1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2019 Joyent, Inc.
25 * Copyright 2017 OmniTI Computer Consulting, Inc. All rights reserved.
26 * Copyright 2020 RackTop Systems, Inc.
27 * Copyright 2025 Oxide Computer Company
28 */
29
30 #include <sys/types.h>
31 #include <sys/conf.h>
32 #include <sys/id_space.h>
33 #include <sys/esunddi.h>
34 #include <sys/stat.h>
35 #include <sys/mkdev.h>
36 #include <sys/stream.h>
37 #include <sys/strsubr.h>
38 #include <sys/dlpi.h>
39 #include <sys/modhash.h>
40 #include <sys/mac.h>
41 #include <sys/mac_provider.h>
42 #include <sys/mac_impl.h>
43 #include <sys/mac_client_impl.h>
44 #include <sys/mac_client_priv.h>
45 #include <sys/mac_soft_ring.h>
46 #include <sys/mac_stat.h>
47 #include <sys/dld.h>
48 #include <sys/modctl.h>
49 #include <sys/fs/dv_node.h>
50 #include <sys/thread.h>
51 #include <sys/proc.h>
52 #include <sys/callb.h>
53 #include <sys/cpuvar.h>
54 #include <sys/atomic.h>
55 #include <sys/sdt.h>
56 #include <sys/mac_flow.h>
57 #include <sys/ddi_intr_impl.h>
58 #include <sys/disp.h>
59 #include <sys/sdt.h>
60 #include <sys/stdbool.h>
61 #include <sys/pattr.h>
62 #include <sys/strsun.h>
63 #include <sys/vlan.h>
64 #include <inet/ip.h>
65 #include <inet/tcp.h>
66 #include <netinet/udp.h>
67 #include <netinet/sctp.h>
68
69 /*
70 * MAC Provider Interface.
71 *
72 * Interface for GLDv3 compatible NIC drivers.
73 */
74
75 static void i_mac_notify_thread(void *);
76
77 typedef void (*mac_notify_default_cb_fn_t)(mac_impl_t *);
78
79 static const mac_notify_default_cb_fn_t mac_notify_cb_list[MAC_NNOTE] = {
80 mac_fanout_recompute, /* MAC_NOTE_LINK */
81 NULL, /* MAC_NOTE_UNICST */
82 NULL, /* MAC_NOTE_TX */
83 NULL, /* MAC_NOTE_DEVPROMISC */
84 NULL, /* MAC_NOTE_FASTPATH_FLUSH */
85 NULL, /* MAC_NOTE_SDU_SIZE */
86 NULL, /* MAC_NOTE_MARGIN */
87 NULL, /* MAC_NOTE_CAPAB_CHG */
88 NULL /* MAC_NOTE_LOWLINK */
89 };
90
91 /*
92 * Driver support functions.
93 */
94
95 /* REGISTRATION */
96
97 mac_register_t *
mac_alloc(uint_t mac_version)98 mac_alloc(uint_t mac_version)
99 {
100 mac_register_t *mregp;
101
102 /*
103 * Make sure there isn't a version mismatch between the driver and
104 * the framework. In the future, if multiple versions are
105 * supported, this check could become more sophisticated.
106 */
107 if (mac_version != MAC_VERSION)
108 return (NULL);
109
110 mregp = kmem_zalloc(sizeof (mac_register_t), KM_SLEEP);
111 mregp->m_version = mac_version;
112 return (mregp);
113 }
114
115 void
mac_free(mac_register_t * mregp)116 mac_free(mac_register_t *mregp)
117 {
118 kmem_free(mregp, sizeof (mac_register_t));
119 }
120
121 /*
122 * Convert a MAC's offload features into the equivalent DB_CKSUMFLAGS
123 * value.
124 */
125 static uint16_t
mac_features_to_flags(mac_handle_t mh)126 mac_features_to_flags(mac_handle_t mh)
127 {
128 uint16_t flags = 0;
129 uint32_t cap_sum = 0;
130 mac_capab_lso_t cap_lso;
131
132 if (mac_capab_get(mh, MAC_CAPAB_HCKSUM, &cap_sum)) {
133 if (cap_sum & HCKSUM_IPHDRCKSUM)
134 flags |= HCK_IPV4_HDRCKSUM;
135
136 if (cap_sum & HCKSUM_INET_PARTIAL)
137 flags |= HCK_PARTIALCKSUM;
138 else if (cap_sum & (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
139 flags |= HCK_FULLCKSUM;
140 }
141
142 /*
143 * We don't need the information stored in 'cap_lso', but we
144 * need to pass a non-NULL pointer to appease the driver.
145 */
146 if (mac_capab_get(mh, MAC_CAPAB_LSO, &cap_lso))
147 flags |= HW_LSO;
148
149 return (flags);
150 }
151
152 /*
153 * mac_register() is how drivers register new MACs with the GLDv3
154 * framework. The mregp argument is allocated by drivers using the
155 * mac_alloc() function, and can be freed using mac_free() immediately upon
156 * return from mac_register(). Upon success (0 return value), the mhp
157 * opaque pointer becomes the driver's handle to its MAC interface, and is
158 * the argument to all other mac module entry points.
159 */
160 /* ARGSUSED */
161 int
mac_register(mac_register_t * mregp,mac_handle_t * mhp)162 mac_register(mac_register_t *mregp, mac_handle_t *mhp)
163 {
164 mac_impl_t *mip;
165 mactype_t *mtype;
166 int err = EINVAL;
167 struct devnames *dnp = NULL;
168 uint_t instance;
169 boolean_t style1_created = B_FALSE;
170 boolean_t style2_created = B_FALSE;
171 char *driver;
172 minor_t minor = 0;
173
174 /* A successful call to mac_init_ops() sets the DN_GLDV3_DRIVER flag. */
175 if (!GLDV3_DRV(ddi_driver_major(mregp->m_dip)))
176 return (EINVAL);
177
178 /* Find the required MAC-Type plugin. */
179 if ((mtype = mactype_getplugin(mregp->m_type_ident)) == NULL)
180 return (EINVAL);
181
182 /* Create a mac_impl_t to represent this MAC. */
183 mip = kmem_cache_alloc(i_mac_impl_cachep, KM_SLEEP);
184
185 /*
186 * The mac is not ready for open yet.
187 */
188 mip->mi_state_flags |= MIS_DISABLED;
189
190 /*
191 * When a mac is registered, the m_instance field can be set to:
192 *
193 * 0: Get the mac's instance number from m_dip.
194 * This is usually used for physical device dips.
195 *
196 * [1 .. MAC_MAX_MINOR-1]: Use the value as the mac's instance number.
197 * For example, when an aggregation is created with the key option,
198 * "key" will be used as the instance number.
199 *
200 * -1: Assign an instance number from [MAC_MAX_MINOR .. MAXMIN-1].
201 * This is often used when a MAC of a virtual link is registered
202 * (e.g., aggregation when "key" is not specified, or vnic).
203 *
204 * Note that the instance number is used to derive the mi_minor field
205 * of mac_impl_t, which will then be used to derive the name of kstats
206 * and the devfs nodes. The first 2 cases are needed to preserve
207 * backward compatibility.
208 */
209 switch (mregp->m_instance) {
210 case 0:
211 instance = ddi_get_instance(mregp->m_dip);
212 break;
213 case ((uint_t)-1):
214 minor = mac_minor_hold(B_TRUE);
215 if (minor == 0) {
216 err = ENOSPC;
217 goto fail;
218 }
219 instance = minor - 1;
220 break;
221 default:
222 instance = mregp->m_instance;
223 if (instance >= MAC_MAX_MINOR) {
224 err = EINVAL;
225 goto fail;
226 }
227 break;
228 }
229
230 mip->mi_minor = (minor_t)(instance + 1);
231 mip->mi_dip = mregp->m_dip;
232 mip->mi_clients_list = NULL;
233 mip->mi_nclients = 0;
234
235 /* Set the default IEEE Port VLAN Identifier */
236 mip->mi_pvid = 1;
237
238 /* Default bridge link learning protection values */
239 mip->mi_llimit = 1000;
240 mip->mi_ldecay = 200;
241
242 driver = (char *)ddi_driver_name(mip->mi_dip);
243
244 /* Construct the MAC name as <drvname><instance> */
245 (void) snprintf(mip->mi_name, sizeof (mip->mi_name), "%s%d",
246 driver, instance);
247
248 mip->mi_driver = mregp->m_driver;
249
250 mip->mi_type = mtype;
251 mip->mi_margin = mregp->m_margin;
252 mip->mi_info.mi_media = mtype->mt_type;
253 mip->mi_info.mi_nativemedia = mtype->mt_nativetype;
254 if (mregp->m_max_sdu <= mregp->m_min_sdu)
255 goto fail;
256 if (mregp->m_multicast_sdu == 0)
257 mregp->m_multicast_sdu = mregp->m_max_sdu;
258 if (mregp->m_multicast_sdu < mregp->m_min_sdu ||
259 mregp->m_multicast_sdu > mregp->m_max_sdu)
260 goto fail;
261 mip->mi_sdu_min = mregp->m_min_sdu;
262 mip->mi_sdu_max = mregp->m_max_sdu;
263 mip->mi_sdu_multicast = mregp->m_multicast_sdu;
264 mip->mi_info.mi_addr_length = mip->mi_type->mt_addr_length;
265 /*
266 * If the media supports a broadcast address, cache a pointer to it
267 * in the mac_info_t so that upper layers can use it.
268 */
269 mip->mi_info.mi_brdcst_addr = mip->mi_type->mt_brdcst_addr;
270
271 mip->mi_v12n_level = mregp->m_v12n;
272
273 /*
274 * Copy the unicast source address into the mac_info_t, but only if
275 * the MAC-Type defines a non-zero address length. We need to
276 * handle MAC-Types that have an address length of 0
277 * (point-to-point protocol MACs for example).
278 */
279 if (mip->mi_type->mt_addr_length > 0) {
280 if (mregp->m_src_addr == NULL)
281 goto fail;
282 mip->mi_info.mi_unicst_addr =
283 kmem_alloc(mip->mi_type->mt_addr_length, KM_SLEEP);
284 bcopy(mregp->m_src_addr, mip->mi_info.mi_unicst_addr,
285 mip->mi_type->mt_addr_length);
286
287 /*
288 * Copy the fixed 'factory' MAC address from the immutable
289 * info. This is taken to be the MAC address currently in
290 * use.
291 */
292 bcopy(mip->mi_info.mi_unicst_addr, mip->mi_addr,
293 mip->mi_type->mt_addr_length);
294
295 /*
296 * At this point, we should set up the classification
297 * rules etc but we delay it till mac_open() so that
298 * the resource discovery has taken place and we
299 * know someone wants to use the device. Otherwise
300 * memory gets allocated for Rx ring structures even
301 * during probe.
302 */
303
304 /* Copy the destination address if one is provided. */
305 if (mregp->m_dst_addr != NULL) {
306 bcopy(mregp->m_dst_addr, mip->mi_dstaddr,
307 mip->mi_type->mt_addr_length);
308 mip->mi_dstaddr_set = B_TRUE;
309 }
310 } else if (mregp->m_src_addr != NULL) {
311 goto fail;
312 }
313
314 /*
315 * The format of the m_pdata is specific to the plugin. It is
316 * passed in as an argument to all of the plugin callbacks. The
317 * driver can update this information by calling
318 * mac_pdata_update().
319 */
320 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY) {
321 /*
322 * Verify if the supplied plugin data is valid. Note that
323 * even if the caller passed in a NULL pointer as plugin data,
324 * we still need to verify if that's valid as the plugin may
325 * require plugin data to function.
326 */
327 if (!mip->mi_type->mt_ops.mtops_pdata_verify(mregp->m_pdata,
328 mregp->m_pdata_size)) {
329 goto fail;
330 }
331 if (mregp->m_pdata != NULL) {
332 mip->mi_pdata =
333 kmem_alloc(mregp->m_pdata_size, KM_SLEEP);
334 bcopy(mregp->m_pdata, mip->mi_pdata,
335 mregp->m_pdata_size);
336 mip->mi_pdata_size = mregp->m_pdata_size;
337 }
338 } else if (mregp->m_pdata != NULL) {
339 /*
340 * The caller supplied non-NULL plugin data, but the plugin
341 * does not recognize plugin data.
342 */
343 err = EINVAL;
344 goto fail;
345 }
346
347 /*
348 * Register the private properties.
349 */
350 mac_register_priv_prop(mip, mregp->m_priv_props);
351
352 /*
353 * Stash the driver callbacks into the mac_impl_t, but first sanity
354 * check to make sure all mandatory callbacks are set.
355 */
356 if (mregp->m_callbacks->mc_getstat == NULL ||
357 mregp->m_callbacks->mc_start == NULL ||
358 mregp->m_callbacks->mc_stop == NULL ||
359 mregp->m_callbacks->mc_setpromisc == NULL ||
360 mregp->m_callbacks->mc_multicst == NULL) {
361 goto fail;
362 }
363 mip->mi_callbacks = mregp->m_callbacks;
364
365 if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_LEGACY,
366 &mip->mi_capab_legacy)) {
367 mip->mi_state_flags |= MIS_LEGACY;
368 mip->mi_phy_dev = mip->mi_capab_legacy.ml_dev;
369 } else {
370 mip->mi_phy_dev = makedevice(ddi_driver_major(mip->mi_dip),
371 mip->mi_minor);
372 }
373
374 /*
375 * Allocate a notification thread. thread_create blocks for memory
376 * if needed, it never fails.
377 */
378 mip->mi_notify_thread = thread_create(NULL, 0, i_mac_notify_thread,
379 mip, 0, &p0, TS_RUN, minclsyspri);
380
381 /*
382 * Cache the DB_CKSUMFLAGS that this MAC supports.
383 */
384 mip->mi_tx_cksum_flags = mac_features_to_flags((mac_handle_t)mip);
385
386 /*
387 * Initialize the capabilities
388 */
389 bzero(&mip->mi_rx_rings_cap, sizeof (mac_capab_rings_t));
390 bzero(&mip->mi_tx_rings_cap, sizeof (mac_capab_rings_t));
391
392 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, NULL))
393 mip->mi_state_flags |= MIS_IS_VNIC;
394
395 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR, NULL))
396 mip->mi_state_flags |= MIS_IS_AGGR;
397
398 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_OVERLAY, NULL))
399 mip->mi_state_flags |= MIS_IS_OVERLAY;
400
401 mac_addr_factory_init(mip);
402
403 mac_transceiver_init(mip);
404
405 mac_led_init(mip);
406
407 /*
408 * Enforce the virtrualization level registered.
409 */
410 if (mip->mi_v12n_level & MAC_VIRT_LEVEL1) {
411 if (mac_init_rings(mip, MAC_RING_TYPE_RX) != 0 ||
412 mac_init_rings(mip, MAC_RING_TYPE_TX) != 0)
413 goto fail;
414
415 /*
416 * The driver needs to register at least rx rings for this
417 * virtualization level.
418 */
419 if (mip->mi_rx_groups == NULL)
420 goto fail;
421 }
422
423 /*
424 * The driver must set mc_unicst entry point to NULL when it advertises
425 * CAP_RINGS for rx groups.
426 */
427 if (mip->mi_rx_groups != NULL) {
428 if (mregp->m_callbacks->mc_unicst != NULL)
429 goto fail;
430 } else {
431 if (mregp->m_callbacks->mc_unicst == NULL)
432 goto fail;
433 }
434
435 /*
436 * Initialize MAC addresses. Must be called after mac_init_rings().
437 */
438 mac_init_macaddr(mip);
439
440 mip->mi_share_capab.ms_snum = 0;
441 if (mip->mi_v12n_level & MAC_VIRT_HIO) {
442 (void) mac_capab_get((mac_handle_t)mip, MAC_CAPAB_SHARES,
443 &mip->mi_share_capab);
444 }
445
446 /*
447 * Initialize the kstats for this device.
448 */
449 mac_driver_stat_create(mip);
450
451 /* Zero out any properties. */
452 bzero(&mip->mi_resource_props, sizeof (mac_resource_props_t));
453
454 if (mip->mi_minor <= MAC_MAX_MINOR) {
455 /* Create a style-2 DLPI device */
456 if (ddi_create_minor_node(mip->mi_dip, driver, S_IFCHR, 0,
457 DDI_NT_NET, CLONE_DEV) != DDI_SUCCESS)
458 goto fail;
459 style2_created = B_TRUE;
460
461 /* Create a style-1 DLPI device */
462 if (ddi_create_minor_node(mip->mi_dip, mip->mi_name, S_IFCHR,
463 mip->mi_minor, DDI_NT_NET, 0) != DDI_SUCCESS)
464 goto fail;
465 style1_created = B_TRUE;
466 }
467
468 mac_flow_l2tab_create(mip, &mip->mi_flow_tab);
469
470 rw_enter(&i_mac_impl_lock, RW_WRITER);
471 if (mod_hash_insert(i_mac_impl_hash,
472 (mod_hash_key_t)mip->mi_name, (mod_hash_val_t)mip) != 0) {
473 rw_exit(&i_mac_impl_lock);
474 err = EEXIST;
475 goto fail;
476 }
477
478 DTRACE_PROBE2(mac__register, struct devnames *, dnp,
479 (mac_impl_t *), mip);
480
481 /*
482 * Mark the MAC to be ready for open.
483 */
484 mip->mi_state_flags &= ~MIS_DISABLED;
485 rw_exit(&i_mac_impl_lock);
486
487 atomic_inc_32(&i_mac_impl_count);
488
489 cmn_err(CE_NOTE, "!%s registered", mip->mi_name);
490 *mhp = (mac_handle_t)mip;
491 return (0);
492
493 fail:
494 if (style1_created)
495 ddi_remove_minor_node(mip->mi_dip, mip->mi_name);
496
497 if (style2_created)
498 ddi_remove_minor_node(mip->mi_dip, driver);
499
500 mac_addr_factory_fini(mip);
501
502 /* Clean up registered MAC addresses */
503 mac_fini_macaddr(mip);
504
505 /* Clean up registered rings */
506 mac_free_rings(mip, MAC_RING_TYPE_RX);
507 mac_free_rings(mip, MAC_RING_TYPE_TX);
508
509 /* Clean up notification thread */
510 if (mip->mi_notify_thread != NULL)
511 i_mac_notify_exit(mip);
512
513 if (mip->mi_info.mi_unicst_addr != NULL) {
514 kmem_free(mip->mi_info.mi_unicst_addr,
515 mip->mi_type->mt_addr_length);
516 mip->mi_info.mi_unicst_addr = NULL;
517 }
518
519 mac_driver_stat_delete(mip);
520
521 if (mip->mi_type != NULL) {
522 atomic_dec_32(&mip->mi_type->mt_ref);
523 mip->mi_type = NULL;
524 }
525
526 if (mip->mi_pdata != NULL) {
527 kmem_free(mip->mi_pdata, mip->mi_pdata_size);
528 mip->mi_pdata = NULL;
529 mip->mi_pdata_size = 0;
530 }
531
532 if (minor != 0) {
533 ASSERT(minor > MAC_MAX_MINOR);
534 mac_minor_rele(minor);
535 }
536
537 mip->mi_state_flags = 0;
538 mac_unregister_priv_prop(mip);
539
540 /*
541 * Clear the state before destroying the mac_impl_t
542 */
543 mip->mi_state_flags = 0;
544
545 kmem_cache_free(i_mac_impl_cachep, mip);
546 return (err);
547 }
548
549 /*
550 * Unregister from the GLDv3 framework
551 */
552 int
mac_unregister(mac_handle_t mh)553 mac_unregister(mac_handle_t mh)
554 {
555 int err;
556 mac_impl_t *mip = (mac_impl_t *)mh;
557 mod_hash_val_t val;
558 mac_margin_req_t *mmr, *nextmmr;
559
560 /* Fail the unregister if there are any open references to this mac. */
561 if ((err = mac_disable_nowait(mh)) != 0)
562 return (err);
563
564 /*
565 * Clean up notification thread and wait for it to exit.
566 */
567 i_mac_notify_exit(mip);
568
569 /*
570 * Prior to acquiring the MAC perimeter, remove the MAC instance from
571 * the internal hash table. Such removal means table-walkers that
572 * acquire the perimeter will not do so on behalf of what we are
573 * unregistering, which prevents a deadlock.
574 */
575 rw_enter(&i_mac_impl_lock, RW_WRITER);
576 (void) mod_hash_remove(i_mac_impl_hash,
577 (mod_hash_key_t)mip->mi_name, &val);
578 rw_exit(&i_mac_impl_lock);
579 ASSERT(mip == (mac_impl_t *)val);
580
581 i_mac_perim_enter(mip);
582
583 /*
584 * There is still resource properties configured over this mac.
585 */
586 if (mip->mi_resource_props.mrp_mask != 0)
587 mac_fastpath_enable((mac_handle_t)mip);
588
589 if (mip->mi_minor < MAC_MAX_MINOR + 1) {
590 ddi_remove_minor_node(mip->mi_dip, mip->mi_name);
591 ddi_remove_minor_node(mip->mi_dip,
592 (char *)ddi_driver_name(mip->mi_dip));
593 }
594
595 ASSERT(mip->mi_nactiveclients == 0 && !(mip->mi_state_flags &
596 MIS_EXCLUSIVE));
597
598 mac_driver_stat_delete(mip);
599
600 ASSERT(i_mac_impl_count > 0);
601 atomic_dec_32(&i_mac_impl_count);
602
603 if (mip->mi_pdata != NULL)
604 kmem_free(mip->mi_pdata, mip->mi_pdata_size);
605 mip->mi_pdata = NULL;
606 mip->mi_pdata_size = 0;
607
608 /*
609 * Free the list of margin request.
610 */
611 for (mmr = mip->mi_mmrp; mmr != NULL; mmr = nextmmr) {
612 nextmmr = mmr->mmr_nextp;
613 kmem_free(mmr, sizeof (mac_margin_req_t));
614 }
615 mip->mi_mmrp = NULL;
616
617 mip->mi_linkstate = mip->mi_lowlinkstate = LINK_STATE_UNKNOWN;
618 kmem_free(mip->mi_info.mi_unicst_addr, mip->mi_type->mt_addr_length);
619 mip->mi_info.mi_unicst_addr = NULL;
620
621 atomic_dec_32(&mip->mi_type->mt_ref);
622 mip->mi_type = NULL;
623
624 /*
625 * Free the primary MAC address.
626 */
627 mac_fini_macaddr(mip);
628
629 /*
630 * free all rings
631 */
632 mac_free_rings(mip, MAC_RING_TYPE_RX);
633 mac_free_rings(mip, MAC_RING_TYPE_TX);
634
635 mac_addr_factory_fini(mip);
636
637 bzero(mip->mi_addr, MAXMACADDRLEN);
638 bzero(mip->mi_dstaddr, MAXMACADDRLEN);
639 mip->mi_dstaddr_set = B_FALSE;
640
641 /* and the flows */
642 mac_flow_tab_destroy(mip->mi_flow_tab);
643 mip->mi_flow_tab = NULL;
644
645 if (mip->mi_minor > MAC_MAX_MINOR)
646 mac_minor_rele(mip->mi_minor);
647
648 cmn_err(CE_NOTE, "!%s unregistered", mip->mi_name);
649
650 /*
651 * Reset the perim related fields to default values before
652 * kmem_cache_free
653 */
654 i_mac_perim_exit(mip);
655 mip->mi_state_flags = 0;
656
657 mac_unregister_priv_prop(mip);
658
659 ASSERT(mip->mi_bridge_link == NULL);
660 kmem_cache_free(i_mac_impl_cachep, mip);
661
662 return (0);
663 }
664
665 /* DATA RECEPTION */
666
667 /*
668 * This function is invoked for packets received by the MAC driver in
669 * interrupt context. The ring generation number provided by the driver
670 * is matched with the ring generation number held in MAC. If they do not
671 * match, received packets are considered stale packets coming from an older
672 * assignment of the ring. Drop them.
673 */
674 void
mac_rx_ring(mac_handle_t mh,mac_ring_handle_t mrh,mblk_t * mp_chain,uint64_t mr_gen_num)675 mac_rx_ring(mac_handle_t mh, mac_ring_handle_t mrh, mblk_t *mp_chain,
676 uint64_t mr_gen_num)
677 {
678 mac_ring_t *mr = (mac_ring_t *)mrh;
679
680 if ((mr != NULL) && (mr->mr_gen_num != mr_gen_num)) {
681 DTRACE_PROBE2(mac__rx__rings__stale__packet, uint64_t,
682 mr->mr_gen_num, uint64_t, mr_gen_num);
683 freemsgchain(mp_chain);
684 return;
685 }
686 mac_rx(mh, (mac_resource_handle_t)mrh, mp_chain);
687 }
688
689 /*
690 * This function is invoked for each packet received by the underlying driver.
691 */
692 void
mac_rx(mac_handle_t mh,mac_resource_handle_t mrh,mblk_t * mp_chain)693 mac_rx(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
694 {
695 mac_impl_t *mip = (mac_impl_t *)mh;
696
697 /*
698 * Check if the link is part of a bridge. If not, then we don't need
699 * to take the lock to remain consistent. Make this common case
700 * lock-free and tail-call optimized.
701 */
702 if (mip->mi_bridge_link == NULL) {
703 mac_rx_common(mh, mrh, mp_chain);
704 } else {
705 /*
706 * Once we take a reference on the bridge link, the bridge
707 * module itself can't unload, so the callback pointers are
708 * stable.
709 */
710 mutex_enter(&mip->mi_bridge_lock);
711 if ((mh = mip->mi_bridge_link) != NULL)
712 mac_bridge_ref_cb(mh, B_TRUE);
713 mutex_exit(&mip->mi_bridge_lock);
714 if (mh == NULL) {
715 mac_rx_common((mac_handle_t)mip, mrh, mp_chain);
716 } else {
717 mac_bridge_rx_cb(mh, mrh, mp_chain);
718 mac_bridge_ref_cb(mh, B_FALSE);
719 }
720 }
721 }
722
723 /*
724 * Special case function: this allows snooping of packets transmitted and
725 * received by TRILL. By design, they go directly into the TRILL module.
726 */
727 void
mac_trill_snoop(mac_handle_t mh,mblk_t * mp)728 mac_trill_snoop(mac_handle_t mh, mblk_t *mp)
729 {
730 mac_impl_t *mip = (mac_impl_t *)mh;
731
732 if (mip->mi_promisc_list != NULL)
733 mac_promisc_dispatch(mip, mp, NULL, B_FALSE);
734 }
735
736 /*
737 * This is the upward reentry point for packets arriving from the bridging
738 * module and from mac_rx for links not part of a bridge.
739 */
740 void
mac_rx_common(mac_handle_t mh,mac_resource_handle_t mrh,mblk_t * mp_chain)741 mac_rx_common(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
742 {
743 mac_impl_t *mip = (mac_impl_t *)mh;
744 mac_ring_t *mr = (mac_ring_t *)mrh;
745 mac_soft_ring_set_t *mac_srs;
746 mblk_t *bp = mp_chain;
747
748 /*
749 * If there are any promiscuous mode callbacks defined for
750 * this MAC, pass them a copy if appropriate.
751 */
752 if (mip->mi_promisc_list != NULL)
753 mac_promisc_dispatch(mip, mp_chain, NULL, B_FALSE);
754
755 if (mr != NULL) {
756 /*
757 * If the SRS teardown has started, just return. The 'mr'
758 * continues to be valid until the driver unregisters the MAC.
759 * Hardware classified packets will not make their way up
760 * beyond this point once the teardown has started. The driver
761 * is never passed a pointer to a flow entry or SRS or any
762 * structure that can be freed much before mac_unregister.
763 */
764 mutex_enter(&mr->mr_lock);
765 if ((mr->mr_state != MR_INUSE) || (mr->mr_flag &
766 (MR_INCIPIENT | MR_CONDEMNED | MR_QUIESCE))) {
767 mutex_exit(&mr->mr_lock);
768 freemsgchain(mp_chain);
769 return;
770 }
771
772 /*
773 * The ring is in passthru mode; pass the chain up to
774 * the pseudo ring.
775 */
776 if (mr->mr_classify_type == MAC_PASSTHRU_CLASSIFIER) {
777 MR_REFHOLD_LOCKED(mr);
778 mutex_exit(&mr->mr_lock);
779 mr->mr_pt_fn(mr->mr_pt_arg1, mr->mr_pt_arg2, mp_chain,
780 B_FALSE);
781 MR_REFRELE(mr);
782 return;
783 }
784
785 /*
786 * The passthru callback should only be set when in
787 * MAC_PASSTHRU_CLASSIFIER mode.
788 */
789 ASSERT3P(mr->mr_pt_fn, ==, NULL);
790
791 /*
792 * We check if an SRS is controlling this ring.
793 * If so, we can directly call the srs_lower_proc
794 * routine otherwise we need to go through mac_rx_classify
795 * to reach the right place.
796 */
797 if (mr->mr_classify_type == MAC_HW_CLASSIFIER) {
798 MR_REFHOLD_LOCKED(mr);
799 mutex_exit(&mr->mr_lock);
800 ASSERT3P(mr->mr_srs, !=, NULL);
801 mac_srs = mr->mr_srs;
802
803 /*
804 * This is the fast path. All packets received
805 * on this ring are hardware classified and
806 * share the same MAC header info.
807 */
808 mac_srs->srs_rx.sr_lower_proc(mh,
809 (mac_resource_handle_t)mac_srs, mp_chain, B_FALSE);
810 MR_REFRELE(mr);
811 return;
812 }
813
814 mutex_exit(&mr->mr_lock);
815 /* We'll fall through to software classification */
816 } else {
817 flow_entry_t *flent;
818 int err;
819
820 rw_enter(&mip->mi_rw_lock, RW_READER);
821 if (mip->mi_single_active_client != NULL) {
822 flent = mip->mi_single_active_client->mci_flent_list;
823 FLOW_TRY_REFHOLD(flent, err);
824 rw_exit(&mip->mi_rw_lock);
825 if (err == 0) {
826 (flent->fe_cb_fn)(flent->fe_cb_arg1,
827 flent->fe_cb_arg2, mp_chain, B_FALSE);
828 FLOW_REFRELE(flent);
829 return;
830 }
831 } else {
832 rw_exit(&mip->mi_rw_lock);
833 }
834 }
835
836 if (!FLOW_TAB_EMPTY(mip->mi_flow_tab)) {
837 if ((bp = mac_rx_flow(mh, mrh, bp)) == NULL)
838 return;
839 }
840
841 freemsgchain(bp);
842 }
843
844 /* DATA TRANSMISSION */
845
846 /*
847 * A driver's notification to resume transmission, in case of a provider
848 * without TX rings.
849 */
850 void
mac_tx_update(mac_handle_t mh)851 mac_tx_update(mac_handle_t mh)
852 {
853 mac_tx_ring_update(mh, NULL);
854 }
855
856 /*
857 * A driver's notification to resume transmission on the specified TX ring.
858 */
859 void
mac_tx_ring_update(mac_handle_t mh,mac_ring_handle_t rh)860 mac_tx_ring_update(mac_handle_t mh, mac_ring_handle_t rh)
861 {
862 i_mac_tx_srs_notify((mac_impl_t *)mh, rh);
863 }
864
865 /* LINK STATE */
866 /*
867 * Notify the MAC layer about a link state change
868 */
869 void
mac_link_update(mac_handle_t mh,link_state_t link)870 mac_link_update(mac_handle_t mh, link_state_t link)
871 {
872 mac_impl_t *mip = (mac_impl_t *)mh;
873
874 /*
875 * Save the link state.
876 */
877 mip->mi_lowlinkstate = link;
878
879 /*
880 * Send a MAC_NOTE_LOWLINK notification. This tells the notification
881 * thread to deliver both lower and upper notifications.
882 */
883 i_mac_notify(mip, MAC_NOTE_LOWLINK);
884 }
885
886 /*
887 * Notify the MAC layer about a link state change due to bridging.
888 */
889 void
mac_link_redo(mac_handle_t mh,link_state_t link)890 mac_link_redo(mac_handle_t mh, link_state_t link)
891 {
892 mac_impl_t *mip = (mac_impl_t *)mh;
893
894 /*
895 * Save the link state.
896 */
897 mip->mi_linkstate = link;
898
899 /*
900 * Send a MAC_NOTE_LINK notification. Only upper notifications are
901 * made.
902 */
903 i_mac_notify(mip, MAC_NOTE_LINK);
904 }
905
906 /* MINOR NODE HANDLING */
907
908 /*
909 * Given a dev_t, return the instance number (PPA) associated with it.
910 * Drivers can use this in their getinfo(9e) implementation to lookup
911 * the instance number (i.e. PPA) of the device, to use as an index to
912 * their own array of soft state structures.
913 *
914 * Returns -1 on error.
915 */
916 int
mac_devt_to_instance(dev_t devt)917 mac_devt_to_instance(dev_t devt)
918 {
919 return (dld_devt_to_instance(devt));
920 }
921
922 /*
923 * Drivers that make use of the private minor number space are expected to
924 * provide their own getinfo(9e) entry point. This function simply forwards
925 * to the default MAC framework getinfo(9e) implementation as a convenience
926 * if they don't need any special mapping (mac instance != ddi_get_instance())
927 */
928 int
mac_getinfo(dev_info_t * dip,ddi_info_cmd_t cmd,void * arg,void ** resp)929 mac_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **resp)
930 {
931 return (dld_getinfo(dip, cmd, arg, resp));
932 }
933
934 /*
935 * This function returns the first minor number that is available for
936 * driver private use. All minor numbers smaller than this are
937 * reserved for GLDv3 use.
938 */
939 minor_t
mac_private_minor(void)940 mac_private_minor(void)
941 {
942 return (MAC_PRIVATE_MINOR);
943 }
944
945 /* OTHER CONTROL INFORMATION */
946
947 /*
948 * A driver notified us that its primary MAC address has changed.
949 */
950 void
mac_unicst_update(mac_handle_t mh,const uint8_t * addr)951 mac_unicst_update(mac_handle_t mh, const uint8_t *addr)
952 {
953 mac_impl_t *mip = (mac_impl_t *)mh;
954
955 if (mip->mi_type->mt_addr_length == 0)
956 return;
957
958 i_mac_perim_enter(mip);
959
960 /*
961 * If address changes, freshen the MAC address value and update
962 * all MAC clients that share this MAC address.
963 */
964 if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) != 0) {
965 mac_freshen_macaddr(mac_find_macaddr(mip, mip->mi_addr),
966 (uint8_t *)addr);
967 }
968
969 i_mac_perim_exit(mip);
970
971 /*
972 * Send a MAC_NOTE_UNICST notification.
973 */
974 i_mac_notify(mip, MAC_NOTE_UNICST);
975 }
976
977 void
mac_dst_update(mac_handle_t mh,const uint8_t * addr)978 mac_dst_update(mac_handle_t mh, const uint8_t *addr)
979 {
980 mac_impl_t *mip = (mac_impl_t *)mh;
981
982 if (mip->mi_type->mt_addr_length == 0)
983 return;
984
985 i_mac_perim_enter(mip);
986 bcopy(addr, mip->mi_dstaddr, mip->mi_type->mt_addr_length);
987 i_mac_perim_exit(mip);
988 i_mac_notify(mip, MAC_NOTE_DEST);
989 }
990
991 /*
992 * MAC plugin information changed.
993 */
994 int
mac_pdata_update(mac_handle_t mh,void * mac_pdata,size_t dsize)995 mac_pdata_update(mac_handle_t mh, void *mac_pdata, size_t dsize)
996 {
997 mac_impl_t *mip = (mac_impl_t *)mh;
998
999 /*
1000 * Verify that the plugin supports MAC plugin data and that the
1001 * supplied data is valid.
1002 */
1003 if (!(mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY))
1004 return (EINVAL);
1005 if (!mip->mi_type->mt_ops.mtops_pdata_verify(mac_pdata, dsize))
1006 return (EINVAL);
1007
1008 if (mip->mi_pdata != NULL)
1009 kmem_free(mip->mi_pdata, mip->mi_pdata_size);
1010
1011 mip->mi_pdata = kmem_alloc(dsize, KM_SLEEP);
1012 bcopy(mac_pdata, mip->mi_pdata, dsize);
1013 mip->mi_pdata_size = dsize;
1014
1015 /*
1016 * Since the MAC plugin data is used to construct MAC headers that
1017 * were cached in fast-path headers, we need to flush fast-path
1018 * information for links associated with this mac.
1019 */
1020 i_mac_notify(mip, MAC_NOTE_FASTPATH_FLUSH);
1021 return (0);
1022 }
1023
1024 /*
1025 * The mac provider or mac frameowrk calls this function when it wants
1026 * to notify upstream consumers that the capabilities have changed and
1027 * that they should modify their own internal state accordingly.
1028 *
1029 * We currently have no regard for the fact that a provider could
1030 * decide to drop capabilities which would invalidate pending traffic.
1031 * For example, if one was to disable the Tx checksum offload while
1032 * TCP/IP traffic was being sent by mac clients relying on that
1033 * feature, then those packets would hit the write with missing or
1034 * partial checksums. A proper solution involves not only providing
1035 * notfication, but also performing client quiescing. That is, a capab
1036 * change should be treated as an atomic transaction that forms a
1037 * barrier between traffic relying on the current capabs and traffic
1038 * relying on the new capabs. In practice, simnet is currently the
1039 * only provider that could hit this, and it's an easily avoidable
1040 * situation (and at worst it should only lead to some dropped
1041 * packets). But if we ever want better on-the-fly capab change to
1042 * actual hardware providers, then we should give this update
1043 * mechanism a proper implementation.
1044 */
1045 void
mac_capab_update(mac_handle_t mh)1046 mac_capab_update(mac_handle_t mh)
1047 {
1048 /*
1049 * Send a MAC_NOTE_CAPAB_CHG notification to alert upstream
1050 * clients to renegotiate capabilities.
1051 */
1052 i_mac_notify((mac_impl_t *)mh, MAC_NOTE_CAPAB_CHG);
1053 }
1054
1055 /*
1056 * Used by normal drivers to update the max sdu size.
1057 * We need to handle the case of a smaller mi_sdu_multicast
1058 * since this is called by mac_set_mtu() even for drivers that
1059 * have differing unicast and multicast mtu and we don't want to
1060 * increase the multicast mtu by accident in that case.
1061 */
1062 int
mac_maxsdu_update(mac_handle_t mh,uint_t sdu_max)1063 mac_maxsdu_update(mac_handle_t mh, uint_t sdu_max)
1064 {
1065 mac_impl_t *mip = (mac_impl_t *)mh;
1066
1067 if (sdu_max == 0 || sdu_max < mip->mi_sdu_min)
1068 return (EINVAL);
1069 mip->mi_sdu_max = sdu_max;
1070 if (mip->mi_sdu_multicast > mip->mi_sdu_max)
1071 mip->mi_sdu_multicast = mip->mi_sdu_max;
1072
1073 /* Send a MAC_NOTE_SDU_SIZE notification. */
1074 i_mac_notify(mip, MAC_NOTE_SDU_SIZE);
1075 return (0);
1076 }
1077
1078 /*
1079 * Version of the above function that is used by drivers that have a different
1080 * max sdu size for multicast/broadcast vs. unicast.
1081 */
1082 int
mac_maxsdu_update2(mac_handle_t mh,uint_t sdu_max,uint_t sdu_multicast)1083 mac_maxsdu_update2(mac_handle_t mh, uint_t sdu_max, uint_t sdu_multicast)
1084 {
1085 mac_impl_t *mip = (mac_impl_t *)mh;
1086
1087 if (sdu_max == 0 || sdu_max < mip->mi_sdu_min)
1088 return (EINVAL);
1089 if (sdu_multicast == 0)
1090 sdu_multicast = sdu_max;
1091 if (sdu_multicast > sdu_max || sdu_multicast < mip->mi_sdu_min)
1092 return (EINVAL);
1093 mip->mi_sdu_max = sdu_max;
1094 mip->mi_sdu_multicast = sdu_multicast;
1095
1096 /* Send a MAC_NOTE_SDU_SIZE notification. */
1097 i_mac_notify(mip, MAC_NOTE_SDU_SIZE);
1098 return (0);
1099 }
1100
1101 static void
mac_ring_intr_retarget(mac_group_t * group,mac_ring_t * ring)1102 mac_ring_intr_retarget(mac_group_t *group, mac_ring_t *ring)
1103 {
1104 mac_client_impl_t *mcip;
1105 flow_entry_t *flent;
1106 mac_soft_ring_set_t *mac_rx_srs;
1107 mac_cpus_t *srs_cpu;
1108 int i;
1109
1110 if (((mcip = MAC_GROUP_ONLY_CLIENT(group)) != NULL) &&
1111 (!ring->mr_info.mri_intr.mi_ddi_shared)) {
1112 /* interrupt can be re-targeted */
1113 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
1114 flent = mcip->mci_flent;
1115 if (ring->mr_type == MAC_RING_TYPE_RX) {
1116 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
1117 mac_rx_srs = flent->fe_rx_srs[i];
1118 if (mac_rx_srs->srs_ring != ring)
1119 continue;
1120 srs_cpu = &mac_rx_srs->srs_cpu;
1121 mutex_enter(&cpu_lock);
1122 mac_rx_srs_retarget_intr(mac_rx_srs,
1123 srs_cpu->mc_rx_intr_cpu);
1124 mutex_exit(&cpu_lock);
1125 break;
1126 }
1127 } else {
1128 if (flent->fe_tx_srs != NULL) {
1129 mutex_enter(&cpu_lock);
1130 mac_tx_srs_retarget_intr(
1131 flent->fe_tx_srs);
1132 mutex_exit(&cpu_lock);
1133 }
1134 }
1135 }
1136 }
1137
1138 /*
1139 * Clients like aggr create pseudo rings (mac_ring_t) and expose them to
1140 * their clients. There is a 1-1 mapping pseudo ring and the hardware
1141 * ring. ddi interrupt handles are exported from the hardware ring to
1142 * the pseudo ring. Thus when the interrupt handle changes, clients of
1143 * aggr that are using the handle need to use the new handle and
1144 * re-target their interrupts.
1145 */
1146 static void
mac_pseudo_ring_intr_retarget(mac_impl_t * mip,mac_ring_t * ring,ddi_intr_handle_t ddh)1147 mac_pseudo_ring_intr_retarget(mac_impl_t *mip, mac_ring_t *ring,
1148 ddi_intr_handle_t ddh)
1149 {
1150 mac_ring_t *pring;
1151 mac_group_t *pgroup;
1152 mac_impl_t *pmip;
1153 char macname[MAXNAMELEN];
1154 mac_perim_handle_t p_mph;
1155 uint64_t saved_gen_num;
1156
1157 again:
1158 pring = (mac_ring_t *)ring->mr_prh;
1159 pgroup = (mac_group_t *)pring->mr_gh;
1160 pmip = (mac_impl_t *)pgroup->mrg_mh;
1161 saved_gen_num = ring->mr_gen_num;
1162 (void) strlcpy(macname, pmip->mi_name, MAXNAMELEN);
1163 /*
1164 * We need to enter aggr's perimeter. The locking hierarchy
1165 * dictates that aggr's perimeter should be entered first
1166 * and then the port's perimeter. So drop the port's
1167 * perimeter, enter aggr's and then re-enter port's
1168 * perimeter.
1169 */
1170 i_mac_perim_exit(mip);
1171 /*
1172 * While we know pmip is the aggr's mip, there is a
1173 * possibility that aggr could have unregistered by
1174 * the time we exit port's perimeter (mip) and
1175 * enter aggr's perimeter (pmip). To avoid that
1176 * scenario, enter aggr's perimeter using its name.
1177 */
1178 if (mac_perim_enter_by_macname(macname, &p_mph) != 0)
1179 return;
1180 i_mac_perim_enter(mip);
1181 /*
1182 * Check if the ring got assigned to another aggregation before
1183 * be could enter aggr's and the port's perimeter. When a ring
1184 * gets deleted from an aggregation, it calls mac_stop_ring()
1185 * which increments the generation number. So checking
1186 * generation number will be enough.
1187 */
1188 if (ring->mr_gen_num != saved_gen_num && ring->mr_prh != NULL) {
1189 i_mac_perim_exit(mip);
1190 mac_perim_exit(p_mph);
1191 i_mac_perim_enter(mip);
1192 goto again;
1193 }
1194
1195 /* Check if pseudo ring is still present */
1196 if (ring->mr_prh != NULL) {
1197 pring->mr_info.mri_intr.mi_ddi_handle = ddh;
1198 pring->mr_info.mri_intr.mi_ddi_shared =
1199 ring->mr_info.mri_intr.mi_ddi_shared;
1200 if (ddh != NULL)
1201 mac_ring_intr_retarget(pgroup, pring);
1202 }
1203 i_mac_perim_exit(mip);
1204 mac_perim_exit(p_mph);
1205 }
1206 /*
1207 * API called by driver to provide new interrupt handle for TX/RX rings.
1208 * This usually happens when IRM (Interrupt Resource Manangement)
1209 * framework either gives the driver more MSI-x interrupts or takes
1210 * away MSI-x interrupts from the driver.
1211 */
1212 void
mac_ring_intr_set(mac_ring_handle_t mrh,ddi_intr_handle_t ddh)1213 mac_ring_intr_set(mac_ring_handle_t mrh, ddi_intr_handle_t ddh)
1214 {
1215 mac_ring_t *ring = (mac_ring_t *)mrh;
1216 mac_group_t *group = (mac_group_t *)ring->mr_gh;
1217 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
1218
1219 i_mac_perim_enter(mip);
1220 ring->mr_info.mri_intr.mi_ddi_handle = ddh;
1221 if (ddh == NULL) {
1222 /* Interrupts being reset */
1223 ring->mr_info.mri_intr.mi_ddi_shared = B_FALSE;
1224 if (ring->mr_prh != NULL) {
1225 mac_pseudo_ring_intr_retarget(mip, ring, ddh);
1226 return;
1227 }
1228 } else {
1229 /* New interrupt handle */
1230 mac_compare_ddi_handle(mip->mi_rx_groups,
1231 mip->mi_rx_group_count, ring);
1232 if (!ring->mr_info.mri_intr.mi_ddi_shared) {
1233 mac_compare_ddi_handle(mip->mi_tx_groups,
1234 mip->mi_tx_group_count, ring);
1235 }
1236 if (ring->mr_prh != NULL) {
1237 mac_pseudo_ring_intr_retarget(mip, ring, ddh);
1238 return;
1239 } else {
1240 mac_ring_intr_retarget(group, ring);
1241 }
1242 }
1243 i_mac_perim_exit(mip);
1244 }
1245
1246 /* PRIVATE FUNCTIONS, FOR INTERNAL USE ONLY */
1247
1248 /*
1249 * Updates the mac_impl structure with the current state of the link
1250 */
1251 static void
i_mac_log_link_state(mac_impl_t * mip)1252 i_mac_log_link_state(mac_impl_t *mip)
1253 {
1254 /*
1255 * If no change, then it is not interesting.
1256 */
1257 if (mip->mi_lastlowlinkstate == mip->mi_lowlinkstate)
1258 return;
1259
1260 switch (mip->mi_lowlinkstate) {
1261 case LINK_STATE_UP:
1262 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_LINK_DETAILS) {
1263 char det[200];
1264
1265 mip->mi_type->mt_ops.mtops_link_details(det,
1266 sizeof (det), (mac_handle_t)mip, mip->mi_pdata);
1267
1268 cmn_err(CE_NOTE, "!%s link up, %s", mip->mi_name, det);
1269 } else {
1270 cmn_err(CE_NOTE, "!%s link up", mip->mi_name);
1271 }
1272 break;
1273
1274 case LINK_STATE_DOWN:
1275 /*
1276 * Only transitions from UP to DOWN are interesting
1277 */
1278 if (mip->mi_lastlowlinkstate != LINK_STATE_UNKNOWN)
1279 cmn_err(CE_NOTE, "!%s link down", mip->mi_name);
1280 break;
1281
1282 case LINK_STATE_UNKNOWN:
1283 /*
1284 * This case is normally not interesting.
1285 */
1286 break;
1287 }
1288 mip->mi_lastlowlinkstate = mip->mi_lowlinkstate;
1289 }
1290
1291 /*
1292 * Main routine for the callbacks notifications thread
1293 */
1294 static void
i_mac_notify_thread(void * arg)1295 i_mac_notify_thread(void *arg)
1296 {
1297 mac_impl_t *mip = arg;
1298 callb_cpr_t cprinfo;
1299 mac_cb_t *mcb;
1300 mac_cb_info_t *mcbi;
1301 mac_notify_cb_t *mncb;
1302
1303 mcbi = &mip->mi_notify_cb_info;
1304 CALLB_CPR_INIT(&cprinfo, mcbi->mcbi_lockp, callb_generic_cpr,
1305 "i_mac_notify_thread");
1306
1307 mutex_enter(mcbi->mcbi_lockp);
1308
1309 for (;;) {
1310 uint32_t bits;
1311 uint32_t type;
1312
1313 bits = mip->mi_notify_bits;
1314 if (bits == 0) {
1315 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1316 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
1317 CALLB_CPR_SAFE_END(&cprinfo, mcbi->mcbi_lockp);
1318 continue;
1319 }
1320 mip->mi_notify_bits = 0;
1321 if ((bits & (1 << MAC_NNOTE)) != 0) {
1322 /* request to quit */
1323 ASSERT(mip->mi_state_flags & MIS_DISABLED);
1324 break;
1325 }
1326
1327 mutex_exit(mcbi->mcbi_lockp);
1328
1329 /*
1330 * Log link changes on the actual link, but then do reports on
1331 * synthetic state (if part of a bridge).
1332 */
1333 if ((bits & (1 << MAC_NOTE_LOWLINK)) != 0) {
1334 link_state_t newstate;
1335 mac_handle_t mh;
1336
1337 i_mac_log_link_state(mip);
1338 newstate = mip->mi_lowlinkstate;
1339 if (mip->mi_bridge_link != NULL) {
1340 mutex_enter(&mip->mi_bridge_lock);
1341 if ((mh = mip->mi_bridge_link) != NULL) {
1342 newstate = mac_bridge_ls_cb(mh,
1343 newstate);
1344 }
1345 mutex_exit(&mip->mi_bridge_lock);
1346 }
1347 if (newstate != mip->mi_linkstate) {
1348 mip->mi_linkstate = newstate;
1349 bits |= 1 << MAC_NOTE_LINK;
1350 }
1351 }
1352
1353 /*
1354 * Depending on which capabs have changed, the Tx
1355 * checksum flags may also need to be updated.
1356 */
1357 if ((bits & (1 << MAC_NOTE_CAPAB_CHG)) != 0) {
1358 mac_perim_handle_t mph;
1359 mac_handle_t mh = (mac_handle_t)mip;
1360
1361 mac_perim_enter_by_mh(mh, &mph);
1362 mip->mi_tx_cksum_flags = mac_features_to_flags(mh);
1363 mac_perim_exit(mph);
1364 }
1365
1366 /*
1367 * Do notification callbacks for each notification type.
1368 */
1369 for (type = 0; type < MAC_NNOTE; type++) {
1370 if ((bits & (1 << type)) == 0) {
1371 continue;
1372 }
1373
1374 if (mac_notify_cb_list[type] != NULL)
1375 (*mac_notify_cb_list[type])(mip);
1376
1377 /*
1378 * Walk the list of notifications.
1379 */
1380 MAC_CALLBACK_WALKER_INC(&mip->mi_notify_cb_info);
1381 for (mcb = mip->mi_notify_cb_list; mcb != NULL;
1382 mcb = mcb->mcb_nextp) {
1383 mncb = (mac_notify_cb_t *)mcb->mcb_objp;
1384 mncb->mncb_fn(mncb->mncb_arg, type);
1385 }
1386 MAC_CALLBACK_WALKER_DCR(&mip->mi_notify_cb_info,
1387 &mip->mi_notify_cb_list);
1388 }
1389
1390 mutex_enter(mcbi->mcbi_lockp);
1391 }
1392
1393 mip->mi_state_flags |= MIS_NOTIFY_DONE;
1394 cv_broadcast(&mcbi->mcbi_cv);
1395
1396 /* CALLB_CPR_EXIT drops the lock */
1397 CALLB_CPR_EXIT(&cprinfo);
1398 thread_exit();
1399 }
1400
1401 /*
1402 * Signal the i_mac_notify_thread asking it to quit.
1403 * Then wait till it is done.
1404 */
1405 void
i_mac_notify_exit(mac_impl_t * mip)1406 i_mac_notify_exit(mac_impl_t *mip)
1407 {
1408 mac_cb_info_t *mcbi;
1409
1410 mcbi = &mip->mi_notify_cb_info;
1411
1412 mutex_enter(mcbi->mcbi_lockp);
1413 mip->mi_notify_bits = (1 << MAC_NNOTE);
1414 cv_broadcast(&mcbi->mcbi_cv);
1415
1416
1417 while ((mip->mi_notify_thread != NULL) &&
1418 !(mip->mi_state_flags & MIS_NOTIFY_DONE)) {
1419 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
1420 }
1421
1422 /* Necessary clean up before doing kmem_cache_free */
1423 mip->mi_state_flags &= ~MIS_NOTIFY_DONE;
1424 mip->mi_notify_bits = 0;
1425 mip->mi_notify_thread = NULL;
1426 mutex_exit(mcbi->mcbi_lockp);
1427 }
1428
1429 /*
1430 * Entry point invoked by drivers to dynamically add a ring to an
1431 * existing group.
1432 */
1433 int
mac_group_add_ring(mac_group_handle_t gh,int index)1434 mac_group_add_ring(mac_group_handle_t gh, int index)
1435 {
1436 mac_group_t *group = (mac_group_t *)gh;
1437 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
1438 int ret;
1439
1440 i_mac_perim_enter(mip);
1441 ret = i_mac_group_add_ring(group, NULL, index);
1442 i_mac_perim_exit(mip);
1443 return (ret);
1444 }
1445
1446 /*
1447 * Entry point invoked by drivers to dynamically remove a ring
1448 * from an existing group. The specified ring handle must no longer
1449 * be used by the driver after a call to this function.
1450 */
1451 void
mac_group_rem_ring(mac_group_handle_t gh,mac_ring_handle_t rh)1452 mac_group_rem_ring(mac_group_handle_t gh, mac_ring_handle_t rh)
1453 {
1454 mac_group_t *group = (mac_group_t *)gh;
1455 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
1456
1457 i_mac_perim_enter(mip);
1458 i_mac_group_rem_ring(group, (mac_ring_t *)rh, B_TRUE);
1459 i_mac_perim_exit(mip);
1460 }
1461
1462 /*
1463 * mac_prop_info_*() callbacks called from the driver's prefix_propinfo()
1464 * entry points.
1465 */
1466
1467 void
mac_prop_info_set_default_uint8(mac_prop_info_handle_t ph,uint8_t val)1468 mac_prop_info_set_default_uint8(mac_prop_info_handle_t ph, uint8_t val)
1469 {
1470 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1471
1472 /* nothing to do if the caller doesn't want the default value */
1473 if (pr->pr_default == NULL)
1474 return;
1475
1476 ASSERT(pr->pr_default_size >= sizeof (uint8_t));
1477
1478 *(uint8_t *)(pr->pr_default) = val;
1479 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1480 }
1481
1482 void
mac_prop_info_set_default_uint64(mac_prop_info_handle_t ph,uint64_t val)1483 mac_prop_info_set_default_uint64(mac_prop_info_handle_t ph, uint64_t val)
1484 {
1485 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1486
1487 /* nothing to do if the caller doesn't want the default value */
1488 if (pr->pr_default == NULL)
1489 return;
1490
1491 ASSERT(pr->pr_default_size >= sizeof (uint64_t));
1492
1493 bcopy(&val, pr->pr_default, sizeof (val));
1494
1495 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1496 }
1497
1498 void
mac_prop_info_set_default_uint32(mac_prop_info_handle_t ph,uint32_t val)1499 mac_prop_info_set_default_uint32(mac_prop_info_handle_t ph, uint32_t val)
1500 {
1501 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1502
1503 /* nothing to do if the caller doesn't want the default value */
1504 if (pr->pr_default == NULL)
1505 return;
1506
1507 ASSERT(pr->pr_default_size >= sizeof (uint32_t));
1508
1509 bcopy(&val, pr->pr_default, sizeof (val));
1510
1511 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1512 }
1513
1514 void
mac_prop_info_set_default_str(mac_prop_info_handle_t ph,const char * str)1515 mac_prop_info_set_default_str(mac_prop_info_handle_t ph, const char *str)
1516 {
1517 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1518
1519 /* nothing to do if the caller doesn't want the default value */
1520 if (pr->pr_default == NULL)
1521 return;
1522
1523 if (strlen(str) >= pr->pr_default_size)
1524 pr->pr_errno = ENOBUFS;
1525 else
1526 (void) strlcpy(pr->pr_default, str, pr->pr_default_size);
1527 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1528 }
1529
1530 void
mac_prop_info_set_default_link_flowctrl(mac_prop_info_handle_t ph,link_flowctrl_t val)1531 mac_prop_info_set_default_link_flowctrl(mac_prop_info_handle_t ph,
1532 link_flowctrl_t val)
1533 {
1534 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1535
1536 /* nothing to do if the caller doesn't want the default value */
1537 if (pr->pr_default == NULL)
1538 return;
1539
1540 ASSERT(pr->pr_default_size >= sizeof (link_flowctrl_t));
1541
1542 bcopy(&val, pr->pr_default, sizeof (val));
1543
1544 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1545 }
1546
1547 void
mac_prop_info_set_default_fec(mac_prop_info_handle_t ph,link_fec_t val)1548 mac_prop_info_set_default_fec(mac_prop_info_handle_t ph, link_fec_t val)
1549 {
1550 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1551
1552 /* nothing to do if the caller doesn't want the default value */
1553 if (pr->pr_default == NULL)
1554 return;
1555
1556 ASSERT(pr->pr_default_size >= sizeof (link_fec_t));
1557
1558 bcopy(&val, pr->pr_default, sizeof (val));
1559
1560 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1561 }
1562
1563 void
mac_prop_info_set_range_uint32(mac_prop_info_handle_t ph,uint32_t min,uint32_t max)1564 mac_prop_info_set_range_uint32(mac_prop_info_handle_t ph, uint32_t min,
1565 uint32_t max)
1566 {
1567 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1568 mac_propval_range_t *range = pr->pr_range;
1569 mac_propval_uint32_range_t *range32;
1570
1571 /* nothing to do if the caller doesn't want the range info */
1572 if (range == NULL)
1573 return;
1574
1575 if (pr->pr_range_cur_count++ == 0) {
1576 /* first range */
1577 pr->pr_flags |= MAC_PROP_INFO_RANGE;
1578 range->mpr_type = MAC_PROPVAL_UINT32;
1579 } else {
1580 /* all ranges of a property should be of the same type */
1581 ASSERT(range->mpr_type == MAC_PROPVAL_UINT32);
1582 if (pr->pr_range_cur_count > range->mpr_count) {
1583 pr->pr_errno = ENOSPC;
1584 return;
1585 }
1586 }
1587
1588 range32 = range->mpr_range_uint32;
1589 range32[pr->pr_range_cur_count - 1].mpur_min = min;
1590 range32[pr->pr_range_cur_count - 1].mpur_max = max;
1591 }
1592
1593 void
mac_prop_info_set_perm(mac_prop_info_handle_t ph,uint8_t perm)1594 mac_prop_info_set_perm(mac_prop_info_handle_t ph, uint8_t perm)
1595 {
1596 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1597
1598 pr->pr_perm = perm;
1599 pr->pr_flags |= MAC_PROP_INFO_PERM;
1600 }
1601
1602 void
mac_hcksum_get(const mblk_t * mp,uint32_t * start,uint32_t * stuff,uint32_t * end,uint32_t * value,uint32_t * flags_ptr)1603 mac_hcksum_get(const mblk_t *mp, uint32_t *start, uint32_t *stuff,
1604 uint32_t *end, uint32_t *value, uint32_t *flags_ptr)
1605 {
1606 uint32_t flags;
1607
1608 ASSERT(DB_TYPE(mp) == M_DATA);
1609
1610 flags = DB_CKSUMFLAGS(mp) & HCK_FLAGS;
1611 if ((flags & (HCK_PARTIALCKSUM | HCK_FULLCKSUM)) != 0) {
1612 if (value != NULL)
1613 *value = (uint32_t)DB_CKSUM16(mp);
1614 if ((flags & HCK_PARTIALCKSUM) != 0) {
1615 if (start != NULL)
1616 *start = (uint32_t)DB_CKSUMSTART(mp);
1617 if (stuff != NULL)
1618 *stuff = (uint32_t)DB_CKSUMSTUFF(mp);
1619 if (end != NULL)
1620 *end = (uint32_t)DB_CKSUMEND(mp);
1621 }
1622 }
1623
1624 if (flags_ptr != NULL)
1625 *flags_ptr = flags;
1626 }
1627
1628 void
mac_hcksum_set(mblk_t * mp,uint32_t start,uint32_t stuff,uint32_t end,uint32_t value,uint32_t flags)1629 mac_hcksum_set(mblk_t *mp, uint32_t start, uint32_t stuff, uint32_t end,
1630 uint32_t value, uint32_t flags)
1631 {
1632 ASSERT(DB_TYPE(mp) == M_DATA);
1633
1634 DB_CKSUMSTART(mp) = (intptr_t)start;
1635 DB_CKSUMSTUFF(mp) = (intptr_t)stuff;
1636 DB_CKSUMEND(mp) = (intptr_t)end;
1637 DB_CKSUMFLAGS(mp) = (uint16_t)flags;
1638 DB_CKSUM16(mp) = (uint16_t)value;
1639 }
1640
1641 void
mac_hcksum_clone(const mblk_t * src,mblk_t * dst)1642 mac_hcksum_clone(const mblk_t *src, mblk_t *dst)
1643 {
1644 ASSERT3U(DB_TYPE(src), ==, M_DATA);
1645 ASSERT3U(DB_TYPE(dst), ==, M_DATA);
1646
1647 /*
1648 * Do these assignments unconditionally, rather than only when
1649 * flags is non-zero. This protects a situation where zeroed
1650 * hcksum data does not make the jump onto an mblk_t with
1651 * stale data in those fields. It's important to copy all
1652 * possible flags (HCK_* as well as HW_*) and not just the
1653 * checksum specific flags. Dropping flags during a clone
1654 * could result in dropped packets. If the caller has good
1655 * reason to drop those flags then it should do it manually,
1656 * after the clone.
1657 */
1658 DB_CKSUMFLAGS(dst) = DB_CKSUMFLAGS(src);
1659 DB_CKSUMSTART(dst) = DB_CKSUMSTART(src);
1660 DB_CKSUMSTUFF(dst) = DB_CKSUMSTUFF(src);
1661 DB_CKSUMEND(dst) = DB_CKSUMEND(src);
1662 DB_CKSUM16(dst) = DB_CKSUM16(src);
1663 DB_LSOMSS(dst) = DB_LSOMSS(src);
1664 }
1665
1666 void
mac_lso_get(mblk_t * mp,uint32_t * mss,uint32_t * flags)1667 mac_lso_get(mblk_t *mp, uint32_t *mss, uint32_t *flags)
1668 {
1669 ASSERT(DB_TYPE(mp) == M_DATA);
1670
1671 if (flags != NULL) {
1672 *flags = DB_CKSUMFLAGS(mp) & HW_LSO;
1673 if ((*flags != 0) && (mss != NULL))
1674 *mss = (uint32_t)DB_LSOMSS(mp);
1675 }
1676 }
1677
1678 void
mac_transceiver_info_set_present(mac_transceiver_info_t * infop,boolean_t present)1679 mac_transceiver_info_set_present(mac_transceiver_info_t *infop,
1680 boolean_t present)
1681 {
1682 infop->mti_present = present;
1683 }
1684
1685 void
mac_transceiver_info_set_usable(mac_transceiver_info_t * infop,boolean_t usable)1686 mac_transceiver_info_set_usable(mac_transceiver_info_t *infop,
1687 boolean_t usable)
1688 {
1689 infop->mti_usable = usable;
1690 }
1691
1692 static bool
mac_parse_is_ipv6eh(uint8_t id)1693 mac_parse_is_ipv6eh(uint8_t id)
1694 {
1695 switch (id) {
1696 case IPPROTO_HOPOPTS:
1697 case IPPROTO_ROUTING:
1698 case IPPROTO_FRAGMENT:
1699 case IPPROTO_AH:
1700 case IPPROTO_DSTOPTS:
1701 case IPPROTO_MH:
1702 case IPPROTO_HIP:
1703 case IPPROTO_SHIM6:
1704 /* Currently known extension headers */
1705 return (true);
1706 case IPPROTO_ESP:
1707 /*
1708 * While the IANA protocol numbers listing notes ESP as an IPv6
1709 * extension header, we cannot effectively parse it like one.
1710 *
1711 * For now, mac_ether_offload_info() will report it as the L4
1712 * protocol for a parsed packet containing this EH.
1713 */
1714 default:
1715 return (false);
1716 }
1717 }
1718
1719 typedef struct mac_mblk_cursor {
1720 mblk_t *mmc_head;
1721 mblk_t *mmc_cur;
1722 size_t mmc_off_total;
1723 size_t mmc_off_mp;
1724 } mac_mblk_cursor_t;
1725
1726 static void mac_mmc_advance(mac_mblk_cursor_t *, size_t);
1727 static void mac_mmc_reset(mac_mblk_cursor_t *);
1728
1729 static void
mac_mmc_init(mac_mblk_cursor_t * cursor,mblk_t * mp)1730 mac_mmc_init(mac_mblk_cursor_t *cursor, mblk_t *mp)
1731 {
1732 cursor->mmc_head = mp;
1733 mac_mmc_reset(cursor);
1734 }
1735
1736 static void
mac_mmc_reset(mac_mblk_cursor_t * cursor)1737 mac_mmc_reset(mac_mblk_cursor_t *cursor)
1738 {
1739 ASSERT(cursor->mmc_head != NULL);
1740
1741 cursor->mmc_cur = cursor->mmc_head;
1742 cursor->mmc_off_total = cursor->mmc_off_mp = 0;
1743
1744 /* Advance past any zero-length mblks at head */
1745 mac_mmc_advance(cursor, 0);
1746 }
1747
1748 static inline size_t
mac_mmc_mp_left(const mac_mblk_cursor_t * cursor)1749 mac_mmc_mp_left(const mac_mblk_cursor_t *cursor)
1750 {
1751 if (cursor->mmc_cur != NULL) {
1752 const size_t mp_len = MBLKL(cursor->mmc_cur);
1753
1754 ASSERT3U(mp_len, >=, cursor->mmc_off_mp);
1755
1756 return (mp_len - cursor->mmc_off_mp);
1757 } else {
1758 return (0);
1759 }
1760 }
1761
1762 static inline uint8_t *
mac_mmc_mp_ptr(const mac_mblk_cursor_t * cursor)1763 mac_mmc_mp_ptr(const mac_mblk_cursor_t *cursor)
1764 {
1765 return (cursor->mmc_cur->b_rptr + cursor->mmc_off_mp);
1766 }
1767
1768 static inline size_t
mac_mmc_offset(const mac_mblk_cursor_t * cursor)1769 mac_mmc_offset(const mac_mblk_cursor_t *cursor)
1770 {
1771 return (cursor->mmc_off_total);
1772 }
1773
1774 /*
1775 * Advance cursor forward `len` bytes.
1776 *
1777 * The length to advance must be no greater than the number of bytes remaining
1778 * in the current mblk. If the position reaches (exactly) the end of the
1779 * current mblk, the cursor will be pushed forward to the next non-zero-length
1780 * mblk in the chain.
1781 */
1782 static inline void
mac_mmc_advance(mac_mblk_cursor_t * cursor,size_t len)1783 mac_mmc_advance(mac_mblk_cursor_t *cursor, size_t len)
1784 {
1785 ASSERT(cursor->mmc_cur != NULL);
1786
1787 const size_t mp_len = MBLKL(cursor->mmc_cur);
1788
1789 ASSERT3U(cursor->mmc_off_mp + len, <=, mp_len);
1790
1791 cursor->mmc_off_total += len;
1792 cursor->mmc_off_mp += len;
1793
1794 if (cursor->mmc_off_mp == mp_len) {
1795 cursor->mmc_off_mp = 0;
1796 cursor->mmc_cur = cursor->mmc_cur->b_cont;
1797 }
1798
1799 /* Skip over any 0-length mblks */
1800 while (cursor->mmc_cur != NULL && MBLKL(cursor->mmc_cur) == 0) {
1801 cursor->mmc_cur = cursor->mmc_cur->b_cont;
1802 }
1803 }
1804
1805 /*
1806 * Attempt to seek to byte offset `off` in mblk chain.
1807 *
1808 * Returns true if the offset is <= the total chain length.
1809 */
1810 static bool
mac_mmc_seek(mac_mblk_cursor_t * cursor,const size_t off)1811 mac_mmc_seek(mac_mblk_cursor_t *cursor, const size_t off)
1812 {
1813 ASSERT(cursor->mmc_head != NULL);
1814
1815 if (off == cursor->mmc_off_total) {
1816 /*
1817 * Any prior init, reset, or seek operation will have advanced
1818 * past any zero-length mblks, making this short-circuit safe.
1819 */
1820 return (true);
1821 } else if (off < cursor->mmc_off_total) {
1822 /* Rewind to beginning if offset precedes current position */
1823 mac_mmc_reset(cursor);
1824 }
1825
1826 size_t seek_left = off - cursor->mmc_off_total;
1827 while (cursor->mmc_cur != NULL) {
1828 const size_t mp_left = mac_mmc_mp_left(cursor);
1829
1830 if (mp_left > seek_left) {
1831 /* Target position is within current mblk */
1832 cursor->mmc_off_mp += seek_left;
1833 cursor->mmc_off_total += seek_left;
1834 return (true);
1835 }
1836
1837 /* Move on to the next mblk... */
1838 mac_mmc_advance(cursor, mp_left);
1839 seek_left -= mp_left;
1840 }
1841
1842 /*
1843 * We have reached the end of the mblk chain, but there is a chance that
1844 * it corresponds to the target seek position.
1845 */
1846 return (cursor->mmc_off_total == off);
1847 }
1848
1849 /*
1850 * Attempt to read uint8_t at offset `pos` in mblk chain.
1851 *
1852 * Returns true (and sets value in `out`) if the offset is within the chain.
1853 */
1854 static bool
mac_mmc_get_uint8(mac_mblk_cursor_t * cursor,size_t pos,uint8_t * out)1855 mac_mmc_get_uint8(mac_mblk_cursor_t *cursor, size_t pos, uint8_t *out)
1856 {
1857 if (!mac_mmc_seek(cursor, pos)) {
1858 return (false);
1859 }
1860
1861 if (mac_mmc_mp_left(cursor) != 0) {
1862 *out = *(mac_mmc_mp_ptr(cursor));
1863 mac_mmc_advance(cursor, 1);
1864 return (true);
1865 }
1866
1867 return (false);
1868 }
1869
1870 /*
1871 * Attempt to read uint16_t at offset `pos` in mblk chain. The two
1872 * network-order bytes are converted into a host-order value.
1873 *
1874 * Returns true (and sets value in `out`) if the 16-bit region specified by the
1875 * offset is within the chain.
1876 */
1877 static bool
mac_mmc_get_uint16(mac_mblk_cursor_t * cursor,size_t pos,uint16_t * out)1878 mac_mmc_get_uint16(mac_mblk_cursor_t *cursor, size_t pos, uint16_t *out)
1879 {
1880 if (!mac_mmc_seek(cursor, pos)) {
1881 return (false);
1882 }
1883
1884 const size_t mp_left = mac_mmc_mp_left(cursor);
1885 uint16_t result = 0;
1886
1887 if (mp_left >= 2) {
1888 uint8_t *bp = mac_mmc_mp_ptr(cursor);
1889
1890 result = (uint16_t)bp[0] << 8;
1891 result |= bp[1];
1892 mac_mmc_advance(cursor, 2);
1893 *out = result;
1894 return (true);
1895 } else if (mp_left == 1) {
1896 result = (uint16_t)*(mac_mmc_mp_ptr(cursor));
1897 mac_mmc_advance(cursor, 1);
1898
1899 if (mac_mmc_mp_left(cursor) == 0) {
1900 return (false);
1901 }
1902
1903 result = result << 8;
1904 result |= (uint16_t)*(mac_mmc_mp_ptr(cursor));
1905 mac_mmc_advance(cursor, 1);
1906 *out = result;
1907 return (true);
1908 }
1909
1910 return (false);
1911 }
1912
1913 /*
1914 * Attempt to read `count` bytes at offset `pos` in mblk chain.
1915 *
1916 * Returns true (and copies data to `out`) if `count` length region is available
1917 * at offset within the chain.
1918 */
1919 static bool
mac_mmc_get_bytes(mac_mblk_cursor_t * cursor,size_t pos,uint8_t * out,size_t count)1920 mac_mmc_get_bytes(mac_mblk_cursor_t *cursor, size_t pos, uint8_t *out,
1921 size_t count)
1922 {
1923 if (!mac_mmc_seek(cursor, pos)) {
1924 return (false);
1925 }
1926
1927 while (count > 0) {
1928 const size_t mp_left = mac_mmc_mp_left(cursor);
1929
1930 if (mp_left == 0) {
1931 return (false);
1932 }
1933 const size_t to_copy = MIN(mp_left, count);
1934
1935 bcopy(mac_mmc_mp_ptr(cursor), out, to_copy);
1936 out += to_copy;
1937 mac_mmc_advance(cursor, to_copy);
1938 count -= to_copy;
1939 }
1940 return (true);
1941 }
1942
1943 /*
1944 * Attempt to parse ethernet header (VLAN or not) from mblk chain.
1945 *
1946 * Returns true if header was successfully parsed. Parsing will begin at
1947 * current offset of `cursor`. Any non-NULL arguments for VLAN, SAP, and header
1948 * size will be populated on success. A value of MEOI_VLAN_TCI_INVALID will be
1949 * reported for the TCI if the header does not bear VLAN infomation.
1950 */
1951 static bool
mac_mmc_parse_ether(mac_mblk_cursor_t * cursor,uint8_t * dst_addrp,uint32_t * vlan_tcip,uint16_t * ethertypep,uint16_t * hdr_sizep)1952 mac_mmc_parse_ether(mac_mblk_cursor_t *cursor, uint8_t *dst_addrp,
1953 uint32_t *vlan_tcip, uint16_t *ethertypep, uint16_t *hdr_sizep)
1954 {
1955 const size_t l2_off = mac_mmc_offset(cursor);
1956
1957 if (dst_addrp != NULL) {
1958 if (!mac_mmc_get_bytes(cursor, l2_off, dst_addrp, ETHERADDRL)) {
1959 return (false);
1960 }
1961 }
1962
1963 uint16_t ethertype = 0;
1964 if (!mac_mmc_get_uint16(cursor,
1965 l2_off + offsetof(struct ether_header, ether_type), ðertype)) {
1966 return (false);
1967 }
1968
1969 uint32_t tci = MEOI_VLAN_TCI_INVALID;
1970 uint16_t hdrsize = sizeof (struct ether_header);
1971
1972 if (ethertype == ETHERTYPE_VLAN) {
1973 uint16_t tci_val;
1974
1975 if (!mac_mmc_get_uint16(cursor,
1976 l2_off + offsetof(struct ether_vlan_header, ether_tci),
1977 &tci_val)) {
1978 return (false);
1979 }
1980 if (!mac_mmc_get_uint16(cursor,
1981 l2_off + offsetof(struct ether_vlan_header, ether_type),
1982 ðertype)) {
1983 return (false);
1984 }
1985 hdrsize = sizeof (struct ether_vlan_header);
1986 tci = (uint32_t)tci_val;
1987 }
1988
1989 if (vlan_tcip != NULL) {
1990 *vlan_tcip = tci;
1991 }
1992 if (ethertypep != NULL) {
1993 *ethertypep = ethertype;
1994 }
1995 if (hdr_sizep != NULL) {
1996 *hdr_sizep = hdrsize;
1997 }
1998 return (true);
1999 }
2000
2001 /*
2002 * Attempt to parse L3 protocol header from mblk chain.
2003 *
2004 * The SAP/ethertype of the containing header must be specified by the caller.
2005 *
2006 * Returns true if header was successfully parsed. Parsing will begin at
2007 * current offset of `cursor`. Any non-NULL arguments for IP protocol and
2008 * header size will be populated on success.
2009 */
2010 static bool
mac_mmc_parse_l3(mac_mblk_cursor_t * cursor,uint16_t l3_sap,uint8_t * ipprotop,bool * is_fragp,uint16_t * hdr_sizep)2011 mac_mmc_parse_l3(mac_mblk_cursor_t *cursor, uint16_t l3_sap, uint8_t *ipprotop,
2012 bool *is_fragp, uint16_t *hdr_sizep)
2013 {
2014 const size_t l3_off = mac_mmc_offset(cursor);
2015
2016 if (l3_sap == ETHERTYPE_IP) {
2017 uint8_t verlen, ipproto;
2018 uint16_t frag_off;
2019
2020 if (!mac_mmc_get_uint8(cursor, l3_off, &verlen)) {
2021 return (false);
2022 }
2023 verlen &= 0x0f;
2024 if (verlen < 5 || verlen > 0x0f) {
2025 return (false);
2026 }
2027
2028 if (!mac_mmc_get_uint16(cursor,
2029 l3_off + offsetof(ipha_t, ipha_fragment_offset_and_flags),
2030 &frag_off)) {
2031 return (false);
2032 }
2033
2034 if (!mac_mmc_get_uint8(cursor,
2035 l3_off + offsetof(ipha_t, ipha_protocol), &ipproto)) {
2036 return (false);
2037 }
2038
2039 if (ipprotop != NULL) {
2040 *ipprotop = ipproto;
2041 }
2042 if (is_fragp != NULL) {
2043 *is_fragp = ((frag_off & (IPH_MF | IPH_OFFSET)) != 0);
2044 }
2045 if (hdr_sizep != NULL) {
2046 *hdr_sizep = verlen * 4;
2047 }
2048 return (true);
2049 }
2050 if (l3_sap == ETHERTYPE_IPV6) {
2051 uint16_t ip_len = sizeof (ip6_t);
2052 uint8_t ipproto;
2053 bool found_frag_eh = false;
2054
2055 if (!mac_mmc_get_uint8(cursor,
2056 l3_off + offsetof(ip6_t, ip6_nxt), &ipproto)) {
2057 return (false);
2058 }
2059
2060 /* Chase any extension headers present in packet */
2061 while (mac_parse_is_ipv6eh(ipproto)) {
2062 uint8_t len_val, next_hdr;
2063 uint16_t eh_len;
2064
2065 const size_t hdr_off = l3_off + ip_len;
2066 if (!mac_mmc_get_uint8(cursor, hdr_off, &next_hdr)) {
2067 return (false);
2068 }
2069
2070 if (ipproto == IPPROTO_FRAGMENT) {
2071 /*
2072 * The Fragment extension header bears a
2073 * predefined fixed length, rather than
2074 * communicating it through the EH itself.
2075 */
2076 eh_len = 8;
2077 found_frag_eh = true;
2078 } else if (ipproto == IPPROTO_AH) {
2079 /*
2080 * The length of the IP Authentication EH is
2081 * stored as (n + 2) * 32-bits, where 'n' is the
2082 * recorded EH length field
2083 */
2084 if (!mac_mmc_get_uint8(cursor, hdr_off + 1,
2085 &len_val)) {
2086 return (false);
2087 }
2088 eh_len = ((uint16_t)len_val + 2) * 4;
2089 } else {
2090 /*
2091 * All other EHs should follow the sizing
2092 * formula of (n + 1) * 64-bits, where 'n' is
2093 * the recorded EH length field.
2094 */
2095 if (!mac_mmc_get_uint8(cursor, hdr_off + 1,
2096 &len_val)) {
2097 return (false);
2098 }
2099 eh_len = ((uint16_t)len_val + 1) * 8;
2100 }
2101 /*
2102 * Protect against overflow in the case of a very
2103 * contrived packet.
2104 */
2105 if ((ip_len + eh_len) < ip_len) {
2106 return (-1);
2107 }
2108
2109 ipproto = next_hdr;
2110 ip_len += eh_len;
2111 }
2112
2113 if (ipprotop != NULL) {
2114 *ipprotop = ipproto;
2115 }
2116 if (is_fragp != NULL) {
2117 *is_fragp = found_frag_eh;
2118 }
2119 if (hdr_sizep != NULL) {
2120 *hdr_sizep = ip_len;
2121 }
2122 return (true);
2123 }
2124
2125 return (false);
2126 }
2127
2128 /*
2129 * Attempt to parse L4 protocol header from mblk chain.
2130 *
2131 * The IP protocol of the containing header must be specified by the caller.
2132 *
2133 * Returns true if header was successfully parsed. Parsing will begin at
2134 * current offset of `cursor`. A non-NULL argument for header size will be
2135 * populated on success.
2136 */
2137 static bool
mac_mmc_parse_l4(mac_mblk_cursor_t * cursor,uint8_t ipproto,uint8_t * hdr_sizep)2138 mac_mmc_parse_l4(mac_mblk_cursor_t *cursor, uint8_t ipproto, uint8_t *hdr_sizep)
2139 {
2140 ASSERT(hdr_sizep != NULL);
2141
2142 const size_t l4_off = mac_mmc_offset(cursor);
2143 uint8_t tcp_doff;
2144
2145 switch (ipproto) {
2146 case IPPROTO_TCP:
2147 if (!mac_mmc_get_uint8(cursor,
2148 l4_off + offsetof(tcph_t, th_offset_and_rsrvd),
2149 &tcp_doff)) {
2150 return (false);
2151 }
2152 tcp_doff = (tcp_doff & 0xf0) >> 4;
2153 if (tcp_doff < 5 || tcp_doff > 0xf) {
2154 return (false);
2155 }
2156 *hdr_sizep = tcp_doff * 4;
2157 return (true);
2158 case IPPROTO_UDP:
2159 *hdr_sizep = sizeof (struct udphdr);
2160 return (true);
2161 case IPPROTO_SCTP:
2162 *hdr_sizep = sizeof (sctp_hdr_t);
2163 return (true);
2164 default:
2165 return (false);
2166 }
2167 }
2168
2169 /*
2170 * Parse destination MAC address and VLAN TCI (if any) from mblk chain.
2171 *
2172 * If packet ethertype does not indicate that a VLAN is present,
2173 * MEOI_VLAN_TCI_INVALID will be returned for the TCI.
2174 */
2175 int
mac_ether_l2_info(mblk_t * mp,uint8_t * dst_addrp,uint32_t * vlan_tcip)2176 mac_ether_l2_info(mblk_t *mp, uint8_t *dst_addrp, uint32_t *vlan_tcip)
2177 {
2178 mac_mblk_cursor_t cursor;
2179
2180 mac_mmc_init(&cursor, mp);
2181 if (!mac_mmc_parse_ether(&cursor, dst_addrp, vlan_tcip, NULL, NULL)) {
2182 return (-1);
2183 }
2184
2185 return (0);
2186 }
2187
2188 /*
2189 * Perform a partial parsing of offload info from a frame and/or packet.
2190 *
2191 * Beginning at the provided byte offset (`off`) in the mblk, attempt to parse
2192 * any offload info which has not yet been populated in `meoi`. The contents of
2193 * `meoi_flags` upon entry will be considered as "already parsed", their
2194 * corresponding data fields will be considered valid.
2195 *
2196 * A motivating example: A non-Ethernet packet could be parsed for L3/L4 offload
2197 * information by setting MEOI_L2INFO_SET in `meoi_flags`, and the L3 SAP in
2198 * `meoi_l3_proto`. With a value in `meoi_l2hlen` that, when combined with the
2199 * provided `off`, will direct the parser to the start of the L3 header in the
2200 * mblk, the rest of the logic will be free to run.
2201 *
2202 * Alternatively, this could be used to parse the headers in an encapsulated
2203 * Ethernet packet by simply specifying the start of its header in `off`.
2204 *
2205 * Returns 0 if parsing was able to proceed all the way through the L4 header.
2206 * The meoi_flags field will be updated regardless for any partial (L2/L3)
2207 * parsing which was successful.
2208 */
2209 int
mac_partial_offload_info(mblk_t * mp,size_t off,mac_ether_offload_info_t * meoi)2210 mac_partial_offload_info(mblk_t *mp, size_t off, mac_ether_offload_info_t *meoi)
2211 {
2212 mac_mblk_cursor_t cursor;
2213
2214 mac_mmc_init(&cursor, mp);
2215
2216 if (!mac_mmc_seek(&cursor, off)) {
2217 return (-1);
2218 }
2219
2220 if ((meoi->meoi_flags & MEOI_L2INFO_SET) == 0) {
2221 uint32_t vlan_tci;
2222 uint16_t l2_sz, ethertype;
2223 if (!mac_mmc_parse_ether(&cursor, NULL, &vlan_tci, ðertype,
2224 &l2_sz)) {
2225 return (-1);
2226 }
2227
2228 meoi->meoi_flags |= MEOI_L2INFO_SET;
2229 meoi->meoi_l2hlen = l2_sz;
2230 meoi->meoi_l3proto = ethertype;
2231 if (vlan_tci != MEOI_VLAN_TCI_INVALID) {
2232 ASSERT3U(meoi->meoi_l2hlen, ==,
2233 sizeof (struct ether_vlan_header));
2234 meoi->meoi_flags |= MEOI_VLAN_TAGGED;
2235 }
2236 }
2237 const size_t l2_end = off + (size_t)meoi->meoi_l2hlen;
2238 if (!mac_mmc_seek(&cursor, l2_end)) {
2239 meoi->meoi_flags &= ~MEOI_L2INFO_SET;
2240 return (-1);
2241 }
2242
2243 if ((meoi->meoi_flags & MEOI_L3INFO_SET) == 0) {
2244 uint8_t ipproto;
2245 uint16_t l3_sz;
2246 bool is_frag;
2247 if (!mac_mmc_parse_l3(&cursor, meoi->meoi_l3proto, &ipproto,
2248 &is_frag, &l3_sz)) {
2249 return (-1);
2250 }
2251
2252 meoi->meoi_l3hlen = l3_sz;
2253 meoi->meoi_l4proto = ipproto;
2254 meoi->meoi_flags |= MEOI_L3INFO_SET;
2255 if (is_frag) {
2256 meoi->meoi_flags |= MEOI_L3_FRAGMENT;
2257 }
2258 }
2259 const size_t l3_end = l2_end + (size_t)meoi->meoi_l3hlen;
2260 if (!mac_mmc_seek(&cursor, l3_end)) {
2261 meoi->meoi_flags &= ~MEOI_L3INFO_SET;
2262 return (-1);
2263 }
2264
2265 if ((meoi->meoi_flags & MEOI_L4INFO_SET) == 0) {
2266 uint8_t l4_sz;
2267 if (!mac_mmc_parse_l4(&cursor, meoi->meoi_l4proto, &l4_sz)) {
2268 return (-1);
2269 }
2270
2271 meoi->meoi_l4hlen = l4_sz;
2272 meoi->meoi_flags |= MEOI_L4INFO_SET;
2273 }
2274 const size_t l4_end = l3_end + (size_t)meoi->meoi_l4hlen;
2275 if (!mac_mmc_seek(&cursor, l4_end)) {
2276 meoi->meoi_flags &= ~MEOI_L4INFO_SET;
2277 return (-1);
2278 }
2279
2280 return (0);
2281 }
2282
2283 int
mac_ether_offload_info(mblk_t * mp,mac_ether_offload_info_t * meoi)2284 mac_ether_offload_info(mblk_t *mp, mac_ether_offload_info_t *meoi)
2285 {
2286 bzero(meoi, sizeof (mac_ether_offload_info_t));
2287 meoi->meoi_len = msgdsize(mp);
2288
2289 return (mac_partial_offload_info(mp, 0, meoi));
2290 }
2291