1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
25 */
26
27 /*
28 * - General Introduction:
29 *
30 * This file contains the implementation of the MAC client kernel
31 * API and related code. The MAC client API allows a kernel module
32 * to gain access to a MAC instance (physical NIC, link aggregation, etc).
33 * It allows a MAC client to associate itself with a MAC address,
34 * VLANs, callback functions for data traffic and for promiscuous mode.
35 * The MAC client API is also used to specify the properties associated
36 * with a MAC client, such as bandwidth limits, priority, CPUS, etc.
37 * These properties are further used to determine the hardware resources
38 * to allocate to the various MAC clients.
39 *
40 * - Primary MAC clients:
41 *
42 * The MAC client API refers to "primary MAC clients". A primary MAC
43 * client is a client which "owns" the primary MAC address of
44 * the underlying MAC instance. The primary MAC address is called out
45 * since it is associated with specific semantics: the primary MAC
46 * address is the MAC address which is assigned to the IP interface
47 * when it is plumbed, and the primary MAC address is assigned
48 * to VLAN data-links. The primary address of a MAC instance can
49 * also change dynamically from under the MAC client, for example
50 * as a result of a change of state of a link aggregation. In that
51 * case the MAC layer automatically updates all data-structures which
52 * refer to the current value of the primary MAC address. Typical
53 * primary MAC clients are dls, aggr, and xnb. A typical non-primary
54 * MAC client is the vnic driver.
55 *
56 * - Virtual Switching:
57 *
58 * The MAC layer implements a virtual switch between the MAC clients
59 * (primary and non-primary) defined on top of the same underlying
60 * NIC (physical, link aggregation, etc). The virtual switch is
61 * VLAN-aware, i.e. it allows multiple MAC clients to be member
62 * of one or more VLANs, and the virtual switch will distribute
63 * multicast tagged packets only to the member of the corresponding
64 * VLANs.
65 *
66 * - Upper vs Lower MAC:
67 *
68 * Creating a VNIC on top of a MAC instance effectively causes
69 * two MAC instances to be layered on top of each other, one for
70 * the VNIC(s), one for the underlying MAC instance (physical NIC,
71 * link aggregation, etc). In the code below we refer to the
72 * underlying NIC as the "lower MAC", and we refer to VNICs as
73 * the "upper MAC".
74 *
75 * - Pass-through for VNICs:
76 *
77 * When VNICs are created on top of an underlying MAC, this causes
78 * a layering of two MAC instances. Since the lower MAC already
79 * does the switching and demultiplexing to its MAC clients, the
80 * upper MAC would simply have to pass packets to the layer below
81 * or above it, which would introduce overhead. In order to avoid
82 * this overhead, the MAC layer implements a pass-through mechanism
83 * for VNICs. When a VNIC opens the lower MAC instance, it saves
84 * the MAC client handle it optains from the MAC layer. When a MAC
85 * client opens a VNIC (upper MAC), the MAC layer detects that
86 * the MAC being opened is a VNIC, and gets the MAC client handle
87 * that the VNIC driver obtained from the lower MAC. This exchange
88 * is done through a private capability between the MAC layer
89 * and the VNIC driver. The upper MAC then returns that handle
90 * directly to its MAC client. Any operation done by the upper
91 * MAC client is now done on the lower MAC client handle, which
92 * allows the VNIC driver to be completely bypassed for the
93 * performance sensitive data-path.
94 *
95 * - Secondary MACs for VNICs:
96 *
97 * VNICs support multiple upper mac clients to enable support for
98 * multiple MAC addresses on the VNIC. When the VNIC is created the
99 * initial mac client is the primary upper mac. Any additional mac
100 * clients are secondary macs. These are kept in sync with the primary
101 * (for things such as the rx function and resource control settings)
102 * using the same private capability interface between the MAC layer
103 * and the VNIC layer.
104 *
105 */
106
107 #include <sys/types.h>
108 #include <sys/conf.h>
109 #include <sys/id_space.h>
110 #include <sys/esunddi.h>
111 #include <sys/stat.h>
112 #include <sys/mkdev.h>
113 #include <sys/stream.h>
114 #include <sys/strsun.h>
115 #include <sys/strsubr.h>
116 #include <sys/dlpi.h>
117 #include <sys/modhash.h>
118 #include <sys/mac_impl.h>
119 #include <sys/mac_client_impl.h>
120 #include <sys/mac_soft_ring.h>
121 #include <sys/mac_stat.h>
122 #include <sys/dls.h>
123 #include <sys/dld.h>
124 #include <sys/modctl.h>
125 #include <sys/fs/dv_node.h>
126 #include <sys/thread.h>
127 #include <sys/proc.h>
128 #include <sys/callb.h>
129 #include <sys/cpuvar.h>
130 #include <sys/atomic.h>
131 #include <sys/sdt.h>
132 #include <sys/mac_flow.h>
133 #include <sys/ddi_intr_impl.h>
134 #include <sys/disp.h>
135 #include <sys/sdt.h>
136 #include <sys/vnic.h>
137 #include <sys/vnic_impl.h>
138 #include <sys/vlan.h>
139 #include <inet/ip.h>
140 #include <inet/ip6.h>
141 #include <sys/exacct.h>
142 #include <sys/exacct_impl.h>
143 #include <inet/nd.h>
144 #include <sys/ethernet.h>
145
146 kmem_cache_t *mac_client_impl_cache;
147 kmem_cache_t *mac_promisc_impl_cache;
148
149 static boolean_t mac_client_single_rcvr(mac_client_impl_t *);
150 static flow_entry_t *mac_client_swap_mciflent(mac_client_impl_t *);
151 static flow_entry_t *mac_client_get_flow(mac_client_impl_t *,
152 mac_unicast_impl_t *);
153 static void mac_client_remove_flow_from_list(mac_client_impl_t *,
154 flow_entry_t *);
155 static void mac_client_add_to_flow_list(mac_client_impl_t *, flow_entry_t *);
156 static void mac_rename_flow_names(mac_client_impl_t *, const char *);
157 static void mac_virtual_link_update(mac_impl_t *);
158 static int mac_client_datapath_setup(mac_client_impl_t *, uint16_t,
159 uint8_t *, mac_resource_props_t *, boolean_t, mac_unicast_impl_t *);
160 static void mac_client_datapath_teardown(mac_client_handle_t,
161 mac_unicast_impl_t *, flow_entry_t *);
162 static int mac_resource_ctl_set(mac_client_handle_t, mac_resource_props_t *);
163
164 /* ARGSUSED */
165 static int
i_mac_client_impl_ctor(void * buf,void * arg,int kmflag)166 i_mac_client_impl_ctor(void *buf, void *arg, int kmflag)
167 {
168 int i;
169 mac_client_impl_t *mcip = buf;
170
171 bzero(buf, MAC_CLIENT_IMPL_SIZE);
172 mutex_init(&mcip->mci_tx_cb_lock, NULL, MUTEX_DRIVER, NULL);
173 mcip->mci_tx_notify_cb_info.mcbi_lockp = &mcip->mci_tx_cb_lock;
174
175 ASSERT(mac_tx_percpu_cnt >= 0);
176 for (i = 0; i <= mac_tx_percpu_cnt; i++) {
177 mutex_init(&mcip->mci_tx_pcpu[i].pcpu_tx_lock, NULL,
178 MUTEX_DRIVER, NULL);
179 }
180 cv_init(&mcip->mci_tx_cv, NULL, CV_DRIVER, NULL);
181
182 return (0);
183 }
184
185 /* ARGSUSED */
186 static void
i_mac_client_impl_dtor(void * buf,void * arg)187 i_mac_client_impl_dtor(void *buf, void *arg)
188 {
189 int i;
190 mac_client_impl_t *mcip = buf;
191
192 ASSERT(mcip->mci_promisc_list == NULL);
193 ASSERT(mcip->mci_unicast_list == NULL);
194 ASSERT(mcip->mci_state_flags == 0);
195 ASSERT(mcip->mci_tx_flag == 0);
196
197 mutex_destroy(&mcip->mci_tx_cb_lock);
198
199 ASSERT(mac_tx_percpu_cnt >= 0);
200 for (i = 0; i <= mac_tx_percpu_cnt; i++) {
201 ASSERT(mcip->mci_tx_pcpu[i].pcpu_tx_refcnt == 0);
202 mutex_destroy(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
203 }
204 cv_destroy(&mcip->mci_tx_cv);
205 }
206
207 /* ARGSUSED */
208 static int
i_mac_promisc_impl_ctor(void * buf,void * arg,int kmflag)209 i_mac_promisc_impl_ctor(void *buf, void *arg, int kmflag)
210 {
211 mac_promisc_impl_t *mpip = buf;
212
213 bzero(buf, sizeof (mac_promisc_impl_t));
214 mpip->mpi_mci_link.mcb_objp = buf;
215 mpip->mpi_mci_link.mcb_objsize = sizeof (mac_promisc_impl_t);
216 mpip->mpi_mi_link.mcb_objp = buf;
217 mpip->mpi_mi_link.mcb_objsize = sizeof (mac_promisc_impl_t);
218 return (0);
219 }
220
221 /* ARGSUSED */
222 static void
i_mac_promisc_impl_dtor(void * buf,void * arg)223 i_mac_promisc_impl_dtor(void *buf, void *arg)
224 {
225 mac_promisc_impl_t *mpip = buf;
226
227 ASSERT(mpip->mpi_mci_link.mcb_objp != NULL);
228 ASSERT(mpip->mpi_mci_link.mcb_objsize == sizeof (mac_promisc_impl_t));
229 ASSERT(mpip->mpi_mi_link.mcb_objp == mpip->mpi_mci_link.mcb_objp);
230 ASSERT(mpip->mpi_mi_link.mcb_objsize == sizeof (mac_promisc_impl_t));
231
232 mpip->mpi_mci_link.mcb_objp = NULL;
233 mpip->mpi_mci_link.mcb_objsize = 0;
234 mpip->mpi_mi_link.mcb_objp = NULL;
235 mpip->mpi_mi_link.mcb_objsize = 0;
236
237 ASSERT(mpip->mpi_mci_link.mcb_flags == 0);
238 mpip->mpi_mci_link.mcb_objsize = 0;
239 }
240
241 void
mac_client_init(void)242 mac_client_init(void)
243 {
244 ASSERT(mac_tx_percpu_cnt >= 0);
245
246 mac_client_impl_cache = kmem_cache_create("mac_client_impl_cache",
247 MAC_CLIENT_IMPL_SIZE, 0, i_mac_client_impl_ctor,
248 i_mac_client_impl_dtor, NULL, NULL, NULL, 0);
249 ASSERT(mac_client_impl_cache != NULL);
250
251 mac_promisc_impl_cache = kmem_cache_create("mac_promisc_impl_cache",
252 sizeof (mac_promisc_impl_t), 0, i_mac_promisc_impl_ctor,
253 i_mac_promisc_impl_dtor, NULL, NULL, NULL, 0);
254 ASSERT(mac_promisc_impl_cache != NULL);
255 }
256
257 void
mac_client_fini(void)258 mac_client_fini(void)
259 {
260 kmem_cache_destroy(mac_client_impl_cache);
261 kmem_cache_destroy(mac_promisc_impl_cache);
262 }
263
264 /*
265 * Return the lower MAC client handle from the VNIC driver for the
266 * specified VNIC MAC instance.
267 */
268 mac_client_impl_t *
mac_vnic_lower(mac_impl_t * mip)269 mac_vnic_lower(mac_impl_t *mip)
270 {
271 mac_capab_vnic_t cap;
272 mac_client_impl_t *mcip;
273
274 VERIFY(i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, &cap));
275 mcip = cap.mcv_mac_client_handle(cap.mcv_arg);
276
277 return (mcip);
278 }
279
280 /*
281 * Update the secondary macs
282 */
283 void
mac_vnic_secondary_update(mac_impl_t * mip)284 mac_vnic_secondary_update(mac_impl_t *mip)
285 {
286 mac_capab_vnic_t cap;
287
288 VERIFY(i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, &cap));
289 cap.mcv_mac_secondary_update(cap.mcv_arg);
290 }
291
292 /*
293 * Return the MAC client handle of the primary MAC client for the
294 * specified MAC instance, or NULL otherwise.
295 */
296 mac_client_impl_t *
mac_primary_client_handle(mac_impl_t * mip)297 mac_primary_client_handle(mac_impl_t *mip)
298 {
299 mac_client_impl_t *mcip;
300
301 if (mip->mi_state_flags & MIS_IS_VNIC)
302 return (mac_vnic_lower(mip));
303
304 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
305
306 for (mcip = mip->mi_clients_list; mcip != NULL;
307 mcip = mcip->mci_client_next) {
308 if (MCIP_DATAPATH_SETUP(mcip) && mac_is_primary_client(mcip))
309 return (mcip);
310 }
311 return (NULL);
312 }
313
314 /*
315 * Open a MAC specified by its MAC name.
316 */
317 int
mac_open(const char * macname,mac_handle_t * mhp)318 mac_open(const char *macname, mac_handle_t *mhp)
319 {
320 mac_impl_t *mip;
321 int err;
322
323 /*
324 * Look up its entry in the global hash table.
325 */
326 if ((err = mac_hold(macname, &mip)) != 0)
327 return (err);
328
329 /*
330 * Hold the dip associated to the MAC to prevent it from being
331 * detached. For a softmac, its underlying dip is held by the
332 * mi_open() callback.
333 *
334 * This is done to be more tolerant with some defective drivers,
335 * which incorrectly handle mac_unregister() failure in their
336 * xxx_detach() routine. For example, some drivers ignore the
337 * failure of mac_unregister() and free all resources that
338 * that are needed for data transmition.
339 */
340 e_ddi_hold_devi(mip->mi_dip);
341
342 if (!(mip->mi_callbacks->mc_callbacks & MC_OPEN)) {
343 *mhp = (mac_handle_t)mip;
344 return (0);
345 }
346
347 /*
348 * The mac perimeter is used in both mac_open and mac_close by the
349 * framework to single thread the MC_OPEN/MC_CLOSE of drivers.
350 */
351 i_mac_perim_enter(mip);
352 mip->mi_oref++;
353 if (mip->mi_oref != 1 || ((err = mip->mi_open(mip->mi_driver)) == 0)) {
354 *mhp = (mac_handle_t)mip;
355 i_mac_perim_exit(mip);
356 return (0);
357 }
358 mip->mi_oref--;
359 ddi_release_devi(mip->mi_dip);
360 mac_rele(mip);
361 i_mac_perim_exit(mip);
362 return (err);
363 }
364
365 /*
366 * Open a MAC specified by its linkid.
367 */
368 int
mac_open_by_linkid(datalink_id_t linkid,mac_handle_t * mhp)369 mac_open_by_linkid(datalink_id_t linkid, mac_handle_t *mhp)
370 {
371 dls_dl_handle_t dlh;
372 int err;
373
374 if ((err = dls_devnet_hold_tmp(linkid, &dlh)) != 0)
375 return (err);
376
377 dls_devnet_prop_task_wait(dlh);
378
379 err = mac_open(dls_devnet_mac(dlh), mhp);
380
381 dls_devnet_rele_tmp(dlh);
382 return (err);
383 }
384
385 /*
386 * Open a MAC specified by its link name.
387 */
388 int
mac_open_by_linkname(const char * link,mac_handle_t * mhp)389 mac_open_by_linkname(const char *link, mac_handle_t *mhp)
390 {
391 datalink_id_t linkid;
392 int err;
393
394 if ((err = dls_mgmt_get_linkid(link, &linkid)) != 0)
395 return (err);
396 return (mac_open_by_linkid(linkid, mhp));
397 }
398
399 /*
400 * Close the specified MAC.
401 */
402 void
mac_close(mac_handle_t mh)403 mac_close(mac_handle_t mh)
404 {
405 mac_impl_t *mip = (mac_impl_t *)mh;
406
407 i_mac_perim_enter(mip);
408 /*
409 * The mac perimeter is used in both mac_open and mac_close by the
410 * framework to single thread the MC_OPEN/MC_CLOSE of drivers.
411 */
412 if (mip->mi_callbacks->mc_callbacks & MC_OPEN) {
413 ASSERT(mip->mi_oref != 0);
414 if (--mip->mi_oref == 0) {
415 if ((mip->mi_callbacks->mc_callbacks & MC_CLOSE))
416 mip->mi_close(mip->mi_driver);
417 }
418 }
419 i_mac_perim_exit(mip);
420 ddi_release_devi(mip->mi_dip);
421 mac_rele(mip);
422 }
423
424 /*
425 * Misc utility functions to retrieve various information about a MAC
426 * instance or a MAC client.
427 */
428
429 const mac_info_t *
mac_info(mac_handle_t mh)430 mac_info(mac_handle_t mh)
431 {
432 return (&((mac_impl_t *)mh)->mi_info);
433 }
434
435 dev_info_t *
mac_devinfo_get(mac_handle_t mh)436 mac_devinfo_get(mac_handle_t mh)
437 {
438 return (((mac_impl_t *)mh)->mi_dip);
439 }
440
441 void *
mac_driver(mac_handle_t mh)442 mac_driver(mac_handle_t mh)
443 {
444 return (((mac_impl_t *)mh)->mi_driver);
445 }
446
447 const char *
mac_name(mac_handle_t mh)448 mac_name(mac_handle_t mh)
449 {
450 return (((mac_impl_t *)mh)->mi_name);
451 }
452
453 int
mac_type(mac_handle_t mh)454 mac_type(mac_handle_t mh)
455 {
456 return (((mac_impl_t *)mh)->mi_type->mt_type);
457 }
458
459 int
mac_nativetype(mac_handle_t mh)460 mac_nativetype(mac_handle_t mh)
461 {
462 return (((mac_impl_t *)mh)->mi_type->mt_nativetype);
463 }
464
465 char *
mac_client_name(mac_client_handle_t mch)466 mac_client_name(mac_client_handle_t mch)
467 {
468 return (((mac_client_impl_t *)mch)->mci_name);
469 }
470
471 minor_t
mac_minor(mac_handle_t mh)472 mac_minor(mac_handle_t mh)
473 {
474 return (((mac_impl_t *)mh)->mi_minor);
475 }
476
477 /*
478 * Return the VID associated with a MAC client. This function should
479 * be called for clients which are associated with only one VID.
480 */
481 uint16_t
mac_client_vid(mac_client_handle_t mch)482 mac_client_vid(mac_client_handle_t mch)
483 {
484 uint16_t vid = VLAN_ID_NONE;
485 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
486 flow_desc_t flow_desc;
487
488 if (mcip->mci_nflents == 0)
489 return (vid);
490
491 ASSERT(MCIP_DATAPATH_SETUP(mcip) && mac_client_single_rcvr(mcip));
492
493 mac_flow_get_desc(mcip->mci_flent, &flow_desc);
494 if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0)
495 vid = flow_desc.fd_vid;
496
497 return (vid);
498 }
499
500 /*
501 * Return whether the specified MAC client corresponds to a VLAN VNIC.
502 */
503 boolean_t
mac_client_is_vlan_vnic(mac_client_handle_t mch)504 mac_client_is_vlan_vnic(mac_client_handle_t mch)
505 {
506 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
507
508 return (((mcip->mci_state_flags & MCIS_IS_VNIC) != 0) &&
509 ((mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) != 0));
510 }
511
512 /*
513 * Return the link speed associated with the specified MAC client.
514 *
515 * The link speed of a MAC client is equal to the smallest value of
516 * 1) the current link speed of the underlying NIC, or
517 * 2) the bandwidth limit set for the MAC client.
518 *
519 * Note that the bandwidth limit can be higher than the speed
520 * of the underlying NIC. This is allowed to avoid spurious
521 * administration action failures or artifically lowering the
522 * bandwidth limit of a link that may have temporarily lowered
523 * its link speed due to hardware problem or administrator action.
524 */
525 static uint64_t
mac_client_ifspeed(mac_client_impl_t * mcip)526 mac_client_ifspeed(mac_client_impl_t *mcip)
527 {
528 mac_impl_t *mip = mcip->mci_mip;
529 uint64_t nic_speed;
530
531 nic_speed = mac_stat_get((mac_handle_t)mip, MAC_STAT_IFSPEED);
532
533 if (nic_speed == 0) {
534 return (0);
535 } else {
536 uint64_t policy_limit = (uint64_t)-1;
537
538 if (MCIP_RESOURCE_PROPS_MASK(mcip) & MRP_MAXBW)
539 policy_limit = MCIP_RESOURCE_PROPS_MAXBW(mcip);
540
541 return (MIN(policy_limit, nic_speed));
542 }
543 }
544
545 /*
546 * Return the link state of the specified client. If here are more
547 * than one clients of the underying mac_impl_t, the link state
548 * will always be UP regardless of the link state of the underlying
549 * mac_impl_t. This is needed to allow the MAC clients to continue
550 * to communicate with each other even when the physical link of
551 * their mac_impl_t is down.
552 */
553 static uint64_t
mac_client_link_state(mac_client_impl_t * mcip)554 mac_client_link_state(mac_client_impl_t *mcip)
555 {
556 mac_impl_t *mip = mcip->mci_mip;
557 uint16_t vid;
558 mac_client_impl_t *mci_list;
559 mac_unicast_impl_t *mui_list, *oth_mui_list;
560
561 /*
562 * Returns LINK_STATE_UP if there are other MAC clients defined on
563 * mac_impl_t which share same VLAN ID as that of mcip. Note that
564 * if 'mcip' has more than one VID's then we match ANY one of the
565 * VID's with other MAC client's VID's and return LINK_STATE_UP.
566 */
567 rw_enter(&mcip->mci_rw_lock, RW_READER);
568 for (mui_list = mcip->mci_unicast_list; mui_list != NULL;
569 mui_list = mui_list->mui_next) {
570 vid = mui_list->mui_vid;
571 for (mci_list = mip->mi_clients_list; mci_list != NULL;
572 mci_list = mci_list->mci_client_next) {
573 if (mci_list == mcip)
574 continue;
575 for (oth_mui_list = mci_list->mci_unicast_list;
576 oth_mui_list != NULL; oth_mui_list = oth_mui_list->
577 mui_next) {
578 if (vid == oth_mui_list->mui_vid) {
579 rw_exit(&mcip->mci_rw_lock);
580 return (LINK_STATE_UP);
581 }
582 }
583 }
584 }
585 rw_exit(&mcip->mci_rw_lock);
586
587 return (mac_stat_get((mac_handle_t)mip, MAC_STAT_LINK_STATE));
588 }
589
590 /*
591 * These statistics are consumed by dladm show-link -s <vnic>,
592 * dladm show-vnic -s and netstat. With the introduction of dlstat,
593 * dladm show-link -s and dladm show-vnic -s witll be EOL'ed while
594 * netstat will consume from kstats introduced for dlstat. This code
595 * will be removed at that time.
596 */
597
598 /*
599 * Return the statistics of a MAC client. These statistics are different
600 * then the statistics of the underlying MAC which are returned by
601 * mac_stat_get().
602 */
603 uint64_t
mac_client_stat_get(mac_client_handle_t mch,uint_t stat)604 mac_client_stat_get(mac_client_handle_t mch, uint_t stat)
605 {
606 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
607 mac_impl_t *mip = mcip->mci_mip;
608 flow_entry_t *flent = mcip->mci_flent;
609 mac_soft_ring_set_t *mac_srs;
610 mac_rx_stats_t *mac_rx_stat;
611 mac_tx_stats_t *mac_tx_stat;
612 int i;
613 uint64_t val = 0;
614
615 mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs);
616 mac_tx_stat = &mac_srs->srs_tx.st_stat;
617
618 switch (stat) {
619 case MAC_STAT_LINK_STATE:
620 val = mac_client_link_state(mcip);
621 break;
622 case MAC_STAT_LINK_UP:
623 val = (mac_client_link_state(mcip) == LINK_STATE_UP);
624 break;
625 case MAC_STAT_PROMISC:
626 val = mac_stat_get((mac_handle_t)mip, MAC_STAT_PROMISC);
627 break;
628 case MAC_STAT_LOWLINK_STATE:
629 val = mac_stat_get((mac_handle_t)mip, MAC_STAT_LOWLINK_STATE);
630 break;
631 case MAC_STAT_IFSPEED:
632 val = mac_client_ifspeed(mcip);
633 break;
634 case MAC_STAT_MULTIRCV:
635 val = mcip->mci_misc_stat.mms_multircv;
636 break;
637 case MAC_STAT_BRDCSTRCV:
638 val = mcip->mci_misc_stat.mms_brdcstrcv;
639 break;
640 case MAC_STAT_MULTIXMT:
641 val = mcip->mci_misc_stat.mms_multixmt;
642 break;
643 case MAC_STAT_BRDCSTXMT:
644 val = mcip->mci_misc_stat.mms_brdcstxmt;
645 break;
646 case MAC_STAT_OBYTES:
647 val = mac_tx_stat->mts_obytes;
648 break;
649 case MAC_STAT_OPACKETS:
650 val = mac_tx_stat->mts_opackets;
651 break;
652 case MAC_STAT_OERRORS:
653 val = mac_tx_stat->mts_oerrors;
654 break;
655 case MAC_STAT_IPACKETS:
656 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
657 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
658 mac_rx_stat = &mac_srs->srs_rx.sr_stat;
659 val += mac_rx_stat->mrs_intrcnt +
660 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
661 }
662 break;
663 case MAC_STAT_RBYTES:
664 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
665 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
666 mac_rx_stat = &mac_srs->srs_rx.sr_stat;
667 val += mac_rx_stat->mrs_intrbytes +
668 mac_rx_stat->mrs_pollbytes +
669 mac_rx_stat->mrs_lclbytes;
670 }
671 break;
672 case MAC_STAT_IERRORS:
673 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
674 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
675 mac_rx_stat = &mac_srs->srs_rx.sr_stat;
676 val += mac_rx_stat->mrs_ierrors;
677 }
678 break;
679 default:
680 val = mac_driver_stat_default(mip, stat);
681 break;
682 }
683
684 return (val);
685 }
686
687 /*
688 * Return the statistics of the specified MAC instance.
689 */
690 uint64_t
mac_stat_get(mac_handle_t mh,uint_t stat)691 mac_stat_get(mac_handle_t mh, uint_t stat)
692 {
693 mac_impl_t *mip = (mac_impl_t *)mh;
694 uint64_t val;
695 int ret;
696
697 /*
698 * The range of stat determines where it is maintained. Stat
699 * values from 0 up to (but not including) MAC_STAT_MIN are
700 * mainteined by the mac module itself. Everything else is
701 * maintained by the driver.
702 *
703 * If the mac_impl_t being queried corresponds to a VNIC,
704 * the stats need to be queried from the lower MAC client
705 * corresponding to the VNIC. (The mac_link_update()
706 * invoked by the driver to the lower MAC causes the *lower
707 * MAC* to update its mi_linkstate, and send a notification
708 * to its MAC clients. Due to the VNIC passthrough,
709 * these notifications are sent to the upper MAC clients
710 * of the VNIC directly, and the upper mac_impl_t of the VNIC
711 * does not have a valid mi_linkstate.
712 */
713 if (stat < MAC_STAT_MIN && !(mip->mi_state_flags & MIS_IS_VNIC)) {
714 /* these stats are maintained by the mac module itself */
715 switch (stat) {
716 case MAC_STAT_LINK_STATE:
717 return (mip->mi_linkstate);
718 case MAC_STAT_LINK_UP:
719 return (mip->mi_linkstate == LINK_STATE_UP);
720 case MAC_STAT_PROMISC:
721 return (mip->mi_devpromisc != 0);
722 case MAC_STAT_LOWLINK_STATE:
723 return (mip->mi_lowlinkstate);
724 default:
725 ASSERT(B_FALSE);
726 }
727 }
728
729 /*
730 * Call the driver to get the given statistic.
731 */
732 ret = mip->mi_getstat(mip->mi_driver, stat, &val);
733 if (ret != 0) {
734 /*
735 * The driver doesn't support this statistic. Get the
736 * statistic's default value.
737 */
738 val = mac_driver_stat_default(mip, stat);
739 }
740 return (val);
741 }
742
743 /*
744 * Query hardware rx ring corresponding to the pseudo ring.
745 */
746 uint64_t
mac_pseudo_rx_ring_stat_get(mac_ring_handle_t handle,uint_t stat)747 mac_pseudo_rx_ring_stat_get(mac_ring_handle_t handle, uint_t stat)
748 {
749 return (mac_rx_ring_stat_get(handle, stat));
750 }
751
752 /*
753 * Query hardware tx ring corresponding to the pseudo ring.
754 */
755 uint64_t
mac_pseudo_tx_ring_stat_get(mac_ring_handle_t handle,uint_t stat)756 mac_pseudo_tx_ring_stat_get(mac_ring_handle_t handle, uint_t stat)
757 {
758 return (mac_tx_ring_stat_get(handle, stat));
759 }
760
761 /*
762 * Utility function which returns the VID associated with a flow entry.
763 */
764 uint16_t
i_mac_flow_vid(flow_entry_t * flent)765 i_mac_flow_vid(flow_entry_t *flent)
766 {
767 flow_desc_t flow_desc;
768
769 mac_flow_get_desc(flent, &flow_desc);
770
771 if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0)
772 return (flow_desc.fd_vid);
773 return (VLAN_ID_NONE);
774 }
775
776 /*
777 * Verify the validity of the specified unicast MAC address. Returns B_TRUE
778 * if the address is valid, B_FALSE otherwise (multicast address, or incorrect
779 * length.
780 */
781 boolean_t
mac_unicst_verify(mac_handle_t mh,const uint8_t * addr,uint_t len)782 mac_unicst_verify(mac_handle_t mh, const uint8_t *addr, uint_t len)
783 {
784 mac_impl_t *mip = (mac_impl_t *)mh;
785
786 /*
787 * Verify the address. No lock is needed since mi_type and plugin
788 * details don't change after mac_register().
789 */
790 if ((len != mip->mi_type->mt_addr_length) ||
791 (mip->mi_type->mt_ops.mtops_unicst_verify(addr,
792 mip->mi_pdata)) != 0) {
793 return (B_FALSE);
794 } else {
795 return (B_TRUE);
796 }
797 }
798
799 void
mac_sdu_get(mac_handle_t mh,uint_t * min_sdu,uint_t * max_sdu)800 mac_sdu_get(mac_handle_t mh, uint_t *min_sdu, uint_t *max_sdu)
801 {
802 mac_impl_t *mip = (mac_impl_t *)mh;
803
804 if (min_sdu != NULL)
805 *min_sdu = mip->mi_sdu_min;
806 if (max_sdu != NULL)
807 *max_sdu = mip->mi_sdu_max;
808 }
809
810 void
mac_sdu_get2(mac_handle_t mh,uint_t * min_sdu,uint_t * max_sdu,uint_t * multicast_sdu)811 mac_sdu_get2(mac_handle_t mh, uint_t *min_sdu, uint_t *max_sdu,
812 uint_t *multicast_sdu)
813 {
814 mac_impl_t *mip = (mac_impl_t *)mh;
815
816 if (min_sdu != NULL)
817 *min_sdu = mip->mi_sdu_min;
818 if (max_sdu != NULL)
819 *max_sdu = mip->mi_sdu_max;
820 if (multicast_sdu != NULL)
821 *multicast_sdu = mip->mi_sdu_multicast;
822 }
823
824 /*
825 * Update the MAC unicast address of the specified client's flows. Currently
826 * only one unicast MAC unicast address is allowed per client.
827 */
828 static void
mac_unicast_update_client_flow(mac_client_impl_t * mcip)829 mac_unicast_update_client_flow(mac_client_impl_t *mcip)
830 {
831 mac_impl_t *mip = mcip->mci_mip;
832 flow_entry_t *flent = mcip->mci_flent;
833 mac_address_t *map = mcip->mci_unicast;
834 flow_desc_t flow_desc;
835
836 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
837 ASSERT(flent != NULL);
838
839 mac_flow_get_desc(flent, &flow_desc);
840 ASSERT(flow_desc.fd_mask & FLOW_LINK_DST);
841
842 bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len);
843 mac_flow_set_desc(flent, &flow_desc);
844
845 /*
846 * The v6 local addr (used by mac protection) needs to be
847 * regenerated because our mac address has changed.
848 */
849 mac_protect_update_v6_local_addr(mcip);
850
851 /*
852 * A MAC client could have one MAC address but multiple
853 * VLANs. In that case update the flow entries corresponding
854 * to all VLANs of the MAC client.
855 */
856 for (flent = mcip->mci_flent_list; flent != NULL;
857 flent = flent->fe_client_next) {
858 mac_flow_get_desc(flent, &flow_desc);
859 if (!(flent->fe_type & FLOW_PRIMARY_MAC ||
860 flent->fe_type & FLOW_VNIC_MAC))
861 continue;
862
863 bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len);
864 mac_flow_set_desc(flent, &flow_desc);
865 }
866 }
867
868 /*
869 * Update all clients that share the same unicast address.
870 */
871 void
mac_unicast_update_clients(mac_impl_t * mip,mac_address_t * map)872 mac_unicast_update_clients(mac_impl_t *mip, mac_address_t *map)
873 {
874 mac_client_impl_t *mcip;
875
876 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
877
878 /*
879 * Find all clients that share the same unicast MAC address and update
880 * them appropriately.
881 */
882 for (mcip = mip->mi_clients_list; mcip != NULL;
883 mcip = mcip->mci_client_next) {
884 /*
885 * Ignore clients that don't share this MAC address.
886 */
887 if (map != mcip->mci_unicast)
888 continue;
889
890 /*
891 * Update those clients with same old unicast MAC address.
892 */
893 mac_unicast_update_client_flow(mcip);
894 }
895 }
896
897 /*
898 * Update the unicast MAC address of the specified VNIC MAC client.
899 *
900 * Check whether the operation is valid. Any of following cases should fail:
901 *
902 * 1. It's a VLAN type of VNIC.
903 * 2. The new value is current "primary" MAC address.
904 * 3. The current MAC address is shared with other clients.
905 * 4. The new MAC address has been used. This case will be valid when
906 * client migration is fully supported.
907 */
908 int
mac_vnic_unicast_set(mac_client_handle_t mch,const uint8_t * addr)909 mac_vnic_unicast_set(mac_client_handle_t mch, const uint8_t *addr)
910 {
911 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
912 mac_impl_t *mip = mcip->mci_mip;
913 mac_address_t *map = mcip->mci_unicast;
914 int err;
915
916 ASSERT(!(mip->mi_state_flags & MIS_IS_VNIC));
917 ASSERT(mcip->mci_state_flags & MCIS_IS_VNIC);
918 ASSERT(mcip->mci_flags != MAC_CLIENT_FLAGS_PRIMARY);
919
920 i_mac_perim_enter(mip);
921
922 /*
923 * If this is a VLAN type of VNIC, it's using "primary" MAC address
924 * of the underlying interface. Must fail here. Refer to case 1 above.
925 */
926 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0) {
927 i_mac_perim_exit(mip);
928 return (ENOTSUP);
929 }
930
931 /*
932 * If the new address is the "primary" one, must fail. Refer to
933 * case 2 above.
934 */
935 if (bcmp(addr, mip->mi_addr, map->ma_len) == 0) {
936 i_mac_perim_exit(mip);
937 return (EACCES);
938 }
939
940 /*
941 * If the address is shared by multiple clients, must fail. Refer
942 * to case 3 above.
943 */
944 if (mac_check_macaddr_shared(map)) {
945 i_mac_perim_exit(mip);
946 return (EBUSY);
947 }
948
949 /*
950 * If the new address has been used, must fail for now. Refer to
951 * case 4 above.
952 */
953 if (mac_find_macaddr(mip, (uint8_t *)addr) != NULL) {
954 i_mac_perim_exit(mip);
955 return (ENOTSUP);
956 }
957
958 /*
959 * Update the MAC address.
960 */
961 err = mac_update_macaddr(map, (uint8_t *)addr);
962
963 if (err != 0) {
964 i_mac_perim_exit(mip);
965 return (err);
966 }
967
968 /*
969 * Update all flows of this MAC client.
970 */
971 mac_unicast_update_client_flow(mcip);
972
973 i_mac_perim_exit(mip);
974 return (0);
975 }
976
977 /*
978 * Program the new primary unicast address of the specified MAC.
979 *
980 * Function mac_update_macaddr() takes care different types of underlying
981 * MAC. If the underlying MAC is VNIC, the VNIC driver must have registerd
982 * mi_unicst() entry point, that indirectly calls mac_vnic_unicast_set()
983 * which will take care of updating the MAC address of the corresponding
984 * MAC client.
985 *
986 * This is the only interface that allow the client to update the "primary"
987 * MAC address of the underlying MAC. The new value must have not been
988 * used by other clients.
989 */
990 int
mac_unicast_primary_set(mac_handle_t mh,const uint8_t * addr)991 mac_unicast_primary_set(mac_handle_t mh, const uint8_t *addr)
992 {
993 mac_impl_t *mip = (mac_impl_t *)mh;
994 mac_address_t *map;
995 int err;
996
997 /* verify the address validity */
998 if (!mac_unicst_verify(mh, addr, mip->mi_type->mt_addr_length))
999 return (EINVAL);
1000
1001 i_mac_perim_enter(mip);
1002
1003 /*
1004 * If the new value is the same as the current primary address value,
1005 * there's nothing to do.
1006 */
1007 if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) == 0) {
1008 i_mac_perim_exit(mip);
1009 return (0);
1010 }
1011
1012 if (mac_find_macaddr(mip, (uint8_t *)addr) != 0) {
1013 i_mac_perim_exit(mip);
1014 return (EBUSY);
1015 }
1016
1017 map = mac_find_macaddr(mip, mip->mi_addr);
1018 ASSERT(map != NULL);
1019
1020 /*
1021 * Update the MAC address.
1022 */
1023 if (mip->mi_state_flags & MIS_IS_AGGR) {
1024 mac_capab_aggr_t aggr_cap;
1025
1026 /*
1027 * If the mac is an aggregation, other than the unicast
1028 * addresses programming, aggr must be informed about this
1029 * primary unicst address change to change its mac address
1030 * policy to be user-specified.
1031 */
1032 ASSERT(map->ma_type == MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED);
1033 VERIFY(i_mac_capab_get(mh, MAC_CAPAB_AGGR, &aggr_cap));
1034 err = aggr_cap.mca_unicst(mip->mi_driver, addr);
1035 if (err == 0)
1036 bcopy(addr, map->ma_addr, map->ma_len);
1037 } else {
1038 err = mac_update_macaddr(map, (uint8_t *)addr);
1039 }
1040
1041 if (err != 0) {
1042 i_mac_perim_exit(mip);
1043 return (err);
1044 }
1045
1046 mac_unicast_update_clients(mip, map);
1047
1048 /*
1049 * Save the new primary MAC address in mac_impl_t.
1050 */
1051 bcopy(addr, mip->mi_addr, mip->mi_type->mt_addr_length);
1052
1053 i_mac_perim_exit(mip);
1054
1055 if (err == 0)
1056 i_mac_notify(mip, MAC_NOTE_UNICST);
1057
1058 return (err);
1059 }
1060
1061 /*
1062 * Return the current primary MAC address of the specified MAC.
1063 */
1064 void
mac_unicast_primary_get(mac_handle_t mh,uint8_t * addr)1065 mac_unicast_primary_get(mac_handle_t mh, uint8_t *addr)
1066 {
1067 mac_impl_t *mip = (mac_impl_t *)mh;
1068
1069 rw_enter(&mip->mi_rw_lock, RW_READER);
1070 bcopy(mip->mi_addr, addr, mip->mi_type->mt_addr_length);
1071 rw_exit(&mip->mi_rw_lock);
1072 }
1073
1074 /*
1075 * Return the secondary MAC address for the specified handle
1076 */
1077 void
mac_unicast_secondary_get(mac_client_handle_t mh,uint8_t * addr)1078 mac_unicast_secondary_get(mac_client_handle_t mh, uint8_t *addr)
1079 {
1080 mac_client_impl_t *mcip = (mac_client_impl_t *)mh;
1081
1082 ASSERT(mcip->mci_unicast != NULL);
1083 bcopy(mcip->mci_unicast->ma_addr, addr, mcip->mci_unicast->ma_len);
1084 }
1085
1086 /*
1087 * Return information about the use of the primary MAC address of the
1088 * specified MAC instance:
1089 *
1090 * - if client_name is non-NULL, it must point to a string of at
1091 * least MAXNAMELEN bytes, and will be set to the name of the MAC
1092 * client which uses the primary MAC address.
1093 *
1094 * - if in_use is non-NULL, used to return whether the primary MAC
1095 * address is currently in use.
1096 */
1097 void
mac_unicast_primary_info(mac_handle_t mh,char * client_name,boolean_t * in_use)1098 mac_unicast_primary_info(mac_handle_t mh, char *client_name, boolean_t *in_use)
1099 {
1100 mac_impl_t *mip = (mac_impl_t *)mh;
1101 mac_client_impl_t *cur_client;
1102
1103 if (in_use != NULL)
1104 *in_use = B_FALSE;
1105 if (client_name != NULL)
1106 bzero(client_name, MAXNAMELEN);
1107
1108 /*
1109 * The mi_rw_lock is used to protect threads that don't hold the
1110 * mac perimeter to get a consistent view of the mi_clients_list.
1111 * Threads that modify the list must hold both the mac perimeter and
1112 * mi_rw_lock(RW_WRITER)
1113 */
1114 rw_enter(&mip->mi_rw_lock, RW_READER);
1115 for (cur_client = mip->mi_clients_list; cur_client != NULL;
1116 cur_client = cur_client->mci_client_next) {
1117 if (mac_is_primary_client(cur_client) ||
1118 (mip->mi_state_flags & MIS_IS_VNIC)) {
1119 rw_exit(&mip->mi_rw_lock);
1120 if (in_use != NULL)
1121 *in_use = B_TRUE;
1122 if (client_name != NULL) {
1123 bcopy(cur_client->mci_name, client_name,
1124 MAXNAMELEN);
1125 }
1126 return;
1127 }
1128 }
1129 rw_exit(&mip->mi_rw_lock);
1130 }
1131
1132 /*
1133 * Return the current destination MAC address of the specified MAC.
1134 */
1135 boolean_t
mac_dst_get(mac_handle_t mh,uint8_t * addr)1136 mac_dst_get(mac_handle_t mh, uint8_t *addr)
1137 {
1138 mac_impl_t *mip = (mac_impl_t *)mh;
1139
1140 rw_enter(&mip->mi_rw_lock, RW_READER);
1141 if (mip->mi_dstaddr_set)
1142 bcopy(mip->mi_dstaddr, addr, mip->mi_type->mt_addr_length);
1143 rw_exit(&mip->mi_rw_lock);
1144 return (mip->mi_dstaddr_set);
1145 }
1146
1147 /*
1148 * Add the specified MAC client to the list of clients which opened
1149 * the specified MAC.
1150 */
1151 static void
mac_client_add(mac_client_impl_t * mcip)1152 mac_client_add(mac_client_impl_t *mcip)
1153 {
1154 mac_impl_t *mip = mcip->mci_mip;
1155
1156 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1157
1158 /* add VNIC to the front of the list */
1159 rw_enter(&mip->mi_rw_lock, RW_WRITER);
1160 mcip->mci_client_next = mip->mi_clients_list;
1161 mip->mi_clients_list = mcip;
1162 mip->mi_nclients++;
1163 rw_exit(&mip->mi_rw_lock);
1164 }
1165
1166 /*
1167 * Remove the specified MAC client from the list of clients which opened
1168 * the specified MAC.
1169 */
1170 static void
mac_client_remove(mac_client_impl_t * mcip)1171 mac_client_remove(mac_client_impl_t *mcip)
1172 {
1173 mac_impl_t *mip = mcip->mci_mip;
1174 mac_client_impl_t **prev, *cclient;
1175
1176 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1177
1178 rw_enter(&mip->mi_rw_lock, RW_WRITER);
1179 prev = &mip->mi_clients_list;
1180 cclient = *prev;
1181 while (cclient != NULL && cclient != mcip) {
1182 prev = &cclient->mci_client_next;
1183 cclient = *prev;
1184 }
1185 ASSERT(cclient != NULL);
1186 *prev = cclient->mci_client_next;
1187 mip->mi_nclients--;
1188 rw_exit(&mip->mi_rw_lock);
1189 }
1190
1191 static mac_unicast_impl_t *
mac_client_find_vid(mac_client_impl_t * mcip,uint16_t vid)1192 mac_client_find_vid(mac_client_impl_t *mcip, uint16_t vid)
1193 {
1194 mac_unicast_impl_t *muip = mcip->mci_unicast_list;
1195
1196 while ((muip != NULL) && (muip->mui_vid != vid))
1197 muip = muip->mui_next;
1198
1199 return (muip);
1200 }
1201
1202 /*
1203 * Return whether the specified (MAC address, VID) tuple is already used by
1204 * one of the MAC clients associated with the specified MAC.
1205 */
1206 static boolean_t
mac_addr_in_use(mac_impl_t * mip,uint8_t * mac_addr,uint16_t vid)1207 mac_addr_in_use(mac_impl_t *mip, uint8_t *mac_addr, uint16_t vid)
1208 {
1209 mac_client_impl_t *client;
1210 mac_address_t *map;
1211
1212 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1213
1214 for (client = mip->mi_clients_list; client != NULL;
1215 client = client->mci_client_next) {
1216
1217 /*
1218 * Ignore clients that don't have unicast address.
1219 */
1220 if (client->mci_unicast_list == NULL)
1221 continue;
1222
1223 map = client->mci_unicast;
1224
1225 if ((bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) &&
1226 (mac_client_find_vid(client, vid) != NULL)) {
1227 return (B_TRUE);
1228 }
1229 }
1230
1231 return (B_FALSE);
1232 }
1233
1234 /*
1235 * Generate a random MAC address. The MAC address prefix is
1236 * stored in the array pointed to by mac_addr, and its length, in bytes,
1237 * is specified by prefix_len. The least significant bits
1238 * after prefix_len bytes are generated, and stored after the prefix
1239 * in the mac_addr array.
1240 */
1241 int
mac_addr_random(mac_client_handle_t mch,uint_t prefix_len,uint8_t * mac_addr,mac_diag_t * diag)1242 mac_addr_random(mac_client_handle_t mch, uint_t prefix_len,
1243 uint8_t *mac_addr, mac_diag_t *diag)
1244 {
1245 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1246 mac_impl_t *mip = mcip->mci_mip;
1247 size_t addr_len = mip->mi_type->mt_addr_length;
1248
1249 if (prefix_len >= addr_len) {
1250 *diag = MAC_DIAG_MACPREFIXLEN_INVALID;
1251 return (EINVAL);
1252 }
1253
1254 /* check the prefix value */
1255 if (prefix_len > 0) {
1256 bzero(mac_addr + prefix_len, addr_len - prefix_len);
1257 if (!mac_unicst_verify((mac_handle_t)mip, mac_addr,
1258 addr_len)) {
1259 *diag = MAC_DIAG_MACPREFIX_INVALID;
1260 return (EINVAL);
1261 }
1262 }
1263
1264 /* generate the MAC address */
1265 if (prefix_len < addr_len) {
1266 (void) random_get_pseudo_bytes(mac_addr +
1267 prefix_len, addr_len - prefix_len);
1268 }
1269
1270 *diag = 0;
1271 return (0);
1272 }
1273
1274 /*
1275 * Set the priority range for this MAC client. This will be used to
1276 * determine the absolute priority for the threads created for this
1277 * MAC client using the specified "low", "medium" and "high" level.
1278 * This will also be used for any subflows on this MAC client.
1279 */
1280 #define MAC_CLIENT_SET_PRIORITY_RANGE(mcip, pri) { \
1281 (mcip)->mci_min_pri = FLOW_MIN_PRIORITY(MINCLSYSPRI, \
1282 MAXCLSYSPRI, (pri)); \
1283 (mcip)->mci_max_pri = FLOW_MAX_PRIORITY(MINCLSYSPRI, \
1284 MAXCLSYSPRI, (mcip)->mci_min_pri); \
1285 }
1286
1287 /*
1288 * MAC client open entry point. Return a new MAC client handle. Each
1289 * MAC client is associated with a name, specified through the 'name'
1290 * argument.
1291 */
1292 int
mac_client_open(mac_handle_t mh,mac_client_handle_t * mchp,char * name,uint16_t flags)1293 mac_client_open(mac_handle_t mh, mac_client_handle_t *mchp, char *name,
1294 uint16_t flags)
1295 {
1296 mac_impl_t *mip = (mac_impl_t *)mh;
1297 mac_client_impl_t *mcip;
1298 int err = 0;
1299 boolean_t share_desired;
1300 flow_entry_t *flent = NULL;
1301
1302 share_desired = (flags & MAC_OPEN_FLAGS_SHARES_DESIRED) != 0;
1303 *mchp = NULL;
1304
1305 i_mac_perim_enter(mip);
1306
1307 if (mip->mi_state_flags & MIS_IS_VNIC) {
1308 /*
1309 * The underlying MAC is a VNIC. Return the MAC client
1310 * handle of the lower MAC which was obtained by
1311 * the VNIC driver when it did its mac_client_open().
1312 */
1313
1314 mcip = mac_vnic_lower(mip);
1315
1316 /*
1317 * Note that multiple mac clients share the same mcip in
1318 * this case.
1319 */
1320 if (flags & MAC_OPEN_FLAGS_EXCLUSIVE)
1321 mcip->mci_state_flags |= MCIS_EXCLUSIVE;
1322
1323 if (flags & MAC_OPEN_FLAGS_MULTI_PRIMARY)
1324 mcip->mci_flags |= MAC_CLIENT_FLAGS_MULTI_PRIMARY;
1325
1326 mip->mi_clients_list = mcip;
1327 i_mac_perim_exit(mip);
1328 *mchp = (mac_client_handle_t)mcip;
1329
1330 DTRACE_PROBE2(mac__client__open__nonallocated, mac_impl_t *,
1331 mcip->mci_mip, mac_client_impl_t *, mcip);
1332
1333 return (err);
1334 }
1335
1336 mcip = kmem_cache_alloc(mac_client_impl_cache, KM_SLEEP);
1337
1338 mcip->mci_mip = mip;
1339 mcip->mci_upper_mip = NULL;
1340 mcip->mci_rx_fn = mac_pkt_drop;
1341 mcip->mci_rx_arg = NULL;
1342 mcip->mci_rx_p_fn = NULL;
1343 mcip->mci_rx_p_arg = NULL;
1344 mcip->mci_p_unicast_list = NULL;
1345 mcip->mci_direct_rx_fn = NULL;
1346 mcip->mci_direct_rx_arg = NULL;
1347 mcip->mci_vidcache = MCIP_VIDCACHE_INVALID;
1348
1349 mcip->mci_unicast_list = NULL;
1350
1351 if ((flags & MAC_OPEN_FLAGS_IS_VNIC) != 0)
1352 mcip->mci_state_flags |= MCIS_IS_VNIC;
1353
1354 if ((flags & MAC_OPEN_FLAGS_EXCLUSIVE) != 0)
1355 mcip->mci_state_flags |= MCIS_EXCLUSIVE;
1356
1357 if ((flags & MAC_OPEN_FLAGS_IS_AGGR_PORT) != 0)
1358 mcip->mci_state_flags |= MCIS_IS_AGGR_PORT;
1359
1360 if (mip->mi_state_flags & MIS_IS_AGGR)
1361 mcip->mci_state_flags |= MCIS_IS_AGGR;
1362
1363 if ((flags & MAC_OPEN_FLAGS_USE_DATALINK_NAME) != 0) {
1364 datalink_id_t linkid;
1365
1366 ASSERT(name == NULL);
1367 if ((err = dls_devnet_macname2linkid(mip->mi_name,
1368 &linkid)) != 0) {
1369 goto done;
1370 }
1371 if ((err = dls_mgmt_get_linkinfo(linkid, mcip->mci_name, NULL,
1372 NULL, NULL)) != 0) {
1373 /*
1374 * Use mac name if dlmgmtd is not available.
1375 */
1376 if (err == EBADF) {
1377 (void) strlcpy(mcip->mci_name, mip->mi_name,
1378 sizeof (mcip->mci_name));
1379 err = 0;
1380 } else {
1381 goto done;
1382 }
1383 }
1384 mcip->mci_state_flags |= MCIS_USE_DATALINK_NAME;
1385 } else {
1386 ASSERT(name != NULL);
1387 if (strlen(name) > MAXNAMELEN) {
1388 err = EINVAL;
1389 goto done;
1390 }
1391 (void) strlcpy(mcip->mci_name, name, sizeof (mcip->mci_name));
1392 }
1393
1394 if (flags & MAC_OPEN_FLAGS_MULTI_PRIMARY)
1395 mcip->mci_flags |= MAC_CLIENT_FLAGS_MULTI_PRIMARY;
1396
1397 if (flags & MAC_OPEN_FLAGS_NO_UNICAST_ADDR)
1398 mcip->mci_state_flags |= MCIS_NO_UNICAST_ADDR;
1399
1400 mac_protect_init(mcip);
1401
1402 /* the subflow table will be created dynamically */
1403 mcip->mci_subflow_tab = NULL;
1404
1405 mcip->mci_misc_stat.mms_multircv = 0;
1406 mcip->mci_misc_stat.mms_brdcstrcv = 0;
1407 mcip->mci_misc_stat.mms_multixmt = 0;
1408 mcip->mci_misc_stat.mms_brdcstxmt = 0;
1409
1410 /* Create an initial flow */
1411
1412 err = mac_flow_create(NULL, NULL, mcip->mci_name, NULL,
1413 mcip->mci_state_flags & MCIS_IS_VNIC ? FLOW_VNIC_MAC :
1414 FLOW_PRIMARY_MAC, &flent);
1415 if (err != 0)
1416 goto done;
1417 mcip->mci_flent = flent;
1418 FLOW_MARK(flent, FE_MC_NO_DATAPATH);
1419 flent->fe_mcip = mcip;
1420 /*
1421 * Place initial creation reference on the flow. This reference
1422 * is released in the corresponding delete action viz.
1423 * mac_unicast_remove after waiting for all transient refs to
1424 * to go away. The wait happens in mac_flow_wait.
1425 */
1426 FLOW_REFHOLD(flent);
1427
1428 /*
1429 * Do this ahead of the mac_bcast_add() below so that the mi_nclients
1430 * will have the right value for mac_rx_srs_setup().
1431 */
1432 mac_client_add(mcip);
1433
1434 mcip->mci_share = NULL;
1435 if (share_desired)
1436 i_mac_share_alloc(mcip);
1437
1438 /*
1439 * We will do mimimal datapath setup to allow a MAC client to
1440 * transmit or receive non-unicast packets without waiting
1441 * for mac_unicast_add.
1442 */
1443 if (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR) {
1444 if ((err = mac_client_datapath_setup(mcip, VLAN_ID_NONE,
1445 NULL, NULL, B_TRUE, NULL)) != 0) {
1446 goto done;
1447 }
1448 }
1449
1450 DTRACE_PROBE2(mac__client__open__allocated, mac_impl_t *,
1451 mcip->mci_mip, mac_client_impl_t *, mcip);
1452
1453 *mchp = (mac_client_handle_t)mcip;
1454 i_mac_perim_exit(mip);
1455 return (0);
1456
1457 done:
1458 i_mac_perim_exit(mip);
1459 mcip->mci_state_flags = 0;
1460 mcip->mci_tx_flag = 0;
1461 kmem_cache_free(mac_client_impl_cache, mcip);
1462 return (err);
1463 }
1464
1465 /*
1466 * Close the specified MAC client handle.
1467 */
1468 void
mac_client_close(mac_client_handle_t mch,uint16_t flags)1469 mac_client_close(mac_client_handle_t mch, uint16_t flags)
1470 {
1471 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1472 mac_impl_t *mip = mcip->mci_mip;
1473 flow_entry_t *flent;
1474
1475 i_mac_perim_enter(mip);
1476
1477 if (flags & MAC_CLOSE_FLAGS_EXCLUSIVE)
1478 mcip->mci_state_flags &= ~MCIS_EXCLUSIVE;
1479
1480 if ((mcip->mci_state_flags & MCIS_IS_VNIC) &&
1481 !(flags & MAC_CLOSE_FLAGS_IS_VNIC)) {
1482 /*
1483 * This is an upper VNIC client initiated operation.
1484 * The lower MAC client will be closed by the VNIC driver
1485 * when the VNIC is deleted.
1486 */
1487
1488 i_mac_perim_exit(mip);
1489 return;
1490 }
1491
1492 /* If we have only setup up minimal datapth setup, tear it down */
1493 if (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR) {
1494 mac_client_datapath_teardown((mac_client_handle_t)mcip, NULL,
1495 mcip->mci_flent);
1496 mcip->mci_state_flags &= ~MCIS_NO_UNICAST_ADDR;
1497 }
1498
1499 /*
1500 * Remove the flent associated with the MAC client
1501 */
1502 flent = mcip->mci_flent;
1503 mcip->mci_flent = NULL;
1504 FLOW_FINAL_REFRELE(flent);
1505
1506 /*
1507 * MAC clients must remove the unicast addresses and promisc callbacks
1508 * they added before issuing a mac_client_close().
1509 */
1510 ASSERT(mcip->mci_unicast_list == NULL);
1511 ASSERT(mcip->mci_promisc_list == NULL);
1512 ASSERT(mcip->mci_tx_notify_cb_list == NULL);
1513
1514 i_mac_share_free(mcip);
1515 mac_protect_fini(mcip);
1516 mac_client_remove(mcip);
1517
1518 i_mac_perim_exit(mip);
1519 mcip->mci_subflow_tab = NULL;
1520 mcip->mci_state_flags = 0;
1521 mcip->mci_tx_flag = 0;
1522 kmem_cache_free(mac_client_impl_cache, mch);
1523 }
1524
1525 /*
1526 * Set the rx bypass receive callback.
1527 */
1528 boolean_t
mac_rx_bypass_set(mac_client_handle_t mch,mac_direct_rx_t rx_fn,void * arg1)1529 mac_rx_bypass_set(mac_client_handle_t mch, mac_direct_rx_t rx_fn, void *arg1)
1530 {
1531 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1532 mac_impl_t *mip = mcip->mci_mip;
1533
1534 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1535
1536 /*
1537 * If the mac_client is a VLAN, we should not do DLS bypass and
1538 * instead let the packets come up via mac_rx_deliver so the vlan
1539 * header can be stripped.
1540 */
1541 if (mcip->mci_nvids > 0)
1542 return (B_FALSE);
1543
1544 /*
1545 * These are not accessed directly in the data path, and hence
1546 * don't need any protection
1547 */
1548 mcip->mci_direct_rx_fn = rx_fn;
1549 mcip->mci_direct_rx_arg = arg1;
1550 return (B_TRUE);
1551 }
1552
1553 /*
1554 * Enable/Disable rx bypass. By default, bypass is assumed to be enabled.
1555 */
1556 void
mac_rx_bypass_enable(mac_client_handle_t mch)1557 mac_rx_bypass_enable(mac_client_handle_t mch)
1558 {
1559 ((mac_client_impl_t *)mch)->mci_state_flags &= ~MCIS_RX_BYPASS_DISABLE;
1560 }
1561
1562 void
mac_rx_bypass_disable(mac_client_handle_t mch)1563 mac_rx_bypass_disable(mac_client_handle_t mch)
1564 {
1565 ((mac_client_impl_t *)mch)->mci_state_flags |= MCIS_RX_BYPASS_DISABLE;
1566 }
1567
1568 /*
1569 * Set the receive callback for the specified MAC client. There can be
1570 * at most one such callback per MAC client.
1571 */
1572 void
mac_rx_set(mac_client_handle_t mch,mac_rx_t rx_fn,void * arg)1573 mac_rx_set(mac_client_handle_t mch, mac_rx_t rx_fn, void *arg)
1574 {
1575 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1576 mac_impl_t *mip = mcip->mci_mip;
1577 mac_impl_t *umip = mcip->mci_upper_mip;
1578
1579 /*
1580 * Instead of adding an extra set of locks and refcnts in
1581 * the datapath at the mac client boundary, we temporarily quiesce
1582 * the SRS and related entities. We then change the receive function
1583 * without interference from any receive data thread and then reenable
1584 * the data flow subsequently.
1585 */
1586 i_mac_perim_enter(mip);
1587 mac_rx_client_quiesce(mch);
1588
1589 mcip->mci_rx_fn = rx_fn;
1590 mcip->mci_rx_arg = arg;
1591 mac_rx_client_restart(mch);
1592 i_mac_perim_exit(mip);
1593
1594 /*
1595 * If we're changing the rx function on the primary mac of a vnic,
1596 * make sure any secondary macs on the vnic are updated as well.
1597 */
1598 if (umip != NULL) {
1599 ASSERT((umip->mi_state_flags & MIS_IS_VNIC) != 0);
1600 mac_vnic_secondary_update(umip);
1601 }
1602 }
1603
1604 /*
1605 * Reset the receive callback for the specified MAC client.
1606 */
1607 void
mac_rx_clear(mac_client_handle_t mch)1608 mac_rx_clear(mac_client_handle_t mch)
1609 {
1610 mac_rx_set(mch, mac_pkt_drop, NULL);
1611 }
1612
1613 void
mac_secondary_dup(mac_client_handle_t smch,mac_client_handle_t dmch)1614 mac_secondary_dup(mac_client_handle_t smch, mac_client_handle_t dmch)
1615 {
1616 mac_client_impl_t *smcip = (mac_client_impl_t *)smch;
1617 mac_client_impl_t *dmcip = (mac_client_impl_t *)dmch;
1618 flow_entry_t *flent = dmcip->mci_flent;
1619
1620 /* This should only be called to setup secondary macs */
1621 ASSERT((flent->fe_type & FLOW_PRIMARY_MAC) == 0);
1622
1623 mac_rx_set(dmch, smcip->mci_rx_fn, smcip->mci_rx_arg);
1624 dmcip->mci_promisc_list = smcip->mci_promisc_list;
1625
1626 /*
1627 * Duplicate the primary mac resources to the secondary.
1628 * Since we already validated the resource controls when setting
1629 * them on the primary, we can ignore errors here.
1630 */
1631 (void) mac_resource_ctl_set(dmch, MCIP_RESOURCE_PROPS(smcip));
1632 }
1633
1634 /*
1635 * Called when removing a secondary MAC. Currently only clears the promisc_list
1636 * since we share the primary mac's promisc_list.
1637 */
1638 void
mac_secondary_cleanup(mac_client_handle_t mch)1639 mac_secondary_cleanup(mac_client_handle_t mch)
1640 {
1641 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1642 flow_entry_t *flent = mcip->mci_flent;
1643
1644 /* This should only be called for secondary macs */
1645 ASSERT((flent->fe_type & FLOW_PRIMARY_MAC) == 0);
1646 mcip->mci_promisc_list = NULL;
1647 }
1648
1649 /*
1650 * Walk the MAC client subflow table and updates their priority values.
1651 */
1652 static int
mac_update_subflow_priority_cb(flow_entry_t * flent,void * arg)1653 mac_update_subflow_priority_cb(flow_entry_t *flent, void *arg)
1654 {
1655 mac_flow_update_priority(arg, flent);
1656 return (0);
1657 }
1658
1659 void
mac_update_subflow_priority(mac_client_impl_t * mcip)1660 mac_update_subflow_priority(mac_client_impl_t *mcip)
1661 {
1662 (void) mac_flow_walk(mcip->mci_subflow_tab,
1663 mac_update_subflow_priority_cb, mcip);
1664 }
1665
1666 /*
1667 * Modify the TX or RX ring properties. We could either just move around
1668 * rings, i.e add/remove rings given to a client. Or this might cause the
1669 * client to move from hardware based to software or the other way around.
1670 * If we want to reset this property, then we clear the mask, additionally
1671 * if the client was given a non-default group we remove all rings except
1672 * for 1 and give it back to the default group.
1673 */
1674 int
mac_client_set_rings_prop(mac_client_impl_t * mcip,mac_resource_props_t * mrp,mac_resource_props_t * tmrp)1675 mac_client_set_rings_prop(mac_client_impl_t *mcip, mac_resource_props_t *mrp,
1676 mac_resource_props_t *tmrp)
1677 {
1678 mac_impl_t *mip = mcip->mci_mip;
1679 flow_entry_t *flent = mcip->mci_flent;
1680 uint8_t *mac_addr;
1681 int err = 0;
1682 mac_group_t *defgrp;
1683 mac_group_t *group;
1684 mac_group_t *ngrp;
1685 mac_resource_props_t *cmrp = MCIP_RESOURCE_PROPS(mcip);
1686 uint_t ringcnt;
1687 boolean_t unspec;
1688
1689 if (mcip->mci_share != NULL)
1690 return (EINVAL);
1691
1692 if (mrp->mrp_mask & MRP_RX_RINGS) {
1693 unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC;
1694 group = flent->fe_rx_ring_group;
1695 defgrp = MAC_DEFAULT_RX_GROUP(mip);
1696 mac_addr = flent->fe_flow_desc.fd_dst_mac;
1697
1698 /*
1699 * No resulting change. If we are resetting on a client on
1700 * which there was no rx rings property. For dynamic group
1701 * if we are setting the same number of rings already set.
1702 * For static group if we are requesting a group again.
1703 */
1704 if (mrp->mrp_mask & MRP_RINGS_RESET) {
1705 if (!(tmrp->mrp_mask & MRP_RX_RINGS))
1706 return (0);
1707 } else {
1708 if (unspec) {
1709 if (tmrp->mrp_mask & MRP_RXRINGS_UNSPEC)
1710 return (0);
1711 } else if (mip->mi_rx_group_type ==
1712 MAC_GROUP_TYPE_DYNAMIC) {
1713 if ((tmrp->mrp_mask & MRP_RX_RINGS) &&
1714 !(tmrp->mrp_mask & MRP_RXRINGS_UNSPEC) &&
1715 mrp->mrp_nrxrings == tmrp->mrp_nrxrings) {
1716 return (0);
1717 }
1718 }
1719 }
1720 /* Resetting the prop */
1721 if (mrp->mrp_mask & MRP_RINGS_RESET) {
1722 /*
1723 * We will just keep one ring and give others back if
1724 * we are not the primary. For the primary we give
1725 * all the rings in the default group except the
1726 * default ring. If it is a static group, then
1727 * we don't do anything, but clear the MRP_RX_RINGS
1728 * flag.
1729 */
1730 if (group != defgrp) {
1731 if (mip->mi_rx_group_type ==
1732 MAC_GROUP_TYPE_DYNAMIC) {
1733 /*
1734 * This group has reserved rings
1735 * that need to be released now,
1736 * so does the group.
1737 */
1738 MAC_RX_RING_RELEASED(mip,
1739 group->mrg_cur_count);
1740 MAC_RX_GRP_RELEASED(mip);
1741 if ((flent->fe_type &
1742 FLOW_PRIMARY_MAC) != 0) {
1743 if (mip->mi_nactiveclients ==
1744 1) {
1745 (void)
1746 mac_rx_switch_group(
1747 mcip, group,
1748 defgrp);
1749 return (0);
1750 } else {
1751 cmrp->mrp_nrxrings =
1752 group->
1753 mrg_cur_count +
1754 defgrp->
1755 mrg_cur_count - 1;
1756 }
1757 } else {
1758 cmrp->mrp_nrxrings = 1;
1759 }
1760 (void) mac_group_ring_modify(mcip,
1761 group, defgrp);
1762 } else {
1763 /*
1764 * If this is a static group, we
1765 * need to release the group. The
1766 * client will remain in the same
1767 * group till some other client
1768 * needs this group.
1769 */
1770 MAC_RX_GRP_RELEASED(mip);
1771 }
1772 /* Let check if we can give this an excl group */
1773 } else if (group == defgrp) {
1774 ngrp = mac_reserve_rx_group(mcip, mac_addr,
1775 B_TRUE);
1776 /* Couldn't give it a group, that's fine */
1777 if (ngrp == NULL)
1778 return (0);
1779 /* Switch to H/W */
1780 if (mac_rx_switch_group(mcip, defgrp, ngrp) !=
1781 0) {
1782 mac_stop_group(ngrp);
1783 return (0);
1784 }
1785 }
1786 /*
1787 * If the client is in the default group, we will
1788 * just clear the MRP_RX_RINGS and leave it as
1789 * it rather than look for an exclusive group
1790 * for it.
1791 */
1792 return (0);
1793 }
1794
1795 if (group == defgrp && ((mrp->mrp_nrxrings > 0) || unspec)) {
1796 ngrp = mac_reserve_rx_group(mcip, mac_addr, B_TRUE);
1797 if (ngrp == NULL)
1798 return (ENOSPC);
1799
1800 /* Switch to H/W */
1801 if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) {
1802 mac_release_rx_group(mcip, ngrp);
1803 return (ENOSPC);
1804 }
1805 MAC_RX_GRP_RESERVED(mip);
1806 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC)
1807 MAC_RX_RING_RESERVED(mip, ngrp->mrg_cur_count);
1808 } else if (group != defgrp && !unspec &&
1809 mrp->mrp_nrxrings == 0) {
1810 /* Switch to S/W */
1811 ringcnt = group->mrg_cur_count;
1812 if (mac_rx_switch_group(mcip, group, defgrp) != 0)
1813 return (ENOSPC);
1814 if (tmrp->mrp_mask & MRP_RX_RINGS) {
1815 MAC_RX_GRP_RELEASED(mip);
1816 if (mip->mi_rx_group_type ==
1817 MAC_GROUP_TYPE_DYNAMIC) {
1818 MAC_RX_RING_RELEASED(mip, ringcnt);
1819 }
1820 }
1821 } else if (group != defgrp && mip->mi_rx_group_type ==
1822 MAC_GROUP_TYPE_DYNAMIC) {
1823 ringcnt = group->mrg_cur_count;
1824 err = mac_group_ring_modify(mcip, group, defgrp);
1825 if (err != 0)
1826 return (err);
1827 /*
1828 * Update the accounting. If this group
1829 * already had explicitly reserved rings,
1830 * we need to update the rings based on
1831 * the new ring count. If this group
1832 * had not explicitly reserved rings,
1833 * then we just reserve the rings asked for
1834 * and reserve the group.
1835 */
1836 if (tmrp->mrp_mask & MRP_RX_RINGS) {
1837 if (ringcnt > group->mrg_cur_count) {
1838 MAC_RX_RING_RELEASED(mip,
1839 ringcnt - group->mrg_cur_count);
1840 } else {
1841 MAC_RX_RING_RESERVED(mip,
1842 group->mrg_cur_count - ringcnt);
1843 }
1844 } else {
1845 MAC_RX_RING_RESERVED(mip, group->mrg_cur_count);
1846 MAC_RX_GRP_RESERVED(mip);
1847 }
1848 }
1849 }
1850 if (mrp->mrp_mask & MRP_TX_RINGS) {
1851 unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC;
1852 group = flent->fe_tx_ring_group;
1853 defgrp = MAC_DEFAULT_TX_GROUP(mip);
1854
1855 /*
1856 * For static groups we only allow rings=0 or resetting the
1857 * rings property.
1858 */
1859 if (mrp->mrp_ntxrings > 0 &&
1860 mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) {
1861 return (ENOTSUP);
1862 }
1863 if (mrp->mrp_mask & MRP_RINGS_RESET) {
1864 if (!(tmrp->mrp_mask & MRP_TX_RINGS))
1865 return (0);
1866 } else {
1867 if (unspec) {
1868 if (tmrp->mrp_mask & MRP_TXRINGS_UNSPEC)
1869 return (0);
1870 } else if (mip->mi_tx_group_type ==
1871 MAC_GROUP_TYPE_DYNAMIC) {
1872 if ((tmrp->mrp_mask & MRP_TX_RINGS) &&
1873 !(tmrp->mrp_mask & MRP_TXRINGS_UNSPEC) &&
1874 mrp->mrp_ntxrings == tmrp->mrp_ntxrings) {
1875 return (0);
1876 }
1877 }
1878 }
1879 /* Resetting the prop */
1880 if (mrp->mrp_mask & MRP_RINGS_RESET) {
1881 if (group != defgrp) {
1882 if (mip->mi_tx_group_type ==
1883 MAC_GROUP_TYPE_DYNAMIC) {
1884 ringcnt = group->mrg_cur_count;
1885 if ((flent->fe_type &
1886 FLOW_PRIMARY_MAC) != 0) {
1887 mac_tx_client_quiesce(
1888 (mac_client_handle_t)
1889 mcip);
1890 mac_tx_switch_group(mcip,
1891 group, defgrp);
1892 mac_tx_client_restart(
1893 (mac_client_handle_t)
1894 mcip);
1895 MAC_TX_GRP_RELEASED(mip);
1896 MAC_TX_RING_RELEASED(mip,
1897 ringcnt);
1898 return (0);
1899 }
1900 cmrp->mrp_ntxrings = 1;
1901 (void) mac_group_ring_modify(mcip,
1902 group, defgrp);
1903 /*
1904 * This group has reserved rings
1905 * that need to be released now.
1906 */
1907 MAC_TX_RING_RELEASED(mip, ringcnt);
1908 }
1909 /*
1910 * If this is a static group, we
1911 * need to release the group. The
1912 * client will remain in the same
1913 * group till some other client
1914 * needs this group.
1915 */
1916 MAC_TX_GRP_RELEASED(mip);
1917 } else if (group == defgrp &&
1918 (flent->fe_type & FLOW_PRIMARY_MAC) == 0) {
1919 ngrp = mac_reserve_tx_group(mcip, B_TRUE);
1920 if (ngrp == NULL)
1921 return (0);
1922 mac_tx_client_quiesce(
1923 (mac_client_handle_t)mcip);
1924 mac_tx_switch_group(mcip, defgrp, ngrp);
1925 mac_tx_client_restart(
1926 (mac_client_handle_t)mcip);
1927 }
1928 /*
1929 * If the client is in the default group, we will
1930 * just clear the MRP_TX_RINGS and leave it as
1931 * it rather than look for an exclusive group
1932 * for it.
1933 */
1934 return (0);
1935 }
1936
1937 /* Switch to H/W */
1938 if (group == defgrp && ((mrp->mrp_ntxrings > 0) || unspec)) {
1939 ngrp = mac_reserve_tx_group(mcip, B_TRUE);
1940 if (ngrp == NULL)
1941 return (ENOSPC);
1942 mac_tx_client_quiesce((mac_client_handle_t)mcip);
1943 mac_tx_switch_group(mcip, defgrp, ngrp);
1944 mac_tx_client_restart((mac_client_handle_t)mcip);
1945 MAC_TX_GRP_RESERVED(mip);
1946 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC)
1947 MAC_TX_RING_RESERVED(mip, ngrp->mrg_cur_count);
1948 /* Switch to S/W */
1949 } else if (group != defgrp && !unspec &&
1950 mrp->mrp_ntxrings == 0) {
1951 /* Switch to S/W */
1952 ringcnt = group->mrg_cur_count;
1953 mac_tx_client_quiesce((mac_client_handle_t)mcip);
1954 mac_tx_switch_group(mcip, group, defgrp);
1955 mac_tx_client_restart((mac_client_handle_t)mcip);
1956 if (tmrp->mrp_mask & MRP_TX_RINGS) {
1957 MAC_TX_GRP_RELEASED(mip);
1958 if (mip->mi_tx_group_type ==
1959 MAC_GROUP_TYPE_DYNAMIC) {
1960 MAC_TX_RING_RELEASED(mip, ringcnt);
1961 }
1962 }
1963 } else if (group != defgrp && mip->mi_tx_group_type ==
1964 MAC_GROUP_TYPE_DYNAMIC) {
1965 ringcnt = group->mrg_cur_count;
1966 err = mac_group_ring_modify(mcip, group, defgrp);
1967 if (err != 0)
1968 return (err);
1969 /*
1970 * Update the accounting. If this group
1971 * already had explicitly reserved rings,
1972 * we need to update the rings based on
1973 * the new ring count. If this group
1974 * had not explicitly reserved rings,
1975 * then we just reserve the rings asked for
1976 * and reserve the group.
1977 */
1978 if (tmrp->mrp_mask & MRP_TX_RINGS) {
1979 if (ringcnt > group->mrg_cur_count) {
1980 MAC_TX_RING_RELEASED(mip,
1981 ringcnt - group->mrg_cur_count);
1982 } else {
1983 MAC_TX_RING_RESERVED(mip,
1984 group->mrg_cur_count - ringcnt);
1985 }
1986 } else {
1987 MAC_TX_RING_RESERVED(mip, group->mrg_cur_count);
1988 MAC_TX_GRP_RESERVED(mip);
1989 }
1990 }
1991 }
1992 return (0);
1993 }
1994
1995 /*
1996 * When the MAC client is being brought up (i.e. we do a unicast_add) we need
1997 * to initialize the cpu and resource control structure in the
1998 * mac_client_impl_t from the mac_impl_t (i.e if there are any cached
1999 * properties before the flow entry for the unicast address was created).
2000 */
2001 static int
mac_resource_ctl_set(mac_client_handle_t mch,mac_resource_props_t * mrp)2002 mac_resource_ctl_set(mac_client_handle_t mch, mac_resource_props_t *mrp)
2003 {
2004 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2005 mac_impl_t *mip = (mac_impl_t *)mcip->mci_mip;
2006 mac_impl_t *umip = mcip->mci_upper_mip;
2007 int err = 0;
2008 flow_entry_t *flent = mcip->mci_flent;
2009 mac_resource_props_t *omrp, *nmrp = MCIP_RESOURCE_PROPS(mcip);
2010
2011 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2012
2013 err = mac_validate_props(mcip->mci_state_flags & MCIS_IS_VNIC ?
2014 mcip->mci_upper_mip : mip, mrp);
2015 if (err != 0)
2016 return (err);
2017
2018 /*
2019 * Copy over the existing properties since mac_update_resources
2020 * will modify the client's mrp. Currently, the saved property
2021 * is used to determine the difference between existing and
2022 * modified rings property.
2023 */
2024 omrp = kmem_zalloc(sizeof (*omrp), KM_SLEEP);
2025 bcopy(nmrp, omrp, sizeof (*omrp));
2026 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE);
2027 if (MCIP_DATAPATH_SETUP(mcip)) {
2028 /*
2029 * We support rings only for primary client when there are
2030 * multiple clients sharing the same MAC address (e.g. VLAN).
2031 */
2032 if (mrp->mrp_mask & MRP_RX_RINGS ||
2033 mrp->mrp_mask & MRP_TX_RINGS) {
2034
2035 if ((err = mac_client_set_rings_prop(mcip, mrp,
2036 omrp)) != 0) {
2037 if (omrp->mrp_mask & MRP_RX_RINGS) {
2038 nmrp->mrp_mask |= MRP_RX_RINGS;
2039 nmrp->mrp_nrxrings = omrp->mrp_nrxrings;
2040 } else {
2041 nmrp->mrp_mask &= ~MRP_RX_RINGS;
2042 nmrp->mrp_nrxrings = 0;
2043 }
2044 if (omrp->mrp_mask & MRP_TX_RINGS) {
2045 nmrp->mrp_mask |= MRP_TX_RINGS;
2046 nmrp->mrp_ntxrings = omrp->mrp_ntxrings;
2047 } else {
2048 nmrp->mrp_mask &= ~MRP_TX_RINGS;
2049 nmrp->mrp_ntxrings = 0;
2050 }
2051 if (omrp->mrp_mask & MRP_RXRINGS_UNSPEC)
2052 omrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
2053 else
2054 omrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
2055
2056 if (omrp->mrp_mask & MRP_TXRINGS_UNSPEC)
2057 omrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
2058 else
2059 omrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
2060 kmem_free(omrp, sizeof (*omrp));
2061 return (err);
2062 }
2063
2064 /*
2065 * If we modified the rings property of the primary
2066 * we need to update the property fields of its
2067 * VLANs as they inherit the primary's properites.
2068 */
2069 if (mac_is_primary_client(mcip)) {
2070 mac_set_prim_vlan_rings(mip,
2071 MCIP_RESOURCE_PROPS(mcip));
2072 }
2073 }
2074 /*
2075 * We have to set this prior to calling mac_flow_modify.
2076 */
2077 if (mrp->mrp_mask & MRP_PRIORITY) {
2078 if (mrp->mrp_priority == MPL_RESET) {
2079 MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
2080 MPL_LINK_DEFAULT);
2081 } else {
2082 MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
2083 mrp->mrp_priority);
2084 }
2085 }
2086
2087 mac_flow_modify(mip->mi_flow_tab, flent, mrp);
2088 if (mrp->mrp_mask & MRP_PRIORITY)
2089 mac_update_subflow_priority(mcip);
2090
2091 /* Apply these resource settings to any secondary macs */
2092 if (umip != NULL) {
2093 ASSERT((umip->mi_state_flags & MIS_IS_VNIC) != 0);
2094 mac_vnic_secondary_update(umip);
2095 }
2096 }
2097 kmem_free(omrp, sizeof (*omrp));
2098 return (0);
2099 }
2100
2101 static int
mac_unicast_flow_create(mac_client_impl_t * mcip,uint8_t * mac_addr,uint16_t vid,boolean_t is_primary,boolean_t first_flow,flow_entry_t ** flent,mac_resource_props_t * mrp)2102 mac_unicast_flow_create(mac_client_impl_t *mcip, uint8_t *mac_addr,
2103 uint16_t vid, boolean_t is_primary, boolean_t first_flow,
2104 flow_entry_t **flent, mac_resource_props_t *mrp)
2105 {
2106 mac_impl_t *mip = (mac_impl_t *)mcip->mci_mip;
2107 flow_desc_t flow_desc;
2108 char flowname[MAXFLOWNAMELEN];
2109 int err;
2110 uint_t flent_flags;
2111
2112 /*
2113 * First unicast address being added, create a new flow
2114 * for that MAC client.
2115 */
2116 bzero(&flow_desc, sizeof (flow_desc));
2117
2118 ASSERT(mac_addr != NULL ||
2119 (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR));
2120 if (mac_addr != NULL) {
2121 flow_desc.fd_mac_len = mip->mi_type->mt_addr_length;
2122 bcopy(mac_addr, flow_desc.fd_dst_mac, flow_desc.fd_mac_len);
2123 }
2124 flow_desc.fd_mask = FLOW_LINK_DST;
2125 if (vid != 0) {
2126 flow_desc.fd_vid = vid;
2127 flow_desc.fd_mask |= FLOW_LINK_VID;
2128 }
2129
2130 /*
2131 * XXX-nicolas. For now I'm keeping the FLOW_PRIMARY_MAC
2132 * and FLOW_VNIC. Even though they're a hack inherited
2133 * from the SRS code, we'll keep them for now. They're currently
2134 * consumed by mac_datapath_setup() to create the SRS.
2135 * That code should be eventually moved out of
2136 * mac_datapath_setup() and moved to a mac_srs_create()
2137 * function of some sort to keep things clean.
2138 *
2139 * Also, there's no reason why the SRS for the primary MAC
2140 * client should be different than any other MAC client. Until
2141 * this is cleaned-up, we support only one MAC unicast address
2142 * per client.
2143 *
2144 * We set FLOW_PRIMARY_MAC for the primary MAC address,
2145 * FLOW_VNIC for everything else.
2146 */
2147 if (is_primary)
2148 flent_flags = FLOW_PRIMARY_MAC;
2149 else
2150 flent_flags = FLOW_VNIC_MAC;
2151
2152 /*
2153 * For the first flow we use the mac client's name - mci_name, for
2154 * subsequent ones we just create a name with the vid. This is
2155 * so that we can add these flows to the same flow table. This is
2156 * fine as the flow name (except for the one with the mac client's
2157 * name) is not visible. When the first flow is removed, we just replace
2158 * its fdesc with another from the list, so we will still retain the
2159 * flent with the MAC client's flow name.
2160 */
2161 if (first_flow) {
2162 bcopy(mcip->mci_name, flowname, MAXFLOWNAMELEN);
2163 } else {
2164 (void) sprintf(flowname, "%s%u", mcip->mci_name, vid);
2165 flent_flags = FLOW_NO_STATS;
2166 }
2167
2168 if ((err = mac_flow_create(&flow_desc, mrp, flowname, NULL,
2169 flent_flags, flent)) != 0)
2170 return (err);
2171
2172 mac_misc_stat_create(*flent);
2173 FLOW_MARK(*flent, FE_INCIPIENT);
2174 (*flent)->fe_mcip = mcip;
2175
2176 /*
2177 * Place initial creation reference on the flow. This reference
2178 * is released in the corresponding delete action viz.
2179 * mac_unicast_remove after waiting for all transient refs to
2180 * to go away. The wait happens in mac_flow_wait.
2181 * We have already held the reference in mac_client_open().
2182 */
2183 if (!first_flow)
2184 FLOW_REFHOLD(*flent);
2185 return (0);
2186 }
2187
2188 /* Refresh the multicast grouping for this VID. */
2189 int
mac_client_update_mcast(void * arg,boolean_t add,const uint8_t * addrp)2190 mac_client_update_mcast(void *arg, boolean_t add, const uint8_t *addrp)
2191 {
2192 flow_entry_t *flent = arg;
2193 mac_client_impl_t *mcip = flent->fe_mcip;
2194 uint16_t vid;
2195 flow_desc_t flow_desc;
2196
2197 mac_flow_get_desc(flent, &flow_desc);
2198 vid = (flow_desc.fd_mask & FLOW_LINK_VID) != 0 ?
2199 flow_desc.fd_vid : VLAN_ID_NONE;
2200
2201 /*
2202 * We don't call mac_multicast_add()/mac_multicast_remove() as
2203 * we want to add/remove for this specific vid.
2204 */
2205 if (add) {
2206 return (mac_bcast_add(mcip, addrp, vid,
2207 MAC_ADDRTYPE_MULTICAST));
2208 } else {
2209 mac_bcast_delete(mcip, addrp, vid);
2210 return (0);
2211 }
2212 }
2213
2214 static void
mac_update_single_active_client(mac_impl_t * mip)2215 mac_update_single_active_client(mac_impl_t *mip)
2216 {
2217 mac_client_impl_t *client = NULL;
2218
2219 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2220
2221 rw_enter(&mip->mi_rw_lock, RW_WRITER);
2222 if (mip->mi_nactiveclients == 1) {
2223 /*
2224 * Find the one active MAC client from the list of MAC
2225 * clients. The active MAC client has at least one
2226 * unicast address.
2227 */
2228 for (client = mip->mi_clients_list; client != NULL;
2229 client = client->mci_client_next) {
2230 if (client->mci_unicast_list != NULL)
2231 break;
2232 }
2233 ASSERT(client != NULL);
2234 }
2235
2236 /*
2237 * mi_single_active_client is protected by the MAC impl's read/writer
2238 * lock, which allows mac_rx() to check the value of that pointer
2239 * as a reader.
2240 */
2241 mip->mi_single_active_client = client;
2242 rw_exit(&mip->mi_rw_lock);
2243 }
2244
2245 /*
2246 * Set up the data path. Called from i_mac_unicast_add after having
2247 * done all the validations including making sure this is an active
2248 * client (i.e that is ready to process packets.)
2249 */
2250 static int
mac_client_datapath_setup(mac_client_impl_t * mcip,uint16_t vid,uint8_t * mac_addr,mac_resource_props_t * mrp,boolean_t isprimary,mac_unicast_impl_t * muip)2251 mac_client_datapath_setup(mac_client_impl_t *mcip, uint16_t vid,
2252 uint8_t *mac_addr, mac_resource_props_t *mrp, boolean_t isprimary,
2253 mac_unicast_impl_t *muip)
2254 {
2255 mac_impl_t *mip = mcip->mci_mip;
2256 boolean_t mac_started = B_FALSE;
2257 boolean_t bcast_added = B_FALSE;
2258 boolean_t nactiveclients_added = B_FALSE;
2259 flow_entry_t *flent;
2260 int err = 0;
2261 boolean_t no_unicast;
2262
2263 no_unicast = mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR;
2264
2265 if ((err = mac_start((mac_handle_t)mip)) != 0)
2266 goto bail;
2267
2268 mac_started = B_TRUE;
2269
2270 /* add the MAC client to the broadcast address group by default */
2271 if (mip->mi_type->mt_brdcst_addr != NULL) {
2272 err = mac_bcast_add(mcip, mip->mi_type->mt_brdcst_addr, vid,
2273 MAC_ADDRTYPE_BROADCAST);
2274 if (err != 0)
2275 goto bail;
2276 bcast_added = B_TRUE;
2277 }
2278
2279 /*
2280 * If this is the first unicast address addition for this
2281 * client, reuse the pre-allocated larval flow entry associated with
2282 * the MAC client.
2283 */
2284 flent = (mcip->mci_nflents == 0) ? mcip->mci_flent : NULL;
2285
2286 /* We are configuring the unicast flow now */
2287 if (!MCIP_DATAPATH_SETUP(mcip)) {
2288
2289 if (mrp != NULL) {
2290 MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
2291 (mrp->mrp_mask & MRP_PRIORITY) ? mrp->mrp_priority :
2292 MPL_LINK_DEFAULT);
2293 }
2294 if ((err = mac_unicast_flow_create(mcip, mac_addr, vid,
2295 isprimary, B_TRUE, &flent, mrp)) != 0)
2296 goto bail;
2297
2298 mip->mi_nactiveclients++;
2299 nactiveclients_added = B_TRUE;
2300
2301 /*
2302 * This will allocate the RX ring group if possible for the
2303 * flow and program the software classifier as needed.
2304 */
2305 if ((err = mac_datapath_setup(mcip, flent, SRST_LINK)) != 0)
2306 goto bail;
2307
2308 if (no_unicast)
2309 goto done_setup;
2310 /*
2311 * The unicast MAC address must have been added successfully.
2312 */
2313 ASSERT(mcip->mci_unicast != NULL);
2314 /*
2315 * Push down the sub-flows that were defined on this link
2316 * hitherto. The flows are added to the active flow table
2317 * and SRS, softrings etc. are created as needed.
2318 */
2319 mac_link_init_flows((mac_client_handle_t)mcip);
2320 } else {
2321 mac_address_t *map = mcip->mci_unicast;
2322
2323 ASSERT(!no_unicast);
2324 /*
2325 * A unicast flow already exists for that MAC client,
2326 * this flow must be the same mac address but with
2327 * different VID. It has been checked by mac_addr_in_use().
2328 *
2329 * We will use the SRS etc. from the mci_flent. Note that
2330 * We don't need to create kstat for this as except for
2331 * the fdesc, everything will be used from in the 1st flent.
2332 */
2333
2334 if (bcmp(mac_addr, map->ma_addr, map->ma_len) != 0) {
2335 err = EINVAL;
2336 goto bail;
2337 }
2338
2339 if ((err = mac_unicast_flow_create(mcip, mac_addr, vid,
2340 isprimary, B_FALSE, &flent, NULL)) != 0) {
2341 goto bail;
2342 }
2343 if ((err = mac_flow_add(mip->mi_flow_tab, flent)) != 0) {
2344 FLOW_FINAL_REFRELE(flent);
2345 goto bail;
2346 }
2347
2348 /* update the multicast group for this vid */
2349 mac_client_bcast_refresh(mcip, mac_client_update_mcast,
2350 (void *)flent, B_TRUE);
2351
2352 }
2353
2354 /* populate the shared MAC address */
2355 muip->mui_map = mcip->mci_unicast;
2356
2357 rw_enter(&mcip->mci_rw_lock, RW_WRITER);
2358 muip->mui_next = mcip->mci_unicast_list;
2359 mcip->mci_unicast_list = muip;
2360 rw_exit(&mcip->mci_rw_lock);
2361
2362 done_setup:
2363 /*
2364 * First add the flent to the flow list of this mcip. Then set
2365 * the mip's mi_single_active_client if needed. The Rx path assumes
2366 * that mip->mi_single_active_client will always have an associated
2367 * flent.
2368 */
2369 mac_client_add_to_flow_list(mcip, flent);
2370 if (nactiveclients_added)
2371 mac_update_single_active_client(mip);
2372 /*
2373 * Trigger a renegotiation of the capabilities when the number of
2374 * active clients changes from 1 to 2, since some of the capabilities
2375 * might have to be disabled. Also send a MAC_NOTE_LINK notification
2376 * to all the MAC clients whenever physical link is DOWN.
2377 */
2378 if (mip->mi_nactiveclients == 2) {
2379 mac_capab_update((mac_handle_t)mip);
2380 mac_virtual_link_update(mip);
2381 }
2382 /*
2383 * Now that the setup is complete, clear the INCIPIENT flag.
2384 * The flag was set to avoid incoming packets seeing inconsistent
2385 * structures while the setup was in progress. Clear the mci_tx_flag
2386 * by calling mac_tx_client_block. It is possible that
2387 * mac_unicast_remove was called prior to this mac_unicast_add which
2388 * could have set the MCI_TX_QUIESCE flag.
2389 */
2390 if (flent->fe_rx_ring_group != NULL)
2391 mac_rx_group_unmark(flent->fe_rx_ring_group, MR_INCIPIENT);
2392 FLOW_UNMARK(flent, FE_INCIPIENT);
2393 FLOW_UNMARK(flent, FE_MC_NO_DATAPATH);
2394 mac_tx_client_unblock(mcip);
2395 return (0);
2396 bail:
2397 if (bcast_added)
2398 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, vid);
2399
2400 if (nactiveclients_added)
2401 mip->mi_nactiveclients--;
2402
2403 if (mac_started)
2404 mac_stop((mac_handle_t)mip);
2405
2406 return (err);
2407 }
2408
2409 /*
2410 * Return the passive primary MAC client, if present. The passive client is
2411 * a stand-by client that has the same unicast address as another that is
2412 * currenly active. Once the active client goes away, the passive client
2413 * becomes active.
2414 */
2415 static mac_client_impl_t *
mac_get_passive_primary_client(mac_impl_t * mip)2416 mac_get_passive_primary_client(mac_impl_t *mip)
2417 {
2418 mac_client_impl_t *mcip;
2419
2420 for (mcip = mip->mi_clients_list; mcip != NULL;
2421 mcip = mcip->mci_client_next) {
2422 if (mac_is_primary_client(mcip) &&
2423 (mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
2424 return (mcip);
2425 }
2426 }
2427 return (NULL);
2428 }
2429
2430 /*
2431 * Add a new unicast address to the MAC client.
2432 *
2433 * The MAC address can be specified either by value, or the MAC client
2434 * can specify that it wants to use the primary MAC address of the
2435 * underlying MAC. See the introductory comments at the beginning
2436 * of this file for more more information on primary MAC addresses.
2437 *
2438 * Note also the tuple (MAC address, VID) must be unique
2439 * for the MAC clients defined on top of the same underlying MAC
2440 * instance, unless the MAC_UNICAST_NODUPCHECK is specified.
2441 *
2442 * In no case can a client use the PVID for the MAC, if the MAC has one set.
2443 */
2444 int
i_mac_unicast_add(mac_client_handle_t mch,uint8_t * mac_addr,uint16_t flags,mac_unicast_handle_t * mah,uint16_t vid,mac_diag_t * diag)2445 i_mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags,
2446 mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag)
2447 {
2448 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2449 mac_impl_t *mip = mcip->mci_mip;
2450 int err;
2451 uint_t mac_len = mip->mi_type->mt_addr_length;
2452 boolean_t check_dups = !(flags & MAC_UNICAST_NODUPCHECK);
2453 boolean_t fastpath_disabled = B_FALSE;
2454 boolean_t is_primary = (flags & MAC_UNICAST_PRIMARY);
2455 boolean_t is_unicast_hw = (flags & MAC_UNICAST_HW);
2456 mac_resource_props_t *mrp;
2457 boolean_t passive_client = B_FALSE;
2458 mac_unicast_impl_t *muip;
2459 boolean_t is_vnic_primary =
2460 (flags & MAC_UNICAST_VNIC_PRIMARY);
2461
2462 /* when VID is non-zero, the underlying MAC can not be VNIC */
2463 ASSERT(!((mip->mi_state_flags & MIS_IS_VNIC) && (vid != 0)));
2464
2465 /*
2466 * Can't unicast add if the client asked only for minimal datapath
2467 * setup.
2468 */
2469 if (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR)
2470 return (ENOTSUP);
2471
2472 /*
2473 * Check for an attempted use of the current Port VLAN ID, if enabled.
2474 * No client may use it.
2475 */
2476 if (mip->mi_pvid != 0 && vid == mip->mi_pvid)
2477 return (EBUSY);
2478
2479 /*
2480 * Check whether it's the primary client and flag it.
2481 */
2482 if (!(mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary && vid == 0)
2483 mcip->mci_flags |= MAC_CLIENT_FLAGS_PRIMARY;
2484
2485 /*
2486 * is_vnic_primary is true when we come here as a VLAN VNIC
2487 * which uses the primary mac client's address but with a non-zero
2488 * VID. In this case the MAC address is not specified by an upper
2489 * MAC client.
2490 */
2491 if ((mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary &&
2492 !is_vnic_primary) {
2493 /*
2494 * The address is being set by the upper MAC client
2495 * of a VNIC. The MAC address was already set by the
2496 * VNIC driver during VNIC creation.
2497 *
2498 * Note: a VNIC has only one MAC address. We return
2499 * the MAC unicast address handle of the lower MAC client
2500 * corresponding to the VNIC. We allocate a new entry
2501 * which is flagged appropriately, so that mac_unicast_remove()
2502 * doesn't attempt to free the original entry that
2503 * was allocated by the VNIC driver.
2504 */
2505 ASSERT(mcip->mci_unicast != NULL);
2506
2507 /* Check for VLAN flags, if present */
2508 if ((flags & MAC_UNICAST_TAG_DISABLE) != 0)
2509 mcip->mci_state_flags |= MCIS_TAG_DISABLE;
2510
2511 if ((flags & MAC_UNICAST_STRIP_DISABLE) != 0)
2512 mcip->mci_state_flags |= MCIS_STRIP_DISABLE;
2513
2514 if ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0)
2515 mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK;
2516
2517 /*
2518 * Ensure that the primary unicast address of the VNIC
2519 * is added only once unless we have the
2520 * MAC_CLIENT_FLAGS_MULTI_PRIMARY set (and this is not
2521 * a passive MAC client).
2522 */
2523 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) != 0) {
2524 if ((mcip->mci_flags &
2525 MAC_CLIENT_FLAGS_MULTI_PRIMARY) == 0 ||
2526 (mcip->mci_flags &
2527 MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
2528 return (EBUSY);
2529 }
2530 mcip->mci_flags |= MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
2531 passive_client = B_TRUE;
2532 }
2533
2534 mcip->mci_flags |= MAC_CLIENT_FLAGS_VNIC_PRIMARY;
2535
2536 /*
2537 * Create a handle for vid 0.
2538 */
2539 ASSERT(vid == 0);
2540 muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP);
2541 muip->mui_vid = vid;
2542 *mah = (mac_unicast_handle_t)muip;
2543 /*
2544 * This will be used by the caller to defer setting the
2545 * rx functions.
2546 */
2547 if (passive_client)
2548 return (EAGAIN);
2549 return (0);
2550 }
2551
2552 /* primary MAC clients cannot be opened on top of anchor VNICs */
2553 if ((is_vnic_primary || is_primary) &&
2554 i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_ANCHOR_VNIC, NULL)) {
2555 return (ENXIO);
2556 }
2557
2558 /*
2559 * If this is a VNIC/VLAN, disable softmac fast-path.
2560 */
2561 if (mcip->mci_state_flags & MCIS_IS_VNIC) {
2562 err = mac_fastpath_disable((mac_handle_t)mip);
2563 if (err != 0)
2564 return (err);
2565 fastpath_disabled = B_TRUE;
2566 }
2567
2568 /*
2569 * Return EBUSY if:
2570 * - there is an exclusively active mac client exists.
2571 * - this is an exclusive active mac client but
2572 * a. there is already active mac clients exist, or
2573 * b. fastpath streams are already plumbed on this legacy device
2574 * - the mac creator has disallowed active mac clients.
2575 */
2576 if (mip->mi_state_flags & (MIS_EXCLUSIVE|MIS_NO_ACTIVE)) {
2577 if (fastpath_disabled)
2578 mac_fastpath_enable((mac_handle_t)mip);
2579 return (EBUSY);
2580 }
2581
2582 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) {
2583 ASSERT(!fastpath_disabled);
2584 if (mip->mi_nactiveclients != 0)
2585 return (EBUSY);
2586
2587 if ((mip->mi_state_flags & MIS_LEGACY) &&
2588 !(mip->mi_capab_legacy.ml_active_set(mip->mi_driver))) {
2589 return (EBUSY);
2590 }
2591 mip->mi_state_flags |= MIS_EXCLUSIVE;
2592 }
2593
2594 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
2595 if (is_primary && !(mcip->mci_state_flags & (MCIS_IS_VNIC |
2596 MCIS_IS_AGGR_PORT))) {
2597 /*
2598 * Apply the property cached in the mac_impl_t to the primary
2599 * mac client. If the mac client is a VNIC or an aggregation
2600 * port, its property should be set in the mcip when the
2601 * VNIC/aggr was created.
2602 */
2603 mac_get_resources((mac_handle_t)mip, mrp);
2604 (void) mac_client_set_resources(mch, mrp);
2605 } else if (mcip->mci_state_flags & MCIS_IS_VNIC) {
2606 /*
2607 * This is a primary VLAN client, we don't support
2608 * specifying rings property for this as it inherits the
2609 * rings property from its MAC.
2610 */
2611 if (is_vnic_primary) {
2612 mac_resource_props_t *vmrp;
2613
2614 vmrp = MCIP_RESOURCE_PROPS(mcip);
2615 if (vmrp->mrp_mask & MRP_RX_RINGS ||
2616 vmrp->mrp_mask & MRP_TX_RINGS) {
2617 if (fastpath_disabled)
2618 mac_fastpath_enable((mac_handle_t)mip);
2619 kmem_free(mrp, sizeof (*mrp));
2620 return (ENOTSUP);
2621 }
2622 /*
2623 * Additionally we also need to inherit any
2624 * rings property from the MAC.
2625 */
2626 mac_get_resources((mac_handle_t)mip, mrp);
2627 if (mrp->mrp_mask & MRP_RX_RINGS) {
2628 vmrp->mrp_mask |= MRP_RX_RINGS;
2629 vmrp->mrp_nrxrings = mrp->mrp_nrxrings;
2630 }
2631 if (mrp->mrp_mask & MRP_TX_RINGS) {
2632 vmrp->mrp_mask |= MRP_TX_RINGS;
2633 vmrp->mrp_ntxrings = mrp->mrp_ntxrings;
2634 }
2635 }
2636 bcopy(MCIP_RESOURCE_PROPS(mcip), mrp, sizeof (*mrp));
2637 }
2638
2639 muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP);
2640 muip->mui_vid = vid;
2641
2642 if (is_primary || is_vnic_primary) {
2643 mac_addr = mip->mi_addr;
2644 } else {
2645
2646 /*
2647 * Verify the validity of the specified MAC addresses value.
2648 */
2649 if (!mac_unicst_verify((mac_handle_t)mip, mac_addr, mac_len)) {
2650 *diag = MAC_DIAG_MACADDR_INVALID;
2651 err = EINVAL;
2652 goto bail_out;
2653 }
2654
2655 /*
2656 * Make sure that the specified MAC address is different
2657 * than the unicast MAC address of the underlying NIC.
2658 */
2659 if (check_dups && bcmp(mip->mi_addr, mac_addr, mac_len) == 0) {
2660 *diag = MAC_DIAG_MACADDR_NIC;
2661 err = EINVAL;
2662 goto bail_out;
2663 }
2664 }
2665
2666 /*
2667 * Set the flags here so that if this is a passive client, we
2668 * can return and set it when we call mac_client_datapath_setup
2669 * when this becomes the active client. If we defer to using these
2670 * flags to mac_client_datapath_setup, then for a passive client,
2671 * we'd have to store the flags somewhere (probably fe_flags)
2672 * and then use it.
2673 */
2674 if (!MCIP_DATAPATH_SETUP(mcip)) {
2675 if (is_unicast_hw) {
2676 /*
2677 * The client requires a hardware MAC address slot
2678 * for that unicast address. Since we support only
2679 * one unicast MAC address per client, flag the
2680 * MAC client itself.
2681 */
2682 mcip->mci_state_flags |= MCIS_UNICAST_HW;
2683 }
2684
2685 /* Check for VLAN flags, if present */
2686 if ((flags & MAC_UNICAST_TAG_DISABLE) != 0)
2687 mcip->mci_state_flags |= MCIS_TAG_DISABLE;
2688
2689 if ((flags & MAC_UNICAST_STRIP_DISABLE) != 0)
2690 mcip->mci_state_flags |= MCIS_STRIP_DISABLE;
2691
2692 if ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0)
2693 mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK;
2694 } else {
2695 /*
2696 * Assert that the specified flags are consistent with the
2697 * flags specified by previous calls to mac_unicast_add().
2698 */
2699 ASSERT(((flags & MAC_UNICAST_TAG_DISABLE) != 0 &&
2700 (mcip->mci_state_flags & MCIS_TAG_DISABLE) != 0) ||
2701 ((flags & MAC_UNICAST_TAG_DISABLE) == 0 &&
2702 (mcip->mci_state_flags & MCIS_TAG_DISABLE) == 0));
2703
2704 ASSERT(((flags & MAC_UNICAST_STRIP_DISABLE) != 0 &&
2705 (mcip->mci_state_flags & MCIS_STRIP_DISABLE) != 0) ||
2706 ((flags & MAC_UNICAST_STRIP_DISABLE) == 0 &&
2707 (mcip->mci_state_flags & MCIS_STRIP_DISABLE) == 0));
2708
2709 ASSERT(((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0 &&
2710 (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) != 0) ||
2711 ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) == 0 &&
2712 (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) == 0));
2713
2714 /*
2715 * Make sure the client is consistent about its requests
2716 * for MAC addresses. I.e. all requests from the clients
2717 * must have the MAC_UNICAST_HW flag set or clear.
2718 */
2719 if ((mcip->mci_state_flags & MCIS_UNICAST_HW) != 0 &&
2720 !is_unicast_hw ||
2721 (mcip->mci_state_flags & MCIS_UNICAST_HW) == 0 &&
2722 is_unicast_hw) {
2723 err = EINVAL;
2724 goto bail_out;
2725 }
2726 }
2727 /*
2728 * Make sure the MAC address is not already used by
2729 * another MAC client defined on top of the same
2730 * underlying NIC. Unless we have MAC_CLIENT_FLAGS_MULTI_PRIMARY
2731 * set when we allow a passive client to be present which will
2732 * be activated when the currently active client goes away - this
2733 * works only with primary addresses.
2734 */
2735 if ((check_dups || is_primary || is_vnic_primary) &&
2736 mac_addr_in_use(mip, mac_addr, vid)) {
2737 /*
2738 * Must have set the multiple primary address flag when
2739 * we did a mac_client_open AND this should be a primary
2740 * MAC client AND there should not already be a passive
2741 * primary. If all is true then we let this succeed
2742 * even if the address is a dup.
2743 */
2744 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_MULTI_PRIMARY) == 0 ||
2745 (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) == 0 ||
2746 mac_get_passive_primary_client(mip) != NULL) {
2747 *diag = MAC_DIAG_MACADDR_INUSE;
2748 err = EEXIST;
2749 goto bail_out;
2750 }
2751 ASSERT((mcip->mci_flags &
2752 MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) == 0);
2753 mcip->mci_flags |= MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
2754 kmem_free(mrp, sizeof (*mrp));
2755
2756 /*
2757 * Stash the unicast address handle, we will use it when
2758 * we set up the passive client.
2759 */
2760 mcip->mci_p_unicast_list = muip;
2761 *mah = (mac_unicast_handle_t)muip;
2762 return (0);
2763 }
2764
2765 err = mac_client_datapath_setup(mcip, vid, mac_addr, mrp,
2766 is_primary || is_vnic_primary, muip);
2767 if (err != 0)
2768 goto bail_out;
2769
2770 kmem_free(mrp, sizeof (*mrp));
2771 *mah = (mac_unicast_handle_t)muip;
2772 return (0);
2773
2774 bail_out:
2775 if (fastpath_disabled)
2776 mac_fastpath_enable((mac_handle_t)mip);
2777 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) {
2778 mip->mi_state_flags &= ~MIS_EXCLUSIVE;
2779 if (mip->mi_state_flags & MIS_LEGACY) {
2780 mip->mi_capab_legacy.ml_active_clear(
2781 mip->mi_driver);
2782 }
2783 }
2784 kmem_free(mrp, sizeof (*mrp));
2785 kmem_free(muip, sizeof (mac_unicast_impl_t));
2786 return (err);
2787 }
2788
2789 /*
2790 * Wrapper function to mac_unicast_add when we want to have the same mac
2791 * client open for two instances, one that is currently active and another
2792 * that will become active when the current one is removed. In this case
2793 * mac_unicast_add will return EGAIN and we will save the rx function and
2794 * arg which will be used when we activate the passive client in
2795 * mac_unicast_remove.
2796 */
2797 int
mac_unicast_add_set_rx(mac_client_handle_t mch,uint8_t * mac_addr,uint16_t flags,mac_unicast_handle_t * mah,uint16_t vid,mac_diag_t * diag,mac_rx_t rx_fn,void * arg)2798 mac_unicast_add_set_rx(mac_client_handle_t mch, uint8_t *mac_addr,
2799 uint16_t flags, mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag,
2800 mac_rx_t rx_fn, void *arg)
2801 {
2802 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2803 uint_t err;
2804
2805 err = mac_unicast_add(mch, mac_addr, flags, mah, vid, diag);
2806 if (err != 0 && err != EAGAIN)
2807 return (err);
2808 if (err == EAGAIN) {
2809 if (rx_fn != NULL) {
2810 mcip->mci_rx_p_fn = rx_fn;
2811 mcip->mci_rx_p_arg = arg;
2812 }
2813 return (0);
2814 }
2815 if (rx_fn != NULL)
2816 mac_rx_set(mch, rx_fn, arg);
2817 return (err);
2818 }
2819
2820 int
mac_unicast_add(mac_client_handle_t mch,uint8_t * mac_addr,uint16_t flags,mac_unicast_handle_t * mah,uint16_t vid,mac_diag_t * diag)2821 mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags,
2822 mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag)
2823 {
2824 mac_impl_t *mip = ((mac_client_impl_t *)mch)->mci_mip;
2825 uint_t err;
2826
2827 i_mac_perim_enter(mip);
2828 err = i_mac_unicast_add(mch, mac_addr, flags, mah, vid, diag);
2829 i_mac_perim_exit(mip);
2830
2831 return (err);
2832 }
2833
2834 static void
mac_client_datapath_teardown(mac_client_handle_t mch,mac_unicast_impl_t * muip,flow_entry_t * flent)2835 mac_client_datapath_teardown(mac_client_handle_t mch, mac_unicast_impl_t *muip,
2836 flow_entry_t *flent)
2837 {
2838 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2839 mac_impl_t *mip = mcip->mci_mip;
2840 boolean_t no_unicast;
2841
2842 /*
2843 * If we have not added a unicast address for this MAC client, just
2844 * teardown the datapath.
2845 */
2846 no_unicast = mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR;
2847
2848 if (!no_unicast) {
2849 /*
2850 * We would have initialized subflows etc. only if we brought
2851 * up the primary client and set the unicast unicast address
2852 * etc. Deactivate the flows. The flow entry will be removed
2853 * from the active flow tables, and the associated SRS,
2854 * softrings etc will be deleted. But the flow entry itself
2855 * won't be destroyed, instead it will continue to be archived
2856 * off the the global flow hash list, for a possible future
2857 * activation when say IP is plumbed again.
2858 */
2859 mac_link_release_flows(mch);
2860 }
2861 mip->mi_nactiveclients--;
2862 mac_update_single_active_client(mip);
2863
2864 /* Tear down the data path */
2865 mac_datapath_teardown(mcip, mcip->mci_flent, SRST_LINK);
2866
2867 /*
2868 * Prevent any future access to the flow entry through the mci_flent
2869 * pointer by setting the mci_flent to NULL. Access to mci_flent in
2870 * mac_bcast_send is also under mi_rw_lock.
2871 */
2872 rw_enter(&mip->mi_rw_lock, RW_WRITER);
2873 flent = mcip->mci_flent;
2874 mac_client_remove_flow_from_list(mcip, flent);
2875
2876 if (mcip->mci_state_flags & MCIS_DESC_LOGGED)
2877 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED;
2878
2879 /*
2880 * This is the last unicast address being removed and there shouldn't
2881 * be any outbound data threads at this point coming down from mac
2882 * clients. We have waited for the data threads to finish before
2883 * starting dld_str_detach. Non-data threads must access TX SRS
2884 * under mi_rw_lock.
2885 */
2886 rw_exit(&mip->mi_rw_lock);
2887
2888 /*
2889 * Don't use FLOW_MARK with FE_MC_NO_DATAPATH, as the flow might
2890 * contain other flags, such as FE_CONDEMNED, which we need to
2891 * cleared. We don't call mac_flow_cleanup() for this unicast
2892 * flow as we have a already cleaned up SRSs etc. (via the teadown
2893 * path). We just clear the stats and reset the initial callback
2894 * function, the rest will be set when we call mac_flow_create,
2895 * if at all.
2896 */
2897 mutex_enter(&flent->fe_lock);
2898 ASSERT(flent->fe_refcnt == 1 && flent->fe_mbg == NULL &&
2899 flent->fe_tx_srs == NULL && flent->fe_rx_srs_cnt == 0);
2900 flent->fe_flags = FE_MC_NO_DATAPATH;
2901 flow_stat_destroy(flent);
2902 mac_misc_stat_delete(flent);
2903
2904 /* Initialize the receiver function to a safe routine */
2905 flent->fe_cb_fn = (flow_fn_t)mac_pkt_drop;
2906 flent->fe_cb_arg1 = NULL;
2907 flent->fe_cb_arg2 = NULL;
2908
2909 flent->fe_index = -1;
2910 mutex_exit(&flent->fe_lock);
2911
2912 if (mip->mi_type->mt_brdcst_addr != NULL) {
2913 ASSERT(muip != NULL || no_unicast);
2914 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr,
2915 muip != NULL ? muip->mui_vid : VLAN_ID_NONE);
2916 }
2917
2918 if (mip->mi_nactiveclients == 1) {
2919 mac_capab_update((mac_handle_t)mip);
2920 mac_virtual_link_update(mip);
2921 }
2922
2923 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) {
2924 mip->mi_state_flags &= ~MIS_EXCLUSIVE;
2925
2926 if (mip->mi_state_flags & MIS_LEGACY)
2927 mip->mi_capab_legacy.ml_active_clear(mip->mi_driver);
2928 }
2929
2930 mcip->mci_state_flags &= ~MCIS_UNICAST_HW;
2931
2932 if (mcip->mci_state_flags & MCIS_TAG_DISABLE)
2933 mcip->mci_state_flags &= ~MCIS_TAG_DISABLE;
2934
2935 if (mcip->mci_state_flags & MCIS_STRIP_DISABLE)
2936 mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE;
2937
2938 if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK)
2939 mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK;
2940
2941 if (muip != NULL)
2942 kmem_free(muip, sizeof (mac_unicast_impl_t));
2943 mac_protect_cancel_timer(mcip);
2944 mac_protect_flush_dhcp(mcip);
2945
2946 bzero(&mcip->mci_misc_stat, sizeof (mcip->mci_misc_stat));
2947 /*
2948 * Disable fastpath if this is a VNIC or a VLAN.
2949 */
2950 if (mcip->mci_state_flags & MCIS_IS_VNIC)
2951 mac_fastpath_enable((mac_handle_t)mip);
2952 mac_stop((mac_handle_t)mip);
2953 }
2954
2955 /*
2956 * Remove a MAC address which was previously added by mac_unicast_add().
2957 */
2958 int
mac_unicast_remove(mac_client_handle_t mch,mac_unicast_handle_t mah)2959 mac_unicast_remove(mac_client_handle_t mch, mac_unicast_handle_t mah)
2960 {
2961 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2962 mac_unicast_impl_t *muip = (mac_unicast_impl_t *)mah;
2963 mac_unicast_impl_t *pre;
2964 mac_impl_t *mip = mcip->mci_mip;
2965 flow_entry_t *flent;
2966 uint16_t mui_vid;
2967
2968 i_mac_perim_enter(mip);
2969 if (mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) {
2970 /*
2971 * Called made by the upper MAC client of a VNIC.
2972 * There's nothing much to do, the unicast address will
2973 * be removed by the VNIC driver when the VNIC is deleted,
2974 * but let's ensure that all our transmit is done before
2975 * the client does a mac_client_stop lest it trigger an
2976 * assert in the driver.
2977 */
2978 ASSERT(muip->mui_vid == 0);
2979
2980 mac_tx_client_flush(mcip);
2981
2982 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
2983 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
2984 if (mcip->mci_rx_p_fn != NULL) {
2985 mac_rx_set(mch, mcip->mci_rx_p_fn,
2986 mcip->mci_rx_p_arg);
2987 mcip->mci_rx_p_fn = NULL;
2988 mcip->mci_rx_p_arg = NULL;
2989 }
2990 kmem_free(muip, sizeof (mac_unicast_impl_t));
2991 i_mac_perim_exit(mip);
2992 return (0);
2993 }
2994 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_VNIC_PRIMARY;
2995
2996 if (mcip->mci_state_flags & MCIS_TAG_DISABLE)
2997 mcip->mci_state_flags &= ~MCIS_TAG_DISABLE;
2998
2999 if (mcip->mci_state_flags & MCIS_STRIP_DISABLE)
3000 mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE;
3001
3002 if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK)
3003 mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK;
3004
3005 kmem_free(muip, sizeof (mac_unicast_impl_t));
3006 i_mac_perim_exit(mip);
3007 return (0);
3008 }
3009
3010 ASSERT(muip != NULL);
3011
3012 /*
3013 * We are removing a passive client, we haven't setup the datapath
3014 * for this yet, so nothing much to do.
3015 */
3016 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
3017
3018 ASSERT((mcip->mci_flent->fe_flags & FE_MC_NO_DATAPATH) != 0);
3019 ASSERT(mcip->mci_p_unicast_list == muip);
3020
3021 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
3022
3023 mcip->mci_p_unicast_list = NULL;
3024 mcip->mci_rx_p_fn = NULL;
3025 mcip->mci_rx_p_arg = NULL;
3026
3027 mcip->mci_state_flags &= ~MCIS_UNICAST_HW;
3028
3029 if (mcip->mci_state_flags & MCIS_TAG_DISABLE)
3030 mcip->mci_state_flags &= ~MCIS_TAG_DISABLE;
3031
3032 if (mcip->mci_state_flags & MCIS_STRIP_DISABLE)
3033 mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE;
3034
3035 if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK)
3036 mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK;
3037
3038 kmem_free(muip, sizeof (mac_unicast_impl_t));
3039 i_mac_perim_exit(mip);
3040 return (0);
3041 }
3042 /*
3043 * Remove the VID from the list of client's VIDs.
3044 */
3045 pre = mcip->mci_unicast_list;
3046 if (muip == pre) {
3047 mcip->mci_unicast_list = muip->mui_next;
3048 } else {
3049 while ((pre->mui_next != NULL) && (pre->mui_next != muip))
3050 pre = pre->mui_next;
3051 ASSERT(pre->mui_next == muip);
3052 rw_enter(&mcip->mci_rw_lock, RW_WRITER);
3053 pre->mui_next = muip->mui_next;
3054 rw_exit(&mcip->mci_rw_lock);
3055 }
3056
3057 if (!mac_client_single_rcvr(mcip)) {
3058 /*
3059 * This MAC client is shared by more than one unicast
3060 * addresses, so we will just remove the flent
3061 * corresponding to the address being removed. We don't invoke
3062 * mac_rx_classify_flow_rem() since the additional flow is
3063 * not associated with its own separate set of SRS and rings,
3064 * and these constructs are still needed for the remaining
3065 * flows.
3066 */
3067 flent = mac_client_get_flow(mcip, muip);
3068 ASSERT(flent != NULL);
3069
3070 /*
3071 * The first one is disappearing, need to make sure
3072 * we replace it with another from the list of
3073 * shared clients.
3074 */
3075 if (flent == mcip->mci_flent)
3076 flent = mac_client_swap_mciflent(mcip);
3077 mac_client_remove_flow_from_list(mcip, flent);
3078 mac_flow_remove(mip->mi_flow_tab, flent, B_FALSE);
3079 mac_flow_wait(flent, FLOW_DRIVER_UPCALL);
3080
3081 /*
3082 * The multicast groups that were added by the client so
3083 * far must be removed from the brodcast domain corresponding
3084 * to the VID being removed.
3085 */
3086 mac_client_bcast_refresh(mcip, mac_client_update_mcast,
3087 (void *)flent, B_FALSE);
3088
3089 if (mip->mi_type->mt_brdcst_addr != NULL) {
3090 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr,
3091 muip->mui_vid);
3092 }
3093
3094 FLOW_FINAL_REFRELE(flent);
3095 ASSERT(!(mcip->mci_state_flags & MCIS_EXCLUSIVE));
3096 /*
3097 * Enable fastpath if this is a VNIC or a VLAN.
3098 */
3099 if (mcip->mci_state_flags & MCIS_IS_VNIC)
3100 mac_fastpath_enable((mac_handle_t)mip);
3101 mac_stop((mac_handle_t)mip);
3102 i_mac_perim_exit(mip);
3103 return (0);
3104 }
3105
3106 mui_vid = muip->mui_vid;
3107 mac_client_datapath_teardown(mch, muip, flent);
3108
3109 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) && mui_vid == 0) {
3110 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PRIMARY;
3111 } else {
3112 i_mac_perim_exit(mip);
3113 return (0);
3114 }
3115
3116 /*
3117 * If we are removing the primary, check if we have a passive primary
3118 * client that we need to activate now.
3119 */
3120 mcip = mac_get_passive_primary_client(mip);
3121 if (mcip != NULL) {
3122 mac_resource_props_t *mrp;
3123 mac_unicast_impl_t *muip;
3124
3125 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
3126 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3127
3128 /*
3129 * Apply the property cached in the mac_impl_t to the
3130 * primary mac client.
3131 */
3132 mac_get_resources((mac_handle_t)mip, mrp);
3133 (void) mac_client_set_resources(mch, mrp);
3134 ASSERT(mcip->mci_p_unicast_list != NULL);
3135 muip = mcip->mci_p_unicast_list;
3136 mcip->mci_p_unicast_list = NULL;
3137 if (mac_client_datapath_setup(mcip, VLAN_ID_NONE,
3138 mip->mi_addr, mrp, B_TRUE, muip) == 0) {
3139 if (mcip->mci_rx_p_fn != NULL) {
3140 mac_rx_set(mch, mcip->mci_rx_p_fn,
3141 mcip->mci_rx_p_arg);
3142 mcip->mci_rx_p_fn = NULL;
3143 mcip->mci_rx_p_arg = NULL;
3144 }
3145 } else {
3146 kmem_free(muip, sizeof (mac_unicast_impl_t));
3147 }
3148 kmem_free(mrp, sizeof (*mrp));
3149 }
3150 i_mac_perim_exit(mip);
3151 return (0);
3152 }
3153
3154 /*
3155 * Multicast add function invoked by MAC clients.
3156 */
3157 int
mac_multicast_add(mac_client_handle_t mch,const uint8_t * addr)3158 mac_multicast_add(mac_client_handle_t mch, const uint8_t *addr)
3159 {
3160 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3161 mac_impl_t *mip = mcip->mci_mip;
3162 flow_entry_t *flent = mcip->mci_flent_list;
3163 flow_entry_t *prev_fe = NULL;
3164 uint16_t vid;
3165 int err = 0;
3166
3167 /* Verify the address is a valid multicast address */
3168 if ((err = mip->mi_type->mt_ops.mtops_multicst_verify(addr,
3169 mip->mi_pdata)) != 0)
3170 return (err);
3171
3172 i_mac_perim_enter(mip);
3173 while (flent != NULL) {
3174 vid = i_mac_flow_vid(flent);
3175
3176 err = mac_bcast_add((mac_client_impl_t *)mch, addr, vid,
3177 MAC_ADDRTYPE_MULTICAST);
3178 if (err != 0)
3179 break;
3180 prev_fe = flent;
3181 flent = flent->fe_client_next;
3182 }
3183
3184 /*
3185 * If we failed adding, then undo all, rather than partial
3186 * success.
3187 */
3188 if (flent != NULL && prev_fe != NULL) {
3189 flent = mcip->mci_flent_list;
3190 while (flent != prev_fe->fe_client_next) {
3191 vid = i_mac_flow_vid(flent);
3192 mac_bcast_delete((mac_client_impl_t *)mch, addr, vid);
3193 flent = flent->fe_client_next;
3194 }
3195 }
3196 i_mac_perim_exit(mip);
3197 return (err);
3198 }
3199
3200 /*
3201 * Multicast delete function invoked by MAC clients.
3202 */
3203 void
mac_multicast_remove(mac_client_handle_t mch,const uint8_t * addr)3204 mac_multicast_remove(mac_client_handle_t mch, const uint8_t *addr)
3205 {
3206 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3207 mac_impl_t *mip = mcip->mci_mip;
3208 flow_entry_t *flent;
3209 uint16_t vid;
3210
3211 i_mac_perim_enter(mip);
3212 for (flent = mcip->mci_flent_list; flent != NULL;
3213 flent = flent->fe_client_next) {
3214 vid = i_mac_flow_vid(flent);
3215 mac_bcast_delete((mac_client_impl_t *)mch, addr, vid);
3216 }
3217 i_mac_perim_exit(mip);
3218 }
3219
3220 /*
3221 * When a MAC client desires to capture packets on an interface,
3222 * it registers a promiscuous call back with mac_promisc_add().
3223 * There are three types of promiscuous callbacks:
3224 *
3225 * * MAC_CLIENT_PROMISC_ALL
3226 * Captures all packets sent and received by the MAC client,
3227 * the physical interface, as well as all other MAC clients
3228 * defined on top of the same MAC.
3229 *
3230 * * MAC_CLIENT_PROMISC_FILTERED
3231 * Captures all packets sent and received by the MAC client,
3232 * plus all multicast traffic sent and received by the phyisical
3233 * interface and the other MAC clients.
3234 *
3235 * * MAC_CLIENT_PROMISC_MULTI
3236 * Captures all broadcast and multicast packets sent and
3237 * received by the MAC clients as well as the physical interface.
3238 *
3239 * In all cases, the underlying MAC is put in promiscuous mode.
3240 */
3241 int
mac_promisc_add(mac_client_handle_t mch,mac_client_promisc_type_t type,mac_rx_t fn,void * arg,mac_promisc_handle_t * mphp,uint16_t flags)3242 mac_promisc_add(mac_client_handle_t mch, mac_client_promisc_type_t type,
3243 mac_rx_t fn, void *arg, mac_promisc_handle_t *mphp, uint16_t flags)
3244 {
3245 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3246 mac_impl_t *mip = mcip->mci_mip;
3247 mac_promisc_impl_t *mpip;
3248 mac_cb_info_t *mcbi;
3249 int rc;
3250
3251 i_mac_perim_enter(mip);
3252
3253 if ((rc = mac_start((mac_handle_t)mip)) != 0) {
3254 i_mac_perim_exit(mip);
3255 return (rc);
3256 }
3257
3258 if ((mcip->mci_state_flags & MCIS_IS_VNIC) &&
3259 type == MAC_CLIENT_PROMISC_ALL &&
3260 (mcip->mci_protect_flags & MPT_FLAG_PROMISC_FILTERED)) {
3261 /*
3262 * The function is being invoked by the upper MAC client
3263 * of a VNIC. The VNIC should only see the traffic
3264 * it is entitled to.
3265 */
3266 type = MAC_CLIENT_PROMISC_FILTERED;
3267 }
3268
3269
3270 /*
3271 * Turn on promiscuous mode for the underlying NIC.
3272 * This is needed even for filtered callbacks which
3273 * expect to receive all multicast traffic on the wire.
3274 *
3275 * Physical promiscuous mode should not be turned on if
3276 * MAC_PROMISC_FLAGS_NO_PHYS is set.
3277 */
3278 if ((flags & MAC_PROMISC_FLAGS_NO_PHYS) == 0) {
3279 if ((rc = i_mac_promisc_set(mip, B_TRUE)) != 0) {
3280 mac_stop((mac_handle_t)mip);
3281 i_mac_perim_exit(mip);
3282 return (rc);
3283 }
3284 }
3285
3286 mpip = kmem_cache_alloc(mac_promisc_impl_cache, KM_SLEEP);
3287
3288 mpip->mpi_type = type;
3289 mpip->mpi_fn = fn;
3290 mpip->mpi_arg = arg;
3291 mpip->mpi_mcip = mcip;
3292 mpip->mpi_no_tx_loop = ((flags & MAC_PROMISC_FLAGS_NO_TX_LOOP) != 0);
3293 mpip->mpi_no_phys = ((flags & MAC_PROMISC_FLAGS_NO_PHYS) != 0);
3294 mpip->mpi_strip_vlan_tag =
3295 ((flags & MAC_PROMISC_FLAGS_VLAN_TAG_STRIP) != 0);
3296 mpip->mpi_no_copy = ((flags & MAC_PROMISC_FLAGS_NO_COPY) != 0);
3297
3298 mcbi = &mip->mi_promisc_cb_info;
3299 mutex_enter(mcbi->mcbi_lockp);
3300
3301 mac_callback_add(&mip->mi_promisc_cb_info, &mcip->mci_promisc_list,
3302 &mpip->mpi_mci_link);
3303 mac_callback_add(&mip->mi_promisc_cb_info, &mip->mi_promisc_list,
3304 &mpip->mpi_mi_link);
3305
3306 mutex_exit(mcbi->mcbi_lockp);
3307
3308 *mphp = (mac_promisc_handle_t)mpip;
3309
3310 if (mcip->mci_state_flags & MCIS_IS_VNIC) {
3311 mac_impl_t *umip = mcip->mci_upper_mip;
3312
3313 ASSERT(umip != NULL);
3314 mac_vnic_secondary_update(umip);
3315 }
3316
3317 i_mac_perim_exit(mip);
3318
3319 return (0);
3320 }
3321
3322 /*
3323 * Remove a multicast address previously aded through mac_promisc_add().
3324 */
3325 void
mac_promisc_remove(mac_promisc_handle_t mph)3326 mac_promisc_remove(mac_promisc_handle_t mph)
3327 {
3328 mac_promisc_impl_t *mpip = (mac_promisc_impl_t *)mph;
3329 mac_client_impl_t *mcip = mpip->mpi_mcip;
3330 mac_impl_t *mip = mcip->mci_mip;
3331 mac_cb_info_t *mcbi;
3332 int rv;
3333
3334 i_mac_perim_enter(mip);
3335
3336 /*
3337 * Even if the device can't be reset into normal mode, we still
3338 * need to clear the client promisc callbacks. The client may want
3339 * to close the mac end point and we can't have stale callbacks.
3340 */
3341 if (!(mpip->mpi_no_phys)) {
3342 if ((rv = i_mac_promisc_set(mip, B_FALSE)) != 0) {
3343 cmn_err(CE_WARN, "%s: failed to switch OFF promiscuous"
3344 " mode because of error 0x%x", mip->mi_name, rv);
3345 }
3346 }
3347 mcbi = &mip->mi_promisc_cb_info;
3348 mutex_enter(mcbi->mcbi_lockp);
3349 if (mac_callback_remove(mcbi, &mip->mi_promisc_list,
3350 &mpip->mpi_mi_link)) {
3351 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info,
3352 &mcip->mci_promisc_list, &mpip->mpi_mci_link));
3353 kmem_cache_free(mac_promisc_impl_cache, mpip);
3354 } else {
3355 mac_callback_remove_wait(&mip->mi_promisc_cb_info);
3356 }
3357
3358 if (mcip->mci_state_flags & MCIS_IS_VNIC) {
3359 mac_impl_t *umip = mcip->mci_upper_mip;
3360
3361 ASSERT(umip != NULL);
3362 mac_vnic_secondary_update(umip);
3363 }
3364
3365 mutex_exit(mcbi->mcbi_lockp);
3366 mac_stop((mac_handle_t)mip);
3367
3368 i_mac_perim_exit(mip);
3369 }
3370
3371 /*
3372 * Reference count the number of active Tx threads. MCI_TX_QUIESCE indicates
3373 * that a control operation wants to quiesce the Tx data flow in which case
3374 * we return an error. Holding any of the per cpu locks ensures that the
3375 * mci_tx_flag won't change.
3376 *
3377 * 'CPU' must be accessed just once and used to compute the index into the
3378 * percpu array, and that index must be used for the entire duration of the
3379 * packet send operation. Note that the thread may be preempted and run on
3380 * another cpu any time and so we can't use 'CPU' more than once for the
3381 * operation.
3382 */
3383 #define MAC_TX_TRY_HOLD(mcip, mytx, error) \
3384 { \
3385 (error) = 0; \
3386 (mytx) = &(mcip)->mci_tx_pcpu[CPU->cpu_seqid & mac_tx_percpu_cnt]; \
3387 mutex_enter(&(mytx)->pcpu_tx_lock); \
3388 if (!((mcip)->mci_tx_flag & MCI_TX_QUIESCE)) { \
3389 (mytx)->pcpu_tx_refcnt++; \
3390 } else { \
3391 (error) = -1; \
3392 } \
3393 mutex_exit(&(mytx)->pcpu_tx_lock); \
3394 }
3395
3396 /*
3397 * Release the reference. If needed, signal any control operation waiting
3398 * for Tx quiescence. The wait and signal are always done using the
3399 * mci_tx_pcpu[0]'s lock
3400 */
3401 #define MAC_TX_RELE(mcip, mytx) { \
3402 mutex_enter(&(mytx)->pcpu_tx_lock); \
3403 if (--(mytx)->pcpu_tx_refcnt == 0 && \
3404 (mcip)->mci_tx_flag & MCI_TX_QUIESCE) { \
3405 mutex_exit(&(mytx)->pcpu_tx_lock); \
3406 mutex_enter(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock); \
3407 cv_signal(&(mcip)->mci_tx_cv); \
3408 mutex_exit(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock); \
3409 } else { \
3410 mutex_exit(&(mytx)->pcpu_tx_lock); \
3411 } \
3412 }
3413
3414 /*
3415 * Send function invoked by MAC clients.
3416 */
3417 mac_tx_cookie_t
mac_tx(mac_client_handle_t mch,mblk_t * mp_chain,uintptr_t hint,uint16_t flag,mblk_t ** ret_mp)3418 mac_tx(mac_client_handle_t mch, mblk_t *mp_chain, uintptr_t hint,
3419 uint16_t flag, mblk_t **ret_mp)
3420 {
3421 mac_tx_cookie_t cookie = NULL;
3422 int error;
3423 mac_tx_percpu_t *mytx;
3424 mac_soft_ring_set_t *srs;
3425 flow_entry_t *flent;
3426 boolean_t is_subflow = B_FALSE;
3427 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3428 mac_impl_t *mip = mcip->mci_mip;
3429 mac_srs_tx_t *srs_tx;
3430
3431 /*
3432 * Check whether the active Tx threads count is bumped already.
3433 */
3434 if (!(flag & MAC_TX_NO_HOLD)) {
3435 MAC_TX_TRY_HOLD(mcip, mytx, error);
3436 if (error != 0) {
3437 freemsgchain(mp_chain);
3438 return (NULL);
3439 }
3440 }
3441
3442 /*
3443 * If mac protection is enabled, only the permissible packets will be
3444 * returned by mac_protect_check().
3445 */
3446 if ((mcip->mci_flent->
3447 fe_resource_props.mrp_mask & MRP_PROTECT) != 0 &&
3448 (mp_chain = mac_protect_check(mch, mp_chain)) == NULL)
3449 goto done;
3450
3451 if (mcip->mci_subflow_tab != NULL &&
3452 mcip->mci_subflow_tab->ft_flow_count > 0 &&
3453 mac_flow_lookup(mcip->mci_subflow_tab, mp_chain,
3454 FLOW_OUTBOUND, &flent) == 0) {
3455 /*
3456 * The main assumption here is that if in the event
3457 * we get a chain, all the packets will be classified
3458 * to the same Flow/SRS. If this changes for any
3459 * reason, the following logic should change as well.
3460 * I suppose the fanout_hint also assumes this .
3461 */
3462 ASSERT(flent != NULL);
3463 is_subflow = B_TRUE;
3464 } else {
3465 flent = mcip->mci_flent;
3466 }
3467
3468 srs = flent->fe_tx_srs;
3469 /*
3470 * This is to avoid panics with PF_PACKET that can call mac_tx()
3471 * against an interface that is not capable of sending. A rewrite
3472 * of the mac datapath is required to remove this limitation.
3473 */
3474 if (srs == NULL) {
3475 freemsgchain(mp_chain);
3476 goto done;
3477 }
3478
3479 srs_tx = &srs->srs_tx;
3480 if (srs_tx->st_mode == SRS_TX_DEFAULT &&
3481 (srs->srs_state & SRS_ENQUEUED) == 0 &&
3482 mip->mi_nactiveclients == 1 && mp_chain->b_next == NULL) {
3483 uint64_t obytes;
3484
3485 /*
3486 * Since dls always opens the underlying MAC, nclients equals
3487 * to 1 means that the only active client is dls itself acting
3488 * as a primary client of the MAC instance. Since dls will not
3489 * send tagged packets in that case, and dls is trusted to send
3490 * packets for its allowed VLAN(s), the VLAN tag insertion and
3491 * check is required only if nclients is greater than 1.
3492 */
3493 if (mip->mi_nclients > 1) {
3494 if (MAC_VID_CHECK_NEEDED(mcip)) {
3495 int err = 0;
3496
3497 MAC_VID_CHECK(mcip, mp_chain, err);
3498 if (err != 0) {
3499 freemsg(mp_chain);
3500 mcip->mci_misc_stat.mms_txerrors++;
3501 goto done;
3502 }
3503 }
3504 if (MAC_TAG_NEEDED(mcip)) {
3505 mp_chain = mac_add_vlan_tag(mp_chain, 0,
3506 mac_client_vid(mch));
3507 if (mp_chain == NULL) {
3508 mcip->mci_misc_stat.mms_txerrors++;
3509 goto done;
3510 }
3511 }
3512 }
3513
3514 obytes = (mp_chain->b_cont == NULL ? MBLKL(mp_chain) :
3515 msgdsize(mp_chain));
3516
3517 MAC_TX(mip, srs_tx->st_arg2, mp_chain, mcip);
3518 if (mp_chain == NULL) {
3519 cookie = NULL;
3520 SRS_TX_STAT_UPDATE(srs, opackets, 1);
3521 SRS_TX_STAT_UPDATE(srs, obytes, obytes);
3522 } else {
3523 mutex_enter(&srs->srs_lock);
3524 cookie = mac_tx_srs_no_desc(srs, mp_chain,
3525 flag, ret_mp);
3526 mutex_exit(&srs->srs_lock);
3527 }
3528 } else {
3529 cookie = srs_tx->st_func(srs, mp_chain, hint, flag, ret_mp);
3530 }
3531
3532 done:
3533 if (is_subflow)
3534 FLOW_REFRELE(flent);
3535
3536 if (!(flag & MAC_TX_NO_HOLD))
3537 MAC_TX_RELE(mcip, mytx);
3538
3539 return (cookie);
3540 }
3541
3542 /*
3543 * mac_tx_is_blocked
3544 *
3545 * Given a cookie, it returns if the ring identified by the cookie is
3546 * flow-controlled or not. If NULL is passed in place of a cookie,
3547 * then it finds out if any of the underlying rings belonging to the
3548 * SRS is flow controlled or not and returns that status.
3549 */
3550 /* ARGSUSED */
3551 boolean_t
mac_tx_is_flow_blocked(mac_client_handle_t mch,mac_tx_cookie_t cookie)3552 mac_tx_is_flow_blocked(mac_client_handle_t mch, mac_tx_cookie_t cookie)
3553 {
3554 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3555 mac_soft_ring_set_t *mac_srs;
3556 mac_soft_ring_t *sringp;
3557 boolean_t blocked = B_FALSE;
3558 mac_tx_percpu_t *mytx;
3559 int err;
3560 int i;
3561
3562 /*
3563 * Bump the reference count so that mac_srs won't be deleted.
3564 * If the client is currently quiesced and we failed to bump
3565 * the reference, return B_TRUE so that flow control stays
3566 * as enabled.
3567 *
3568 * Flow control will then be disabled once the client is no
3569 * longer quiesced.
3570 */
3571 MAC_TX_TRY_HOLD(mcip, mytx, err);
3572 if (err != 0)
3573 return (B_TRUE);
3574
3575 if ((mac_srs = MCIP_TX_SRS(mcip)) == NULL) {
3576 MAC_TX_RELE(mcip, mytx);
3577 return (B_FALSE);
3578 }
3579
3580 mutex_enter(&mac_srs->srs_lock);
3581 /*
3582 * Only in the case of TX_FANOUT and TX_AGGR, the underlying
3583 * softring (s_ring_state) will have the HIWAT set. This is
3584 * the multiple Tx ring flow control case. For all other
3585 * case, SRS (srs_state) will store the condition.
3586 */
3587 if (mac_srs->srs_tx.st_mode == SRS_TX_FANOUT ||
3588 mac_srs->srs_tx.st_mode == SRS_TX_AGGR) {
3589 if (cookie != NULL) {
3590 sringp = (mac_soft_ring_t *)cookie;
3591 mutex_enter(&sringp->s_ring_lock);
3592 if (sringp->s_ring_state & S_RING_TX_HIWAT)
3593 blocked = B_TRUE;
3594 mutex_exit(&sringp->s_ring_lock);
3595 } else {
3596 for (i = 0; i < mac_srs->srs_tx_ring_count; i++) {
3597 sringp = mac_srs->srs_tx_soft_rings[i];
3598 mutex_enter(&sringp->s_ring_lock);
3599 if (sringp->s_ring_state & S_RING_TX_HIWAT) {
3600 blocked = B_TRUE;
3601 mutex_exit(&sringp->s_ring_lock);
3602 break;
3603 }
3604 mutex_exit(&sringp->s_ring_lock);
3605 }
3606 }
3607 } else {
3608 blocked = (mac_srs->srs_state & SRS_TX_HIWAT);
3609 }
3610 mutex_exit(&mac_srs->srs_lock);
3611 MAC_TX_RELE(mcip, mytx);
3612 return (blocked);
3613 }
3614
3615 /*
3616 * Check if the MAC client is the primary MAC client.
3617 */
3618 boolean_t
mac_is_primary_client(mac_client_impl_t * mcip)3619 mac_is_primary_client(mac_client_impl_t *mcip)
3620 {
3621 return (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY);
3622 }
3623
3624 void
mac_ioctl(mac_handle_t mh,queue_t * wq,mblk_t * bp)3625 mac_ioctl(mac_handle_t mh, queue_t *wq, mblk_t *bp)
3626 {
3627 mac_impl_t *mip = (mac_impl_t *)mh;
3628 int cmd = ((struct iocblk *)bp->b_rptr)->ioc_cmd;
3629
3630 if ((cmd == ND_GET && (mip->mi_callbacks->mc_callbacks & MC_GETPROP)) ||
3631 (cmd == ND_SET && (mip->mi_callbacks->mc_callbacks & MC_SETPROP))) {
3632 /*
3633 * If ndd props were registered, call them.
3634 * Note that ndd ioctls are Obsolete
3635 */
3636 mac_ndd_ioctl(mip, wq, bp);
3637 return;
3638 }
3639
3640 /*
3641 * Call the driver to handle the ioctl. The driver may not support
3642 * any ioctls, in which case we reply with a NAK on its behalf.
3643 */
3644 if (mip->mi_callbacks->mc_callbacks & MC_IOCTL)
3645 mip->mi_ioctl(mip->mi_driver, wq, bp);
3646 else
3647 miocnak(wq, bp, 0, EINVAL);
3648 }
3649
3650 /*
3651 * Return the link state of the specified MAC instance.
3652 */
3653 link_state_t
mac_link_get(mac_handle_t mh)3654 mac_link_get(mac_handle_t mh)
3655 {
3656 return (((mac_impl_t *)mh)->mi_linkstate);
3657 }
3658
3659 /*
3660 * Add a mac client specified notification callback. Please see the comments
3661 * above mac_callback_add() for general information about mac callback
3662 * addition/deletion in the presence of mac callback list walkers
3663 */
3664 mac_notify_handle_t
mac_notify_add(mac_handle_t mh,mac_notify_t notify_fn,void * arg)3665 mac_notify_add(mac_handle_t mh, mac_notify_t notify_fn, void *arg)
3666 {
3667 mac_impl_t *mip = (mac_impl_t *)mh;
3668 mac_notify_cb_t *mncb;
3669 mac_cb_info_t *mcbi;
3670
3671 /*
3672 * Allocate a notify callback structure, fill in the details and
3673 * use the mac callback list manipulation functions to chain into
3674 * the list of callbacks.
3675 */
3676 mncb = kmem_zalloc(sizeof (mac_notify_cb_t), KM_SLEEP);
3677 mncb->mncb_fn = notify_fn;
3678 mncb->mncb_arg = arg;
3679 mncb->mncb_mip = mip;
3680 mncb->mncb_link.mcb_objp = mncb;
3681 mncb->mncb_link.mcb_objsize = sizeof (mac_notify_cb_t);
3682 mncb->mncb_link.mcb_flags = MCB_NOTIFY_CB_T;
3683
3684 mcbi = &mip->mi_notify_cb_info;
3685
3686 i_mac_perim_enter(mip);
3687 mutex_enter(mcbi->mcbi_lockp);
3688
3689 mac_callback_add(&mip->mi_notify_cb_info, &mip->mi_notify_cb_list,
3690 &mncb->mncb_link);
3691
3692 mutex_exit(mcbi->mcbi_lockp);
3693 i_mac_perim_exit(mip);
3694 return ((mac_notify_handle_t)mncb);
3695 }
3696
3697 void
mac_notify_remove_wait(mac_handle_t mh)3698 mac_notify_remove_wait(mac_handle_t mh)
3699 {
3700 mac_impl_t *mip = (mac_impl_t *)mh;
3701 mac_cb_info_t *mcbi = &mip->mi_notify_cb_info;
3702
3703 mutex_enter(mcbi->mcbi_lockp);
3704 mac_callback_remove_wait(&mip->mi_notify_cb_info);
3705 mutex_exit(mcbi->mcbi_lockp);
3706 }
3707
3708 /*
3709 * Remove a mac client specified notification callback
3710 */
3711 int
mac_notify_remove(mac_notify_handle_t mnh,boolean_t wait)3712 mac_notify_remove(mac_notify_handle_t mnh, boolean_t wait)
3713 {
3714 mac_notify_cb_t *mncb = (mac_notify_cb_t *)mnh;
3715 mac_impl_t *mip = mncb->mncb_mip;
3716 mac_cb_info_t *mcbi;
3717 int err = 0;
3718
3719 mcbi = &mip->mi_notify_cb_info;
3720
3721 i_mac_perim_enter(mip);
3722 mutex_enter(mcbi->mcbi_lockp);
3723
3724 ASSERT(mncb->mncb_link.mcb_objp == mncb);
3725 /*
3726 * If there aren't any list walkers, the remove would succeed
3727 * inline, else we wait for the deferred remove to complete
3728 */
3729 if (mac_callback_remove(&mip->mi_notify_cb_info,
3730 &mip->mi_notify_cb_list, &mncb->mncb_link)) {
3731 kmem_free(mncb, sizeof (mac_notify_cb_t));
3732 } else {
3733 err = EBUSY;
3734 }
3735
3736 mutex_exit(mcbi->mcbi_lockp);
3737 i_mac_perim_exit(mip);
3738
3739 /*
3740 * If we failed to remove the notification callback and "wait" is set
3741 * to be B_TRUE, wait for the callback to finish after we exit the
3742 * mac perimeter.
3743 */
3744 if (err != 0 && wait) {
3745 mac_notify_remove_wait((mac_handle_t)mip);
3746 return (0);
3747 }
3748
3749 return (err);
3750 }
3751
3752 /*
3753 * Associate resource management callbacks with the specified MAC
3754 * clients.
3755 */
3756
3757 void
mac_resource_set_common(mac_client_handle_t mch,mac_resource_add_t add,mac_resource_remove_t remove,mac_resource_quiesce_t quiesce,mac_resource_restart_t restart,mac_resource_bind_t bind,void * arg)3758 mac_resource_set_common(mac_client_handle_t mch, mac_resource_add_t add,
3759 mac_resource_remove_t remove, mac_resource_quiesce_t quiesce,
3760 mac_resource_restart_t restart, mac_resource_bind_t bind,
3761 void *arg)
3762 {
3763 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3764
3765 mcip->mci_resource_add = add;
3766 mcip->mci_resource_remove = remove;
3767 mcip->mci_resource_quiesce = quiesce;
3768 mcip->mci_resource_restart = restart;
3769 mcip->mci_resource_bind = bind;
3770 mcip->mci_resource_arg = arg;
3771 }
3772
3773 void
mac_resource_set(mac_client_handle_t mch,mac_resource_add_t add,void * arg)3774 mac_resource_set(mac_client_handle_t mch, mac_resource_add_t add, void *arg)
3775 {
3776 /* update the 'resource_add' callback */
3777 mac_resource_set_common(mch, add, NULL, NULL, NULL, NULL, arg);
3778 }
3779
3780 /*
3781 * Sets up the client resources and enable the polling interface over all the
3782 * SRS's and the soft rings of the client
3783 */
3784 void
mac_client_poll_enable(mac_client_handle_t mch)3785 mac_client_poll_enable(mac_client_handle_t mch)
3786 {
3787 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3788 mac_soft_ring_set_t *mac_srs;
3789 flow_entry_t *flent;
3790 int i;
3791
3792 flent = mcip->mci_flent;
3793 ASSERT(flent != NULL);
3794
3795 mcip->mci_state_flags |= MCIS_CLIENT_POLL_CAPABLE;
3796 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
3797 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
3798 ASSERT(mac_srs->srs_mcip == mcip);
3799 mac_srs_client_poll_enable(mcip, mac_srs);
3800 }
3801 }
3802
3803 /*
3804 * Tears down the client resources and disable the polling interface over all
3805 * the SRS's and the soft rings of the client
3806 */
3807 void
mac_client_poll_disable(mac_client_handle_t mch)3808 mac_client_poll_disable(mac_client_handle_t mch)
3809 {
3810 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3811 mac_soft_ring_set_t *mac_srs;
3812 flow_entry_t *flent;
3813 int i;
3814
3815 flent = mcip->mci_flent;
3816 ASSERT(flent != NULL);
3817
3818 mcip->mci_state_flags &= ~MCIS_CLIENT_POLL_CAPABLE;
3819 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
3820 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
3821 ASSERT(mac_srs->srs_mcip == mcip);
3822 mac_srs_client_poll_disable(mcip, mac_srs);
3823 }
3824 }
3825
3826 /*
3827 * Associate the CPUs specified by the given property with a MAC client.
3828 */
3829 int
mac_cpu_set(mac_client_handle_t mch,mac_resource_props_t * mrp)3830 mac_cpu_set(mac_client_handle_t mch, mac_resource_props_t *mrp)
3831 {
3832 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3833 mac_impl_t *mip = mcip->mci_mip;
3834 int err = 0;
3835
3836 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3837
3838 if ((err = mac_validate_props(mcip->mci_state_flags & MCIS_IS_VNIC ?
3839 mcip->mci_upper_mip : mip, mrp)) != 0) {
3840 return (err);
3841 }
3842 if (MCIP_DATAPATH_SETUP(mcip))
3843 mac_flow_modify(mip->mi_flow_tab, mcip->mci_flent, mrp);
3844
3845 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE);
3846 return (0);
3847 }
3848
3849 /*
3850 * Apply the specified properties to the specified MAC client.
3851 */
3852 int
mac_client_set_resources(mac_client_handle_t mch,mac_resource_props_t * mrp)3853 mac_client_set_resources(mac_client_handle_t mch, mac_resource_props_t *mrp)
3854 {
3855 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3856 mac_impl_t *mip = mcip->mci_mip;
3857 int err = 0;
3858
3859 i_mac_perim_enter(mip);
3860
3861 if ((mrp->mrp_mask & MRP_MAXBW) || (mrp->mrp_mask & MRP_PRIORITY)) {
3862 err = mac_resource_ctl_set(mch, mrp);
3863 if (err != 0)
3864 goto done;
3865 }
3866
3867 if (mrp->mrp_mask & (MRP_CPUS|MRP_POOL)) {
3868 err = mac_cpu_set(mch, mrp);
3869 if (err != 0)
3870 goto done;
3871 }
3872
3873 if (mrp->mrp_mask & MRP_PROTECT) {
3874 err = mac_protect_set(mch, mrp);
3875 if (err != 0)
3876 goto done;
3877 }
3878
3879 if ((mrp->mrp_mask & MRP_RX_RINGS) || (mrp->mrp_mask & MRP_TX_RINGS))
3880 err = mac_resource_ctl_set(mch, mrp);
3881
3882 done:
3883 i_mac_perim_exit(mip);
3884 return (err);
3885 }
3886
3887 /*
3888 * Return the properties currently associated with the specified MAC client.
3889 */
3890 void
mac_client_get_resources(mac_client_handle_t mch,mac_resource_props_t * mrp)3891 mac_client_get_resources(mac_client_handle_t mch, mac_resource_props_t *mrp)
3892 {
3893 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3894 mac_resource_props_t *mcip_mrp = MCIP_RESOURCE_PROPS(mcip);
3895
3896 bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t));
3897 }
3898
3899 /*
3900 * Return the effective properties currently associated with the specified
3901 * MAC client.
3902 */
3903 void
mac_client_get_effective_resources(mac_client_handle_t mch,mac_resource_props_t * mrp)3904 mac_client_get_effective_resources(mac_client_handle_t mch,
3905 mac_resource_props_t *mrp)
3906 {
3907 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3908 mac_resource_props_t *mcip_mrp = MCIP_EFFECTIVE_PROPS(mcip);
3909
3910 bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t));
3911 }
3912
3913 /*
3914 * Pass a copy of the specified packet to the promiscuous callbacks
3915 * of the specified MAC.
3916 *
3917 * If sender is NULL, the function is being invoked for a packet chain
3918 * received from the wire. If sender is non-NULL, it points to
3919 * the MAC client from which the packet is being sent.
3920 *
3921 * The packets are distributed to the promiscuous callbacks as follows:
3922 *
3923 * - all packets are sent to the MAC_CLIENT_PROMISC_ALL callbacks
3924 * - all broadcast and multicast packets are sent to the
3925 * MAC_CLIENT_PROMISC_FILTER and MAC_CLIENT_PROMISC_MULTI.
3926 *
3927 * The unicast packets of MAC_CLIENT_PROMISC_FILTER callbacks are dispatched
3928 * after classification by mac_rx_deliver().
3929 */
3930
3931 static void
mac_promisc_dispatch_one(mac_promisc_impl_t * mpip,mblk_t * mp,boolean_t loopback)3932 mac_promisc_dispatch_one(mac_promisc_impl_t *mpip, mblk_t *mp,
3933 boolean_t loopback)
3934 {
3935 mblk_t *mp_copy, *mp_next;
3936
3937 if (!mpip->mpi_no_copy || mpip->mpi_strip_vlan_tag) {
3938 mp_copy = copymsg(mp);
3939 if (mp_copy == NULL)
3940 return;
3941
3942 if (mpip->mpi_strip_vlan_tag) {
3943 mp_copy = mac_strip_vlan_tag_chain(mp_copy);
3944 if (mp_copy == NULL)
3945 return;
3946 }
3947 mp_next = NULL;
3948 } else {
3949 mp_copy = mp;
3950 mp_next = mp->b_next;
3951 }
3952 mp_copy->b_next = NULL;
3953
3954 mpip->mpi_fn(mpip->mpi_arg, NULL, mp_copy, loopback);
3955 if (mp_copy == mp)
3956 mp->b_next = mp_next;
3957 }
3958
3959 /*
3960 * Return the VID of a packet. Zero if the packet is not tagged.
3961 */
3962 static uint16_t
mac_ether_vid(mblk_t * mp)3963 mac_ether_vid(mblk_t *mp)
3964 {
3965 struct ether_header *eth = (struct ether_header *)mp->b_rptr;
3966
3967 if (ntohs(eth->ether_type) == ETHERTYPE_VLAN) {
3968 struct ether_vlan_header *t_evhp =
3969 (struct ether_vlan_header *)mp->b_rptr;
3970 return (VLAN_ID(ntohs(t_evhp->ether_tci)));
3971 }
3972
3973 return (0);
3974 }
3975
3976 /*
3977 * Return whether the specified packet contains a multicast or broadcast
3978 * destination MAC address.
3979 */
3980 static boolean_t
mac_is_mcast(mac_impl_t * mip,mblk_t * mp)3981 mac_is_mcast(mac_impl_t *mip, mblk_t *mp)
3982 {
3983 mac_header_info_t hdr_info;
3984
3985 if (mac_header_info((mac_handle_t)mip, mp, &hdr_info) != 0)
3986 return (B_FALSE);
3987 return ((hdr_info.mhi_dsttype == MAC_ADDRTYPE_BROADCAST) ||
3988 (hdr_info.mhi_dsttype == MAC_ADDRTYPE_MULTICAST));
3989 }
3990
3991 /*
3992 * Send a copy of an mblk chain to the MAC clients of the specified MAC.
3993 * "sender" points to the sender MAC client for outbound packets, and
3994 * is set to NULL for inbound packets.
3995 */
3996 void
mac_promisc_dispatch(mac_impl_t * mip,mblk_t * mp_chain,mac_client_impl_t * sender)3997 mac_promisc_dispatch(mac_impl_t *mip, mblk_t *mp_chain,
3998 mac_client_impl_t *sender)
3999 {
4000 mac_promisc_impl_t *mpip;
4001 mac_cb_t *mcb;
4002 mblk_t *mp;
4003 boolean_t is_mcast, is_sender;
4004
4005 MAC_PROMISC_WALKER_INC(mip);
4006 for (mp = mp_chain; mp != NULL; mp = mp->b_next) {
4007 is_mcast = mac_is_mcast(mip, mp);
4008 /* send packet to interested callbacks */
4009 for (mcb = mip->mi_promisc_list; mcb != NULL;
4010 mcb = mcb->mcb_nextp) {
4011 mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
4012 is_sender = (mpip->mpi_mcip == sender);
4013
4014 if (is_sender && mpip->mpi_no_tx_loop)
4015 /*
4016 * The sender doesn't want to receive
4017 * copies of the packets it sends.
4018 */
4019 continue;
4020
4021 /* this client doesn't need any packets (bridge) */
4022 if (mpip->mpi_fn == NULL)
4023 continue;
4024
4025 /*
4026 * For an ethernet MAC, don't displatch a multicast
4027 * packet to a non-PROMISC_ALL callbacks unless the VID
4028 * of the packet matches the VID of the client.
4029 */
4030 if (is_mcast &&
4031 mpip->mpi_type != MAC_CLIENT_PROMISC_ALL &&
4032 !mac_client_check_flow_vid(mpip->mpi_mcip,
4033 mac_ether_vid(mp)))
4034 continue;
4035
4036 if (is_sender ||
4037 mpip->mpi_type == MAC_CLIENT_PROMISC_ALL ||
4038 is_mcast)
4039 mac_promisc_dispatch_one(mpip, mp, is_sender);
4040 }
4041 }
4042 MAC_PROMISC_WALKER_DCR(mip);
4043 }
4044
4045 void
mac_promisc_client_dispatch(mac_client_impl_t * mcip,mblk_t * mp_chain)4046 mac_promisc_client_dispatch(mac_client_impl_t *mcip, mblk_t *mp_chain)
4047 {
4048 mac_impl_t *mip = mcip->mci_mip;
4049 mac_promisc_impl_t *mpip;
4050 boolean_t is_mcast;
4051 mblk_t *mp;
4052 mac_cb_t *mcb;
4053
4054 /*
4055 * The unicast packets for the MAC client still
4056 * need to be delivered to the MAC_CLIENT_PROMISC_FILTERED
4057 * promiscuous callbacks. The broadcast and multicast
4058 * packets were delivered from mac_rx().
4059 */
4060 MAC_PROMISC_WALKER_INC(mip);
4061 for (mp = mp_chain; mp != NULL; mp = mp->b_next) {
4062 is_mcast = mac_is_mcast(mip, mp);
4063 for (mcb = mcip->mci_promisc_list; mcb != NULL;
4064 mcb = mcb->mcb_nextp) {
4065 mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
4066 if (mpip->mpi_type == MAC_CLIENT_PROMISC_FILTERED &&
4067 !is_mcast) {
4068 mac_promisc_dispatch_one(mpip, mp, B_FALSE);
4069 }
4070 }
4071 }
4072 MAC_PROMISC_WALKER_DCR(mip);
4073 }
4074
4075 /*
4076 * Return the margin value currently assigned to the specified MAC instance.
4077 */
4078 void
mac_margin_get(mac_handle_t mh,uint32_t * marginp)4079 mac_margin_get(mac_handle_t mh, uint32_t *marginp)
4080 {
4081 mac_impl_t *mip = (mac_impl_t *)mh;
4082
4083 rw_enter(&(mip->mi_rw_lock), RW_READER);
4084 *marginp = mip->mi_margin;
4085 rw_exit(&(mip->mi_rw_lock));
4086 }
4087
4088 /*
4089 * mac_info_get() is used for retrieving the mac_info when a DL_INFO_REQ is
4090 * issued before a DL_ATTACH_REQ. we walk the i_mac_impl_hash table and find
4091 * the first mac_impl_t with a matching driver name; then we copy its mac_info_t
4092 * to the caller. we do all this with i_mac_impl_lock held so the mac_impl_t
4093 * cannot disappear while we are accessing it.
4094 */
4095 typedef struct i_mac_info_state_s {
4096 const char *mi_name;
4097 mac_info_t *mi_infop;
4098 } i_mac_info_state_t;
4099
4100 /*ARGSUSED*/
4101 static uint_t
i_mac_info_walker(mod_hash_key_t key,mod_hash_val_t * val,void * arg)4102 i_mac_info_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
4103 {
4104 i_mac_info_state_t *statep = arg;
4105 mac_impl_t *mip = (mac_impl_t *)val;
4106
4107 if (mip->mi_state_flags & MIS_DISABLED)
4108 return (MH_WALK_CONTINUE);
4109
4110 if (strcmp(statep->mi_name,
4111 ddi_driver_name(mip->mi_dip)) != 0)
4112 return (MH_WALK_CONTINUE);
4113
4114 statep->mi_infop = &mip->mi_info;
4115 return (MH_WALK_TERMINATE);
4116 }
4117
4118 boolean_t
mac_info_get(const char * name,mac_info_t * minfop)4119 mac_info_get(const char *name, mac_info_t *minfop)
4120 {
4121 i_mac_info_state_t state;
4122
4123 rw_enter(&i_mac_impl_lock, RW_READER);
4124 state.mi_name = name;
4125 state.mi_infop = NULL;
4126 mod_hash_walk(i_mac_impl_hash, i_mac_info_walker, &state);
4127 if (state.mi_infop == NULL) {
4128 rw_exit(&i_mac_impl_lock);
4129 return (B_FALSE);
4130 }
4131 *minfop = *state.mi_infop;
4132 rw_exit(&i_mac_impl_lock);
4133 return (B_TRUE);
4134 }
4135
4136 /*
4137 * To get the capabilities that MAC layer cares about, such as rings, factory
4138 * mac address, vnic or not, it should directly invoke this function. If the
4139 * link is part of a bridge, then the only "capability" it has is the inability
4140 * to do zero copy.
4141 */
4142 boolean_t
i_mac_capab_get(mac_handle_t mh,mac_capab_t cap,void * cap_data)4143 i_mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data)
4144 {
4145 mac_impl_t *mip = (mac_impl_t *)mh;
4146
4147 if (mip->mi_bridge_link != NULL)
4148 return (cap == MAC_CAPAB_NO_ZCOPY);
4149 else if (mip->mi_callbacks->mc_callbacks & MC_GETCAPAB)
4150 return (mip->mi_getcapab(mip->mi_driver, cap, cap_data));
4151 else
4152 return (B_FALSE);
4153 }
4154
4155 /*
4156 * Capability query function. If number of active mac clients is greater than
4157 * 1, only limited capabilities can be advertised to the caller no matter the
4158 * driver has certain capability or not. Else, we query the driver to get the
4159 * capability.
4160 */
4161 boolean_t
mac_capab_get(mac_handle_t mh,mac_capab_t cap,void * cap_data)4162 mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data)
4163 {
4164 mac_impl_t *mip = (mac_impl_t *)mh;
4165
4166 /*
4167 * if mi_nactiveclients > 1, only MAC_CAPAB_LEGACY, MAC_CAPAB_HCKSUM,
4168 * MAC_CAPAB_NO_NATIVEVLAN and MAC_CAPAB_NO_ZCOPY can be advertised.
4169 */
4170 if (mip->mi_nactiveclients > 1) {
4171 switch (cap) {
4172 case MAC_CAPAB_NO_ZCOPY:
4173 return (B_TRUE);
4174 case MAC_CAPAB_LEGACY:
4175 case MAC_CAPAB_HCKSUM:
4176 case MAC_CAPAB_NO_NATIVEVLAN:
4177 break;
4178 default:
4179 return (B_FALSE);
4180 }
4181 }
4182
4183 /* else get capab from driver */
4184 return (i_mac_capab_get(mh, cap, cap_data));
4185 }
4186
4187 boolean_t
mac_sap_verify(mac_handle_t mh,uint32_t sap,uint32_t * bind_sap)4188 mac_sap_verify(mac_handle_t mh, uint32_t sap, uint32_t *bind_sap)
4189 {
4190 mac_impl_t *mip = (mac_impl_t *)mh;
4191
4192 return (mip->mi_type->mt_ops.mtops_sap_verify(sap, bind_sap,
4193 mip->mi_pdata));
4194 }
4195
4196 mblk_t *
mac_header(mac_handle_t mh,const uint8_t * daddr,uint32_t sap,mblk_t * payload,size_t extra_len)4197 mac_header(mac_handle_t mh, const uint8_t *daddr, uint32_t sap, mblk_t *payload,
4198 size_t extra_len)
4199 {
4200 mac_impl_t *mip = (mac_impl_t *)mh;
4201 const uint8_t *hdr_daddr;
4202
4203 /*
4204 * If the MAC is point-to-point with a fixed destination address, then
4205 * we must always use that destination in the MAC header.
4206 */
4207 hdr_daddr = (mip->mi_dstaddr_set ? mip->mi_dstaddr : daddr);
4208 return (mip->mi_type->mt_ops.mtops_header(mip->mi_addr, hdr_daddr, sap,
4209 mip->mi_pdata, payload, extra_len));
4210 }
4211
4212 int
mac_header_info(mac_handle_t mh,mblk_t * mp,mac_header_info_t * mhip)4213 mac_header_info(mac_handle_t mh, mblk_t *mp, mac_header_info_t *mhip)
4214 {
4215 mac_impl_t *mip = (mac_impl_t *)mh;
4216
4217 return (mip->mi_type->mt_ops.mtops_header_info(mp, mip->mi_pdata,
4218 mhip));
4219 }
4220
4221 int
mac_vlan_header_info(mac_handle_t mh,mblk_t * mp,mac_header_info_t * mhip)4222 mac_vlan_header_info(mac_handle_t mh, mblk_t *mp, mac_header_info_t *mhip)
4223 {
4224 mac_impl_t *mip = (mac_impl_t *)mh;
4225 boolean_t is_ethernet = (mip->mi_info.mi_media == DL_ETHER);
4226 int err = 0;
4227
4228 /*
4229 * Packets should always be at least 16 bit aligned.
4230 */
4231 ASSERT(IS_P2ALIGNED(mp->b_rptr, sizeof (uint16_t)));
4232
4233 if ((err = mac_header_info(mh, mp, mhip)) != 0)
4234 return (err);
4235
4236 /*
4237 * If this is a VLAN-tagged Ethernet packet, then the SAP in the
4238 * mac_header_info_t as returned by mac_header_info() is
4239 * ETHERTYPE_VLAN. We need to grab the ethertype from the VLAN header.
4240 */
4241 if (is_ethernet && (mhip->mhi_bindsap == ETHERTYPE_VLAN)) {
4242 struct ether_vlan_header *evhp;
4243 uint16_t sap;
4244 mblk_t *tmp = NULL;
4245 size_t size;
4246
4247 size = sizeof (struct ether_vlan_header);
4248 if (MBLKL(mp) < size) {
4249 /*
4250 * Pullup the message in order to get the MAC header
4251 * infomation. Note that this is a read-only function,
4252 * we keep the input packet intact.
4253 */
4254 if ((tmp = msgpullup(mp, size)) == NULL)
4255 return (EINVAL);
4256
4257 mp = tmp;
4258 }
4259 evhp = (struct ether_vlan_header *)mp->b_rptr;
4260 sap = ntohs(evhp->ether_type);
4261 (void) mac_sap_verify(mh, sap, &mhip->mhi_bindsap);
4262 mhip->mhi_hdrsize = sizeof (struct ether_vlan_header);
4263 mhip->mhi_tci = ntohs(evhp->ether_tci);
4264 mhip->mhi_istagged = B_TRUE;
4265 freemsg(tmp);
4266
4267 if (VLAN_CFI(mhip->mhi_tci) != ETHER_CFI)
4268 return (EINVAL);
4269 } else {
4270 mhip->mhi_istagged = B_FALSE;
4271 mhip->mhi_tci = 0;
4272 }
4273
4274 return (0);
4275 }
4276
4277 mblk_t *
mac_header_cook(mac_handle_t mh,mblk_t * mp)4278 mac_header_cook(mac_handle_t mh, mblk_t *mp)
4279 {
4280 mac_impl_t *mip = (mac_impl_t *)mh;
4281
4282 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_COOK) {
4283 if (DB_REF(mp) > 1) {
4284 mblk_t *newmp = copymsg(mp);
4285 if (newmp == NULL)
4286 return (NULL);
4287 freemsg(mp);
4288 mp = newmp;
4289 }
4290 return (mip->mi_type->mt_ops.mtops_header_cook(mp,
4291 mip->mi_pdata));
4292 }
4293 return (mp);
4294 }
4295
4296 mblk_t *
mac_header_uncook(mac_handle_t mh,mblk_t * mp)4297 mac_header_uncook(mac_handle_t mh, mblk_t *mp)
4298 {
4299 mac_impl_t *mip = (mac_impl_t *)mh;
4300
4301 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_UNCOOK) {
4302 if (DB_REF(mp) > 1) {
4303 mblk_t *newmp = copymsg(mp);
4304 if (newmp == NULL)
4305 return (NULL);
4306 freemsg(mp);
4307 mp = newmp;
4308 }
4309 return (mip->mi_type->mt_ops.mtops_header_uncook(mp,
4310 mip->mi_pdata));
4311 }
4312 return (mp);
4313 }
4314
4315 uint_t
mac_addr_len(mac_handle_t mh)4316 mac_addr_len(mac_handle_t mh)
4317 {
4318 mac_impl_t *mip = (mac_impl_t *)mh;
4319
4320 return (mip->mi_type->mt_addr_length);
4321 }
4322
4323 /* True if a MAC is a VNIC */
4324 boolean_t
mac_is_vnic(mac_handle_t mh)4325 mac_is_vnic(mac_handle_t mh)
4326 {
4327 return (((mac_impl_t *)mh)->mi_state_flags & MIS_IS_VNIC);
4328 }
4329
4330 mac_handle_t
mac_get_lower_mac_handle(mac_handle_t mh)4331 mac_get_lower_mac_handle(mac_handle_t mh)
4332 {
4333 mac_impl_t *mip = (mac_impl_t *)mh;
4334
4335 ASSERT(mac_is_vnic(mh));
4336 return (((vnic_t *)mip->mi_driver)->vn_lower_mh);
4337 }
4338
4339 boolean_t
mac_is_vnic_primary(mac_handle_t mh)4340 mac_is_vnic_primary(mac_handle_t mh)
4341 {
4342 mac_impl_t *mip = (mac_impl_t *)mh;
4343
4344 ASSERT(mac_is_vnic(mh));
4345 return (((vnic_t *)mip->mi_driver)->vn_addr_type ==
4346 VNIC_MAC_ADDR_TYPE_PRIMARY);
4347 }
4348
4349 void
mac_update_resources(mac_resource_props_t * nmrp,mac_resource_props_t * cmrp,boolean_t is_user_flow)4350 mac_update_resources(mac_resource_props_t *nmrp, mac_resource_props_t *cmrp,
4351 boolean_t is_user_flow)
4352 {
4353 if (nmrp != NULL && cmrp != NULL) {
4354 if (nmrp->mrp_mask & MRP_PRIORITY) {
4355 if (nmrp->mrp_priority == MPL_RESET) {
4356 cmrp->mrp_mask &= ~MRP_PRIORITY;
4357 if (is_user_flow) {
4358 cmrp->mrp_priority =
4359 MPL_SUBFLOW_DEFAULT;
4360 } else {
4361 cmrp->mrp_priority = MPL_LINK_DEFAULT;
4362 }
4363 } else {
4364 cmrp->mrp_mask |= MRP_PRIORITY;
4365 cmrp->mrp_priority = nmrp->mrp_priority;
4366 }
4367 }
4368 if (nmrp->mrp_mask & MRP_MAXBW) {
4369 if (nmrp->mrp_maxbw == MRP_MAXBW_RESETVAL) {
4370 cmrp->mrp_mask &= ~MRP_MAXBW;
4371 cmrp->mrp_maxbw = 0;
4372 } else {
4373 cmrp->mrp_mask |= MRP_MAXBW;
4374 cmrp->mrp_maxbw = nmrp->mrp_maxbw;
4375 }
4376 }
4377 if (nmrp->mrp_mask & MRP_CPUS)
4378 MAC_COPY_CPUS(nmrp, cmrp);
4379
4380 if (nmrp->mrp_mask & MRP_POOL) {
4381 if (strlen(nmrp->mrp_pool) == 0) {
4382 cmrp->mrp_mask &= ~MRP_POOL;
4383 bzero(cmrp->mrp_pool, sizeof (cmrp->mrp_pool));
4384 } else {
4385 cmrp->mrp_mask |= MRP_POOL;
4386 (void) strncpy(cmrp->mrp_pool, nmrp->mrp_pool,
4387 sizeof (cmrp->mrp_pool));
4388 }
4389
4390 }
4391
4392 if (nmrp->mrp_mask & MRP_PROTECT)
4393 mac_protect_update(nmrp, cmrp);
4394
4395 /*
4396 * Update the rings specified.
4397 */
4398 if (nmrp->mrp_mask & MRP_RX_RINGS) {
4399 if (nmrp->mrp_mask & MRP_RINGS_RESET) {
4400 cmrp->mrp_mask &= ~MRP_RX_RINGS;
4401 if (cmrp->mrp_mask & MRP_RXRINGS_UNSPEC)
4402 cmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
4403 cmrp->mrp_nrxrings = 0;
4404 } else {
4405 cmrp->mrp_mask |= MRP_RX_RINGS;
4406 cmrp->mrp_nrxrings = nmrp->mrp_nrxrings;
4407 }
4408 }
4409 if (nmrp->mrp_mask & MRP_TX_RINGS) {
4410 if (nmrp->mrp_mask & MRP_RINGS_RESET) {
4411 cmrp->mrp_mask &= ~MRP_TX_RINGS;
4412 if (cmrp->mrp_mask & MRP_TXRINGS_UNSPEC)
4413 cmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
4414 cmrp->mrp_ntxrings = 0;
4415 } else {
4416 cmrp->mrp_mask |= MRP_TX_RINGS;
4417 cmrp->mrp_ntxrings = nmrp->mrp_ntxrings;
4418 }
4419 }
4420 if (nmrp->mrp_mask & MRP_RXRINGS_UNSPEC)
4421 cmrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
4422 else if (cmrp->mrp_mask & MRP_RXRINGS_UNSPEC)
4423 cmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
4424
4425 if (nmrp->mrp_mask & MRP_TXRINGS_UNSPEC)
4426 cmrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
4427 else if (cmrp->mrp_mask & MRP_TXRINGS_UNSPEC)
4428 cmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
4429 }
4430 }
4431
4432 /*
4433 * i_mac_set_resources:
4434 *
4435 * This routine associates properties with the primary MAC client of
4436 * the specified MAC instance.
4437 * - Cache the properties in mac_impl_t
4438 * - Apply the properties to the primary MAC client if exists
4439 */
4440 int
i_mac_set_resources(mac_handle_t mh,mac_resource_props_t * mrp)4441 i_mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp)
4442 {
4443 mac_impl_t *mip = (mac_impl_t *)mh;
4444 mac_client_impl_t *mcip;
4445 int err = 0;
4446 uint32_t resmask, newresmask;
4447 mac_resource_props_t *tmrp, *umrp;
4448
4449 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4450
4451 err = mac_validate_props(mip, mrp);
4452 if (err != 0)
4453 return (err);
4454
4455 umrp = kmem_zalloc(sizeof (*umrp), KM_SLEEP);
4456 bcopy(&mip->mi_resource_props, umrp, sizeof (*umrp));
4457 resmask = umrp->mrp_mask;
4458 mac_update_resources(mrp, umrp, B_FALSE);
4459 newresmask = umrp->mrp_mask;
4460
4461 if (resmask == 0 && newresmask != 0) {
4462 /*
4463 * Bandwidth, priority, cpu or pool link properties configured,
4464 * must disable fastpath.
4465 */
4466 if ((err = mac_fastpath_disable((mac_handle_t)mip)) != 0) {
4467 kmem_free(umrp, sizeof (*umrp));
4468 return (err);
4469 }
4470 }
4471
4472 /*
4473 * Since bind_cpu may be modified by mac_client_set_resources()
4474 * we use a copy of bind_cpu and finally cache bind_cpu in mip.
4475 * This allows us to cache only user edits in mip.
4476 */
4477 tmrp = kmem_zalloc(sizeof (*tmrp), KM_SLEEP);
4478 bcopy(mrp, tmrp, sizeof (*tmrp));
4479 mcip = mac_primary_client_handle(mip);
4480 if (mcip != NULL && (mcip->mci_state_flags & MCIS_IS_AGGR_PORT) == 0) {
4481 err = mac_client_set_resources((mac_client_handle_t)mcip, tmrp);
4482 } else if ((mrp->mrp_mask & MRP_RX_RINGS ||
4483 mrp->mrp_mask & MRP_TX_RINGS)) {
4484 mac_client_impl_t *vmcip;
4485
4486 /*
4487 * If the primary is not up, we need to check if there
4488 * are any VLANs on this primary. If there are then
4489 * we need to set this property on the VLANs since
4490 * VLANs follow the primary they are based on. Just
4491 * look for the first VLAN and change its properties,
4492 * all the other VLANs should be in the same group.
4493 */
4494 for (vmcip = mip->mi_clients_list; vmcip != NULL;
4495 vmcip = vmcip->mci_client_next) {
4496 if ((vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) &&
4497 mac_client_vid((mac_client_handle_t)vmcip) !=
4498 VLAN_ID_NONE) {
4499 break;
4500 }
4501 }
4502 if (vmcip != NULL) {
4503 mac_resource_props_t *omrp;
4504 mac_resource_props_t *vmrp;
4505
4506 omrp = kmem_zalloc(sizeof (*omrp), KM_SLEEP);
4507 bcopy(MCIP_RESOURCE_PROPS(vmcip), omrp, sizeof (*omrp));
4508 /*
4509 * We dont' call mac_update_resources since we
4510 * want to take only the ring properties and
4511 * not all the properties that may have changed.
4512 */
4513 vmrp = MCIP_RESOURCE_PROPS(vmcip);
4514 if (mrp->mrp_mask & MRP_RX_RINGS) {
4515 if (mrp->mrp_mask & MRP_RINGS_RESET) {
4516 vmrp->mrp_mask &= ~MRP_RX_RINGS;
4517 if (vmrp->mrp_mask &
4518 MRP_RXRINGS_UNSPEC) {
4519 vmrp->mrp_mask &=
4520 ~MRP_RXRINGS_UNSPEC;
4521 }
4522 vmrp->mrp_nrxrings = 0;
4523 } else {
4524 vmrp->mrp_mask |= MRP_RX_RINGS;
4525 vmrp->mrp_nrxrings = mrp->mrp_nrxrings;
4526 }
4527 }
4528 if (mrp->mrp_mask & MRP_TX_RINGS) {
4529 if (mrp->mrp_mask & MRP_RINGS_RESET) {
4530 vmrp->mrp_mask &= ~MRP_TX_RINGS;
4531 if (vmrp->mrp_mask &
4532 MRP_TXRINGS_UNSPEC) {
4533 vmrp->mrp_mask &=
4534 ~MRP_TXRINGS_UNSPEC;
4535 }
4536 vmrp->mrp_ntxrings = 0;
4537 } else {
4538 vmrp->mrp_mask |= MRP_TX_RINGS;
4539 vmrp->mrp_ntxrings = mrp->mrp_ntxrings;
4540 }
4541 }
4542 if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC)
4543 vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
4544
4545 if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC)
4546 vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
4547
4548 if ((err = mac_client_set_rings_prop(vmcip, mrp,
4549 omrp)) != 0) {
4550 bcopy(omrp, MCIP_RESOURCE_PROPS(vmcip),
4551 sizeof (*omrp));
4552 } else {
4553 mac_set_prim_vlan_rings(mip, vmrp);
4554 }
4555 kmem_free(omrp, sizeof (*omrp));
4556 }
4557 }
4558
4559 /* Only update the values if mac_client_set_resources succeeded */
4560 if (err == 0) {
4561 bcopy(umrp, &mip->mi_resource_props, sizeof (*umrp));
4562 /*
4563 * If bandwidth, priority or cpu link properties cleared,
4564 * renable fastpath.
4565 */
4566 if (resmask != 0 && newresmask == 0)
4567 mac_fastpath_enable((mac_handle_t)mip);
4568 } else if (resmask == 0 && newresmask != 0) {
4569 mac_fastpath_enable((mac_handle_t)mip);
4570 }
4571 kmem_free(tmrp, sizeof (*tmrp));
4572 kmem_free(umrp, sizeof (*umrp));
4573 return (err);
4574 }
4575
4576 int
mac_set_resources(mac_handle_t mh,mac_resource_props_t * mrp)4577 mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp)
4578 {
4579 int err;
4580
4581 i_mac_perim_enter((mac_impl_t *)mh);
4582 err = i_mac_set_resources(mh, mrp);
4583 i_mac_perim_exit((mac_impl_t *)mh);
4584 return (err);
4585 }
4586
4587 /*
4588 * Get the properties cached for the specified MAC instance.
4589 */
4590 void
mac_get_resources(mac_handle_t mh,mac_resource_props_t * mrp)4591 mac_get_resources(mac_handle_t mh, mac_resource_props_t *mrp)
4592 {
4593 mac_impl_t *mip = (mac_impl_t *)mh;
4594 mac_client_impl_t *mcip;
4595
4596 mcip = mac_primary_client_handle(mip);
4597 if (mcip != NULL) {
4598 mac_client_get_resources((mac_client_handle_t)mcip, mrp);
4599 return;
4600 }
4601 bcopy(&mip->mi_resource_props, mrp, sizeof (mac_resource_props_t));
4602 }
4603
4604 /*
4605 * Get the effective properties from the primary client of the
4606 * specified MAC instance.
4607 */
4608 void
mac_get_effective_resources(mac_handle_t mh,mac_resource_props_t * mrp)4609 mac_get_effective_resources(mac_handle_t mh, mac_resource_props_t *mrp)
4610 {
4611 mac_impl_t *mip = (mac_impl_t *)mh;
4612 mac_client_impl_t *mcip;
4613
4614 mcip = mac_primary_client_handle(mip);
4615 if (mcip != NULL) {
4616 mac_client_get_effective_resources((mac_client_handle_t)mcip,
4617 mrp);
4618 return;
4619 }
4620 bzero(mrp, sizeof (mac_resource_props_t));
4621 }
4622
4623 int
mac_set_pvid(mac_handle_t mh,uint16_t pvid)4624 mac_set_pvid(mac_handle_t mh, uint16_t pvid)
4625 {
4626 mac_impl_t *mip = (mac_impl_t *)mh;
4627 mac_client_impl_t *mcip;
4628 mac_unicast_impl_t *muip;
4629
4630 i_mac_perim_enter(mip);
4631 if (pvid != 0) {
4632 for (mcip = mip->mi_clients_list; mcip != NULL;
4633 mcip = mcip->mci_client_next) {
4634 for (muip = mcip->mci_unicast_list; muip != NULL;
4635 muip = muip->mui_next) {
4636 if (muip->mui_vid == pvid) {
4637 i_mac_perim_exit(mip);
4638 return (EBUSY);
4639 }
4640 }
4641 }
4642 }
4643 mip->mi_pvid = pvid;
4644 i_mac_perim_exit(mip);
4645 return (0);
4646 }
4647
4648 uint16_t
mac_get_pvid(mac_handle_t mh)4649 mac_get_pvid(mac_handle_t mh)
4650 {
4651 mac_impl_t *mip = (mac_impl_t *)mh;
4652
4653 return (mip->mi_pvid);
4654 }
4655
4656 uint32_t
mac_get_llimit(mac_handle_t mh)4657 mac_get_llimit(mac_handle_t mh)
4658 {
4659 mac_impl_t *mip = (mac_impl_t *)mh;
4660
4661 return (mip->mi_llimit);
4662 }
4663
4664 uint32_t
mac_get_ldecay(mac_handle_t mh)4665 mac_get_ldecay(mac_handle_t mh)
4666 {
4667 mac_impl_t *mip = (mac_impl_t *)mh;
4668
4669 return (mip->mi_ldecay);
4670 }
4671
4672 /*
4673 * Rename a mac client, its flow, and the kstat.
4674 */
4675 int
mac_rename_primary(mac_handle_t mh,const char * new_name)4676 mac_rename_primary(mac_handle_t mh, const char *new_name)
4677 {
4678 mac_impl_t *mip = (mac_impl_t *)mh;
4679 mac_client_impl_t *cur_clnt = NULL;
4680 flow_entry_t *fep;
4681
4682 i_mac_perim_enter(mip);
4683
4684 /*
4685 * VNICs: we need to change the sys flow name and
4686 * the associated flow kstat.
4687 */
4688 if (mip->mi_state_flags & MIS_IS_VNIC) {
4689 mac_client_impl_t *mcip = mac_vnic_lower(mip);
4690 ASSERT(new_name != NULL);
4691 mac_rename_flow_names(mcip, new_name);
4692 mac_stat_rename(mcip);
4693 goto done;
4694 }
4695 /*
4696 * This mac may itself be an aggr link, or it may have some client
4697 * which is an aggr port. For both cases, we need to change the
4698 * aggr port's mac client name, its flow name and the associated flow
4699 * kstat.
4700 */
4701 if (mip->mi_state_flags & MIS_IS_AGGR) {
4702 mac_capab_aggr_t aggr_cap;
4703 mac_rename_fn_t rename_fn;
4704 boolean_t ret;
4705
4706 ASSERT(new_name != NULL);
4707 ret = i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR,
4708 (void *)(&aggr_cap));
4709 ASSERT(ret == B_TRUE);
4710 rename_fn = aggr_cap.mca_rename_fn;
4711 rename_fn(new_name, mip->mi_driver);
4712 /*
4713 * The aggr's client name and kstat flow name will be
4714 * updated below, i.e. via mac_rename_flow_names.
4715 */
4716 }
4717
4718 for (cur_clnt = mip->mi_clients_list; cur_clnt != NULL;
4719 cur_clnt = cur_clnt->mci_client_next) {
4720 if (cur_clnt->mci_state_flags & MCIS_IS_AGGR_PORT) {
4721 if (new_name != NULL) {
4722 char *str_st = cur_clnt->mci_name;
4723 char *str_del = strchr(str_st, '-');
4724
4725 ASSERT(str_del != NULL);
4726 bzero(str_del + 1, MAXNAMELEN -
4727 (str_del - str_st + 1));
4728 bcopy(new_name, str_del + 1,
4729 strlen(new_name));
4730 }
4731 fep = cur_clnt->mci_flent;
4732 mac_rename_flow(fep, cur_clnt->mci_name);
4733 break;
4734 } else if (new_name != NULL &&
4735 cur_clnt->mci_state_flags & MCIS_USE_DATALINK_NAME) {
4736 mac_rename_flow_names(cur_clnt, new_name);
4737 break;
4738 }
4739 }
4740
4741 /* Recreate kstats associated with aggr pseudo rings */
4742 if (mip->mi_state_flags & MIS_IS_AGGR)
4743 mac_pseudo_ring_stat_rename(mip);
4744
4745 done:
4746 i_mac_perim_exit(mip);
4747 return (0);
4748 }
4749
4750 /*
4751 * Rename the MAC client's flow names
4752 */
4753 static void
mac_rename_flow_names(mac_client_impl_t * mcip,const char * new_name)4754 mac_rename_flow_names(mac_client_impl_t *mcip, const char *new_name)
4755 {
4756 flow_entry_t *flent;
4757 uint16_t vid;
4758 char flowname[MAXFLOWNAMELEN];
4759 mac_impl_t *mip = mcip->mci_mip;
4760
4761 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4762
4763 /*
4764 * Use mi_rw_lock to ensure that threads not in the mac perimeter
4765 * see a self-consistent value for mci_name
4766 */
4767 rw_enter(&mip->mi_rw_lock, RW_WRITER);
4768 (void) strlcpy(mcip->mci_name, new_name, sizeof (mcip->mci_name));
4769 rw_exit(&mip->mi_rw_lock);
4770
4771 mac_rename_flow(mcip->mci_flent, new_name);
4772
4773 if (mcip->mci_nflents == 1)
4774 return;
4775
4776 /*
4777 * We have to rename all the others too, no stats to destroy for
4778 * these.
4779 */
4780 for (flent = mcip->mci_flent_list; flent != NULL;
4781 flent = flent->fe_client_next) {
4782 if (flent != mcip->mci_flent) {
4783 vid = i_mac_flow_vid(flent);
4784 (void) sprintf(flowname, "%s%u", new_name, vid);
4785 mac_flow_set_name(flent, flowname);
4786 }
4787 }
4788 }
4789
4790
4791 /*
4792 * Add a flow to the MAC client's flow list - i.e list of MAC/VID tuples
4793 * defined for the specified MAC client.
4794 */
4795 static void
mac_client_add_to_flow_list(mac_client_impl_t * mcip,flow_entry_t * flent)4796 mac_client_add_to_flow_list(mac_client_impl_t *mcip, flow_entry_t *flent)
4797 {
4798 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
4799 /*
4800 * The promisc Rx data path walks the mci_flent_list. Protect by
4801 * using mi_rw_lock
4802 */
4803 rw_enter(&mcip->mci_rw_lock, RW_WRITER);
4804
4805 mcip->mci_vidcache = MCIP_VIDCACHE_INVALID;
4806
4807 /* Add it to the head */
4808 flent->fe_client_next = mcip->mci_flent_list;
4809 mcip->mci_flent_list = flent;
4810 mcip->mci_nflents++;
4811
4812 /*
4813 * Keep track of the number of non-zero VIDs addresses per MAC
4814 * client to avoid figuring it out in the data-path.
4815 */
4816 if (i_mac_flow_vid(flent) != VLAN_ID_NONE)
4817 mcip->mci_nvids++;
4818
4819 rw_exit(&mcip->mci_rw_lock);
4820 }
4821
4822 /*
4823 * Remove a flow entry from the MAC client's list.
4824 */
4825 static void
mac_client_remove_flow_from_list(mac_client_impl_t * mcip,flow_entry_t * flent)4826 mac_client_remove_flow_from_list(mac_client_impl_t *mcip, flow_entry_t *flent)
4827 {
4828 flow_entry_t *fe = mcip->mci_flent_list;
4829 flow_entry_t *prev_fe = NULL;
4830
4831 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
4832 /*
4833 * The promisc Rx data path walks the mci_flent_list. Protect by
4834 * using mci_rw_lock
4835 */
4836 rw_enter(&mcip->mci_rw_lock, RW_WRITER);
4837 mcip->mci_vidcache = MCIP_VIDCACHE_INVALID;
4838
4839 while ((fe != NULL) && (fe != flent)) {
4840 prev_fe = fe;
4841 fe = fe->fe_client_next;
4842 }
4843
4844 ASSERT(fe != NULL);
4845 if (prev_fe == NULL) {
4846 /* Deleting the first node */
4847 mcip->mci_flent_list = fe->fe_client_next;
4848 } else {
4849 prev_fe->fe_client_next = fe->fe_client_next;
4850 }
4851 mcip->mci_nflents--;
4852
4853 if (i_mac_flow_vid(flent) != VLAN_ID_NONE)
4854 mcip->mci_nvids--;
4855
4856 rw_exit(&mcip->mci_rw_lock);
4857 }
4858
4859 /*
4860 * Check if the given VID belongs to this MAC client.
4861 */
4862 boolean_t
mac_client_check_flow_vid(mac_client_impl_t * mcip,uint16_t vid)4863 mac_client_check_flow_vid(mac_client_impl_t *mcip, uint16_t vid)
4864 {
4865 flow_entry_t *flent;
4866 uint16_t mci_vid;
4867 uint32_t cache = mcip->mci_vidcache;
4868
4869 /*
4870 * In hopes of not having to touch the mci_rw_lock, check to see if
4871 * this vid matches our cached result.
4872 */
4873 if (MCIP_VIDCACHE_ISVALID(cache) && MCIP_VIDCACHE_VID(cache) == vid)
4874 return (MCIP_VIDCACHE_BOOL(cache) ? B_TRUE : B_FALSE);
4875
4876 /* The mci_flent_list is protected by mci_rw_lock */
4877 rw_enter(&mcip->mci_rw_lock, RW_WRITER);
4878 for (flent = mcip->mci_flent_list; flent != NULL;
4879 flent = flent->fe_client_next) {
4880 mci_vid = i_mac_flow_vid(flent);
4881 if (vid == mci_vid) {
4882 mcip->mci_vidcache = MCIP_VIDCACHE_CACHE(vid, B_TRUE);
4883 rw_exit(&mcip->mci_rw_lock);
4884 return (B_TRUE);
4885 }
4886 }
4887
4888 mcip->mci_vidcache = MCIP_VIDCACHE_CACHE(vid, B_FALSE);
4889 rw_exit(&mcip->mci_rw_lock);
4890 return (B_FALSE);
4891 }
4892
4893 /*
4894 * Get the flow entry for the specified <MAC addr, VID> tuple.
4895 */
4896 static flow_entry_t *
mac_client_get_flow(mac_client_impl_t * mcip,mac_unicast_impl_t * muip)4897 mac_client_get_flow(mac_client_impl_t *mcip, mac_unicast_impl_t *muip)
4898 {
4899 mac_address_t *map = mcip->mci_unicast;
4900 flow_entry_t *flent;
4901 uint16_t vid;
4902 flow_desc_t flow_desc;
4903
4904 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
4905
4906 mac_flow_get_desc(mcip->mci_flent, &flow_desc);
4907 if (bcmp(flow_desc.fd_dst_mac, map->ma_addr, map->ma_len) != 0)
4908 return (NULL);
4909
4910 for (flent = mcip->mci_flent_list; flent != NULL;
4911 flent = flent->fe_client_next) {
4912 vid = i_mac_flow_vid(flent);
4913 if (vid == muip->mui_vid) {
4914 return (flent);
4915 }
4916 }
4917
4918 return (NULL);
4919 }
4920
4921 /*
4922 * Since mci_flent has the SRSs, when we want to remove it, we replace
4923 * the flow_desc_t in mci_flent with that of an existing flent and then
4924 * remove that flent instead of mci_flent.
4925 */
4926 static flow_entry_t *
mac_client_swap_mciflent(mac_client_impl_t * mcip)4927 mac_client_swap_mciflent(mac_client_impl_t *mcip)
4928 {
4929 flow_entry_t *flent = mcip->mci_flent;
4930 flow_tab_t *ft = flent->fe_flow_tab;
4931 flow_entry_t *flent1;
4932 flow_desc_t fl_desc;
4933 char fl_name[MAXFLOWNAMELEN];
4934 int err;
4935
4936 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
4937 ASSERT(mcip->mci_nflents > 1);
4938
4939 /* get the next flent following the primary flent */
4940 flent1 = mcip->mci_flent_list->fe_client_next;
4941 ASSERT(flent1 != NULL && flent1->fe_flow_tab == ft);
4942
4943 /*
4944 * Remove the flent from the flow table before updating the
4945 * flow descriptor as the hash depends on the flow descriptor.
4946 * This also helps incoming packet classification avoid having
4947 * to grab fe_lock. Access to fe_flow_desc of a flent not in the
4948 * flow table is done under the fe_lock so that log or stat functions
4949 * see a self-consistent fe_flow_desc. The name and desc are specific
4950 * to a flow, the rest are shared by all the clients, including
4951 * resource control etc.
4952 */
4953 mac_flow_remove(ft, flent, B_TRUE);
4954 mac_flow_remove(ft, flent1, B_TRUE);
4955
4956 bcopy(&flent->fe_flow_desc, &fl_desc, sizeof (flow_desc_t));
4957 bcopy(flent->fe_flow_name, fl_name, MAXFLOWNAMELEN);
4958
4959 /* update the primary flow entry */
4960 mutex_enter(&flent->fe_lock);
4961 bcopy(&flent1->fe_flow_desc, &flent->fe_flow_desc,
4962 sizeof (flow_desc_t));
4963 bcopy(&flent1->fe_flow_name, &flent->fe_flow_name, MAXFLOWNAMELEN);
4964 mutex_exit(&flent->fe_lock);
4965
4966 /* update the flow entry that is to be freed */
4967 mutex_enter(&flent1->fe_lock);
4968 bcopy(&fl_desc, &flent1->fe_flow_desc, sizeof (flow_desc_t));
4969 bcopy(fl_name, &flent1->fe_flow_name, MAXFLOWNAMELEN);
4970 mutex_exit(&flent1->fe_lock);
4971
4972 /* now reinsert the flow entries in the table */
4973 err = mac_flow_add(ft, flent);
4974 ASSERT(err == 0);
4975
4976 err = mac_flow_add(ft, flent1);
4977 ASSERT(err == 0);
4978
4979 return (flent1);
4980 }
4981
4982 /*
4983 * Return whether there is only one flow entry associated with this
4984 * MAC client.
4985 */
4986 static boolean_t
mac_client_single_rcvr(mac_client_impl_t * mcip)4987 mac_client_single_rcvr(mac_client_impl_t *mcip)
4988 {
4989 return (mcip->mci_nflents == 1);
4990 }
4991
4992 int
mac_validate_props(mac_impl_t * mip,mac_resource_props_t * mrp)4993 mac_validate_props(mac_impl_t *mip, mac_resource_props_t *mrp)
4994 {
4995 boolean_t reset;
4996 uint32_t rings_needed;
4997 uint32_t rings_avail;
4998 mac_group_type_t gtype;
4999 mac_resource_props_t *mip_mrp;
5000
5001 if (mrp == NULL)
5002 return (0);
5003
5004 if (mrp->mrp_mask & MRP_PRIORITY) {
5005 mac_priority_level_t pri = mrp->mrp_priority;
5006
5007 if (pri < MPL_LOW || pri > MPL_RESET)
5008 return (EINVAL);
5009 }
5010
5011 if (mrp->mrp_mask & MRP_MAXBW) {
5012 uint64_t maxbw = mrp->mrp_maxbw;
5013
5014 if (maxbw < MRP_MAXBW_MINVAL && maxbw != 0)
5015 return (EINVAL);
5016 }
5017 if (mrp->mrp_mask & MRP_CPUS) {
5018 int i, j;
5019 mac_cpu_mode_t fanout;
5020
5021 if (mrp->mrp_ncpus > ncpus)
5022 return (EINVAL);
5023
5024 for (i = 0; i < mrp->mrp_ncpus; i++) {
5025 for (j = 0; j < mrp->mrp_ncpus; j++) {
5026 if (i != j &&
5027 mrp->mrp_cpu[i] == mrp->mrp_cpu[j]) {
5028 return (EINVAL);
5029 }
5030 }
5031 }
5032
5033 for (i = 0; i < mrp->mrp_ncpus; i++) {
5034 cpu_t *cp;
5035 int rv;
5036
5037 mutex_enter(&cpu_lock);
5038 cp = cpu_get(mrp->mrp_cpu[i]);
5039 if (cp != NULL)
5040 rv = cpu_is_online(cp);
5041 else
5042 rv = 0;
5043 mutex_exit(&cpu_lock);
5044 if (rv == 0)
5045 return (EINVAL);
5046 }
5047
5048 fanout = mrp->mrp_fanout_mode;
5049 if (fanout < 0 || fanout > MCM_CPUS)
5050 return (EINVAL);
5051 }
5052
5053 if (mrp->mrp_mask & MRP_PROTECT) {
5054 int err = mac_protect_validate(mrp);
5055 if (err != 0)
5056 return (err);
5057 }
5058
5059 if (!(mrp->mrp_mask & MRP_RX_RINGS) &&
5060 !(mrp->mrp_mask & MRP_TX_RINGS)) {
5061 return (0);
5062 }
5063
5064 /*
5065 * mip will be null when we come from mac_flow_create or
5066 * mac_link_flow_modify. In the latter case it is a user flow,
5067 * for which we don't support rings. In the former we would
5068 * have validated the props beforehand (i_mac_unicast_add ->
5069 * mac_client_set_resources -> validate for the primary and
5070 * vnic_dev_create -> mac_client_set_resources -> validate for
5071 * a vnic.
5072 */
5073 if (mip == NULL)
5074 return (0);
5075
5076 /*
5077 * We don't support setting rings property for a VNIC that is using a
5078 * primary address (VLAN)
5079 */
5080 if ((mip->mi_state_flags & MIS_IS_VNIC) &&
5081 mac_is_vnic_primary((mac_handle_t)mip)) {
5082 return (ENOTSUP);
5083 }
5084
5085 mip_mrp = &mip->mi_resource_props;
5086 /*
5087 * The rings property should be validated against the NICs
5088 * resources
5089 */
5090 if (mip->mi_state_flags & MIS_IS_VNIC)
5091 mip = (mac_impl_t *)mac_get_lower_mac_handle((mac_handle_t)mip);
5092
5093 reset = mrp->mrp_mask & MRP_RINGS_RESET;
5094 /*
5095 * If groups are not supported, return error.
5096 */
5097 if (((mrp->mrp_mask & MRP_RX_RINGS) && mip->mi_rx_groups == NULL) ||
5098 ((mrp->mrp_mask & MRP_TX_RINGS) && mip->mi_tx_groups == NULL)) {
5099 return (EINVAL);
5100 }
5101 /*
5102 * If we are just resetting, there is no validation needed.
5103 */
5104 if (reset)
5105 return (0);
5106
5107 if (mrp->mrp_mask & MRP_RX_RINGS) {
5108 rings_needed = mrp->mrp_nrxrings;
5109 /*
5110 * We just want to check if the number of additional
5111 * rings requested is available.
5112 */
5113 if (mip_mrp->mrp_mask & MRP_RX_RINGS) {
5114 if (mrp->mrp_nrxrings > mip_mrp->mrp_nrxrings)
5115 /* Just check for the additional rings */
5116 rings_needed -= mip_mrp->mrp_nrxrings;
5117 else
5118 /* We are not asking for additional rings */
5119 rings_needed = 0;
5120 }
5121 rings_avail = mip->mi_rxrings_avail;
5122 gtype = mip->mi_rx_group_type;
5123 } else {
5124 rings_needed = mrp->mrp_ntxrings;
5125 /* Similarly for the TX rings */
5126 if (mip_mrp->mrp_mask & MRP_TX_RINGS) {
5127 if (mrp->mrp_ntxrings > mip_mrp->mrp_ntxrings)
5128 /* Just check for the additional rings */
5129 rings_needed -= mip_mrp->mrp_ntxrings;
5130 else
5131 /* We are not asking for additional rings */
5132 rings_needed = 0;
5133 }
5134 rings_avail = mip->mi_txrings_avail;
5135 gtype = mip->mi_tx_group_type;
5136 }
5137
5138 /* Error if the group is dynamic .. */
5139 if (gtype == MAC_GROUP_TYPE_DYNAMIC) {
5140 /*
5141 * .. and rings specified are more than available.
5142 */
5143 if (rings_needed > rings_avail)
5144 return (EINVAL);
5145 } else {
5146 /*
5147 * OR group is static and we have specified some rings.
5148 */
5149 if (rings_needed > 0)
5150 return (EINVAL);
5151 }
5152 return (0);
5153 }
5154
5155 /*
5156 * Send a MAC_NOTE_LINK notification to all the MAC clients whenever the
5157 * underlying physical link is down. This is to allow MAC clients to
5158 * communicate with other clients.
5159 */
5160 void
mac_virtual_link_update(mac_impl_t * mip)5161 mac_virtual_link_update(mac_impl_t *mip)
5162 {
5163 if (mip->mi_linkstate != LINK_STATE_UP)
5164 i_mac_notify(mip, MAC_NOTE_LINK);
5165 }
5166
5167 /*
5168 * For clients that have a pass-thru MAC, e.g. VNIC, we set the VNIC's
5169 * mac handle in the client.
5170 */
5171 void
mac_set_upper_mac(mac_client_handle_t mch,mac_handle_t mh,mac_resource_props_t * mrp)5172 mac_set_upper_mac(mac_client_handle_t mch, mac_handle_t mh,
5173 mac_resource_props_t *mrp)
5174 {
5175 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
5176 mac_impl_t *mip = (mac_impl_t *)mh;
5177
5178 mcip->mci_upper_mip = mip;
5179 /* If there are any properties, copy it over too */
5180 if (mrp != NULL) {
5181 bcopy(mrp, &mip->mi_resource_props,
5182 sizeof (mac_resource_props_t));
5183 }
5184 }
5185
5186 /*
5187 * Mark the mac as being used exclusively by the single mac client that is
5188 * doing some control operation on this mac. No further opens of this mac
5189 * will be allowed until this client calls mac_unmark_exclusive. The mac
5190 * client calling this function must already be in the mac perimeter
5191 */
5192 int
mac_mark_exclusive(mac_handle_t mh)5193 mac_mark_exclusive(mac_handle_t mh)
5194 {
5195 mac_impl_t *mip = (mac_impl_t *)mh;
5196
5197 ASSERT(MAC_PERIM_HELD(mh));
5198 /*
5199 * Look up its entry in the global hash table.
5200 */
5201 rw_enter(&i_mac_impl_lock, RW_WRITER);
5202 if (mip->mi_state_flags & MIS_DISABLED) {
5203 rw_exit(&i_mac_impl_lock);
5204 return (ENOENT);
5205 }
5206
5207 /*
5208 * A reference to mac is held even if the link is not plumbed.
5209 * In i_dls_link_create() we open the MAC interface and hold the
5210 * reference. There is an additional reference for the mac_open
5211 * done in acquiring the mac perimeter
5212 */
5213 if (mip->mi_ref != 2) {
5214 rw_exit(&i_mac_impl_lock);
5215 return (EBUSY);
5216 }
5217
5218 ASSERT(!(mip->mi_state_flags & MIS_EXCLUSIVE_HELD));
5219 mip->mi_state_flags |= MIS_EXCLUSIVE_HELD;
5220 rw_exit(&i_mac_impl_lock);
5221 return (0);
5222 }
5223
5224 void
mac_unmark_exclusive(mac_handle_t mh)5225 mac_unmark_exclusive(mac_handle_t mh)
5226 {
5227 mac_impl_t *mip = (mac_impl_t *)mh;
5228
5229 ASSERT(MAC_PERIM_HELD(mh));
5230
5231 rw_enter(&i_mac_impl_lock, RW_WRITER);
5232 /* 1 for the creation and another for the perimeter */
5233 ASSERT(mip->mi_ref == 2 && (mip->mi_state_flags & MIS_EXCLUSIVE_HELD));
5234 mip->mi_state_flags &= ~MIS_EXCLUSIVE_HELD;
5235 rw_exit(&i_mac_impl_lock);
5236 }
5237
5238 /*
5239 * Set the MTU for the specified MAC.
5240 */
5241 int
mac_set_mtu(mac_handle_t mh,uint_t new_mtu,uint_t * old_mtu_arg)5242 mac_set_mtu(mac_handle_t mh, uint_t new_mtu, uint_t *old_mtu_arg)
5243 {
5244 mac_impl_t *mip = (mac_impl_t *)mh;
5245 uint_t old_mtu;
5246 int rv = 0;
5247
5248 i_mac_perim_enter(mip);
5249
5250 if (!(mip->mi_callbacks->mc_callbacks & (MC_SETPROP|MC_GETPROP))) {
5251 rv = ENOTSUP;
5252 goto bail;
5253 }
5254
5255 old_mtu = mip->mi_sdu_max;
5256
5257 if (new_mtu == 0 || new_mtu < mip->mi_sdu_min) {
5258 rv = EINVAL;
5259 goto bail;
5260 }
5261
5262 rw_enter(&mip->mi_rw_lock, RW_READER);
5263 if (mip->mi_mtrp != NULL && new_mtu < mip->mi_mtrp->mtr_mtu) {
5264 rv = EBUSY;
5265 rw_exit(&mip->mi_rw_lock);
5266 goto bail;
5267 }
5268 rw_exit(&mip->mi_rw_lock);
5269
5270 if (old_mtu != new_mtu) {
5271 rv = mip->mi_callbacks->mc_setprop(mip->mi_driver,
5272 "mtu", MAC_PROP_MTU, sizeof (uint_t), &new_mtu);
5273 if (rv != 0)
5274 goto bail;
5275 rv = mac_maxsdu_update(mh, new_mtu);
5276 ASSERT(rv == 0);
5277 }
5278
5279 bail:
5280 i_mac_perim_exit(mip);
5281
5282 if (rv == 0 && old_mtu_arg != NULL)
5283 *old_mtu_arg = old_mtu;
5284 return (rv);
5285 }
5286
5287 /*
5288 * Return the RX h/w information for the group indexed by grp_num.
5289 */
5290 void
mac_get_hwrxgrp_info(mac_handle_t mh,int grp_index,uint_t * grp_num,uint_t * n_rings,uint_t * rings,uint_t * type,uint_t * n_clnts,char * clnts_name)5291 mac_get_hwrxgrp_info(mac_handle_t mh, int grp_index, uint_t *grp_num,
5292 uint_t *n_rings, uint_t *rings, uint_t *type, uint_t *n_clnts,
5293 char *clnts_name)
5294 {
5295 mac_impl_t *mip = (mac_impl_t *)mh;
5296 mac_grp_client_t *mcip;
5297 uint_t i = 0, index = 0;
5298 mac_ring_t *ring;
5299
5300 /* Revisit when we implement fully dynamic group allocation */
5301 ASSERT(grp_index >= 0 && grp_index < mip->mi_rx_group_count);
5302
5303 rw_enter(&mip->mi_rw_lock, RW_READER);
5304 *grp_num = mip->mi_rx_groups[grp_index].mrg_index;
5305 *type = mip->mi_rx_groups[grp_index].mrg_type;
5306 *n_rings = mip->mi_rx_groups[grp_index].mrg_cur_count;
5307 ring = mip->mi_rx_groups[grp_index].mrg_rings;
5308 for (index = 0; index < mip->mi_rx_groups[grp_index].mrg_cur_count;
5309 index++) {
5310 rings[index] = ring->mr_index;
5311 ring = ring->mr_next;
5312 }
5313 /* Assuming the 1st is the default group */
5314 index = 0;
5315 if (grp_index == 0) {
5316 (void) strlcpy(clnts_name, "<default,mcast>,",
5317 MAXCLIENTNAMELEN);
5318 index += strlen("<default,mcast>,");
5319 }
5320 for (mcip = mip->mi_rx_groups[grp_index].mrg_clients; mcip != NULL;
5321 mcip = mcip->mgc_next) {
5322 int name_len = strlen(mcip->mgc_client->mci_name);
5323
5324 /*
5325 * MAXCLIENTNAMELEN is the buffer size reserved for client
5326 * names.
5327 * XXXX Formating the client name string needs to be moved
5328 * to user land when fixing the size of dhi_clnts in
5329 * dld_hwgrpinfo_t. We should use n_clients * client_name for
5330 * dhi_clntsin instead of MAXCLIENTNAMELEN
5331 */
5332 if (index + name_len >= MAXCLIENTNAMELEN) {
5333 index = MAXCLIENTNAMELEN;
5334 break;
5335 }
5336 bcopy(mcip->mgc_client->mci_name, &(clnts_name[index]),
5337 name_len);
5338 index += name_len;
5339 clnts_name[index++] = ',';
5340 i++;
5341 }
5342
5343 /* Get rid of the last , */
5344 if (index > 0)
5345 clnts_name[index - 1] = '\0';
5346 *n_clnts = i;
5347 rw_exit(&mip->mi_rw_lock);
5348 }
5349
5350 /*
5351 * Return the TX h/w information for the group indexed by grp_num.
5352 */
5353 void
mac_get_hwtxgrp_info(mac_handle_t mh,int grp_index,uint_t * grp_num,uint_t * n_rings,uint_t * rings,uint_t * type,uint_t * n_clnts,char * clnts_name)5354 mac_get_hwtxgrp_info(mac_handle_t mh, int grp_index, uint_t *grp_num,
5355 uint_t *n_rings, uint_t *rings, uint_t *type, uint_t *n_clnts,
5356 char *clnts_name)
5357 {
5358 mac_impl_t *mip = (mac_impl_t *)mh;
5359 mac_grp_client_t *mcip;
5360 uint_t i = 0, index = 0;
5361 mac_ring_t *ring;
5362
5363 /* Revisit when we implement fully dynamic group allocation */
5364 ASSERT(grp_index >= 0 && grp_index <= mip->mi_tx_group_count);
5365
5366 rw_enter(&mip->mi_rw_lock, RW_READER);
5367 *grp_num = mip->mi_tx_groups[grp_index].mrg_index > 0 ?
5368 mip->mi_tx_groups[grp_index].mrg_index : grp_index;
5369 *type = mip->mi_tx_groups[grp_index].mrg_type;
5370 *n_rings = mip->mi_tx_groups[grp_index].mrg_cur_count;
5371 ring = mip->mi_tx_groups[grp_index].mrg_rings;
5372 for (index = 0; index < mip->mi_tx_groups[grp_index].mrg_cur_count;
5373 index++) {
5374 rings[index] = ring->mr_index;
5375 ring = ring->mr_next;
5376 }
5377 index = 0;
5378 /* Default group has an index of -1 */
5379 if (mip->mi_tx_groups[grp_index].mrg_index < 0) {
5380 (void) strlcpy(clnts_name, "<default>,",
5381 MAXCLIENTNAMELEN);
5382 index += strlen("<default>,");
5383 }
5384 for (mcip = mip->mi_tx_groups[grp_index].mrg_clients; mcip != NULL;
5385 mcip = mcip->mgc_next) {
5386 int name_len = strlen(mcip->mgc_client->mci_name);
5387
5388 /*
5389 * MAXCLIENTNAMELEN is the buffer size reserved for client
5390 * names.
5391 * XXXX Formating the client name string needs to be moved
5392 * to user land when fixing the size of dhi_clnts in
5393 * dld_hwgrpinfo_t. We should use n_clients * client_name for
5394 * dhi_clntsin instead of MAXCLIENTNAMELEN
5395 */
5396 if (index + name_len >= MAXCLIENTNAMELEN) {
5397 index = MAXCLIENTNAMELEN;
5398 break;
5399 }
5400 bcopy(mcip->mgc_client->mci_name, &(clnts_name[index]),
5401 name_len);
5402 index += name_len;
5403 clnts_name[index++] = ',';
5404 i++;
5405 }
5406
5407 /* Get rid of the last , */
5408 if (index > 0)
5409 clnts_name[index - 1] = '\0';
5410 *n_clnts = i;
5411 rw_exit(&mip->mi_rw_lock);
5412 }
5413
5414 /*
5415 * Return the group count for RX or TX.
5416 */
5417 uint_t
mac_hwgrp_num(mac_handle_t mh,int type)5418 mac_hwgrp_num(mac_handle_t mh, int type)
5419 {
5420 mac_impl_t *mip = (mac_impl_t *)mh;
5421
5422 /*
5423 * Return the Rx and Tx group count; for the Tx we need to
5424 * include the default too.
5425 */
5426 return (type == MAC_RING_TYPE_RX ? mip->mi_rx_group_count :
5427 mip->mi_tx_groups != NULL ? mip->mi_tx_group_count + 1 : 0);
5428 }
5429
5430 /*
5431 * The total number of free TX rings for this MAC.
5432 */
5433 uint_t
mac_txavail_get(mac_handle_t mh)5434 mac_txavail_get(mac_handle_t mh)
5435 {
5436 mac_impl_t *mip = (mac_impl_t *)mh;
5437
5438 return (mip->mi_txrings_avail);
5439 }
5440
5441 /*
5442 * The total number of free RX rings for this MAC.
5443 */
5444 uint_t
mac_rxavail_get(mac_handle_t mh)5445 mac_rxavail_get(mac_handle_t mh)
5446 {
5447 mac_impl_t *mip = (mac_impl_t *)mh;
5448
5449 return (mip->mi_rxrings_avail);
5450 }
5451
5452 /*
5453 * The total number of reserved RX rings on this MAC.
5454 */
5455 uint_t
mac_rxrsvd_get(mac_handle_t mh)5456 mac_rxrsvd_get(mac_handle_t mh)
5457 {
5458 mac_impl_t *mip = (mac_impl_t *)mh;
5459
5460 return (mip->mi_rxrings_rsvd);
5461 }
5462
5463 /*
5464 * The total number of reserved TX rings on this MAC.
5465 */
5466 uint_t
mac_txrsvd_get(mac_handle_t mh)5467 mac_txrsvd_get(mac_handle_t mh)
5468 {
5469 mac_impl_t *mip = (mac_impl_t *)mh;
5470
5471 return (mip->mi_txrings_rsvd);
5472 }
5473
5474 /*
5475 * Total number of free RX groups on this MAC.
5476 */
5477 uint_t
mac_rxhwlnksavail_get(mac_handle_t mh)5478 mac_rxhwlnksavail_get(mac_handle_t mh)
5479 {
5480 mac_impl_t *mip = (mac_impl_t *)mh;
5481
5482 return (mip->mi_rxhwclnt_avail);
5483 }
5484
5485 /*
5486 * Total number of RX groups reserved on this MAC.
5487 */
5488 uint_t
mac_rxhwlnksrsvd_get(mac_handle_t mh)5489 mac_rxhwlnksrsvd_get(mac_handle_t mh)
5490 {
5491 mac_impl_t *mip = (mac_impl_t *)mh;
5492
5493 return (mip->mi_rxhwclnt_used);
5494 }
5495
5496 /*
5497 * Total number of free TX groups on this MAC.
5498 */
5499 uint_t
mac_txhwlnksavail_get(mac_handle_t mh)5500 mac_txhwlnksavail_get(mac_handle_t mh)
5501 {
5502 mac_impl_t *mip = (mac_impl_t *)mh;
5503
5504 return (mip->mi_txhwclnt_avail);
5505 }
5506
5507 /*
5508 * Total number of TX groups reserved on this MAC.
5509 */
5510 uint_t
mac_txhwlnksrsvd_get(mac_handle_t mh)5511 mac_txhwlnksrsvd_get(mac_handle_t mh)
5512 {
5513 mac_impl_t *mip = (mac_impl_t *)mh;
5514
5515 return (mip->mi_txhwclnt_used);
5516 }
5517
5518 /*
5519 * Initialize the rings property for a mac client. A non-0 value for
5520 * rxring or txring specifies the number of rings required, a value
5521 * of MAC_RXRINGS_NONE/MAC_TXRINGS_NONE specifies that it doesn't need
5522 * any RX/TX rings and a value of MAC_RXRINGS_DONTCARE/MAC_TXRINGS_DONTCARE
5523 * means the system can decide whether it can give any rings or not.
5524 */
5525 void
mac_client_set_rings(mac_client_handle_t mch,int rxrings,int txrings)5526 mac_client_set_rings(mac_client_handle_t mch, int rxrings, int txrings)
5527 {
5528 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
5529 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip);
5530
5531 if (rxrings != MAC_RXRINGS_DONTCARE) {
5532 mrp->mrp_mask |= MRP_RX_RINGS;
5533 mrp->mrp_nrxrings = rxrings;
5534 }
5535
5536 if (txrings != MAC_TXRINGS_DONTCARE) {
5537 mrp->mrp_mask |= MRP_TX_RINGS;
5538 mrp->mrp_ntxrings = txrings;
5539 }
5540 }
5541
5542 boolean_t
mac_get_promisc_filtered(mac_client_handle_t mch)5543 mac_get_promisc_filtered(mac_client_handle_t mch)
5544 {
5545 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
5546
5547 return (mcip->mci_protect_flags & MPT_FLAG_PROMISC_FILTERED);
5548 }
5549
5550 void
mac_set_promisc_filtered(mac_client_handle_t mch,boolean_t enable)5551 mac_set_promisc_filtered(mac_client_handle_t mch, boolean_t enable)
5552 {
5553 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
5554
5555 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
5556 if (enable)
5557 mcip->mci_protect_flags |= MPT_FLAG_PROMISC_FILTERED;
5558 else
5559 mcip->mci_protect_flags &= ~MPT_FLAG_PROMISC_FILTERED;
5560 }
5561