_VNIC) {
899 i_mac_perim_enter(mip);
900 return (0);
901 }
902
903 mutex_enter(&mip->mi_perim_lock);
904 if (mip->mi_perim_owner != NULL) {
905 mutex_exit(&mip->mi_perim_lock);
906 return (EBUSY);
907 }
908 ASSERT(mip->mi_perim_ocnt == 0);
909 mip->mi_perim_owner = curthread;
910 mip->mi_perim_ocnt++;
911 mutex_exit(&mip->mi_perim_lock);
912
913 return (0);
914 }
915
916 void
i_mac_perim_exit(mac_impl_t * mip)917 i_mac_perim_exit(mac_impl_t *mip)
918 {
919 mac_client_impl_t *mcip;
920
921 if (mip->mi_state_flags & MIS_IS_VNIC) {
922 /*
923 * This is a VNIC. Return the lower mac since that is what
924 * we want to serialize on.
925 */
926 mcip = mac_vnic_lower(mip);
927 mip = mcip->mci_mip;
928 }
929
930 ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0);
931
932 mutex_enter(&mip->mi_perim_lock);
933 if (--mip->mi_perim_ocnt == 0) {
934 mip->mi_perim_owner = NULL;
935 cv_signal(&mip->mi_perim_cv);
936 }
937 mutex_exit(&mip->mi_perim_lock);
938 }
939
940 /*
941 * Returns whether the current thread holds the mac perimeter. Used in making
942 * assertions.
943 */
944 boolean_t
mac_perim_held(mac_handle_t mh)945 mac_perim_held(mac_handle_t mh)
946 {
947 mac_impl_t *mip = (mac_impl_t *)mh;
948 mac_client_impl_t *mcip;
949
950 if (mip->mi_state_flags & MIS_IS_VNIC) {
951 /*
952 * This is a VNIC. Return the lower mac since that is what
953 * we want to serialize on.
954 */
955 mcip = mac_vnic_lower(mip);
956 mip = mcip->mci_mip;
957 }
958 return (mip->mi_perim_owner == curthread);
959 }
960
961 /*
962 * mac client interfaces to enter the mac perimeter of a mac end point, given
963 * its mac handle, or macname or linkid.
964 */
965 void
mac_perim_enter_by_mh(mac_handle_t mh,mac_perim_handle_t * mphp)966 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp)
967 {
968 mac_impl_t *mip = (mac_impl_t *)mh;
969
970 i_mac_perim_enter(mip);
971 /*
972 * The mac_perim_handle_t returned encodes the 'mip' and whether a
973 * mac_open has been done internally while entering the perimeter.
974 * This information is used in mac_perim_exit
975 */
976 MAC_ENCODE_MPH(*mphp, mip, 0);
977 }
978
979 int
mac_perim_enter_by_macname(const char * name,mac_perim_handle_t * mphp)980 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp)
981 {
982 int err;
983 mac_handle_t mh;
984
985 if ((err = mac_open(name, &mh)) != 0)
986 return (err);
987
988 mac_perim_enter_by_mh(mh, mphp);
989 MAC_ENCODE_MPH(*mphp, mh, 1);
990 return (0);
991 }
992
993 int
mac_perim_enter_by_linkid(datalink_id_t linkid,mac_perim_handle_t * mphp)994 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp)
995 {
996 int err;
997 mac_handle_t mh;
998
999 if ((err = mac_open_by_linkid(linkid, &mh)) != 0)
1000 return (err);
1001
1002 mac_perim_enter_by_mh(mh, mphp);
1003 MAC_ENCODE_MPH(*mphp, mh, 1);
1004 return (0);
1005 }
1006
1007 void
mac_perim_exit(mac_perim_handle_t mph)1008 mac_perim_exit(mac_perim_handle_t mph)
1009 {
1010 mac_impl_t *mip;
1011 boolean_t need_close;
1012
1013 MAC_DECODE_MPH(mph, mip, need_close);
1014 i_mac_perim_exit(mip);
1015 if (need_close)
1016 mac_close((mac_handle_t)mip);
1017 }
1018
1019 int
mac_hold(const char * macname,mac_impl_t ** pmip)1020 mac_hold(const char *macname, mac_impl_t **pmip)
1021 {
1022 mac_impl_t *mip;
1023 int err;
1024
1025 /*
1026 * Check the device name length to make sure it won't overflow our
1027 * buffer.
1028 */
1029 if (strlen(macname) >= MAXNAMELEN)
1030 return (EINVAL);
1031
1032 /*
1033 * Look up its entry in the global hash table.
1034 */
1035 rw_enter(&i_mac_impl_lock, RW_WRITER);
1036 err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname,
1037 (mod_hash_val_t *)&mip);
1038
1039 if (err != 0) {
1040 rw_exit(&i_mac_impl_lock);
1041 return (ENOENT);
1042 }
1043
1044 if (mip->mi_state_flags & MIS_DISABLED) {
1045 rw_exit(&i_mac_impl_lock);
1046 return (ENOENT);
1047 }
1048
1049 if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) {
1050 rw_exit(&i_mac_impl_lock);
1051 return (EBUSY);
1052 }
1053
1054 mip->mi_ref++;
1055 rw_exit(&i_mac_impl_lock);
1056
1057 *pmip = mip;
1058 return (0);
1059 }
1060
1061 void
mac_rele(mac_impl_t * mip)1062 mac_rele(mac_impl_t *mip)
1063 {
1064 rw_enter(&i_mac_impl_lock, RW_WRITER);
1065 ASSERT(mip->mi_ref != 0);
1066 if (--mip->mi_ref == 0) {
1067 ASSERT(mip->mi_nactiveclients == 0 &&
1068 !(mip->mi_state_flags & MIS_EXCLUSIVE));
1069 }
1070 rw_exit(&i_mac_impl_lock);
1071 }
1072
1073 /*
1074 * Private GLDv3 function to start a MAC instance.
1075 */
1076 int
mac_start(mac_handle_t mh)1077 mac_start(mac_handle_t mh)
1078 {
1079 mac_impl_t *mip = (mac_impl_t *)mh;
1080 int err = 0;
1081 mac_group_t *defgrp;
1082
1083 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1084 ASSERT(mip->mi_start != NULL);
1085
1086 /*
1087 * Check whether the device is already started.
1088 */
1089 if (mip->mi_active++ == 0) {
1090 mac_ring_t *ring = NULL;
1091
1092 /*
1093 * Start the device.
1094 */
1095 err = mip->mi_start(mip->mi_driver);
1096 if (err != 0) {
1097 mip->mi_active--;
1098 return (err);
1099 }
1100
1101 /*
1102 * Start the default tx ring.
1103 */
1104 if (mip->mi_default_tx_ring != NULL) {
1105
1106 ring = (mac_ring_t *)mip->mi_default_tx_ring;
1107 if (ring->mr_state != MR_INUSE) {
1108 err = mac_start_ring(ring);
1109 if (err != 0) {
1110 mip->mi_active--;
1111 return (err);
1112 }
1113 }
1114 }
1115
1116 if ((defgrp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) {
1117 /*
1118 * Start the default ring, since it will be needed
1119 * to receive broadcast and multicast traffic for
1120 * both primary and non-primary MAC clients.
1121 */
1122 ASSERT(defgrp->mrg_state == MAC_GROUP_STATE_REGISTERED);
1123 err = mac_start_group_and_rings(defgrp);
1124 if (err != 0) {
1125 mip->mi_active--;
1126 if ((ring != NULL) &&
1127 (ring->mr_state == MR_INUSE))
1128 mac_stop_ring(ring);
1129 return (err);
1130 }
1131 mac_set_group_state(defgrp, MAC_GROUP_STATE_SHARED);
1132 }
1133 }
1134
1135 return (err);
1136 }
1137
1138 /*
1139 * Private GLDv3 function to stop a MAC instance.
1140 */
1141 void
mac_stop(mac_handle_t mh)1142 mac_stop(mac_handle_t mh)
1143 {
1144 mac_impl_t *mip = (mac_impl_t *)mh;
1145 mac_group_t *grp;
1146
1147 ASSERT(mip->mi_stop != NULL);
1148 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1149
1150 /*
1151 * Check whether the device is still needed.
1152 */
1153 ASSERT(mip->mi_active != 0);
1154 if (--mip->mi_active == 0) {
1155 if ((grp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) {
1156 /*
1157 * There should be no more active clients since the
1158 * MAC is being stopped. Stop the default RX group
1159 * and transition it back to registered state.
1160 *
1161 * When clients are torn down, the groups
1162 * are release via mac_release_rx_group which
1163 * knows the the default group is always in
1164 * started mode since broadcast uses it. So
1165 * we can assert that their are no clients
1166 * (since mac_bcast_add doesn't register itself
1167 * as a client) and group is in SHARED state.
1168 */
1169 ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED);
1170 ASSERT(MAC_GROUP_NO_CLIENT(grp) &&
1171 mip->mi_nactiveclients == 0);
1172 mac_stop_group_and_rings(grp);
1173 mac_set_group_state(grp, MAC_GROUP_STATE_REGISTERED);
1174 }
1175
1176 if (mip->mi_default_tx_ring != NULL) {
1177 mac_ring_t *ring;
1178
1179 ring = (mac_ring_t *)mip->mi_default_tx_ring;
1180 if (ring->mr_state == MR_INUSE) {
1181 mac_stop_ring(ring);
1182 ring->mr_flag = 0;
1183 }
1184 }
1185
1186 /*
1187 * Stop the device.
1188 */
1189 mip->mi_stop(mip->mi_driver);
1190 }
1191 }
1192
1193 int
i_mac_promisc_set(mac_impl_t * mip,boolean_t on)1194 i_mac_promisc_set(mac_impl_t *mip, boolean_t on)
1195 {
1196 int err = 0;
1197
1198 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1199 ASSERT(mip->mi_setpromisc != NULL);
1200
1201 if (on) {
1202 /*
1203 * Enable promiscuous mode on the device if not yet enabled.
1204 */
1205 if (mip->mi_devpromisc++ == 0) {
1206 err = mip->mi_setpromisc(mip->mi_driver, B_TRUE);
1207 if (err != 0) {
1208 mip->mi_devpromisc--;
1209 return (err);
1210 }
1211 i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1212 }
1213 } else {
1214 if (mip->mi_devpromisc == 0)
1215 return (EPROTO);
1216
1217 /*
1218 * Disable promiscuous mode on the device if this is the last
1219 * enabling.
1220 */
1221 if (--mip->mi_devpromisc == 0) {
1222 err = mip->mi_setpromisc(mip->mi_driver, B_FALSE);
1223 if (err != 0) {
1224 mip->mi_devpromisc++;
1225 return (err);
1226 }
1227 i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1228 }
1229 }
1230
1231 return (0);
1232 }
1233
1234 /*
1235 * The promiscuity state can change any time. If the caller needs to take
1236 * actions that are atomic with the promiscuity state, then the caller needs
1237 * to bracket the entire sequence with mac_perim_enter/exit
1238 */
1239 boolean_t
mac_promisc_get(mac_handle_t mh)1240 mac_promisc_get(mac_handle_t mh)
1241 {
1242 mac_impl_t *mip = (mac_impl_t *)mh;
1243
1244 /*
1245 * Return the current promiscuity.
1246 */
1247 return (mip->mi_devpromisc != 0);
1248 }
1249
1250 /*
1251 * Invoked at MAC instance attach time to initialize the list
1252 * of factory MAC addresses supported by a MAC instance. This function
1253 * builds a local cache in the mac_impl_t for the MAC addresses
1254 * supported by the underlying hardware. The MAC clients themselves
1255 * use the mac_addr_factory*() functions to query and reserve
1256 * factory MAC addresses.
1257 */
1258 void
mac_addr_factory_init(mac_impl_t * mip)1259 mac_addr_factory_init(mac_impl_t *mip)
1260 {
1261 mac_capab_multifactaddr_t capab;
1262 uint8_t *addr;
1263 int i;
1264
1265 /*
1266 * First round to see how many factory MAC addresses are available.
1267 */
1268 bzero(&capab, sizeof (capab));
1269 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR,
1270 &capab) || (capab.mcm_naddr == 0)) {
1271 /*
1272 * The MAC instance doesn't support multiple factory
1273 * MAC addresses, we're done here.
1274 */
1275 return;
1276 }
1277
1278 /*
1279 * Allocate the space and get all the factory addresses.
1280 */
1281 addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP);
1282 capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr);
1283
1284 mip->mi_factory_addr_num = capab.mcm_naddr;
1285 mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num *
1286 sizeof (mac_factory_addr_t), KM_SLEEP);
1287
1288 for (i = 0; i < capab.mcm_naddr; i++) {
1289 bcopy(addr + i * MAXMACADDRLEN,
1290 mip->mi_factory_addr[i].mfa_addr,
1291 mip->mi_type->mt_addr_length);
1292 mip->mi_factory_addr[i].mfa_in_use = B_FALSE;
1293 }
1294
1295 kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN);
1296 }
1297
1298 void
mac_addr_factory_fini(mac_impl_t * mip)1299 mac_addr_factory_fini(mac_impl_t *mip)
1300 {
1301 if (mip->mi_factory_addr == NULL) {
1302 ASSERT(mip->mi_factory_addr_num == 0);
1303 return;
1304 }
1305
1306 kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num *
1307 sizeof (mac_factory_addr_t));
1308
1309 mip->mi_factory_addr = NULL;
1310 mip->mi_factory_addr_num = 0;
1311 }
1312
1313 /*
1314 * Reserve a factory MAC address. If *slot is set to -1, the function
1315 * attempts to reserve any of the available factory MAC addresses and
1316 * returns the reserved slot id. If no slots are available, the function
1317 * returns ENOSPC. If *slot is not set to -1, the function reserves
1318 * the specified slot if it is available, or returns EBUSY is the slot
1319 * is already used. Returns ENOTSUP if the underlying MAC does not
1320 * support multiple factory addresses. If the slot number is not -1 but
1321 * is invalid, returns EINVAL.
1322 */
1323 int
mac_addr_factory_reserve(mac_client_handle_t mch,int * slot)1324 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot)
1325 {
1326 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1327 mac_impl_t *mip = mcip->mci_mip;
1328 int i, ret = 0;
1329
1330 i_mac_perim_enter(mip);
1331 /*
1332 * Protect against concurrent readers that may need a self-consistent
1333 * view of the factory addresses
1334 */
1335 rw_enter(&mip->mi_rw_lock, RW_WRITER);
1336
1337 if (mip->mi_factory_addr_num == 0) {
1338 ret = ENOTSUP;
1339 goto bail;
1340 }
1341
1342 if (*slot != -1) {
1343 /* check the specified slot */
1344 if (*slot < 1 || *slot > mip->mi_factory_addr_num) {
1345 ret = EINVAL;
1346 goto bail;
1347 }
1348 if (mip->mi_factory_addr[*slot-1].mfa_in_use) {
1349 ret = EBUSY;
1350 goto bail;
1351 }
1352 } else {
1353 /* pick the next available slot */
1354 for (i = 0; i < mip->mi_factory_addr_num; i++) {
1355 if (!mip->mi_factory_addr[i].mfa_in_use)
1356 break;
1357 }
1358
1359 if (i == mip->mi_factory_addr_num) {
1360 ret = ENOSPC;
1361 goto bail;
1362 }
1363 *slot = i+1;
1364 }
1365
1366 mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE;
1367 mip->mi_factory_addr[*slot-1].mfa_client = mcip;
1368
1369 bail:
1370 rw_exit(&mip->mi_rw_lock);
1371 i_mac_perim_exit(mip);
1372 return (ret);
1373 }
1374
1375 /*
1376 * Release the specified factory MAC address slot.
1377 */
1378 void
mac_addr_factory_release(mac_client_handle_t mch,uint_t slot)1379 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot)
1380 {
1381 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1382 mac_impl_t *mip = mcip->mci_mip;
1383
1384 i_mac_perim_enter(mip);
1385 /*
1386 * Protect against concurrent readers that may need a self-consistent
1387 * view of the factory addresses
1388 */
1389 rw_enter(&mip->mi_rw_lock, RW_WRITER);
1390
1391 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1392 ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use);
1393
1394 mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE;
1395
1396 rw_exit(&mip->mi_rw_lock);
1397 i_mac_perim_exit(mip);
1398 }
1399
1400 /*
1401 * Stores in mac_addr the value of the specified MAC address. Returns
1402 * 0 on success, or EINVAL if the slot number is not valid for the MAC.
1403 * The caller must provide a string of at least MAXNAMELEN bytes.
1404 */
1405 void
mac_addr_factory_value(mac_handle_t mh,int slot,uchar_t * mac_addr,uint_t * addr_len,char * client_name,boolean_t * in_use_arg)1406 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr,
1407 uint_t *addr_len, char *client_name, boolean_t *in_use_arg)
1408 {
1409 mac_impl_t *mip = (mac_impl_t *)mh;
1410 boolean_t in_use;
1411
1412 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1413
1414 /*
1415 * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter
1416 * and mi_rw_lock
1417 */
1418 rw_enter(&mip->mi_rw_lock, RW_READER);
1419 bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN);
1420 *addr_len = mip->mi_type->mt_addr_length;
1421 in_use = mip->mi_factory_addr[slot-1].mfa_in_use;
1422 if (in_use && client_name != NULL) {
1423 bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name,
1424 client_name, MAXNAMELEN);
1425 }
1426 if (in_use_arg != NULL)
1427 *in_use_arg = in_use;
1428 rw_exit(&mip->mi_rw_lock);
1429 }
1430
1431 /*
1432 * Returns the number of factory MAC addresses (in addition to the
1433 * primary MAC address), 0 if the underlying MAC doesn't support
1434 * that feature.
1435 */
1436 uint_t
mac_addr_factory_num(mac_handle_t mh)1437 mac_addr_factory_num(mac_handle_t mh)
1438 {
1439 mac_impl_t *mip = (mac_impl_t *)mh;
1440
1441 return (mip->mi_factory_addr_num);
1442 }
1443
1444
1445 void
mac_rx_group_unmark(mac_group_t * grp,uint_t flag)1446 mac_rx_group_unmark(mac_group_t *grp, uint_t flag)
1447 {
1448 mac_ring_t *ring;
1449
1450 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next)
1451 ring->mr_flag &= ~flag;
1452 }
1453
1454 /*
1455 * The following mac_hwrings_xxx() functions are private mac client functions
1456 * used by the aggr driver to access and control the underlying HW Rx group
1457 * and rings. In this case, the aggr driver has exclusive control of the
1458 * underlying HW Rx group/rings, it calls the following functions to
1459 * start/stop the HW Rx rings, disable/enable polling, add/remove mac'
1460 * addresses, or set up the Rx callback.
1461 */
1462 /* ARGSUSED */
1463 static void
mac_hwrings_rx_process(void * arg,mac_resource_handle_t srs,mblk_t * mp_chain,boolean_t loopback)1464 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs,
1465 mblk_t *mp_chain, boolean_t loopback)
1466 {
1467 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs;
1468 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx;
1469 mac_direct_rx_t proc;
1470 void *arg1;
1471 mac_resource_handle_t arg2;
1472
1473 proc = srs_rx->sr_func;
1474 arg1 = srs_rx->sr_arg1;
1475 arg2 = mac_srs->srs_mrh;
1476
1477 proc(arg1, arg2, mp_chain, NULL);
1478 }
1479
1480 /*
1481 * This function is called to get the list of HW rings that are reserved by
1482 * an exclusive mac client.
1483 *
1484 * Return value: the number of HW rings.
1485 */
1486 int
mac_hwrings_get(mac_client_handle_t mch,mac_group_handle_t * hwgh,mac_ring_handle_t * hwrh,mac_ring_type_t rtype)1487 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh,
1488 mac_ring_handle_t *hwrh, mac_ring_type_t rtype)
1489 {
1490 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1491 flow_entry_t *flent = mcip->mci_flent;
1492 mac_group_t *grp;
1493 mac_ring_t *ring;
1494 int cnt = 0;
1495
1496 if (rtype == MAC_RING_TYPE_RX) {
1497 grp = flent->fe_rx_ring_group;
1498 } else if (rtype == MAC_RING_TYPE_TX) {
1499 grp = flent->fe_tx_ring_group;
1500 } else {
1501 ASSERT(B_FALSE);
1502 return (-1);
1503 }
1504 /*
1505 * The mac client did not reserve any RX group, return directly.
1506 * This is probably because the underlying MAC does not support
1507 * any groups.
1508 */
1509 if (hwgh != NULL)
1510 *hwgh = NULL;
1511 if (grp == NULL)
1512 return (0);
1513 /*
1514 * This group must be reserved by this mac client.
1515 */
1516 ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) &&
1517 (mcip == MAC_GROUP_ONLY_CLIENT(grp)));
1518
1519 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) {
1520 ASSERT(cnt < MAX_RINGS_PER_GROUP);
1521 hwrh[cnt] = (mac_ring_handle_t)ring;
1522 }
1523 if (hwgh != NULL)
1524 *hwgh = (mac_group_handle_t)grp;
1525
1526 return (cnt);
1527 }
1528
1529 /*
1530 * This function is called to get info about Tx/Rx rings.
1531 *
1532 * Return value: returns uint_t which will have various bits set
1533 * that indicates different properties of the ring.
1534 */
1535 uint_t
mac_hwring_getinfo(mac_ring_handle_t rh)1536 mac_hwring_getinfo(mac_ring_handle_t rh)
1537 {
1538 mac_ring_t *ring = (mac_ring_t *)rh;
1539 mac_ring_info_t *info = &ring->mr_info;
1540
1541 return (info->mri_flags);
1542 }
1543
1544 /*
1545 * Export ddi interrupt handles from the HW ring to the pseudo ring and
1546 * setup the RX callback of the mac client which exclusively controls
1547 * HW ring.
1548 */
1549 void
mac_hwring_setup(mac_ring_handle_t hwrh,mac_resource_handle_t prh,mac_ring_handle_t pseudo_rh)1550 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh,
1551 mac_ring_handle_t pseudo_rh)
1552 {
1553 mac_ring_t *hw_ring = (mac_ring_t *)hwrh;
1554 mac_ring_t *pseudo_ring;
1555 mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs;
1556
1557 if (pseudo_rh != NULL) {
1558 pseudo_ring = (mac_ring_t *)pseudo_rh;
1559 /* Export the ddi handles to pseudo ring */
1560 pseudo_ring->mr_info.mri_intr.mi_ddi_handle =
1561 hw_ring->mr_info.mri_intr.mi_ddi_handle;
1562 pseudo_ring->mr_info.mri_intr.mi_ddi_shared =
1563 hw_ring->mr_info.mri_intr.mi_ddi_shared;
1564 /*
1565 * Save a pointer to pseudo ring in the hw ring. If
1566 * interrupt handle changes, the hw ring will be
1567 * notified of the change (see mac_ring_intr_set())
1568 * and the appropriate change has to be made to
1569 * the pseudo ring that has exported the ddi handle.
1570 */
1571 hw_ring->mr_prh = pseudo_rh;
1572 }
1573
1574 if (hw_ring->mr_type == MAC_RING_TYPE_RX) {
1575 ASSERT(!(mac_srs->srs_type & SRST_TX));
1576 mac_srs->srs_mrh = prh;
1577 mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process;
1578 }
1579 }
1580
1581 void
mac_hwring_teardown(mac_ring_handle_t hwrh)1582 mac_hwring_teardown(mac_ring_handle_t hwrh)
1583 {
1584 mac_ring_t *hw_ring = (mac_ring_t *)hwrh;
1585 mac_soft_ring_set_t *mac_srs;
1586
1587 if (hw_ring == NULL)
1588 return;
1589 hw_ring->mr_prh = NULL;
1590 if (hw_ring->mr_type == MAC_RING_TYPE_RX) {
1591 mac_srs = hw_ring->mr_srs;
1592 ASSERT(!(mac_srs->srs_type & SRST_TX));
1593 mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process;
1594 mac_srs->srs_mrh = NULL;
1595 }
1596 }
1597
1598 int
mac_hwring_disable_intr(mac_ring_handle_t rh)1599 mac_hwring_disable_intr(mac_ring_handle_t rh)
1600 {
1601 mac_ring_t *rr_ring = (mac_ring_t *)rh;
1602 mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1603
1604 return (intr->mi_disable(intr->mi_handle));
1605 }
1606
1607 int
mac_hwring_enable_intr(mac_ring_handle_t rh)1608 mac_hwring_enable_intr(mac_ring_handle_t rh)
1609 {
1610 mac_ring_t *rr_ring = (mac_ring_t *)rh;
1611 mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1612
1613 return (intr->mi_enable(intr->mi_handle));
1614 }
1615
1616 int
mac_hwring_start(mac_ring_handle_t rh)1617 mac_hwring_start(mac_ring_handle_t rh)
1618 {
1619 mac_ring_t *rr_ring = (mac_ring_t *)rh;
1620
1621 MAC_RING_UNMARK(rr_ring, MR_QUIESCE);
1622 return (0);
1623 }
1624
1625 void
mac_hwring_stop(mac_ring_handle_t rh)1626 mac_hwring_stop(mac_ring_handle_t rh)
1627 {
1628 mac_ring_t *rr_ring = (mac_ring_t *)rh;
1629
1630 mac_rx_ring_quiesce(rr_ring, MR_QUIESCE);
1631 }
1632
1633 mblk_t *
mac_hwring_poll(mac_ring_handle_t rh,int bytes_to_pickup)1634 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup)
1635 {
1636 mac_ring_t *rr_ring = (mac_ring_t *)rh;
1637 mac_ring_info_t *info = &rr_ring->mr_info;
1638
1639 return (info->mri_poll(info->mri_driver, bytes_to_pickup));
1640 }
1641
1642 /*
1643 * Send packets through a selected tx ring.
1644 */
1645 mblk_t *
mac_hwring_tx(mac_ring_handle_t rh,mblk_t * mp)1646 mac_hwring_tx(mac_ring_handle_t rh, mblk_t *mp)
1647 {
1648 mac_ring_t *ring = (mac_ring_t *)rh;
1649 mac_ring_info_t *info = &ring->mr_info;
1650
1651 ASSERT(ring->mr_type == MAC_RING_TYPE_TX &&
1652 ring->mr_state >= MR_INUSE);
1653 return (info->mri_tx(info->mri_driver, mp));
1654 }
1655
1656 /*
1657 * Query stats for a particular rx/tx ring
1658 */
1659 int
mac_hwring_getstat(mac_ring_handle_t rh,uint_t stat,uint64_t * val)1660 mac_hwring_getstat(mac_ring_handle_t rh, uint_t stat, uint64_t *val)
1661 {
1662 mac_ring_t *ring = (mac_ring_t *)rh;
1663 mac_ring_info_t *info = &ring->mr_info;
1664
1665 return (info->mri_stat(info->mri_driver, stat, val));
1666 }
1667
1668 /*
1669 * Private function that is only used by aggr to send packets through
1670 * a port/Tx ring. Since aggr exposes a pseudo Tx ring even for ports
1671 * that does not expose Tx rings, aggr_ring_tx() entry point needs
1672 * access to mac_impl_t to send packets through m_tx() entry point.
1673 * It accomplishes this by calling mac_hwring_send_priv() function.
1674 */
1675 mblk_t *
mac_hwring_send_priv(mac_client_handle_t mch,mac_ring_handle_t rh,mblk_t * mp)1676 mac_hwring_send_priv(mac_client_handle_t mch, mac_ring_handle_t rh, mblk_t *mp)
1677 {
1678 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1679 mac_impl_t *mip = mcip->mci_mip;
1680
1681 MAC_TX(mip, rh, mp, mcip);
1682 return (mp);
1683 }
1684
1685 /*
1686 * Private function that is only used by aggr to update the default transmission
1687 * ring. Because aggr exposes a pseudo Tx ring even for ports that may
1688 * temporarily be down, it may need to update the default ring that is used by
1689 * MAC such that it refers to a link that can actively be used to send traffic.
1690 * Note that this is different from the case where the port has been removed
1691 * from the group. In those cases, all of the rings will be torn down because
1692 * the ring will no longer exist. It's important to give aggr a case where the
1693 * rings can still exist such that it may be able to continue to send LACP PDUs
1694 * to potentially restore the link.
1695 *
1696 * Finally, we explicitly don't do anything if the ring hasn't been enabled yet.
1697 * This is to help out aggr which doesn't really know the internal state that
1698 * MAC does about the rings and can't know that it's not quite ready for use
1699 * yet.
1700 */
1701 void
mac_hwring_set_default(mac_handle_t mh,mac_ring_handle_t rh)1702 mac_hwring_set_default(mac_handle_t mh, mac_ring_handle_t rh)
1703 {
1704 mac_impl_t *mip = (mac_impl_t *)mh;
1705 mac_ring_t *ring = (mac_ring_t *)rh;
1706
1707 ASSERT(MAC_PERIM_HELD(mh));
1708 VERIFY(mip->mi_state_flags & MIS_IS_AGGR);
1709
1710 if (ring->mr_state != MR_INUSE)
1711 return;
1712
1713 mip->mi_default_tx_ring = rh;
1714 }
1715
1716 int
mac_hwgroup_addmac(mac_group_handle_t gh,const uint8_t * addr)1717 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr)
1718 {
1719 mac_group_t *group = (mac_group_t *)gh;
1720
1721 return (mac_group_addmac(group, addr));
1722 }
1723
1724 int
mac_hwgroup_remmac(mac_group_handle_t gh,const uint8_t * addr)1725 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr)
1726 {
1727 mac_group_t *group = (mac_group_t *)gh;
1728
1729 return (mac_group_remmac(group, addr));
1730 }
1731
1732 /*
1733 * Set the RX group to be shared/reserved. Note that the group must be
1734 * started/stopped outside of this function.
1735 */
1736 void
mac_set_group_state(mac_group_t * grp,mac_group_state_t state)1737 mac_set_group_state(mac_group_t *grp, mac_group_state_t state)
1738 {
1739 /*
1740 * If there is no change in the group state, just return.
1741 */
1742 if (grp->mrg_state == state)
1743 return;
1744
1745 switch (state) {
1746 case MAC_GROUP_STATE_RESERVED:
1747 /*
1748 * Successfully reserved the group.
1749 *
1750 * Given that there is an exclusive client controlling this
1751 * group, we enable the group level polling when available,
1752 * so that SRSs get to turn on/off individual rings they's
1753 * assigned to.
1754 */
1755 ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
1756
1757 if (grp->mrg_type == MAC_RING_TYPE_RX &&
1758 GROUP_INTR_DISABLE_FUNC(grp) != NULL) {
1759 GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
1760 }
1761 break;
1762
1763 case MAC_GROUP_STATE_SHARED:
1764 /*
1765 * Set all rings of this group to software classified.
1766 * If the group has an overriding interrupt, then re-enable it.
1767 */
1768 ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
1769
1770 if (grp->mrg_type == MAC_RING_TYPE_RX &&
1771 GROUP_INTR_ENABLE_FUNC(grp) != NULL) {
1772 GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
1773 }
1774 /* The ring is not available for reservations any more */
1775 break;
1776
1777 case MAC_GROUP_STATE_REGISTERED:
1778 /* Also callable from mac_register, perim is not held */
1779 break;
1780
1781 default:
1782 ASSERT(B_FALSE);
1783 break;
1784 }
1785
1786 grp->mrg_state = state;
1787 }
1788
1789 /*
1790 * Quiesce future hardware classified packets for the specified Rx ring
1791 */
1792 static void
mac_rx_ring_quiesce(mac_ring_t * rx_ring,uint_t ring_flag)1793 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag)
1794 {
1795 ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER);
1796 ASSERT(ring_flag == MR_CONDEMNED || ring_flag == MR_QUIESCE);
1797
1798 mutex_enter(&rx_ring->mr_lock);
1799 rx_ring->mr_flag |= ring_flag;
1800 while (rx_ring->mr_refcnt != 0)
1801 cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock);
1802 mutex_exit(&rx_ring->mr_lock);
1803 }
1804
1805 /*
1806 * Please see mac_tx for details about the per cpu locking scheme
1807 */
1808 static void
mac_tx_lock_all(mac_client_impl_t * mcip)1809 mac_tx_lock_all(mac_client_impl_t *mcip)
1810 {
1811 int i;
1812
1813 for (i = 0; i <= mac_tx_percpu_cnt; i++)
1814 mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1815 }
1816
1817 static void
mac_tx_unlock_all(mac_client_impl_t * mcip)1818 mac_tx_unlock_all(mac_client_impl_t *mcip)
1819 {
1820 int i;
1821
1822 for (i = mac_tx_percpu_cnt; i >= 0; i--)
1823 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1824 }
1825
1826 static void
mac_tx_unlock_allbutzero(mac_client_impl_t * mcip)1827 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip)
1828 {
1829 int i;
1830
1831 for (i = mac_tx_percpu_cnt; i > 0; i--)
1832 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1833 }
1834
1835 static int
mac_tx_sum_refcnt(mac_client_impl_t * mcip)1836 mac_tx_sum_refcnt(mac_client_impl_t *mcip)
1837 {
1838 int i;
1839 int refcnt = 0;
1840
1841 for (i = 0; i <= mac_tx_percpu_cnt; i++)
1842 refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt;
1843
1844 return (refcnt);
1845 }
1846
1847 /*
1848 * Stop future Tx packets coming down from the client in preparation for
1849 * quiescing the Tx side. This is needed for dynamic reclaim and reassignment
1850 * of rings between clients
1851 */
1852 void
mac_tx_client_block(mac_client_impl_t * mcip)1853 mac_tx_client_block(mac_client_impl_t *mcip)
1854 {
1855 mac_tx_lock_all(mcip);
1856 mcip->mci_tx_flag |= MCI_TX_QUIESCE;
1857 while (mac_tx_sum_refcnt(mcip) != 0) {
1858 mac_tx_unlock_allbutzero(mcip);
1859 cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock);
1860 mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock);
1861 mac_tx_lock_all(mcip);
1862 }
1863 mac_tx_unlock_all(mcip);
1864 }
1865
1866 void
mac_tx_client_unblock(mac_client_impl_t * mcip)1867 mac_tx_client_unblock(mac_client_impl_t *mcip)
1868 {
1869 mac_tx_lock_all(mcip);
1870 mcip->mci_tx_flag &= ~MCI_TX_QUIESCE;
1871 mac_tx_unlock_all(mcip);
1872 /*
1873 * We may fail to disable flow control for the last MAC_NOTE_TX
1874 * notification because the MAC client is quiesced. Send the
1875 * notification again.
1876 */
1877 i_mac_notify(mcip->mci_mip, MAC_NOTE_TX);
1878 }
1879
1880 /*
1881 * Wait for an SRS to quiesce. The SRS worker will signal us when the
1882 * quiesce is done.
1883 */
1884 static void
mac_srs_quiesce_wait(mac_soft_ring_set_t * srs,uint_t srs_flag)1885 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag)
1886 {
1887 mutex_enter(&srs->srs_lock);
1888 while (!(srs->srs_state & srs_flag))
1889 cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock);
1890 mutex_exit(&srs->srs_lock);
1891 }
1892
1893 /*
1894 * Quiescing an Rx SRS is achieved by the following sequence. The protocol
1895 * works bottom up by cutting off packet flow from the bottommost point in the
1896 * mac, then the SRS, and then the soft rings. There are 2 use cases of this
1897 * mechanism. One is a temporary quiesce of the SRS, such as say while changing
1898 * the Rx callbacks. Another use case is Rx SRS teardown. In the former case
1899 * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used
1900 * for the SRS and MR flags. In the former case the threads pause waiting for
1901 * a restart, while in the latter case the threads exit. The Tx SRS teardown
1902 * is also mostly similar to the above.
1903 *
1904 * 1. Stop future hardware classified packets at the lowest level in the mac.
1905 * Remove any hardware classification rule (CONDEMNED case) and mark the
1906 * rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt
1907 * from increasing. Upcalls from the driver that come through hardware
1908 * classification will be dropped in mac_rx from now on. Then we wait for
1909 * the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are
1910 * sure there aren't any upcall threads from the driver through hardware
1911 * classification. In the case of SRS teardown we also remove the
1912 * classification rule in the driver.
1913 *
1914 * 2. Stop future software classified packets by marking the flow entry with
1915 * FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from
1916 * increasing. We also remove the flow entry from the table in the latter
1917 * case. Then wait for the fe_refcnt to reach an appropriate quiescent value
1918 * that indicates there aren't any active threads using that flow entry.
1919 *
1920 * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread,
1921 * SRS worker thread, and the soft ring threads are quiesced in sequence
1922 * with the SRS worker thread serving as a master controller. This
1923 * mechansim is explained in mac_srs_worker_quiesce().
1924 *
1925 * The restart mechanism to reactivate the SRS and softrings is explained
1926 * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the
1927 * restart sequence.
1928 */
1929 void
mac_rx_srs_quiesce(mac_soft_ring_set_t * srs,uint_t srs_quiesce_flag)1930 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
1931 {
1932 flow_entry_t *flent = srs->srs_flent;
1933 uint_t mr_flag, srs_done_flag;
1934
1935 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
1936 ASSERT(!(srs->srs_type & SRST_TX));
1937
1938 if (srs_quiesce_flag == SRS_CONDEMNED) {
1939 mr_flag = MR_CONDEMNED;
1940 srs_done_flag = SRS_CONDEMNED_DONE;
1941 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
1942 mac_srs_client_poll_disable(srs->srs_mcip, srs);
1943 } else {
1944 ASSERT(srs_quiesce_flag == SRS_QUIESCE);
1945 mr_flag = MR_QUIESCE;
1946 srs_done_flag = SRS_QUIESCE_DONE;
1947 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
1948 mac_srs_client_poll_quiesce(srs->srs_mcip, srs);
1949 }
1950
1951 if (srs->srs_ring != NULL) {
1952 mac_rx_ring_quiesce(srs->srs_ring, mr_flag);
1953 } else {
1954 /*
1955 * SRS is driven by software classification. In case
1956 * of CONDEMNED, the top level teardown functions will
1957 * deal with flow removal.
1958 */
1959 if (srs_quiesce_flag != SRS_CONDEMNED) {
1960 FLOW_MARK(flent, FE_QUIESCE);
1961 mac_flow_wait(flent, FLOW_DRIVER_UPCALL);
1962 }
1963 }
1964
1965 /*
1966 * Signal the SRS to quiesce itself, and then cv_wait for the
1967 * SRS quiesce to complete. The SRS worker thread will wake us
1968 * up when the quiesce is complete
1969 */
1970 mac_srs_signal(srs, srs_quiesce_flag);
1971 mac_srs_quiesce_wait(srs, srs_done_flag);
1972 }
1973
1974 /*
1975 * Remove an SRS.
1976 */
1977 void
mac_rx_srs_remove(mac_soft_ring_set_t * srs)1978 mac_rx_srs_remove(mac_soft_ring_set_t *srs)
1979 {
1980 flow_entry_t *flent = srs->srs_flent;
1981 int i;
1982
1983 mac_rx_srs_quiesce(srs, SRS_CONDEMNED);
1984 /*
1985 * Locate and remove our entry in the fe_rx_srs[] array, and
1986 * adjust the fe_rx_srs array entries and array count by
1987 * moving the last entry into the vacated spot.
1988 */
1989 mutex_enter(&flent->fe_lock);
1990 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
1991 if (flent->fe_rx_srs[i] == srs)
1992 break;
1993 }
1994
1995 ASSERT(i != 0 && i < flent->fe_rx_srs_cnt);
1996 if (i != flent->fe_rx_srs_cnt - 1) {
1997 flent->fe_rx_srs[i] =
1998 flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1];
1999 i = flent->fe_rx_srs_cnt - 1;
2000 }
2001
2002 flent->fe_rx_srs[i] = NULL;
2003 flent->fe_rx_srs_cnt--;
2004 mutex_exit(&flent->fe_lock);
2005
2006 mac_srs_free(srs);
2007 }
2008
2009 static void
mac_srs_clear_flag(mac_soft_ring_set_t * srs,uint_t flag)2010 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag)
2011 {
2012 mutex_enter(&srs->srs_lock);
2013 srs->srs_state &= ~flag;
2014 mutex_exit(&srs->srs_lock);
2015 }
2016
2017 void
mac_rx_srs_restart(mac_soft_ring_set_t * srs)2018 mac_rx_srs_restart(mac_soft_ring_set_t *srs)
2019 {
2020 flow_entry_t *flent = srs->srs_flent;
2021 mac_ring_t *mr;
2022
2023 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
2024 ASSERT((srs->srs_type & SRST_TX) == 0);
2025
2026 /*
2027 * This handles a change in the number of SRSs between the quiesce and
2028 * and restart operation of a flow.
2029 */
2030 if (!SRS_QUIESCED(srs))
2031 return;
2032
2033 /*
2034 * Signal the SRS to restart itself. Wait for the restart to complete
2035 * Note that we only restart the SRS if it is not marked as
2036 * permanently quiesced.
2037 */
2038 if (!SRS_QUIESCED_PERMANENT(srs)) {
2039 mac_srs_signal(srs, SRS_RESTART);
2040 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2041 mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2042
2043 mac_srs_client_poll_restart(srs->srs_mcip, srs);
2044 }
2045
2046 /* Finally clear the flags to let the packets in */
2047 mr = srs->srs_ring;
2048 if (mr != NULL) {
2049 MAC_RING_UNMARK(mr, MR_QUIESCE);
2050 /* In case the ring was stopped, safely restart it */
2051 if (mr->mr_state != MR_INUSE)
2052 (void) mac_start_ring(mr);
2053 } else {
2054 FLOW_UNMARK(flent, FE_QUIESCE);
2055 }
2056 }
2057
2058 /*
2059 * Temporary quiesce of a flow and associated Rx SRS.
2060 * Please see block comment above mac_rx_classify_flow_rem.
2061 */
2062 /* ARGSUSED */
2063 int
mac_rx_classify_flow_quiesce(flow_entry_t * flent,void * arg)2064 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg)
2065 {
2066 int i;
2067
2068 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2069 mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i],
2070 SRS_QUIESCE);
2071 }
2072 return (0);
2073 }
2074
2075 /*
2076 * Restart a flow and associated Rx SRS that has been quiesced temporarily
2077 * Please see block comment above mac_rx_classify_flow_rem
2078 */
2079 /* ARGSUSED */
2080 int
mac_rx_classify_flow_restart(flow_entry_t * flent,void * arg)2081 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg)
2082 {
2083 int i;
2084
2085 for (i = 0; i < flent->fe_rx_srs_cnt; i++)
2086 mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]);
2087
2088 return (0);
2089 }
2090
2091 void
mac_srs_perm_quiesce(mac_client_handle_t mch,boolean_t on)2092 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on)
2093 {
2094 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2095 flow_entry_t *flent = mcip->mci_flent;
2096 mac_impl_t *mip = mcip->mci_mip;
2097 mac_soft_ring_set_t *mac_srs;
2098 int i;
2099
2100 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2101
2102 if (flent == NULL)
2103 return;
2104
2105 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2106 mac_srs = flent->fe_rx_srs[i];
2107 mutex_enter(&mac_srs->srs_lock);
2108 if (on)
2109 mac_srs->srs_state |= SRS_QUIESCE_PERM;
2110 else
2111 mac_srs->srs_state &= ~SRS_QUIESCE_PERM;
2112 mutex_exit(&mac_srs->srs_lock);
2113 }
2114 }
2115
2116 void
mac_rx_client_quiesce(mac_client_handle_t mch)2117 mac_rx_client_quiesce(mac_client_handle_t mch)
2118 {
2119 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2120 mac_impl_t *mip = mcip->mci_mip;
2121
2122 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2123
2124 if (MCIP_DATAPATH_SETUP(mcip)) {
2125 (void) mac_rx_classify_flow_quiesce(mcip->mci_flent,
2126 NULL);
2127 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2128 mac_rx_classify_flow_quiesce, NULL);
2129 }
2130 }
2131
2132 void
mac_rx_client_restart(mac_client_handle_t mch)2133 mac_rx_client_restart(mac_client_handle_t mch)
2134 {
2135 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2136 mac_impl_t *mip = mcip->mci_mip;
2137
2138 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2139
2140 if (MCIP_DATAPATH_SETUP(mcip)) {
2141 (void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL);
2142 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2143 mac_rx_classify_flow_restart, NULL);
2144 }
2145 }
2146
2147 /*
2148 * This function only quiesces the Tx SRS and softring worker threads. Callers
2149 * need to make sure that there aren't any mac client threads doing current or
2150 * future transmits in the mac before calling this function.
2151 */
2152 void
mac_tx_srs_quiesce(mac_soft_ring_set_t * srs,uint_t srs_quiesce_flag)2153 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
2154 {
2155 mac_client_impl_t *mcip = srs->srs_mcip;
2156
2157 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2158
2159 ASSERT(srs->srs_type & SRST_TX);
2160 ASSERT(srs_quiesce_flag == SRS_CONDEMNED ||
2161 srs_quiesce_flag == SRS_QUIESCE);
2162
2163 /*
2164 * Signal the SRS to quiesce itself, and then cv_wait for the
2165 * SRS quiesce to complete. The SRS worker thread will wake us
2166 * up when the quiesce is complete
2167 */
2168 mac_srs_signal(srs, srs_quiesce_flag);
2169 mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ?
2170 SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE);
2171 }
2172
2173 void
mac_tx_srs_restart(mac_soft_ring_set_t * srs)2174 mac_tx_srs_restart(mac_soft_ring_set_t *srs)
2175 {
2176 /*
2177 * Resizing the fanout could result in creation of new SRSs.
2178 * They may not necessarily be in the quiesced state in which
2179 * case it need be restarted
2180 */
2181 if (!SRS_QUIESCED(srs))
2182 return;
2183
2184 mac_srs_signal(srs, SRS_RESTART);
2185 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2186 mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2187 }
2188
2189 /*
2190 * Temporary quiesce of a flow and associated Rx SRS.
2191 * Please see block comment above mac_rx_srs_quiesce
2192 */
2193 /* ARGSUSED */
2194 int
mac_tx_flow_quiesce(flow_entry_t * flent,void * arg)2195 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg)
2196 {
2197 /*
2198 * The fe_tx_srs is null for a subflow on an interface that is
2199 * not plumbed
2200 */
2201 if (flent->fe_tx_srs != NULL)
2202 mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE);
2203 return (0);
2204 }
2205
2206 /* ARGSUSED */
2207 int
mac_tx_flow_restart(flow_entry_t * flent,void * arg)2208 mac_tx_flow_restart(flow_entry_t *flent, void *arg)
2209 {
2210 /*
2211 * The fe_tx_srs is null for a subflow on an interface that is
2212 * not plumbed
2213 */
2214 if (flent->fe_tx_srs != NULL)
2215 mac_tx_srs_restart(flent->fe_tx_srs);
2216 return (0);
2217 }
2218
2219 static void
i_mac_tx_client_quiesce(mac_client_handle_t mch,uint_t srs_quiesce_flag)2220 i_mac_tx_client_quiesce(mac_client_handle_t mch, uint_t srs_quiesce_flag)
2221 {
2222 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2223
2224 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2225
2226 mac_tx_client_block(mcip);
2227 if (MCIP_TX_SRS(mcip) != NULL) {
2228 mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag);
2229 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2230 mac_tx_flow_quiesce, NULL);
2231 }
2232 }
2233
2234 void
mac_tx_client_quiesce(mac_client_handle_t mch)2235 mac_tx_client_quiesce(mac_client_handle_t mch)
2236 {
2237 i_mac_tx_client_quiesce(mch, SRS_QUIESCE);
2238 }
2239
2240 void
mac_tx_client_condemn(mac_client_handle_t mch)2241 mac_tx_client_condemn(mac_client_handle_t mch)
2242 {
2243 i_mac_tx_client_quiesce(mch, SRS_CONDEMNED);
2244 }
2245
2246 void
mac_tx_client_restart(mac_client_handle_t mch)2247 mac_tx_client_restart(mac_client_handle_t mch)
2248 {
2249 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2250
2251 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2252
2253 mac_tx_client_unblock(mcip);
2254 if (MCIP_TX_SRS(mcip) != NULL) {
2255 mac_tx_srs_restart(MCIP_TX_SRS(mcip));
2256 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2257 mac_tx_flow_restart, NULL);
2258 }
2259 }
2260
2261 void
mac_tx_client_flush(mac_client_impl_t * mcip)2262 mac_tx_client_flush(mac_client_impl_t *mcip)
2263 {
2264 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2265
2266 mac_tx_client_quiesce((mac_client_handle_t)mcip);
2267 mac_tx_client_restart((mac_client_handle_t)mcip);
2268 }
2269
2270 void
mac_client_quiesce(mac_client_impl_t * mcip)2271 mac_client_quiesce(mac_client_impl_t *mcip)
2272 {
2273 mac_rx_client_quiesce((mac_client_handle_t)mcip);
2274 mac_tx_client_quiesce((mac_client_handle_t)mcip);
2275 }
2276
2277 void
mac_client_restart(mac_client_impl_t * mcip)2278 mac_client_restart(mac_client_impl_t *mcip)
2279 {
2280 mac_rx_client_restart((mac_client_handle_t)mcip);
2281 mac_tx_client_restart((mac_client_handle_t)mcip);
2282 }
2283
2284 /*
2285 * Allocate a minor number.
2286 */
2287 minor_t
mac_minor_hold(boolean_t sleep)2288 mac_minor_hold(boolean_t sleep)
2289 {
2290 id_t id;
2291
2292 /*
2293 * Grab a value from the arena.
2294 */
2295 atomic_inc_32(&minor_count);
2296
2297 if (sleep)
2298 return ((uint_t)id_alloc(minor_ids));
2299
2300 if ((id = id_alloc_nosleep(minor_ids)) == -1) {
2301 atomic_dec_32(&minor_count);
2302 return (0);
2303 }
2304
2305 return ((uint_t)id);
2306 }
2307
2308 /*
2309 * Release a previously allocated minor number.
2310 */
2311 void
mac_minor_rele(minor_t minor)2312 mac_minor_rele(minor_t minor)
2313 {
2314 /*
2315 * Return the value to the arena.
2316 */
2317 id_free(minor_ids, minor);
2318 atomic_dec_32(&minor_count);
2319 }
2320
2321 uint32_t
mac_no_notification(mac_handle_t mh)2322 mac_no_notification(mac_handle_t mh)
2323 {
2324 mac_impl_t *mip = (mac_impl_t *)mh;
2325
2326 return (((mip->mi_state_flags & MIS_LEGACY) != 0) ?
2327 mip->mi_capab_legacy.ml_unsup_note : 0);
2328 }
2329
2330 /*
2331 * Prevent any new opens of this mac in preparation for unregister
2332 */
2333 int
i_mac_disable(mac_impl_t * mip)2334 i_mac_disable(mac_impl_t *mip)
2335 {
2336 mac_client_impl_t *mcip;
2337
2338 rw_enter(&i_mac_impl_lock, RW_WRITER);
2339 if (mip->mi_state_flags & MIS_DISABLED) {
2340 /* Already disabled, return success */
2341 rw_exit(&i_mac_impl_lock);
2342 return (0);
2343 }
2344 /*
2345 * See if there are any other references to this mac_t (e.g., VLAN's).
2346 * If so return failure. If all the other checks below pass, then
2347 * set mi_disabled atomically under the i_mac_impl_lock to prevent
2348 * any new VLAN's from being created or new mac client opens of this
2349 * mac end point.
2350 */
2351 if (mip->mi_ref > 0) {
2352 rw_exit(&i_mac_impl_lock);
2353 return (EBUSY);
2354 }
2355
2356 /*
2357 * mac clients must delete all multicast groups they join before
2358 * closing. bcast groups are reference counted, the last client
2359 * to delete the group will wait till the group is physically
2360 * deleted. Since all clients have closed this mac end point
2361 * mi_bcast_ngrps must be zero at this point
2362 */
2363 ASSERT(mip->mi_bcast_ngrps == 0);
2364
2365 /*
2366 * Don't let go of this if it has some flows.
2367 * All other code guarantees no flows are added to a disabled
2368 * mac, therefore it is sufficient to check for the flow table
2369 * only here.
2370 */
2371 mcip = mac_primary_client_handle(mip);
2372 if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) {
2373 rw_exit(&i_mac_impl_lock);
2374 return (ENOTEMPTY);
2375 }
2376
2377 mip->mi_state_flags |= MIS_DISABLED;
2378 rw_exit(&i_mac_impl_lock);
2379 return (0);
2380 }
2381
2382 int
mac_disable_nowait(mac_handle_t mh)2383 mac_disable_nowait(mac_handle_t mh)
2384 {
2385 mac_impl_t *mip = (mac_impl_t *)mh;
2386 int err;
2387
2388 if ((err = i_mac_perim_enter_nowait(mip)) != 0)
2389 return (err);
2390 err = i_mac_disable(mip);
2391 i_mac_perim_exit(mip);
2392 return (err);
2393 }
2394
2395 int
mac_disable(mac_handle_t mh)2396 mac_disable(mac_handle_t mh)
2397 {
2398 mac_impl_t *mip = (mac_impl_t *)mh;
2399 int err;
2400
2401 i_mac_perim_enter(mip);
2402 err = i_mac_disable(mip);
2403 i_mac_perim_exit(mip);
2404
2405 /*
2406 * Clean up notification thread and wait for it to exit.
2407 */
2408 if (err == 0)
2409 i_mac_notify_exit(mip);
2410
2411 return (err);
2412 }
2413
2414 /*
2415 * Called when the MAC instance has a non empty flow table, to de-multiplex
2416 * incoming packets to the right flow.
2417 * The MAC's rw lock is assumed held as a READER.
2418 */
2419 /* ARGSUSED */
2420 static mblk_t *
mac_rx_classify(mac_impl_t * mip,mac_resource_handle_t mrh,mblk_t * mp)2421 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp)
2422 {
2423 flow_entry_t *flent = NULL;
2424 uint_t flags = FLOW_INBOUND;
2425 int err;
2426
2427 /*
2428 * If the mac is a port of an aggregation, pass FLOW_IGNORE_VLAN
2429 * to mac_flow_lookup() so that the VLAN packets can be successfully
2430 * passed to the non-VLAN aggregation flows.
2431 *
2432 * Note that there is possibly a race between this and
2433 * mac_unicast_remove/add() and VLAN packets could be incorrectly
2434 * classified to non-VLAN flows of non-aggregation mac clients. These
2435 * VLAN packets will be then filtered out by the mac module.
2436 */
2437 if ((mip->mi_state_flags & MIS_EXCLUSIVE) != 0)
2438 flags |= FLOW_IGNORE_VLAN;
2439
2440 err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent);
2441 if (err != 0) {
2442 /* no registered receive function */
2443 return (mp);
2444 } else {
2445 mac_client_impl_t *mcip;
2446
2447 /*
2448 * This flent might just be an additional one on the MAC client,
2449 * i.e. for classification purposes (different fdesc), however
2450 * the resources, SRS et. al., are in the mci_flent, so if
2451 * this isn't the mci_flent, we need to get it.
2452 */
2453 if ((mcip = flent->fe_mcip) != NULL &&
2454 mcip->mci_flent != flent) {
2455 FLOW_REFRELE(flent);
2456 flent = mcip->mci_flent;
2457 FLOW_TRY_REFHOLD(flent, err);
2458 if (err != 0)
2459 return (mp);
2460 }
2461 (flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp,
2462 B_FALSE);
2463 FLOW_REFRELE(flent);
2464 }
2465 return (NULL);
2466 }
2467
2468 mblk_t *
mac_rx_flow(mac_handle_t mh,mac_resource_handle_t mrh,mblk_t * mp_chain)2469 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
2470 {
2471 mac_impl_t *mip = (mac_impl_t *)mh;
2472 mblk_t *bp, *bp1, **bpp, *list = NULL;
2473
2474 /*
2475 * We walk the chain and attempt to classify each packet.
2476 * The packets that couldn't be classified will be returned
2477 * back to the caller.
2478 */
2479 bp = mp_chain;
2480 bpp = &list;
2481 while (bp != NULL) {
2482 bp1 = bp;
2483 bp = bp->b_next;
2484 bp1->b_next = NULL;
2485
2486 if (mac_rx_classify(mip, mrh, bp1) != NULL) {
2487 *bpp = bp1;
2488 bpp = &bp1->b_next;
2489 }
2490 }
2491 return (list);
2492 }
2493
2494 static int
mac_tx_flow_srs_wakeup(flow_entry_t * flent,void * arg)2495 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg)
2496 {
2497 mac_ring_handle_t ring = arg;
2498
2499 if (flent->fe_tx_srs)
2500 mac_tx_srs_wakeup(flent->fe_tx_srs, ring);
2501 return (0);
2502 }
2503
2504 void
i_mac_tx_srs_notify(mac_impl_t * mip,mac_ring_handle_t ring)2505 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring)
2506 {
2507 mac_client_impl_t *cclient;
2508 mac_soft_ring_set_t *mac_srs;
2509
2510 /*
2511 * After grabbing the mi_rw_lock, the list of clients can't change.
2512 * If there are any clients mi_disabled must be B_FALSE and can't
2513 * get set since there are clients. If there aren't any clients we
2514 * don't do anything. In any case the mip has to be valid. The driver
2515 * must make sure that it goes single threaded (with respect to mac
2516 * calls) and wait for all pending mac calls to finish before calling
2517 * mac_unregister.
2518 */
2519 rw_enter(&i_mac_impl_lock, RW_READER);
2520 if (mip->mi_state_flags & MIS_DISABLED) {
2521 rw_exit(&i_mac_impl_lock);
2522 return;
2523 }
2524
2525 /*
2526 * Get MAC tx srs from walking mac_client_handle list.
2527 */
2528 rw_enter(&mip->mi_rw_lock, RW_READER);
2529 for (cclient = mip->mi_clients_list; cclient != NULL;
2530 cclient = cclient->mci_client_next) {
2531 if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) {
2532 mac_tx_srs_wakeup(mac_srs, ring);
2533 } else {
2534 /*
2535 * Aggr opens underlying ports in exclusive mode
2536 * and registers flow control callbacks using
2537 * mac_tx_client_notify(). When opened in
2538 * exclusive mode, Tx SRS won't be created
2539 * during mac_unicast_add().
2540 */
2541 if (cclient->mci_state_flags & MCIS_EXCLUSIVE) {
2542 mac_tx_invoke_callbacks(cclient,
2543 (mac_tx_cookie_t)ring);
2544 }
2545 }
2546 (void) mac_flow_walk(cclient->mci_subflow_tab,
2547 mac_tx_flow_srs_wakeup, ring);
2548 }
2549 rw_exit(&mip->mi_rw_lock);
2550 rw_exit(&i_mac_impl_lock);
2551 }
2552
2553 /* ARGSUSED */
2554 void
mac_multicast_refresh(mac_handle_t mh,mac_multicst_t refresh,void * arg,boolean_t add)2555 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg,
2556 boolean_t add)
2557 {
2558 mac_impl_t *mip = (mac_impl_t *)mh;
2559
2560 i_mac_perim_enter((mac_impl_t *)mh);
2561 /*
2562 * If no specific refresh function was given then default to the
2563 * driver's m_multicst entry point.
2564 */
2565 if (refresh == NULL) {
2566 refresh = mip->mi_multicst;
2567 arg = mip->mi_driver;
2568 }
2569
2570 mac_bcast_refresh(mip, refresh, arg, add);
2571 i_mac_perim_exit((mac_impl_t *)mh);
2572 }
2573
2574 void
mac_promisc_refresh(mac_handle_t mh,mac_setpromisc_t refresh,void * arg)2575 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg)
2576 {
2577 mac_impl_t *mip = (mac_impl_t *)mh;
2578
2579 /*
2580 * If no specific refresh function was given then default to the
2581 * driver's m_promisc entry point.
2582 */
2583 if (refresh == NULL) {
2584 refresh = mip->mi_setpromisc;
2585 arg = mip->mi_driver;
2586 }
2587 ASSERT(refresh != NULL);
2588
2589 /*
2590 * Call the refresh function with the current promiscuity.
2591 */
2592 refresh(arg, (mip->mi_devpromisc != 0));
2593 }
2594
2595 /*
2596 * The mac client requests that the mac not to change its margin size to
2597 * be less than the specified value. If "current" is B_TRUE, then the client
2598 * requests the mac not to change its margin size to be smaller than the
2599 * current size. Further, return the current margin size value in this case.
2600 *
2601 * We keep every requested size in an ordered list from largest to smallest.
2602 */
2603 int
mac_margin_add(mac_handle_t mh,uint32_t * marginp,boolean_t current)2604 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current)
2605 {
2606 mac_impl_t *mip = (mac_impl_t *)mh;
2607 mac_margin_req_t **pp, *p;
2608 int err = 0;
2609
2610 rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2611 if (current)
2612 *marginp = mip->mi_margin;
2613
2614 /*
2615 * If the current margin value cannot satisfy the margin requested,
2616 * return ENOTSUP directly.
2617 */
2618 if (*marginp > mip->mi_margin) {
2619 err = ENOTSUP;
2620 goto done;
2621 }
2622
2623 /*
2624 * Check whether the given margin is already in the list. If so,
2625 * bump the reference count.
2626 */
2627 for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) {
2628 if (p->mmr_margin == *marginp) {
2629 /*
2630 * The margin requested is already in the list,
2631 * so just bump the reference count.
2632 */
2633 p->mmr_ref++;
2634 goto done;
2635 }
2636 if (p->mmr_margin < *marginp)
2637 break;
2638 }
2639
2640
2641 p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP);
2642 p->mmr_margin = *marginp;
2643 p->mmr_ref++;
2644 p->mmr_nextp = *pp;
2645 *pp = p;
2646
2647 done:
2648 rw_exit(&(mip->mi_rw_lock));
2649 return (err);
2650 }
2651
2652 /*
2653 * The mac client requests to cancel its previous mac_margin_add() request.
2654 * We remove the requested margin size from the list.
2655 */
2656 int
mac_margin_remove(mac_handle_t mh,uint32_t margin)2657 mac_margin_remove(mac_handle_t mh, uint32_t margin)
2658 {
2659 mac_impl_t *mip = (mac_impl_t *)mh;
2660 mac_margin_req_t **pp, *p;
2661 int err = 0;
2662
2663 rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2664 /*
2665 * Find the entry in the list for the given margin.
2666 */
2667 for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) {
2668 if (p->mmr_margin == margin) {
2669 if (--p->mmr_ref == 0)
2670 break;
2671
2672 /*
2673 * There is still a reference to this address so
2674 * there's nothing more to do.
2675 */
2676 goto done;
2677 }
2678 }
2679
2680 /*
2681 * We did not find an entry for the given margin.
2682 */
2683 if (p == NULL) {
2684 err = ENOENT;
2685 goto done;
2686 }
2687
2688 ASSERT(p->mmr_ref == 0);
2689
2690 /*
2691 * Remove it from the list.
2692 */
2693 *pp = p->mmr_nextp;
2694 kmem_free(p, sizeof (mac_margin_req_t));
2695 done:
2696 rw_exit(&(mip->mi_rw_lock));
2697 return (err);
2698 }
2699
2700 boolean_t
mac_margin_update(mac_handle_t mh,uint32_t margin)2701 mac_margin_update(mac_handle_t mh, uint32_t margin)
2702 {
2703 mac_impl_t *mip = (mac_impl_t *)mh;
2704 uint32_t margin_needed = 0;
2705
2706 rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2707
2708 if (mip->mi_mmrp != NULL)
2709 margin_needed = mip->mi_mmrp->mmr_margin;
2710
2711 if (margin_needed <= margin)
2712 mip->mi_margin = margin;
2713
2714 rw_exit(&(mip->mi_rw_lock));
2715
2716 if (margin_needed <= margin)
2717 i_mac_notify(mip, MAC_NOTE_MARGIN);
2718
2719 return (margin_needed <= margin);
2720 }
2721
2722 /*
2723 * MAC clients use this interface to request that a MAC device not change its
2724 * MTU below the specified amount. At this time, that amount must be within the
2725 * range of the device's current minimum and the device's current maximum. eg. a
2726 * client cannot request a 3000 byte MTU when the device's MTU is currently
2727 * 2000.
2728 *
2729 * If "current" is set to B_TRUE, then the request is to simply to reserve the
2730 * current underlying mac's maximum for this mac client and return it in mtup.
2731 */
2732 int
mac_mtu_add(mac_handle_t mh,uint32_t * mtup,boolean_t current)2733 mac_mtu_add(mac_handle_t mh, uint32_t *mtup, boolean_t current)
2734 {
2735 mac_impl_t *mip = (mac_impl_t *)mh;
2736 mac_mtu_req_t *prev, *cur;
2737 mac_propval_range_t mpr;
2738 int err;
2739
2740 i_mac_perim_enter(mip);
2741 rw_enter(&mip->mi_rw_lock, RW_WRITER);
2742
2743 if (current == B_TRUE)
2744 *mtup = mip->mi_sdu_max;
2745 mpr.mpr_count = 1;
2746 err = mac_prop_info(mh, MAC_PROP_MTU, "mtu", NULL, 0, &mpr, NULL);
2747 if (err != 0) {
2748 rw_exit(&mip->mi_rw_lock);
2749 i_mac_perim_exit(mip);
2750 return (err);
2751 }
2752
2753 if (*mtup > mip->mi_sdu_max ||
2754 *mtup < mpr.mpr_range_uint32[0].mpur_min) {
2755 rw_exit(&mip->mi_rw_lock);
2756 i_mac_perim_exit(mip);
2757 return (ENOTSUP);
2758 }
2759
2760 prev = NULL;
2761 for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) {
2762 if (*mtup == cur->mtr_mtu) {
2763 cur->mtr_ref++;
2764 rw_exit(&mip->mi_rw_lock);
2765 i_mac_perim_exit(mip);
2766 return (0);
2767 }
2768
2769 if (*mtup > cur->mtr_mtu)
2770 break;
2771
2772 prev = cur;
2773 }
2774
2775 cur = kmem_alloc(sizeof (mac_mtu_req_t), KM_SLEEP);
2776 cur->mtr_mtu = *mtup;
2777 cur->mtr_ref = 1;
2778 if (prev != NULL) {
2779 cur->mtr_nextp = prev->mtr_nextp;
2780 prev->mtr_nextp = cur;
2781 } else {
2782 cur->mtr_nextp = mip->mi_mtrp;
2783 mip->mi_mtrp = cur;
2784 }
2785
2786 rw_exit(&mip->mi_rw_lock);
2787 i_mac_perim_exit(mip);
2788 return (0);
2789 }
2790
2791 int
mac_mtu_remove(mac_handle_t mh,uint32_t mtu)2792 mac_mtu_remove(mac_handle_t mh, uint32_t mtu)
2793 {
2794 mac_impl_t *mip = (mac_impl_t *)mh;
2795 mac_mtu_req_t *cur, *prev;
2796
2797 i_mac_perim_enter(mip);
2798 rw_enter(&mip->mi_rw_lock, RW_WRITER);
2799
2800 prev = NULL;
2801 for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) {
2802 if (cur->mtr_mtu == mtu) {
2803 ASSERT(cur->mtr_ref > 0);
2804 cur->mtr_ref--;
2805 if (cur->mtr_ref == 0) {
2806 if (prev == NULL) {
2807 mip->mi_mtrp = cur->mtr_nextp;
2808 } else {
2809 prev->mtr_nextp = cur->mtr_nextp;
2810 }
2811 kmem_free(cur, sizeof (mac_mtu_req_t));
2812 }
2813 rw_exit(&mip->mi_rw_lock);
2814 i_mac_perim_exit(mip);
2815 return (0);
2816 }
2817
2818 prev = cur;
2819 }
2820
2821 rw_exit(&mip->mi_rw_lock);
2822 i_mac_perim_exit(mip);
2823 return (ENOENT);
2824 }
2825
2826 /*
2827 * MAC Type Plugin functions.
2828 */
2829
2830 mactype_t *
mactype_getplugin(const char * pname)2831 mactype_getplugin(const char *pname)
2832 {
2833 mactype_t *mtype = NULL;
2834 boolean_t tried_modload = B_FALSE;
2835
2836 mutex_enter(&i_mactype_lock);
2837
2838 find_registered_mactype:
2839 if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname,
2840 (mod_hash_val_t *)&mtype) != 0) {
2841 if (!tried_modload) {
2842 /*
2843 * If the plugin has not yet been loaded, then
2844 * attempt to load it now. If modload() succeeds,
2845 * the plugin should have registered using
2846 * mactype_register(), in which case we can go back
2847 * and attempt to find it again.
2848 */
2849 if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) {
2850 tried_modload = B_TRUE;
2851 goto find_registered_mactype;
2852 }
2853 }
2854 } else {
2855 /*
2856 * Note that there's no danger that the plugin we've loaded
2857 * could be unloaded between the modload() step and the
2858 * reference count bump here, as we're holding
2859 * i_mactype_lock, which mactype_unregister() also holds.
2860 */
2861 atomic_inc_32(&mtype->mt_ref);
2862 }
2863
2864 mutex_exit(&i_mactype_lock);
2865 return (mtype);
2866 }
2867
2868 mactype_register_t *
mactype_alloc(uint_t mactype_version)2869 mactype_alloc(uint_t mactype_version)
2870 {
2871 mactype_register_t *mtrp;
2872
2873 /*
2874 * Make sure there isn't a version mismatch between the plugin and
2875 * the framework. In the future, if multiple versions are
2876 * supported, this check could become more sophisticated.
2877 */
2878 if (mactype_version != MACTYPE_VERSION)
2879 return (NULL);
2880
2881 mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP);
2882 mtrp->mtr_version = mactype_version;
2883 return (mtrp);
2884 }
2885
2886 void
mactype_free(mactype_register_t * mtrp)2887 mactype_free(mactype_register_t *mtrp)
2888 {
2889 kmem_free(mtrp, sizeof (mactype_register_t));
2890 }
2891
2892 int
mactype_register(mactype_register_t * mtrp)2893 mactype_register(mactype_register_t *mtrp)
2894 {
2895 mactype_t *mtp;
2896 mactype_ops_t *ops = mtrp->mtr_ops;
2897
2898 /* Do some sanity checking before we register this MAC type. */
2899 if (mtrp->mtr_ident == NULL || ops == NULL)
2900 return (EINVAL);
2901
2902 /*
2903 * Verify that all mandatory callbacks are set in the ops
2904 * vector.
2905 */
2906 if (ops->mtops_unicst_verify == NULL ||
2907 ops->mtops_multicst_verify == NULL ||
2908 ops->mtops_sap_verify == NULL ||
2909 ops->mtops_header == NULL ||
2910 ops->mtops_header_info == NULL) {
2911 return (EINVAL);
2912 }
2913
2914 mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP);
2915 mtp->mt_ident = mtrp->mtr_ident;
2916 mtp->mt_ops = *ops;
2917 mtp->mt_type = mtrp->mtr_mactype;
2918 mtp->mt_nativetype = mtrp->mtr_nativetype;
2919 mtp->mt_addr_length = mtrp->mtr_addrlen;
2920 if (mtrp->mtr_brdcst_addr != NULL) {
2921 mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP);
2922 bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr,
2923 mtrp->mtr_addrlen);
2924 }
2925
2926 mtp->mt_stats = mtrp->mtr_stats;
2927 mtp->mt_statcount = mtrp->mtr_statcount;
2928
2929 mtp->mt_mapping = mtrp->mtr_mapping;
2930 mtp->mt_mappingcount = mtrp->mtr_mappingcount;
2931
2932 if (mod_hash_insert(i_mactype_hash,
2933 (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) {
2934 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
2935 kmem_free(mtp, sizeof (*mtp));
2936 return (EEXIST);
2937 }
2938 return (0);
2939 }
2940
2941 int
mactype_unregister(const char * ident)2942 mactype_unregister(const char *ident)
2943 {
2944 mactype_t *mtp;
2945 mod_hash_val_t val;
2946 int err;
2947
2948 /*
2949 * Let's not allow MAC drivers to use this plugin while we're
2950 * trying to unregister it. Holding i_mactype_lock also prevents a
2951 * plugin from unregistering while a MAC driver is attempting to
2952 * hold a reference to it in i_mactype_getplugin().
2953 */
2954 mutex_enter(&i_mactype_lock);
2955
2956 if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident,
2957 (mod_hash_val_t *)&mtp)) != 0) {
2958 /* A plugin is trying to unregister, but it never registered. */
2959 err = ENXIO;
2960 goto done;
2961 }
2962
2963 if (mtp->mt_ref != 0) {
2964 err = EBUSY;
2965 goto done;
2966 }
2967
2968 err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val);
2969 ASSERT(err == 0);
2970 if (err != 0) {
2971 /* This should never happen, thus the ASSERT() above. */
2972 err = EINVAL;
2973 goto done;
2974 }
2975 ASSERT(mtp == (mactype_t *)val);
2976
2977 if (mtp->mt_brdcst_addr != NULL)
2978 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
2979 kmem_free(mtp, sizeof (mactype_t));
2980 done:
2981 mutex_exit(&i_mactype_lock);
2982 return (err);
2983 }
2984
2985 /*
2986 * Checks the size of the value size specified for a property as
2987 * part of a property operation. Returns B_TRUE if the size is
2988 * correct, B_FALSE otherwise.
2989 */
2990 boolean_t
mac_prop_check_size(mac_prop_id_t id,uint_t valsize,boolean_t is_range)2991 mac_prop_check_size(mac_prop_id_t id, uint_t valsize, boolean_t is_range)
2992 {
2993 uint_t minsize = 0;
2994
2995 if (is_range)
2996 return (valsize >= sizeof (mac_propval_range_t));
2997
2998 switch (id) {
2999 case MAC_PROP_ZONE:
3000 minsize = sizeof (dld_ioc_zid_t);
3001 break;
3002 case MAC_PROP_AUTOPUSH:
3003 if (valsize != 0)
3004 minsize = sizeof (struct dlautopush);
3005 break;
3006 case MAC_PROP_TAGMODE:
3007 minsize = sizeof (link_tagmode_t);
3008 break;
3009 case MAC_PROP_RESOURCE:
3010 case MAC_PROP_RESOURCE_EFF:
3011 minsize = sizeof (mac_resource_props_t);
3012 break;
3013 case MAC_PROP_DUPLEX:
3014 minsize = sizeof (link_duplex_t);
3015 break;
3016 case MAC_PROP_SPEED:
3017 minsize = sizeof (uint64_t);
3018 break;
3019 case MAC_PROP_STATUS:
3020 minsize = sizeof (link_state_t);
3021 break;
3022 case MAC_PROP_AUTONEG:
3023 case MAC_PROP_EN_AUTONEG:
3024 minsize = sizeof (uint8_t);
3025 break;
3026 case MAC_PROP_MTU:
3027 case MAC_PROP_LLIMIT:
3028 case MAC_PROP_LDECAY:
3029 minsize = sizeof (uint32_t);
3030 break;
3031 case MAC_PROP_FLOWCTRL:
3032 minsize = sizeof (link_flowctrl_t);
3033 break;
3034 case MAC_PROP_ADV_5000FDX_CAP:
3035 case MAC_PROP_EN_5000FDX_CAP:
3036 case MAC_PROP_ADV_2500FDX_CAP:
3037 case MAC_PROP_EN_2500FDX_CAP:
3038 case MAC_PROP_ADV_100GFDX_CAP:
3039 case MAC_PROP_EN_100GFDX_CAP:
3040 case MAC_PROP_ADV_50GFDX_CAP:
3041 case MAC_PROP_EN_50GFDX_CAP:
3042 case MAC_PROP_ADV_40GFDX_CAP:
3043 case MAC_PROP_EN_40GFDX_CAP:
3044 case MAC_PROP_ADV_25GFDX_CAP:
3045 case MAC_PROP_EN_25GFDX_CAP:
3046 case MAC_PROP_ADV_10GFDX_CAP:
3047 case MAC_PROP_EN_10GFDX_CAP:
3048 case MAC_PROP_ADV_1000HDX_CAP:
3049 case MAC_PROP_EN_1000HDX_CAP:
3050 case MAC_PROP_ADV_100FDX_CAP:
3051 case MAC_PROP_EN_100FDX_CAP:
3052 case MAC_PROP_ADV_100HDX_CAP:
3053 case MAC_PROP_EN_100HDX_CAP:
3054 case MAC_PROP_ADV_10FDX_CAP:
3055 case MAC_PROP_EN_10FDX_CAP:
3056 case MAC_PROP_ADV_10HDX_CAP:
3057 case MAC_PROP_EN_10HDX_CAP:
3058 case MAC_PROP_ADV_100T4_CAP:
3059 case MAC_PROP_EN_100T4_CAP:
3060 minsize = sizeof (uint8_t);
3061 break;
3062 case MAC_PROP_PVID:
3063 minsize = sizeof (uint16_t);
3064 break;
3065 case MAC_PROP_IPTUN_HOPLIMIT:
3066 minsize = sizeof (uint32_t);
3067 break;
3068 case MAC_PROP_IPTUN_ENCAPLIMIT:
3069 minsize = sizeof (uint32_t);
3070 break;
3071 case MAC_PROP_MAX_TX_RINGS_AVAIL:
3072 case MAC_PROP_MAX_RX_RINGS_AVAIL:
3073 case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3074 case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3075 minsize = sizeof (uint_t);
3076 break;
3077 case MAC_PROP_WL_ESSID:
3078 minsize = sizeof (wl_linkstatus_t);
3079 break;
3080 case MAC_PROP_WL_BSSID:
3081 minsize = sizeof (wl_bssid_t);
3082 break;
3083 case MAC_PROP_WL_BSSTYPE:
3084 minsize = sizeof (wl_bss_type_t);
3085 break;
3086 case MAC_PROP_WL_LINKSTATUS:
3087 minsize = sizeof (wl_linkstatus_t);
3088 break;
3089 case MAC_PROP_WL_DESIRED_RATES:
3090 minsize = sizeof (wl_rates_t);
3091 break;
3092 case MAC_PROP_WL_SUPPORTED_RATES:
3093 minsize = sizeof (wl_rates_t);
3094 break;
3095 case MAC_PROP_WL_AUTH_MODE:
3096 minsize = sizeof (wl_authmode_t);
3097 break;
3098 case MAC_PROP_WL_ENCRYPTION:
3099 minsize = sizeof (wl_encryption_t);
3100 break;
3101 case MAC_PROP_WL_RSSI:
3102 minsize = sizeof (wl_rssi_t);
3103 break;
3104 case MAC_PROP_WL_PHY_CONFIG:
3105 minsize = sizeof (wl_phy_conf_t);
3106 break;
3107 case MAC_PROP_WL_CAPABILITY:
3108 minsize = sizeof (wl_capability_t);
3109 break;
3110 case MAC_PROP_WL_WPA:
3111 minsize = sizeof (wl_wpa_t);
3112 break;
3113 case MAC_PROP_WL_SCANRESULTS:
3114 minsize = sizeof (wl_wpa_ess_t);
3115 break;
3116 case MAC_PROP_WL_POWER_MODE:
3117 minsize = sizeof (wl_ps_mode_t);
3118 break;
3119 case MAC_PROP_WL_RADIO:
3120 minsize = sizeof (wl_radio_t);
3121 break;
3122 case MAC_PROP_WL_ESS_LIST:
3123 minsize = sizeof (wl_ess_list_t);
3124 break;
3125 case MAC_PROP_WL_KEY_TAB:
3126 minsize = sizeof (wl_wep_key_tab_t);
3127 break;
3128 case MAC_PROP_WL_CREATE_IBSS:
3129 minsize = sizeof (wl_create_ibss_t);
3130 break;
3131 case MAC_PROP_WL_SETOPTIE:
3132 minsize = sizeof (wl_wpa_ie_t);
3133 break;
3134 case MAC_PROP_WL_DELKEY:
3135 minsize = sizeof (wl_del_key_t);
3136 break;
3137 case MAC_PROP_WL_KEY:
3138 minsize = sizeof (wl_key_t);
3139 break;
3140 case MAC_PROP_WL_MLME:
3141 minsize = sizeof (wl_mlme_t);
3142 break;
3143 case MAC_PROP_VN_PROMISC_FILTERED:
3144 minsize = sizeof (boolean_t);
3145 break;
3146 }
3147
3148 return (valsize >= minsize);
3149 }
3150
3151 /*
3152 * mac_set_prop() sets MAC or hardware driver properties:
3153 *
3154 * - MAC-managed properties such as resource properties include maxbw,
3155 * priority, and cpu binding list, as well as the default port VID
3156 * used by bridging. These properties are consumed by the MAC layer
3157 * itself and not passed down to the driver. For resource control
3158 * properties, this function invokes mac_set_resources() which will
3159 * cache the property value in mac_impl_t and may call
3160 * mac_client_set_resource() to update property value of the primary
3161 * mac client, if it exists.
3162 *
3163 * - Properties which act on the hardware and must be passed to the
3164 * driver, such as MTU, through the driver's mc_setprop() entry point.
3165 */
3166 int
mac_set_prop(mac_handle_t mh,mac_prop_id_t id,char * name,void * val,uint_t valsize)3167 mac_set_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val,
3168 uint_t valsize)
3169 {
3170 int err = ENOTSUP;
3171 mac_impl_t *mip = (mac_impl_t *)mh;
3172
3173 ASSERT(MAC_PERIM_HELD(mh));
3174
3175 switch (id) {
3176 case MAC_PROP_RESOURCE: {
3177 mac_resource_props_t *mrp;
3178
3179 /* call mac_set_resources() for MAC properties */
3180 ASSERT(valsize >= sizeof (mac_resource_props_t));
3181 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3182 bcopy(val, mrp, sizeof (*mrp));
3183 err = mac_set_resources(mh, mrp);
3184 kmem_free(mrp, sizeof (*mrp));
3185 break;
3186 }
3187
3188 case MAC_PROP_PVID:
3189 ASSERT(valsize >= sizeof (uint16_t));
3190 if (mip->mi_state_flags & MIS_IS_VNIC)
3191 return (EINVAL);
3192 err = mac_set_pvid(mh, *(uint16_t *)val);
3193 break;
3194
3195 case MAC_PROP_MTU: {
3196 uint32_t mtu;
3197
3198 ASSERT(valsize >= sizeof (uint32_t));
3199 bcopy(val, &mtu, sizeof (mtu));
3200 err = mac_set_mtu(mh, mtu, NULL);
3201 break;
3202 }
3203
3204 case MAC_PROP_LLIMIT:
3205 case MAC_PROP_LDECAY: {
3206 uint32_t learnval;
3207
3208 if (valsize < sizeof (learnval) ||
3209 (mip->mi_state_flags & MIS_IS_VNIC))
3210 return (EINVAL);
3211 bcopy(val, &learnval, sizeof (learnval));
3212 if (learnval == 0 && id == MAC_PROP_LDECAY)
3213 return (EINVAL);
3214 if (id == MAC_PROP_LLIMIT)
3215 mip->mi_llimit = learnval;
3216 else
3217 mip->mi_ldecay = learnval;
3218 err = 0;
3219 break;
3220 }
3221
3222 default:
3223 /* For other driver properties, call driver's callback */
3224 if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) {
3225 err = mip->mi_callbacks->mc_setprop(mip->mi_driver,
3226 name, id, valsize, val);
3227 }
3228 }
3229 return (err);
3230 }
3231
3232 /*
3233 * mac_get_prop() gets MAC or device driver properties.
3234 *
3235 * If the property is a driver property, mac_get_prop() calls driver's callback
3236 * entry point to get it.
3237 * If the property is a MAC property, mac_get_prop() invokes mac_get_resources()
3238 * which returns the cached value in mac_impl_t.
3239 */
3240 int
mac_get_prop(mac_handle_t mh,mac_prop_id_t id,char * name,void * val,uint_t valsize)3241 mac_get_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val,
3242 uint_t valsize)
3243 {
3244 int err = ENOTSUP;
3245 mac_impl_t *mip = (mac_impl_t *)mh;
3246 uint_t rings;
3247 uint_t vlinks;
3248
3249 bzero(val, valsize);
3250
3251 switch (id) {
3252 case MAC_PROP_RESOURCE: {
3253 mac_resource_props_t *mrp;
3254
3255 /* If mac property, read from cache */
3256 ASSERT(valsize >= sizeof (mac_resource_props_t));
3257 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3258 mac_get_resources(mh, mrp);
3259 bcopy(mrp, val, sizeof (*mrp));
3260 kmem_free(mrp, sizeof (*mrp));
3261 return (0);
3262 }
3263 case MAC_PROP_RESOURCE_EFF: {
3264 mac_resource_props_t *mrp;
3265
3266 /* If mac effective property, read from client */
3267 ASSERT(valsize >= sizeof (mac_resource_props_t));
3268 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3269 mac_get_effective_resources(mh, mrp);
3270 bcopy(mrp, val, sizeof (*mrp));
3271 kmem_free(mrp, sizeof (*mrp));
3272 return (0);
3273 }
3274
3275 case MAC_PROP_PVID:
3276 ASSERT(valsize >= sizeof (uint16_t));
3277 if (mip->mi_state_flags & MIS_IS_VNIC)
3278 return (EINVAL);
3279 *(uint16_t *)val = mac_get_pvid(mh);
3280 return (0);
3281
3282 case MAC_PROP_LLIMIT:
3283 case MAC_PROP_LDECAY:
3284 ASSERT(valsize >= sizeof (uint32_t));
3285 if (mip->mi_state_flags & MIS_IS_VNIC)
3286 return (EINVAL);
3287 if (id == MAC_PROP_LLIMIT)
3288 bcopy(&mip->mi_llimit, val, sizeof (mip->mi_llimit));
3289 else
3290 bcopy(&mip->mi_ldecay, val, sizeof (mip->mi_ldecay));
3291 return (0);
3292
3293 case MAC_PROP_MTU: {
3294 uint32_t sdu;
3295
3296 ASSERT(valsize >= sizeof (uint32_t));
3297 mac_sdu_get2(mh, NULL, &sdu, NULL);
3298 bcopy(&sdu, val, sizeof (sdu));
3299
3300 return (0);
3301 }
3302 case MAC_PROP_STATUS: {
3303 link_state_t link_state;
3304
3305 if (valsize < sizeof (link_state))
3306 return (EINVAL);
3307 link_state = mac_link_get(mh);
3308 bcopy(&link_state, val, sizeof (link_state));
3309
3310 return (0);
3311 }
3312
3313 case MAC_PROP_MAX_RX_RINGS_AVAIL:
3314 case MAC_PROP_MAX_TX_RINGS_AVAIL:
3315 ASSERT(valsize >= sizeof (uint_t));
3316 rings = id == MAC_PROP_MAX_RX_RINGS_AVAIL ?
3317 mac_rxavail_get(mh) : mac_txavail_get(mh);
3318 bcopy(&rings, val, sizeof (uint_t));
3319 return (0);
3320
3321 case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3322 case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3323 ASSERT(valsize >= sizeof (uint_t));
3324 vlinks = id == MAC_PROP_MAX_RXHWCLNT_AVAIL ?
3325 mac_rxhwlnksavail_get(mh) : mac_txhwlnksavail_get(mh);
3326 bcopy(&vlinks, val, sizeof (uint_t));
3327 return (0);
3328
3329 case MAC_PROP_RXRINGSRANGE:
3330 case MAC_PROP_TXRINGSRANGE:
3331 /*
3332 * The value for these properties are returned through
3333 * the MAC_PROP_RESOURCE property.
3334 */
3335 return (0);
3336
3337 default:
3338 break;
3339
3340 }
3341
3342 /* If driver property, request from driver */
3343 if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) {
3344 err = mip->mi_callbacks->mc_getprop(mip->mi_driver, name, id,
3345 valsize, val);
3346 }
3347
3348 return (err);
3349 }
3350
3351 /*
3352 * Helper function to initialize the range structure for use in
3353 * mac_get_prop. If the type can be other than uint32, we can
3354 * pass that as an arg.
3355 */
3356 static void
_mac_set_range(mac_propval_range_t * range,uint32_t min,uint32_t max)3357 _mac_set_range(mac_propval_range_t *range, uint32_t min, uint32_t max)
3358 {
3359 range->mpr_count = 1;
3360 range->mpr_type = MAC_PROPVAL_UINT32;
3361 range->mpr_range_uint32[0].mpur_min = min;
3362 range->mpr_range_uint32[0].mpur_max = max;
3363 }
3364
3365 /*
3366 * Returns information about the specified property, such as default
3367 * values or permissions.
3368 */
3369 int
mac_prop_info(mac_handle_t mh,mac_prop_id_t id,char * name,void * default_val,uint_t default_size,mac_propval_range_t * range,uint_t * perm)3370 mac_prop_info(mac_handle_t mh, mac_prop_id_t id, char *name,
3371 void *default_val, uint_t default_size, mac_propval_range_t *range,
3372 uint_t *perm)
3373 {
3374 mac_prop_info_state_t state;
3375 mac_impl_t *mip = (mac_impl_t *)mh;
3376 uint_t max;
3377
3378 /*
3379 * A property is read/write by default unless the driver says
3380 * otherwise.
3381 */
3382 if (perm != NULL)
3383 *perm = MAC_PROP_PERM_RW;
3384
3385 if (default_val != NULL)
3386 bzero(default_val, default_size);
3387
3388 /*
3389 * First, handle framework properties for which we don't need to
3390 * involve the driver.
3391 */
3392 switch (id) {
3393 case MAC_PROP_RESOURCE:
3394 case MAC_PROP_PVID:
3395 case MAC_PROP_LLIMIT:
3396 case MAC_PROP_LDECAY:
3397 return (0);
3398
3399 case MAC_PROP_MAX_RX_RINGS_AVAIL:
3400 case MAC_PROP_MAX_TX_RINGS_AVAIL:
3401 case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3402 case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3403 if (perm != NULL)
3404 *perm = MAC_PROP_PERM_READ;
3405 return (0);
3406
3407 case MAC_PROP_RXRINGSRANGE:
3408 case MAC_PROP_TXRINGSRANGE:
3409 /*
3410 * Currently, we support range for RX and TX rings properties.
3411 * When we extend this support to maxbw, cpus and priority,
3412 * we should move this to mac_get_resources.
3413 * There is no default value for RX or TX rings.
3414 */
3415 if ((mip->mi_state_flags & MIS_IS_VNIC) &&
3416 mac_is_vnic_primary(mh)) {
3417 /*
3418 * We don't support setting rings for a VLAN
3419 * data link because it shares its ring with the
3420 * primary MAC client.
3421 */
3422 if (perm != NULL)
3423 *perm = MAC_PROP_PERM_READ;
3424 if (range != NULL)
3425 range->mpr_count = 0;
3426 } else if (range != NULL) {
3427 if (mip->mi_state_flags & MIS_IS_VNIC)
3428 mh = mac_get_lower_mac_handle(mh);
3429 mip = (mac_impl_t *)mh;
3430 if ((id == MAC_PROP_RXRINGSRANGE &&
3431 mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) ||
3432 (id == MAC_PROP_TXRINGSRANGE &&
3433 mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC)) {
3434 if (id == MAC_PROP_RXRINGSRANGE) {
3435 if ((mac_rxhwlnksavail_get(mh) +
3436 mac_rxhwlnksrsvd_get(mh)) <= 1) {
3437 /*
3438 * doesn't support groups or
3439 * rings
3440 */
3441 range->mpr_count = 0;
3442 } else {
3443 /*
3444 * supports specifying groups,
3445 * but not rings
3446 */
3447 _mac_set_range(range, 0, 0);
3448 }
3449 } else {
3450 if ((mac_txhwlnksavail_get(mh) +
3451 mac_txhwlnksrsvd_get(mh)) <= 1) {
3452 /*
3453 * doesn't support groups or
3454 * rings
3455 */
3456 range->mpr_count = 0;
3457 } else {
3458 /*
3459 * supports specifying groups,
3460 * but not rings
3461 */
3462 _mac_set_range(range, 0, 0);
3463 }
3464 }
3465 } else {
3466 max = id == MAC_PROP_RXRINGSRANGE ?
3467 mac_rxavail_get(mh) + mac_rxrsvd_get(mh) :
3468 mac_txavail_get(mh) + mac_txrsvd_get(mh);
3469 if (max <= 1) {
3470 /*
3471 * doesn't support groups or
3472 * rings
3473 */
3474 range->mpr_count = 0;
3475 } else {
3476 /*
3477 * -1 because we have to leave out the
3478 * default ring.
3479 */
3480 _mac_set_range(range, 1, max - 1);
3481 }
3482 }
3483 }
3484 return (0);
3485
3486 case MAC_PROP_STATUS:
3487 if (perm != NULL)
3488 *perm = MAC_PROP_PERM_READ;
3489 return (0);
3490 }
3491
3492 /*
3493 * Get the property info from the driver if it implements the
3494 * property info entry point.
3495 */
3496 bzero(&state, sizeof (state));
3497
3498 if (mip->mi_callbacks->mc_callbacks & MC_PROPINFO) {
3499 state.pr_default = default_val;
3500 state.pr_default_size = default_size;
3501
3502 /*
3503 * The caller specifies the maximum number of ranges
3504 * it can accomodate using mpr_count. We don't touch
3505 * this value until the driver returns from its
3506 * mc_propinfo() callback, and ensure we don't exceed
3507 * this number of range as the driver defines
3508 * supported range from its mc_propinfo().
3509 *
3510 * pr_range_cur_count keeps track of how many ranges
3511 * were defined by the driver from its mc_propinfo()
3512 * entry point.
3513 *
3514 * On exit, the user-specified range mpr_count returns
3515 * the number of ranges specified by the driver on
3516 * success, or the number of ranges it wanted to
3517 * define if that number of ranges could not be
3518 * accomodated by the specified range structure. In
3519 * the latter case, the caller will be able to
3520 * allocate a larger range structure, and query the
3521 * property again.
3522 */
3523 state.pr_range_cur_count = 0;
3524 state.pr_range = range;
3525
3526 mip->mi_callbacks->mc_propinfo(mip->mi_driver, name, id,
3527 (mac_prop_info_handle_t)&state);
3528
3529 if (state.pr_flags & MAC_PROP_INFO_RANGE)
3530 range->mpr_count = state.pr_range_cur_count;
3531
3532 /*
3533 * The operation could fail if the buffer supplied by
3534 * the user was too small for the range or default
3535 * value of the property.
3536 */
3537 if (state.pr_errno != 0)
3538 return (state.pr_errno);
3539
3540 if (perm != NULL && state.pr_flags & MAC_PROP_INFO_PERM)
3541 *perm = state.pr_perm;
3542 }
3543
3544 /*
3545 * The MAC layer may want to provide default values or allowed
3546 * ranges for properties if the driver does not provide a
3547 * property info entry point, or that entry point exists, but
3548 * it did not provide a default value or allowed ranges for
3549 * that property.
3550 */
3551 switch (id) {
3552 case MAC_PROP_MTU: {
3553 uint32_t sdu;
3554
3555 mac_sdu_get2(mh, NULL, &sdu, NULL);
3556
3557 if (range != NULL && !(state.pr_flags &
3558 MAC_PROP_INFO_RANGE)) {
3559 /* MTU range */
3560 _mac_set_range(range, sdu, sdu);
3561 }
3562
3563 if (default_val != NULL && !(state.pr_flags &
3564 MAC_PROP_INFO_DEFAULT)) {
3565 if (mip->mi_info.mi_media == DL_ETHER)
3566 sdu = ETHERMTU;
3567 /* default MTU value */
3568 bcopy(&sdu, default_val, sizeof (sdu));
3569 }
3570 }
3571 }
3572
3573 return (0);
3574 }
3575
3576 int
mac_fastpath_disable(mac_handle_t mh)3577 mac_fastpath_disable(mac_handle_t mh)
3578 {
3579 mac_impl_t *mip = (mac_impl_t *)mh;
3580
3581 if ((mip->mi_state_flags & MIS_LEGACY) == 0)
3582 return (0);
3583
3584 return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver));
3585 }
3586
3587 void
mac_fastpath_enable(mac_handle_t mh)3588 mac_fastpath_enable(mac_handle_t mh)
3589 {
3590 mac_impl_t *mip = (mac_impl_t *)mh;
3591
3592 if ((mip->mi_state_flags & MIS_LEGACY) == 0)
3593 return;
3594
3595 mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver);
3596 }
3597
3598 void
mac_register_priv_prop(mac_impl_t * mip,char ** priv_props)3599 mac_register_priv_prop(mac_impl_t *mip, char **priv_props)
3600 {
3601 uint_t nprops, i;
3602
3603 if (priv_props == NULL)
3604 return;
3605
3606 nprops = 0;
3607 while (priv_props[nprops] != NULL)
3608 nprops++;
3609 if (nprops == 0)
3610 return;
3611
3612
3613 mip->mi_priv_prop = kmem_zalloc(nprops * sizeof (char *), KM_SLEEP);
3614
3615 for (i = 0; i < nprops; i++) {
3616 mip->mi_priv_prop[i] = kmem_zalloc(MAXLINKPROPNAME, KM_SLEEP);
3617 (void) strlcpy(mip->mi_priv_prop[i], priv_props[i],
3618 MAXLINKPROPNAME);
3619 }
3620
3621 mip->mi_priv_prop_count = nprops;
3622 }
3623
3624 void
mac_unregister_priv_prop(mac_impl_t * mip)3625 mac_unregister_priv_prop(mac_impl_t *mip)
3626 {
3627 uint_t i;
3628
3629 if (mip->mi_priv_prop_count == 0) {
3630 ASSERT(mip->mi_priv_prop == NULL);
3631 return;
3632 }
3633
3634 for (i = 0; i < mip->mi_priv_prop_count; i++)
3635 kmem_free(mip->mi_priv_prop[i], MAXLINKPROPNAME);
3636 kmem_free(mip->mi_priv_prop, mip->mi_priv_prop_count *
3637 sizeof (char *));
3638
3639 mip->mi_priv_prop = NULL;
3640 mip->mi_priv_prop_count = 0;
3641 }
3642
3643 /*
3644 * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure
3645 * (by invoking mac_rx()) even after processing mac_stop_ring(). In such
3646 * cases if MAC free's the ring structure after mac_stop_ring(), any
3647 * illegal access to the ring structure coming from the driver will panic
3648 * the system. In order to protect the system from such inadverent access,
3649 * we maintain a cache of rings in the mac_impl_t after they get free'd up.
3650 * When packets are received on free'd up rings, MAC (through the generation
3651 * count mechanism) will drop such packets.
3652 */
3653 static mac_ring_t *
mac_ring_alloc(mac_impl_t * mip)3654 mac_ring_alloc(mac_impl_t *mip)
3655 {
3656 mac_ring_t *ring;
3657
3658 mutex_enter(&mip->mi_ring_lock);
3659 if (mip->mi_ring_freelist != NULL) {
3660 ring = mip->mi_ring_freelist;
3661 mip->mi_ring_freelist = ring->mr_next;
3662 bzero(ring, sizeof (mac_ring_t));
3663 mutex_exit(&mip->mi_ring_lock);
3664 } else {
3665 mutex_exit(&mip->mi_ring_lock);
3666 ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP);
3667 }
3668 ASSERT((ring != NULL) && (ring->mr_state == MR_FREE));
3669 return (ring);
3670 }
3671
3672 static void
mac_ring_free(mac_impl_t * mip,mac_ring_t * ring)3673 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring)
3674 {
3675 ASSERT(ring->mr_state == MR_FREE);
3676
3677 mutex_enter(&mip->mi_ring_lock);
3678 ring->mr_state = MR_FREE;
3679 ring->mr_flag = 0;
3680 ring->mr_next = mip->mi_ring_freelist;
3681 ring->mr_mip = NULL;
3682 mip->mi_ring_freelist = ring;
3683 mac_ring_stat_delete(ring);
3684 mutex_exit(&mip->mi_ring_lock);
3685 }
3686
3687 static void
mac_ring_freeall(mac_impl_t * mip)3688 mac_ring_freeall(mac_impl_t *mip)
3689 {
3690 mac_ring_t *ring_next;
3691 mutex_enter(&mip->mi_ring_lock);
3692 mac_ring_t *ring = mip->mi_ring_freelist;
3693 while (ring != NULL) {
3694 ring_next = ring->mr_next;
3695 kmem_cache_free(mac_ring_cache, ring);
3696 ring = ring_next;
3697 }
3698 mip->mi_ring_freelist = NULL;
3699 mutex_exit(&mip->mi_ring_lock);
3700 }
3701
3702 int
mac_start_ring(mac_ring_t * ring)3703 mac_start_ring(mac_ring_t *ring)
3704 {
3705 int rv = 0;
3706
3707 ASSERT(ring->mr_state == MR_FREE);
3708
3709 if (ring->mr_start != NULL) {
3710 rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num);
3711 if (rv != 0)
3712 return (rv);
3713 }
3714
3715 ring->mr_state = MR_INUSE;
3716 return (rv);
3717 }
3718
3719 void
mac_stop_ring(mac_ring_t * ring)3720 mac_stop_ring(mac_ring_t *ring)
3721 {
3722 ASSERT(ring->mr_state == MR_INUSE);
3723
3724 if (ring->mr_stop != NULL)
3725 ring->mr_stop(ring->mr_driver);
3726
3727 ring->mr_state = MR_FREE;
3728
3729 /*
3730 * Increment the ring generation number for this ring.
3731 */
3732 ring->mr_gen_num++;
3733 }
3734
3735 int
mac_start_group(mac_group_t * group)3736 mac_start_group(mac_group_t *group)
3737 {
3738 int rv = 0;
3739
3740 if (group->mrg_start != NULL)
3741 rv = group->mrg_start(group->mrg_driver);
3742
3743 return (rv);
3744 }
3745
3746 void
mac_stop_group(mac_group_t * group)3747 mac_stop_group(mac_group_t *group)
3748 {
3749 if (group->mrg_stop != NULL)
3750 group->mrg_stop(group->mrg_driver);
3751 }
3752
3753 /*
3754 * Called from mac_start() on the default Rx group. Broadcast and multicast
3755 * packets are received only on the default group. Hence the default group
3756 * needs to be up even if the primary client is not up, for the other groups
3757 * to be functional. We do this by calling this function at mac_start time
3758 * itself. However the broadcast packets that are received can't make their
3759 * way beyond mac_rx until a mac client creates a broadcast flow.
3760 */
3761 static int
mac_start_group_and_rings(mac_group_t * group)3762 mac_start_group_and_rings(mac_group_t *group)
3763 {
3764 mac_ring_t *ring;
3765 int rv = 0;
3766
3767 ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED);
3768 if ((rv = mac_start_group(group)) != 0)
3769 return (rv);
3770
3771 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
3772 ASSERT(ring->mr_state == MR_FREE);
3773 if ((rv = mac_start_ring(ring)) != 0)
3774 goto error;
3775 ring->mr_classify_type = MAC_SW_CLASSIFIER;
3776 }
3777 return (0);
3778
3779 error:
3780 mac_stop_group_and_rings(group);
3781 return (rv);
3782 }
3783
3784 /* Called from mac_stop on the default Rx group */
3785 static void
mac_stop_group_and_rings(mac_group_t * group)3786 mac_stop_group_and_rings(mac_group_t *group)
3787 {
3788 mac_ring_t *ring;
3789
3790 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
3791 if (ring->mr_state != MR_FREE) {
3792 mac_stop_ring(ring);
3793 ring->mr_flag = 0;
3794 ring->mr_classify_type = MAC_NO_CLASSIFIER;
3795 }
3796 }
3797 mac_stop_group(group);
3798 }
3799
3800
3801 static mac_ring_t *
mac_init_ring(mac_impl_t * mip,mac_group_t * group,int index,mac_capab_rings_t * cap_rings)3802 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index,
3803 mac_capab_rings_t *cap_rings)
3804 {
3805 mac_ring_t *ring, *rnext;
3806 mac_ring_info_t ring_info;
3807 ddi_intr_handle_t ddi_handle;
3808
3809 ring = mac_ring_alloc(mip);
3810
3811 /* Prepare basic information of ring */
3812
3813 /*
3814 * Ring index is numbered to be unique across a particular device.
3815 * Ring index computation makes following assumptions:
3816 * - For drivers with static grouping (e.g. ixgbe, bge),
3817 * ring index exchanged with the driver (e.g. during mr_rget)
3818 * is unique only across the group the ring belongs to.
3819 * - Drivers with dynamic grouping (e.g. nxge), start
3820 * with single group (mrg_index = 0).
3821 */
3822 ring->mr_index = group->mrg_index * group->mrg_info.mgi_count + index;
3823 ring->mr_type = group->mrg_type;
3824 ring->mr_gh = (mac_group_handle_t)group;
3825
3826 /* Insert the new ring to the list. */
3827 ring->mr_next = group->mrg_rings;
3828 group->mrg_rings = ring;
3829
3830 /* Zero to reuse the info data structure */
3831 bzero(&ring_info, sizeof (ring_info));
3832
3833 /* Query ring information from driver */
3834 cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index,
3835 index, &ring_info, (mac_ring_handle_t)ring);
3836
3837 ring->mr_info = ring_info;
3838
3839 /*
3840 * The interrupt handle could be shared among multiple rings.
3841 * Thus if there is a bunch of rings that are sharing an
3842 * interrupt, then only one ring among the bunch will be made
3843 * available for interrupt re-targeting; the rest will have
3844 * ddi_shared flag set to TRUE and would not be available for
3845 * be interrupt re-targeting.
3846 */
3847 if ((ddi_handle = ring_info.mri_intr.mi_ddi_handle) != NULL) {
3848 rnext = ring->mr_next;
3849 while (rnext != NULL) {
3850 if (rnext->mr_info.mri_intr.mi_ddi_handle ==
3851 ddi_handle) {
3852 /*
3853 * If default ring (mr_index == 0) is part
3854 * of a group of rings sharing an
3855 * interrupt, then set ddi_shared flag for
3856 * the default ring and give another ring
3857 * the chance to be re-targeted.
3858 */
3859 if (rnext->mr_index == 0 &&
3860 !rnext->mr_info.mri_intr.mi_ddi_shared) {
3861 rnext->mr_info.mri_intr.mi_ddi_shared =
3862 B_TRUE;
3863 } else {
3864 ring->mr_info.mri_intr.mi_ddi_shared =
3865 B_TRUE;
3866 }
3867 break;
3868 }
3869 rnext = rnext->mr_next;
3870 }
3871 /*
3872 * If rnext is NULL, then no matching ddi_handle was found.
3873 * Rx rings get registered first. So if this is a Tx ring,
3874 * then go through all the Rx rings and see if there is a
3875 * matching ddi handle.
3876 */
3877 if (rnext == NULL && ring->mr_type == MAC_RING_TYPE_TX) {
3878 mac_compare_ddi_handle(mip->mi_rx_groups,
3879 mip->mi_rx_group_count, ring);
3880 }
3881 }
3882
3883 /* Update ring's status */
3884 ring->mr_state = MR_FREE;
3885 ring->mr_flag = 0;
3886
3887 /* Update the ring count of the group */
3888 group->mrg_cur_count++;
3889
3890 /* Create per ring kstats */
3891 if (ring->mr_stat != NULL) {
3892 ring->mr_mip = mip;
3893 mac_ring_stat_create(ring);
3894 }
3895
3896 return (ring);
3897 }
3898
3899 /*
3900 * Rings are chained together for easy regrouping.
3901 */
3902 static void
mac_init_group(mac_impl_t * mip,mac_group_t * group,int size,mac_capab_rings_t * cap_rings)3903 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size,
3904 mac_capab_rings_t *cap_rings)
3905 {
3906 int index;
3907
3908 /*
3909 * Initialize all ring members of this group. Size of zero will not
3910 * enter the loop, so it's safe for initializing an empty group.
3911 */
3912 for (index = size - 1; index >= 0; index--)
3913 (void) mac_init_ring(mip, group, index, cap_rings);
3914 }
3915
3916 int
mac_init_rings(mac_impl_t * mip,mac_ring_type_t rtype)3917 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype)
3918 {
3919 mac_capab_rings_t *cap_rings;
3920 mac_group_t *group;
3921 mac_group_t *groups;
3922 mac_group_info_t group_info;
3923 uint_t group_free = 0;
3924 uint_t ring_left;
3925 mac_ring_t *ring;
3926 int g;
3927 int err = 0;
3928 uint_t grpcnt;
3929 boolean_t pseudo_txgrp = B_FALSE;
3930
3931 switch (rtype) {
3932 case MAC_RING_TYPE_RX:
3933 ASSERT(mip->mi_rx_groups == NULL);
3934
3935 cap_rings = &mip->mi_rx_rings_cap;
3936 cap_rings->mr_type = MAC_RING_TYPE_RX;
3937 break;
3938 case MAC_RING_TYPE_TX:
3939 ASSERT(mip->mi_tx_groups == NULL);
3940
3941 cap_rings = &mip->mi_tx_rings_cap;
3942 cap_rings->mr_type = MAC_RING_TYPE_TX;
3943 break;
3944 default:
3945 ASSERT(B_FALSE);
3946 }
3947
3948 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, cap_rings))
3949 return (0);
3950 grpcnt = cap_rings->mr_gnum;
3951
3952 /*
3953 * If we have multiple TX rings, but only one TX group, we can
3954 * create pseudo TX groups (one per TX ring) in the MAC layer,
3955 * except for an aggr. For an aggr currently we maintain only
3956 * one group with all the rings (for all its ports), going
3957 * forwards we might change this.
3958 */
3959 if (rtype == MAC_RING_TYPE_TX &&
3960 cap_rings->mr_gnum == 0 && cap_rings->mr_rnum > 0 &&
3961 (mip->mi_state_flags & MIS_IS_AGGR) == 0) {
3962 /*
3963 * The -1 here is because we create a default TX group
3964 * with all the rings in it.
3965 */
3966 grpcnt = cap_rings->mr_rnum - 1;
3967 pseudo_txgrp = B_TRUE;
3968 }
3969
3970 /*
3971 * Allocate a contiguous buffer for all groups.
3972 */
3973 groups = kmem_zalloc(sizeof (mac_group_t) * (grpcnt+ 1), KM_SLEEP);
3974
3975 ring_left = cap_rings->mr_rnum;
3976
3977 /*
3978 * Get all ring groups if any, and get their ring members
3979 * if any.
3980 */
3981 for (g = 0; g < grpcnt; g++) {
3982 group = groups + g;
3983
3984 /* Prepare basic information of the group */
3985 group->mrg_index = g;
3986 group->mrg_type = rtype;
3987 group->mrg_state = MAC_GROUP_STATE_UNINIT;
3988 group->mrg_mh = (mac_handle_t)mip;
3989 group->mrg_next = group + 1;
3990
3991 /* Zero to reuse the info data structure */
3992 bzero(&group_info, sizeof (group_info));
3993
3994 if (pseudo_txgrp) {
3995 /*
3996 * This is a pseudo group that we created, apart
3997 * from setting the state there is nothing to be
3998 * done.
3999 */
4000 group->mrg_state = MAC_GROUP_STATE_REGISTERED;
4001 group_free++;
4002 continue;
4003 }
4004 /* Query group information from driver */
4005 cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info,
4006 (mac_group_handle_t)group);
4007
4008 switch (cap_rings->mr_group_type) {
4009 case MAC_GROUP_TYPE_DYNAMIC:
4010 if (cap_rings->mr_gaddring == NULL ||
4011 cap_rings->mr_gremring == NULL) {
4012 DTRACE_PROBE3(
4013 mac__init__rings_no_addremring,
4014 char *, mip->mi_name,
4015 mac_group_add_ring_t,
4016 cap_rings->mr_gaddring,
4017 mac_group_add_ring_t,
4018 cap_rings->mr_gremring);
4019 err = EINVAL;
4020 goto bail;
4021 }
4022
4023 switch (rtype) {
4024 case MAC_RING_TYPE_RX:
4025 /*
4026 * The first RX group must have non-zero
4027 * rings, and the following groups must
4028 * have zero rings.
4029 */
4030 if (g == 0 && group_info.mgi_count == 0) {
4031 DTRACE_PROBE1(
4032 mac__init__rings__rx__def__zero,
4033 char *, mip->mi_name);
4034 err = EINVAL;
4035 goto bail;
4036 }
4037 if (g > 0 && group_info.mgi_count != 0) {
4038 DTRACE_PROBE3(
4039 mac__init__rings__rx__nonzero,
4040 char *, mip->mi_name,
4041 int, g, int, group_info.mgi_count);
4042 err = EINVAL;
4043 goto bail;
4044 }
4045 break;
4046 case MAC_RING_TYPE_TX:
4047 /*
4048 * All TX ring groups must have zero rings.
4049 */
4050 if (group_info.mgi_count != 0) {
4051 DTRACE_PROBE3(
4052 mac__init__rings__tx__nonzero,
4053 char *, mip->mi_name,
4054 int, g, int, group_info.mgi_count);
4055 err = EINVAL;
4056 goto bail;
4057 }
4058 break;
4059 }
4060 break;
4061 case MAC_GROUP_TYPE_STATIC:
4062 /*
4063 * Note that an empty group is allowed, e.g., an aggr
4064 * would start with an empty group.
4065 */
4066 break;
4067 default:
4068 /* unknown group type */
4069 DTRACE_PROBE2(mac__init__rings__unknown__type,
4070 char *, mip->mi_name,
4071 int, cap_rings->mr_group_type);
4072 err = EINVAL;
4073 goto bail;
4074 }
4075
4076
4077 /*
4078 * Driver must register group->mgi_addmac/remmac() for rx groups
4079 * to support multiple MAC addresses.
4080 */
4081 if (rtype == MAC_RING_TYPE_RX &&
4082 ((group_info.mgi_addmac == NULL) ||
4083 (group_info.mgi_remmac == NULL))) {
4084 err = EINVAL;
4085 goto bail;
4086 }
4087
4088 /* Cache driver-supplied information */
4089 group->mrg_info = group_info;
4090
4091 /* Update the group's status and group count. */
4092 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED);
4093 group_free++;
4094
4095 group->mrg_rings = NULL;
4096 group->mrg_cur_count = 0;
4097 mac_init_group(mip, group, group_info.mgi_count, cap_rings);
4098 ring_left -= group_info.mgi_count;
4099
4100 /* The current group size should be equal to default value */
4101 ASSERT(group->mrg_cur_count == group_info.mgi_count);
4102 }
4103
4104 /* Build up a dummy group for free resources as a pool */
4105 group = groups + grpcnt;
4106
4107 /* Prepare basic information of the group */
4108 group->mrg_index = -1;
4109 group->mrg_type = rtype;
4110 group->mrg_state = MAC_GROUP_STATE_UNINIT;
4111 group->mrg_mh = (mac_handle_t)mip;
4112 group->mrg_next = NULL;
4113
4114 /*
4115 * If there are ungrouped rings, allocate a continuous buffer for
4116 * remaining resources.
4117 */
4118 if (ring_left != 0) {
4119 group->mrg_rings = NULL;
4120 group->mrg_cur_count = 0;
4121 mac_init_group(mip, group, ring_left, cap_rings);
4122
4123 /* The current group size should be equal to ring_left */
4124 ASSERT(group->mrg_cur_count == ring_left);
4125
4126 ring_left = 0;
4127
4128 /* Update this group's status */
4129 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED);
4130 } else
4131 group->mrg_rings = NULL;
4132
4133 ASSERT(ring_left == 0);
4134
4135 bail:
4136
4137 /* Cache other important information to finalize the initialization */
4138 switch (rtype) {
4139 case MAC_RING_TYPE_RX:
4140 mip->mi_rx_group_type = cap_rings->mr_group_type;
4141 mip->mi_rx_group_count = cap_rings->mr_gnum;
4142 mip->mi_rx_groups = groups;
4143 mip->mi_rx_donor_grp = groups;
4144 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
4145 /*
4146 * The default ring is reserved since it is
4147 * used for sending the broadcast etc. packets.
4148 */
4149 mip->mi_rxrings_avail =
4150 mip->mi_rx_groups->mrg_cur_count - 1;
4151 mip->mi_rxrings_rsvd = 1;
4152 }
4153 /*
4154 * The default group cannot be reserved. It is used by
4155 * all the clients that do not have an exclusive group.
4156 */
4157 mip->mi_rxhwclnt_avail = mip->mi_rx_group_count - 1;
4158 mip->mi_rxhwclnt_used = 1;
4159 break;
4160 case MAC_RING_TYPE_TX:
4161 mip->mi_tx_group_type = pseudo_txgrp ? MAC_GROUP_TYPE_DYNAMIC :
4162 cap_rings->mr_group_type;
4163 mip->mi_tx_group_count = grpcnt;
4164 mip->mi_tx_group_free = group_free;
4165 mip->mi_tx_groups = groups;
4166
4167 group = groups + grpcnt;
4168 ring = group->mrg_rings;
4169 /*
4170 * The ring can be NULL in the case of aggr. Aggr will
4171 * have an empty Tx group which will get populated
4172 * later when pseudo Tx rings are added after
4173 * mac_register() is done.
4174 */
4175 if (ring == NULL) {
4176 ASSERT(mip->mi_state_flags & MIS_IS_AGGR);
4177 /*
4178 * pass the group to aggr so it can add Tx
4179 * rings to the group later.
4180 */
4181 cap_rings->mr_gget(mip->mi_driver, rtype, 0, NULL,
4182 (mac_group_handle_t)group);
4183 /*
4184 * Even though there are no rings at this time
4185 * (rings will come later), set the group
4186 * state to registered.
4187 */
4188 group->mrg_state = MAC_GROUP_STATE_REGISTERED;
4189 } else {
4190 /*
4191 * Ring 0 is used as the default one and it could be
4192 * assigned to a client as well.
4193 */
4194 while ((ring->mr_index != 0) && (ring->mr_next != NULL))
4195 ring = ring->mr_next;
4196 ASSERT(ring->mr_index == 0);
4197 mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
4198 }
4199 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
4200 mip->mi_txrings_avail = group->mrg_cur_count - 1;
4201 /*
4202 * The default ring cannot be reserved.
4203 */
4204 mip->mi_txrings_rsvd = 1;
4205 }
4206 /*
4207 * The default group cannot be reserved. It will be shared
4208 * by clients that do not have an exclusive group.
4209 */
4210 mip->mi_txhwclnt_avail = mip->mi_tx_group_count;
4211 mip->mi_txhwclnt_used = 1;
4212 break;
4213 default:
4214 ASSERT(B_FALSE);
4215 }
4216
4217 if (err != 0)
4218 mac_free_rings(mip, rtype);
4219
4220 return (err);
4221 }
4222
4223 /*
4224 * The ddi interrupt handle could be shared amoung rings. If so, compare
4225 * the new ring's ddi handle with the existing ones and set ddi_shared
4226 * flag.
4227 */
4228 void
mac_compare_ddi_handle(mac_group_t * groups,uint_t grpcnt,mac_ring_t * cring)4229 mac_compare_ddi_handle(mac_group_t *groups, uint_t grpcnt, mac_ring_t *cring)
4230 {
4231 mac_group_t *group;
4232 mac_ring_t *ring;
4233 ddi_intr_handle_t ddi_handle;
4234 int g;
4235
4236 ddi_handle = cring->mr_info.mri_intr.mi_ddi_handle;
4237 for (g = 0; g < grpcnt; g++) {
4238 group = groups + g;
4239 for (ring = group->mrg_rings; ring != NULL;
4240 ring = ring->mr_next) {
4241 if (ring == cring)
4242 continue;
4243 if (ring->mr_info.mri_intr.mi_ddi_handle ==
4244 ddi_handle) {
4245 if (cring->mr_type == MAC_RING_TYPE_RX &&
4246 ring->mr_index == 0 &&
4247 !ring->mr_info.mri_intr.mi_ddi_shared) {
4248 ring->mr_info.mri_intr.mi_ddi_shared =
4249 B_TRUE;
4250 } else {
4251 cring->mr_info.mri_intr.mi_ddi_shared =
4252 B_TRUE;
4253 }
4254 return;
4255 }
4256 }
4257 }
4258 }
4259
4260 /*
4261 * Called to free all groups of particular type (RX or TX). It's assumed that
4262 * no clients are using these groups.
4263 */
4264 void
mac_free_rings(mac_impl_t * mip,mac_ring_type_t rtype)4265 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype)
4266 {
4267 mac_group_t *group, *groups;
4268 uint_t group_count;
4269
4270 switch (rtype) {
4271 case MAC_RING_TYPE_RX:
4272 if (mip->mi_rx_groups == NULL)
4273 return;
4274
4275 groups = mip->mi_rx_groups;
4276 group_count = mip->mi_rx_group_count;
4277
4278 mip->mi_rx_groups = NULL;
4279 mip->mi_rx_donor_grp = NULL;
4280 mip->mi_rx_group_count = 0;
4281 break;
4282 case MAC_RING_TYPE_TX:
4283 ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free);
4284
4285 if (mip->mi_tx_groups == NULL)
4286 return;
4287
4288 groups = mip->mi_tx_groups;
4289 group_count = mip->mi_tx_group_count;
4290
4291 mip->mi_tx_groups = NULL;
4292 mip->mi_tx_group_count = 0;
4293 mip->mi_tx_group_free = 0;
4294 mip->mi_default_tx_ring = NULL;
4295 break;
4296 default:
4297 ASSERT(B_FALSE);
4298 }
4299
4300 for (group = groups; group != NULL; group = group->mrg_next) {
4301 mac_ring_t *ring;
4302
4303 if (group->mrg_cur_count == 0)
4304 continue;
4305
4306 ASSERT(group->mrg_rings != NULL);
4307
4308 while ((ring = group->mrg_rings) != NULL) {
4309 group->mrg_rings = ring->mr_next;
4310 mac_ring_free(mip, ring);
4311 }
4312 }
4313
4314 /* Free all the cached rings */
4315 mac_ring_freeall(mip);
4316 /* Free the block of group data strutures */
4317 kmem_free(groups, sizeof (mac_group_t) * (group_count + 1));
4318 }
4319
4320 /*
4321 * Associate a MAC address with a receive group.
4322 *
4323 * The return value of this function should always be checked properly, because
4324 * any type of failure could cause unexpected results. A group can be added
4325 * or removed with a MAC address only after it has been reserved. Ideally,
4326 * a successful reservation always leads to calling mac_group_addmac() to
4327 * steer desired traffic. Failure of adding an unicast MAC address doesn't
4328 * always imply that the group is functioning abnormally.
4329 *
4330 * Currently this function is called everywhere, and it reflects assumptions
4331 * about MAC addresses in the implementation. CR 6735196.
4332 */
4333 int
mac_group_addmac(mac_group_t * group,const uint8_t * addr)4334 mac_group_addmac(mac_group_t *group, const uint8_t *addr)
4335 {
4336 ASSERT(group->mrg_type == MAC_RING_TYPE_RX);
4337 ASSERT(group->mrg_info.mgi_addmac != NULL);
4338
4339 return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr));
4340 }
4341
4342 /*
4343 * Remove the association between MAC address and receive group.
4344 */
4345 int
mac_group_remmac(mac_group_t * group,const uint8_t * addr)4346 mac_group_remmac(mac_group_t *group, const uint8_t *addr)
4347 {
4348 ASSERT(group->mrg_type == MAC_RING_TYPE_RX);
4349 ASSERT(group->mrg_info.mgi_remmac != NULL);
4350
4351 return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr));
4352 }
4353
4354 /*
4355 * This is the entry point for packets transmitted through the bridging code.
4356 * If no bridge is in place, MAC_RING_TX transmits using tx ring. The 'rh'
4357 * pointer may be NULL to select the default ring.
4358 */
4359 mblk_t *
mac_bridge_tx(mac_impl_t * mip,mac_ring_handle_t rh,mblk_t * mp)4360 mac_bridge_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp)
4361 {
4362 mac_handle_t mh;
4363
4364 /*
4365 * Once we take a reference on the bridge link, the bridge
4366 * module itself can't unload, so the callback pointers are
4367 * stable.
4368 */
4369 mutex_enter(&mip->mi_bridge_lock);
4370 if ((mh = mip->mi_bridge_link) != NULL)
4371 mac_bridge_ref_cb(mh, B_TRUE);
4372 mutex_exit(&mip->mi_bridge_lock);
4373 if (mh == NULL) {
4374 MAC_RING_TX(mip, rh, mp, mp);
4375 } else {
4376 mp = mac_bridge_tx_cb(mh, rh, mp);
4377 mac_bridge_ref_cb(mh, B_FALSE);
4378 }
4379
4380 return (mp);
4381 }
4382
4383 /*
4384 * Find a ring from its index.
4385 */
4386 mac_ring_handle_t
mac_find_ring(mac_group_handle_t gh,int index)4387 mac_find_ring(mac_group_handle_t gh, int index)
4388 {
4389 mac_group_t *group = (mac_group_t *)gh;
4390 mac_ring_t *ring = group->mrg_rings;
4391
4392 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next)
4393 if (ring->mr_index == index)
4394 break;
4395
4396 return ((mac_ring_handle_t)ring);
4397 }
4398 /*
4399 * Add a ring to an existing group.
4400 *
4401 * The ring must be either passed directly (for example if the ring
4402 * movement is initiated by the framework), or specified through a driver
4403 * index (for example when the ring is added by the driver.
4404 *
4405 * The caller needs to call mac_perim_enter() before calling this function.
4406 */
4407 int
i_mac_group_add_ring(mac_group_t * group,mac_ring_t * ring,int index)4408 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index)
4409 {
4410 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
4411 mac_capab_rings_t *cap_rings;
4412 boolean_t driver_call = (ring == NULL);
4413 mac_group_type_t group_type;
4414 int ret = 0;
4415 flow_entry_t *flent;
4416
4417 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4418
4419 switch (group->mrg_type) {
4420 case MAC_RING_TYPE_RX:
4421 cap_rings = &mip->mi_rx_rings_cap;
4422 group_type = mip->mi_rx_group_type;
4423 break;
4424 case MAC_RING_TYPE_TX:
4425 cap_rings = &mip->mi_tx_rings_cap;
4426 group_type = mip->mi_tx_group_type;
4427 break;
4428 default:
4429 ASSERT(B_FALSE);
4430 }
4431
4432 /*
4433 * There should be no ring with the same ring index in the target
4434 * group.
4435 */
4436 ASSERT(mac_find_ring((mac_group_handle_t)group,
4437 driver_call ? index : ring->mr_index) == NULL);
4438
4439 if (driver_call) {
4440 /*
4441 * The function is called as a result of a request from
4442 * a driver to add a ring to an existing group, for example
4443 * from the aggregation driver. Allocate a new mac_ring_t
4444 * for that ring.
4445 */
4446 ring = mac_init_ring(mip, group, index, cap_rings);
4447 ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT);
4448 } else {
4449 /*
4450 * The function is called as a result of a MAC layer request
4451 * to add a ring to an existing group. In this case the
4452 * ring is being moved between groups, which requires
4453 * the underlying driver to support dynamic grouping,
4454 * and the mac_ring_t already exists.
4455 */
4456 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
4457 ASSERT(group->mrg_driver == NULL ||
4458 cap_rings->mr_gaddring != NULL);
4459 ASSERT(ring->mr_gh == NULL);
4460 }
4461
4462 /*
4463 * At this point the ring should not be in use, and it should be
4464 * of the right for the target group.
4465 */
4466 ASSERT(ring->mr_state < MR_INUSE);
4467 ASSERT(ring->mr_srs == NULL);
4468 ASSERT(ring->mr_type == group->mrg_type);
4469
4470 if (!driver_call) {
4471 /*
4472 * Add the driver level hardware ring if the process was not
4473 * initiated by the driver, and the target group is not the
4474 * group.
4475 */
4476 if (group->mrg_driver != NULL) {
4477 cap_rings->mr_gaddring(group->mrg_driver,
4478 ring->mr_driver, ring->mr_type);
4479 }
4480
4481 /*
4482 * Insert the ring ahead existing rings.
4483 */
4484 ring->mr_next = group->mrg_rings;
4485 group->mrg_rings = ring;
4486 ring->mr_gh = (mac_group_handle_t)group;
4487 group->mrg_cur_count++;
4488 }
4489
4490 /*
4491 * If the group has not been actively used, we're done.
4492 */
4493 if (group->mrg_index != -1 &&
4494 group->mrg_state < MAC_GROUP_STATE_RESERVED)
4495 return (0);
4496
4497 /*
4498 * Start the ring if needed. Failure causes to undo the grouping action.
4499 */
4500 if (ring->mr_state != MR_INUSE) {
4501 if ((ret = mac_start_ring(ring)) != 0) {
4502 if (!driver_call) {
4503 cap_rings->mr_gremring(group->mrg_driver,
4504 ring->mr_driver, ring->mr_type);
4505 }
4506 group->mrg_cur_count--;
4507 group->mrg_rings = ring->mr_next;
4508
4509 ring->mr_gh = NULL;
4510
4511 if (driver_call)
4512 mac_ring_free(mip, ring);
4513
4514 return (ret);
4515 }
4516 }
4517
4518 /*
4519 * Set up SRS/SR according to the ring type.
4520 */
4521 switch (ring->mr_type) {
4522 case MAC_RING_TYPE_RX:
4523 /*
4524 * Setup SRS on top of the new ring if the group is
4525 * reserved for someones exclusive use.
4526 */
4527 if (group->mrg_state == MAC_GROUP_STATE_RESERVED) {
4528 mac_client_impl_t *mcip;
4529
4530 mcip = MAC_GROUP_ONLY_CLIENT(group);
4531 /*
4532 * Even though this group is reserved we migth still
4533 * have multiple clients, i.e a VLAN shares the
4534 * group with the primary mac client.
4535 */
4536 if (mcip != NULL) {
4537 flent = mcip->mci_flent;
4538 ASSERT(flent->fe_rx_srs_cnt > 0);
4539 mac_rx_srs_group_setup(mcip, flent, SRST_LINK);
4540 mac_fanout_setup(mcip, flent,
4541 MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver,
4542 mcip, NULL, NULL);
4543 } else {
4544 ring->mr_classify_type = MAC_SW_CLASSIFIER;
4545 }
4546 }
4547 break;
4548 case MAC_RING_TYPE_TX:
4549 {
4550 mac_grp_client_t *mgcp = group->mrg_clients;
4551 mac_client_impl_t *mcip;
4552 mac_soft_ring_set_t *mac_srs;
4553 mac_srs_tx_t *tx;
4554
4555 if (MAC_GROUP_NO_CLIENT(group)) {
4556 if (ring->mr_state == MR_INUSE)
4557 mac_stop_ring(ring);
4558 ring->mr_flag = 0;
4559 break;
4560 }
4561 /*
4562 * If the rings are being moved to a group that has
4563 * clients using it, then add the new rings to the
4564 * clients SRS.
4565 */
4566 while (mgcp != NULL) {
4567 boolean_t is_aggr;
4568
4569 mcip = mgcp->mgc_client;
4570 flent = mcip->mci_flent;
4571 is_aggr = (mcip->mci_state_flags & MCIS_IS_AGGR);
4572 mac_srs = MCIP_TX_SRS(mcip);
4573 tx = &mac_srs->srs_tx;
4574 mac_tx_client_quiesce((mac_client_handle_t)mcip);
4575 /*
4576 * If we are growing from 1 to multiple rings.
4577 */
4578 if (tx->st_mode == SRS_TX_BW ||
4579 tx->st_mode == SRS_TX_SERIALIZE ||
4580 tx->st_mode == SRS_TX_DEFAULT) {
4581 mac_ring_t *tx_ring = tx->st_arg2;
4582
4583 tx->st_arg2 = NULL;
4584 mac_tx_srs_stat_recreate(mac_srs, B_TRUE);
4585 mac_tx_srs_add_ring(mac_srs, tx_ring);
4586 if (mac_srs->srs_type & SRST_BW_CONTROL) {
4587 tx->st_mode = is_aggr ? SRS_TX_BW_AGGR :
4588 SRS_TX_BW_FANOUT;
4589 } else {
4590 tx->st_mode = is_aggr ? SRS_TX_AGGR :
4591 SRS_TX_FANOUT;
4592 }
4593 tx->st_func = mac_tx_get_func(tx->st_mode);
4594 }
4595 mac_tx_srs_add_ring(mac_srs, ring);
4596 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
4597 mac_rx_deliver, mcip, NULL, NULL);
4598 mac_tx_client_restart((mac_client_handle_t)mcip);
4599 mgcp = mgcp->mgc_next;
4600 }
4601 break;
4602 }
4603 default:
4604 ASSERT(B_FALSE);
4605 }
4606 /*
4607 * For aggr, the default ring will be NULL to begin with. If it
4608 * is NULL, then pick the first ring that gets added as the
4609 * default ring. Any ring in an aggregation can be removed at
4610 * any time (by the user action of removing a link) and if the
4611 * current default ring gets removed, then a new one gets
4612 * picked (see i_mac_group_rem_ring()).
4613 */
4614 if (mip->mi_state_flags & MIS_IS_AGGR &&
4615 mip->mi_default_tx_ring == NULL &&
4616 ring->mr_type == MAC_RING_TYPE_TX) {
4617 mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
4618 }
4619
4620 MAC_RING_UNMARK(ring, MR_INCIPIENT);
4621 return (0);
4622 }
4623
4624 /*
4625 * Remove a ring from it's current group. MAC internal function for dynamic
4626 * grouping.
4627 *
4628 * The caller needs to call mac_perim_enter() before calling this function.
4629 */
4630 void
i_mac_group_rem_ring(mac_group_t * group,mac_ring_t * ring,boolean_t driver_call)4631 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring,
4632 boolean_t driver_call)
4633 {
4634 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
4635 mac_capab_rings_t *cap_rings = NULL;
4636 mac_group_type_t group_type;
4637
4638 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4639
4640 ASSERT(mac_find_ring((mac_group_handle_t)group,
4641 ring->mr_index) == (mac_ring_handle_t)ring);
4642 ASSERT((mac_group_t *)ring->mr_gh == group);
4643 ASSERT(ring->mr_type == group->mrg_type);
4644
4645 if (ring->mr_state == MR_INUSE)
4646 mac_stop_ring(ring);
4647 switch (ring->mr_type) {
4648 case MAC_RING_TYPE_RX:
4649 group_type = mip->mi_rx_group_type;
4650 cap_rings = &mip->mi_rx_rings_cap;
4651
4652 /*
4653 * Only hardware classified packets hold a reference to the
4654 * ring all the way up the Rx path. mac_rx_srs_remove()
4655 * will take care of quiescing the Rx path and removing the
4656 * SRS. The software classified path neither holds a reference
4657 * nor any association with the ring in mac_rx.
4658 */
4659 if (ring->mr_srs != NULL) {
4660 mac_rx_srs_remove(ring->mr_srs);
4661 ring->mr_srs = NULL;
4662 }
4663
4664 break;
4665 case MAC_RING_TYPE_TX:
4666 {
4667 mac_grp_client_t *mgcp;
4668 mac_client_impl_t *mcip;
4669 mac_soft_ring_set_t *mac_srs;
4670 mac_srs_tx_t *tx;
4671 mac_ring_t *rem_ring;
4672 mac_group_t *defgrp;
4673 uint_t ring_info = 0;
4674
4675 /*
4676 * For TX this function is invoked in three
4677 * cases:
4678 *
4679 * 1) In the case of a failure during the
4680 * initial creation of a group when a share is
4681 * associated with a MAC client. So the SRS is not
4682 * yet setup, and will be setup later after the
4683 * group has been reserved and populated.
4684 *
4685 * 2) From mac_release_tx_group() when freeing
4686 * a TX SRS.
4687 *
4688 * 3) In the case of aggr, when a port gets removed,
4689 * the pseudo Tx rings that it exposed gets removed.
4690 *
4691 * In the first two cases the SRS and its soft
4692 * rings are already quiesced.
4693 */
4694 if (driver_call) {
4695 mac_client_impl_t *mcip;
4696 mac_soft_ring_set_t *mac_srs;
4697 mac_soft_ring_t *sringp;
4698 mac_srs_tx_t *srs_tx;
4699
4700 if (mip->mi_state_flags & MIS_IS_AGGR &&
4701 mip->mi_default_tx_ring ==
4702 (mac_ring_handle_t)ring) {
4703 /* pick a new default Tx ring */
4704 mip->mi_default_tx_ring =
4705 (group->mrg_rings != ring) ?
4706 (mac_ring_handle_t)group->mrg_rings :
4707 (mac_ring_handle_t)(ring->mr_next);
4708 }
4709 /* Presently only aggr case comes here */
4710 if (group->mrg_state != MAC_GROUP_STATE_RESERVED)
4711 break;
4712
4713 mcip = MAC_GROUP_ONLY_CLIENT(group);
4714 ASSERT(mcip != NULL);
4715 ASSERT(mcip->mci_state_flags & MCIS_IS_AGGR);
4716 mac_srs = MCIP_TX_SRS(mcip);
4717 ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_AGGR ||
4718 mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR);
4719 srs_tx = &mac_srs->srs_tx;
4720 /*
4721 * Wakeup any callers blocked on this
4722 * Tx ring due to flow control.
4723 */
4724 sringp = srs_tx->st_soft_rings[ring->mr_index];
4725 ASSERT(sringp != NULL);
4726 mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)sringp);
4727 mac_tx_client_quiesce((mac_client_handle_t)mcip);
4728 mac_tx_srs_del_ring(mac_srs, ring);
4729 mac_tx_client_restart((mac_client_handle_t)mcip);
4730 break;
4731 }
4732 ASSERT(ring != (mac_ring_t *)mip->mi_default_tx_ring);
4733 group_type = mip->mi_tx_group_type;
4734 cap_rings = &mip->mi_tx_rings_cap;
4735 /*
4736 * See if we need to take it out of the MAC clients using
4737 * this group
4738 */
4739 if (MAC_GROUP_NO_CLIENT(group))
4740 break;
4741 mgcp = group->mrg_clients;
4742 defgrp = MAC_DEFAULT_TX_GROUP(mip);
4743 while (mgcp != NULL) {
4744 mcip = mgcp->mgc_client;
4745 mac_srs = MCIP_TX_SRS(mcip);
4746 tx = &mac_srs->srs_tx;
4747 mac_tx_client_quiesce((mac_client_handle_t)mcip);
4748 /*
4749 * If we are here when removing rings from the
4750 * defgroup, mac_reserve_tx_ring would have
4751 * already deleted the ring from the MAC
4752 * clients in the group.
4753 */
4754 if (group != defgrp) {
4755 mac_tx_invoke_callbacks(mcip,
4756 (mac_tx_cookie_t)
4757 mac_tx_srs_get_soft_ring(mac_srs, ring));
4758 mac_tx_srs_del_ring(mac_srs, ring);
4759 }
4760 /*
4761 * Additionally, if we are left with only
4762 * one ring in the group after this, we need
4763 * to modify the mode etc. to. (We haven't
4764 * yet taken the ring out, so we check with 2).
4765 */
4766 if (group->mrg_cur_count == 2) {
4767 if (ring->mr_next == NULL)
4768 rem_ring = group->mrg_rings;
4769 else
4770 rem_ring = ring->mr_next;
4771 mac_tx_invoke_callbacks(mcip,
4772 (mac_tx_cookie_t)
4773 mac_tx_srs_get_soft_ring(mac_srs,
4774 rem_ring));
4775 mac_tx_srs_del_ring(mac_srs, rem_ring);
4776 if (rem_ring->mr_state != MR_INUSE) {
4777 (void) mac_start_ring(rem_ring);
4778 }
4779 tx->st_arg2 = (void *)rem_ring;
4780 mac_tx_srs_stat_recreate(mac_srs, B_FALSE);
4781 ring_info = mac_hwring_getinfo(
4782 (mac_ring_handle_t)rem_ring);
4783 /*
4784 * We are shrinking from multiple
4785 * to 1 ring.
4786 */
4787 if (mac_srs->srs_type & SRST_BW_CONTROL) {
4788 tx->st_mode = SRS_TX_BW;
4789 } else if (mac_tx_serialize ||
4790 (ring_info & MAC_RING_TX_SERIALIZE)) {
4791 tx->st_mode = SRS_TX_SERIALIZE;
4792 } else {
4793 tx->st_mode = SRS_TX_DEFAULT;
4794 }
4795 tx->st_func = mac_tx_get_func(tx->st_mode);
4796 }
4797 mac_tx_client_restart((mac_client_handle_t)mcip);
4798 mgcp = mgcp->mgc_next;
4799 }
4800 break;
4801 }
4802 default:
4803 ASSERT(B_FALSE);
4804 }
4805
4806 /*
4807 * Remove the ring from the group.
4808 */
4809 if (ring == group->mrg_rings)
4810 group->mrg_rings = ring->mr_next;
4811 else {
4812 mac_ring_t *pre;
4813
4814 pre = group->mrg_rings;
4815 while (pre->mr_next != ring)
4816 pre = pre->mr_next;
4817 pre->mr_next = ring->mr_next;
4818 }
4819 group->mrg_cur_count--;
4820
4821 if (!driver_call) {
4822 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
4823 ASSERT(group->mrg_driver == NULL ||
4824 cap_rings->mr_gremring != NULL);
4825
4826 /*
4827 * Remove the driver level hardware ring.
4828 */
4829 if (group->mrg_driver != NULL) {
4830 cap_rings->mr_gremring(group->mrg_driver,
4831 ring->mr_driver, ring->mr_type);
4832 }
4833 }
4834
4835 ring->mr_gh = NULL;
4836 if (driver_call)
4837 mac_ring_free(mip, ring);
4838 else
4839 ring->mr_flag = 0;
4840 }
4841
4842 /*
4843 * Move a ring to the target group. If needed, remove the ring from the group
4844 * that it currently belongs to.
4845 *
4846 * The caller need to enter MAC's perimeter by calling mac_perim_enter().
4847 */
4848 static int
mac_group_mov_ring(mac_impl_t * mip,mac_group_t * d_group,mac_ring_t * ring)4849 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring)
4850 {
4851 mac_group_t *s_group = (mac_group_t *)ring->mr_gh;
4852 int rv;
4853
4854 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4855 ASSERT(d_group != NULL);
4856 ASSERT(s_group->mrg_mh == d_group->mrg_mh);
4857
4858 if (s_group == d_group)
4859 return (0);
4860
4861 /*
4862 * Remove it from current group first.
4863 */
4864 if (s_group != NULL)
4865 i_mac_group_rem_ring(s_group, ring, B_FALSE);
4866
4867 /*
4868 * Add it to the new group.
4869 */
4870 rv = i_mac_group_add_ring(d_group, ring, 0);
4871 if (rv != 0) {
4872 /*
4873 * Failed to add ring back to source group. If
4874 * that fails, the ring is stuck in limbo, log message.
4875 */
4876 if (i_mac_group_add_ring(s_group, ring, 0)) {
4877 cmn_err(CE_WARN, "%s: failed to move ring %p\n",
4878 mip->mi_name, (void *)ring);
4879 }
4880 }
4881
4882 return (rv);
4883 }
4884
4885 /*
4886 * Find a MAC address according to its value.
4887 */
4888 mac_address_t *
mac_find_macaddr(mac_impl_t * mip,uint8_t * mac_addr)4889 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr)
4890 {
4891 mac_address_t *map;
4892
4893 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4894
4895 for (map = mip->mi_addresses; map != NULL; map = map->ma_next) {
4896 if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0)
4897 break;
4898 }
4899
4900 return (map);
4901 }
4902
4903 /*
4904 * Check whether the MAC address is shared by multiple clients.
4905 */
4906 boolean_t
mac_check_macaddr_shared(mac_address_t * map)4907 mac_check_macaddr_shared(mac_address_t *map)
4908 {
4909 ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip));
4910
4911 return (map->ma_nusers > 1);
4912 }
4913
4914 /*
4915 * Remove the specified MAC address from the MAC address list and free it.
4916 */
4917 static void
mac_free_macaddr(mac_address_t * map)4918 mac_free_macaddr(mac_address_t *map)
4919 {
4920 mac_impl_t *mip = map->ma_mip;
4921
4922 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4923 ASSERT(mip->mi_addresses != NULL);
4924
4925 map = mac_find_macaddr(mip, map->ma_addr);
4926
4927 ASSERT(map != NULL);
4928 ASSERT(map->ma_nusers == 0);
4929
4930 if (map == mip->mi_addresses) {
4931 mip->mi_addresses = map->ma_next;
4932 } else {
4933 mac_address_t *pre;
4934
4935 pre = mip->mi_addresses;
4936 while (pre->ma_next != map)
4937 pre = pre->ma_next;
4938 pre->ma_next = map->ma_next;
4939 }
4940
4941 kmem_free(map, sizeof (mac_address_t));
4942 }
4943
4944 /*
4945 * Add a MAC address reference for a client. If the desired MAC address
4946 * exists, add a reference to it. Otherwise, add the new address by adding
4947 * it to a reserved group or setting promiscuous mode. Won't try different
4948 * group is the group is non-NULL, so the caller must explictly share
4949 * default group when needed.
4950 *
4951 * Note, the primary MAC address is initialized at registration time, so
4952 * to add it to default group only need to activate it if its reference
4953 * count is still zero. Also, some drivers may not have advertised RINGS
4954 * capability.
4955 */
4956 int
mac_add_macaddr(mac_impl_t * mip,mac_group_t * group,uint8_t * mac_addr,boolean_t use_hw)4957 mac_add_macaddr(mac_impl_t *mip, mac_group_t *group, uint8_t *mac_addr,
4958 boolean_t use_hw)
4959 {
4960 mac_address_t *map;
4961 int err = 0;
4962 boolean_t allocated_map = B_FALSE;
4963
4964 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4965
4966 map = mac_find_macaddr(mip, mac_addr);
4967
4968 /*
4969 * If the new MAC address has not been added. Allocate a new one
4970 * and set it up.
4971 */
4972 if (map == NULL) {
4973 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
4974 map->ma_len = mip->mi_type->mt_addr_length;
4975 bcopy(mac_addr, map->ma_addr, map->ma_len);
4976 map->ma_nusers = 0;
4977 map->ma_group = group;
4978 map->ma_mip = mip;
4979
4980 /* add the new MAC address to the head of the address list */
4981 map->ma_next = mip->mi_addresses;
4982 mip->mi_addresses = map;
4983
4984 allocated_map = B_TRUE;
4985 }
4986
4987 ASSERT(map->ma_group == NULL || map->ma_group == group);
4988 if (map->ma_group == NULL)
4989 map->ma_group = group;
4990
4991 /*
4992 * If the MAC address is already in use, simply account for the
4993 * new client.
4994 */
4995 if (map->ma_nusers++ > 0)
4996 return (0);
4997
4998 /*
4999 * Activate this MAC address by adding it to the reserved group.
5000 */
5001 if (group != NULL) {
5002 err = mac_group_addmac(group, (const uint8_t *)mac_addr);
5003 if (err == 0) {
5004 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5005 return (0);
5006 }
5007 }
5008
5009 /*
5010 * The MAC address addition failed. If the client requires a
5011 * hardware classified MAC address, fail the operation.
5012 */
5013 if (use_hw) {
5014 err = ENOSPC;
5015 goto bail;
5016 }
5017
5018 /*
5019 * Try promiscuous mode.
5020 *
5021 * For drivers that don't advertise RINGS capability, do
5022 * nothing for the primary address.
5023 */
5024 if ((group == NULL) &&
5025 (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) {
5026 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5027 return (0);
5028 }
5029
5030 /*
5031 * Enable promiscuous mode in order to receive traffic
5032 * to the new MAC address.
5033 */
5034 if ((err = i_mac_promisc_set(mip, B_TRUE)) == 0) {
5035 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC;
5036 return (0);
5037 }
5038
5039 /*
5040 * Free the MAC address that could not be added. Don't free
5041 * a pre-existing address, it could have been the entry
5042 * for the primary MAC address which was pre-allocated by
5043 * mac_init_macaddr(), and which must remain on the list.
5044 */
5045 bail:
5046 map->ma_nusers--;
5047 if (allocated_map)
5048 mac_free_macaddr(map);
5049 return (err);
5050 }
5051
5052 /*
5053 * Remove a reference to a MAC address. This may cause to remove the MAC
5054 * address from an associated group or to turn off promiscuous mode.
5055 * The caller needs to handle the failure properly.
5056 */
5057 int
mac_remove_macaddr(mac_address_t * map)5058 mac_remove_macaddr(mac_address_t *map)
5059 {
5060 mac_impl_t *mip = map->ma_mip;
5061 int err = 0;
5062
5063 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5064
5065 ASSERT(map == mac_find_macaddr(mip, map->ma_addr));
5066
5067 /*
5068 * If it's not the last client using this MAC address, only update
5069 * the MAC clients count.
5070 */
5071 if (--map->ma_nusers > 0)
5072 return (0);
5073
5074 /*
5075 * The MAC address is no longer used by any MAC client, so remove
5076 * it from its associated group, or turn off promiscuous mode
5077 * if it was enabled for the MAC address.
5078 */
5079 switch (map->ma_type) {
5080 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
5081 /*
5082 * Don't free the preset primary address for drivers that
5083 * don't advertise RINGS capability.
5084 */
5085 if (map->ma_group == NULL)
5086 return (0);
5087
5088 err = mac_group_remmac(map->ma_group, map->ma_addr);
5089 if (err == 0)
5090 map->ma_group = NULL;
5091 break;
5092 case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
5093 err = i_mac_promisc_set(mip, B_FALSE);
5094 break;
5095 default:
5096 ASSERT(B_FALSE);
5097 }
5098
5099 if (err != 0)
5100 return (err);
5101
5102 /*
5103 * We created MAC address for the primary one at registration, so we
5104 * won't free it here. mac_fini_macaddr() will take care of it.
5105 */
5106 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0)
5107 mac_free_macaddr(map);
5108
5109 return (0);
5110 }
5111
5112 /*
5113 * Update an existing MAC address. The caller need to make sure that the new
5114 * value has not been used.
5115 */
5116 int
mac_update_macaddr(mac_address_t * map,uint8_t * mac_addr)5117 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr)
5118 {
5119 mac_impl_t *mip = map->ma_mip;
5120 int err = 0;
5121
5122 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5123 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
5124
5125 switch (map->ma_type) {
5126 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
5127 /*
5128 * Update the primary address for drivers that are not
5129 * RINGS capable.
5130 */
5131 if (mip->mi_rx_groups == NULL) {
5132 err = mip->mi_unicst(mip->mi_driver, (const uint8_t *)
5133 mac_addr);
5134 if (err != 0)
5135 return (err);
5136 break;
5137 }
5138
5139 /*
5140 * If this MAC address is not currently in use,
5141 * simply break out and update the value.
5142 */
5143 if (map->ma_nusers == 0)
5144 break;
5145
5146 /*
5147 * Need to replace the MAC address associated with a group.
5148 */
5149 err = mac_group_remmac(map->ma_group, map->ma_addr);
5150 if (err != 0)
5151 return (err);
5152
5153 err = mac_group_addmac(map->ma_group, mac_addr);
5154
5155 /*
5156 * Failure hints hardware error. The MAC layer needs to
5157 * have error notification facility to handle this.
5158 * Now, simply try to restore the value.
5159 */
5160 if (err != 0)
5161 (void) mac_group_addmac(map->ma_group, map->ma_addr);
5162
5163 break;
5164 case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
5165 /*
5166 * Need to do nothing more if in promiscuous mode.
5167 */
5168 break;
5169 default:
5170 ASSERT(B_FALSE);
5171 }
5172
5173 /*
5174 * Successfully replaced the MAC address.
5175 */
5176 if (err == 0)
5177 bcopy(mac_addr, map->ma_addr, map->ma_len);
5178
5179 return (err);
5180 }
5181
5182 /*
5183 * Freshen the MAC address with new value. Its caller must have updated the
5184 * hardware MAC address before calling this function.
5185 * This funcitons is supposed to be used to handle the MAC address change
5186 * notification from underlying drivers.
5187 */
5188 void
mac_freshen_macaddr(mac_address_t * map,uint8_t * mac_addr)5189 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr)
5190 {
5191 mac_impl_t *mip = map->ma_mip;
5192
5193 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5194 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
5195
5196 /*
5197 * Freshen the MAC address with new value.
5198 */
5199 bcopy(mac_addr, map->ma_addr, map->ma_len);
5200 bcopy(mac_addr, mip->mi_addr, map->ma_len);
5201
5202 /*
5203 * Update all MAC clients that share this MAC address.
5204 */
5205 mac_unicast_update_clients(mip, map);
5206 }
5207
5208 /*
5209 * Set up the primary MAC address.
5210 */
5211 void
mac_init_macaddr(mac_impl_t * mip)5212 mac_init_macaddr(mac_impl_t *mip)
5213 {
5214 mac_address_t *map;
5215
5216 /*
5217 * The reference count is initialized to zero, until it's really
5218 * activated.
5219 */
5220 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
5221 map->ma_len = mip->mi_type->mt_addr_length;
5222 bcopy(mip->mi_addr, map->ma_addr, map->ma_len);
5223
5224 /*
5225 * If driver advertises RINGS capability, it shouldn't have initialized
5226 * its primary MAC address. For other drivers, including VNIC, the
5227 * primary address must work after registration.
5228 */
5229 if (mip->mi_rx_groups == NULL)
5230 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5231
5232 map->ma_mip = mip;
5233
5234 mip->mi_addresses = map;
5235 }
5236
5237 /*
5238 * Clean up the primary MAC address. Note, only one primary MAC address
5239 * is allowed. All other MAC addresses must have been freed appropriately.
5240 */
5241 void
mac_fini_macaddr(mac_impl_t * mip)5242 mac_fini_macaddr(mac_impl_t *mip)
5243 {
5244 mac_address_t *map = mip->mi_addresses;
5245
5246 if (map == NULL)
5247 return;
5248
5249 /*
5250 * If mi_addresses is initialized, there should be exactly one
5251 * entry left on the list with no users.
5252 */
5253 ASSERT(map->ma_nusers == 0);
5254 ASSERT(map->ma_next == NULL);
5255
5256 kmem_free(map, sizeof (mac_address_t));
5257 mip->mi_addresses = NULL;
5258 }
5259
5260 /*
5261 * Logging related functions.
5262 *
5263 * Note that Kernel statistics have been extended to maintain fine
5264 * granularity of statistics viz. hardware lane, software lane, fanout
5265 * stats etc. However, extended accounting continues to support only
5266 * aggregate statistics like before.
5267 */
5268
5269 /* Write the flow description to a netinfo_t record */
5270 static netinfo_t *
mac_write_flow_desc(flow_entry_t * flent,mac_client_impl_t * mcip)5271 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip)
5272 {
5273 netinfo_t *ninfo;
5274 net_desc_t *ndesc;
5275 flow_desc_t *fdesc;
5276 mac_resource_props_t *mrp;
5277
5278 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5279 if (ninfo == NULL)
5280 return (NULL);
5281 ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP);
5282 if (ndesc == NULL) {
5283 kmem_free(ninfo, sizeof (netinfo_t));
5284 return (NULL);
5285 }
5286
5287 /*
5288 * Grab the fe_lock to see a self-consistent fe_flow_desc.
5289 * Updates to the fe_flow_desc are done under the fe_lock
5290 */
5291 mutex_enter(&flent->fe_lock);
5292 fdesc = &flent->fe_flow_desc;
5293 mrp = &flent->fe_resource_props;
5294
5295 ndesc->nd_name = flent->fe_flow_name;
5296 ndesc->nd_devname = mcip->mci_name;
5297 bcopy(fdesc->fd_src_mac, ndesc->nd_ehost, ETHERADDRL);
5298 bcopy(fdesc->fd_dst_mac, ndesc->nd_edest, ETHERADDRL);
5299 ndesc->nd_sap = htonl(fdesc->fd_sap);
5300 ndesc->nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION;
5301 ndesc->nd_bw_limit = mrp->mrp_maxbw;
5302 if (ndesc->nd_isv4) {
5303 ndesc->nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]);
5304 ndesc->nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]);
5305 } else {
5306 bcopy(&fdesc->fd_local_addr, ndesc->nd_saddr, IPV6_ADDR_LEN);
5307 bcopy(&fdesc->fd_remote_addr, ndesc->nd_daddr, IPV6_ADDR_LEN);
5308 }
5309 ndesc->nd_sport = htons(fdesc->fd_local_port);
5310 ndesc->nd_dport = htons(fdesc->fd_remote_port);
5311 ndesc->nd_protocol = (uint8_t)fdesc->fd_protocol;
5312 mutex_exit(&flent->fe_lock);
5313
5314 ninfo->ni_record = ndesc;
5315 ninfo->ni_size = sizeof (net_desc_t);
5316 ninfo->ni_type = EX_NET_FLDESC_REC;
5317
5318 return (ninfo);
5319 }
5320
5321 /* Write the flow statistics to a netinfo_t record */
5322 static netinfo_t *
mac_write_flow_stats(flow_entry_t * flent)5323 mac_write_flow_stats(flow_entry_t *flent)
5324 {
5325 netinfo_t *ninfo;
5326 net_stat_t *nstat;
5327 mac_soft_ring_set_t *mac_srs;
5328 mac_rx_stats_t *mac_rx_stat;
5329 mac_tx_stats_t *mac_tx_stat;
5330 int i;
5331
5332 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5333 if (ninfo == NULL)
5334 return (NULL);
5335 nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP);
5336 if (nstat == NULL) {
5337 kmem_free(ninfo, sizeof (netinfo_t));
5338 return (NULL);
5339 }
5340
5341 nstat->ns_name = flent->fe_flow_name;
5342 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
5343 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
5344 mac_rx_stat = &mac_srs->srs_rx.sr_stat;
5345
5346 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes +
5347 mac_rx_stat->mrs_pollbytes + mac_rx_stat->mrs_lclbytes;
5348 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt +
5349 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
5350 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors;
5351 }
5352
5353 mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs);
5354 if (mac_srs != NULL) {
5355 mac_tx_stat = &mac_srs->srs_tx.st_stat;
5356
5357 nstat->ns_obytes = mac_tx_stat->mts_obytes;
5358 nstat->ns_opackets = mac_tx_stat->mts_opackets;
5359 nstat->ns_oerrors = mac_tx_stat->mts_oerrors;
5360 }
5361
5362 ninfo->ni_record = nstat;
5363 ninfo->ni_size = sizeof (net_stat_t);
5364 ninfo->ni_type = EX_NET_FLSTAT_REC;
5365
5366 return (ninfo);
5367 }
5368
5369 /* Write the link description to a netinfo_t record */
5370 static netinfo_t *
mac_write_link_desc(mac_client_impl_t * mcip)5371 mac_write_link_desc(mac_client_impl_t *mcip)
5372 {
5373 netinfo_t *ninfo;
5374 net_desc_t *ndesc;
5375 flow_entry_t *flent = mcip->mci_flent;
5376
5377 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5378 if (ninfo == NULL)
5379 return (NULL);
5380 ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP);
5381 if (ndesc == NULL) {
5382 kmem_free(ninfo, sizeof (netinfo_t));
5383 return (NULL);
5384 }
5385
5386 ndesc->nd_name = mcip->mci_name;
5387 ndesc->nd_devname = mcip->mci_name;
5388 ndesc->nd_isv4 = B_TRUE;
5389 /*
5390 * Grab the fe_lock to see a self-consistent fe_flow_desc.
5391 * Updates to the fe_flow_desc are done under the fe_lock
5392 * after removing the flent from the flow table.
5393 */
5394 mutex_enter(&flent->fe_lock);
5395 bcopy(flent->fe_flow_desc.fd_src_mac, ndesc->nd_ehost, ETHERADDRL);
5396 mutex_exit(&flent->fe_lock);
5397
5398 ninfo->ni_record = ndesc;
5399 ninfo->ni_size = sizeof (net_desc_t);
5400 ninfo->ni_type = EX_NET_LNDESC_REC;
5401
5402 return (ninfo);
5403 }
5404
5405 /* Write the link statistics to a netinfo_t record */
5406 static netinfo_t *
mac_write_link_stats(mac_client_impl_t * mcip)5407 mac_write_link_stats(mac_client_impl_t *mcip)
5408 {
5409 netinfo_t *ninfo;
5410 net_stat_t *nstat;
5411 flow_entry_t *flent;
5412 mac_soft_ring_set_t *mac_srs;
5413 mac_rx_stats_t *mac_rx_stat;
5414 mac_tx_stats_t *mac_tx_stat;
5415 int i;
5416
5417 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5418 if (ninfo == NULL)
5419 return (NULL);
5420 nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP);
5421 if (nstat == NULL) {
5422 kmem_free(ninfo, sizeof (netinfo_t));
5423 return (NULL);
5424 }
5425
5426 nstat->ns_name = mcip->mci_name;
5427 flent = mcip->mci_flent;
5428 if (flent != NULL) {
5429 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
5430 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
5431 mac_rx_stat = &mac_srs->srs_rx.sr_stat;
5432
5433 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes +
5434 mac_rx_stat->mrs_pollbytes +
5435 mac_rx_stat->mrs_lclbytes;
5436 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt +
5437 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
5438 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors;
5439 }
5440 }
5441
5442 mac_srs = (mac_soft_ring_set_t *)(mcip->mci_flent->fe_tx_srs);
5443 if (mac_srs != NULL) {
5444 mac_tx_stat = &mac_srs->srs_tx.st_stat;
5445
5446 nstat->ns_obytes = mac_tx_stat->mts_obytes;
5447 nstat->ns_opackets = mac_tx_stat->mts_opackets;
5448 nstat->ns_oerrors = mac_tx_stat->mts_oerrors;
5449 }
5450
5451 ninfo->ni_record = nstat;
5452 ninfo->ni_size = sizeof (net_stat_t);
5453 ninfo->ni_type = EX_NET_LNSTAT_REC;
5454
5455 return (ninfo);
5456 }
5457
5458 typedef struct i_mac_log_state_s {
5459 boolean_t mi_last;
5460 int mi_fenable;
5461 int mi_lenable;
5462 list_t *mi_list;
5463 } i_mac_log_state_t;
5464
5465 /*
5466 * For a given flow, if the description has not been logged before, do it now.
5467 * If it is a VNIC, then we have collected information about it from the MAC
5468 * table, so skip it.
5469 *
5470 * Called through mac_flow_walk_nolock()
5471 *
5472 * Return 0 if successful.
5473 */
5474 static int
mac_log_flowinfo(flow_entry_t * flent,void * arg)5475 mac_log_flowinfo(flow_entry_t *flent, void *arg)
5476 {
5477 mac_client_impl_t *mcip = flent->fe_mcip;
5478 i_mac_log_state_t *lstate = arg;
5479 netinfo_t *ninfo;
5480
5481 if (mcip == NULL)
5482 return (0);
5483
5484 /*
5485 * If the name starts with "vnic", and fe_user_generated is true (to
5486 * exclude the mcast and active flow entries created implicitly for
5487 * a vnic, it is a VNIC flow. i.e. vnic1 is a vnic flow,
5488 * vnic/bge1/mcast1 is not and neither is vnic/bge1/active.
5489 */
5490 if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 &&
5491 (flent->fe_type & FLOW_USER) != 0) {
5492 return (0);
5493 }
5494
5495 if (!flent->fe_desc_logged) {
5496 /*
5497 * We don't return error because we want to continue the
5498 * walk in case this is the last walk which means we
5499 * need to reset fe_desc_logged in all the flows.
5500 */
5501 if ((ninfo = mac_write_flow_desc(flent, mcip)) == NULL)
5502 return (0);
5503 list_insert_tail(lstate->mi_list, ninfo);
5504 flent->fe_desc_logged = B_TRUE;
5505 }
5506
5507 /*
5508 * Regardless of the error, we want to proceed in case we have to
5509 * reset fe_desc_logged.
5510 */
5511 ninfo = mac_write_flow_stats(flent);
5512 if (ninfo == NULL)
5513 return (-1);
5514
5515 list_insert_tail(lstate->mi_list, ninfo);
5516
5517 if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED))
5518 flent->fe_desc_logged = B_FALSE;
5519
5520 return (0);
5521 }
5522
5523 /*
5524 * Log the description for each mac client of this mac_impl_t, if it
5525 * hasn't already been done. Additionally, log statistics for the link as
5526 * well. Walk the flow table and log information for each flow as well.
5527 * If it is the last walk (mci_last), then we turn off mci_desc_logged (and
5528 * also fe_desc_logged, if flow logging is on) since we want to log the
5529 * description if and when logging is restarted.
5530 *
5531 * Return 0 upon success or -1 upon failure
5532 */
5533 static int
i_mac_impl_log(mac_impl_t * mip,i_mac_log_state_t * lstate)5534 i_mac_impl_log(mac_impl_t *mip, i_mac_log_state_t *lstate)
5535 {
5536 mac_client_impl_t *mcip;
5537 netinfo_t *ninfo;
5538
5539 i_mac_perim_enter(mip);
5540 /*
5541 * Only walk the client list for NIC and etherstub
5542 */
5543 if ((mip->mi_state_flags & MIS_DISABLED) ||
5544 ((mip->mi_state_flags & MIS_IS_VNIC) &&
5545 (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) {
5546 i_mac_perim_exit(mip);
5547 return (0);
5548 }
5549
5550 for (mcip = mip->mi_clients_list; mcip != NULL;
5551 mcip = mcip->mci_client_next) {
5552 if (!MCIP_DATAPATH_SETUP(mcip))
5553 continue;
5554 if (lstate->mi_lenable) {
5555 if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) {
5556 ninfo = mac_write_link_desc(mcip);
5557 if (ninfo == NULL) {
5558 /*
5559 * We can't terminate it if this is the last
5560 * walk, else there might be some links with
5561 * mi_desc_logged set to true, which means
5562 * their description won't be logged the next
5563 * time logging is started (similarly for the
5564 * flows within such links). We can continue
5565 * without walking the flow table (i.e. to
5566 * set fe_desc_logged to false) because we
5567 * won't have written any flow stuff for this
5568 * link as we haven't logged the link itself.
5569 */
5570 i_mac_perim_exit(mip);
5571 if (lstate->mi_last)
5572 return (0);
5573 else
5574 return (-1);
5575 }
5576 mcip->mci_state_flags |= MCIS_DESC_LOGGED;
5577 list_insert_tail(lstate->mi_list, ninfo);
5578 }
5579 }
5580
5581 ninfo = mac_write_link_stats(mcip);
5582 if (ninfo == NULL && !lstate->mi_last) {
5583 i_mac_perim_exit(mip);
5584 return (-1);
5585 }
5586 list_insert_tail(lstate->mi_list, ninfo);
5587
5588 if (lstate->mi_last)
5589 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED;
5590
5591 if (lstate->mi_fenable) {
5592 if (mcip->mci_subflow_tab != NULL) {
5593 (void) mac_flow_walk_nolock(
5594 mcip->mci_subflow_tab, mac_log_flowinfo,
5595 lstate);
5596 }
5597 }
5598 }
5599 i_mac_perim_exit(mip);
5600 return (0);
5601 }
5602
5603 /*
5604 * modhash walker function to add a mac_impl_t to a list
5605 */
5606 /*ARGSUSED*/
5607 static uint_t
i_mac_impl_list_walker(mod_hash_key_t key,mod_hash_val_t * val,void * arg)5608 i_mac_impl_list_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
5609 {
5610 list_t *list = (list_t *)arg;
5611 mac_impl_t *mip = (mac_impl_t *)val;
5612
5613 if ((mip->mi_state_flags & MIS_DISABLED) == 0) {
5614 list_insert_tail(list, mip);
5615 mip->mi_ref++;
5616 }
5617
5618 return (MH_WALK_CONTINUE);
5619 }
5620
5621 void
i_mac_log_info(list_t * net_log_list,i_mac_log_state_t * lstate)5622 i_mac_log_info(list_t *net_log_list, i_mac_log_state_t *lstate)
5623 {
5624 list_t mac_impl_list;
5625 mac_impl_t *mip;
5626 netinfo_t *ninfo;
5627
5628 /* Create list of mac_impls */
5629 ASSERT(RW_LOCK_HELD(&i_mac_impl_lock));
5630 list_create(&mac_impl_list, sizeof (mac_impl_t), offsetof(mac_impl_t,
5631 mi_node));
5632 mod_hash_walk(i_mac_impl_hash, i_mac_impl_list_walker, &mac_impl_list);
5633 rw_exit(&i_mac_impl_lock);
5634
5635 /* Create log entries for each mac_impl */
5636 for (mip = list_head(&mac_impl_list); mip != NULL;
5637 mip = list_next(&mac_impl_list, mip)) {
5638 if (i_mac_impl_log(mip, lstate) != 0)
5639 continue;
5640 }
5641
5642 /* Remove elements and destroy list of mac_impls */
5643 rw_enter(&i_mac_impl_lock, RW_WRITER);
5644 while ((mip = list_remove_tail(&mac_impl_list)) != NULL) {
5645 mip->mi_ref--;
5646 }
5647 rw_exit(&i_mac_impl_lock);
5648 list_destroy(&mac_impl_list);
5649
5650 /*
5651 * Write log entries to files outside of locks, free associated
5652 * structures, and remove entries from the list.
5653 */
5654 while ((ninfo = list_head(net_log_list)) != NULL) {
5655 (void) exacct_commit_netinfo(ninfo->ni_record, ninfo->ni_type);
5656 list_remove(net_log_list, ninfo);
5657 kmem_free(ninfo->ni_record, ninfo->ni_size);
5658 kmem_free(ninfo, sizeof (*ninfo));
5659 }
5660 list_destroy(net_log_list);
5661 }
5662
5663 /*
5664 * The timer thread that runs every mac_logging_interval seconds and logs
5665 * link and/or flow information.
5666 */
5667 /* ARGSUSED */
5668 void
mac_log_linkinfo(void * arg)5669 mac_log_linkinfo(void *arg)
5670 {
5671 i_mac_log_state_t lstate;
5672 list_t net_log_list;
5673
5674 list_create(&net_log_list, sizeof (netinfo_t),
5675 offsetof(netinfo_t, ni_link));
5676
5677 rw_enter(&i_mac_impl_lock, RW_READER);
5678 if (!mac_flow_log_enable && !mac_link_log_enable) {
5679 rw_exit(&i_mac_impl_lock);
5680 return;
5681 }
5682 lstate.mi_fenable = mac_flow_log_enable;
5683 lstate.mi_lenable = mac_link_log_enable;
5684 lstate.mi_last = B_FALSE;
5685 lstate.mi_list = &net_log_list;
5686
5687 /* Write log entries for each mac_impl in the list */
5688 i_mac_log_info(&net_log_list, &lstate);
5689
5690 if (mac_flow_log_enable || mac_link_log_enable) {
5691 mac_logging_timer = timeout(mac_log_linkinfo, NULL,
5692 SEC_TO_TICK(mac_logging_interval));
5693 }
5694 }
5695
5696 typedef struct i_mac_fastpath_state_s {
5697 boolean_t mf_disable;
5698 int mf_err;
5699 } i_mac_fastpath_state_t;
5700
5701 /* modhash walker function to enable or disable fastpath */
5702 /*ARGSUSED*/
5703 static uint_t
i_mac_fastpath_walker(mod_hash_key_t key,mod_hash_val_t * val,void * arg)5704 i_mac_fastpath_walker(mod_hash_key_t key, mod_hash_val_t *val,
5705 void *arg)
5706 {
5707 i_mac_fastpath_state_t *state = arg;
5708 mac_handle_t mh = (mac_handle_t)val;
5709
5710 if (state->mf_disable)
5711 state->mf_err = mac_fastpath_disable(mh);
5712 else
5713 mac_fastpath_enable(mh);
5714
5715 return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE);
5716 }
5717
5718 /*
5719 * Start the logging timer.
5720 */
5721 int
mac_start_logusage(mac_logtype_t type,uint_t interval)5722 mac_start_logusage(mac_logtype_t type, uint_t interval)
5723 {
5724 i_mac_fastpath_state_t dstate = {B_TRUE, 0};
5725 i_mac_fastpath_state_t estate = {B_FALSE, 0};
5726 int err;
5727
5728 rw_enter(&i_mac_impl_lock, RW_WRITER);
5729 switch (type) {
5730 case MAC_LOGTYPE_FLOW:
5731 if (mac_flow_log_enable) {
5732 rw_exit(&i_mac_impl_lock);
5733 return (0);
5734 }
5735 /* FALLTHRU */
5736 case MAC_LOGTYPE_LINK:
5737 if (mac_link_log_enable) {
5738 rw_exit(&i_mac_impl_lock);
5739 return (0);
5740 }
5741 break;
5742 default:
5743 ASSERT(0);
5744 }
5745
5746 /* Disable fastpath */
5747 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &dstate);
5748 if ((err = dstate.mf_err) != 0) {
5749 /* Reenable fastpath */
5750 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate);
5751 rw_exit(&i_mac_impl_lock);
5752 return (err);
5753 }
5754
5755 switch (type) {
5756 case MAC_LOGTYPE_FLOW:
5757 mac_flow_log_enable = B_TRUE;
5758 /* FALLTHRU */
5759 case MAC_LOGTYPE_LINK:
5760 mac_link_log_enable = B_TRUE;
5761 break;
5762 }
5763
5764 mac_logging_interval = interval;
5765 rw_exit(&i_mac_impl_lock);
5766 mac_log_linkinfo(NULL);
5767 return (0);
5768 }
5769
5770 /*
5771 * Stop the logging timer if both link and flow logging are turned off.
5772 */
5773 void
mac_stop_logusage(mac_logtype_t type)5774 mac_stop_logusage(mac_logtype_t type)
5775 {
5776 i_mac_log_state_t lstate;
5777 i_mac_fastpath_state_t estate = {B_FALSE, 0};
5778 list_t net_log_list;
5779
5780 list_create(&net_log_list, sizeof (netinfo_t),
5781 offsetof(netinfo_t, ni_link));
5782
5783 rw_enter(&i_mac_impl_lock, RW_WRITER);
5784
5785 lstate.mi_fenable = mac_flow_log_enable;
5786 lstate.mi_lenable = mac_link_log_enable;
5787 lstate.mi_list = &net_log_list;
5788
5789 /* Last walk */
5790 lstate.mi_last = B_TRUE;
5791
5792 switch (type) {
5793 case MAC_LOGTYPE_FLOW:
5794 if (lstate.mi_fenable) {
5795 ASSERT(mac_link_log_enable);
5796 mac_flow_log_enable = B_FALSE;
5797 mac_link_log_enable = B_FALSE;
5798 break;
5799 }
5800 /* FALLTHRU */
5801 case MAC_LOGTYPE_LINK:
5802 if (!lstate.mi_lenable || mac_flow_log_enable) {
5803 rw_exit(&i_mac_impl_lock);
5804 return;
5805 }
5806 mac_link_log_enable = B_FALSE;
5807 break;
5808 default:
5809 ASSERT(0);
5810 }
5811
5812 /* Reenable fastpath */
5813 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate);
5814
5815 (void) untimeout(mac_logging_timer);
5816 mac_logging_timer = 0;
5817
5818 /* Write log entries for each mac_impl in the list */
5819 i_mac_log_info(&net_log_list, &lstate);
5820 }
5821
5822 /*
5823 * Walk the rx and tx SRS/SRs for a flow and update the priority value.
5824 */
5825 void
mac_flow_update_priority(mac_client_impl_t * mcip,flow_entry_t * flent)5826 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent)
5827 {
5828 pri_t pri;
5829 int count;
5830 mac_soft_ring_set_t *mac_srs;
5831
5832 if (flent->fe_rx_srs_cnt <= 0)
5833 return;
5834
5835 if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type ==
5836 SRST_FLOW) {
5837 pri = FLOW_PRIORITY(mcip->mci_min_pri,
5838 mcip->mci_max_pri,
5839 flent->fe_resource_props.mrp_priority);
5840 } else {
5841 pri = mcip->mci_max_pri;
5842 }
5843
5844 for (count = 0; count < flent->fe_rx_srs_cnt; count++) {
5845 mac_srs = flent->fe_rx_srs[count];
5846 mac_update_srs_priority(mac_srs, pri);
5847 }
5848 /*
5849 * If we have a Tx SRS, we need to modify all the threads associated
5850 * with it.
5851 */
5852 if (flent->fe_tx_srs != NULL)
5853 mac_update_srs_priority(flent->fe_tx_srs, pri);
5854 }
5855
5856 /*
5857 * RX and TX rings are reserved according to different semantics depending
5858 * on the requests from the MAC clients and type of rings:
5859 *
5860 * On the Tx side, by default we reserve individual rings, independently from
5861 * the groups.
5862 *
5863 * On the Rx side, the reservation is at the granularity of the group
5864 * of rings, and used for v12n level 1 only. It has a special case for the
5865 * primary client.
5866 *
5867 * If a share is allocated to a MAC client, we allocate a TX group and an
5868 * RX group to the client, and assign TX rings and RX rings to these
5869 * groups according to information gathered from the driver through
5870 * the share capability.
5871 *
5872 * The foreseable evolution of Rx rings will handle v12n level 2 and higher
5873 * to allocate individual rings out of a group and program the hw classifier
5874 * based on IP address or higher level criteria.
5875 */
5876
5877 /*
5878 * mac_reserve_tx_ring()
5879 * Reserve a unused ring by marking it with MR_INUSE state.
5880 * As reserved, the ring is ready to function.
5881 *
5882 * Notes for Hybrid I/O:
5883 *
5884 * If a specific ring is needed, it is specified through the desired_ring
5885 * argument. Otherwise that argument is set to NULL.
5886 * If the desired ring was previous allocated to another client, this
5887 * function swaps it with a new ring from the group of unassigned rings.
5888 */
5889 mac_ring_t *
mac_reserve_tx_ring(mac_impl_t * mip,mac_ring_t * desired_ring)5890 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring)
5891 {
5892 mac_group_t *group;
5893 mac_grp_client_t *mgcp;
5894 mac_client_impl_t *mcip;
5895 mac_soft_ring_set_t *srs;
5896
5897 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5898
5899 /*
5900 * Find an available ring and start it before changing its status.
5901 * The unassigned rings are at the end of the mi_tx_groups
5902 * array.
5903 */
5904 group = MAC_DEFAULT_TX_GROUP(mip);
5905
5906 /* Can't take the default ring out of the default group */
5907 ASSERT(desired_ring != (mac_ring_t *)mip->mi_default_tx_ring);
5908
5909 if (desired_ring->mr_state == MR_FREE) {
5910 ASSERT(MAC_GROUP_NO_CLIENT(group));
5911 if (mac_start_ring(desired_ring) != 0)
5912 return (NULL);
5913 return (desired_ring);
5914 }
5915 /*
5916 * There are clients using this ring, so let's move the clients
5917 * away from using this ring.
5918 */
5919 for (mgcp = group->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
5920 mcip = mgcp->mgc_client;
5921 mac_tx_client_quiesce((mac_client_handle_t)mcip);
5922 srs = MCIP_TX_SRS(mcip);
5923 ASSERT(mac_tx_srs_ring_present(srs, desired_ring));
5924 mac_tx_invoke_callbacks(mcip,
5925 (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(srs,
5926 desired_ring));
5927 mac_tx_srs_del_ring(srs, desired_ring);
5928 mac_tx_client_restart((mac_client_handle_t)mcip);
5929 }
5930 return (desired_ring);
5931 }
5932
5933 /*
5934 * For a reserved group with multiple clients, return the primary client.
5935 */
5936 static mac_client_impl_t *
mac_get_grp_primary(mac_group_t * grp)5937 mac_get_grp_primary(mac_group_t *grp)
5938 {
5939 mac_grp_client_t *mgcp = grp->mrg_clients;
5940 mac_client_impl_t *mcip;
5941
5942 while (mgcp != NULL) {
5943 mcip = mgcp->mgc_client;
5944 if (mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC)
5945 return (mcip);
5946 mgcp = mgcp->mgc_next;
5947 }
5948 return (NULL);
5949 }
5950
5951 /*
5952 * Hybrid I/O specifies the ring that should be given to a share.
5953 * If the ring is already used by clients, then we need to release
5954 * the ring back to the default group so that we can give it to
5955 * the share. This means the clients using this ring now get a
5956 * replacement ring. If there aren't any replacement rings, this
5957 * function returns a failure.
5958 */
5959 static int
mac_reclaim_ring_from_grp(mac_impl_t * mip,mac_ring_type_t ring_type,mac_ring_t * ring,mac_ring_t ** rings,int nrings)5960 mac_reclaim_ring_from_grp(mac_impl_t *mip, mac_ring_type_t ring_type,
5961 mac_ring_t *ring, mac_ring_t **rings, int nrings)
5962 {
5963 mac_group_t *group = (mac_group_t *)ring->mr_gh;
5964 mac_resource_props_t *mrp;
5965 mac_client_impl_t *mcip;
5966 mac_group_t *defgrp;
5967 mac_ring_t *tring;
5968 mac_group_t *tgrp;
5969 int i;
5970 int j;
5971
5972 mcip = MAC_GROUP_ONLY_CLIENT(group);
5973 if (mcip == NULL)
5974 mcip = mac_get_grp_primary(group);
5975 ASSERT(mcip != NULL);
5976 ASSERT(mcip->mci_share == NULL);
5977
5978 mrp = MCIP_RESOURCE_PROPS(mcip);
5979 if (ring_type == MAC_RING_TYPE_RX) {
5980 defgrp = mip->mi_rx_donor_grp;
5981 if ((mrp->mrp_mask & MRP_RX_RINGS) == 0) {
5982 /* Need to put this mac client in the default group */
5983 if (mac_rx_switch_group(mcip, group, defgrp) != 0)
5984 return (ENOSPC);
5985 } else {
5986 /*
5987 * Switch this ring with some other ring from
5988 * the default group.
5989 */
5990 for (tring = defgrp->mrg_rings; tring != NULL;
5991 tring = tring->mr_next) {
5992 if (tring->mr_index == 0)
5993 continue;
5994 for (j = 0; j < nrings; j++) {
5995 if (rings[j] == tring)
5996 break;
5997 }
5998 if (j >= nrings)
5999 break;
6000 }
6001 if (tring == NULL)
6002 return (ENOSPC);
6003 if (mac_group_mov_ring(mip, group, tring) != 0)
6004 return (ENOSPC);
6005 if (mac_group_mov_ring(mip, defgrp, ring) != 0) {
6006 (void) mac_group_mov_ring(mip, defgrp, tring);
6007 return (ENOSPC);
6008 }
6009 }
6010 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp);
6011 return (0);
6012 }
6013
6014 defgrp = MAC_DEFAULT_TX_GROUP(mip);
6015 if (ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6016 /*
6017 * See if we can get a spare ring to replace the default
6018 * ring.
6019 */
6020 if (defgrp->mrg_cur_count == 1) {
6021 /*
6022 * Need to get a ring from another client, see if
6023 * there are any clients that can be moved to
6024 * the default group, thereby freeing some rings.
6025 */
6026 for (i = 0; i < mip->mi_tx_group_count; i++) {
6027 tgrp = &mip->mi_tx_groups[i];
6028 if (tgrp->mrg_state ==
6029 MAC_GROUP_STATE_REGISTERED) {
6030 continue;
6031 }
6032 mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
6033 if (mcip == NULL)
6034 mcip = mac_get_grp_primary(tgrp);
6035 ASSERT(mcip != NULL);
6036 mrp = MCIP_RESOURCE_PROPS(mcip);
6037 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) {
6038 ASSERT(tgrp->mrg_cur_count == 1);
6039 /*
6040 * If this ring is part of the
6041 * rings asked by the share we cannot
6042 * use it as the default ring.
6043 */
6044 for (j = 0; j < nrings; j++) {
6045 if (rings[j] == tgrp->mrg_rings)
6046 break;
6047 }
6048 if (j < nrings)
6049 continue;
6050 mac_tx_client_quiesce(
6051 (mac_client_handle_t)mcip);
6052 mac_tx_switch_group(mcip, tgrp,
6053 defgrp);
6054 mac_tx_client_restart(
6055 (mac_client_handle_t)mcip);
6056 break;
6057 }
6058 }
6059 /*
6060 * All the rings are reserved, can't give up the
6061 * default ring.
6062 */
6063 if (defgrp->mrg_cur_count <= 1)
6064 return (ENOSPC);
6065 }
6066 /*
6067 * Swap the default ring with another.
6068 */
6069 for (tring = defgrp->mrg_rings; tring != NULL;
6070 tring = tring->mr_next) {
6071 /*
6072 * If this ring is part of the rings asked by the
6073 * share we cannot use it as the default ring.
6074 */
6075 for (j = 0; j < nrings; j++) {
6076 if (rings[j] == tring)
6077 break;
6078 }
6079 if (j >= nrings)
6080 break;
6081 }
6082 ASSERT(tring != NULL);
6083 mip->mi_default_tx_ring = (mac_ring_handle_t)tring;
6084 return (0);
6085 }
6086 /*
6087 * The Tx ring is with a group reserved by a MAC client. See if
6088 * we can swap it.
6089 */
6090 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
6091 mcip = MAC_GROUP_ONLY_CLIENT(group);
6092 if (mcip == NULL)
6093 mcip = mac_get_grp_primary(group);
6094 ASSERT(mcip != NULL);
6095 mrp = MCIP_RESOURCE_PROPS(mcip);
6096 mac_tx_client_quiesce((mac_client_handle_t)mcip);
6097 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) {
6098 ASSERT(group->mrg_cur_count == 1);
6099 /* Put this mac client in the default group */
6100 mac_tx_switch_group(mcip, group, defgrp);
6101 } else {
6102 /*
6103 * Switch this ring with some other ring from
6104 * the default group.
6105 */
6106 for (tring = defgrp->mrg_rings; tring != NULL;
6107 tring = tring->mr_next) {
6108 if (tring == (mac_ring_t *)mip->mi_default_tx_ring)
6109 continue;
6110 /*
6111 * If this ring is part of the rings asked by the
6112 * share we cannot use it for swapping.
6113 */
6114 for (j = 0; j < nrings; j++) {
6115 if (rings[j] == tring)
6116 break;
6117 }
6118 if (j >= nrings)
6119 break;
6120 }
6121 if (tring == NULL) {
6122 mac_tx_client_restart((mac_client_handle_t)mcip);
6123 return (ENOSPC);
6124 }
6125 if (mac_group_mov_ring(mip, group, tring) != 0) {
6126 mac_tx_client_restart((mac_client_handle_t)mcip);
6127 return (ENOSPC);
6128 }
6129 if (mac_group_mov_ring(mip, defgrp, ring) != 0) {
6130 (void) mac_group_mov_ring(mip, defgrp, tring);
6131 mac_tx_client_restart((mac_client_handle_t)mcip);
6132 return (ENOSPC);
6133 }
6134 }
6135 mac_tx_client_restart((mac_client_handle_t)mcip);
6136 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp);
6137 return (0);
6138 }
6139
6140 /*
6141 * Populate a zero-ring group with rings. If the share is non-NULL,
6142 * the rings are chosen according to that share.
6143 * Invoked after allocating a new RX or TX group through
6144 * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively.
6145 * Returns zero on success, an errno otherwise.
6146 */
6147 int
i_mac_group_allocate_rings(mac_impl_t * mip,mac_ring_type_t ring_type,mac_group_t * src_group,mac_group_t * new_group,mac_share_handle_t share,uint32_t ringcnt)6148 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type,
6149 mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share,
6150 uint32_t ringcnt)
6151 {
6152 mac_ring_t **rings, *ring;
6153 uint_t nrings;
6154 int rv = 0, i = 0, j;
6155
6156 ASSERT((ring_type == MAC_RING_TYPE_RX &&
6157 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) ||
6158 (ring_type == MAC_RING_TYPE_TX &&
6159 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC));
6160
6161 /*
6162 * First find the rings to allocate to the group.
6163 */
6164 if (share != NULL) {
6165 /* get rings through ms_squery() */
6166 mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings);
6167 ASSERT(nrings != 0);
6168 rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t),
6169 KM_SLEEP);
6170 mip->mi_share_capab.ms_squery(share, ring_type,
6171 (mac_ring_handle_t *)rings, &nrings);
6172 for (i = 0; i < nrings; i++) {
6173 /*
6174 * If we have given this ring to a non-default
6175 * group, we need to check if we can get this
6176 * ring.
6177 */
6178 ring = rings[i];
6179 if (ring->mr_gh != (mac_group_handle_t)src_group ||
6180 ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6181 if (mac_reclaim_ring_from_grp(mip, ring_type,
6182 ring, rings, nrings) != 0) {
6183 rv = ENOSPC;
6184 goto bail;
6185 }
6186 }
6187 }
6188 } else {
6189 /*
6190 * Pick one ring from default group.
6191 *
6192 * for now pick the second ring which requires the first ring
6193 * at index 0 to stay in the default group, since it is the
6194 * ring which carries the multicast traffic.
6195 * We need a better way for a driver to indicate this,
6196 * for example a per-ring flag.
6197 */
6198 rings = kmem_alloc(ringcnt * sizeof (mac_ring_handle_t),
6199 KM_SLEEP);
6200 for (ring = src_group->mrg_rings; ring != NULL;
6201 ring = ring->mr_next) {
6202 if (ring_type == MAC_RING_TYPE_RX &&
6203 ring->mr_index == 0) {
6204 continue;
6205 }
6206 if (ring_type == MAC_RING_TYPE_TX &&
6207 ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6208 continue;
6209 }
6210 rings[i++] = ring;
6211 if (i == ringcnt)
6212 break;
6213 }
6214 ASSERT(ring != NULL);
6215 nrings = i;
6216 /* Not enough rings as required */
6217 if (nrings != ringcnt) {
6218 rv = ENOSPC;
6219 goto bail;
6220 }
6221 }
6222
6223 switch (ring_type) {
6224 case MAC_RING_TYPE_RX:
6225 if (src_group->mrg_cur_count - nrings < 1) {
6226 /* we ran out of rings */
6227 rv = ENOSPC;
6228 goto bail;
6229 }
6230
6231 /* move receive rings to new group */
6232 for (i = 0; i < nrings; i++) {
6233 rv = mac_group_mov_ring(mip, new_group, rings[i]);
6234 if (rv != 0) {
6235 /* move rings back on failure */
6236 for (j = 0; j < i; j++) {
6237 (void) mac_group_mov_ring(mip,
6238 src_group, rings[j]);
6239 }
6240 goto bail;
6241 }
6242 }
6243 break;
6244
6245 case MAC_RING_TYPE_TX: {
6246 mac_ring_t *tmp_ring;
6247
6248 /* move the TX rings to the new group */
6249 for (i = 0; i < nrings; i++) {
6250 /* get the desired ring */
6251 tmp_ring = mac_reserve_tx_ring(mip, rings[i]);
6252 if (tmp_ring == NULL) {
6253 rv = ENOSPC;
6254 goto bail;
6255 }
6256 ASSERT(tmp_ring == rings[i]);
6257 rv = mac_group_mov_ring(mip, new_group, rings[i]);
6258 if (rv != 0) {
6259 /* cleanup on failure */
6260 for (j = 0; j < i; j++) {
6261 (void) mac_group_mov_ring(mip,
6262 MAC_DEFAULT_TX_GROUP(mip),
6263 rings[j]);
6264 }
6265 goto bail;
6266 }
6267 }
6268 break;
6269 }
6270 }
6271
6272 /* add group to share */
6273 if (share != NULL)
6274 mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver);
6275
6276 bail:
6277 /* free temporary array of rings */
6278 kmem_free(rings, nrings * sizeof (mac_ring_handle_t));
6279
6280 return (rv);
6281 }
6282
6283 void
mac_group_add_client(mac_group_t * grp,mac_client_impl_t * mcip)6284 mac_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip)
6285 {
6286 mac_grp_client_t *mgcp;
6287
6288 for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
6289 if (mgcp->mgc_client == mcip)
6290 break;
6291 }
6292
6293 VERIFY(mgcp == NULL);
6294
6295 mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP);
6296 mgcp->mgc_client = mcip;
6297 mgcp->mgc_next = grp->mrg_clients;
6298 grp->mrg_clients = mgcp;
6299
6300 }
6301
6302 void
mac_group_remove_client(mac_group_t * grp,mac_client_impl_t * mcip)6303 mac_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip)
6304 {
6305 mac_grp_client_t *mgcp, **pprev;
6306
6307 for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL;
6308 pprev = &mgcp->mgc_next, mgcp = *pprev) {
6309 if (mgcp->mgc_client == mcip)
6310 break;
6311 }
6312
6313 ASSERT(mgcp != NULL);
6314
6315 *pprev = mgcp->mgc_next;
6316 kmem_free(mgcp, sizeof (mac_grp_client_t));
6317 }
6318
6319 /*
6320 * mac_reserve_rx_group()
6321 *
6322 * Finds an available group and exclusively reserves it for a client.
6323 * The group is chosen to suit the flow's resource controls (bandwidth and
6324 * fanout requirements) and the address type.
6325 * If the requestor is the pimary MAC then return the group with the
6326 * largest number of rings, otherwise the default ring when available.
6327 */
6328 mac_group_t *
mac_reserve_rx_group(mac_client_impl_t * mcip,uint8_t * mac_addr,boolean_t move)6329 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, boolean_t move)
6330 {
6331 mac_share_handle_t share = mcip->mci_share;
6332 mac_impl_t *mip = mcip->mci_mip;
6333 mac_group_t *grp = NULL;
6334 int i;
6335 int err = 0;
6336 mac_address_t *map;
6337 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip);
6338 int nrings;
6339 int donor_grp_rcnt;
6340 boolean_t need_exclgrp = B_FALSE;
6341 int need_rings = 0;
6342 mac_group_t *candidate_grp = NULL;
6343 mac_client_impl_t *gclient;
6344 mac_resource_props_t *gmrp;
6345 mac_group_t *donorgrp = NULL;
6346 boolean_t rxhw = mrp->mrp_mask & MRP_RX_RINGS;
6347 boolean_t unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC;
6348 boolean_t isprimary;
6349
6350 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
6351
6352 isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC;
6353
6354 /*
6355 * Check if a group already has this mac address (case of VLANs)
6356 * unless we are moving this MAC client from one group to another.
6357 */
6358 if (!move && (map = mac_find_macaddr(mip, mac_addr)) != NULL) {
6359 if (map->ma_group != NULL)
6360 return (map->ma_group);
6361 }
6362 if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0)
6363 return (NULL);
6364 /*
6365 * If exclusive open, return NULL which will enable the
6366 * caller to use the default group.
6367 */
6368 if (mcip->mci_state_flags & MCIS_EXCLUSIVE)
6369 return (NULL);
6370
6371 /* For dynamic groups default unspecified to 1 */
6372 if (rxhw && unspec &&
6373 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6374 mrp->mrp_nrxrings = 1;
6375 }
6376 /*
6377 * For static grouping we allow only specifying rings=0 and
6378 * unspecified
6379 */
6380 if (rxhw && mrp->mrp_nrxrings > 0 &&
6381 mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) {
6382 return (NULL);
6383 }
6384 if (rxhw) {
6385 /*
6386 * We have explicitly asked for a group (with nrxrings,
6387 * if unspec).
6388 */
6389 if (unspec || mrp->mrp_nrxrings > 0) {
6390 need_exclgrp = B_TRUE;
6391 need_rings = mrp->mrp_nrxrings;
6392 } else if (mrp->mrp_nrxrings == 0) {
6393 /*
6394 * We have asked for a software group.
6395 */
6396 return (NULL);
6397 }
6398 } else if (isprimary && mip->mi_nactiveclients == 1 &&
6399 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6400 /*
6401 * If the primary is the only active client on this
6402 * mip and we have not asked for any rings, we give
6403 * it the default group so that the primary gets to
6404 * use all the rings.
6405 */
6406 return (NULL);
6407 }
6408
6409 /* The group that can donate rings */
6410 donorgrp = mip->mi_rx_donor_grp;
6411
6412 /*
6413 * The number of rings that the default group can donate.
6414 * We need to leave at least one ring.
6415 */
6416 donor_grp_rcnt = donorgrp->mrg_cur_count - 1;
6417
6418 /*
6419 * Try to exclusively reserve a RX group.
6420 *
6421 * For flows requiring HW_DEFAULT_RING (unicast flow of the primary
6422 * client), try to reserve the a non-default RX group and give
6423 * it all the rings from the donor group, except the default ring
6424 *
6425 * For flows requiring HW_RING (unicast flow of other clients), try
6426 * to reserve non-default RX group with the specified number of
6427 * rings, if available.
6428 *
6429 * For flows that have not asked for software or hardware ring,
6430 * try to reserve a non-default group with 1 ring, if available.
6431 */
6432 for (i = 1; i < mip->mi_rx_group_count; i++) {
6433 grp = &mip->mi_rx_groups[i];
6434
6435 DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name,
6436 int, grp->mrg_index, mac_group_state_t, grp->mrg_state);
6437
6438 /*
6439 * Check if this group could be a candidate group for
6440 * eviction if we need a group for this MAC client,
6441 * but there aren't any. A candidate group is one
6442 * that didn't ask for an exclusive group, but got
6443 * one and it has enough rings (combined with what
6444 * the donor group can donate) for the new MAC
6445 * client
6446 */
6447 if (grp->mrg_state >= MAC_GROUP_STATE_RESERVED) {
6448 /*
6449 * If the primary/donor group is not the default
6450 * group, don't bother looking for a candidate group.
6451 * If we don't have enough rings we will check
6452 * if the primary group can be vacated.
6453 */
6454 if (candidate_grp == NULL &&
6455 donorgrp == MAC_DEFAULT_RX_GROUP(mip)) {
6456 ASSERT(!MAC_GROUP_NO_CLIENT(grp));
6457 gclient = MAC_GROUP_ONLY_CLIENT(grp);
6458 if (gclient == NULL)
6459 gclient = mac_get_grp_primary(grp);
6460 ASSERT(gclient != NULL);
6461 gmrp = MCIP_RESOURCE_PROPS(gclient);
6462 if (gclient->mci_share == NULL &&
6463 (gmrp->mrp_mask & MRP_RX_RINGS) == 0 &&
6464 (unspec ||
6465 (grp->mrg_cur_count + donor_grp_rcnt >=
6466 need_rings))) {
6467 candidate_grp = grp;
6468 }
6469 }
6470 continue;
6471 }
6472 /*
6473 * This group could already be SHARED by other multicast
6474 * flows on this client. In that case, the group would
6475 * be shared and has already been started.
6476 */
6477 ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT);
6478
6479 if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) &&
6480 (mac_start_group(grp) != 0)) {
6481 continue;
6482 }
6483
6484 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC)
6485 break;
6486 ASSERT(grp->mrg_cur_count == 0);
6487
6488 /*
6489 * Populate the group. Rings should be taken
6490 * from the donor group.
6491 */
6492 nrings = rxhw ? need_rings : isprimary ? donor_grp_rcnt: 1;
6493
6494 /*
6495 * If the donor group can't donate, let's just walk and
6496 * see if someone can vacate a group, so that we have
6497 * enough rings for this, unless we already have
6498 * identified a candiate group..
6499 */
6500 if (nrings <= donor_grp_rcnt) {
6501 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
6502 donorgrp, grp, share, nrings);
6503 if (err == 0) {
6504 /*
6505 * For a share i_mac_group_allocate_rings gets
6506 * the rings from the driver, let's populate
6507 * the property for the client now.
6508 */
6509 if (share != NULL) {
6510 mac_client_set_rings(
6511 (mac_client_handle_t)mcip,
6512 grp->mrg_cur_count, -1);
6513 }
6514 if (mac_is_primary_client(mcip) && !rxhw)
6515 mip->mi_rx_donor_grp = grp;
6516 break;
6517 }
6518 }
6519
6520 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
6521 mip->mi_name, int, grp->mrg_index, int, err);
6522
6523 /*
6524 * It's a dynamic group but the grouping operation
6525 * failed.
6526 */
6527 mac_stop_group(grp);
6528 }
6529 /* We didn't find an exclusive group for this MAC client */
6530 if (i >= mip->mi_rx_group_count) {
6531
6532 if (!need_exclgrp)
6533 return (NULL);
6534
6535 /*
6536 * If we found a candidate group then we switch the
6537 * MAC client from the candidate_group to the default
6538 * group and give the group to this MAC client. If
6539 * we didn't find a candidate_group, check if the
6540 * primary is in its own group and if it can make way
6541 * for this MAC client.
6542 */
6543 if (candidate_grp == NULL &&
6544 donorgrp != MAC_DEFAULT_RX_GROUP(mip) &&
6545 donorgrp->mrg_cur_count >= need_rings) {
6546 candidate_grp = donorgrp;
6547 }
6548 if (candidate_grp != NULL) {
6549 boolean_t prim_grp = B_FALSE;
6550
6551 /*
6552 * Switch the MAC client from the candidate group
6553 * to the default group.. If this group was the
6554 * donor group, then after the switch we need
6555 * to update the donor group too.
6556 */
6557 grp = candidate_grp;
6558 gclient = MAC_GROUP_ONLY_CLIENT(grp);
6559 if (gclient == NULL)
6560 gclient = mac_get_grp_primary(grp);
6561 if (grp == mip->mi_rx_donor_grp)
6562 prim_grp = B_TRUE;
6563 if (mac_rx_switch_group(gclient, grp,
6564 MAC_DEFAULT_RX_GROUP(mip)) != 0) {
6565 return (NULL);
6566 }
6567 if (prim_grp) {
6568 mip->mi_rx_donor_grp =
6569 MAC_DEFAULT_RX_GROUP(mip);
6570 donorgrp = MAC_DEFAULT_RX_GROUP(mip);
6571 }
6572
6573
6574 /*
6575 * Now give this group with the required rings
6576 * to this MAC client.
6577 */
6578 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
6579 if (mac_start_group(grp) != 0)
6580 return (NULL);
6581
6582 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC)
6583 return (grp);
6584
6585 donor_grp_rcnt = donorgrp->mrg_cur_count - 1;
6586 ASSERT(grp->mrg_cur_count == 0);
6587 ASSERT(donor_grp_rcnt >= need_rings);
6588 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
6589 donorgrp, grp, share, need_rings);
6590 if (err == 0) {
6591 /*
6592 * For a share i_mac_group_allocate_rings gets
6593 * the rings from the driver, let's populate
6594 * the property for the client now.
6595 */
6596 if (share != NULL) {
6597 mac_client_set_rings(
6598 (mac_client_handle_t)mcip,
6599 grp->mrg_cur_count, -1);
6600 }
6601 DTRACE_PROBE2(rx__group__reserved,
6602 char *, mip->mi_name, int, grp->mrg_index);
6603 return (grp);
6604 }
6605 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
6606 mip->mi_name, int, grp->mrg_index, int, err);
6607 mac_stop_group(grp);
6608 }
6609 return (NULL);
6610 }
6611 ASSERT(grp != NULL);
6612
6613 DTRACE_PROBE2(rx__group__reserved,
6614 char *, mip->mi_name, int, grp->mrg_index);
6615 return (grp);
6616 }
6617
6618 /*
6619 * mac_rx_release_group()
6620 *
6621 * This is called when there are no clients left for the group.
6622 * The group is stopped and marked MAC_GROUP_STATE_REGISTERED,
6623 * and if it is a non default group, the shares are removed and
6624 * all rings are assigned back to default group.
6625 */
6626 void
mac_release_rx_group(mac_client_impl_t * mcip,mac_group_t * group)6627 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group)
6628 {
6629 mac_impl_t *mip = mcip->mci_mip;
6630 mac_ring_t *ring;
6631
6632 ASSERT(group != MAC_DEFAULT_RX_GROUP(mip));
6633
6634 if (mip->mi_rx_donor_grp == group)
6635 mip->mi_rx_donor_grp = MAC_DEFAULT_RX_GROUP(mip);
6636
6637 /*
6638 * This is the case where there are no clients left. Any
6639 * SRS etc on this group have also be quiesced.
6640 */
6641 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
6642 if (ring->mr_classify_type == MAC_HW_CLASSIFIER) {
6643 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
6644 /*
6645 * Remove the SRS associated with the HW ring.
6646 * As a result, polling will be disabled.
6647 */
6648 ring->mr_srs = NULL;
6649 }
6650 ASSERT(group->mrg_state < MAC_GROUP_STATE_RESERVED ||
6651 ring->mr_state == MR_INUSE);
6652 if (ring->mr_state == MR_INUSE) {
6653 mac_stop_ring(ring);
6654 ring->mr_flag = 0;
6655 }
6656 }
6657
6658 /* remove group from share */
6659 if (mcip->mci_share != NULL) {
6660 mip->mi_share_capab.ms_sremove(mcip->mci_share,
6661 group->mrg_driver);
6662 }
6663
6664 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6665 mac_ring_t *ring;
6666
6667 /*
6668 * Rings were dynamically allocated to group.
6669 * Move rings back to default group.
6670 */
6671 while ((ring = group->mrg_rings) != NULL) {
6672 (void) mac_group_mov_ring(mip, mip->mi_rx_donor_grp,
6673 ring);
6674 }
6675 }
6676 mac_stop_group(group);
6677 /*
6678 * Possible improvement: See if we can assign the group just released
6679 * to a another client of the mip
6680 */
6681 }
6682
6683 /*
6684 * When we move the primary's mac address between groups, we need to also
6685 * take all the clients sharing the same mac address along with it (VLANs)
6686 * We remove the mac address for such clients from the group after quiescing
6687 * them. When we add the mac address we restart the client. Note that
6688 * the primary's mac address is removed from the group after all the
6689 * other clients sharing the address are removed. Similarly, the primary's
6690 * mac address is added before all the other client's mac address are
6691 * added. While grp is the group where the clients reside, tgrp is
6692 * the group where the addresses have to be added.
6693 */
6694 static void
mac_rx_move_macaddr_prim(mac_client_impl_t * mcip,mac_group_t * grp,mac_group_t * tgrp,uint8_t * maddr,boolean_t add)6695 mac_rx_move_macaddr_prim(mac_client_impl_t *mcip, mac_group_t *grp,
6696 mac_group_t *tgrp, uint8_t *maddr, boolean_t add)
6697 {
6698 mac_impl_t *mip = mcip->mci_mip;
6699 mac_grp_client_t *mgcp = grp->mrg_clients;
6700 mac_client_impl_t *gmcip;
6701 boolean_t prim;
6702
6703 prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0;
6704
6705 /*
6706 * If the clients are in a non-default group, we just have to
6707 * walk the group's client list. If it is in the default group
6708 * (which will be shared by other clients as well, we need to
6709 * check if the unicast address matches mcip's unicast.
6710 */
6711 while (mgcp != NULL) {
6712 gmcip = mgcp->mgc_client;
6713 if (gmcip != mcip &&
6714 (grp != MAC_DEFAULT_RX_GROUP(mip) ||
6715 mcip->mci_unicast == gmcip->mci_unicast)) {
6716 if (!add) {
6717 mac_rx_client_quiesce(
6718 (mac_client_handle_t)gmcip);
6719 (void) mac_remove_macaddr(mcip->mci_unicast);
6720 } else {
6721 (void) mac_add_macaddr(mip, tgrp, maddr, prim);
6722 mac_rx_client_restart(
6723 (mac_client_handle_t)gmcip);
6724 }
6725 }
6726 mgcp = mgcp->mgc_next;
6727 }
6728 }
6729
6730
6731 /*
6732 * Move the MAC address from fgrp to tgrp. If this is the primary client,
6733 * we need to take any VLANs etc. together too.
6734 */
6735 static int
mac_rx_move_macaddr(mac_client_impl_t * mcip,mac_group_t * fgrp,mac_group_t * tgrp)6736 mac_rx_move_macaddr(mac_client_impl_t *mcip, mac_group_t *fgrp,
6737 mac_group_t *tgrp)
6738 {
6739 mac_impl_t *mip = mcip->mci_mip;
6740 uint8_t maddr[MAXMACADDRLEN];
6741 int err = 0;
6742 boolean_t prim;
6743 boolean_t multiclnt = B_FALSE;
6744
6745 mac_rx_client_quiesce((mac_client_handle_t)mcip);
6746 ASSERT(mcip->mci_unicast != NULL);
6747 bcopy(mcip->mci_unicast->ma_addr, maddr, mcip->mci_unicast->ma_len);
6748
6749 prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0;
6750 if (mcip->mci_unicast->ma_nusers > 1) {
6751 mac_rx_move_macaddr_prim(mcip, fgrp, NULL, maddr, B_FALSE);
6752 multiclnt = B_TRUE;
6753 }
6754 ASSERT(mcip->mci_unicast->ma_nusers == 1);
6755 err = mac_remove_macaddr(mcip->mci_unicast);
6756 if (err != 0) {
6757 mac_rx_client_restart((mac_client_handle_t)mcip);
6758 if (multiclnt) {
6759 mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr,
6760 B_TRUE);
6761 }
6762 return (err);
6763 }
6764 /*
6765 * Program the H/W Classifier first, if this fails we need
6766 * not proceed with the other stuff.
6767 */
6768 if ((err = mac_add_macaddr(mip, tgrp, maddr, prim)) != 0) {
6769 /* Revert back the H/W Classifier */
6770 if ((err = mac_add_macaddr(mip, fgrp, maddr, prim)) != 0) {
6771 /*
6772 * This should not fail now since it worked earlier,
6773 * should we panic?
6774 */
6775 cmn_err(CE_WARN,
6776 "mac_rx_switch_group: switching %p back"
6777 " to group %p failed!!", (void *)mcip,
6778 (void *)fgrp);
6779 }
6780 mac_rx_client_restart((mac_client_handle_t)mcip);
6781 if (multiclnt) {
6782 mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr,
6783 B_TRUE);
6784 }
6785 return (err);
6786 }
6787 mcip->mci_unicast = mac_find_macaddr(mip, maddr);
6788 mac_rx_client_restart((mac_client_handle_t)mcip);
6789 if (multiclnt)
6790 mac_rx_move_macaddr_prim(mcip, fgrp, tgrp, maddr, B_TRUE);
6791 return (err);
6792 }
6793
6794 /*
6795 * Switch the MAC client from one group to another. This means we need
6796 * to remove the MAC address from the group, remove the MAC client,
6797 * teardown the SRSs and revert the group state. Then, we add the client
6798 * to the destination group, set the SRSs, and add the MAC address to the
6799 * group.
6800 */
6801 int
mac_rx_switch_group(mac_client_impl_t * mcip,mac_group_t * fgrp,mac_group_t * tgrp)6802 mac_rx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp,
6803 mac_group_t *tgrp)
6804 {
6805 int err;
6806 mac_group_state_t next_state;
6807 mac_client_impl_t *group_only_mcip;
6808 mac_client_impl_t *gmcip;
6809 mac_impl_t *mip = mcip->mci_mip;
6810 mac_grp_client_t *mgcp;
6811
6812 ASSERT(fgrp == mcip->mci_flent->fe_rx_ring_group);
6813
6814 if ((err = mac_rx_move_macaddr(mcip, fgrp, tgrp)) != 0)
6815 return (err);
6816
6817 /*
6818 * The group might be reserved, but SRSs may not be set up, e.g.
6819 * primary and its vlans using a reserved group.
6820 */
6821 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED &&
6822 MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) {
6823 mac_rx_srs_group_teardown(mcip->mci_flent, B_TRUE);
6824 }
6825 if (fgrp != MAC_DEFAULT_RX_GROUP(mip)) {
6826 mgcp = fgrp->mrg_clients;
6827 while (mgcp != NULL) {
6828 gmcip = mgcp->mgc_client;
6829 mgcp = mgcp->mgc_next;
6830 mac_group_remove_client(fgrp, gmcip);
6831 mac_group_add_client(tgrp, gmcip);
6832 gmcip->mci_flent->fe_rx_ring_group = tgrp;
6833 }
6834 mac_release_rx_group(mcip, fgrp);
6835 ASSERT(MAC_GROUP_NO_CLIENT(fgrp));
6836 mac_set_group_state(fgrp, MAC_GROUP_STATE_REGISTERED);
6837 } else {
6838 mac_group_remove_client(fgrp, mcip);
6839 mac_group_add_client(tgrp, mcip);
6840 mcip->mci_flent->fe_rx_ring_group = tgrp;
6841 /*
6842 * If there are other clients (VLANs) sharing this address
6843 * we should be here only for the primary.
6844 */
6845 if (mcip->mci_unicast->ma_nusers > 1) {
6846 /*
6847 * We need to move all the clients that are using
6848 * this h/w address.
6849 */
6850 mgcp = fgrp->mrg_clients;
6851 while (mgcp != NULL) {
6852 gmcip = mgcp->mgc_client;
6853 mgcp = mgcp->mgc_next;
6854 if (mcip->mci_unicast == gmcip->mci_unicast) {
6855 mac_group_remove_client(fgrp, gmcip);
6856 mac_group_add_client(tgrp, gmcip);
6857 gmcip->mci_flent->fe_rx_ring_group =
6858 tgrp;
6859 }
6860 }
6861 }
6862 /*
6863 * The default group will still take the multicast,
6864 * broadcast traffic etc., so it won't go to
6865 * MAC_GROUP_STATE_REGISTERED.
6866 */
6867 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED)
6868 mac_rx_group_unmark(fgrp, MR_CONDEMNED);
6869 mac_set_group_state(fgrp, MAC_GROUP_STATE_SHARED);
6870 }
6871 next_state = mac_group_next_state(tgrp, &group_only_mcip,
6872 MAC_DEFAULT_RX_GROUP(mip), B_TRUE);
6873 mac_set_group_state(tgrp, next_state);
6874 /*
6875 * If the destination group is reserved, setup the SRSs etc.
6876 */
6877 if (tgrp->mrg_state == MAC_GROUP_STATE_RESERVED) {
6878 mac_rx_srs_group_setup(mcip, mcip->mci_flent, SRST_LINK);
6879 mac_fanout_setup(mcip, mcip->mci_flent,
6880 MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, mcip, NULL,
6881 NULL);
6882 mac_rx_group_unmark(tgrp, MR_INCIPIENT);
6883 } else {
6884 mac_rx_switch_grp_to_sw(tgrp);
6885 }
6886 return (0);
6887 }
6888
6889 /*
6890 * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup()
6891 * when a share was allocated to the client.
6892 */
6893 mac_group_t *
mac_reserve_tx_group(mac_client_impl_t * mcip,boolean_t move)6894 mac_reserve_tx_group(mac_client_impl_t *mcip, boolean_t move)
6895 {
6896 mac_impl_t *mip = mcip->mci_mip;
6897 mac_group_t *grp = NULL;
6898 int rv;
6899 int i;
6900 int err;
6901 mac_group_t *defgrp;
6902 mac_share_handle_t share = mcip->mci_share;
6903 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip);
6904 int nrings;
6905 int defnrings;
6906 boolean_t need_exclgrp = B_FALSE;
6907 int need_rings = 0;
6908 mac_group_t *candidate_grp = NULL;
6909 mac_client_impl_t *gclient;
6910 mac_resource_props_t *gmrp;
6911 boolean_t txhw = mrp->mrp_mask & MRP_TX_RINGS;
6912 boolean_t unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC;
6913 boolean_t isprimary;
6914
6915 isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC;
6916 /*
6917 * When we come here for a VLAN on the primary (dladm create-vlan),
6918 * we need to pair it along with the primary (to keep it consistent
6919 * with the RX side). So, we check if the primary is already assigned
6920 * to a group and return the group if so. The other way is also
6921 * true, i.e. the VLAN is already created and now we are plumbing
6922 * the primary.
6923 */
6924 if (!move && isprimary) {
6925 for (gclient = mip->mi_clients_list; gclient != NULL;
6926 gclient = gclient->mci_client_next) {
6927 if (gclient->mci_flent->fe_type & FLOW_PRIMARY_MAC &&
6928 gclient->mci_flent->fe_tx_ring_group != NULL) {
6929 return (gclient->mci_flent->fe_tx_ring_group);
6930 }
6931 }
6932 }
6933
6934 if (mip->mi_tx_groups == NULL || mip->mi_tx_group_count == 0)
6935 return (NULL);
6936
6937 /* For dynamic groups, default unspec to 1 */
6938 if (txhw && unspec &&
6939 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6940 mrp->mrp_ntxrings = 1;
6941 }
6942 /*
6943 * For static grouping we allow only specifying rings=0 and
6944 * unspecified
6945 */
6946 if (txhw && mrp->mrp_ntxrings > 0 &&
6947 mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC) {
6948 return (NULL);
6949 }
6950
6951 if (txhw) {
6952 /*
6953 * We have explicitly asked for a group (with ntxrings,
6954 * if unspec).
6955 */
6956 if (unspec || mrp->mrp_ntxrings > 0) {
6957 need_exclgrp = B_TRUE;
6958 need_rings = mrp->mrp_ntxrings;
6959 } else if (mrp->mrp_ntxrings == 0) {
6960 /*
6961 * We have asked for a software group.
6962 */
6963 return (NULL);
6964 }
6965 }
6966 defgrp = MAC_DEFAULT_TX_GROUP(mip);
6967 /*
6968 * The number of rings that the default group can donate.
6969 * We need to leave at least one ring - the default ring - in
6970 * this group.
6971 */
6972 defnrings = defgrp->mrg_cur_count - 1;
6973
6974 /*
6975 * Primary gets default group unless explicitly told not
6976 * to (i.e. rings > 0).
6977 */
6978 if (isprimary && !need_exclgrp)
6979 return (NULL);
6980
6981 nrings = (mrp->mrp_mask & MRP_TX_RINGS) != 0 ? mrp->mrp_ntxrings : 1;
6982 for (i = 0; i < mip->mi_tx_group_count; i++) {
6983 grp = &mip->mi_tx_groups[i];
6984 if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) ||
6985 (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) {
6986 /*
6987 * Select a candidate for replacement if we don't
6988 * get an exclusive group. A candidate group is one
6989 * that didn't ask for an exclusive group, but got
6990 * one and it has enough rings (combined with what
6991 * the default group can donate) for the new MAC
6992 * client.
6993 */
6994 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED &&
6995 candidate_grp == NULL) {
6996 gclient = MAC_GROUP_ONLY_CLIENT(grp);
6997 if (gclient == NULL)
6998 gclient = mac_get_grp_primary(grp);
6999 gmrp = MCIP_RESOURCE_PROPS(gclient);
7000 if (gclient->mci_share == NULL &&
7001 (gmrp->mrp_mask & MRP_TX_RINGS) == 0 &&
7002 (unspec ||
7003 (grp->mrg_cur_count + defnrings) >=
7004 need_rings)) {
7005 candidate_grp = grp;
7006 }
7007 }
7008 continue;
7009 }
7010 /*
7011 * If the default can't donate let's just walk and
7012 * see if someone can vacate a group, so that we have
7013 * enough rings for this.
7014 */
7015 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC ||
7016 nrings <= defnrings) {
7017 if (grp->mrg_state == MAC_GROUP_STATE_REGISTERED) {
7018 rv = mac_start_group(grp);
7019 ASSERT(rv == 0);
7020 }
7021 break;
7022 }
7023 }
7024
7025 /* The default group */
7026 if (i >= mip->mi_tx_group_count) {
7027 /*
7028 * If we need an exclusive group and have identified a
7029 * candidate group we switch the MAC client from the
7030 * candidate group to the default group and give the
7031 * candidate group to this client.
7032 */
7033 if (need_exclgrp && candidate_grp != NULL) {
7034 /*
7035 * Switch the MAC client from the candidate group
7036 * to the default group.
7037 */
7038 grp = candidate_grp;
7039 gclient = MAC_GROUP_ONLY_CLIENT(grp);
7040 if (gclient == NULL)
7041 gclient = mac_get_grp_primary(grp);
7042 mac_tx_client_quiesce((mac_client_handle_t)gclient);
7043 mac_tx_switch_group(gclient, grp, defgrp);
7044 mac_tx_client_restart((mac_client_handle_t)gclient);
7045
7046 /*
7047 * Give the candidate group with the specified number
7048 * of rings to this MAC client.
7049 */
7050 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
7051 rv = mac_start_group(grp);
7052 ASSERT(rv == 0);
7053
7054 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC)
7055 return (grp);
7056
7057 ASSERT(grp->mrg_cur_count == 0);
7058 ASSERT(defgrp->mrg_cur_count > need_rings);
7059
7060 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX,
7061 defgrp, grp, share, need_rings);
7062 if (err == 0) {
7063 /*
7064 * For a share i_mac_group_allocate_rings gets
7065 * the rings from the driver, let's populate
7066 * the property for the client now.
7067 */
7068 if (share != NULL) {
7069 mac_client_set_rings(
7070 (mac_client_handle_t)mcip, -1,
7071 grp->mrg_cur_count);
7072 }
7073 mip->mi_tx_group_free--;
7074 return (grp);
7075 }
7076 DTRACE_PROBE3(tx__group__reserve__alloc__rings, char *,
7077 mip->mi_name, int, grp->mrg_index, int, err);
7078 mac_stop_group(grp);
7079 }
7080 return (NULL);
7081 }
7082 /*
7083 * We got an exclusive group, but it is not dynamic.
7084 */
7085 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) {
7086 mip->mi_tx_group_free--;
7087 return (grp);
7088 }
7089
7090 rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, defgrp, grp,
7091 share, nrings);
7092 if (rv != 0) {
7093 DTRACE_PROBE3(tx__group__reserve__alloc__rings,
7094 char *, mip->mi_name, int, grp->mrg_index, int, rv);
7095 mac_stop_group(grp);
7096 return (NULL);
7097 }
7098 /*
7099 * For a share i_mac_group_allocate_rings gets the rings from the
7100 * driver, let's populate the property for the client now.
7101 */
7102 if (share != NULL) {
7103 mac_client_set_rings((mac_client_handle_t)mcip, -1,
7104 grp->mrg_cur_count);
7105 }
7106 mip->mi_tx_group_free--;
7107 return (grp);
7108 }
7109
7110 void
mac_release_tx_group(mac_client_impl_t * mcip,mac_group_t * grp)7111 mac_release_tx_group(mac_client_impl_t *mcip, mac_group_t *grp)
7112 {
7113 mac_impl_t *mip = mcip->mci_mip;
7114 mac_share_handle_t share = mcip->mci_share;
7115 mac_ring_t *ring;
7116 mac_soft_ring_set_t *srs = MCIP_TX_SRS(mcip);
7117 mac_group_t *defgrp;
7118
7119 defgrp = MAC_DEFAULT_TX_GROUP(mip);
7120 if (srs != NULL) {
7121 if (srs->srs_soft_ring_count > 0) {
7122 for (ring = grp->mrg_rings; ring != NULL;
7123 ring = ring->mr_next) {
7124 ASSERT(mac_tx_srs_ring_present(srs, ring));
7125 mac_tx_invoke_callbacks(mcip,
7126 (mac_tx_cookie_t)
7127 mac_tx_srs_get_soft_ring(srs, ring));
7128 mac_tx_srs_del_ring(srs, ring);
7129 }
7130 } else {
7131 ASSERT(srs->srs_tx.st_arg2 != NULL);
7132 srs->srs_tx.st_arg2 = NULL;
7133 mac_srs_stat_delete(srs);
7134 }
7135 }
7136 if (share != NULL)
7137 mip->mi_share_capab.ms_sremove(share, grp->mrg_driver);
7138
7139 /* move the ring back to the pool */
7140 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
7141 while ((ring = grp->mrg_rings) != NULL)
7142 (void) mac_group_mov_ring(mip, defgrp, ring);
7143 }
7144 mac_stop_group(grp);
7145 mip->mi_tx_group_free++;
7146 }
7147
7148 /*
7149 * Disassociate a MAC client from a group, i.e go through the rings in the
7150 * group and delete all the soft rings tied to them.
7151 */
7152 static void
mac_tx_dismantle_soft_rings(mac_group_t * fgrp,flow_entry_t * flent)7153 mac_tx_dismantle_soft_rings(mac_group_t *fgrp, flow_entry_t *flent)
7154 {
7155 mac_client_impl_t *mcip = flent->fe_mcip;
7156 mac_soft_ring_set_t *tx_srs;
7157 mac_srs_tx_t *tx;
7158 mac_ring_t *ring;
7159
7160 tx_srs = flent->fe_tx_srs;
7161 tx = &tx_srs->srs_tx;
7162
7163 /* Single ring case we haven't created any soft rings */
7164 if (tx->st_mode == SRS_TX_BW || tx->st_mode == SRS_TX_SERIALIZE ||
7165 tx->st_mode == SRS_TX_DEFAULT) {
7166 tx->st_arg2 = NULL;
7167 mac_srs_stat_delete(tx_srs);
7168 /* Fanout case, where we have to dismantle the soft rings */
7169 } else {
7170 for (ring = fgrp->mrg_rings; ring != NULL;
7171 ring = ring->mr_next) {
7172 ASSERT(mac_tx_srs_ring_present(tx_srs, ring));
7173 mac_tx_invoke_callbacks(mcip,
7174 (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(tx_srs,
7175 ring));
7176 mac_tx_srs_del_ring(tx_srs, ring);
7177 }
7178 ASSERT(tx->st_arg2 == NULL);
7179 }
7180 }
7181
7182 /*
7183 * Switch the MAC client from one group to another. This means we need
7184 * to remove the MAC client, teardown the SRSs and revert the group state.
7185 * Then, we add the client to the destination roup, set the SRSs etc.
7186 */
7187 void
mac_tx_switch_group(mac_client_impl_t * mcip,mac_group_t * fgrp,mac_group_t * tgrp)7188 mac_tx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp,
7189 mac_group_t *tgrp)
7190 {
7191 mac_client_impl_t *group_only_mcip;
7192 mac_impl_t *mip = mcip->mci_mip;
7193 flow_entry_t *flent = mcip->mci_flent;
7194 mac_group_t *defgrp;
7195 mac_grp_client_t *mgcp;
7196 mac_client_impl_t *gmcip;
7197 flow_entry_t *gflent;
7198
7199 defgrp = MAC_DEFAULT_TX_GROUP(mip);
7200 ASSERT(fgrp == flent->fe_tx_ring_group);
7201
7202 if (fgrp == defgrp) {
7203 /*
7204 * If this is the primary we need to find any VLANs on
7205 * the primary and move them too.
7206 */
7207 mac_group_remove_client(fgrp, mcip);
7208 mac_tx_dismantle_soft_rings(fgrp, flent);
7209 if (mcip->mci_unicast->ma_nusers > 1) {
7210 mgcp = fgrp->mrg_clients;
7211 while (mgcp != NULL) {
7212 gmcip = mgcp->mgc_client;
7213 mgcp = mgcp->mgc_next;
7214 if (mcip->mci_unicast != gmcip->mci_unicast)
7215 continue;
7216 mac_tx_client_quiesce(
7217 (mac_client_handle_t)gmcip);
7218
7219 gflent = gmcip->mci_flent;
7220 mac_group_remove_client(fgrp, gmcip);
7221 mac_tx_dismantle_soft_rings(fgrp, gflent);
7222
7223 mac_group_add_client(tgrp, gmcip);
7224 gflent->fe_tx_ring_group = tgrp;
7225 /* We could directly set this to SHARED */
7226 tgrp->mrg_state = mac_group_next_state(tgrp,
7227 &group_only_mcip, defgrp, B_FALSE);
7228
7229 mac_tx_srs_group_setup(gmcip, gflent,
7230 SRST_LINK);
7231 mac_fanout_setup(gmcip, gflent,
7232 MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver,
7233 gmcip, NULL, NULL);
7234
7235 mac_tx_client_restart(
7236 (mac_client_handle_t)gmcip);
7237 }
7238 }
7239 if (MAC_GROUP_NO_CLIENT(fgrp)) {
7240 mac_ring_t *ring;
7241 int cnt;
7242 int ringcnt;
7243
7244 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED;
7245 /*
7246 * Additionally, we also need to stop all
7247 * the rings in the default group, except
7248 * the default ring. The reason being
7249 * this group won't be released since it is
7250 * the default group, so the rings won't
7251 * be stopped otherwise.
7252 */
7253 ringcnt = fgrp->mrg_cur_count;
7254 ring = fgrp->mrg_rings;
7255 for (cnt = 0; cnt < ringcnt; cnt++) {
7256 if (ring->mr_state == MR_INUSE &&
7257 ring !=
7258 (mac_ring_t *)mip->mi_default_tx_ring) {
7259 mac_stop_ring(ring);
7260 ring->mr_flag = 0;
7261 }
7262 ring = ring->mr_next;
7263 }
7264 } else if (MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) {
7265 fgrp->mrg_state = MAC_GROUP_STATE_RESERVED;
7266 } else {
7267 ASSERT(fgrp->mrg_state == MAC_GROUP_STATE_SHARED);
7268 }
7269 } else {
7270 /*
7271 * We could have VLANs sharing the non-default group with
7272 * the primary.
7273 */
7274 mgcp = fgrp->mrg_clients;
7275 while (mgcp != NULL) {
7276 gmcip = mgcp->mgc_client;
7277 mgcp = mgcp->mgc_next;
7278 if (gmcip == mcip)
7279 continue;
7280 mac_tx_client_quiesce((mac_client_handle_t)gmcip);
7281 gflent = gmcip->mci_flent;
7282
7283 mac_group_remove_client(fgrp, gmcip);
7284 mac_tx_dismantle_soft_rings(fgrp, gflent);
7285
7286 mac_group_add_client(tgrp, gmcip);
7287 gflent->fe_tx_ring_group = tgrp;
7288 /* We could directly set this to SHARED */
7289 tgrp->mrg_state = mac_group_next_state(tgrp,
7290 &group_only_mcip, defgrp, B_FALSE);
7291 mac_tx_srs_group_setup(gmcip, gflent, SRST_LINK);
7292 mac_fanout_setup(gmcip, gflent,
7293 MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver,
7294 gmcip, NULL, NULL);
7295
7296 mac_tx_client_restart((mac_client_handle_t)gmcip);
7297 }
7298 mac_group_remove_client(fgrp, mcip);
7299 mac_release_tx_group(mcip, fgrp);
7300 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED;
7301 }
7302
7303 /* Add it to the tgroup */
7304 mac_group_add_client(tgrp, mcip);
7305 flent->fe_tx_ring_group = tgrp;
7306 tgrp->mrg_state = mac_group_next_state(tgrp, &group_only_mcip,
7307 defgrp, B_FALSE);
7308
7309 mac_tx_srs_group_setup(mcip, flent, SRST_LINK);
7310 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
7311 mac_rx_deliver, mcip, NULL, NULL);
7312 }
7313
7314 /*
7315 * This is a 1-time control path activity initiated by the client (IP).
7316 * The mac perimeter protects against other simultaneous control activities,
7317 * for example an ioctl that attempts to change the degree of fanout and
7318 * increase or decrease the number of softrings associated with this Tx SRS.
7319 */
7320 static mac_tx_notify_cb_t *
mac_client_tx_notify_add(mac_client_impl_t * mcip,mac_tx_notify_t notify,void * arg)7321 mac_client_tx_notify_add(mac_client_impl_t *mcip,
7322 mac_tx_notify_t notify, void *arg)
7323 {
7324 mac_cb_info_t *mcbi;
7325 mac_tx_notify_cb_t *mtnfp;
7326
7327 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
7328
7329 mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP);
7330 mtnfp->mtnf_fn = notify;
7331 mtnfp->mtnf_arg = arg;
7332 mtnfp->mtnf_link.mcb_objp = mtnfp;
7333 mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t);
7334 mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T;
7335
7336 mcbi = &mcip->mci_tx_notify_cb_info;
7337 mutex_enter(mcbi->mcbi_lockp);
7338 mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link);
7339 mutex_exit(mcbi->mcbi_lockp);
7340 return (mtnfp);
7341 }
7342
7343 static void
mac_client_tx_notify_remove(mac_client_impl_t * mcip,mac_tx_notify_cb_t * mtnfp)7344 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp)
7345 {
7346 mac_cb_info_t *mcbi;
7347 mac_cb_t **cblist;
7348
7349 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
7350
7351 if (!mac_callback_find(&mcip->mci_tx_notify_cb_info,
7352 &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) {
7353 cmn_err(CE_WARN,
7354 "mac_client_tx_notify_remove: callback not "
7355 "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp);
7356 return;
7357 }
7358
7359 mcbi = &mcip->mci_tx_notify_cb_info;
7360 cblist = &mcip->mci_tx_notify_cb_list;
7361 mutex_enter(mcbi->mcbi_lockp);
7362 if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link))
7363 kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t));
7364 else
7365 mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info);
7366 mutex_exit(mcbi->mcbi_lockp);
7367 }
7368
7369 /*
7370 * mac_client_tx_notify():
7371 * call to add and remove flow control callback routine.
7372 */
7373 mac_tx_notify_handle_t
mac_client_tx_notify(mac_client_handle_t mch,mac_tx_notify_t callb_func,void * ptr)7374 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func,
7375 void *ptr)
7376 {
7377 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
7378 mac_tx_notify_cb_t *mtnfp = NULL;
7379
7380 i_mac_perim_enter(mcip->mci_mip);
7381
7382 if (callb_func != NULL) {
7383 /* Add a notify callback */
7384 mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr);
7385 } else {
7386 mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr);
7387 }
7388 i_mac_perim_exit(mcip->mci_mip);
7389
7390 return ((mac_tx_notify_handle_t)mtnfp);
7391 }
7392
7393 void
mac_bridge_vectors(mac_bridge_tx_t txf,mac_bridge_rx_t rxf,mac_bridge_ref_t reff,mac_bridge_ls_t lsf)7394 mac_bridge_vectors(mac_bridge_tx_t txf, mac_bridge_rx_t rxf,
7395 mac_bridge_ref_t reff, mac_bridge_ls_t lsf)
7396 {
7397 mac_bridge_tx_cb = txf;
7398 mac_bridge_rx_cb = rxf;
7399 mac_bridge_ref_cb = reff;
7400 mac_bridge_ls_cb = lsf;
7401 }
7402
7403 int
mac_bridge_set(mac_handle_t mh,mac_handle_t link)7404 mac_bridge_set(mac_handle_t mh, mac_handle_t link)
7405 {
7406 mac_impl_t *mip = (mac_impl_t *)mh;
7407 int retv;
7408
7409 mutex_enter(&mip->mi_bridge_lock);
7410 if (mip->mi_bridge_link == NULL) {
7411 mip->mi_bridge_link = link;
7412 retv = 0;
7413 } else {
7414 retv = EBUSY;
7415 }
7416 mutex_exit(&mip->mi_bridge_lock);
7417 if (retv == 0) {
7418 mac_poll_state_change(mh, B_FALSE);
7419 mac_capab_update(mh);
7420 }
7421 return (retv);
7422 }
7423
7424 /*
7425 * Disable bridging on the indicated link.
7426 */
7427 void
mac_bridge_clear(mac_handle_t mh,mac_handle_t link)7428 mac_bridge_clear(mac_handle_t mh, mac_handle_t link)
7429 {
7430 mac_impl_t *mip = (mac_impl_t *)mh;
7431
7432 mutex_enter(&mip->mi_bridge_lock);
7433 ASSERT(mip->mi_bridge_link == link);
7434 mip->mi_bridge_link = NULL;
7435 mutex_exit(&mip->mi_bridge_lock);
7436 mac_poll_state_change(mh, B_TRUE);
7437 mac_capab_update(mh);
7438 }
7439
7440 void
mac_no_active(mac_handle_t mh)7441 mac_no_active(mac_handle_t mh)
7442 {
7443 mac_impl_t *mip = (mac_impl_t *)mh;
7444
7445 i_mac_perim_enter(mip);
7446 mip->mi_state_flags |= MIS_NO_ACTIVE;
7447 i_mac_perim_exit(mip);
7448 }
7449
7450 /*
7451 * Walk the primary VLAN clients whenever the primary's rings property
7452 * changes and update the mac_resource_props_t for the VLAN's client.
7453 * We need to do this since we don't support setting these properties
7454 * on the primary's VLAN clients, but the VLAN clients have to
7455 * follow the primary w.r.t the rings property;
7456 */
7457 void
mac_set_prim_vlan_rings(mac_impl_t * mip,mac_resource_props_t * mrp)7458 mac_set_prim_vlan_rings(mac_impl_t *mip, mac_resource_props_t *mrp)
7459 {
7460 mac_client_impl_t *vmcip;
7461 mac_resource_props_t *vmrp;
7462
7463 for (vmcip = mip->mi_clients_list; vmcip != NULL;
7464 vmcip = vmcip->mci_client_next) {
7465 if (!(vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) ||
7466 mac_client_vid((mac_client_handle_t)vmcip) ==
7467 VLAN_ID_NONE) {
7468 continue;
7469 }
7470 vmrp = MCIP_RESOURCE_PROPS(vmcip);
7471
7472 vmrp->mrp_nrxrings = mrp->mrp_nrxrings;
7473 if (mrp->mrp_mask & MRP_RX_RINGS)
7474 vmrp->mrp_mask |= MRP_RX_RINGS;
7475 else if (vmrp->mrp_mask & MRP_RX_RINGS)
7476 vmrp->mrp_mask &= ~MRP_RX_RINGS;
7477
7478 vmrp->mrp_ntxrings = mrp->mrp_ntxrings;
7479 if (mrp->mrp_mask & MRP_TX_RINGS)
7480 vmrp->mrp_mask |= MRP_TX_RINGS;
7481 else if (vmrp->mrp_mask & MRP_TX_RINGS)
7482 vmrp->mrp_mask &= ~MRP_TX_RINGS;
7483
7484 if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC)
7485 vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
7486 else
7487 vmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
7488
7489 if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC)
7490 vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
7491 else
7492 vmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
7493 }
7494 }
7495
7496 /*
7497 * We are adding or removing ring(s) from a group. The source for taking
7498 * rings is the default group. The destination for giving rings back is
7499 * the default group.
7500 */
7501 int
mac_group_ring_modify(mac_client_impl_t * mcip,mac_group_t * group,mac_group_t * defgrp)7502 mac_group_ring_modify(mac_client_impl_t *mcip, mac_group_t *group,
7503 mac_group_t *defgrp)
7504 {
7505 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip);
7506 uint_t modify;
7507 int count;
7508 mac_ring_t *ring;
7509 mac_ring_t *next;
7510 mac_impl_t *mip = mcip->mci_mip;
7511 mac_ring_t **rings;
7512 uint_t ringcnt;
7513 int i = 0;
7514 boolean_t rx_group = group->mrg_type == MAC_RING_TYPE_RX;
7515 int start;
7516 int end;
7517 mac_group_t *tgrp;
7518 int j;
7519 int rv = 0;
7520
7521 /*
7522 * If we are asked for just a group, we give 1 ring, else
7523 * the specified number of rings.
7524 */
7525 if (rx_group) {
7526 ringcnt = (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) ? 1:
7527 mrp->mrp_nrxrings;
7528 } else {
7529 ringcnt = (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) ? 1:
7530 mrp->mrp_ntxrings;
7531 }
7532
7533 /* don't allow modifying rings for a share for now. */
7534 ASSERT(mcip->mci_share == NULL);
7535
7536 if (ringcnt == group->mrg_cur_count)
7537 return (0);
7538
7539 if (group->mrg_cur_count > ringcnt) {
7540 modify = group->mrg_cur_count - ringcnt;
7541 if (rx_group) {
7542 if (mip->mi_rx_donor_grp == group) {
7543 ASSERT(mac_is_primary_client(mcip));
7544 mip->mi_rx_donor_grp = defgrp;
7545 } else {
7546 defgrp = mip->mi_rx_donor_grp;
7547 }
7548 }
7549 ring = group->mrg_rings;
7550 rings = kmem_alloc(modify * sizeof (mac_ring_handle_t),
7551 KM_SLEEP);
7552 j = 0;
7553 for (count = 0; count < modify; count++) {
7554 next = ring->mr_next;
7555 rv = mac_group_mov_ring(mip, defgrp, ring);
7556 if (rv != 0) {
7557 /* cleanup on failure */
7558 for (j = 0; j < count; j++) {
7559 (void) mac_group_mov_ring(mip, group,
7560 rings[j]);
7561 }
7562 break;
7563 }
7564 rings[j++] = ring;
7565 ring = next;
7566 }
7567 kmem_free(rings, modify * sizeof (mac_ring_handle_t));
7568 return (rv);
7569 }
7570 if (ringcnt >= MAX_RINGS_PER_GROUP)
7571 return (EINVAL);
7572
7573 modify = ringcnt - group->mrg_cur_count;
7574
7575 if (rx_group) {
7576 if (group != mip->mi_rx_donor_grp)
7577 defgrp = mip->mi_rx_donor_grp;
7578 else
7579 /*
7580 * This is the donor group with all the remaining
7581 * rings. Default group now gets to be the donor
7582 */
7583 mip->mi_rx_donor_grp = defgrp;
7584 start = 1;
7585 end = mip->mi_rx_group_count;
7586 } else {
7587 start = 0;
7588 end = mip->mi_tx_group_count - 1;
7589 }
7590 /*
7591 * If the default doesn't have any rings, lets see if we can
7592 * take rings given to an h/w client that doesn't need it.
7593 * For now, we just see if there is any one client that can donate
7594 * all the required rings.
7595 */
7596 if (defgrp->mrg_cur_count < (modify + 1)) {
7597 for (i = start; i < end; i++) {
7598 if (rx_group) {
7599 tgrp = &mip->mi_rx_groups[i];
7600 if (tgrp == group || tgrp->mrg_state <
7601 MAC_GROUP_STATE_RESERVED) {
7602 continue;
7603 }
7604 mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
7605 if (mcip == NULL)
7606 mcip = mac_get_grp_primary(tgrp);
7607 ASSERT(mcip != NULL);
7608 mrp = MCIP_RESOURCE_PROPS(mcip);
7609 if ((mrp->mrp_mask & MRP_RX_RINGS) != 0)
7610 continue;
7611 if ((tgrp->mrg_cur_count +
7612 defgrp->mrg_cur_count) < (modify + 1)) {
7613 continue;
7614 }
7615 if (mac_rx_switch_group(mcip, tgrp,
7616 defgrp) != 0) {
7617 return (ENOSPC);
7618 }
7619 } else {
7620 tgrp = &mip->mi_tx_groups[i];
7621 if (tgrp == group || tgrp->mrg_state <
7622 MAC_GROUP_STATE_RESERVED) {
7623 continue;
7624 }
7625 mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
7626 if (mcip == NULL)
7627 mcip = mac_get_grp_primary(tgrp);
7628 mrp = MCIP_RESOURCE_PROPS(mcip);
7629 if ((mrp->mrp_mask & MRP_TX_RINGS) != 0)
7630 continue;
7631 if ((tgrp->mrg_cur_count +
7632 defgrp->mrg_cur_count) < (modify + 1)) {
7633 continue;
7634 }
7635 /* OK, we can switch this to s/w */
7636 mac_tx_client_quiesce(
7637 (mac_client_handle_t)mcip);
7638 mac_tx_switch_group(mcip, tgrp, defgrp);
7639 mac_tx_client_restart(
7640 (mac_client_handle_t)mcip);
7641 }
7642 }
7643 if (defgrp->mrg_cur_count < (modify + 1))
7644 return (ENOSPC);
7645 }
7646 if ((rv = i_mac_group_allocate_rings(mip, group->mrg_type, defgrp,
7647 group, mcip->mci_share, modify)) != 0) {
7648 return (rv);
7649 }
7650 return (0);
7651 }
7652
7653 /*
7654 * Given the poolname in mac_resource_props, find the cpupart
7655 * that is associated with this pool. The cpupart will be used
7656 * later for finding the cpus to be bound to the networking threads.
7657 *
7658 * use_default is set B_TRUE if pools are enabled and pool_default
7659 * is returned. This avoids a 2nd lookup to set the poolname
7660 * for pool-effective.
7661 *
7662 * returns:
7663 *
7664 * NULL - pools are disabled or if the 'cpus' property is set.
7665 * cpupart of pool_default - pools are enabled and the pool
7666 * is not available or poolname is blank
7667 * cpupart of named pool - pools are enabled and the pool
7668 * is available.
7669 */
7670 cpupart_t *
mac_pset_find(mac_resource_props_t * mrp,boolean_t * use_default)7671 mac_pset_find(mac_resource_props_t *mrp, boolean_t *use_default)
7672 {
7673 pool_t *pool;
7674 cpupart_t *cpupart;
7675
7676 *use_default = B_FALSE;
7677
7678 /* CPUs property is set */
7679 if (mrp->mrp_mask & MRP_CPUS)
7680 return (NULL);
7681
7682 ASSERT(pool_lock_held());
7683
7684 /* Pools are disabled, no pset */
7685 if (pool_state == POOL_DISABLED)
7686 return (NULL);
7687
7688 /* Pools property is set */
7689 if (mrp->mrp_mask & MRP_POOL) {
7690 if ((pool = pool_lookup_pool_by_name(mrp->mrp_pool)) == NULL) {
7691 /* Pool not found */
7692 DTRACE_PROBE1(mac_pset_find_no_pool, char *,
7693 mrp->mrp_pool);
7694 *use_default = B_TRUE;
7695 pool = pool_default;
7696 }
7697 /* Pools property is not set */
7698 } else {
7699 *use_default = B_TRUE;
7700 pool = pool_default;
7701 }
7702
7703 /* Find the CPU pset that corresponds to the pool */
7704 mutex_enter(&cpu_lock);
7705 if ((cpupart = cpupart_find(pool->pool_pset->pset_id)) == NULL) {
7706 DTRACE_PROBE1(mac_find_pset_no_pset, psetid_t,
7707 pool->pool_pset->pset_id);
7708 }
7709 mutex_exit(&cpu_lock);
7710
7711 return (cpupart);
7712 }
7713
7714 void
mac_set_pool_effective(boolean_t use_default,cpupart_t * cpupart,mac_resource_props_t * mrp,mac_resource_props_t * emrp)7715 mac_set_pool_effective(boolean_t use_default, cpupart_t *cpupart,
7716 mac_resource_props_t *mrp, mac_resource_props_t *emrp)
7717 {
7718 ASSERT(pool_lock_held());
7719
7720 if (cpupart != NULL) {
7721 emrp->mrp_mask |= MRP_POOL;
7722 if (use_default) {
7723 (void) strcpy(emrp->mrp_pool,
7724 "pool_default");
7725 } else {
7726 ASSERT(strlen(mrp->mrp_pool) != 0);
7727 (void) strcpy(emrp->mrp_pool,
7728 mrp->mrp_pool);
7729 }
7730 } else {
7731 emrp->mrp_mask &= ~MRP_POOL;
7732 bzero(emrp->mrp_pool, MAXPATHLEN);
7733 }
7734 }
7735
7736 struct mac_pool_arg {
7737 char mpa_poolname[MAXPATHLEN];
7738 pool_event_t mpa_what;
7739 };
7740
7741 /*ARGSUSED*/
7742 static uint_t
mac_pool_link_update(mod_hash_key_t key,mod_hash_val_t * val,void * arg)7743 mac_pool_link_update(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
7744 {
7745 struct mac_pool_arg *mpa = arg;
7746 mac_impl_t *mip = (mac_impl_t *)val;
7747 mac_client_impl_t *mcip;
7748 mac_resource_props_t *mrp, *emrp;
7749 boolean_t pool_update = B_FALSE;
7750 boolean_t pool_clear = B_FALSE;
7751 boolean_t use_default = B_FALSE;
7752 cpupart_t *cpupart = NULL;
7753
7754 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
7755 i_mac_perim_enter(mip);
7756 for (mcip = mip->mi_clients_list; mcip != NULL;
7757 mcip = mcip->mci_client_next) {
7758 pool_update = B_FALSE;
7759 pool_clear = B_FALSE;
7760 use_default = B_FALSE;
7761 mac_client_get_resources((mac_client_handle_t)mcip, mrp);
7762 emrp = MCIP_EFFECTIVE_PROPS(mcip);
7763
7764 /*
7765 * When pools are enabled
7766 */
7767 if ((mpa->mpa_what == POOL_E_ENABLE) &&
7768 ((mrp->mrp_mask & MRP_CPUS) == 0)) {
7769 mrp->mrp_mask |= MRP_POOL;
7770 pool_update = B_TRUE;
7771 }
7772
7773 /*
7774 * When pools are disabled
7775 */
7776 if ((mpa->mpa_what == POOL_E_DISABLE) &&
7777 ((mrp->mrp_mask & MRP_CPUS) == 0)) {
7778 mrp->mrp_mask |= MRP_POOL;
7779 pool_clear = B_TRUE;
7780 }
7781
7782 /*
7783 * Look for links with the pool property set and the poolname
7784 * matching the one which is changing.
7785 */
7786 if (strcmp(mrp->mrp_pool, mpa->mpa_poolname) == 0) {
7787 /*
7788 * The pool associated with the link has changed.
7789 */
7790 if (mpa->mpa_what == POOL_E_CHANGE) {
7791 mrp->mrp_mask |= MRP_POOL;
7792 pool_update = B_TRUE;
7793 }
7794 }
7795
7796 /*
7797 * This link is associated with pool_default and
7798 * pool_default has changed.
7799 */
7800 if ((mpa->mpa_what == POOL_E_CHANGE) &&
7801 (strcmp(emrp->mrp_pool, "pool_default") == 0) &&
7802 (strcmp(mpa->mpa_poolname, "pool_default") == 0)) {
7803 mrp->mrp_mask |= MRP_POOL;
7804 pool_update = B_TRUE;
7805 }
7806
7807 /*
7808 * Get new list of cpus for the pool, bind network
7809 * threads to new list of cpus and update resources.
7810 */
7811 if (pool_update) {
7812 if (MCIP_DATAPATH_SETUP(mcip)) {
7813 pool_lock();
7814 cpupart = mac_pset_find(mrp, &use_default);
7815 mac_fanout_setup(mcip, mcip->mci_flent, mrp,
7816 mac_rx_deliver, mcip, NULL, cpupart);
7817 mac_set_pool_effective(use_default, cpupart,
7818 mrp, emrp);
7819 pool_unlock();
7820 }
7821 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip),
7822 B_FALSE);
7823 }
7824
7825 /*
7826 * Clear the effective pool and bind network threads
7827 * to any available CPU.
7828 */
7829 if (pool_clear) {
7830 if (MCIP_DATAPATH_SETUP(mcip)) {
7831 emrp->mrp_mask &= ~MRP_POOL;
7832 bzero(emrp->mrp_pool, MAXPATHLEN);
7833 mac_fanout_setup(mcip, mcip->mci_flent, mrp,
7834 mac_rx_deliver, mcip, NULL, NULL);
7835 }
7836 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip),
7837 B_FALSE);
7838 }
7839 }
7840 i_mac_perim_exit(mip);
7841 kmem_free(mrp, sizeof (*mrp));
7842 return (MH_WALK_CONTINUE);
7843 }
7844
7845 static void
mac_pool_update(void * arg)7846 mac_pool_update(void *arg)
7847 {
7848 mod_hash_walk(i_mac_impl_hash, mac_pool_link_update, arg);
7849 kmem_free(arg, sizeof (struct mac_pool_arg));
7850 }
7851
7852 /*
7853 * Callback function to be executed when a noteworthy pool event
7854 * takes place.
7855 */
7856 /* ARGSUSED */
7857 static void
mac_pool_event_cb(pool_event_t what,poolid_t id,void * arg)7858 mac_pool_event_cb(pool_event_t what, poolid_t id, void *arg)
7859 {
7860 pool_t *pool;
7861 char *poolname = NULL;
7862 struct mac_pool_arg *mpa;
7863
7864 pool_lock();
7865 mpa = kmem_zalloc(sizeof (struct mac_pool_arg), KM_SLEEP);
7866
7867 switch (what) {
7868 case POOL_E_ENABLE:
7869 case POOL_E_DISABLE:
7870 break;
7871
7872 case POOL_E_CHANGE:
7873 pool = pool_lookup_pool_by_id(id);
7874 if (pool == NULL) {
7875 kmem_free(mpa, sizeof (struct mac_pool_arg));
7876 pool_unlock();
7877 return;
7878 }
7879 pool_get_name(pool, &poolname);
7880 (void) strlcpy(mpa->mpa_poolname, poolname,
7881 sizeof (mpa->mpa_poolname));
7882 break;
7883
7884 default:
7885 kmem_free(mpa, sizeof (struct mac_pool_arg));
7886 pool_unlock();
7887 return;
7888 }
7889 pool_unlock();
7890
7891 mpa->mpa_what = what;
7892
7893 mac_pool_update(mpa);
7894 }
7895
7896 /*
7897 * Set effective rings property. This could be called from datapath_setup/
7898 * datapath_teardown or set-linkprop.
7899 * If the group is reserved we just go ahead and set the effective rings.
7900 * Additionally, for TX this could mean the default group has lost/gained
7901 * some rings, so if the default group is reserved, we need to adjust the
7902 * effective rings for the default group clients. For RX, if we are working
7903 * with the non-default group, we just need * to reset the effective props
7904 * for the default group clients.
7905 */
7906 void
mac_set_rings_effective(mac_client_impl_t * mcip)7907 mac_set_rings_effective(mac_client_impl_t *mcip)
7908 {
7909 mac_impl_t *mip = mcip->mci_mip;
7910 mac_group_t *grp;
7911 mac_group_t *defgrp;
7912 flow_entry_t *flent = mcip->mci_flent;
7913 mac_resource_props_t *emrp = MCIP_EFFECTIVE_PROPS(mcip);
7914 mac_grp_client_t *mgcp;
7915 mac_client_impl_t *gmcip;
7916
7917 grp = flent->fe_rx_ring_group;
7918 if (grp != NULL) {
7919 defgrp = MAC_DEFAULT_RX_GROUP(mip);
7920 /*
7921 * If we have reserved a group, set the effective rings
7922 * to the ring count in the group.
7923 */
7924 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7925 emrp->mrp_mask |= MRP_RX_RINGS;
7926 emrp->mrp_nrxrings = grp->mrg_cur_count;
7927 }
7928
7929 /*
7930 * We go through the clients in the shared group and
7931 * reset the effective properties. It is possible this
7932 * might have already been done for some client (i.e.
7933 * if some client is being moved to a group that is
7934 * already shared). The case where the default group is
7935 * RESERVED is taken care of above (note in the RX side if
7936 * there is a non-default group, the default group is always
7937 * SHARED).
7938 */
7939 if (grp != defgrp || grp->mrg_state == MAC_GROUP_STATE_SHARED) {
7940 if (grp->mrg_state == MAC_GROUP_STATE_SHARED)
7941 mgcp = grp->mrg_clients;
7942 else
7943 mgcp = defgrp->mrg_clients;
7944 while (mgcp != NULL) {
7945 gmcip = mgcp->mgc_client;
7946 emrp = MCIP_EFFECTIVE_PROPS(gmcip);
7947 if (emrp->mrp_mask & MRP_RX_RINGS) {
7948 emrp->mrp_mask &= ~MRP_RX_RINGS;
7949 emrp->mrp_nrxrings = 0;
7950 }
7951 mgcp = mgcp->mgc_next;
7952 }
7953 }
7954 }
7955
7956 /* Now the TX side */
7957 grp = flent->fe_tx_ring_group;
7958 if (grp != NULL) {
7959 defgrp = MAC_DEFAULT_TX_GROUP(mip);
7960
7961 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7962 emrp->mrp_mask |= MRP_TX_RINGS;
7963 emrp->mrp_ntxrings = grp->mrg_cur_count;
7964 } else if (grp->mrg_state == MAC_GROUP_STATE_SHARED) {
7965 mgcp = grp->mrg_clients;
7966 while (mgcp != NULL) {
7967 gmcip = mgcp->mgc_client;
7968 emrp = MCIP_EFFECTIVE_PROPS(gmcip);
7969 if (emrp->mrp_mask & MRP_TX_RINGS) {
7970 emrp->mrp_mask &= ~MRP_TX_RINGS;
7971 emrp->mrp_ntxrings = 0;
7972 }
7973 mgcp = mgcp->mgc_next;
7974 }
7975 }
7976
7977 /*
7978 * If the group is not the default group and the default
7979 * group is reserved, the ring count in the default group
7980 * might have changed, update it.
7981 */
7982 if (grp != defgrp &&
7983 defgrp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7984 gmcip = MAC_GROUP_ONLY_CLIENT(defgrp);
7985 emrp = MCIP_EFFECTIVE_PROPS(gmcip);
7986 emrp->mrp_ntxrings = defgrp->mrg_cur_count;
7987 }
7988 }
7989 emrp = MCIP_EFFECTIVE_PROPS(mcip);
7990 }
7991
7992 /*
7993 * Check if the primary is in the default group. If so, see if we
7994 * can give it a an exclusive group now that another client is
7995 * being configured. We take the primary out of the default group
7996 * because the multicast/broadcast packets for the all the clients
7997 * will land in the default ring in the default group which means
7998 * any client in the default group, even if it is the only on in
7999 * the group, will lose exclusive access to the rings, hence
8000 * polling.
8001 */
8002 mac_client_impl_t *
mac_check_primary_relocation(mac_client_impl_t * mcip,boolean_t rxhw)8003 mac_check_primary_relocation(mac_client_impl_t *mcip, boolean_t rxhw)
8004 {
8005 mac_impl_t *mip = mcip->mci_mip;
8006 mac_group_t *defgrp = MAC_DEFAULT_RX_GROUP(mip);
8007 flow_entry_t *flent = mcip->mci_flent;
8008 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip);
8009 uint8_t *mac_addr;
8010 mac_group_t *ngrp;
8011
8012 /*
8013 * Check if the primary is in the default group, if not
8014 * or if it is explicitly configured to be in the default
8015 * group OR set the RX rings property, return.
8016 */
8017 if (flent->fe_rx_ring_group != defgrp || mrp->mrp_mask & MRP_RX_RINGS)
8018 return (NULL);
8019
8020 /*
8021 * If the new client needs an exclusive group and we
8022 * don't have another for the primary, return.
8023 */
8024 if (rxhw && mip->mi_rxhwclnt_avail < 2)
8025 return (NULL);
8026
8027 mac_addr = flent->fe_flow_desc.fd_dst_mac;
8028 /*
8029 * We call this when we are setting up the datapath for
8030 * the first non-primary.
8031 */
8032 ASSERT(mip->mi_nactiveclients == 2);
8033 /*
8034 * OK, now we have the primary that needs to be relocated.
8035 */
8036 ngrp = mac_reserve_rx_group(mcip, mac_addr, B_TRUE);
8037 if (ngrp == NULL)
8038 return (NULL);
8039 if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) {
8040 mac_stop_group(ngrp);
8041 return (NULL);
8042 }
8043 return (mcip);
8044 }
8045
8046 void
mac_transceiver_init(mac_impl_t * mip)8047 mac_transceiver_init(mac_impl_t *mip)
8048 {
8049 if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_TRANSCEIVER,
8050 &mip->mi_transceiver)) {
8051 /*
8052 * The driver set a flag that we don't know about. In this case,
8053 * we need to warn about that case and ignore this capability.
8054 */
8055 if (mip->mi_transceiver.mct_flags != 0) {
8056 dev_err(mip->mi_dip, CE_WARN, "driver set transceiver "
8057 "flags to invalid value: 0x%x, ignoring "
8058 "capability", mip->mi_transceiver.mct_flags);
8059 bzero(&mip->mi_transceiver,
8060 sizeof (mac_capab_transceiver_t));
8061 }
8062 } else {
8063 bzero(&mip->mi_transceiver,
8064 sizeof (mac_capab_transceiver_t));
8065 }
8066 }
8067
8068 int
mac_transceiver_count(mac_handle_t mh,uint_t * countp)8069 mac_transceiver_count(mac_handle_t mh, uint_t *countp)
8070 {
8071 mac_impl_t *mip = (mac_impl_t *)mh;
8072
8073 ASSERT(MAC_PERIM_HELD(mh));
8074
8075 if (mip->mi_transceiver.mct_ntransceivers == 0)
8076 return (ENOTSUP);
8077
8078 *countp = mip->mi_transceiver.mct_ntransceivers;
8079 return (0);
8080 }
8081
8082 int
mac_transceiver_info(mac_handle_t mh,uint_t tranid,boolean_t * present,boolean_t * usable)8083 mac_transceiver_info(mac_handle_t mh, uint_t tranid, boolean_t *present,
8084 boolean_t *usable)
8085 {
8086 int ret;
8087 mac_transceiver_info_t info;
8088
8089 mac_impl_t *mip = (mac_impl_t *)mh;
8090
8091 ASSERT(MAC_PERIM_HELD(mh));
8092
8093 if (mip->mi_transceiver.mct_info == NULL ||
8094 mip->mi_transceiver.mct_ntransceivers == 0)
8095 return (ENOTSUP);
8096
8097 if (tranid >= mip->mi_transceiver.mct_ntransceivers)
8098 return (EINVAL);
8099
8100 bzero(&info, sizeof (mac_transceiver_info_t));
8101 if ((ret = mip->mi_transceiver.mct_info(mip->mi_driver, tranid,
8102 &info)) != 0) {
8103 return (ret);
8104 }
8105
8106 *present = info.mti_present;
8107 *usable = info.mti_usable;
8108 return (0);
8109 }
8110
8111 int
mac_transceiver_read(mac_handle_t mh,uint_t tranid,uint_t page,void * buf,size_t nbytes,off_t offset,size_t * nread)8112 mac_transceiver_read(mac_handle_t mh, uint_t tranid, uint_t page, void *buf,
8113 size_t nbytes, off_t offset, size_t *nread)
8114 {
8115 int ret;
8116 size_t nr;
8117 mac_impl_t *mip = (mac_impl_t *)mh;
8118
8119 ASSERT(MAC_PERIM_HELD(mh));
8120
8121 if (mip->mi_transceiver.mct_read == NULL)
8122 return (ENOTSUP);
8123
8124 if (tranid >= mip->mi_transceiver.mct_ntransceivers)
8125 return (EINVAL);
8126
8127 /*
8128 * All supported pages today are 256 bytes wide. Make sure offset +
8129 * nbytes never exceeds that.
8130 */
8131 if (offset < 0 || offset >= 256 || nbytes > 256 ||
8132 offset + nbytes > 256)
8133 return (EINVAL);
8134
8135 if (nread == NULL)
8136 nread = &nr;
8137 ret = mip->mi_transceiver.mct_read(mip->mi_driver, tranid, page, buf,
8138 nbytes, offset, nread);
8139 if (ret == 0 && *nread > nbytes) {
8140 dev_err(mip->mi_dip, CE_PANIC, "driver wrote %lu bytes into "
8141 "%lu byte sized buffer, possible memory corruption",
8142 *nread, nbytes);
8143 }
8144
8145 return (ret);
8146 }
8147
8148 void
mac_led_init(mac_impl_t * mip)8149 mac_led_init(mac_impl_t *mip)
8150 {
8151 mip->mi_led_modes = MAC_LED_DEFAULT;
8152
8153 if (!mac_capab_get((mac_handle_t)mip, MAC_CAPAB_LED, &mip->mi_led)) {
8154 bzero(&mip->mi_led, sizeof (mac_capab_led_t));
8155 return;
8156 }
8157
8158 if (mip->mi_led.mcl_flags != 0) {
8159 dev_err(mip->mi_dip, CE_WARN, "driver set led capability "
8160 "flags to invalid value: 0x%x, ignoring "
8161 "capability", mip->mi_transceiver.mct_flags);
8162 bzero(&mip->mi_led, sizeof (mac_capab_led_t));
8163 return;
8164 }
8165
8166 if ((mip->mi_led.mcl_modes & ~MAC_LED_ALL) != 0) {
8167 dev_err(mip->mi_dip, CE_WARN, "driver set led capability "
8168 "supported modes to invalid value: 0x%x, ignoring "
8169 "capability", mip->mi_transceiver.mct_flags);
8170 bzero(&mip->mi_led, sizeof (mac_capab_led_t));
8171 return;
8172 }
8173 }
8174
8175 int
mac_led_get(mac_handle_t mh,mac_led_mode_t * supported,mac_led_mode_t * active)8176 mac_led_get(mac_handle_t mh, mac_led_mode_t *supported, mac_led_mode_t *active)
8177 {
8178 mac_impl_t *mip = (mac_impl_t *)mh;
8179
8180 ASSERT(MAC_PERIM_HELD(mh));
8181
8182 if (mip->mi_led.mcl_set == NULL)
8183 return (ENOTSUP);
8184
8185 *supported = mip->mi_led.mcl_modes;
8186 *active = mip->mi_led_modes;
8187
8188 return (0);
8189 }
8190
8191 /*
8192 * Update and multiplex the various LED requests. We only ever send one LED to
8193 * the underlying driver at a time. As such, we end up multiplexing all
8194 * requested states and picking one to send down to the driver.
8195 */
8196 int
mac_led_set(mac_handle_t mh,mac_led_mode_t desired)8197 mac_led_set(mac_handle_t mh, mac_led_mode_t desired)
8198 {
8199 int ret;
8200 mac_led_mode_t driver;
8201
8202 mac_impl_t *mip = (mac_impl_t *)mh;
8203
8204 ASSERT(MAC_PERIM_HELD(mh));
8205
8206 /*
8207 * If we've been passed a desired value of zero, that indicates that
8208 * we're basically resetting to the value of zero, which is our default
8209 * value.
8210 */
8211 if (desired == 0)
8212 desired = MAC_LED_DEFAULT;
8213
8214 if (mip->mi_led.mcl_set == NULL)
8215 return (ENOTSUP);
8216
8217 /*
8218 * Catch both values that we don't know about and those that the driver
8219 * doesn't support.
8220 */
8221 if ((desired & ~MAC_LED_ALL) != 0)
8222 return (EINVAL);
8223
8224 if ((desired & ~mip->mi_led.mcl_modes) != 0)
8225 return (ENOTSUP);
8226
8227 /*
8228 * If we have the same value, then there is nothing to do.
8229 */
8230 if (desired == mip->mi_led_modes)
8231 return (0);
8232
8233 /*
8234 * Based on the desired value, determine what to send to the driver. We
8235 * only will send a single bit to the driver at any given time. IDENT
8236 * takes priority over OFF or ON. We also let OFF take priority over the
8237 * rest.
8238 */
8239 if (desired & MAC_LED_IDENT) {
8240 driver = MAC_LED_IDENT;
8241 } else if (desired & MAC_LED_OFF) {
8242 driver = MAC_LED_OFF;
8243 } else if (desired & MAC_LED_ON) {
8244 driver = MAC_LED_ON;
8245 } else {
8246 driver = MAC_LED_DEFAULT;
8247 }
8248
8249 if ((ret = mip->mi_led.mcl_set(mip->mi_driver, driver, 0)) == 0) {
8250 mip->mi_led_modes = desired;
8251 }
8252
8253 return (ret);
8254 }
8255