1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2017 OmniTI Computer Consulting, Inc. All rights reserved.
25 */
26
27 #include <sys/types.h>
28 #include <sys/conf.h>
29 #include <sys/id_space.h>
30 #include <sys/esunddi.h>
31 #include <sys/stat.h>
32 #include <sys/mkdev.h>
33 #include <sys/stream.h>
34 #include <sys/strsubr.h>
35 #include <sys/dlpi.h>
36 #include <sys/modhash.h>
37 #include <sys/mac.h>
38 #include <sys/mac_provider.h>
39 #include <sys/mac_impl.h>
40 #include <sys/mac_client_impl.h>
41 #include <sys/mac_client_priv.h>
42 #include <sys/mac_soft_ring.h>
43 #include <sys/mac_stat.h>
44 #include <sys/dld.h>
45 #include <sys/modctl.h>
46 #include <sys/fs/dv_node.h>
47 #include <sys/thread.h>
48 #include <sys/proc.h>
49 #include <sys/callb.h>
50 #include <sys/cpuvar.h>
51 #include <sys/atomic.h>
52 #include <sys/sdt.h>
53 #include <sys/mac_flow.h>
54 #include <sys/ddi_intr_impl.h>
55 #include <sys/disp.h>
56 #include <sys/sdt.h>
57 #include <sys/pattr.h>
58 #include <sys/strsun.h>
59
60 /*
61 * MAC Provider Interface.
62 *
63 * Interface for GLDv3 compatible NIC drivers.
64 */
65
66 static void i_mac_notify_thread(void *);
67
68 typedef void (*mac_notify_default_cb_fn_t)(mac_impl_t *);
69
70 static const mac_notify_default_cb_fn_t mac_notify_cb_list[MAC_NNOTE] = {
71 mac_fanout_recompute, /* MAC_NOTE_LINK */
72 NULL, /* MAC_NOTE_UNICST */
73 NULL, /* MAC_NOTE_TX */
74 NULL, /* MAC_NOTE_DEVPROMISC */
75 NULL, /* MAC_NOTE_FASTPATH_FLUSH */
76 NULL, /* MAC_NOTE_SDU_SIZE */
77 NULL, /* MAC_NOTE_MARGIN */
78 NULL, /* MAC_NOTE_CAPAB_CHG */
79 NULL /* MAC_NOTE_LOWLINK */
80 };
81
82 /*
83 * Driver support functions.
84 */
85
86 /* REGISTRATION */
87
88 mac_register_t *
mac_alloc(uint_t mac_version)89 mac_alloc(uint_t mac_version)
90 {
91 mac_register_t *mregp;
92
93 /*
94 * Make sure there isn't a version mismatch between the driver and
95 * the framework. In the future, if multiple versions are
96 * supported, this check could become more sophisticated.
97 */
98 if (mac_version != MAC_VERSION)
99 return (NULL);
100
101 mregp = kmem_zalloc(sizeof (mac_register_t), KM_SLEEP);
102 mregp->m_version = mac_version;
103 return (mregp);
104 }
105
106 void
mac_free(mac_register_t * mregp)107 mac_free(mac_register_t *mregp)
108 {
109 kmem_free(mregp, sizeof (mac_register_t));
110 }
111
112 /*
113 * mac_register() is how drivers register new MACs with the GLDv3
114 * framework. The mregp argument is allocated by drivers using the
115 * mac_alloc() function, and can be freed using mac_free() immediately upon
116 * return from mac_register(). Upon success (0 return value), the mhp
117 * opaque pointer becomes the driver's handle to its MAC interface, and is
118 * the argument to all other mac module entry points.
119 */
120 /* ARGSUSED */
121 int
mac_register(mac_register_t * mregp,mac_handle_t * mhp)122 mac_register(mac_register_t *mregp, mac_handle_t *mhp)
123 {
124 mac_impl_t *mip;
125 mactype_t *mtype;
126 int err = EINVAL;
127 struct devnames *dnp = NULL;
128 uint_t instance;
129 boolean_t style1_created = B_FALSE;
130 boolean_t style2_created = B_FALSE;
131 char *driver;
132 minor_t minor = 0;
133
134 /* A successful call to mac_init_ops() sets the DN_GLDV3_DRIVER flag. */
135 if (!GLDV3_DRV(ddi_driver_major(mregp->m_dip)))
136 return (EINVAL);
137
138 /* Find the required MAC-Type plugin. */
139 if ((mtype = mactype_getplugin(mregp->m_type_ident)) == NULL)
140 return (EINVAL);
141
142 /* Create a mac_impl_t to represent this MAC. */
143 mip = kmem_cache_alloc(i_mac_impl_cachep, KM_SLEEP);
144
145 /*
146 * The mac is not ready for open yet.
147 */
148 mip->mi_state_flags |= MIS_DISABLED;
149
150 /*
151 * When a mac is registered, the m_instance field can be set to:
152 *
153 * 0: Get the mac's instance number from m_dip.
154 * This is usually used for physical device dips.
155 *
156 * [1 .. MAC_MAX_MINOR-1]: Use the value as the mac's instance number.
157 * For example, when an aggregation is created with the key option,
158 * "key" will be used as the instance number.
159 *
160 * -1: Assign an instance number from [MAC_MAX_MINOR .. MAXMIN-1].
161 * This is often used when a MAC of a virtual link is registered
162 * (e.g., aggregation when "key" is not specified, or vnic).
163 *
164 * Note that the instance number is used to derive the mi_minor field
165 * of mac_impl_t, which will then be used to derive the name of kstats
166 * and the devfs nodes. The first 2 cases are needed to preserve
167 * backward compatibility.
168 */
169 switch (mregp->m_instance) {
170 case 0:
171 instance = ddi_get_instance(mregp->m_dip);
172 break;
173 case ((uint_t)-1):
174 minor = mac_minor_hold(B_TRUE);
175 if (minor == 0) {
176 err = ENOSPC;
177 goto fail;
178 }
179 instance = minor - 1;
180 break;
181 default:
182 instance = mregp->m_instance;
183 if (instance >= MAC_MAX_MINOR) {
184 err = EINVAL;
185 goto fail;
186 }
187 break;
188 }
189
190 mip->mi_minor = (minor_t)(instance + 1);
191 mip->mi_dip = mregp->m_dip;
192 mip->mi_clients_list = NULL;
193 mip->mi_nclients = 0;
194
195 /* Set the default IEEE Port VLAN Identifier */
196 mip->mi_pvid = 1;
197
198 /* Default bridge link learning protection values */
199 mip->mi_llimit = 1000;
200 mip->mi_ldecay = 200;
201
202 driver = (char *)ddi_driver_name(mip->mi_dip);
203
204 /* Construct the MAC name as <drvname><instance> */
205 (void) snprintf(mip->mi_name, sizeof (mip->mi_name), "%s%d",
206 driver, instance);
207
208 mip->mi_driver = mregp->m_driver;
209
210 mip->mi_type = mtype;
211 mip->mi_margin = mregp->m_margin;
212 mip->mi_info.mi_media = mtype->mt_type;
213 mip->mi_info.mi_nativemedia = mtype->mt_nativetype;
214 if (mregp->m_max_sdu <= mregp->m_min_sdu)
215 goto fail;
216 if (mregp->m_multicast_sdu == 0)
217 mregp->m_multicast_sdu = mregp->m_max_sdu;
218 if (mregp->m_multicast_sdu < mregp->m_min_sdu ||
219 mregp->m_multicast_sdu > mregp->m_max_sdu)
220 goto fail;
221 mip->mi_sdu_min = mregp->m_min_sdu;
222 mip->mi_sdu_max = mregp->m_max_sdu;
223 mip->mi_sdu_multicast = mregp->m_multicast_sdu;
224 mip->mi_info.mi_addr_length = mip->mi_type->mt_addr_length;
225 /*
226 * If the media supports a broadcast address, cache a pointer to it
227 * in the mac_info_t so that upper layers can use it.
228 */
229 mip->mi_info.mi_brdcst_addr = mip->mi_type->mt_brdcst_addr;
230
231 mip->mi_v12n_level = mregp->m_v12n;
232
233 /*
234 * Copy the unicast source address into the mac_info_t, but only if
235 * the MAC-Type defines a non-zero address length. We need to
236 * handle MAC-Types that have an address length of 0
237 * (point-to-point protocol MACs for example).
238 */
239 if (mip->mi_type->mt_addr_length > 0) {
240 if (mregp->m_src_addr == NULL)
241 goto fail;
242 mip->mi_info.mi_unicst_addr =
243 kmem_alloc(mip->mi_type->mt_addr_length, KM_SLEEP);
244 bcopy(mregp->m_src_addr, mip->mi_info.mi_unicst_addr,
245 mip->mi_type->mt_addr_length);
246
247 /*
248 * Copy the fixed 'factory' MAC address from the immutable
249 * info. This is taken to be the MAC address currently in
250 * use.
251 */
252 bcopy(mip->mi_info.mi_unicst_addr, mip->mi_addr,
253 mip->mi_type->mt_addr_length);
254
255 /*
256 * At this point, we should set up the classification
257 * rules etc but we delay it till mac_open() so that
258 * the resource discovery has taken place and we
259 * know someone wants to use the device. Otherwise
260 * memory gets allocated for Rx ring structures even
261 * during probe.
262 */
263
264 /* Copy the destination address if one is provided. */
265 if (mregp->m_dst_addr != NULL) {
266 bcopy(mregp->m_dst_addr, mip->mi_dstaddr,
267 mip->mi_type->mt_addr_length);
268 mip->mi_dstaddr_set = B_TRUE;
269 }
270 } else if (mregp->m_src_addr != NULL) {
271 goto fail;
272 }
273
274 /*
275 * The format of the m_pdata is specific to the plugin. It is
276 * passed in as an argument to all of the plugin callbacks. The
277 * driver can update this information by calling
278 * mac_pdata_update().
279 */
280 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY) {
281 /*
282 * Verify if the supplied plugin data is valid. Note that
283 * even if the caller passed in a NULL pointer as plugin data,
284 * we still need to verify if that's valid as the plugin may
285 * require plugin data to function.
286 */
287 if (!mip->mi_type->mt_ops.mtops_pdata_verify(mregp->m_pdata,
288 mregp->m_pdata_size)) {
289 goto fail;
290 }
291 if (mregp->m_pdata != NULL) {
292 mip->mi_pdata =
293 kmem_alloc(mregp->m_pdata_size, KM_SLEEP);
294 bcopy(mregp->m_pdata, mip->mi_pdata,
295 mregp->m_pdata_size);
296 mip->mi_pdata_size = mregp->m_pdata_size;
297 }
298 } else if (mregp->m_pdata != NULL) {
299 /*
300 * The caller supplied non-NULL plugin data, but the plugin
301 * does not recognize plugin data.
302 */
303 err = EINVAL;
304 goto fail;
305 }
306
307 /*
308 * Register the private properties.
309 */
310 mac_register_priv_prop(mip, mregp->m_priv_props);
311
312 /*
313 * Stash the driver callbacks into the mac_impl_t, but first sanity
314 * check to make sure all mandatory callbacks are set.
315 */
316 if (mregp->m_callbacks->mc_getstat == NULL ||
317 mregp->m_callbacks->mc_start == NULL ||
318 mregp->m_callbacks->mc_stop == NULL ||
319 mregp->m_callbacks->mc_setpromisc == NULL ||
320 mregp->m_callbacks->mc_multicst == NULL) {
321 goto fail;
322 }
323 mip->mi_callbacks = mregp->m_callbacks;
324
325 if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_LEGACY,
326 &mip->mi_capab_legacy)) {
327 mip->mi_state_flags |= MIS_LEGACY;
328 mip->mi_phy_dev = mip->mi_capab_legacy.ml_dev;
329 } else {
330 mip->mi_phy_dev = makedevice(ddi_driver_major(mip->mi_dip),
331 mip->mi_minor);
332 }
333
334 /*
335 * Allocate a notification thread. thread_create blocks for memory
336 * if needed, it never fails.
337 */
338 mip->mi_notify_thread = thread_create(NULL, 0, i_mac_notify_thread,
339 mip, 0, &p0, TS_RUN, minclsyspri);
340
341 /*
342 * Initialize the capabilities
343 */
344
345 bzero(&mip->mi_rx_rings_cap, sizeof (mac_capab_rings_t));
346 bzero(&mip->mi_tx_rings_cap, sizeof (mac_capab_rings_t));
347
348 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, NULL))
349 mip->mi_state_flags |= MIS_IS_VNIC;
350
351 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR, NULL))
352 mip->mi_state_flags |= MIS_IS_AGGR;
353
354 mac_addr_factory_init(mip);
355
356 mac_transceiver_init(mip);
357
358 mac_led_init(mip);
359
360 /*
361 * Enforce the virtrualization level registered.
362 */
363 if (mip->mi_v12n_level & MAC_VIRT_LEVEL1) {
364 if (mac_init_rings(mip, MAC_RING_TYPE_RX) != 0 ||
365 mac_init_rings(mip, MAC_RING_TYPE_TX) != 0)
366 goto fail;
367
368 /*
369 * The driver needs to register at least rx rings for this
370 * virtualization level.
371 */
372 if (mip->mi_rx_groups == NULL)
373 goto fail;
374 }
375
376 /*
377 * The driver must set mc_unicst entry point to NULL when it advertises
378 * CAP_RINGS for rx groups.
379 */
380 if (mip->mi_rx_groups != NULL) {
381 if (mregp->m_callbacks->mc_unicst != NULL)
382 goto fail;
383 } else {
384 if (mregp->m_callbacks->mc_unicst == NULL)
385 goto fail;
386 }
387
388 /*
389 * Initialize MAC addresses. Must be called after mac_init_rings().
390 */
391 mac_init_macaddr(mip);
392
393 mip->mi_share_capab.ms_snum = 0;
394 if (mip->mi_v12n_level & MAC_VIRT_HIO) {
395 (void) mac_capab_get((mac_handle_t)mip, MAC_CAPAB_SHARES,
396 &mip->mi_share_capab);
397 }
398
399 /*
400 * Initialize the kstats for this device.
401 */
402 mac_driver_stat_create(mip);
403
404 /* Zero out any properties. */
405 bzero(&mip->mi_resource_props, sizeof (mac_resource_props_t));
406
407 if (mip->mi_minor <= MAC_MAX_MINOR) {
408 /* Create a style-2 DLPI device */
409 if (ddi_create_minor_node(mip->mi_dip, driver, S_IFCHR, 0,
410 DDI_NT_NET, CLONE_DEV) != DDI_SUCCESS)
411 goto fail;
412 style2_created = B_TRUE;
413
414 /* Create a style-1 DLPI device */
415 if (ddi_create_minor_node(mip->mi_dip, mip->mi_name, S_IFCHR,
416 mip->mi_minor, DDI_NT_NET, 0) != DDI_SUCCESS)
417 goto fail;
418 style1_created = B_TRUE;
419 }
420
421 mac_flow_l2tab_create(mip, &mip->mi_flow_tab);
422
423 rw_enter(&i_mac_impl_lock, RW_WRITER);
424 if (mod_hash_insert(i_mac_impl_hash,
425 (mod_hash_key_t)mip->mi_name, (mod_hash_val_t)mip) != 0) {
426 rw_exit(&i_mac_impl_lock);
427 err = EEXIST;
428 goto fail;
429 }
430
431 DTRACE_PROBE2(mac__register, struct devnames *, dnp,
432 (mac_impl_t *), mip);
433
434 /*
435 * Mark the MAC to be ready for open.
436 */
437 mip->mi_state_flags &= ~MIS_DISABLED;
438 rw_exit(&i_mac_impl_lock);
439
440 atomic_inc_32(&i_mac_impl_count);
441
442 cmn_err(CE_NOTE, "!%s registered", mip->mi_name);
443 *mhp = (mac_handle_t)mip;
444 return (0);
445
446 fail:
447 if (style1_created)
448 ddi_remove_minor_node(mip->mi_dip, mip->mi_name);
449
450 if (style2_created)
451 ddi_remove_minor_node(mip->mi_dip, driver);
452
453 mac_addr_factory_fini(mip);
454
455 /* Clean up registered MAC addresses */
456 mac_fini_macaddr(mip);
457
458 /* Clean up registered rings */
459 mac_free_rings(mip, MAC_RING_TYPE_RX);
460 mac_free_rings(mip, MAC_RING_TYPE_TX);
461
462 /* Clean up notification thread */
463 if (mip->mi_notify_thread != NULL)
464 i_mac_notify_exit(mip);
465
466 if (mip->mi_info.mi_unicst_addr != NULL) {
467 kmem_free(mip->mi_info.mi_unicst_addr,
468 mip->mi_type->mt_addr_length);
469 mip->mi_info.mi_unicst_addr = NULL;
470 }
471
472 mac_driver_stat_delete(mip);
473
474 if (mip->mi_type != NULL) {
475 atomic_dec_32(&mip->mi_type->mt_ref);
476 mip->mi_type = NULL;
477 }
478
479 if (mip->mi_pdata != NULL) {
480 kmem_free(mip->mi_pdata, mip->mi_pdata_size);
481 mip->mi_pdata = NULL;
482 mip->mi_pdata_size = 0;
483 }
484
485 if (minor != 0) {
486 ASSERT(minor > MAC_MAX_MINOR);
487 mac_minor_rele(minor);
488 }
489
490 mip->mi_state_flags = 0;
491 mac_unregister_priv_prop(mip);
492
493 /*
494 * Clear the state before destroying the mac_impl_t
495 */
496 mip->mi_state_flags = 0;
497
498 kmem_cache_free(i_mac_impl_cachep, mip);
499 return (err);
500 }
501
502 /*
503 * Unregister from the GLDv3 framework
504 */
505 int
mac_unregister(mac_handle_t mh)506 mac_unregister(mac_handle_t mh)
507 {
508 int err;
509 mac_impl_t *mip = (mac_impl_t *)mh;
510 mod_hash_val_t val;
511 mac_margin_req_t *mmr, *nextmmr;
512
513 /* Fail the unregister if there are any open references to this mac. */
514 if ((err = mac_disable_nowait(mh)) != 0)
515 return (err);
516
517 /*
518 * Clean up notification thread and wait for it to exit.
519 */
520 i_mac_notify_exit(mip);
521
522 /*
523 * Prior to acquiring the MAC perimeter, remove the MAC instance from
524 * the internal hash table. Such removal means table-walkers that
525 * acquire the perimeter will not do so on behalf of what we are
526 * unregistering, which prevents a deadlock.
527 */
528 rw_enter(&i_mac_impl_lock, RW_WRITER);
529 (void) mod_hash_remove(i_mac_impl_hash,
530 (mod_hash_key_t)mip->mi_name, &val);
531 rw_exit(&i_mac_impl_lock);
532 ASSERT(mip == (mac_impl_t *)val);
533
534 i_mac_perim_enter(mip);
535
536 /*
537 * There is still resource properties configured over this mac.
538 */
539 if (mip->mi_resource_props.mrp_mask != 0)
540 mac_fastpath_enable((mac_handle_t)mip);
541
542 if (mip->mi_minor < MAC_MAX_MINOR + 1) {
543 ddi_remove_minor_node(mip->mi_dip, mip->mi_name);
544 ddi_remove_minor_node(mip->mi_dip,
545 (char *)ddi_driver_name(mip->mi_dip));
546 }
547
548 ASSERT(mip->mi_nactiveclients == 0 && !(mip->mi_state_flags &
549 MIS_EXCLUSIVE));
550
551 mac_driver_stat_delete(mip);
552
553 ASSERT(i_mac_impl_count > 0);
554 atomic_dec_32(&i_mac_impl_count);
555
556 if (mip->mi_pdata != NULL)
557 kmem_free(mip->mi_pdata, mip->mi_pdata_size);
558 mip->mi_pdata = NULL;
559 mip->mi_pdata_size = 0;
560
561 /*
562 * Free the list of margin request.
563 */
564 for (mmr = mip->mi_mmrp; mmr != NULL; mmr = nextmmr) {
565 nextmmr = mmr->mmr_nextp;
566 kmem_free(mmr, sizeof (mac_margin_req_t));
567 }
568 mip->mi_mmrp = NULL;
569
570 mip->mi_linkstate = mip->mi_lowlinkstate = LINK_STATE_UNKNOWN;
571 kmem_free(mip->mi_info.mi_unicst_addr, mip->mi_type->mt_addr_length);
572 mip->mi_info.mi_unicst_addr = NULL;
573
574 atomic_dec_32(&mip->mi_type->mt_ref);
575 mip->mi_type = NULL;
576
577 /*
578 * Free the primary MAC address.
579 */
580 mac_fini_macaddr(mip);
581
582 /*
583 * free all rings
584 */
585 mac_free_rings(mip, MAC_RING_TYPE_RX);
586 mac_free_rings(mip, MAC_RING_TYPE_TX);
587
588 mac_addr_factory_fini(mip);
589
590 bzero(mip->mi_addr, MAXMACADDRLEN);
591 bzero(mip->mi_dstaddr, MAXMACADDRLEN);
592 mip->mi_dstaddr_set = B_FALSE;
593
594 /* and the flows */
595 mac_flow_tab_destroy(mip->mi_flow_tab);
596 mip->mi_flow_tab = NULL;
597
598 if (mip->mi_minor > MAC_MAX_MINOR)
599 mac_minor_rele(mip->mi_minor);
600
601 cmn_err(CE_NOTE, "!%s unregistered", mip->mi_name);
602
603 /*
604 * Reset the perim related fields to default values before
605 * kmem_cache_free
606 */
607 i_mac_perim_exit(mip);
608 mip->mi_state_flags = 0;
609
610 mac_unregister_priv_prop(mip);
611
612 ASSERT(mip->mi_bridge_link == NULL);
613 kmem_cache_free(i_mac_impl_cachep, mip);
614
615 return (0);
616 }
617
618 /* DATA RECEPTION */
619
620 /*
621 * This function is invoked for packets received by the MAC driver in
622 * interrupt context. The ring generation number provided by the driver
623 * is matched with the ring generation number held in MAC. If they do not
624 * match, received packets are considered stale packets coming from an older
625 * assignment of the ring. Drop them.
626 */
627 void
mac_rx_ring(mac_handle_t mh,mac_ring_handle_t mrh,mblk_t * mp_chain,uint64_t mr_gen_num)628 mac_rx_ring(mac_handle_t mh, mac_ring_handle_t mrh, mblk_t *mp_chain,
629 uint64_t mr_gen_num)
630 {
631 mac_ring_t *mr = (mac_ring_t *)mrh;
632
633 if ((mr != NULL) && (mr->mr_gen_num != mr_gen_num)) {
634 DTRACE_PROBE2(mac__rx__rings__stale__packet, uint64_t,
635 mr->mr_gen_num, uint64_t, mr_gen_num);
636 freemsgchain(mp_chain);
637 return;
638 }
639 mac_rx(mh, (mac_resource_handle_t)mrh, mp_chain);
640 }
641
642 /*
643 * This function is invoked for each packet received by the underlying driver.
644 */
645 void
mac_rx(mac_handle_t mh,mac_resource_handle_t mrh,mblk_t * mp_chain)646 mac_rx(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
647 {
648 mac_impl_t *mip = (mac_impl_t *)mh;
649
650 /*
651 * Check if the link is part of a bridge. If not, then we don't need
652 * to take the lock to remain consistent. Make this common case
653 * lock-free and tail-call optimized.
654 */
655 if (mip->mi_bridge_link == NULL) {
656 mac_rx_common(mh, mrh, mp_chain);
657 } else {
658 /*
659 * Once we take a reference on the bridge link, the bridge
660 * module itself can't unload, so the callback pointers are
661 * stable.
662 */
663 mutex_enter(&mip->mi_bridge_lock);
664 if ((mh = mip->mi_bridge_link) != NULL)
665 mac_bridge_ref_cb(mh, B_TRUE);
666 mutex_exit(&mip->mi_bridge_lock);
667 if (mh == NULL) {
668 mac_rx_common((mac_handle_t)mip, mrh, mp_chain);
669 } else {
670 mac_bridge_rx_cb(mh, mrh, mp_chain);
671 mac_bridge_ref_cb(mh, B_FALSE);
672 }
673 }
674 }
675
676 /*
677 * Special case function: this allows snooping of packets transmitted and
678 * received by TRILL. By design, they go directly into the TRILL module.
679 */
680 void
mac_trill_snoop(mac_handle_t mh,mblk_t * mp)681 mac_trill_snoop(mac_handle_t mh, mblk_t *mp)
682 {
683 mac_impl_t *mip = (mac_impl_t *)mh;
684
685 if (mip->mi_promisc_list != NULL)
686 mac_promisc_dispatch(mip, mp, NULL);
687 }
688
689 /*
690 * This is the upward reentry point for packets arriving from the bridging
691 * module and from mac_rx for links not part of a bridge.
692 */
693 void
mac_rx_common(mac_handle_t mh,mac_resource_handle_t mrh,mblk_t * mp_chain)694 mac_rx_common(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
695 {
696 mac_impl_t *mip = (mac_impl_t *)mh;
697 mac_ring_t *mr = (mac_ring_t *)mrh;
698 mac_soft_ring_set_t *mac_srs;
699 mblk_t *bp = mp_chain;
700 boolean_t hw_classified = B_FALSE;
701
702 /*
703 * If there are any promiscuous mode callbacks defined for
704 * this MAC, pass them a copy if appropriate.
705 */
706 if (mip->mi_promisc_list != NULL)
707 mac_promisc_dispatch(mip, mp_chain, NULL);
708
709 if (mr != NULL) {
710 /*
711 * If the SRS teardown has started, just return. The 'mr'
712 * continues to be valid until the driver unregisters the mac.
713 * Hardware classified packets will not make their way up
714 * beyond this point once the teardown has started. The driver
715 * is never passed a pointer to a flow entry or SRS or any
716 * structure that can be freed much before mac_unregister.
717 */
718 mutex_enter(&mr->mr_lock);
719 if ((mr->mr_state != MR_INUSE) || (mr->mr_flag &
720 (MR_INCIPIENT | MR_CONDEMNED | MR_QUIESCE))) {
721 mutex_exit(&mr->mr_lock);
722 freemsgchain(mp_chain);
723 return;
724 }
725 if (mr->mr_classify_type == MAC_HW_CLASSIFIER) {
726 hw_classified = B_TRUE;
727 MR_REFHOLD_LOCKED(mr);
728 }
729 mutex_exit(&mr->mr_lock);
730
731 /*
732 * We check if an SRS is controlling this ring.
733 * If so, we can directly call the srs_lower_proc
734 * routine otherwise we need to go through mac_rx_classify
735 * to reach the right place.
736 */
737 if (hw_classified) {
738 mac_srs = mr->mr_srs;
739 /*
740 * This is supposed to be the fast path.
741 * All packets received though here were steered by
742 * the hardware classifier, and share the same
743 * MAC header info.
744 */
745 mac_srs->srs_rx.sr_lower_proc(mh,
746 (mac_resource_handle_t)mac_srs, mp_chain, B_FALSE);
747 MR_REFRELE(mr);
748 return;
749 }
750 /* We'll fall through to software classification */
751 } else {
752 flow_entry_t *flent;
753 int err;
754
755 rw_enter(&mip->mi_rw_lock, RW_READER);
756 if (mip->mi_single_active_client != NULL) {
757 flent = mip->mi_single_active_client->mci_flent_list;
758 FLOW_TRY_REFHOLD(flent, err);
759 rw_exit(&mip->mi_rw_lock);
760 if (err == 0) {
761 (flent->fe_cb_fn)(flent->fe_cb_arg1,
762 flent->fe_cb_arg2, mp_chain, B_FALSE);
763 FLOW_REFRELE(flent);
764 return;
765 }
766 } else {
767 rw_exit(&mip->mi_rw_lock);
768 }
769 }
770
771 if (!FLOW_TAB_EMPTY(mip->mi_flow_tab)) {
772 if ((bp = mac_rx_flow(mh, mrh, bp)) == NULL)
773 return;
774 }
775
776 freemsgchain(bp);
777 }
778
779 /* DATA TRANSMISSION */
780
781 /*
782 * A driver's notification to resume transmission, in case of a provider
783 * without TX rings.
784 */
785 void
mac_tx_update(mac_handle_t mh)786 mac_tx_update(mac_handle_t mh)
787 {
788 mac_tx_ring_update(mh, NULL);
789 }
790
791 /*
792 * A driver's notification to resume transmission on the specified TX ring.
793 */
794 void
mac_tx_ring_update(mac_handle_t mh,mac_ring_handle_t rh)795 mac_tx_ring_update(mac_handle_t mh, mac_ring_handle_t rh)
796 {
797 i_mac_tx_srs_notify((mac_impl_t *)mh, rh);
798 }
799
800 /* LINK STATE */
801 /*
802 * Notify the MAC layer about a link state change
803 */
804 void
mac_link_update(mac_handle_t mh,link_state_t link)805 mac_link_update(mac_handle_t mh, link_state_t link)
806 {
807 mac_impl_t *mip = (mac_impl_t *)mh;
808
809 /*
810 * Save the link state.
811 */
812 mip->mi_lowlinkstate = link;
813
814 /*
815 * Send a MAC_NOTE_LOWLINK notification. This tells the notification
816 * thread to deliver both lower and upper notifications.
817 */
818 i_mac_notify(mip, MAC_NOTE_LOWLINK);
819 }
820
821 /*
822 * Notify the MAC layer about a link state change due to bridging.
823 */
824 void
mac_link_redo(mac_handle_t mh,link_state_t link)825 mac_link_redo(mac_handle_t mh, link_state_t link)
826 {
827 mac_impl_t *mip = (mac_impl_t *)mh;
828
829 /*
830 * Save the link state.
831 */
832 mip->mi_linkstate = link;
833
834 /*
835 * Send a MAC_NOTE_LINK notification. Only upper notifications are
836 * made.
837 */
838 i_mac_notify(mip, MAC_NOTE_LINK);
839 }
840
841 /* MINOR NODE HANDLING */
842
843 /*
844 * Given a dev_t, return the instance number (PPA) associated with it.
845 * Drivers can use this in their getinfo(9e) implementation to lookup
846 * the instance number (i.e. PPA) of the device, to use as an index to
847 * their own array of soft state structures.
848 *
849 * Returns -1 on error.
850 */
851 int
mac_devt_to_instance(dev_t devt)852 mac_devt_to_instance(dev_t devt)
853 {
854 return (dld_devt_to_instance(devt));
855 }
856
857 /*
858 * This function returns the first minor number that is available for
859 * driver private use. All minor numbers smaller than this are
860 * reserved for GLDv3 use.
861 */
862 minor_t
mac_private_minor(void)863 mac_private_minor(void)
864 {
865 return (MAC_PRIVATE_MINOR);
866 }
867
868 /* OTHER CONTROL INFORMATION */
869
870 /*
871 * A driver notified us that its primary MAC address has changed.
872 */
873 void
mac_unicst_update(mac_handle_t mh,const uint8_t * addr)874 mac_unicst_update(mac_handle_t mh, const uint8_t *addr)
875 {
876 mac_impl_t *mip = (mac_impl_t *)mh;
877
878 if (mip->mi_type->mt_addr_length == 0)
879 return;
880
881 i_mac_perim_enter(mip);
882
883 /*
884 * If address changes, freshen the MAC address value and update
885 * all MAC clients that share this MAC address.
886 */
887 if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) != 0) {
888 mac_freshen_macaddr(mac_find_macaddr(mip, mip->mi_addr),
889 (uint8_t *)addr);
890 }
891
892 i_mac_perim_exit(mip);
893
894 /*
895 * Send a MAC_NOTE_UNICST notification.
896 */
897 i_mac_notify(mip, MAC_NOTE_UNICST);
898 }
899
900 void
mac_dst_update(mac_handle_t mh,const uint8_t * addr)901 mac_dst_update(mac_handle_t mh, const uint8_t *addr)
902 {
903 mac_impl_t *mip = (mac_impl_t *)mh;
904
905 if (mip->mi_type->mt_addr_length == 0)
906 return;
907
908 i_mac_perim_enter(mip);
909 bcopy(addr, mip->mi_dstaddr, mip->mi_type->mt_addr_length);
910 i_mac_perim_exit(mip);
911 i_mac_notify(mip, MAC_NOTE_DEST);
912 }
913
914 /*
915 * MAC plugin information changed.
916 */
917 int
mac_pdata_update(mac_handle_t mh,void * mac_pdata,size_t dsize)918 mac_pdata_update(mac_handle_t mh, void *mac_pdata, size_t dsize)
919 {
920 mac_impl_t *mip = (mac_impl_t *)mh;
921
922 /*
923 * Verify that the plugin supports MAC plugin data and that the
924 * supplied data is valid.
925 */
926 if (!(mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY))
927 return (EINVAL);
928 if (!mip->mi_type->mt_ops.mtops_pdata_verify(mac_pdata, dsize))
929 return (EINVAL);
930
931 if (mip->mi_pdata != NULL)
932 kmem_free(mip->mi_pdata, mip->mi_pdata_size);
933
934 mip->mi_pdata = kmem_alloc(dsize, KM_SLEEP);
935 bcopy(mac_pdata, mip->mi_pdata, dsize);
936 mip->mi_pdata_size = dsize;
937
938 /*
939 * Since the MAC plugin data is used to construct MAC headers that
940 * were cached in fast-path headers, we need to flush fast-path
941 * information for links associated with this mac.
942 */
943 i_mac_notify(mip, MAC_NOTE_FASTPATH_FLUSH);
944 return (0);
945 }
946
947 /*
948 * Invoked by driver as well as the framework to notify its capability change.
949 */
950 void
mac_capab_update(mac_handle_t mh)951 mac_capab_update(mac_handle_t mh)
952 {
953 /* Send MAC_NOTE_CAPAB_CHG notification */
954 i_mac_notify((mac_impl_t *)mh, MAC_NOTE_CAPAB_CHG);
955 }
956
957 /*
958 * Used by normal drivers to update the max sdu size.
959 * We need to handle the case of a smaller mi_sdu_multicast
960 * since this is called by mac_set_mtu() even for drivers that
961 * have differing unicast and multicast mtu and we don't want to
962 * increase the multicast mtu by accident in that case.
963 */
964 int
mac_maxsdu_update(mac_handle_t mh,uint_t sdu_max)965 mac_maxsdu_update(mac_handle_t mh, uint_t sdu_max)
966 {
967 mac_impl_t *mip = (mac_impl_t *)mh;
968
969 if (sdu_max == 0 || sdu_max < mip->mi_sdu_min)
970 return (EINVAL);
971 mip->mi_sdu_max = sdu_max;
972 if (mip->mi_sdu_multicast > mip->mi_sdu_max)
973 mip->mi_sdu_multicast = mip->mi_sdu_max;
974
975 /* Send a MAC_NOTE_SDU_SIZE notification. */
976 i_mac_notify(mip, MAC_NOTE_SDU_SIZE);
977 return (0);
978 }
979
980 /*
981 * Version of the above function that is used by drivers that have a different
982 * max sdu size for multicast/broadcast vs. unicast.
983 */
984 int
mac_maxsdu_update2(mac_handle_t mh,uint_t sdu_max,uint_t sdu_multicast)985 mac_maxsdu_update2(mac_handle_t mh, uint_t sdu_max, uint_t sdu_multicast)
986 {
987 mac_impl_t *mip = (mac_impl_t *)mh;
988
989 if (sdu_max == 0 || sdu_max < mip->mi_sdu_min)
990 return (EINVAL);
991 if (sdu_multicast == 0)
992 sdu_multicast = sdu_max;
993 if (sdu_multicast > sdu_max || sdu_multicast < mip->mi_sdu_min)
994 return (EINVAL);
995 mip->mi_sdu_max = sdu_max;
996 mip->mi_sdu_multicast = sdu_multicast;
997
998 /* Send a MAC_NOTE_SDU_SIZE notification. */
999 i_mac_notify(mip, MAC_NOTE_SDU_SIZE);
1000 return (0);
1001 }
1002
1003 static void
mac_ring_intr_retarget(mac_group_t * group,mac_ring_t * ring)1004 mac_ring_intr_retarget(mac_group_t *group, mac_ring_t *ring)
1005 {
1006 mac_client_impl_t *mcip;
1007 flow_entry_t *flent;
1008 mac_soft_ring_set_t *mac_rx_srs;
1009 mac_cpus_t *srs_cpu;
1010 int i;
1011
1012 if (((mcip = MAC_GROUP_ONLY_CLIENT(group)) != NULL) &&
1013 (!ring->mr_info.mri_intr.mi_ddi_shared)) {
1014 /* interrupt can be re-targeted */
1015 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
1016 flent = mcip->mci_flent;
1017 if (ring->mr_type == MAC_RING_TYPE_RX) {
1018 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
1019 mac_rx_srs = flent->fe_rx_srs[i];
1020 if (mac_rx_srs->srs_ring != ring)
1021 continue;
1022 srs_cpu = &mac_rx_srs->srs_cpu;
1023 mutex_enter(&cpu_lock);
1024 mac_rx_srs_retarget_intr(mac_rx_srs,
1025 srs_cpu->mc_rx_intr_cpu);
1026 mutex_exit(&cpu_lock);
1027 break;
1028 }
1029 } else {
1030 if (flent->fe_tx_srs != NULL) {
1031 mutex_enter(&cpu_lock);
1032 mac_tx_srs_retarget_intr(
1033 flent->fe_tx_srs);
1034 mutex_exit(&cpu_lock);
1035 }
1036 }
1037 }
1038 }
1039
1040 /*
1041 * Clients like aggr create pseudo rings (mac_ring_t) and expose them to
1042 * their clients. There is a 1-1 mapping pseudo ring and the hardware
1043 * ring. ddi interrupt handles are exported from the hardware ring to
1044 * the pseudo ring. Thus when the interrupt handle changes, clients of
1045 * aggr that are using the handle need to use the new handle and
1046 * re-target their interrupts.
1047 */
1048 static void
mac_pseudo_ring_intr_retarget(mac_impl_t * mip,mac_ring_t * ring,ddi_intr_handle_t ddh)1049 mac_pseudo_ring_intr_retarget(mac_impl_t *mip, mac_ring_t *ring,
1050 ddi_intr_handle_t ddh)
1051 {
1052 mac_ring_t *pring;
1053 mac_group_t *pgroup;
1054 mac_impl_t *pmip;
1055 char macname[MAXNAMELEN];
1056 mac_perim_handle_t p_mph;
1057 uint64_t saved_gen_num;
1058
1059 again:
1060 pring = (mac_ring_t *)ring->mr_prh;
1061 pgroup = (mac_group_t *)pring->mr_gh;
1062 pmip = (mac_impl_t *)pgroup->mrg_mh;
1063 saved_gen_num = ring->mr_gen_num;
1064 (void) strlcpy(macname, pmip->mi_name, MAXNAMELEN);
1065 /*
1066 * We need to enter aggr's perimeter. The locking hierarchy
1067 * dictates that aggr's perimeter should be entered first
1068 * and then the port's perimeter. So drop the port's
1069 * perimeter, enter aggr's and then re-enter port's
1070 * perimeter.
1071 */
1072 i_mac_perim_exit(mip);
1073 /*
1074 * While we know pmip is the aggr's mip, there is a
1075 * possibility that aggr could have unregistered by
1076 * the time we exit port's perimeter (mip) and
1077 * enter aggr's perimeter (pmip). To avoid that
1078 * scenario, enter aggr's perimeter using its name.
1079 */
1080 if (mac_perim_enter_by_macname(macname, &p_mph) != 0)
1081 return;
1082 i_mac_perim_enter(mip);
1083 /*
1084 * Check if the ring got assigned to another aggregation before
1085 * be could enter aggr's and the port's perimeter. When a ring
1086 * gets deleted from an aggregation, it calls mac_stop_ring()
1087 * which increments the generation number. So checking
1088 * generation number will be enough.
1089 */
1090 if (ring->mr_gen_num != saved_gen_num && ring->mr_prh != NULL) {
1091 i_mac_perim_exit(mip);
1092 mac_perim_exit(p_mph);
1093 i_mac_perim_enter(mip);
1094 goto again;
1095 }
1096
1097 /* Check if pseudo ring is still present */
1098 if (ring->mr_prh != NULL) {
1099 pring->mr_info.mri_intr.mi_ddi_handle = ddh;
1100 pring->mr_info.mri_intr.mi_ddi_shared =
1101 ring->mr_info.mri_intr.mi_ddi_shared;
1102 if (ddh != NULL)
1103 mac_ring_intr_retarget(pgroup, pring);
1104 }
1105 i_mac_perim_exit(mip);
1106 mac_perim_exit(p_mph);
1107 }
1108 /*
1109 * API called by driver to provide new interrupt handle for TX/RX rings.
1110 * This usually happens when IRM (Interrupt Resource Manangement)
1111 * framework either gives the driver more MSI-x interrupts or takes
1112 * away MSI-x interrupts from the driver.
1113 */
1114 void
mac_ring_intr_set(mac_ring_handle_t mrh,ddi_intr_handle_t ddh)1115 mac_ring_intr_set(mac_ring_handle_t mrh, ddi_intr_handle_t ddh)
1116 {
1117 mac_ring_t *ring = (mac_ring_t *)mrh;
1118 mac_group_t *group = (mac_group_t *)ring->mr_gh;
1119 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
1120
1121 i_mac_perim_enter(mip);
1122 ring->mr_info.mri_intr.mi_ddi_handle = ddh;
1123 if (ddh == NULL) {
1124 /* Interrupts being reset */
1125 ring->mr_info.mri_intr.mi_ddi_shared = B_FALSE;
1126 if (ring->mr_prh != NULL) {
1127 mac_pseudo_ring_intr_retarget(mip, ring, ddh);
1128 return;
1129 }
1130 } else {
1131 /* New interrupt handle */
1132 mac_compare_ddi_handle(mip->mi_rx_groups,
1133 mip->mi_rx_group_count, ring);
1134 if (!ring->mr_info.mri_intr.mi_ddi_shared) {
1135 mac_compare_ddi_handle(mip->mi_tx_groups,
1136 mip->mi_tx_group_count, ring);
1137 }
1138 if (ring->mr_prh != NULL) {
1139 mac_pseudo_ring_intr_retarget(mip, ring, ddh);
1140 return;
1141 } else {
1142 mac_ring_intr_retarget(group, ring);
1143 }
1144 }
1145 i_mac_perim_exit(mip);
1146 }
1147
1148 /* PRIVATE FUNCTIONS, FOR INTERNAL USE ONLY */
1149
1150 /*
1151 * Updates the mac_impl structure with the current state of the link
1152 */
1153 static void
i_mac_log_link_state(mac_impl_t * mip)1154 i_mac_log_link_state(mac_impl_t *mip)
1155 {
1156 /*
1157 * If no change, then it is not interesting.
1158 */
1159 if (mip->mi_lastlowlinkstate == mip->mi_lowlinkstate)
1160 return;
1161
1162 switch (mip->mi_lowlinkstate) {
1163 case LINK_STATE_UP:
1164 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_LINK_DETAILS) {
1165 char det[200];
1166
1167 mip->mi_type->mt_ops.mtops_link_details(det,
1168 sizeof (det), (mac_handle_t)mip, mip->mi_pdata);
1169
1170 cmn_err(CE_NOTE, "!%s link up, %s", mip->mi_name, det);
1171 } else {
1172 cmn_err(CE_NOTE, "!%s link up", mip->mi_name);
1173 }
1174 break;
1175
1176 case LINK_STATE_DOWN:
1177 /*
1178 * Only transitions from UP to DOWN are interesting
1179 */
1180 if (mip->mi_lastlowlinkstate != LINK_STATE_UNKNOWN)
1181 cmn_err(CE_NOTE, "!%s link down", mip->mi_name);
1182 break;
1183
1184 case LINK_STATE_UNKNOWN:
1185 /*
1186 * This case is normally not interesting.
1187 */
1188 break;
1189 }
1190 mip->mi_lastlowlinkstate = mip->mi_lowlinkstate;
1191 }
1192
1193 /*
1194 * Main routine for the callbacks notifications thread
1195 */
1196 static void
i_mac_notify_thread(void * arg)1197 i_mac_notify_thread(void *arg)
1198 {
1199 mac_impl_t *mip = arg;
1200 callb_cpr_t cprinfo;
1201 mac_cb_t *mcb;
1202 mac_cb_info_t *mcbi;
1203 mac_notify_cb_t *mncb;
1204
1205 mcbi = &mip->mi_notify_cb_info;
1206 CALLB_CPR_INIT(&cprinfo, mcbi->mcbi_lockp, callb_generic_cpr,
1207 "i_mac_notify_thread");
1208
1209 mutex_enter(mcbi->mcbi_lockp);
1210
1211 for (;;) {
1212 uint32_t bits;
1213 uint32_t type;
1214
1215 bits = mip->mi_notify_bits;
1216 if (bits == 0) {
1217 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1218 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
1219 CALLB_CPR_SAFE_END(&cprinfo, mcbi->mcbi_lockp);
1220 continue;
1221 }
1222 mip->mi_notify_bits = 0;
1223 if ((bits & (1 << MAC_NNOTE)) != 0) {
1224 /* request to quit */
1225 ASSERT(mip->mi_state_flags & MIS_DISABLED);
1226 break;
1227 }
1228
1229 mutex_exit(mcbi->mcbi_lockp);
1230
1231 /*
1232 * Log link changes on the actual link, but then do reports on
1233 * synthetic state (if part of a bridge).
1234 */
1235 if ((bits & (1 << MAC_NOTE_LOWLINK)) != 0) {
1236 link_state_t newstate;
1237 mac_handle_t mh;
1238
1239 i_mac_log_link_state(mip);
1240 newstate = mip->mi_lowlinkstate;
1241 if (mip->mi_bridge_link != NULL) {
1242 mutex_enter(&mip->mi_bridge_lock);
1243 if ((mh = mip->mi_bridge_link) != NULL) {
1244 newstate = mac_bridge_ls_cb(mh,
1245 newstate);
1246 }
1247 mutex_exit(&mip->mi_bridge_lock);
1248 }
1249 if (newstate != mip->mi_linkstate) {
1250 mip->mi_linkstate = newstate;
1251 bits |= 1 << MAC_NOTE_LINK;
1252 }
1253 }
1254
1255 /*
1256 * Do notification callbacks for each notification type.
1257 */
1258 for (type = 0; type < MAC_NNOTE; type++) {
1259 if ((bits & (1 << type)) == 0) {
1260 continue;
1261 }
1262
1263 if (mac_notify_cb_list[type] != NULL)
1264 (*mac_notify_cb_list[type])(mip);
1265
1266 /*
1267 * Walk the list of notifications.
1268 */
1269 MAC_CALLBACK_WALKER_INC(&mip->mi_notify_cb_info);
1270 for (mcb = mip->mi_notify_cb_list; mcb != NULL;
1271 mcb = mcb->mcb_nextp) {
1272 mncb = (mac_notify_cb_t *)mcb->mcb_objp;
1273 mncb->mncb_fn(mncb->mncb_arg, type);
1274 }
1275 MAC_CALLBACK_WALKER_DCR(&mip->mi_notify_cb_info,
1276 &mip->mi_notify_cb_list);
1277 }
1278
1279 mutex_enter(mcbi->mcbi_lockp);
1280 }
1281
1282 mip->mi_state_flags |= MIS_NOTIFY_DONE;
1283 cv_broadcast(&mcbi->mcbi_cv);
1284
1285 /* CALLB_CPR_EXIT drops the lock */
1286 CALLB_CPR_EXIT(&cprinfo);
1287 thread_exit();
1288 }
1289
1290 /*
1291 * Signal the i_mac_notify_thread asking it to quit.
1292 * Then wait till it is done.
1293 */
1294 void
i_mac_notify_exit(mac_impl_t * mip)1295 i_mac_notify_exit(mac_impl_t *mip)
1296 {
1297 mac_cb_info_t *mcbi;
1298
1299 mcbi = &mip->mi_notify_cb_info;
1300
1301 mutex_enter(mcbi->mcbi_lockp);
1302 mip->mi_notify_bits = (1 << MAC_NNOTE);
1303 cv_broadcast(&mcbi->mcbi_cv);
1304
1305
1306 while ((mip->mi_notify_thread != NULL) &&
1307 !(mip->mi_state_flags & MIS_NOTIFY_DONE)) {
1308 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
1309 }
1310
1311 /* Necessary clean up before doing kmem_cache_free */
1312 mip->mi_state_flags &= ~MIS_NOTIFY_DONE;
1313 mip->mi_notify_bits = 0;
1314 mip->mi_notify_thread = NULL;
1315 mutex_exit(mcbi->mcbi_lockp);
1316 }
1317
1318 /*
1319 * Entry point invoked by drivers to dynamically add a ring to an
1320 * existing group.
1321 */
1322 int
mac_group_add_ring(mac_group_handle_t gh,int index)1323 mac_group_add_ring(mac_group_handle_t gh, int index)
1324 {
1325 mac_group_t *group = (mac_group_t *)gh;
1326 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
1327 int ret;
1328
1329 i_mac_perim_enter(mip);
1330 ret = i_mac_group_add_ring(group, NULL, index);
1331 i_mac_perim_exit(mip);
1332 return (ret);
1333 }
1334
1335 /*
1336 * Entry point invoked by drivers to dynamically remove a ring
1337 * from an existing group. The specified ring handle must no longer
1338 * be used by the driver after a call to this function.
1339 */
1340 void
mac_group_rem_ring(mac_group_handle_t gh,mac_ring_handle_t rh)1341 mac_group_rem_ring(mac_group_handle_t gh, mac_ring_handle_t rh)
1342 {
1343 mac_group_t *group = (mac_group_t *)gh;
1344 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
1345
1346 i_mac_perim_enter(mip);
1347 i_mac_group_rem_ring(group, (mac_ring_t *)rh, B_TRUE);
1348 i_mac_perim_exit(mip);
1349 }
1350
1351 /*
1352 * mac_prop_info_*() callbacks called from the driver's prefix_propinfo()
1353 * entry points.
1354 */
1355
1356 void
mac_prop_info_set_default_uint8(mac_prop_info_handle_t ph,uint8_t val)1357 mac_prop_info_set_default_uint8(mac_prop_info_handle_t ph, uint8_t val)
1358 {
1359 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1360
1361 /* nothing to do if the caller doesn't want the default value */
1362 if (pr->pr_default == NULL)
1363 return;
1364
1365 ASSERT(pr->pr_default_size >= sizeof (uint8_t));
1366
1367 *(uint8_t *)(pr->pr_default) = val;
1368 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1369 }
1370
1371 void
mac_prop_info_set_default_uint64(mac_prop_info_handle_t ph,uint64_t val)1372 mac_prop_info_set_default_uint64(mac_prop_info_handle_t ph, uint64_t val)
1373 {
1374 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1375
1376 /* nothing to do if the caller doesn't want the default value */
1377 if (pr->pr_default == NULL)
1378 return;
1379
1380 ASSERT(pr->pr_default_size >= sizeof (uint64_t));
1381
1382 bcopy(&val, pr->pr_default, sizeof (val));
1383
1384 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1385 }
1386
1387 void
mac_prop_info_set_default_uint32(mac_prop_info_handle_t ph,uint32_t val)1388 mac_prop_info_set_default_uint32(mac_prop_info_handle_t ph, uint32_t val)
1389 {
1390 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1391
1392 /* nothing to do if the caller doesn't want the default value */
1393 if (pr->pr_default == NULL)
1394 return;
1395
1396 ASSERT(pr->pr_default_size >= sizeof (uint32_t));
1397
1398 bcopy(&val, pr->pr_default, sizeof (val));
1399
1400 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1401 }
1402
1403 void
mac_prop_info_set_default_str(mac_prop_info_handle_t ph,const char * str)1404 mac_prop_info_set_default_str(mac_prop_info_handle_t ph, const char *str)
1405 {
1406 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1407
1408 /* nothing to do if the caller doesn't want the default value */
1409 if (pr->pr_default == NULL)
1410 return;
1411
1412 if (strlen(str) >= pr->pr_default_size)
1413 pr->pr_errno = ENOBUFS;
1414 else
1415 (void) strlcpy(pr->pr_default, str, pr->pr_default_size);
1416 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1417 }
1418
1419 void
mac_prop_info_set_default_link_flowctrl(mac_prop_info_handle_t ph,link_flowctrl_t val)1420 mac_prop_info_set_default_link_flowctrl(mac_prop_info_handle_t ph,
1421 link_flowctrl_t val)
1422 {
1423 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1424
1425 /* nothing to do if the caller doesn't want the default value */
1426 if (pr->pr_default == NULL)
1427 return;
1428
1429 ASSERT(pr->pr_default_size >= sizeof (link_flowctrl_t));
1430
1431 bcopy(&val, pr->pr_default, sizeof (val));
1432
1433 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1434 }
1435
1436 void
mac_prop_info_set_range_uint32(mac_prop_info_handle_t ph,uint32_t min,uint32_t max)1437 mac_prop_info_set_range_uint32(mac_prop_info_handle_t ph, uint32_t min,
1438 uint32_t max)
1439 {
1440 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1441 mac_propval_range_t *range = pr->pr_range;
1442 mac_propval_uint32_range_t *range32;
1443
1444 /* nothing to do if the caller doesn't want the range info */
1445 if (range == NULL)
1446 return;
1447
1448 if (pr->pr_range_cur_count++ == 0) {
1449 /* first range */
1450 pr->pr_flags |= MAC_PROP_INFO_RANGE;
1451 range->mpr_type = MAC_PROPVAL_UINT32;
1452 } else {
1453 /* all ranges of a property should be of the same type */
1454 ASSERT(range->mpr_type == MAC_PROPVAL_UINT32);
1455 if (pr->pr_range_cur_count > range->mpr_count) {
1456 pr->pr_errno = ENOSPC;
1457 return;
1458 }
1459 }
1460
1461 range32 = range->mpr_range_uint32;
1462 range32[pr->pr_range_cur_count - 1].mpur_min = min;
1463 range32[pr->pr_range_cur_count - 1].mpur_max = max;
1464 }
1465
1466 void
mac_prop_info_set_perm(mac_prop_info_handle_t ph,uint8_t perm)1467 mac_prop_info_set_perm(mac_prop_info_handle_t ph, uint8_t perm)
1468 {
1469 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1470
1471 pr->pr_perm = perm;
1472 pr->pr_flags |= MAC_PROP_INFO_PERM;
1473 }
1474
mac_hcksum_get(mblk_t * mp,uint32_t * start,uint32_t * stuff,uint32_t * end,uint32_t * value,uint32_t * flags_ptr)1475 void mac_hcksum_get(mblk_t *mp, uint32_t *start, uint32_t *stuff,
1476 uint32_t *end, uint32_t *value, uint32_t *flags_ptr)
1477 {
1478 uint32_t flags;
1479
1480 ASSERT(DB_TYPE(mp) == M_DATA);
1481
1482 flags = DB_CKSUMFLAGS(mp) & HCK_FLAGS;
1483 if ((flags & (HCK_PARTIALCKSUM | HCK_FULLCKSUM)) != 0) {
1484 if (value != NULL)
1485 *value = (uint32_t)DB_CKSUM16(mp);
1486 if ((flags & HCK_PARTIALCKSUM) != 0) {
1487 if (start != NULL)
1488 *start = (uint32_t)DB_CKSUMSTART(mp);
1489 if (stuff != NULL)
1490 *stuff = (uint32_t)DB_CKSUMSTUFF(mp);
1491 if (end != NULL)
1492 *end = (uint32_t)DB_CKSUMEND(mp);
1493 }
1494 }
1495
1496 if (flags_ptr != NULL)
1497 *flags_ptr = flags;
1498 }
1499
mac_hcksum_set(mblk_t * mp,uint32_t start,uint32_t stuff,uint32_t end,uint32_t value,uint32_t flags)1500 void mac_hcksum_set(mblk_t *mp, uint32_t start, uint32_t stuff,
1501 uint32_t end, uint32_t value, uint32_t flags)
1502 {
1503 ASSERT(DB_TYPE(mp) == M_DATA);
1504
1505 DB_CKSUMSTART(mp) = (intptr_t)start;
1506 DB_CKSUMSTUFF(mp) = (intptr_t)stuff;
1507 DB_CKSUMEND(mp) = (intptr_t)end;
1508 DB_CKSUMFLAGS(mp) = (uint16_t)flags;
1509 DB_CKSUM16(mp) = (uint16_t)value;
1510 }
1511
1512 void
mac_lso_get(mblk_t * mp,uint32_t * mss,uint32_t * flags)1513 mac_lso_get(mblk_t *mp, uint32_t *mss, uint32_t *flags)
1514 {
1515 ASSERT(DB_TYPE(mp) == M_DATA);
1516
1517 if (flags != NULL) {
1518 *flags = DB_CKSUMFLAGS(mp) & HW_LSO;
1519 if ((*flags != 0) && (mss != NULL))
1520 *mss = (uint32_t)DB_LSOMSS(mp);
1521 }
1522 }
1523
1524 void
mac_transceiver_info_set_present(mac_transceiver_info_t * infop,boolean_t present)1525 mac_transceiver_info_set_present(mac_transceiver_info_t *infop,
1526 boolean_t present)
1527 {
1528 infop->mti_present = present;
1529 }
1530
1531 void
mac_transceiver_info_set_usable(mac_transceiver_info_t * infop,boolean_t usable)1532 mac_transceiver_info_set_usable(mac_transceiver_info_t *infop,
1533 boolean_t usable)
1534 {
1535 infop->mti_usable = usable;
1536 }
1537