1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2019 Joyent, Inc.
25 * Copyright 2017 RackTop Systems.
26 * Copyright 2022 OmniOS Community Edition (OmniOSce) Association.
27 */
28
29 /*
30 * - General Introduction:
31 *
32 * This file contains the implementation of the MAC client kernel
33 * API and related code. The MAC client API allows a kernel module
34 * to gain access to a MAC instance (physical NIC, link aggregation, etc).
35 * It allows a MAC client to associate itself with a MAC address,
36 * VLANs, callback functions for data traffic and for promiscuous mode.
37 * The MAC client API is also used to specify the properties associated
38 * with a MAC client, such as bandwidth limits, priority, CPUS, etc.
39 * These properties are further used to determine the hardware resources
40 * to allocate to the various MAC clients.
41 *
42 * - Primary MAC clients:
43 *
44 * The MAC client API refers to "primary MAC clients". A primary MAC
45 * client is a client which "owns" the primary MAC address of
46 * the underlying MAC instance. The primary MAC address is called out
47 * since it is associated with specific semantics: the primary MAC
48 * address is the MAC address which is assigned to the IP interface
49 * when it is plumbed, and the primary MAC address is assigned
50 * to VLAN data-links. The primary address of a MAC instance can
51 * also change dynamically from under the MAC client, for example
52 * as a result of a change of state of a link aggregation. In that
53 * case the MAC layer automatically updates all data-structures which
54 * refer to the current value of the primary MAC address. Typical
55 * primary MAC clients are dls, aggr, and xnb. A typical non-primary
56 * MAC client is the vnic driver.
57 *
58 * - Virtual Switching:
59 *
60 * The MAC layer implements a virtual switch between the MAC clients
61 * (primary and non-primary) defined on top of the same underlying
62 * NIC (physical, link aggregation, etc). The virtual switch is
63 * VLAN-aware, i.e. it allows multiple MAC clients to be member
64 * of one or more VLANs, and the virtual switch will distribute
65 * multicast tagged packets only to the member of the corresponding
66 * VLANs.
67 *
68 * - Upper vs Lower MAC:
69 *
70 * Creating a VNIC on top of a MAC instance effectively causes
71 * two MAC instances to be layered on top of each other, one for
72 * the VNIC(s), one for the underlying MAC instance (physical NIC,
73 * link aggregation, etc). In the code below we refer to the
74 * underlying NIC as the "lower MAC", and we refer to VNICs as
75 * the "upper MAC".
76 *
77 * - Pass-through for VNICs:
78 *
79 * When VNICs are created on top of an underlying MAC, this causes
80 * a layering of two MAC instances. Since the lower MAC already
81 * does the switching and demultiplexing to its MAC clients, the
82 * upper MAC would simply have to pass packets to the layer below
83 * or above it, which would introduce overhead. In order to avoid
84 * this overhead, the MAC layer implements a pass-through mechanism
85 * for VNICs. When a VNIC opens the lower MAC instance, it saves
86 * the MAC client handle it optains from the MAC layer. When a MAC
87 * client opens a VNIC (upper MAC), the MAC layer detects that
88 * the MAC being opened is a VNIC, and gets the MAC client handle
89 * that the VNIC driver obtained from the lower MAC. This exchange
90 * is done through a private capability between the MAC layer
91 * and the VNIC driver. The upper MAC then returns that handle
92 * directly to its MAC client. Any operation done by the upper
93 * MAC client is now done on the lower MAC client handle, which
94 * allows the VNIC driver to be completely bypassed for the
95 * performance sensitive data-path.
96 *
97 * - Secondary MACs for VNICs:
98 *
99 * VNICs support multiple upper mac clients to enable support for
100 * multiple MAC addresses on the VNIC. When the VNIC is created the
101 * initial mac client is the primary upper mac. Any additional mac
102 * clients are secondary macs. These are kept in sync with the primary
103 * (for things such as the rx function and resource control settings)
104 * using the same private capability interface between the MAC layer
105 * and the VNIC layer.
106 *
107 */
108
109 #include <sys/types.h>
110 #include <sys/conf.h>
111 #include <sys/id_space.h>
112 #include <sys/esunddi.h>
113 #include <sys/stat.h>
114 #include <sys/mkdev.h>
115 #include <sys/stream.h>
116 #include <sys/strsun.h>
117 #include <sys/strsubr.h>
118 #include <sys/pattr.h>
119 #include <sys/dlpi.h>
120 #include <sys/modhash.h>
121 #include <sys/mac_impl.h>
122 #include <sys/mac_client_impl.h>
123 #include <sys/mac_soft_ring.h>
124 #include <sys/mac_stat.h>
125 #include <sys/dls.h>
126 #include <sys/dld.h>
127 #include <sys/modctl.h>
128 #include <sys/fs/dv_node.h>
129 #include <sys/thread.h>
130 #include <sys/proc.h>
131 #include <sys/callb.h>
132 #include <sys/cpuvar.h>
133 #include <sys/atomic.h>
134 #include <sys/sdt.h>
135 #include <sys/mac_flow.h>
136 #include <sys/ddi_intr_impl.h>
137 #include <sys/disp.h>
138 #include <sys/sdt.h>
139 #include <sys/vnic.h>
140 #include <sys/vnic_impl.h>
141 #include <sys/vlan.h>
142 #include <inet/ip.h>
143 #include <inet/ip6.h>
144 #include <sys/exacct.h>
145 #include <sys/exacct_impl.h>
146 #include <inet/nd.h>
147 #include <sys/ethernet.h>
148
149 kmem_cache_t *mac_client_impl_cache;
150 kmem_cache_t *mac_promisc_impl_cache;
151
152 static boolean_t mac_client_single_rcvr(mac_client_impl_t *);
153 static flow_entry_t *mac_client_swap_mciflent(mac_client_impl_t *);
154 static flow_entry_t *mac_client_get_flow(mac_client_impl_t *,
155 mac_unicast_impl_t *);
156 static void mac_client_remove_flow_from_list(mac_client_impl_t *,
157 flow_entry_t *);
158 static void mac_client_add_to_flow_list(mac_client_impl_t *, flow_entry_t *);
159 static void mac_rename_flow_names(mac_client_impl_t *, const char *);
160 static void mac_virtual_link_update(mac_impl_t *);
161 static int mac_client_datapath_setup(mac_client_impl_t *, uint16_t,
162 uint8_t *, mac_resource_props_t *, boolean_t, mac_unicast_impl_t *);
163 static void mac_client_datapath_teardown(mac_client_handle_t,
164 mac_unicast_impl_t *, flow_entry_t *);
165 static int mac_resource_ctl_set(mac_client_handle_t, mac_resource_props_t *);
166
167 /* ARGSUSED */
168 static int
i_mac_client_impl_ctor(void * buf,void * arg,int kmflag)169 i_mac_client_impl_ctor(void *buf, void *arg, int kmflag)
170 {
171 int i;
172 mac_client_impl_t *mcip = buf;
173
174 bzero(buf, MAC_CLIENT_IMPL_SIZE);
175 mutex_init(&mcip->mci_tx_cb_lock, NULL, MUTEX_DRIVER, NULL);
176 mcip->mci_tx_notify_cb_info.mcbi_lockp = &mcip->mci_tx_cb_lock;
177
178 ASSERT(mac_tx_percpu_cnt >= 0);
179 for (i = 0; i <= mac_tx_percpu_cnt; i++) {
180 mutex_init(&mcip->mci_tx_pcpu[i].pcpu_tx_lock, NULL,
181 MUTEX_DRIVER, NULL);
182 }
183 cv_init(&mcip->mci_tx_cv, NULL, CV_DRIVER, NULL);
184
185 return (0);
186 }
187
188 /* ARGSUSED */
189 static void
i_mac_client_impl_dtor(void * buf,void * arg)190 i_mac_client_impl_dtor(void *buf, void *arg)
191 {
192 int i;
193 mac_client_impl_t *mcip = buf;
194
195 ASSERT(mcip->mci_promisc_list == NULL);
196 ASSERT(mcip->mci_unicast_list == NULL);
197 ASSERT(mcip->mci_state_flags == 0);
198 ASSERT(mcip->mci_tx_flag == 0);
199
200 mutex_destroy(&mcip->mci_tx_cb_lock);
201
202 ASSERT(mac_tx_percpu_cnt >= 0);
203 for (i = 0; i <= mac_tx_percpu_cnt; i++) {
204 ASSERT(mcip->mci_tx_pcpu[i].pcpu_tx_refcnt == 0);
205 mutex_destroy(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
206 }
207 cv_destroy(&mcip->mci_tx_cv);
208 }
209
210 /* ARGSUSED */
211 static int
i_mac_promisc_impl_ctor(void * buf,void * arg,int kmflag)212 i_mac_promisc_impl_ctor(void *buf, void *arg, int kmflag)
213 {
214 mac_promisc_impl_t *mpip = buf;
215
216 bzero(buf, sizeof (mac_promisc_impl_t));
217 mpip->mpi_mci_link.mcb_objp = buf;
218 mpip->mpi_mci_link.mcb_objsize = sizeof (mac_promisc_impl_t);
219 mpip->mpi_mi_link.mcb_objp = buf;
220 mpip->mpi_mi_link.mcb_objsize = sizeof (mac_promisc_impl_t);
221 return (0);
222 }
223
224 /* ARGSUSED */
225 static void
i_mac_promisc_impl_dtor(void * buf,void * arg)226 i_mac_promisc_impl_dtor(void *buf, void *arg)
227 {
228 mac_promisc_impl_t *mpip = buf;
229
230 ASSERT(mpip->mpi_mci_link.mcb_objp != NULL);
231 ASSERT(mpip->mpi_mci_link.mcb_objsize == sizeof (mac_promisc_impl_t));
232 ASSERT(mpip->mpi_mi_link.mcb_objp == mpip->mpi_mci_link.mcb_objp);
233 ASSERT(mpip->mpi_mi_link.mcb_objsize == sizeof (mac_promisc_impl_t));
234
235 mpip->mpi_mci_link.mcb_objp = NULL;
236 mpip->mpi_mci_link.mcb_objsize = 0;
237 mpip->mpi_mi_link.mcb_objp = NULL;
238 mpip->mpi_mi_link.mcb_objsize = 0;
239
240 ASSERT(mpip->mpi_mci_link.mcb_flags == 0);
241 mpip->mpi_mci_link.mcb_objsize = 0;
242 }
243
244 void
mac_client_init(void)245 mac_client_init(void)
246 {
247 ASSERT(mac_tx_percpu_cnt >= 0);
248
249 mac_client_impl_cache = kmem_cache_create("mac_client_impl_cache",
250 MAC_CLIENT_IMPL_SIZE, 0, i_mac_client_impl_ctor,
251 i_mac_client_impl_dtor, NULL, NULL, NULL, 0);
252 ASSERT(mac_client_impl_cache != NULL);
253
254 mac_promisc_impl_cache = kmem_cache_create("mac_promisc_impl_cache",
255 sizeof (mac_promisc_impl_t), 0, i_mac_promisc_impl_ctor,
256 i_mac_promisc_impl_dtor, NULL, NULL, NULL, 0);
257 ASSERT(mac_promisc_impl_cache != NULL);
258 }
259
260 void
mac_client_fini(void)261 mac_client_fini(void)
262 {
263 kmem_cache_destroy(mac_client_impl_cache);
264 kmem_cache_destroy(mac_promisc_impl_cache);
265 }
266
267 /*
268 * Return the lower MAC client handle from the VNIC driver for the
269 * specified VNIC MAC instance.
270 */
271 mac_client_impl_t *
mac_vnic_lower(mac_impl_t * mip)272 mac_vnic_lower(mac_impl_t *mip)
273 {
274 mac_capab_vnic_t cap;
275 mac_client_impl_t *mcip;
276
277 VERIFY(i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, &cap));
278 mcip = cap.mcv_mac_client_handle(cap.mcv_arg);
279
280 return (mcip);
281 }
282
283 /*
284 * Update the secondary macs
285 */
286 void
mac_vnic_secondary_update(mac_impl_t * mip)287 mac_vnic_secondary_update(mac_impl_t *mip)
288 {
289 mac_capab_vnic_t cap;
290
291 VERIFY(i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, &cap));
292 cap.mcv_mac_secondary_update(cap.mcv_arg);
293 }
294
295 /*
296 * Return the MAC client handle of the primary MAC client for the
297 * specified MAC instance, or NULL otherwise.
298 */
299 mac_client_impl_t *
mac_primary_client_handle(mac_impl_t * mip)300 mac_primary_client_handle(mac_impl_t *mip)
301 {
302 mac_client_impl_t *mcip;
303
304 if (mip->mi_state_flags & MIS_IS_VNIC)
305 return (mac_vnic_lower(mip));
306
307 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
308
309 for (mcip = mip->mi_clients_list; mcip != NULL;
310 mcip = mcip->mci_client_next) {
311 if (MCIP_DATAPATH_SETUP(mcip) && mac_is_primary_client(mcip))
312 return (mcip);
313 }
314 return (NULL);
315 }
316
317 /*
318 * Open a MAC specified by its MAC name.
319 */
320 int
mac_open(const char * macname,mac_handle_t * mhp)321 mac_open(const char *macname, mac_handle_t *mhp)
322 {
323 mac_impl_t *mip;
324 int err;
325
326 /*
327 * Look up its entry in the global hash table.
328 */
329 if ((err = mac_hold(macname, &mip)) != 0)
330 return (err);
331
332 /*
333 * Hold the dip associated to the MAC to prevent it from being
334 * detached. For a softmac, its underlying dip is held by the
335 * mi_open() callback.
336 *
337 * This is done to be more tolerant with some defective drivers,
338 * which incorrectly handle mac_unregister() failure in their
339 * xxx_detach() routine. For example, some drivers ignore the
340 * failure of mac_unregister() and free all resources that
341 * that are needed for data transmition.
342 */
343 e_ddi_hold_devi(mip->mi_dip);
344
345 if (!(mip->mi_callbacks->mc_callbacks & MC_OPEN)) {
346 *mhp = (mac_handle_t)mip;
347 return (0);
348 }
349
350 /*
351 * The mac perimeter is used in both mac_open and mac_close by the
352 * framework to single thread the MC_OPEN/MC_CLOSE of drivers.
353 */
354 i_mac_perim_enter(mip);
355 mip->mi_oref++;
356 if (mip->mi_oref != 1 || ((err = mip->mi_open(mip->mi_driver)) == 0)) {
357 *mhp = (mac_handle_t)mip;
358 i_mac_perim_exit(mip);
359 return (0);
360 }
361 mip->mi_oref--;
362 ddi_release_devi(mip->mi_dip);
363 mac_rele(mip);
364 i_mac_perim_exit(mip);
365 return (err);
366 }
367
368 /*
369 * Open a MAC specified by its linkid.
370 */
371 int
mac_open_by_linkid(datalink_id_t linkid,mac_handle_t * mhp)372 mac_open_by_linkid(datalink_id_t linkid, mac_handle_t *mhp)
373 {
374 dls_dl_handle_t dlh;
375 int err;
376
377 if ((err = dls_devnet_hold_tmp(linkid, &dlh)) != 0)
378 return (err);
379
380 dls_devnet_prop_task_wait(dlh);
381
382 err = mac_open(dls_devnet_mac(dlh), mhp);
383
384 dls_devnet_rele_tmp(dlh);
385 return (err);
386 }
387
388 /*
389 * Open a MAC specified by its link name.
390 */
391 int
mac_open_by_linkname(const char * link,mac_handle_t * mhp)392 mac_open_by_linkname(const char *link, mac_handle_t *mhp)
393 {
394 datalink_id_t linkid;
395 int err;
396
397 if ((err = dls_mgmt_get_linkid(link, &linkid)) != 0)
398 return (err);
399 return (mac_open_by_linkid(linkid, mhp));
400 }
401
402 /*
403 * Close the specified MAC.
404 */
405 void
mac_close(mac_handle_t mh)406 mac_close(mac_handle_t mh)
407 {
408 mac_impl_t *mip = (mac_impl_t *)mh;
409
410 i_mac_perim_enter(mip);
411 /*
412 * The mac perimeter is used in both mac_open and mac_close by the
413 * framework to single thread the MC_OPEN/MC_CLOSE of drivers.
414 */
415 if (mip->mi_callbacks->mc_callbacks & MC_OPEN) {
416 ASSERT(mip->mi_oref != 0);
417 if (--mip->mi_oref == 0) {
418 if ((mip->mi_callbacks->mc_callbacks & MC_CLOSE))
419 mip->mi_close(mip->mi_driver);
420 }
421 }
422 i_mac_perim_exit(mip);
423 ddi_release_devi(mip->mi_dip);
424 mac_rele(mip);
425 }
426
427 /*
428 * Misc utility functions to retrieve various information about a MAC
429 * instance or a MAC client.
430 */
431
432 const mac_info_t *
mac_info(mac_handle_t mh)433 mac_info(mac_handle_t mh)
434 {
435 return (&((mac_impl_t *)mh)->mi_info);
436 }
437
438 dev_info_t *
mac_devinfo_get(mac_handle_t mh)439 mac_devinfo_get(mac_handle_t mh)
440 {
441 return (((mac_impl_t *)mh)->mi_dip);
442 }
443
444 void *
mac_driver(mac_handle_t mh)445 mac_driver(mac_handle_t mh)
446 {
447 return (((mac_impl_t *)mh)->mi_driver);
448 }
449
450 const char *
mac_name(mac_handle_t mh)451 mac_name(mac_handle_t mh)
452 {
453 return (((mac_impl_t *)mh)->mi_name);
454 }
455
456 int
mac_type(mac_handle_t mh)457 mac_type(mac_handle_t mh)
458 {
459 return (((mac_impl_t *)mh)->mi_type->mt_type);
460 }
461
462 int
mac_nativetype(mac_handle_t mh)463 mac_nativetype(mac_handle_t mh)
464 {
465 return (((mac_impl_t *)mh)->mi_type->mt_nativetype);
466 }
467
468 char *
mac_client_name(mac_client_handle_t mch)469 mac_client_name(mac_client_handle_t mch)
470 {
471 return (((mac_client_impl_t *)mch)->mci_name);
472 }
473
474 minor_t
mac_minor(mac_handle_t mh)475 mac_minor(mac_handle_t mh)
476 {
477 return (((mac_impl_t *)mh)->mi_minor);
478 }
479
480 /*
481 * Return the VID associated with a MAC client. This function should
482 * be called for clients which are associated with only one VID.
483 */
484 uint16_t
mac_client_vid(mac_client_handle_t mch)485 mac_client_vid(mac_client_handle_t mch)
486 {
487 uint16_t vid = VLAN_ID_NONE;
488 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
489 flow_desc_t flow_desc;
490
491 if (mcip->mci_nflents == 0)
492 return (vid);
493
494 ASSERT(MCIP_DATAPATH_SETUP(mcip) && mac_client_single_rcvr(mcip));
495
496 mac_flow_get_desc(mcip->mci_flent, &flow_desc);
497 if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0)
498 vid = flow_desc.fd_vid;
499
500 return (vid);
501 }
502
503 /*
504 * Return whether the specified MAC client corresponds to a VLAN VNIC.
505 */
506 boolean_t
mac_client_is_vlan_vnic(mac_client_handle_t mch)507 mac_client_is_vlan_vnic(mac_client_handle_t mch)
508 {
509 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
510
511 return (((mcip->mci_state_flags & MCIS_IS_VNIC) != 0) &&
512 ((mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) != 0));
513 }
514
515 /*
516 * Return the link speed associated with the specified MAC client.
517 *
518 * The link speed of a MAC client is equal to the smallest value of
519 * 1) the current link speed of the underlying NIC, or
520 * 2) the bandwidth limit set for the MAC client.
521 *
522 * Note that the bandwidth limit can be higher than the speed
523 * of the underlying NIC. This is allowed to avoid spurious
524 * administration action failures or artifically lowering the
525 * bandwidth limit of a link that may have temporarily lowered
526 * its link speed due to hardware problem or administrator action.
527 */
528 static uint64_t
mac_client_ifspeed(mac_client_impl_t * mcip)529 mac_client_ifspeed(mac_client_impl_t *mcip)
530 {
531 mac_impl_t *mip = mcip->mci_mip;
532 uint64_t nic_speed;
533
534 nic_speed = mac_stat_get((mac_handle_t)mip, MAC_STAT_IFSPEED);
535
536 if (nic_speed == 0) {
537 return (0);
538 } else {
539 uint64_t policy_limit = (uint64_t)-1;
540
541 if (MCIP_RESOURCE_PROPS_MASK(mcip) & MRP_MAXBW)
542 policy_limit = MCIP_RESOURCE_PROPS_MAXBW(mcip);
543
544 return (MIN(policy_limit, nic_speed));
545 }
546 }
547
548 /*
549 * Return the link state of the specified client. If here are more
550 * than one clients of the underying mac_impl_t, the link state
551 * will always be UP regardless of the link state of the underlying
552 * mac_impl_t. This is needed to allow the MAC clients to continue
553 * to communicate with each other even when the physical link of
554 * their mac_impl_t is down.
555 */
556 static uint64_t
mac_client_link_state(mac_client_impl_t * mcip)557 mac_client_link_state(mac_client_impl_t *mcip)
558 {
559 mac_impl_t *mip = mcip->mci_mip;
560 uint16_t vid;
561 mac_client_impl_t *mci_list;
562 mac_unicast_impl_t *mui_list, *oth_mui_list;
563
564 /*
565 * Returns LINK_STATE_UP if there are other MAC clients defined on
566 * mac_impl_t which share same VLAN ID as that of mcip. Note that
567 * if 'mcip' has more than one VID's then we match ANY one of the
568 * VID's with other MAC client's VID's and return LINK_STATE_UP.
569 */
570 rw_enter(&mcip->mci_rw_lock, RW_READER);
571 for (mui_list = mcip->mci_unicast_list; mui_list != NULL;
572 mui_list = mui_list->mui_next) {
573 vid = mui_list->mui_vid;
574 for (mci_list = mip->mi_clients_list; mci_list != NULL;
575 mci_list = mci_list->mci_client_next) {
576 if (mci_list == mcip)
577 continue;
578 for (oth_mui_list = mci_list->mci_unicast_list;
579 oth_mui_list != NULL; oth_mui_list = oth_mui_list->
580 mui_next) {
581 if (vid == oth_mui_list->mui_vid) {
582 rw_exit(&mcip->mci_rw_lock);
583 return (LINK_STATE_UP);
584 }
585 }
586 }
587 }
588 rw_exit(&mcip->mci_rw_lock);
589
590 return (mac_stat_get((mac_handle_t)mip, MAC_STAT_LINK_STATE));
591 }
592
593 /*
594 * These statistics are consumed by dladm show-link -s <vnic>,
595 * dladm show-vnic -s and netstat. With the introduction of dlstat,
596 * dladm show-link -s and dladm show-vnic -s witll be EOL'ed while
597 * netstat will consume from kstats introduced for dlstat. This code
598 * will be removed at that time.
599 */
600
601 /*
602 * Return the statistics of a MAC client. These statistics are different
603 * then the statistics of the underlying MAC which are returned by
604 * mac_stat_get().
605 *
606 * Note that for things based on the tx and rx stats, mac will end up clobbering
607 * those stats when the underlying set of rings in the srs changes. As such, we
608 * need to source not only the current set, but also the historical set when
609 * returning to the client, lest our counters appear to go backwards.
610 */
611 uint64_t
mac_client_stat_get(mac_client_handle_t mch,uint_t stat)612 mac_client_stat_get(mac_client_handle_t mch, uint_t stat)
613 {
614 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
615 mac_impl_t *mip = mcip->mci_mip;
616 flow_entry_t *flent = mcip->mci_flent;
617 mac_soft_ring_set_t *mac_srs;
618 mac_rx_stats_t *mac_rx_stat, *old_rx_stat;
619 mac_tx_stats_t *mac_tx_stat, *old_tx_stat;
620 int i;
621 uint64_t val = 0;
622
623 mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs);
624 mac_tx_stat = &mac_srs->srs_tx.st_stat;
625 old_rx_stat = &mcip->mci_misc_stat.mms_defunctrxlanestats;
626 old_tx_stat = &mcip->mci_misc_stat.mms_defuncttxlanestats;
627
628 switch (stat) {
629 case MAC_STAT_LINK_STATE:
630 val = mac_client_link_state(mcip);
631 break;
632 case MAC_STAT_LINK_UP:
633 val = (mac_client_link_state(mcip) == LINK_STATE_UP);
634 break;
635 case MAC_STAT_PROMISC:
636 val = mac_stat_get((mac_handle_t)mip, MAC_STAT_PROMISC);
637 break;
638 case MAC_STAT_LOWLINK_STATE:
639 val = mac_stat_get((mac_handle_t)mip, MAC_STAT_LOWLINK_STATE);
640 break;
641 case MAC_STAT_IFSPEED:
642 val = mac_client_ifspeed(mcip);
643 break;
644 case MAC_STAT_MULTIRCV:
645 val = mcip->mci_misc_stat.mms_multircv;
646 break;
647 case MAC_STAT_BRDCSTRCV:
648 val = mcip->mci_misc_stat.mms_brdcstrcv;
649 break;
650 case MAC_STAT_MULTIXMT:
651 val = mcip->mci_misc_stat.mms_multixmt;
652 break;
653 case MAC_STAT_BRDCSTXMT:
654 val = mcip->mci_misc_stat.mms_brdcstxmt;
655 break;
656 case MAC_STAT_OBYTES:
657 val = mac_tx_stat->mts_obytes;
658 val += old_tx_stat->mts_obytes;
659 break;
660 case MAC_STAT_OPACKETS:
661 val = mac_tx_stat->mts_opackets;
662 val += old_tx_stat->mts_opackets;
663 break;
664 case MAC_STAT_OERRORS:
665 val = mac_tx_stat->mts_oerrors;
666 val += old_tx_stat->mts_oerrors;
667 break;
668 case MAC_STAT_IPACKETS:
669 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
670 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
671 mac_rx_stat = &mac_srs->srs_rx.sr_stat;
672 val += mac_rx_stat->mrs_intrcnt +
673 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
674 }
675 val += old_rx_stat->mrs_intrcnt + old_rx_stat->mrs_pollcnt +
676 old_rx_stat->mrs_lclcnt;
677 break;
678 case MAC_STAT_RBYTES:
679 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
680 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
681 mac_rx_stat = &mac_srs->srs_rx.sr_stat;
682 val += mac_rx_stat->mrs_intrbytes +
683 mac_rx_stat->mrs_pollbytes +
684 mac_rx_stat->mrs_lclbytes;
685 }
686 val += old_rx_stat->mrs_intrbytes + old_rx_stat->mrs_pollbytes +
687 old_rx_stat->mrs_lclbytes;
688 break;
689 case MAC_STAT_IERRORS:
690 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
691 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
692 mac_rx_stat = &mac_srs->srs_rx.sr_stat;
693 val += mac_rx_stat->mrs_ierrors;
694 }
695 val += old_rx_stat->mrs_ierrors;
696 break;
697 default:
698 val = mac_driver_stat_default(mip, stat);
699 break;
700 }
701
702 return (val);
703 }
704
705 /*
706 * Return the statistics of the specified MAC instance.
707 */
708 uint64_t
mac_stat_get(mac_handle_t mh,uint_t stat)709 mac_stat_get(mac_handle_t mh, uint_t stat)
710 {
711 mac_impl_t *mip = (mac_impl_t *)mh;
712 uint64_t val;
713 int ret;
714
715 /*
716 * The range of stat determines where it is maintained. Stat
717 * values from 0 up to (but not including) MAC_STAT_MIN are
718 * mainteined by the mac module itself. Everything else is
719 * maintained by the driver.
720 *
721 * If the mac_impl_t being queried corresponds to a VNIC,
722 * the stats need to be queried from the lower MAC client
723 * corresponding to the VNIC. (The mac_link_update()
724 * invoked by the driver to the lower MAC causes the *lower
725 * MAC* to update its mi_linkstate, and send a notification
726 * to its MAC clients. Due to the VNIC passthrough,
727 * these notifications are sent to the upper MAC clients
728 * of the VNIC directly, and the upper mac_impl_t of the VNIC
729 * does not have a valid mi_linkstate.
730 */
731 if (stat < MAC_STAT_MIN && !(mip->mi_state_flags & MIS_IS_VNIC)) {
732 /* these stats are maintained by the mac module itself */
733 switch (stat) {
734 case MAC_STAT_LINK_STATE:
735 return (mip->mi_linkstate);
736 case MAC_STAT_LINK_UP:
737 return (mip->mi_linkstate == LINK_STATE_UP);
738 case MAC_STAT_PROMISC:
739 return (mip->mi_devpromisc != 0);
740 case MAC_STAT_LOWLINK_STATE:
741 return (mip->mi_lowlinkstate);
742 default:
743 ASSERT(B_FALSE);
744 }
745 }
746
747 /*
748 * Call the driver to get the given statistic.
749 */
750 ret = mip->mi_getstat(mip->mi_driver, stat, &val);
751 if (ret != 0) {
752 /*
753 * The driver doesn't support this statistic. Get the
754 * statistic's default value.
755 */
756 val = mac_driver_stat_default(mip, stat);
757 }
758 return (val);
759 }
760
761 /*
762 * Query hardware rx ring corresponding to the pseudo ring.
763 */
764 uint64_t
mac_pseudo_rx_ring_stat_get(mac_ring_handle_t handle,uint_t stat)765 mac_pseudo_rx_ring_stat_get(mac_ring_handle_t handle, uint_t stat)
766 {
767 return (mac_rx_ring_stat_get(handle, stat));
768 }
769
770 /*
771 * Query hardware tx ring corresponding to the pseudo ring.
772 */
773 uint64_t
mac_pseudo_tx_ring_stat_get(mac_ring_handle_t handle,uint_t stat)774 mac_pseudo_tx_ring_stat_get(mac_ring_handle_t handle, uint_t stat)
775 {
776 return (mac_tx_ring_stat_get(handle, stat));
777 }
778
779 /*
780 * Utility function which returns the VID associated with a flow entry.
781 */
782 uint16_t
i_mac_flow_vid(flow_entry_t * flent)783 i_mac_flow_vid(flow_entry_t *flent)
784 {
785 flow_desc_t flow_desc;
786
787 mac_flow_get_desc(flent, &flow_desc);
788
789 if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0)
790 return (flow_desc.fd_vid);
791 return (VLAN_ID_NONE);
792 }
793
794 /*
795 * Verify the validity of the specified unicast MAC address. Returns B_TRUE
796 * if the address is valid, B_FALSE otherwise (multicast address, or incorrect
797 * length.
798 */
799 boolean_t
mac_unicst_verify(mac_handle_t mh,const uint8_t * addr,uint_t len)800 mac_unicst_verify(mac_handle_t mh, const uint8_t *addr, uint_t len)
801 {
802 mac_impl_t *mip = (mac_impl_t *)mh;
803
804 /*
805 * Verify the address. No lock is needed since mi_type and plugin
806 * details don't change after mac_register().
807 */
808 if ((len != mip->mi_type->mt_addr_length) ||
809 (mip->mi_type->mt_ops.mtops_unicst_verify(addr,
810 mip->mi_pdata)) != 0) {
811 return (B_FALSE);
812 } else {
813 return (B_TRUE);
814 }
815 }
816
817 void
mac_sdu_get(mac_handle_t mh,uint_t * min_sdu,uint_t * max_sdu)818 mac_sdu_get(mac_handle_t mh, uint_t *min_sdu, uint_t *max_sdu)
819 {
820 mac_impl_t *mip = (mac_impl_t *)mh;
821
822 if (min_sdu != NULL)
823 *min_sdu = mip->mi_sdu_min;
824 if (max_sdu != NULL)
825 *max_sdu = mip->mi_sdu_max;
826 }
827
828 void
mac_sdu_get2(mac_handle_t mh,uint_t * min_sdu,uint_t * max_sdu,uint_t * multicast_sdu)829 mac_sdu_get2(mac_handle_t mh, uint_t *min_sdu, uint_t *max_sdu,
830 uint_t *multicast_sdu)
831 {
832 mac_impl_t *mip = (mac_impl_t *)mh;
833
834 if (min_sdu != NULL)
835 *min_sdu = mip->mi_sdu_min;
836 if (max_sdu != NULL)
837 *max_sdu = mip->mi_sdu_max;
838 if (multicast_sdu != NULL)
839 *multicast_sdu = mip->mi_sdu_multicast;
840 }
841
842 /*
843 * Update the MAC unicast address of the specified client's flows. Currently
844 * only one unicast MAC unicast address is allowed per client.
845 */
846 static void
mac_unicast_update_client_flow(mac_client_impl_t * mcip)847 mac_unicast_update_client_flow(mac_client_impl_t *mcip)
848 {
849 mac_impl_t *mip = mcip->mci_mip;
850 flow_entry_t *flent = mcip->mci_flent;
851 mac_address_t *map = mcip->mci_unicast;
852 flow_desc_t flow_desc;
853
854 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
855 ASSERT(flent != NULL);
856
857 mac_flow_get_desc(flent, &flow_desc);
858 ASSERT(flow_desc.fd_mask & FLOW_LINK_DST);
859
860 bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len);
861 mac_flow_set_desc(flent, &flow_desc);
862
863 /*
864 * The v6 local and SLAAC addrs (used by mac protection) need to be
865 * regenerated because our mac address has changed.
866 */
867 mac_protect_update_mac_token(mcip);
868
869 /*
870 * When there are multiple VLANs sharing the same MAC address,
871 * each gets its own MAC client, except when running on sun4v
872 * vsw. In that case the mci_flent_list is used to place
873 * multiple VLAN flows on one MAC client. If we ever get rid
874 * of vsw then this code can go, but until then we need to
875 * update all flow entries.
876 */
877 for (flent = mcip->mci_flent_list; flent != NULL;
878 flent = flent->fe_client_next) {
879 mac_flow_get_desc(flent, &flow_desc);
880 if (!(flent->fe_type & FLOW_PRIMARY_MAC ||
881 flent->fe_type & FLOW_VNIC_MAC))
882 continue;
883
884 bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len);
885 mac_flow_set_desc(flent, &flow_desc);
886 }
887 }
888
889 /*
890 * Update all clients that share the same unicast address.
891 */
892 void
mac_unicast_update_clients(mac_impl_t * mip,mac_address_t * map)893 mac_unicast_update_clients(mac_impl_t *mip, mac_address_t *map)
894 {
895 mac_client_impl_t *mcip;
896
897 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
898
899 /*
900 * Find all clients that share the same unicast MAC address and update
901 * them appropriately.
902 */
903 for (mcip = mip->mi_clients_list; mcip != NULL;
904 mcip = mcip->mci_client_next) {
905 /*
906 * Ignore clients that don't share this MAC address.
907 */
908 if (map != mcip->mci_unicast)
909 continue;
910
911 /*
912 * Update those clients with same old unicast MAC address.
913 */
914 mac_unicast_update_client_flow(mcip);
915 }
916 }
917
918 /*
919 * Update the unicast MAC address of the specified VNIC MAC client.
920 *
921 * Check whether the operation is valid. Any of following cases should fail:
922 *
923 * 1. It's a VLAN type of VNIC.
924 * 2. The new value is current "primary" MAC address.
925 * 3. The current MAC address is shared with other clients.
926 * 4. The new MAC address has been used. This case will be valid when
927 * client migration is fully supported.
928 */
929 int
mac_vnic_unicast_set(mac_client_handle_t mch,const uint8_t * addr)930 mac_vnic_unicast_set(mac_client_handle_t mch, const uint8_t *addr)
931 {
932 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
933 mac_impl_t *mip = mcip->mci_mip;
934 mac_address_t *map = mcip->mci_unicast;
935 int err;
936
937 ASSERT(!(mip->mi_state_flags & MIS_IS_VNIC));
938 ASSERT(mcip->mci_state_flags & MCIS_IS_VNIC);
939 ASSERT(mcip->mci_flags != MAC_CLIENT_FLAGS_PRIMARY);
940
941 i_mac_perim_enter(mip);
942
943 /*
944 * If this is a VLAN type of VNIC, it's using "primary" MAC address
945 * of the underlying interface. Must fail here. Refer to case 1 above.
946 */
947 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0) {
948 i_mac_perim_exit(mip);
949 return (ENOTSUP);
950 }
951
952 /*
953 * If the new address is the "primary" one, must fail. Refer to
954 * case 2 above.
955 */
956 if (bcmp(addr, mip->mi_addr, map->ma_len) == 0) {
957 i_mac_perim_exit(mip);
958 return (EACCES);
959 }
960
961 /*
962 * If the address is shared by multiple clients, must fail. Refer
963 * to case 3 above.
964 */
965 if (mac_check_macaddr_shared(map)) {
966 i_mac_perim_exit(mip);
967 return (EBUSY);
968 }
969
970 /*
971 * If the new address has been used, must fail for now. Refer to
972 * case 4 above.
973 */
974 if (mac_find_macaddr(mip, (uint8_t *)addr) != NULL) {
975 i_mac_perim_exit(mip);
976 return (ENOTSUP);
977 }
978
979 /*
980 * Update the MAC address.
981 */
982 err = mac_update_macaddr(map, (uint8_t *)addr);
983
984 if (err != 0) {
985 i_mac_perim_exit(mip);
986 return (err);
987 }
988
989 /*
990 * Update all flows of this MAC client.
991 */
992 mac_unicast_update_client_flow(mcip);
993
994 i_mac_perim_exit(mip);
995 return (0);
996 }
997
998 /*
999 * Program the new primary unicast address of the specified MAC.
1000 *
1001 * Function mac_update_macaddr() takes care different types of underlying
1002 * MAC. If the underlying MAC is VNIC, the VNIC driver must have registerd
1003 * mi_unicst() entry point, that indirectly calls mac_vnic_unicast_set()
1004 * which will take care of updating the MAC address of the corresponding
1005 * MAC client.
1006 *
1007 * This is the only interface that allow the client to update the "primary"
1008 * MAC address of the underlying MAC. The new value must have not been
1009 * used by other clients.
1010 */
1011 int
mac_unicast_primary_set(mac_handle_t mh,const uint8_t * addr)1012 mac_unicast_primary_set(mac_handle_t mh, const uint8_t *addr)
1013 {
1014 mac_impl_t *mip = (mac_impl_t *)mh;
1015 mac_address_t *map;
1016 int err;
1017
1018 /* verify the address validity */
1019 if (!mac_unicst_verify(mh, addr, mip->mi_type->mt_addr_length))
1020 return (EINVAL);
1021
1022 i_mac_perim_enter(mip);
1023
1024 /*
1025 * If the new value is the same as the current primary address value,
1026 * there's nothing to do.
1027 */
1028 if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) == 0) {
1029 i_mac_perim_exit(mip);
1030 return (0);
1031 }
1032
1033 if (mac_find_macaddr(mip, (uint8_t *)addr) != NULL) {
1034 i_mac_perim_exit(mip);
1035 return (EBUSY);
1036 }
1037
1038 map = mac_find_macaddr(mip, mip->mi_addr);
1039 ASSERT(map != NULL);
1040
1041 /*
1042 * Update the MAC address.
1043 */
1044 if (mip->mi_state_flags & MIS_IS_AGGR) {
1045 mac_capab_aggr_t aggr_cap;
1046
1047 /*
1048 * If the MAC is an aggregation, other than the unicast
1049 * addresses programming, aggr must be informed about this
1050 * primary unicst address change to change its MAC address
1051 * policy to be user-specified.
1052 */
1053 ASSERT(map->ma_type == MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED);
1054 VERIFY(i_mac_capab_get(mh, MAC_CAPAB_AGGR, &aggr_cap));
1055 err = aggr_cap.mca_unicst(mip->mi_driver, addr);
1056 if (err == 0)
1057 bcopy(addr, map->ma_addr, map->ma_len);
1058 } else {
1059 err = mac_update_macaddr(map, (uint8_t *)addr);
1060 }
1061
1062 if (err != 0) {
1063 i_mac_perim_exit(mip);
1064 return (err);
1065 }
1066
1067 mac_unicast_update_clients(mip, map);
1068
1069 /*
1070 * Save the new primary MAC address in mac_impl_t.
1071 */
1072 bcopy(addr, mip->mi_addr, mip->mi_type->mt_addr_length);
1073
1074 i_mac_perim_exit(mip);
1075
1076 if (err == 0)
1077 i_mac_notify(mip, MAC_NOTE_UNICST);
1078
1079 return (err);
1080 }
1081
1082 /*
1083 * Return the current primary MAC address of the specified MAC.
1084 */
1085 void
mac_unicast_primary_get(mac_handle_t mh,uint8_t * addr)1086 mac_unicast_primary_get(mac_handle_t mh, uint8_t *addr)
1087 {
1088 mac_impl_t *mip = (mac_impl_t *)mh;
1089
1090 rw_enter(&mip->mi_rw_lock, RW_READER);
1091 bcopy(mip->mi_addr, addr, mip->mi_type->mt_addr_length);
1092 rw_exit(&mip->mi_rw_lock);
1093 }
1094
1095 /*
1096 * Return the secondary MAC address for the specified handle
1097 */
1098 void
mac_unicast_secondary_get(mac_client_handle_t mh,uint8_t * addr)1099 mac_unicast_secondary_get(mac_client_handle_t mh, uint8_t *addr)
1100 {
1101 mac_client_impl_t *mcip = (mac_client_impl_t *)mh;
1102
1103 ASSERT(mcip->mci_unicast != NULL);
1104 bcopy(mcip->mci_unicast->ma_addr, addr, mcip->mci_unicast->ma_len);
1105 }
1106
1107 /*
1108 * Return information about the use of the primary MAC address of the
1109 * specified MAC instance:
1110 *
1111 * - if client_name is non-NULL, it must point to a string of at
1112 * least MAXNAMELEN bytes, and will be set to the name of the MAC
1113 * client which uses the primary MAC address.
1114 *
1115 * - if in_use is non-NULL, used to return whether the primary MAC
1116 * address is currently in use.
1117 */
1118 void
mac_unicast_primary_info(mac_handle_t mh,char * client_name,boolean_t * in_use)1119 mac_unicast_primary_info(mac_handle_t mh, char *client_name, boolean_t *in_use)
1120 {
1121 mac_impl_t *mip = (mac_impl_t *)mh;
1122 mac_client_impl_t *cur_client;
1123
1124 if (in_use != NULL)
1125 *in_use = B_FALSE;
1126 if (client_name != NULL)
1127 bzero(client_name, MAXNAMELEN);
1128
1129 /*
1130 * The mi_rw_lock is used to protect threads that don't hold the
1131 * mac perimeter to get a consistent view of the mi_clients_list.
1132 * Threads that modify the list must hold both the mac perimeter and
1133 * mi_rw_lock(RW_WRITER)
1134 */
1135 rw_enter(&mip->mi_rw_lock, RW_READER);
1136 for (cur_client = mip->mi_clients_list; cur_client != NULL;
1137 cur_client = cur_client->mci_client_next) {
1138 if (mac_is_primary_client(cur_client) ||
1139 (mip->mi_state_flags & MIS_IS_VNIC)) {
1140 rw_exit(&mip->mi_rw_lock);
1141 if (in_use != NULL)
1142 *in_use = B_TRUE;
1143 if (client_name != NULL) {
1144 bcopy(cur_client->mci_name, client_name,
1145 MAXNAMELEN);
1146 }
1147 return;
1148 }
1149 }
1150 rw_exit(&mip->mi_rw_lock);
1151 }
1152
1153 /*
1154 * Return the current destination MAC address of the specified MAC.
1155 */
1156 boolean_t
mac_dst_get(mac_handle_t mh,uint8_t * addr)1157 mac_dst_get(mac_handle_t mh, uint8_t *addr)
1158 {
1159 mac_impl_t *mip = (mac_impl_t *)mh;
1160
1161 rw_enter(&mip->mi_rw_lock, RW_READER);
1162 if (mip->mi_dstaddr_set)
1163 bcopy(mip->mi_dstaddr, addr, mip->mi_type->mt_addr_length);
1164 rw_exit(&mip->mi_rw_lock);
1165 return (mip->mi_dstaddr_set);
1166 }
1167
1168 /*
1169 * Add the specified MAC client to the list of clients which opened
1170 * the specified MAC.
1171 */
1172 static void
mac_client_add(mac_client_impl_t * mcip)1173 mac_client_add(mac_client_impl_t *mcip)
1174 {
1175 mac_impl_t *mip = mcip->mci_mip;
1176
1177 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1178
1179 /* add VNIC to the front of the list */
1180 rw_enter(&mip->mi_rw_lock, RW_WRITER);
1181 mcip->mci_client_next = mip->mi_clients_list;
1182 mip->mi_clients_list = mcip;
1183 mip->mi_nclients++;
1184 rw_exit(&mip->mi_rw_lock);
1185 }
1186
1187 /*
1188 * Remove the specified MAC client from the list of clients which opened
1189 * the specified MAC.
1190 */
1191 static void
mac_client_remove(mac_client_impl_t * mcip)1192 mac_client_remove(mac_client_impl_t *mcip)
1193 {
1194 mac_impl_t *mip = mcip->mci_mip;
1195 mac_client_impl_t **prev, *cclient;
1196
1197 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1198
1199 rw_enter(&mip->mi_rw_lock, RW_WRITER);
1200 prev = &mip->mi_clients_list;
1201 cclient = *prev;
1202 while (cclient != NULL && cclient != mcip) {
1203 prev = &cclient->mci_client_next;
1204 cclient = *prev;
1205 }
1206 ASSERT(cclient != NULL);
1207 *prev = cclient->mci_client_next;
1208 mip->mi_nclients--;
1209 rw_exit(&mip->mi_rw_lock);
1210 }
1211
1212 static mac_unicast_impl_t *
mac_client_find_vid(mac_client_impl_t * mcip,uint16_t vid)1213 mac_client_find_vid(mac_client_impl_t *mcip, uint16_t vid)
1214 {
1215 mac_unicast_impl_t *muip = mcip->mci_unicast_list;
1216
1217 while ((muip != NULL) && (muip->mui_vid != vid))
1218 muip = muip->mui_next;
1219
1220 return (muip);
1221 }
1222
1223 /*
1224 * Return whether the specified (MAC address, VID) tuple is already used by
1225 * one of the MAC clients associated with the specified MAC.
1226 */
1227 static boolean_t
mac_addr_in_use(mac_impl_t * mip,uint8_t * mac_addr,uint16_t vid)1228 mac_addr_in_use(mac_impl_t *mip, uint8_t *mac_addr, uint16_t vid)
1229 {
1230 mac_client_impl_t *client;
1231 mac_address_t *map;
1232
1233 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1234
1235 for (client = mip->mi_clients_list; client != NULL;
1236 client = client->mci_client_next) {
1237
1238 /*
1239 * Ignore clients that don't have unicast address.
1240 */
1241 if (client->mci_unicast_list == NULL)
1242 continue;
1243
1244 map = client->mci_unicast;
1245
1246 if ((bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) &&
1247 (mac_client_find_vid(client, vid) != NULL)) {
1248 return (B_TRUE);
1249 }
1250 }
1251
1252 return (B_FALSE);
1253 }
1254
1255 /*
1256 * Generate a random MAC address. The MAC address prefix is
1257 * stored in the array pointed to by mac_addr, and its length, in bytes,
1258 * is specified by prefix_len. The least significant bits
1259 * after prefix_len bytes are generated, and stored after the prefix
1260 * in the mac_addr array.
1261 */
1262 int
mac_addr_random(mac_client_handle_t mch,uint_t prefix_len,uint8_t * mac_addr,mac_diag_t * diag)1263 mac_addr_random(mac_client_handle_t mch, uint_t prefix_len,
1264 uint8_t *mac_addr, mac_diag_t *diag)
1265 {
1266 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1267 mac_impl_t *mip = mcip->mci_mip;
1268 size_t addr_len = mip->mi_type->mt_addr_length;
1269
1270 if (prefix_len >= addr_len) {
1271 *diag = MAC_DIAG_MACPREFIXLEN_INVALID;
1272 return (EINVAL);
1273 }
1274
1275 /* check the prefix value */
1276 if (prefix_len > 0) {
1277 bzero(mac_addr + prefix_len, addr_len - prefix_len);
1278 if (!mac_unicst_verify((mac_handle_t)mip, mac_addr,
1279 addr_len)) {
1280 *diag = MAC_DIAG_MACPREFIX_INVALID;
1281 return (EINVAL);
1282 }
1283 }
1284
1285 /* generate the MAC address */
1286 if (prefix_len < addr_len) {
1287 (void) random_get_pseudo_bytes(mac_addr +
1288 prefix_len, addr_len - prefix_len);
1289 }
1290
1291 *diag = MAC_DIAG_NONE;
1292 return (0);
1293 }
1294
1295 /*
1296 * Set the priority range for this MAC client. This will be used to
1297 * determine the absolute priority for the threads created for this
1298 * MAC client using the specified "low", "medium" and "high" level.
1299 * This will also be used for any subflows on this MAC client.
1300 */
1301 #define MAC_CLIENT_SET_PRIORITY_RANGE(mcip, pri) { \
1302 (mcip)->mci_min_pri = FLOW_MIN_PRIORITY(MINCLSYSPRI, \
1303 MAXCLSYSPRI, (pri)); \
1304 (mcip)->mci_max_pri = FLOW_MAX_PRIORITY(MINCLSYSPRI, \
1305 MAXCLSYSPRI, (mcip)->mci_min_pri); \
1306 }
1307
1308 /*
1309 * MAC client open entry point. Return a new MAC client handle. Each
1310 * MAC client is associated with a name, specified through the 'name'
1311 * argument.
1312 */
1313 int
mac_client_open(mac_handle_t mh,mac_client_handle_t * mchp,char * name,uint16_t flags)1314 mac_client_open(mac_handle_t mh, mac_client_handle_t *mchp, char *name,
1315 uint16_t flags)
1316 {
1317 mac_impl_t *mip = (mac_impl_t *)mh;
1318 mac_client_impl_t *mcip;
1319 int err = 0;
1320 boolean_t share_desired;
1321 flow_entry_t *flent = NULL;
1322
1323 share_desired = (flags & MAC_OPEN_FLAGS_SHARES_DESIRED) != 0;
1324 *mchp = NULL;
1325
1326 i_mac_perim_enter(mip);
1327
1328 if (mip->mi_state_flags & MIS_IS_VNIC) {
1329 /*
1330 * The underlying MAC is a VNIC. Return the MAC client
1331 * handle of the lower MAC which was obtained by
1332 * the VNIC driver when it did its mac_client_open().
1333 */
1334
1335 mcip = mac_vnic_lower(mip);
1336
1337 /*
1338 * Note that multiple mac clients share the same mcip in
1339 * this case.
1340 */
1341 if (flags & MAC_OPEN_FLAGS_EXCLUSIVE)
1342 mcip->mci_state_flags |= MCIS_EXCLUSIVE;
1343
1344 if (flags & MAC_OPEN_FLAGS_MULTI_PRIMARY)
1345 mcip->mci_flags |= MAC_CLIENT_FLAGS_MULTI_PRIMARY;
1346
1347 mip->mi_clients_list = mcip;
1348 i_mac_perim_exit(mip);
1349 *mchp = (mac_client_handle_t)mcip;
1350
1351 DTRACE_PROBE2(mac__client__open__nonallocated, mac_impl_t *,
1352 mcip->mci_mip, mac_client_impl_t *, mcip);
1353
1354 return (err);
1355 }
1356
1357 mcip = kmem_cache_alloc(mac_client_impl_cache, KM_SLEEP);
1358
1359 mcip->mci_mip = mip;
1360 mcip->mci_upper_mip = NULL;
1361 mcip->mci_rx_fn = mac_rx_def;
1362 mcip->mci_rx_arg = NULL;
1363 mcip->mci_rx_p_fn = NULL;
1364 mcip->mci_rx_p_arg = NULL;
1365 mcip->mci_p_unicast_list = NULL;
1366 mcip->mci_direct_rx_fn = NULL;
1367 mcip->mci_direct_rx_arg = NULL;
1368 mcip->mci_vidcache = MCIP_VIDCACHE_INVALID;
1369
1370 mcip->mci_unicast_list = NULL;
1371
1372 if ((flags & MAC_OPEN_FLAGS_IS_VNIC) != 0)
1373 mcip->mci_state_flags |= MCIS_IS_VNIC;
1374
1375 if ((flags & MAC_OPEN_FLAGS_EXCLUSIVE) != 0)
1376 mcip->mci_state_flags |= MCIS_EXCLUSIVE;
1377
1378 if ((flags & MAC_OPEN_FLAGS_IS_AGGR_PORT) != 0)
1379 mcip->mci_state_flags |= MCIS_IS_AGGR_PORT;
1380
1381 if (mip->mi_state_flags & MIS_IS_AGGR)
1382 mcip->mci_state_flags |= MCIS_IS_AGGR_CLIENT;
1383
1384 if ((flags & MAC_OPEN_FLAGS_USE_DATALINK_NAME) != 0) {
1385 datalink_id_t linkid;
1386
1387 ASSERT(name == NULL);
1388 if ((err = dls_devnet_macname2linkid(mip->mi_name,
1389 &linkid)) != 0) {
1390 goto done;
1391 }
1392 if ((err = dls_mgmt_get_linkinfo(linkid, mcip->mci_name, NULL,
1393 NULL, NULL)) != 0) {
1394 /*
1395 * Use mac name if dlmgmtd is not available.
1396 */
1397 if (err == EBADF) {
1398 (void) strlcpy(mcip->mci_name, mip->mi_name,
1399 sizeof (mcip->mci_name));
1400 err = 0;
1401 } else {
1402 goto done;
1403 }
1404 }
1405 mcip->mci_state_flags |= MCIS_USE_DATALINK_NAME;
1406 } else {
1407 ASSERT(name != NULL);
1408 if (strlen(name) > MAXNAMELEN) {
1409 err = EINVAL;
1410 goto done;
1411 }
1412 (void) strlcpy(mcip->mci_name, name, sizeof (mcip->mci_name));
1413 }
1414
1415 if (flags & MAC_OPEN_FLAGS_MULTI_PRIMARY)
1416 mcip->mci_flags |= MAC_CLIENT_FLAGS_MULTI_PRIMARY;
1417
1418 if (flags & MAC_OPEN_FLAGS_NO_UNICAST_ADDR)
1419 mcip->mci_state_flags |= MCIS_NO_UNICAST_ADDR;
1420
1421 mac_protect_init(mcip);
1422
1423 /* the subflow table will be created dynamically */
1424 mcip->mci_subflow_tab = NULL;
1425
1426 mcip->mci_misc_stat.mms_multircv = 0;
1427 mcip->mci_misc_stat.mms_brdcstrcv = 0;
1428 mcip->mci_misc_stat.mms_multixmt = 0;
1429 mcip->mci_misc_stat.mms_brdcstxmt = 0;
1430
1431 /* Create an initial flow */
1432
1433 err = mac_flow_create(NULL, NULL, mcip->mci_name, NULL,
1434 mcip->mci_state_flags & MCIS_IS_VNIC ? FLOW_VNIC_MAC :
1435 FLOW_PRIMARY_MAC, &flent);
1436 if (err != 0)
1437 goto done;
1438 mcip->mci_flent = flent;
1439 FLOW_MARK(flent, FE_MC_NO_DATAPATH);
1440 flent->fe_mcip = mcip;
1441
1442 /*
1443 * Place initial creation reference on the flow. This reference
1444 * is released in the corresponding delete action viz.
1445 * mac_unicast_remove after waiting for all transient refs to
1446 * to go away. The wait happens in mac_flow_wait.
1447 */
1448 FLOW_REFHOLD(flent);
1449
1450 /*
1451 * Do this ahead of the mac_bcast_add() below so that the mi_nclients
1452 * will have the right value for mac_rx_srs_setup().
1453 */
1454 mac_client_add(mcip);
1455
1456 mcip->mci_share = 0;
1457 if (share_desired)
1458 i_mac_share_alloc(mcip);
1459
1460 /*
1461 * We will do mimimal datapath setup to allow a MAC client to
1462 * transmit or receive non-unicast packets without waiting
1463 * for mac_unicast_add.
1464 */
1465 if (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR) {
1466 if ((err = mac_client_datapath_setup(mcip, VLAN_ID_NONE,
1467 NULL, NULL, B_TRUE, NULL)) != 0) {
1468 goto done;
1469 }
1470 }
1471
1472 DTRACE_PROBE2(mac__client__open__allocated, mac_impl_t *,
1473 mcip->mci_mip, mac_client_impl_t *, mcip);
1474
1475 *mchp = (mac_client_handle_t)mcip;
1476 i_mac_perim_exit(mip);
1477 return (0);
1478
1479 done:
1480 i_mac_perim_exit(mip);
1481 mcip->mci_state_flags = 0;
1482 mcip->mci_tx_flag = 0;
1483 kmem_cache_free(mac_client_impl_cache, mcip);
1484 return (err);
1485 }
1486
1487 /*
1488 * Close the specified MAC client handle.
1489 */
1490 void
mac_client_close(mac_client_handle_t mch,uint16_t flags)1491 mac_client_close(mac_client_handle_t mch, uint16_t flags)
1492 {
1493 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1494 mac_impl_t *mip = mcip->mci_mip;
1495 flow_entry_t *flent;
1496
1497 i_mac_perim_enter(mip);
1498
1499 if (flags & MAC_CLOSE_FLAGS_EXCLUSIVE)
1500 mcip->mci_state_flags &= ~MCIS_EXCLUSIVE;
1501
1502 if ((mcip->mci_state_flags & MCIS_IS_VNIC) &&
1503 !(flags & MAC_CLOSE_FLAGS_IS_VNIC)) {
1504 /*
1505 * This is an upper VNIC client initiated operation.
1506 * The lower MAC client will be closed by the VNIC driver
1507 * when the VNIC is deleted.
1508 */
1509
1510 i_mac_perim_exit(mip);
1511 return;
1512 }
1513
1514 /* If we have only setup up minimal datapth setup, tear it down */
1515 if (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR) {
1516 mac_client_datapath_teardown((mac_client_handle_t)mcip, NULL,
1517 mcip->mci_flent);
1518 mcip->mci_state_flags &= ~MCIS_NO_UNICAST_ADDR;
1519 }
1520
1521 /*
1522 * Remove the flent associated with the MAC client
1523 */
1524 flent = mcip->mci_flent;
1525 mcip->mci_flent = NULL;
1526 FLOW_FINAL_REFRELE(flent);
1527
1528 /*
1529 * MAC clients must remove the unicast addresses and promisc callbacks
1530 * they added before issuing a mac_client_close().
1531 */
1532 ASSERT(mcip->mci_unicast_list == NULL);
1533 ASSERT(mcip->mci_promisc_list == NULL);
1534 ASSERT(mcip->mci_tx_notify_cb_list == NULL);
1535
1536 i_mac_share_free(mcip);
1537 mac_protect_fini(mcip);
1538 mac_client_remove(mcip);
1539
1540 i_mac_perim_exit(mip);
1541 mcip->mci_subflow_tab = NULL;
1542 mcip->mci_state_flags = 0;
1543 mcip->mci_tx_flag = 0;
1544 kmem_cache_free(mac_client_impl_cache, mch);
1545 }
1546
1547 /*
1548 * Set the Rx bypass receive callback and return B_TRUE. Return
1549 * B_FALSE if it's not possible to enable bypass.
1550 */
1551 boolean_t
mac_rx_bypass_set(mac_client_handle_t mch,mac_direct_rx_t rx_fn,void * arg1)1552 mac_rx_bypass_set(mac_client_handle_t mch, mac_direct_rx_t rx_fn, void *arg1)
1553 {
1554 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1555 mac_impl_t *mip = mcip->mci_mip;
1556
1557 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1558
1559 /*
1560 * If the client has more than one VLAN then process packets
1561 * through DLS. This should happen only when sun4v vsw is on
1562 * the scene.
1563 */
1564 if (mcip->mci_nvids > 1)
1565 return (B_FALSE);
1566
1567 /*
1568 * These are not accessed directly in the data path, and hence
1569 * don't need any protection
1570 */
1571 mcip->mci_direct_rx_fn = rx_fn;
1572 mcip->mci_direct_rx_arg = arg1;
1573 return (B_TRUE);
1574 }
1575
1576 /*
1577 * Enable/Disable rx bypass. By default, bypass is assumed to be enabled.
1578 */
1579 void
mac_rx_bypass_enable(mac_client_handle_t mch)1580 mac_rx_bypass_enable(mac_client_handle_t mch)
1581 {
1582 ((mac_client_impl_t *)mch)->mci_state_flags &= ~MCIS_RX_BYPASS_DISABLE;
1583 }
1584
1585 void
mac_rx_bypass_disable(mac_client_handle_t mch)1586 mac_rx_bypass_disable(mac_client_handle_t mch)
1587 {
1588 ((mac_client_impl_t *)mch)->mci_state_flags |= MCIS_RX_BYPASS_DISABLE;
1589 }
1590
1591 /*
1592 * Set the receive callback for the specified MAC client. There can be
1593 * at most one such callback per MAC client.
1594 */
1595 void
mac_rx_set(mac_client_handle_t mch,mac_rx_t rx_fn,void * arg)1596 mac_rx_set(mac_client_handle_t mch, mac_rx_t rx_fn, void *arg)
1597 {
1598 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1599 mac_impl_t *mip = mcip->mci_mip;
1600 mac_impl_t *umip = mcip->mci_upper_mip;
1601
1602 /*
1603 * Instead of adding an extra set of locks and refcnts in
1604 * the datapath at the mac client boundary, we temporarily quiesce
1605 * the SRS and related entities. We then change the receive function
1606 * without interference from any receive data thread and then reenable
1607 * the data flow subsequently.
1608 */
1609 i_mac_perim_enter(mip);
1610 mac_rx_client_quiesce(mch);
1611
1612 mcip->mci_rx_fn = rx_fn;
1613 mcip->mci_rx_arg = arg;
1614 mac_rx_client_restart(mch);
1615
1616 /*
1617 * If we're changing the Rx function on the primary MAC of a VNIC,
1618 * make sure any secondary addresses on the VNIC are updated as well.
1619 */
1620 if (umip != NULL) {
1621 ASSERT((umip->mi_state_flags & MIS_IS_VNIC) != 0);
1622 mac_vnic_secondary_update(umip);
1623 }
1624
1625 i_mac_perim_exit(mip);
1626 }
1627
1628 /*
1629 * Reset the receive callback for the specified MAC client.
1630 */
1631 void
mac_rx_clear(mac_client_handle_t mch)1632 mac_rx_clear(mac_client_handle_t mch)
1633 {
1634 mac_rx_set(mch, mac_rx_def, NULL);
1635 }
1636
1637 void
mac_rx_barrier(mac_client_handle_t mch)1638 mac_rx_barrier(mac_client_handle_t mch)
1639 {
1640 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1641 mac_impl_t *mip = mcip->mci_mip;
1642
1643 i_mac_perim_enter(mip);
1644
1645 /* If a RX callback is set, quiesce and restart that datapath */
1646 if (mcip->mci_rx_fn != mac_rx_def) {
1647 mac_rx_client_quiesce(mch);
1648 mac_rx_client_restart(mch);
1649 }
1650
1651 /* If any promisc callbacks are registered, perform a barrier there */
1652 if (mcip->mci_promisc_list != NULL || mip->mi_promisc_list != NULL) {
1653 mac_cb_info_t *mcbi = &mip->mi_promisc_cb_info;
1654
1655 mutex_enter(mcbi->mcbi_lockp);
1656 mac_callback_barrier(mcbi);
1657 mutex_exit(mcbi->mcbi_lockp);
1658 }
1659
1660 i_mac_perim_exit(mip);
1661 }
1662
1663 void
mac_secondary_dup(mac_client_handle_t smch,mac_client_handle_t dmch)1664 mac_secondary_dup(mac_client_handle_t smch, mac_client_handle_t dmch)
1665 {
1666 mac_client_impl_t *smcip = (mac_client_impl_t *)smch;
1667 mac_client_impl_t *dmcip = (mac_client_impl_t *)dmch;
1668 flow_entry_t *flent = dmcip->mci_flent;
1669
1670 /* This should only be called to setup secondary macs */
1671 ASSERT((flent->fe_type & FLOW_PRIMARY_MAC) == 0);
1672
1673 mac_rx_set(dmch, smcip->mci_rx_fn, smcip->mci_rx_arg);
1674 dmcip->mci_promisc_list = smcip->mci_promisc_list;
1675
1676 /*
1677 * Duplicate the primary mac resources to the secondary.
1678 * Since we already validated the resource controls when setting
1679 * them on the primary, we can ignore errors here.
1680 */
1681 (void) mac_resource_ctl_set(dmch, MCIP_RESOURCE_PROPS(smcip));
1682 }
1683
1684 /*
1685 * Called when removing a secondary MAC. Currently only clears the promisc_list
1686 * since we share the primary mac's promisc_list.
1687 */
1688 void
mac_secondary_cleanup(mac_client_handle_t mch)1689 mac_secondary_cleanup(mac_client_handle_t mch)
1690 {
1691 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1692 flow_entry_t *flent = mcip->mci_flent;
1693
1694 /* This should only be called for secondary macs */
1695 ASSERT((flent->fe_type & FLOW_PRIMARY_MAC) == 0);
1696 mcip->mci_promisc_list = NULL;
1697 }
1698
1699 /*
1700 * Walk the MAC client subflow table and updates their priority values.
1701 */
1702 static int
mac_update_subflow_priority_cb(flow_entry_t * flent,void * arg)1703 mac_update_subflow_priority_cb(flow_entry_t *flent, void *arg)
1704 {
1705 mac_flow_update_priority(arg, flent);
1706 return (0);
1707 }
1708
1709 void
mac_update_subflow_priority(mac_client_impl_t * mcip)1710 mac_update_subflow_priority(mac_client_impl_t *mcip)
1711 {
1712 (void) mac_flow_walk(mcip->mci_subflow_tab,
1713 mac_update_subflow_priority_cb, mcip);
1714 }
1715
1716 /*
1717 * Modify the TX or RX ring properties. We could either just move around
1718 * rings, i.e add/remove rings given to a client. Or this might cause the
1719 * client to move from hardware based to software or the other way around.
1720 * If we want to reset this property, then we clear the mask, additionally
1721 * if the client was given a non-default group we remove all rings except
1722 * for 1 and give it back to the default group.
1723 */
1724 int
mac_client_set_rings_prop(mac_client_impl_t * mcip,mac_resource_props_t * mrp,mac_resource_props_t * tmrp)1725 mac_client_set_rings_prop(mac_client_impl_t *mcip, mac_resource_props_t *mrp,
1726 mac_resource_props_t *tmrp)
1727 {
1728 mac_impl_t *mip = mcip->mci_mip;
1729 flow_entry_t *flent = mcip->mci_flent;
1730 uint8_t *mac_addr;
1731 int err = 0;
1732 mac_group_t *defgrp;
1733 mac_group_t *group;
1734 mac_group_t *ngrp;
1735 mac_resource_props_t *cmrp = MCIP_RESOURCE_PROPS(mcip);
1736 uint_t ringcnt;
1737 boolean_t unspec;
1738
1739 if (mcip->mci_share != 0)
1740 return (EINVAL);
1741
1742 if (mrp->mrp_mask & MRP_RX_RINGS) {
1743 unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC;
1744 group = flent->fe_rx_ring_group;
1745 defgrp = MAC_DEFAULT_RX_GROUP(mip);
1746 mac_addr = flent->fe_flow_desc.fd_dst_mac;
1747
1748 /*
1749 * No resulting change. If we are resetting on a client on
1750 * which there was no rx rings property. For dynamic group
1751 * if we are setting the same number of rings already set.
1752 * For static group if we are requesting a group again.
1753 */
1754 if (mrp->mrp_mask & MRP_RINGS_RESET) {
1755 if (!(tmrp->mrp_mask & MRP_RX_RINGS))
1756 return (0);
1757 } else {
1758 if (unspec) {
1759 if (tmrp->mrp_mask & MRP_RXRINGS_UNSPEC)
1760 return (0);
1761 } else if (mip->mi_rx_group_type ==
1762 MAC_GROUP_TYPE_DYNAMIC) {
1763 if ((tmrp->mrp_mask & MRP_RX_RINGS) &&
1764 !(tmrp->mrp_mask & MRP_RXRINGS_UNSPEC) &&
1765 mrp->mrp_nrxrings == tmrp->mrp_nrxrings) {
1766 return (0);
1767 }
1768 }
1769 }
1770 /* Resetting the prop */
1771 if (mrp->mrp_mask & MRP_RINGS_RESET) {
1772 /*
1773 * We will just keep one ring and give others back if
1774 * we are not the primary. For the primary we give
1775 * all the rings in the default group except the
1776 * default ring. If it is a static group, then
1777 * we don't do anything, but clear the MRP_RX_RINGS
1778 * flag.
1779 */
1780 if (group != defgrp) {
1781 if (mip->mi_rx_group_type ==
1782 MAC_GROUP_TYPE_DYNAMIC) {
1783 /*
1784 * This group has reserved rings
1785 * that need to be released now,
1786 * so does the group.
1787 */
1788 MAC_RX_RING_RELEASED(mip,
1789 group->mrg_cur_count);
1790 MAC_RX_GRP_RELEASED(mip);
1791 if ((flent->fe_type &
1792 FLOW_PRIMARY_MAC) != 0) {
1793 if (mip->mi_nactiveclients ==
1794 1) {
1795 (void)
1796 mac_rx_switch_group(
1797 mcip, group,
1798 defgrp);
1799 return (0);
1800 } else {
1801 cmrp->mrp_nrxrings =
1802 group->
1803 mrg_cur_count +
1804 defgrp->
1805 mrg_cur_count - 1;
1806 }
1807 } else {
1808 cmrp->mrp_nrxrings = 1;
1809 }
1810 (void) mac_group_ring_modify(mcip,
1811 group, defgrp);
1812 } else {
1813 /*
1814 * If this is a static group, we
1815 * need to release the group. The
1816 * client will remain in the same
1817 * group till some other client
1818 * needs this group.
1819 */
1820 MAC_RX_GRP_RELEASED(mip);
1821 }
1822 /* Let check if we can give this an excl group */
1823 } else if (group == defgrp) {
1824 /*
1825 * If multiple clients share an
1826 * address then they must stay on the
1827 * default group.
1828 */
1829 if (mac_check_macaddr_shared(mcip->mci_unicast))
1830 return (0);
1831
1832 ngrp = mac_reserve_rx_group(mcip, mac_addr,
1833 B_TRUE);
1834 /* Couldn't give it a group, that's fine */
1835 if (ngrp == NULL)
1836 return (0);
1837 /* Switch to H/W */
1838 if (mac_rx_switch_group(mcip, defgrp, ngrp) !=
1839 0) {
1840 mac_stop_group(ngrp);
1841 return (0);
1842 }
1843 }
1844 /*
1845 * If the client is in the default group, we will
1846 * just clear the MRP_RX_RINGS and leave it as
1847 * it rather than look for an exclusive group
1848 * for it.
1849 */
1850 return (0);
1851 }
1852
1853 if (group == defgrp && ((mrp->mrp_nrxrings > 0) || unspec)) {
1854 /*
1855 * We are requesting Rx rings. Try to reserve
1856 * a non-default group.
1857 *
1858 * If multiple clients share an address then
1859 * they must stay on the default group.
1860 */
1861 if (mac_check_macaddr_shared(mcip->mci_unicast))
1862 return (EINVAL);
1863
1864 ngrp = mac_reserve_rx_group(mcip, mac_addr, B_TRUE);
1865 if (ngrp == NULL)
1866 return (ENOSPC);
1867
1868 /* Switch to H/W */
1869 if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) {
1870 mac_release_rx_group(mcip, ngrp);
1871 return (ENOSPC);
1872 }
1873 MAC_RX_GRP_RESERVED(mip);
1874 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC)
1875 MAC_RX_RING_RESERVED(mip, ngrp->mrg_cur_count);
1876 } else if (group != defgrp && !unspec &&
1877 mrp->mrp_nrxrings == 0) {
1878 /* Switch to S/W */
1879 ringcnt = group->mrg_cur_count;
1880 if (mac_rx_switch_group(mcip, group, defgrp) != 0)
1881 return (ENOSPC);
1882 if (tmrp->mrp_mask & MRP_RX_RINGS) {
1883 MAC_RX_GRP_RELEASED(mip);
1884 if (mip->mi_rx_group_type ==
1885 MAC_GROUP_TYPE_DYNAMIC) {
1886 MAC_RX_RING_RELEASED(mip, ringcnt);
1887 }
1888 }
1889 } else if (group != defgrp && mip->mi_rx_group_type ==
1890 MAC_GROUP_TYPE_DYNAMIC) {
1891 ringcnt = group->mrg_cur_count;
1892 err = mac_group_ring_modify(mcip, group, defgrp);
1893 if (err != 0)
1894 return (err);
1895 /*
1896 * Update the accounting. If this group
1897 * already had explicitly reserved rings,
1898 * we need to update the rings based on
1899 * the new ring count. If this group
1900 * had not explicitly reserved rings,
1901 * then we just reserve the rings asked for
1902 * and reserve the group.
1903 */
1904 if (tmrp->mrp_mask & MRP_RX_RINGS) {
1905 if (ringcnt > group->mrg_cur_count) {
1906 MAC_RX_RING_RELEASED(mip,
1907 ringcnt - group->mrg_cur_count);
1908 } else {
1909 MAC_RX_RING_RESERVED(mip,
1910 group->mrg_cur_count - ringcnt);
1911 }
1912 } else {
1913 MAC_RX_RING_RESERVED(mip, group->mrg_cur_count);
1914 MAC_RX_GRP_RESERVED(mip);
1915 }
1916 }
1917 }
1918 if (mrp->mrp_mask & MRP_TX_RINGS) {
1919 unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC;
1920 group = flent->fe_tx_ring_group;
1921 defgrp = MAC_DEFAULT_TX_GROUP(mip);
1922
1923 /*
1924 * For static groups we only allow rings=0 or resetting the
1925 * rings property.
1926 */
1927 if (mrp->mrp_ntxrings > 0 &&
1928 mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) {
1929 return (ENOTSUP);
1930 }
1931 if (mrp->mrp_mask & MRP_RINGS_RESET) {
1932 if (!(tmrp->mrp_mask & MRP_TX_RINGS))
1933 return (0);
1934 } else {
1935 if (unspec) {
1936 if (tmrp->mrp_mask & MRP_TXRINGS_UNSPEC)
1937 return (0);
1938 } else if (mip->mi_tx_group_type ==
1939 MAC_GROUP_TYPE_DYNAMIC) {
1940 if ((tmrp->mrp_mask & MRP_TX_RINGS) &&
1941 !(tmrp->mrp_mask & MRP_TXRINGS_UNSPEC) &&
1942 mrp->mrp_ntxrings == tmrp->mrp_ntxrings) {
1943 return (0);
1944 }
1945 }
1946 }
1947 /* Resetting the prop */
1948 if (mrp->mrp_mask & MRP_RINGS_RESET) {
1949 if (group != defgrp) {
1950 if (mip->mi_tx_group_type ==
1951 MAC_GROUP_TYPE_DYNAMIC) {
1952 ringcnt = group->mrg_cur_count;
1953 if ((flent->fe_type &
1954 FLOW_PRIMARY_MAC) != 0) {
1955 mac_tx_client_quiesce(
1956 (mac_client_handle_t)
1957 mcip);
1958 mac_tx_switch_group(mcip,
1959 group, defgrp);
1960 mac_tx_client_restart(
1961 (mac_client_handle_t)
1962 mcip);
1963 MAC_TX_GRP_RELEASED(mip);
1964 MAC_TX_RING_RELEASED(mip,
1965 ringcnt);
1966 return (0);
1967 }
1968 cmrp->mrp_ntxrings = 1;
1969 (void) mac_group_ring_modify(mcip,
1970 group, defgrp);
1971 /*
1972 * This group has reserved rings
1973 * that need to be released now.
1974 */
1975 MAC_TX_RING_RELEASED(mip, ringcnt);
1976 }
1977 /*
1978 * If this is a static group, we
1979 * need to release the group. The
1980 * client will remain in the same
1981 * group till some other client
1982 * needs this group.
1983 */
1984 MAC_TX_GRP_RELEASED(mip);
1985 } else if (group == defgrp &&
1986 (flent->fe_type & FLOW_PRIMARY_MAC) == 0) {
1987 ngrp = mac_reserve_tx_group(mcip, B_TRUE);
1988 if (ngrp == NULL)
1989 return (0);
1990 mac_tx_client_quiesce(
1991 (mac_client_handle_t)mcip);
1992 mac_tx_switch_group(mcip, defgrp, ngrp);
1993 mac_tx_client_restart(
1994 (mac_client_handle_t)mcip);
1995 }
1996 /*
1997 * If the client is in the default group, we will
1998 * just clear the MRP_TX_RINGS and leave it as
1999 * it rather than look for an exclusive group
2000 * for it.
2001 */
2002 return (0);
2003 }
2004
2005 /* Switch to H/W */
2006 if (group == defgrp && ((mrp->mrp_ntxrings > 0) || unspec)) {
2007 ngrp = mac_reserve_tx_group(mcip, B_TRUE);
2008 if (ngrp == NULL)
2009 return (ENOSPC);
2010 mac_tx_client_quiesce((mac_client_handle_t)mcip);
2011 mac_tx_switch_group(mcip, defgrp, ngrp);
2012 mac_tx_client_restart((mac_client_handle_t)mcip);
2013 MAC_TX_GRP_RESERVED(mip);
2014 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC)
2015 MAC_TX_RING_RESERVED(mip, ngrp->mrg_cur_count);
2016 /* Switch to S/W */
2017 } else if (group != defgrp && !unspec &&
2018 mrp->mrp_ntxrings == 0) {
2019 /* Switch to S/W */
2020 ringcnt = group->mrg_cur_count;
2021 mac_tx_client_quiesce((mac_client_handle_t)mcip);
2022 mac_tx_switch_group(mcip, group, defgrp);
2023 mac_tx_client_restart((mac_client_handle_t)mcip);
2024 if (tmrp->mrp_mask & MRP_TX_RINGS) {
2025 MAC_TX_GRP_RELEASED(mip);
2026 if (mip->mi_tx_group_type ==
2027 MAC_GROUP_TYPE_DYNAMIC) {
2028 MAC_TX_RING_RELEASED(mip, ringcnt);
2029 }
2030 }
2031 } else if (group != defgrp && mip->mi_tx_group_type ==
2032 MAC_GROUP_TYPE_DYNAMIC) {
2033 ringcnt = group->mrg_cur_count;
2034 err = mac_group_ring_modify(mcip, group, defgrp);
2035 if (err != 0)
2036 return (err);
2037 /*
2038 * Update the accounting. If this group
2039 * already had explicitly reserved rings,
2040 * we need to update the rings based on
2041 * the new ring count. If this group
2042 * had not explicitly reserved rings,
2043 * then we just reserve the rings asked for
2044 * and reserve the group.
2045 */
2046 if (tmrp->mrp_mask & MRP_TX_RINGS) {
2047 if (ringcnt > group->mrg_cur_count) {
2048 MAC_TX_RING_RELEASED(mip,
2049 ringcnt - group->mrg_cur_count);
2050 } else {
2051 MAC_TX_RING_RESERVED(mip,
2052 group->mrg_cur_count - ringcnt);
2053 }
2054 } else {
2055 MAC_TX_RING_RESERVED(mip, group->mrg_cur_count);
2056 MAC_TX_GRP_RESERVED(mip);
2057 }
2058 }
2059 }
2060 return (0);
2061 }
2062
2063 /*
2064 * When the MAC client is being brought up (i.e. we do a unicast_add) we need
2065 * to initialize the cpu and resource control structure in the
2066 * mac_client_impl_t from the mac_impl_t (i.e if there are any cached
2067 * properties before the flow entry for the unicast address was created).
2068 */
2069 static int
mac_resource_ctl_set(mac_client_handle_t mch,mac_resource_props_t * mrp)2070 mac_resource_ctl_set(mac_client_handle_t mch, mac_resource_props_t *mrp)
2071 {
2072 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2073 mac_impl_t *mip = (mac_impl_t *)mcip->mci_mip;
2074 mac_impl_t *umip = mcip->mci_upper_mip;
2075 int err = 0;
2076 flow_entry_t *flent = mcip->mci_flent;
2077 mac_resource_props_t *omrp, *nmrp = MCIP_RESOURCE_PROPS(mcip);
2078
2079 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2080
2081 err = mac_validate_props(mcip->mci_state_flags & MCIS_IS_VNIC ?
2082 mcip->mci_upper_mip : mip, mrp);
2083 if (err != 0)
2084 return (err);
2085
2086 /*
2087 * Copy over the existing properties since mac_update_resources
2088 * will modify the client's mrp. Currently, the saved property
2089 * is used to determine the difference between existing and
2090 * modified rings property.
2091 */
2092 omrp = kmem_zalloc(sizeof (*omrp), KM_SLEEP);
2093 bcopy(nmrp, omrp, sizeof (*omrp));
2094 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE);
2095 if (MCIP_DATAPATH_SETUP(mcip)) {
2096 /*
2097 * We support rings only for primary client when there are
2098 * multiple clients sharing the same MAC address (e.g. VLAN).
2099 */
2100 if (mrp->mrp_mask & MRP_RX_RINGS ||
2101 mrp->mrp_mask & MRP_TX_RINGS) {
2102
2103 if ((err = mac_client_set_rings_prop(mcip, mrp,
2104 omrp)) != 0) {
2105 if (omrp->mrp_mask & MRP_RX_RINGS) {
2106 nmrp->mrp_mask |= MRP_RX_RINGS;
2107 nmrp->mrp_nrxrings = omrp->mrp_nrxrings;
2108 } else {
2109 nmrp->mrp_mask &= ~MRP_RX_RINGS;
2110 nmrp->mrp_nrxrings = 0;
2111 }
2112 if (omrp->mrp_mask & MRP_TX_RINGS) {
2113 nmrp->mrp_mask |= MRP_TX_RINGS;
2114 nmrp->mrp_ntxrings = omrp->mrp_ntxrings;
2115 } else {
2116 nmrp->mrp_mask &= ~MRP_TX_RINGS;
2117 nmrp->mrp_ntxrings = 0;
2118 }
2119 if (omrp->mrp_mask & MRP_RXRINGS_UNSPEC)
2120 omrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
2121 else
2122 omrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
2123
2124 if (omrp->mrp_mask & MRP_TXRINGS_UNSPEC)
2125 omrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
2126 else
2127 omrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
2128 kmem_free(omrp, sizeof (*omrp));
2129 return (err);
2130 }
2131
2132 /*
2133 * If we modified the rings property of the primary
2134 * we need to update the property fields of its
2135 * VLANs as they inherit the primary's properites.
2136 */
2137 if (mac_is_primary_client(mcip)) {
2138 mac_set_prim_vlan_rings(mip,
2139 MCIP_RESOURCE_PROPS(mcip));
2140 }
2141 }
2142 /*
2143 * We have to set this prior to calling mac_flow_modify.
2144 */
2145 if (mrp->mrp_mask & MRP_PRIORITY) {
2146 if (mrp->mrp_priority == MPL_RESET) {
2147 MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
2148 MPL_LINK_DEFAULT);
2149 } else {
2150 MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
2151 mrp->mrp_priority);
2152 }
2153 }
2154
2155 mac_flow_modify(mip->mi_flow_tab, flent, mrp);
2156 if (mrp->mrp_mask & MRP_PRIORITY)
2157 mac_update_subflow_priority(mcip);
2158
2159 /* Apply these resource settings to any secondary macs */
2160 if (umip != NULL) {
2161 ASSERT((umip->mi_state_flags & MIS_IS_VNIC) != 0);
2162 mac_vnic_secondary_update(umip);
2163 }
2164 }
2165 kmem_free(omrp, sizeof (*omrp));
2166 return (0);
2167 }
2168
2169 static int
mac_unicast_flow_create(mac_client_impl_t * mcip,uint8_t * mac_addr,uint16_t vid,boolean_t is_primary,boolean_t first_flow,flow_entry_t ** flent,mac_resource_props_t * mrp)2170 mac_unicast_flow_create(mac_client_impl_t *mcip, uint8_t *mac_addr,
2171 uint16_t vid, boolean_t is_primary, boolean_t first_flow,
2172 flow_entry_t **flent, mac_resource_props_t *mrp)
2173 {
2174 mac_impl_t *mip = (mac_impl_t *)mcip->mci_mip;
2175 flow_desc_t flow_desc;
2176 char flowname[MAXFLOWNAMELEN];
2177 int err;
2178 uint_t flent_flags;
2179
2180 /*
2181 * First unicast address being added, create a new flow
2182 * for that MAC client.
2183 */
2184 bzero(&flow_desc, sizeof (flow_desc));
2185
2186 ASSERT(mac_addr != NULL ||
2187 (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR));
2188 if (mac_addr != NULL) {
2189 flow_desc.fd_mac_len = mip->mi_type->mt_addr_length;
2190 bcopy(mac_addr, flow_desc.fd_dst_mac, flow_desc.fd_mac_len);
2191 }
2192 flow_desc.fd_mask = FLOW_LINK_DST;
2193 if (vid != 0) {
2194 flow_desc.fd_vid = vid;
2195 flow_desc.fd_mask |= FLOW_LINK_VID;
2196 }
2197
2198 /*
2199 * XXX-nicolas. For now I'm keeping the FLOW_PRIMARY_MAC
2200 * and FLOW_VNIC. Even though they're a hack inherited
2201 * from the SRS code, we'll keep them for now. They're currently
2202 * consumed by mac_datapath_setup() to create the SRS.
2203 * That code should be eventually moved out of
2204 * mac_datapath_setup() and moved to a mac_srs_create()
2205 * function of some sort to keep things clean.
2206 *
2207 * Also, there's no reason why the SRS for the primary MAC
2208 * client should be different than any other MAC client. Until
2209 * this is cleaned-up, we support only one MAC unicast address
2210 * per client.
2211 *
2212 * We set FLOW_PRIMARY_MAC for the primary MAC address,
2213 * FLOW_VNIC for everything else.
2214 */
2215 if (is_primary)
2216 flent_flags = FLOW_PRIMARY_MAC;
2217 else
2218 flent_flags = FLOW_VNIC_MAC;
2219
2220 /*
2221 * For the first flow we use the MAC client's name - mci_name, for
2222 * subsequent ones we just create a name with the VID. This is
2223 * so that we can add these flows to the same flow table. This is
2224 * fine as the flow name (except for the one with the MAC client's
2225 * name) is not visible. When the first flow is removed, we just replace
2226 * its fdesc with another from the list, so we will still retain the
2227 * flent with the MAC client's flow name.
2228 */
2229 if (first_flow) {
2230 bcopy(mcip->mci_name, flowname, MAXFLOWNAMELEN);
2231 } else {
2232 (void) sprintf(flowname, "%s%u", mcip->mci_name, vid);
2233 flent_flags = FLOW_NO_STATS;
2234 }
2235
2236 if ((err = mac_flow_create(&flow_desc, mrp, flowname, NULL,
2237 flent_flags, flent)) != 0)
2238 return (err);
2239
2240 mac_misc_stat_create(*flent);
2241 FLOW_MARK(*flent, FE_INCIPIENT);
2242 (*flent)->fe_mcip = mcip;
2243
2244 /*
2245 * Place initial creation reference on the flow. This reference
2246 * is released in the corresponding delete action viz.
2247 * mac_unicast_remove after waiting for all transient refs to
2248 * to go away. The wait happens in mac_flow_wait.
2249 * We have already held the reference in mac_client_open().
2250 */
2251 if (!first_flow)
2252 FLOW_REFHOLD(*flent);
2253 return (0);
2254 }
2255
2256 /* Refresh the multicast grouping for this VID. */
2257 int
mac_client_update_mcast(void * arg,boolean_t add,const uint8_t * addrp)2258 mac_client_update_mcast(void *arg, boolean_t add, const uint8_t *addrp)
2259 {
2260 flow_entry_t *flent = arg;
2261 mac_client_impl_t *mcip = flent->fe_mcip;
2262 uint16_t vid;
2263 flow_desc_t flow_desc;
2264
2265 mac_flow_get_desc(flent, &flow_desc);
2266 vid = (flow_desc.fd_mask & FLOW_LINK_VID) != 0 ?
2267 flow_desc.fd_vid : VLAN_ID_NONE;
2268
2269 /*
2270 * We don't call mac_multicast_add()/mac_multicast_remove() as
2271 * we want to add/remove for this specific vid.
2272 */
2273 if (add) {
2274 return (mac_bcast_add(mcip, addrp, vid,
2275 MAC_ADDRTYPE_MULTICAST));
2276 } else {
2277 mac_bcast_delete(mcip, addrp, vid);
2278 return (0);
2279 }
2280 }
2281
2282 static void
mac_update_single_active_client(mac_impl_t * mip)2283 mac_update_single_active_client(mac_impl_t *mip)
2284 {
2285 mac_client_impl_t *client = NULL;
2286
2287 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2288
2289 rw_enter(&mip->mi_rw_lock, RW_WRITER);
2290 if (mip->mi_nactiveclients == 1) {
2291 /*
2292 * Find the one active MAC client from the list of MAC
2293 * clients. The active MAC client has at least one
2294 * unicast address.
2295 */
2296 for (client = mip->mi_clients_list; client != NULL;
2297 client = client->mci_client_next) {
2298 if (client->mci_unicast_list != NULL)
2299 break;
2300 }
2301 ASSERT(client != NULL);
2302 }
2303
2304 /*
2305 * mi_single_active_client is protected by the MAC impl's read/writer
2306 * lock, which allows mac_rx() to check the value of that pointer
2307 * as a reader.
2308 */
2309 mip->mi_single_active_client = client;
2310 rw_exit(&mip->mi_rw_lock);
2311 }
2312
2313 /*
2314 * Set up the data path. Called from i_mac_unicast_add after having
2315 * done all the validations including making sure this is an active
2316 * client (i.e that is ready to process packets.)
2317 */
2318 static int
mac_client_datapath_setup(mac_client_impl_t * mcip,uint16_t vid,uint8_t * mac_addr,mac_resource_props_t * mrp,boolean_t isprimary,mac_unicast_impl_t * muip)2319 mac_client_datapath_setup(mac_client_impl_t *mcip, uint16_t vid,
2320 uint8_t *mac_addr, mac_resource_props_t *mrp, boolean_t isprimary,
2321 mac_unicast_impl_t *muip)
2322 {
2323 mac_impl_t *mip = mcip->mci_mip;
2324 boolean_t mac_started = B_FALSE;
2325 boolean_t bcast_added = B_FALSE;
2326 boolean_t nactiveclients_added = B_FALSE;
2327 flow_entry_t *flent;
2328 int err = 0;
2329 boolean_t no_unicast;
2330
2331 no_unicast = mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR;
2332
2333 if ((err = mac_start((mac_handle_t)mip)) != 0)
2334 goto bail;
2335
2336 mac_started = B_TRUE;
2337
2338 /* add the MAC client to the broadcast address group by default */
2339 if (mip->mi_type->mt_brdcst_addr != NULL) {
2340 err = mac_bcast_add(mcip, mip->mi_type->mt_brdcst_addr, vid,
2341 MAC_ADDRTYPE_BROADCAST);
2342 if (err != 0)
2343 goto bail;
2344 bcast_added = B_TRUE;
2345 }
2346
2347 /*
2348 * If this is the first unicast address addition for this
2349 * client, reuse the pre-allocated larval flow entry associated with
2350 * the MAC client.
2351 */
2352 flent = (mcip->mci_nflents == 0) ? mcip->mci_flent : NULL;
2353
2354 /* We are configuring the unicast flow now */
2355 if (!MCIP_DATAPATH_SETUP(mcip)) {
2356
2357 if (mrp != NULL) {
2358 MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
2359 (mrp->mrp_mask & MRP_PRIORITY) ? mrp->mrp_priority :
2360 MPL_LINK_DEFAULT);
2361 }
2362 if ((err = mac_unicast_flow_create(mcip, mac_addr, vid,
2363 isprimary, B_TRUE, &flent, mrp)) != 0)
2364 goto bail;
2365
2366 mip->mi_nactiveclients++;
2367 nactiveclients_added = B_TRUE;
2368
2369 /*
2370 * This will allocate the RX ring group if possible for the
2371 * flow and program the software classifier as needed.
2372 */
2373 if ((err = mac_datapath_setup(mcip, flent, SRST_LINK)) != 0)
2374 goto bail;
2375
2376 if (no_unicast)
2377 goto done_setup;
2378 /*
2379 * The unicast MAC address must have been added successfully.
2380 */
2381 ASSERT(mcip->mci_unicast != NULL);
2382
2383 /*
2384 * Push down the sub-flows that were defined on this link
2385 * hitherto. The flows are added to the active flow table
2386 * and SRS, softrings etc. are created as needed.
2387 */
2388 mac_link_init_flows((mac_client_handle_t)mcip);
2389 } else {
2390 mac_address_t *map = mcip->mci_unicast;
2391
2392 ASSERT(!no_unicast);
2393 /*
2394 * A unicast flow already exists for that MAC client
2395 * so this flow must be the same MAC address but with
2396 * a different VID. It has been checked by
2397 * mac_addr_in_use().
2398 *
2399 * We will use the SRS etc. from the initial
2400 * mci_flent. We don't need to create a kstat for
2401 * this, as except for the fdesc, everything will be
2402 * used from the first flent.
2403 *
2404 * The only time we should see multiple flents on the
2405 * same MAC client is on the sun4v vsw. If we removed
2406 * that code we should be able to remove the entire
2407 * notion of multiple flents on a MAC client (this
2408 * doesn't affect sub/user flows because they have
2409 * their own list unrelated to mci_flent_list).
2410 */
2411 if (bcmp(mac_addr, map->ma_addr, map->ma_len) != 0) {
2412 err = EINVAL;
2413 goto bail;
2414 }
2415
2416 if ((err = mac_unicast_flow_create(mcip, mac_addr, vid,
2417 isprimary, B_FALSE, &flent, NULL)) != 0) {
2418 goto bail;
2419 }
2420 if ((err = mac_flow_add(mip->mi_flow_tab, flent)) != 0) {
2421 FLOW_FINAL_REFRELE(flent);
2422 goto bail;
2423 }
2424
2425 /* update the multicast group for this vid */
2426 mac_client_bcast_refresh(mcip, mac_client_update_mcast,
2427 (void *)flent, B_TRUE);
2428
2429 }
2430
2431 /* populate the shared MAC address */
2432 muip->mui_map = mcip->mci_unicast;
2433
2434 rw_enter(&mcip->mci_rw_lock, RW_WRITER);
2435 muip->mui_next = mcip->mci_unicast_list;
2436 mcip->mci_unicast_list = muip;
2437 rw_exit(&mcip->mci_rw_lock);
2438
2439 done_setup:
2440 /*
2441 * First add the flent to the flow list of this mcip. Then set
2442 * the mip's mi_single_active_client if needed. The Rx path assumes
2443 * that mip->mi_single_active_client will always have an associated
2444 * flent.
2445 */
2446 mac_client_add_to_flow_list(mcip, flent);
2447 if (nactiveclients_added)
2448 mac_update_single_active_client(mip);
2449 /*
2450 * Trigger a renegotiation of the capabilities when the number of
2451 * active clients changes from 1 to 2, since some of the capabilities
2452 * might have to be disabled. Also send a MAC_NOTE_LINK notification
2453 * to all the MAC clients whenever physical link is DOWN.
2454 */
2455 if (mip->mi_nactiveclients == 2) {
2456 mac_capab_update((mac_handle_t)mip);
2457 mac_virtual_link_update(mip);
2458 }
2459 /*
2460 * Now that the setup is complete, clear the INCIPIENT flag.
2461 * The flag was set to avoid incoming packets seeing inconsistent
2462 * structures while the setup was in progress. Clear the mci_tx_flag
2463 * by calling mac_tx_client_block. It is possible that
2464 * mac_unicast_remove was called prior to this mac_unicast_add which
2465 * could have set the MCI_TX_QUIESCE flag.
2466 */
2467 if (flent->fe_rx_ring_group != NULL)
2468 mac_rx_group_unmark(flent->fe_rx_ring_group, MR_INCIPIENT);
2469 FLOW_UNMARK(flent, FE_INCIPIENT);
2470
2471 /*
2472 * If this is an aggr port client, don't enable the flow's
2473 * datapath at this stage. Otherwise, bcast traffic could
2474 * arrive while the aggr port is in the process of
2475 * initializing. Instead, the flow's datapath is started later
2476 * when mac_client_set_flow_cb() is called.
2477 */
2478 if ((mcip->mci_state_flags & MCIS_IS_AGGR_PORT) == 0)
2479 FLOW_UNMARK(flent, FE_MC_NO_DATAPATH);
2480
2481 mac_tx_client_unblock(mcip);
2482 return (0);
2483 bail:
2484 if (bcast_added)
2485 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, vid);
2486
2487 if (nactiveclients_added)
2488 mip->mi_nactiveclients--;
2489
2490 if (mac_started)
2491 mac_stop((mac_handle_t)mip);
2492
2493 return (err);
2494 }
2495
2496 /*
2497 * Return the passive primary MAC client, if present. The passive client is
2498 * a stand-by client that has the same unicast address as another that is
2499 * currenly active. Once the active client goes away, the passive client
2500 * becomes active.
2501 */
2502 static mac_client_impl_t *
mac_get_passive_primary_client(mac_impl_t * mip)2503 mac_get_passive_primary_client(mac_impl_t *mip)
2504 {
2505 mac_client_impl_t *mcip;
2506
2507 for (mcip = mip->mi_clients_list; mcip != NULL;
2508 mcip = mcip->mci_client_next) {
2509 if (mac_is_primary_client(mcip) &&
2510 (mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
2511 return (mcip);
2512 }
2513 }
2514 return (NULL);
2515 }
2516
2517 /*
2518 * Add a new unicast address to the MAC client.
2519 *
2520 * The MAC address can be specified either by value, or the MAC client
2521 * can specify that it wants to use the primary MAC address of the
2522 * underlying MAC. See the introductory comments at the beginning
2523 * of this file for more more information on primary MAC addresses.
2524 *
2525 * Note also the tuple (MAC address, VID) must be unique
2526 * for the MAC clients defined on top of the same underlying MAC
2527 * instance, unless the MAC_UNICAST_NODUPCHECK is specified.
2528 *
2529 * In no case can a client use the PVID for the MAC, if the MAC has one set.
2530 */
2531 int
i_mac_unicast_add(mac_client_handle_t mch,uint8_t * mac_addr,uint16_t flags,mac_unicast_handle_t * mah,uint16_t vid,mac_diag_t * diag)2532 i_mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags,
2533 mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag)
2534 {
2535 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2536 mac_impl_t *mip = mcip->mci_mip;
2537 int err;
2538 uint_t mac_len = mip->mi_type->mt_addr_length;
2539 boolean_t check_dups = !(flags & MAC_UNICAST_NODUPCHECK);
2540 boolean_t fastpath_disabled = B_FALSE;
2541 boolean_t is_primary = (flags & MAC_UNICAST_PRIMARY);
2542 boolean_t is_unicast_hw = (flags & MAC_UNICAST_HW);
2543 mac_resource_props_t *mrp;
2544 boolean_t passive_client = B_FALSE;
2545 mac_unicast_impl_t *muip;
2546 boolean_t is_vnic_primary =
2547 (flags & MAC_UNICAST_VNIC_PRIMARY);
2548
2549 /*
2550 * When the VID is non-zero the underlying MAC cannot be a
2551 * VNIC. I.e., dladm create-vlan cannot take a VNIC as
2552 * argument, only the primary MAC client.
2553 */
2554 ASSERT(!((mip->mi_state_flags & MIS_IS_VNIC) && (vid != VLAN_ID_NONE)));
2555
2556 *diag = MAC_DIAG_NONE;
2557
2558 /*
2559 * Can't unicast add if the client asked only for minimal datapath
2560 * setup.
2561 */
2562 if (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR)
2563 return (ENOTSUP);
2564
2565 /*
2566 * Check for an attempted use of the current Port VLAN ID, if enabled.
2567 * No client may use it.
2568 */
2569 if (mip->mi_pvid != VLAN_ID_NONE && vid == mip->mi_pvid)
2570 return (EBUSY);
2571
2572 /*
2573 * Check whether it's the primary client and flag it.
2574 */
2575 if (!(mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary &&
2576 vid == VLAN_ID_NONE)
2577 mcip->mci_flags |= MAC_CLIENT_FLAGS_PRIMARY;
2578
2579 /*
2580 * is_vnic_primary is true when we come here as a VLAN VNIC
2581 * which uses the primary MAC client's address but with a non-zero
2582 * VID. In this case the MAC address is not specified by an upper
2583 * MAC client.
2584 */
2585 if ((mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary &&
2586 !is_vnic_primary) {
2587 /*
2588 * The address is being set by the upper MAC client
2589 * of a VNIC. The MAC address was already set by the
2590 * VNIC driver during VNIC creation.
2591 *
2592 * Note: a VNIC has only one MAC address. We return
2593 * the MAC unicast address handle of the lower MAC client
2594 * corresponding to the VNIC. We allocate a new entry
2595 * which is flagged appropriately, so that mac_unicast_remove()
2596 * doesn't attempt to free the original entry that
2597 * was allocated by the VNIC driver.
2598 */
2599 ASSERT(mcip->mci_unicast != NULL);
2600
2601 /* Check for VLAN flags, if present */
2602 if ((flags & MAC_UNICAST_TAG_DISABLE) != 0)
2603 mcip->mci_state_flags |= MCIS_TAG_DISABLE;
2604
2605 if ((flags & MAC_UNICAST_STRIP_DISABLE) != 0)
2606 mcip->mci_state_flags |= MCIS_STRIP_DISABLE;
2607
2608 if ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0)
2609 mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK;
2610
2611 /*
2612 * Ensure that the primary unicast address of the VNIC
2613 * is added only once unless we have the
2614 * MAC_CLIENT_FLAGS_MULTI_PRIMARY set (and this is not
2615 * a passive MAC client).
2616 */
2617 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) != 0) {
2618 if ((mcip->mci_flags &
2619 MAC_CLIENT_FLAGS_MULTI_PRIMARY) == 0 ||
2620 (mcip->mci_flags &
2621 MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
2622 return (EBUSY);
2623 }
2624 mcip->mci_flags |= MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
2625 passive_client = B_TRUE;
2626 }
2627
2628 mcip->mci_flags |= MAC_CLIENT_FLAGS_VNIC_PRIMARY;
2629
2630 /*
2631 * Create a handle for vid 0.
2632 */
2633 ASSERT(vid == VLAN_ID_NONE);
2634 muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP);
2635 muip->mui_vid = vid;
2636 *mah = (mac_unicast_handle_t)muip;
2637 /*
2638 * This will be used by the caller to defer setting the
2639 * rx functions.
2640 */
2641 if (passive_client)
2642 return (EAGAIN);
2643 return (0);
2644 }
2645
2646 /* primary MAC clients cannot be opened on top of anchor VNICs */
2647 if ((is_vnic_primary || is_primary) &&
2648 i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_ANCHOR_VNIC, NULL)) {
2649 return (ENXIO);
2650 }
2651
2652 /*
2653 * If this is a VNIC/VLAN, disable softmac fast-path. This is
2654 * only relevant to legacy devices which use softmac to
2655 * interface with GLDv3.
2656 */
2657 if (mcip->mci_state_flags & MCIS_IS_VNIC) {
2658 err = mac_fastpath_disable((mac_handle_t)mip);
2659 if (err != 0)
2660 return (err);
2661 fastpath_disabled = B_TRUE;
2662 }
2663
2664 /*
2665 * Return EBUSY if:
2666 * - there is an exclusively active mac client exists.
2667 * - this is an exclusive active mac client but
2668 * a. there is already active mac clients exist, or
2669 * b. fastpath streams are already plumbed on this legacy device
2670 * - the mac creator has disallowed active mac clients.
2671 */
2672 if (mip->mi_state_flags & (MIS_EXCLUSIVE|MIS_NO_ACTIVE)) {
2673 if (fastpath_disabled)
2674 mac_fastpath_enable((mac_handle_t)mip);
2675 return (EBUSY);
2676 }
2677
2678 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) {
2679 ASSERT(!fastpath_disabled);
2680 if (mip->mi_nactiveclients != 0)
2681 return (EBUSY);
2682
2683 if ((mip->mi_state_flags & MIS_LEGACY) &&
2684 !(mip->mi_capab_legacy.ml_active_set(mip->mi_driver))) {
2685 return (EBUSY);
2686 }
2687 mip->mi_state_flags |= MIS_EXCLUSIVE;
2688 }
2689
2690 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
2691 if (is_primary && !(mcip->mci_state_flags & (MCIS_IS_VNIC |
2692 MCIS_IS_AGGR_PORT))) {
2693 /*
2694 * Apply the property cached in the mac_impl_t to the primary
2695 * mac client. If the mac client is a VNIC or an aggregation
2696 * port, its property should be set in the mcip when the
2697 * VNIC/aggr was created.
2698 */
2699 mac_get_resources((mac_handle_t)mip, mrp);
2700 (void) mac_client_set_resources(mch, mrp);
2701 } else if (mcip->mci_state_flags & MCIS_IS_VNIC) {
2702 /*
2703 * This is a VLAN client sharing the address of the
2704 * primary MAC client; i.e., one created via dladm
2705 * create-vlan. We don't support specifying ring
2706 * properties for this type of client as it inherits
2707 * these from the primary MAC client.
2708 */
2709 if (is_vnic_primary) {
2710 mac_resource_props_t *vmrp;
2711
2712 vmrp = MCIP_RESOURCE_PROPS(mcip);
2713 if (vmrp->mrp_mask & MRP_RX_RINGS ||
2714 vmrp->mrp_mask & MRP_TX_RINGS) {
2715 if (fastpath_disabled)
2716 mac_fastpath_enable((mac_handle_t)mip);
2717 kmem_free(mrp, sizeof (*mrp));
2718 return (ENOTSUP);
2719 }
2720 /*
2721 * Additionally we also need to inherit any
2722 * rings property from the MAC.
2723 */
2724 mac_get_resources((mac_handle_t)mip, mrp);
2725 if (mrp->mrp_mask & MRP_RX_RINGS) {
2726 vmrp->mrp_mask |= MRP_RX_RINGS;
2727 vmrp->mrp_nrxrings = mrp->mrp_nrxrings;
2728 }
2729 if (mrp->mrp_mask & MRP_TX_RINGS) {
2730 vmrp->mrp_mask |= MRP_TX_RINGS;
2731 vmrp->mrp_ntxrings = mrp->mrp_ntxrings;
2732 }
2733 }
2734 bcopy(MCIP_RESOURCE_PROPS(mcip), mrp, sizeof (*mrp));
2735 }
2736
2737 muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP);
2738 muip->mui_vid = vid;
2739
2740 if (is_primary || is_vnic_primary) {
2741 mac_addr = mip->mi_addr;
2742 } else {
2743
2744 /*
2745 * Verify the validity of the specified MAC addresses value.
2746 */
2747 if (!mac_unicst_verify((mac_handle_t)mip, mac_addr, mac_len)) {
2748 *diag = MAC_DIAG_MACADDR_INVALID;
2749 err = EINVAL;
2750 goto bail_out;
2751 }
2752
2753 /*
2754 * Make sure that the specified MAC address is different
2755 * than the unicast MAC address of the underlying NIC.
2756 */
2757 if (check_dups && bcmp(mip->mi_addr, mac_addr, mac_len) == 0) {
2758 *diag = MAC_DIAG_MACADDR_NIC;
2759 err = EINVAL;
2760 goto bail_out;
2761 }
2762 }
2763
2764 /*
2765 * Set the flags here so that if this is a passive client, we
2766 * can return and set it when we call mac_client_datapath_setup
2767 * when this becomes the active client. If we defer to using these
2768 * flags to mac_client_datapath_setup, then for a passive client,
2769 * we'd have to store the flags somewhere (probably fe_flags)
2770 * and then use it.
2771 */
2772 if (!MCIP_DATAPATH_SETUP(mcip)) {
2773 if (is_unicast_hw) {
2774 /*
2775 * The client requires a hardware MAC address slot
2776 * for that unicast address. Since we support only
2777 * one unicast MAC address per client, flag the
2778 * MAC client itself.
2779 */
2780 mcip->mci_state_flags |= MCIS_UNICAST_HW;
2781 }
2782
2783 /* Check for VLAN flags, if present */
2784 if ((flags & MAC_UNICAST_TAG_DISABLE) != 0)
2785 mcip->mci_state_flags |= MCIS_TAG_DISABLE;
2786
2787 if ((flags & MAC_UNICAST_STRIP_DISABLE) != 0)
2788 mcip->mci_state_flags |= MCIS_STRIP_DISABLE;
2789
2790 if ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0)
2791 mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK;
2792 } else {
2793 /*
2794 * Assert that the specified flags are consistent with the
2795 * flags specified by previous calls to mac_unicast_add().
2796 */
2797 ASSERT(((flags & MAC_UNICAST_TAG_DISABLE) != 0 &&
2798 (mcip->mci_state_flags & MCIS_TAG_DISABLE) != 0) ||
2799 ((flags & MAC_UNICAST_TAG_DISABLE) == 0 &&
2800 (mcip->mci_state_flags & MCIS_TAG_DISABLE) == 0));
2801
2802 ASSERT(((flags & MAC_UNICAST_STRIP_DISABLE) != 0 &&
2803 (mcip->mci_state_flags & MCIS_STRIP_DISABLE) != 0) ||
2804 ((flags & MAC_UNICAST_STRIP_DISABLE) == 0 &&
2805 (mcip->mci_state_flags & MCIS_STRIP_DISABLE) == 0));
2806
2807 ASSERT(((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0 &&
2808 (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) != 0) ||
2809 ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) == 0 &&
2810 (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) == 0));
2811
2812 /*
2813 * Make sure the client is consistent about its requests
2814 * for MAC addresses. I.e. all requests from the clients
2815 * must have the MAC_UNICAST_HW flag set or clear.
2816 */
2817 if (((mcip->mci_state_flags & MCIS_UNICAST_HW) != 0 &&
2818 !is_unicast_hw) ||
2819 ((mcip->mci_state_flags & MCIS_UNICAST_HW) == 0 &&
2820 is_unicast_hw)) {
2821 err = EINVAL;
2822 goto bail_out;
2823 }
2824 }
2825 /*
2826 * Make sure the MAC address is not already used by
2827 * another MAC client defined on top of the same
2828 * underlying NIC. Unless we have MAC_CLIENT_FLAGS_MULTI_PRIMARY
2829 * set when we allow a passive client to be present which will
2830 * be activated when the currently active client goes away - this
2831 * works only with primary addresses.
2832 */
2833 if ((check_dups || is_primary || is_vnic_primary) &&
2834 mac_addr_in_use(mip, mac_addr, vid)) {
2835 /*
2836 * Must have set the multiple primary address flag when
2837 * we did a mac_client_open AND this should be a primary
2838 * MAC client AND there should not already be a passive
2839 * primary. If all is true then we let this succeed
2840 * even if the address is a dup.
2841 */
2842 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_MULTI_PRIMARY) == 0 ||
2843 (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) == 0 ||
2844 mac_get_passive_primary_client(mip) != NULL) {
2845 *diag = MAC_DIAG_MACADDR_INUSE;
2846 err = EEXIST;
2847 goto bail_out;
2848 }
2849 ASSERT((mcip->mci_flags &
2850 MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) == 0);
2851 mcip->mci_flags |= MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
2852 kmem_free(mrp, sizeof (*mrp));
2853
2854 /*
2855 * Stash the unicast address handle, we will use it when
2856 * we set up the passive client.
2857 */
2858 mcip->mci_p_unicast_list = muip;
2859 *mah = (mac_unicast_handle_t)muip;
2860 return (0);
2861 }
2862
2863 err = mac_client_datapath_setup(mcip, vid, mac_addr, mrp,
2864 is_primary || is_vnic_primary, muip);
2865 if (err != 0)
2866 goto bail_out;
2867
2868 kmem_free(mrp, sizeof (*mrp));
2869 *mah = (mac_unicast_handle_t)muip;
2870 return (0);
2871
2872 bail_out:
2873 if (fastpath_disabled)
2874 mac_fastpath_enable((mac_handle_t)mip);
2875 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) {
2876 mip->mi_state_flags &= ~MIS_EXCLUSIVE;
2877 if (mip->mi_state_flags & MIS_LEGACY) {
2878 mip->mi_capab_legacy.ml_active_clear(
2879 mip->mi_driver);
2880 }
2881 }
2882 kmem_free(mrp, sizeof (*mrp));
2883 kmem_free(muip, sizeof (mac_unicast_impl_t));
2884 return (err);
2885 }
2886
2887 /*
2888 * Wrapper function to mac_unicast_add when we want to have the same mac
2889 * client open for two instances, one that is currently active and another
2890 * that will become active when the current one is removed. In this case
2891 * mac_unicast_add will return EGAIN and we will save the rx function and
2892 * arg which will be used when we activate the passive client in
2893 * mac_unicast_remove.
2894 */
2895 int
mac_unicast_add_set_rx(mac_client_handle_t mch,uint8_t * mac_addr,uint16_t flags,mac_unicast_handle_t * mah,uint16_t vid,mac_diag_t * diag,mac_rx_t rx_fn,void * arg)2896 mac_unicast_add_set_rx(mac_client_handle_t mch, uint8_t *mac_addr,
2897 uint16_t flags, mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag,
2898 mac_rx_t rx_fn, void *arg)
2899 {
2900 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2901 uint_t err;
2902
2903 err = mac_unicast_add(mch, mac_addr, flags, mah, vid, diag);
2904 if (err != 0 && err != EAGAIN)
2905 return (err);
2906 if (err == EAGAIN) {
2907 if (rx_fn != NULL) {
2908 mcip->mci_rx_p_fn = rx_fn;
2909 mcip->mci_rx_p_arg = arg;
2910 }
2911 return (0);
2912 }
2913 if (rx_fn != NULL)
2914 mac_rx_set(mch, rx_fn, arg);
2915 return (err);
2916 }
2917
2918 int
mac_unicast_add(mac_client_handle_t mch,uint8_t * mac_addr,uint16_t flags,mac_unicast_handle_t * mah,uint16_t vid,mac_diag_t * diag)2919 mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags,
2920 mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag)
2921 {
2922 mac_impl_t *mip = ((mac_client_impl_t *)mch)->mci_mip;
2923 uint_t err;
2924
2925 i_mac_perim_enter(mip);
2926 err = i_mac_unicast_add(mch, mac_addr, flags, mah, vid, diag);
2927 i_mac_perim_exit(mip);
2928
2929 return (err);
2930 }
2931
2932 static void
mac_client_datapath_teardown(mac_client_handle_t mch,mac_unicast_impl_t * muip,flow_entry_t * flent)2933 mac_client_datapath_teardown(mac_client_handle_t mch, mac_unicast_impl_t *muip,
2934 flow_entry_t *flent)
2935 {
2936 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2937 mac_impl_t *mip = mcip->mci_mip;
2938 boolean_t no_unicast;
2939
2940 /*
2941 * If we have not added a unicast address for this MAC client, just
2942 * teardown the datapath.
2943 */
2944 no_unicast = mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR;
2945
2946 if (!no_unicast) {
2947 /*
2948 * We would have initialized subflows etc. only if we brought
2949 * up the primary client and set the unicast unicast address
2950 * etc. Deactivate the flows. The flow entry will be removed
2951 * from the active flow tables, and the associated SRS,
2952 * softrings etc will be deleted. But the flow entry itself
2953 * won't be destroyed, instead it will continue to be archived
2954 * off the the global flow hash list, for a possible future
2955 * activation when say IP is plumbed again.
2956 */
2957 mac_link_release_flows(mch);
2958 }
2959 mip->mi_nactiveclients--;
2960 mac_update_single_active_client(mip);
2961
2962 /* Tear down the data path */
2963 mac_datapath_teardown(mcip, mcip->mci_flent, SRST_LINK);
2964
2965 /*
2966 * Prevent any future access to the flow entry through the mci_flent
2967 * pointer by setting the mci_flent to NULL. Access to mci_flent in
2968 * mac_bcast_send is also under mi_rw_lock.
2969 */
2970 rw_enter(&mip->mi_rw_lock, RW_WRITER);
2971 flent = mcip->mci_flent;
2972 mac_client_remove_flow_from_list(mcip, flent);
2973
2974 if (mcip->mci_state_flags & MCIS_DESC_LOGGED)
2975 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED;
2976
2977 /*
2978 * This is the last unicast address being removed and there shouldn't
2979 * be any outbound data threads at this point coming down from mac
2980 * clients. We have waited for the data threads to finish before
2981 * starting dld_str_detach. Non-data threads must access TX SRS
2982 * under mi_rw_lock.
2983 */
2984 rw_exit(&mip->mi_rw_lock);
2985
2986 /*
2987 * Don't use FLOW_MARK with FE_MC_NO_DATAPATH, as the flow might
2988 * contain other flags, such as FE_CONDEMNED, which we need to
2989 * cleared. We don't call mac_flow_cleanup() for this unicast
2990 * flow as we have a already cleaned up SRSs etc. (via the teadown
2991 * path). We just clear the stats and reset the initial callback
2992 * function, the rest will be set when we call mac_flow_create,
2993 * if at all.
2994 */
2995 mutex_enter(&flent->fe_lock);
2996 ASSERT(flent->fe_refcnt == 1 && flent->fe_mbg == NULL &&
2997 flent->fe_tx_srs == NULL && flent->fe_rx_srs_cnt == 0);
2998 flent->fe_flags = FE_MC_NO_DATAPATH;
2999 flow_stat_destroy(flent);
3000 mac_misc_stat_delete(flent);
3001
3002 /* Initialize the receiver function to a safe routine */
3003 flent->fe_cb_fn = (flow_fn_t)mac_rx_def;
3004 flent->fe_cb_arg1 = NULL;
3005 flent->fe_cb_arg2 = NULL;
3006
3007 flent->fe_index = -1;
3008 mutex_exit(&flent->fe_lock);
3009
3010 if (mip->mi_type->mt_brdcst_addr != NULL) {
3011 ASSERT(muip != NULL || no_unicast);
3012 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr,
3013 muip != NULL ? muip->mui_vid : VLAN_ID_NONE);
3014 }
3015
3016 if (mip->mi_nactiveclients == 1) {
3017 mac_capab_update((mac_handle_t)mip);
3018 mac_virtual_link_update(mip);
3019 }
3020
3021 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) {
3022 mip->mi_state_flags &= ~MIS_EXCLUSIVE;
3023
3024 if (mip->mi_state_flags & MIS_LEGACY)
3025 mip->mi_capab_legacy.ml_active_clear(mip->mi_driver);
3026 }
3027
3028 mcip->mci_state_flags &= ~MCIS_UNICAST_HW;
3029
3030 if (mcip->mci_state_flags & MCIS_TAG_DISABLE)
3031 mcip->mci_state_flags &= ~MCIS_TAG_DISABLE;
3032
3033 if (mcip->mci_state_flags & MCIS_STRIP_DISABLE)
3034 mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE;
3035
3036 if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK)
3037 mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK;
3038
3039 if (muip != NULL)
3040 kmem_free(muip, sizeof (mac_unicast_impl_t));
3041 mac_protect_cancel_timer(mcip);
3042 mac_protect_flush_dynamic(mcip);
3043
3044 bzero(&mcip->mci_misc_stat, sizeof (mcip->mci_misc_stat));
3045 /*
3046 * Disable fastpath if this is a VNIC or a VLAN.
3047 */
3048 if (mcip->mci_state_flags & MCIS_IS_VNIC)
3049 mac_fastpath_enable((mac_handle_t)mip);
3050 mac_stop((mac_handle_t)mip);
3051 }
3052
3053 /*
3054 * Remove a MAC address which was previously added by mac_unicast_add().
3055 */
3056 int
mac_unicast_remove(mac_client_handle_t mch,mac_unicast_handle_t mah)3057 mac_unicast_remove(mac_client_handle_t mch, mac_unicast_handle_t mah)
3058 {
3059 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3060 mac_unicast_impl_t *muip = (mac_unicast_impl_t *)mah;
3061 mac_unicast_impl_t *pre;
3062 mac_impl_t *mip = mcip->mci_mip;
3063 flow_entry_t *flent;
3064 uint16_t mui_vid;
3065
3066 i_mac_perim_enter(mip);
3067 if (mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) {
3068 /*
3069 * Call made by the upper MAC client of a VNIC.
3070 * There's nothing much to do, the unicast address will
3071 * be removed by the VNIC driver when the VNIC is deleted,
3072 * but let's ensure that all our transmit is done before
3073 * the client does a mac_client_stop lest it trigger an
3074 * assert in the driver.
3075 */
3076 ASSERT(muip->mui_vid == VLAN_ID_NONE);
3077
3078 mac_tx_client_flush(mcip);
3079
3080 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
3081 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
3082 if (mcip->mci_rx_p_fn != NULL) {
3083 mac_rx_set(mch, mcip->mci_rx_p_fn,
3084 mcip->mci_rx_p_arg);
3085 mcip->mci_rx_p_fn = NULL;
3086 mcip->mci_rx_p_arg = NULL;
3087 }
3088 kmem_free(muip, sizeof (mac_unicast_impl_t));
3089 i_mac_perim_exit(mip);
3090 return (0);
3091 }
3092 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_VNIC_PRIMARY;
3093
3094 if (mcip->mci_state_flags & MCIS_TAG_DISABLE)
3095 mcip->mci_state_flags &= ~MCIS_TAG_DISABLE;
3096
3097 if (mcip->mci_state_flags & MCIS_STRIP_DISABLE)
3098 mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE;
3099
3100 if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK)
3101 mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK;
3102
3103 kmem_free(muip, sizeof (mac_unicast_impl_t));
3104 i_mac_perim_exit(mip);
3105 return (0);
3106 }
3107
3108 ASSERT(muip != NULL);
3109
3110 /*
3111 * We are removing a passive client, we haven't setup the datapath
3112 * for this yet, so nothing much to do.
3113 */
3114 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
3115
3116 ASSERT((mcip->mci_flent->fe_flags & FE_MC_NO_DATAPATH) != 0);
3117 ASSERT(mcip->mci_p_unicast_list == muip);
3118
3119 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
3120
3121 mcip->mci_p_unicast_list = NULL;
3122 mcip->mci_rx_p_fn = NULL;
3123 mcip->mci_rx_p_arg = NULL;
3124
3125 mcip->mci_state_flags &= ~MCIS_UNICAST_HW;
3126
3127 if (mcip->mci_state_flags & MCIS_TAG_DISABLE)
3128 mcip->mci_state_flags &= ~MCIS_TAG_DISABLE;
3129
3130 if (mcip->mci_state_flags & MCIS_STRIP_DISABLE)
3131 mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE;
3132
3133 if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK)
3134 mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK;
3135
3136 kmem_free(muip, sizeof (mac_unicast_impl_t));
3137 i_mac_perim_exit(mip);
3138 return (0);
3139 }
3140
3141 /*
3142 * Remove the VID from the list of client's VIDs.
3143 */
3144 pre = mcip->mci_unicast_list;
3145 if (muip == pre) {
3146 mcip->mci_unicast_list = muip->mui_next;
3147 } else {
3148 while ((pre->mui_next != NULL) && (pre->mui_next != muip))
3149 pre = pre->mui_next;
3150 ASSERT(pre->mui_next == muip);
3151 rw_enter(&mcip->mci_rw_lock, RW_WRITER);
3152 pre->mui_next = muip->mui_next;
3153 rw_exit(&mcip->mci_rw_lock);
3154 }
3155
3156 if (!mac_client_single_rcvr(mcip)) {
3157 /*
3158 * This MAC client is shared by more than one unicast
3159 * addresses, so we will just remove the flent
3160 * corresponding to the address being removed. We don't invoke
3161 * mac_rx_classify_flow_rem() since the additional flow is
3162 * not associated with its own separate set of SRS and rings,
3163 * and these constructs are still needed for the remaining
3164 * flows.
3165 */
3166 flent = mac_client_get_flow(mcip, muip);
3167 VERIFY3P(flent, !=, NULL);
3168
3169 /*
3170 * The first one is disappearing, need to make sure
3171 * we replace it with another from the list of
3172 * shared clients.
3173 */
3174 if (flent == mcip->mci_flent)
3175 flent = mac_client_swap_mciflent(mcip);
3176 mac_client_remove_flow_from_list(mcip, flent);
3177 mac_flow_remove(mip->mi_flow_tab, flent, B_FALSE);
3178 mac_flow_wait(flent, FLOW_DRIVER_UPCALL);
3179
3180 /*
3181 * The multicast groups that were added by the client so
3182 * far must be removed from the brodcast domain corresponding
3183 * to the VID being removed.
3184 */
3185 mac_client_bcast_refresh(mcip, mac_client_update_mcast,
3186 (void *)flent, B_FALSE);
3187
3188 if (mip->mi_type->mt_brdcst_addr != NULL) {
3189 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr,
3190 muip->mui_vid);
3191 }
3192
3193 FLOW_FINAL_REFRELE(flent);
3194 ASSERT(!(mcip->mci_state_flags & MCIS_EXCLUSIVE));
3195
3196 /*
3197 * Enable fastpath if this is a VNIC or a VLAN.
3198 */
3199 if (mcip->mci_state_flags & MCIS_IS_VNIC)
3200 mac_fastpath_enable((mac_handle_t)mip);
3201 mac_stop((mac_handle_t)mip);
3202 i_mac_perim_exit(mip);
3203 return (0);
3204 }
3205
3206 mui_vid = muip->mui_vid;
3207 mac_client_datapath_teardown(mch, muip, flent);
3208
3209 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) &&
3210 mui_vid == VLAN_ID_NONE) {
3211 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PRIMARY;
3212 } else {
3213 i_mac_perim_exit(mip);
3214 return (0);
3215 }
3216
3217 /*
3218 * If we are removing the primary, check if we have a passive primary
3219 * client that we need to activate now.
3220 */
3221 mcip = mac_get_passive_primary_client(mip);
3222 if (mcip != NULL) {
3223 mac_resource_props_t *mrp;
3224 mac_unicast_impl_t *muip;
3225
3226 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
3227 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3228
3229 /*
3230 * Apply the property cached in the mac_impl_t to the
3231 * primary mac client.
3232 */
3233 mac_get_resources((mac_handle_t)mip, mrp);
3234 (void) mac_client_set_resources(mch, mrp);
3235 ASSERT(mcip->mci_p_unicast_list != NULL);
3236 muip = mcip->mci_p_unicast_list;
3237 mcip->mci_p_unicast_list = NULL;
3238 if (mac_client_datapath_setup(mcip, VLAN_ID_NONE,
3239 mip->mi_addr, mrp, B_TRUE, muip) == 0) {
3240 if (mcip->mci_rx_p_fn != NULL) {
3241 mac_rx_set(mch, mcip->mci_rx_p_fn,
3242 mcip->mci_rx_p_arg);
3243 mcip->mci_rx_p_fn = NULL;
3244 mcip->mci_rx_p_arg = NULL;
3245 }
3246 } else {
3247 kmem_free(muip, sizeof (mac_unicast_impl_t));
3248 }
3249 kmem_free(mrp, sizeof (*mrp));
3250 }
3251 i_mac_perim_exit(mip);
3252 return (0);
3253 }
3254
3255 /*
3256 * Multicast add function invoked by MAC clients.
3257 */
3258 int
mac_multicast_add(mac_client_handle_t mch,const uint8_t * addr)3259 mac_multicast_add(mac_client_handle_t mch, const uint8_t *addr)
3260 {
3261 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3262 mac_impl_t *mip = mcip->mci_mip;
3263 flow_entry_t *flent = mcip->mci_flent_list;
3264 flow_entry_t *prev_fe = NULL;
3265 uint16_t vid;
3266 int err = 0;
3267
3268 /* Verify the address is a valid multicast address */
3269 if ((err = mip->mi_type->mt_ops.mtops_multicst_verify(addr,
3270 mip->mi_pdata)) != 0)
3271 return (err);
3272
3273 i_mac_perim_enter(mip);
3274 while (flent != NULL) {
3275 vid = i_mac_flow_vid(flent);
3276
3277 err = mac_bcast_add((mac_client_impl_t *)mch, addr, vid,
3278 MAC_ADDRTYPE_MULTICAST);
3279 if (err != 0)
3280 break;
3281 prev_fe = flent;
3282 flent = flent->fe_client_next;
3283 }
3284
3285 /*
3286 * If we failed adding, then undo all, rather than partial
3287 * success.
3288 */
3289 if (flent != NULL && prev_fe != NULL) {
3290 flent = mcip->mci_flent_list;
3291 while (flent != prev_fe->fe_client_next) {
3292 vid = i_mac_flow_vid(flent);
3293 mac_bcast_delete((mac_client_impl_t *)mch, addr, vid);
3294 flent = flent->fe_client_next;
3295 }
3296 }
3297 i_mac_perim_exit(mip);
3298 return (err);
3299 }
3300
3301 /*
3302 * Multicast delete function invoked by MAC clients.
3303 */
3304 void
mac_multicast_remove(mac_client_handle_t mch,const uint8_t * addr)3305 mac_multicast_remove(mac_client_handle_t mch, const uint8_t *addr)
3306 {
3307 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3308 mac_impl_t *mip = mcip->mci_mip;
3309 flow_entry_t *flent;
3310 uint16_t vid;
3311
3312 i_mac_perim_enter(mip);
3313 for (flent = mcip->mci_flent_list; flent != NULL;
3314 flent = flent->fe_client_next) {
3315 vid = i_mac_flow_vid(flent);
3316 mac_bcast_delete((mac_client_impl_t *)mch, addr, vid);
3317 }
3318 i_mac_perim_exit(mip);
3319 }
3320
3321 /*
3322 * When a MAC client desires to capture packets on an interface,
3323 * it registers a promiscuous call back with mac_promisc_add().
3324 * There are three types of promiscuous callbacks:
3325 *
3326 * * MAC_CLIENT_PROMISC_ALL
3327 * Captures all packets sent and received by the MAC client,
3328 * the physical interface, as well as all other MAC clients
3329 * defined on top of the same MAC.
3330 *
3331 * * MAC_CLIENT_PROMISC_FILTERED
3332 * Captures all packets sent and received by the MAC client,
3333 * plus all multicast traffic sent and received by the phyisical
3334 * interface and the other MAC clients.
3335 *
3336 * * MAC_CLIENT_PROMISC_MULTI
3337 * Captures all broadcast and multicast packets sent and
3338 * received by the MAC clients as well as the physical interface.
3339 *
3340 * In all cases, the underlying MAC is put in promiscuous mode.
3341 */
3342 int
mac_promisc_add(mac_client_handle_t mch,mac_client_promisc_type_t type,mac_rx_t fn,void * arg,mac_promisc_handle_t * mphp,uint16_t flags)3343 mac_promisc_add(mac_client_handle_t mch, mac_client_promisc_type_t type,
3344 mac_rx_t fn, void *arg, mac_promisc_handle_t *mphp, uint16_t flags)
3345 {
3346 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3347 mac_impl_t *mip = mcip->mci_mip;
3348 mac_promisc_impl_t *mpip;
3349 mac_cb_info_t *mcbi;
3350 int rc;
3351
3352 i_mac_perim_enter(mip);
3353
3354 if ((rc = mac_start((mac_handle_t)mip)) != 0) {
3355 i_mac_perim_exit(mip);
3356 return (rc);
3357 }
3358
3359 if ((mcip->mci_state_flags & MCIS_IS_VNIC) &&
3360 type == MAC_CLIENT_PROMISC_ALL &&
3361 (mcip->mci_protect_flags & MPT_FLAG_PROMISC_FILTERED)) {
3362 /*
3363 * The function is being invoked by the upper MAC client
3364 * of a VNIC. The VNIC should only see the traffic
3365 * it is entitled to.
3366 */
3367 type = MAC_CLIENT_PROMISC_FILTERED;
3368 }
3369
3370
3371 /*
3372 * Turn on promiscuous mode for the underlying NIC.
3373 * This is needed even for filtered callbacks which
3374 * expect to receive all multicast traffic on the wire.
3375 *
3376 * Physical promiscuous mode should not be turned on if
3377 * MAC_PROMISC_FLAGS_NO_PHYS is set.
3378 */
3379 if ((flags & MAC_PROMISC_FLAGS_NO_PHYS) == 0) {
3380 if ((rc = i_mac_promisc_set(mip, B_TRUE)) != 0) {
3381 mac_stop((mac_handle_t)mip);
3382 i_mac_perim_exit(mip);
3383 return (rc);
3384 }
3385 }
3386
3387 mpip = kmem_cache_alloc(mac_promisc_impl_cache, KM_SLEEP);
3388
3389 mpip->mpi_type = type;
3390 mpip->mpi_fn = fn;
3391 mpip->mpi_arg = arg;
3392 mpip->mpi_mcip = mcip;
3393 mpip->mpi_no_tx_loop = ((flags & MAC_PROMISC_FLAGS_NO_TX_LOOP) != 0);
3394 mpip->mpi_no_phys = ((flags & MAC_PROMISC_FLAGS_NO_PHYS) != 0);
3395 mpip->mpi_strip_vlan_tag =
3396 ((flags & MAC_PROMISC_FLAGS_VLAN_TAG_STRIP) != 0);
3397 mpip->mpi_no_copy = ((flags & MAC_PROMISC_FLAGS_NO_COPY) != 0);
3398
3399 mcbi = &mip->mi_promisc_cb_info;
3400 mutex_enter(mcbi->mcbi_lockp);
3401
3402 mac_callback_add(&mip->mi_promisc_cb_info, &mcip->mci_promisc_list,
3403 &mpip->mpi_mci_link);
3404 mac_callback_add(&mip->mi_promisc_cb_info, &mip->mi_promisc_list,
3405 &mpip->mpi_mi_link);
3406
3407 mutex_exit(mcbi->mcbi_lockp);
3408
3409 *mphp = (mac_promisc_handle_t)mpip;
3410
3411 if (mcip->mci_state_flags & MCIS_IS_VNIC) {
3412 mac_impl_t *umip = mcip->mci_upper_mip;
3413
3414 ASSERT(umip != NULL);
3415 mac_vnic_secondary_update(umip);
3416 }
3417
3418 i_mac_perim_exit(mip);
3419
3420 return (0);
3421 }
3422
3423 /*
3424 * Remove a multicast address previously aded through mac_promisc_add().
3425 */
3426 void
mac_promisc_remove(mac_promisc_handle_t mph)3427 mac_promisc_remove(mac_promisc_handle_t mph)
3428 {
3429 mac_promisc_impl_t *mpip = (mac_promisc_impl_t *)mph;
3430 mac_client_impl_t *mcip = mpip->mpi_mcip;
3431 mac_impl_t *mip = mcip->mci_mip;
3432 mac_cb_info_t *mcbi;
3433 int rv;
3434
3435 i_mac_perim_enter(mip);
3436
3437 /*
3438 * Even if the device can't be reset into normal mode, we still
3439 * need to clear the client promisc callbacks. The client may want
3440 * to close the mac end point and we can't have stale callbacks.
3441 */
3442 if (!(mpip->mpi_no_phys)) {
3443 if ((rv = i_mac_promisc_set(mip, B_FALSE)) != 0) {
3444 cmn_err(CE_WARN, "%s: failed to switch OFF promiscuous"
3445 " mode because of error 0x%x", mip->mi_name, rv);
3446 }
3447 }
3448 mcbi = &mip->mi_promisc_cb_info;
3449 mutex_enter(mcbi->mcbi_lockp);
3450 if (mac_callback_remove(mcbi, &mip->mi_promisc_list,
3451 &mpip->mpi_mi_link)) {
3452 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info,
3453 &mcip->mci_promisc_list, &mpip->mpi_mci_link));
3454 kmem_cache_free(mac_promisc_impl_cache, mpip);
3455 } else {
3456 mac_callback_remove_wait(&mip->mi_promisc_cb_info);
3457 }
3458
3459 if (mcip->mci_state_flags & MCIS_IS_VNIC) {
3460 mac_impl_t *umip = mcip->mci_upper_mip;
3461
3462 ASSERT(umip != NULL);
3463 mac_vnic_secondary_update(umip);
3464 }
3465
3466 mutex_exit(mcbi->mcbi_lockp);
3467 mac_stop((mac_handle_t)mip);
3468
3469 i_mac_perim_exit(mip);
3470 }
3471
3472 /*
3473 * Reference count the number of active Tx threads. MCI_TX_QUIESCE indicates
3474 * that a control operation wants to quiesce the Tx data flow in which case
3475 * we return an error. Holding any of the per cpu locks ensures that the
3476 * mci_tx_flag won't change.
3477 *
3478 * 'CPU' must be accessed just once and used to compute the index into the
3479 * percpu array, and that index must be used for the entire duration of the
3480 * packet send operation. Note that the thread may be preempted and run on
3481 * another cpu any time and so we can't use 'CPU' more than once for the
3482 * operation.
3483 */
3484 #define MAC_TX_TRY_HOLD(mcip, mytx, error) \
3485 { \
3486 (error) = 0; \
3487 (mytx) = &(mcip)->mci_tx_pcpu[CPU->cpu_seqid & mac_tx_percpu_cnt]; \
3488 mutex_enter(&(mytx)->pcpu_tx_lock); \
3489 if (!((mcip)->mci_tx_flag & MCI_TX_QUIESCE)) { \
3490 (mytx)->pcpu_tx_refcnt++; \
3491 } else { \
3492 (error) = -1; \
3493 } \
3494 mutex_exit(&(mytx)->pcpu_tx_lock); \
3495 }
3496
3497 /*
3498 * Release the reference. If needed, signal any control operation waiting
3499 * for Tx quiescence. The wait and signal are always done using the
3500 * mci_tx_pcpu[0]'s lock
3501 */
3502 #define MAC_TX_RELE(mcip, mytx) { \
3503 mutex_enter(&(mytx)->pcpu_tx_lock); \
3504 if (--(mytx)->pcpu_tx_refcnt == 0 && \
3505 (mcip)->mci_tx_flag & MCI_TX_QUIESCE) { \
3506 mutex_exit(&(mytx)->pcpu_tx_lock); \
3507 mutex_enter(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock); \
3508 cv_signal(&(mcip)->mci_tx_cv); \
3509 mutex_exit(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock); \
3510 } else { \
3511 mutex_exit(&(mytx)->pcpu_tx_lock); \
3512 } \
3513 }
3514
3515 /*
3516 * Send function invoked by MAC clients.
3517 */
3518 mac_tx_cookie_t
mac_tx(mac_client_handle_t mch,mblk_t * mp_chain,uintptr_t hint,uint16_t flag,mblk_t ** ret_mp)3519 mac_tx(mac_client_handle_t mch, mblk_t *mp_chain, uintptr_t hint,
3520 uint16_t flag, mblk_t **ret_mp)
3521 {
3522 mac_tx_cookie_t cookie = 0;
3523 int error;
3524 mac_tx_percpu_t *mytx;
3525 mac_soft_ring_set_t *srs;
3526 flow_entry_t *flent;
3527 boolean_t is_subflow = B_FALSE;
3528 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3529 mac_impl_t *mip = mcip->mci_mip;
3530 mac_srs_tx_t *srs_tx;
3531
3532 /*
3533 * Check whether the active Tx threads count is bumped already.
3534 */
3535 if (!(flag & MAC_TX_NO_HOLD)) {
3536 MAC_TX_TRY_HOLD(mcip, mytx, error);
3537 if (error != 0) {
3538 freemsgchain(mp_chain);
3539 return (0);
3540 }
3541 }
3542
3543 /*
3544 * If mac protection is enabled, only the permissible packets will be
3545 * returned by mac_protect_check().
3546 */
3547 if ((mcip->mci_flent->
3548 fe_resource_props.mrp_mask & MRP_PROTECT) != 0 &&
3549 (mp_chain = mac_protect_check(mch, mp_chain)) == NULL)
3550 goto done;
3551
3552 if (mcip->mci_subflow_tab != NULL &&
3553 mcip->mci_subflow_tab->ft_flow_count > 0 &&
3554 mac_flow_lookup(mcip->mci_subflow_tab, mp_chain,
3555 FLOW_OUTBOUND, &flent) == 0) {
3556 /*
3557 * The main assumption here is that if in the event
3558 * we get a chain, all the packets will be classified
3559 * to the same Flow/SRS. If this changes for any
3560 * reason, the following logic should change as well.
3561 * I suppose the fanout_hint also assumes this .
3562 */
3563 ASSERT(flent != NULL);
3564 is_subflow = B_TRUE;
3565 } else {
3566 flent = mcip->mci_flent;
3567 }
3568
3569 srs = flent->fe_tx_srs;
3570 /*
3571 * This is to avoid panics with PF_PACKET that can call mac_tx()
3572 * against an interface that is not capable of sending. A rewrite
3573 * of the mac datapath is required to remove this limitation.
3574 */
3575 if (srs == NULL) {
3576 freemsgchain(mp_chain);
3577 goto done;
3578 }
3579
3580 srs_tx = &srs->srs_tx;
3581 if (srs_tx->st_mode == SRS_TX_DEFAULT &&
3582 (srs->srs_state & SRS_ENQUEUED) == 0 &&
3583 mip->mi_nactiveclients == 1 &&
3584 mp_chain->b_next == NULL &&
3585 (DB_CKSUMFLAGS(mp_chain) & HW_LSO) == 0) {
3586 uint64_t obytes;
3587
3588 /*
3589 * Since dls always opens the underlying MAC, nclients equals
3590 * to 1 means that the only active client is dls itself acting
3591 * as a primary client of the MAC instance. Since dls will not
3592 * send tagged packets in that case, and dls is trusted to send
3593 * packets for its allowed VLAN(s), the VLAN tag insertion and
3594 * check is required only if nclients is greater than 1.
3595 */
3596 if (mip->mi_nclients > 1) {
3597 if (MAC_VID_CHECK_NEEDED(mcip)) {
3598 int err = 0;
3599
3600 MAC_VID_CHECK(mcip, mp_chain, err);
3601 if (err != 0) {
3602 freemsg(mp_chain);
3603 mcip->mci_misc_stat.mms_txerrors++;
3604 goto done;
3605 }
3606 }
3607 if (MAC_TAG_NEEDED(mcip)) {
3608 mp_chain = mac_add_vlan_tag(mp_chain, 0,
3609 mac_client_vid(mch));
3610 if (mp_chain == NULL) {
3611 mcip->mci_misc_stat.mms_txerrors++;
3612 goto done;
3613 }
3614 }
3615 }
3616
3617 obytes = (mp_chain->b_cont == NULL ? MBLKL(mp_chain) :
3618 msgdsize(mp_chain));
3619
3620 mp_chain = mac_provider_tx(mip, srs_tx->st_arg2, mp_chain,
3621 mcip);
3622
3623 if (mp_chain == NULL) {
3624 cookie = 0;
3625 SRS_TX_STAT_UPDATE(srs, opackets, 1);
3626 SRS_TX_STAT_UPDATE(srs, obytes, obytes);
3627 } else {
3628 mutex_enter(&srs->srs_lock);
3629 cookie = mac_tx_srs_no_desc(srs, mp_chain,
3630 flag, ret_mp);
3631 mutex_exit(&srs->srs_lock);
3632 }
3633 } else {
3634 mblk_t *mp = mp_chain;
3635 mblk_t *new_head = NULL;
3636 mblk_t *new_tail = NULL;
3637
3638 /*
3639 * There are occasions where the packets arriving here
3640 * may request hardware offloads that are not
3641 * available from the underlying MAC provider. This
3642 * currently only happens when a packet is sent across
3643 * the MAC-loopback path of one MAC and then forwarded
3644 * (via IP) to another MAC that lacks one or more of
3645 * the hardware offloads provided by the first one.
3646 * However, in the future, we may choose to pretend
3647 * all MAC providers support all offloads, performing
3648 * emulation on Tx as needed.
3649 *
3650 * We iterate each mblk in-turn, emulating hardware
3651 * offloads as required. From this process, we create
3652 * a new chain. The new chain may be the same as the
3653 * original chain (no hardware emulation needed), a
3654 * collection of new mblks (hardware emulation
3655 * needed), or a mix. At this point, the chain is safe
3656 * for consumption by the underlying MAC provider and
3657 * is passed down to the SRS.
3658 */
3659 while (mp != NULL) {
3660 mblk_t *next = mp->b_next;
3661 mblk_t *tail = NULL;
3662 const uint16_t needed =
3663 (DB_CKSUMFLAGS(mp) ^ mip->mi_tx_cksum_flags) &
3664 DB_CKSUMFLAGS(mp);
3665
3666 mp->b_next = NULL;
3667
3668 if ((needed & (HCK_TX_FLAGS | HW_LSO_FLAGS)) != 0) {
3669 mac_emul_t emul = 0;
3670
3671 if (needed & HCK_IPV4_HDRCKSUM)
3672 emul |= MAC_IPCKSUM_EMUL;
3673 if (needed & (HCK_PARTIALCKSUM | HCK_FULLCKSUM))
3674 emul |= MAC_HWCKSUM_EMUL;
3675 if (needed & HW_LSO)
3676 emul = MAC_LSO_EMUL;
3677
3678 mac_hw_emul(&mp, &tail, NULL, emul);
3679
3680 if (mp == NULL) {
3681 mp = next;
3682 continue;
3683 }
3684 }
3685
3686 if (new_head == NULL) {
3687 new_head = mp;
3688 } else {
3689 new_tail->b_next = mp;
3690 }
3691
3692 new_tail = (tail == NULL) ? mp : tail;
3693 mp = next;
3694 }
3695
3696 if (new_head == NULL) {
3697 cookie = 0;
3698 goto done;
3699 }
3700
3701 cookie = srs_tx->st_func(srs, new_head, hint, flag, ret_mp);
3702 }
3703
3704 done:
3705 if (is_subflow)
3706 FLOW_REFRELE(flent);
3707
3708 if (!(flag & MAC_TX_NO_HOLD))
3709 MAC_TX_RELE(mcip, mytx);
3710
3711 return (cookie);
3712 }
3713
3714 /*
3715 * mac_tx_is_blocked
3716 *
3717 * Given a cookie, it returns if the ring identified by the cookie is
3718 * flow-controlled or not. If NULL is passed in place of a cookie,
3719 * then it finds out if any of the underlying rings belonging to the
3720 * SRS is flow controlled or not and returns that status.
3721 */
3722 /* ARGSUSED */
3723 boolean_t
mac_tx_is_flow_blocked(mac_client_handle_t mch,mac_tx_cookie_t cookie)3724 mac_tx_is_flow_blocked(mac_client_handle_t mch, mac_tx_cookie_t cookie)
3725 {
3726 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3727 mac_soft_ring_set_t *mac_srs;
3728 mac_soft_ring_t *sringp;
3729 boolean_t blocked = B_FALSE;
3730 mac_tx_percpu_t *mytx;
3731 int err;
3732 int i;
3733
3734 /*
3735 * Bump the reference count so that mac_srs won't be deleted.
3736 * If the client is currently quiesced and we failed to bump
3737 * the reference, return B_TRUE so that flow control stays
3738 * as enabled.
3739 *
3740 * Flow control will then be disabled once the client is no
3741 * longer quiesced.
3742 */
3743 MAC_TX_TRY_HOLD(mcip, mytx, err);
3744 if (err != 0)
3745 return (B_TRUE);
3746
3747 if ((mac_srs = MCIP_TX_SRS(mcip)) == NULL) {
3748 MAC_TX_RELE(mcip, mytx);
3749 return (B_FALSE);
3750 }
3751
3752 mutex_enter(&mac_srs->srs_lock);
3753 /*
3754 * Only in the case of TX_FANOUT and TX_AGGR, the underlying
3755 * softring (s_ring_state) will have the HIWAT set. This is
3756 * the multiple Tx ring flow control case. For all other
3757 * case, SRS (srs_state) will store the condition.
3758 */
3759 if (mac_srs->srs_tx.st_mode == SRS_TX_FANOUT ||
3760 mac_srs->srs_tx.st_mode == SRS_TX_AGGR) {
3761 if (cookie != 0) {
3762 sringp = (mac_soft_ring_t *)cookie;
3763 mutex_enter(&sringp->s_ring_lock);
3764 if (sringp->s_ring_state & S_RING_TX_HIWAT)
3765 blocked = B_TRUE;
3766 mutex_exit(&sringp->s_ring_lock);
3767 } else {
3768 for (i = 0; i < mac_srs->srs_tx_ring_count; i++) {
3769 sringp = mac_srs->srs_tx_soft_rings[i];
3770 mutex_enter(&sringp->s_ring_lock);
3771 if (sringp->s_ring_state & S_RING_TX_HIWAT) {
3772 blocked = B_TRUE;
3773 mutex_exit(&sringp->s_ring_lock);
3774 break;
3775 }
3776 mutex_exit(&sringp->s_ring_lock);
3777 }
3778 }
3779 } else {
3780 blocked = (mac_srs->srs_state & SRS_TX_HIWAT);
3781 }
3782 mutex_exit(&mac_srs->srs_lock);
3783 MAC_TX_RELE(mcip, mytx);
3784 return (blocked);
3785 }
3786
3787 /*
3788 * Check if the MAC client is the primary MAC client.
3789 */
3790 boolean_t
mac_is_primary_client(mac_client_impl_t * mcip)3791 mac_is_primary_client(mac_client_impl_t *mcip)
3792 {
3793 return (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY);
3794 }
3795
3796 void
mac_ioctl(mac_handle_t mh,queue_t * wq,mblk_t * bp)3797 mac_ioctl(mac_handle_t mh, queue_t *wq, mblk_t *bp)
3798 {
3799 mac_impl_t *mip = (mac_impl_t *)mh;
3800 int cmd = ((struct iocblk *)bp->b_rptr)->ioc_cmd;
3801
3802 if ((cmd == ND_GET && (mip->mi_callbacks->mc_callbacks & MC_GETPROP)) ||
3803 (cmd == ND_SET && (mip->mi_callbacks->mc_callbacks & MC_SETPROP))) {
3804 /*
3805 * If ndd props were registered, call them.
3806 * Note that ndd ioctls are Obsolete
3807 */
3808 mac_ndd_ioctl(mip, wq, bp);
3809 return;
3810 }
3811
3812 /*
3813 * Call the driver to handle the ioctl. The driver may not support
3814 * any ioctls, in which case we reply with a NAK on its behalf.
3815 */
3816 if (mip->mi_callbacks->mc_callbacks & MC_IOCTL)
3817 mip->mi_ioctl(mip->mi_driver, wq, bp);
3818 else
3819 miocnak(wq, bp, 0, EINVAL);
3820 }
3821
3822 /*
3823 * Return the link state of the specified MAC instance.
3824 */
3825 link_state_t
mac_link_get(mac_handle_t mh)3826 mac_link_get(mac_handle_t mh)
3827 {
3828 return (((mac_impl_t *)mh)->mi_linkstate);
3829 }
3830
3831 /*
3832 * Add a mac client specified notification callback. Please see the comments
3833 * above mac_callback_add() for general information about mac callback
3834 * addition/deletion in the presence of mac callback list walkers
3835 */
3836 mac_notify_handle_t
mac_notify_add(mac_handle_t mh,mac_notify_t notify_fn,void * arg)3837 mac_notify_add(mac_handle_t mh, mac_notify_t notify_fn, void *arg)
3838 {
3839 mac_impl_t *mip = (mac_impl_t *)mh;
3840 mac_notify_cb_t *mncb;
3841 mac_cb_info_t *mcbi;
3842
3843 /*
3844 * Allocate a notify callback structure, fill in the details and
3845 * use the mac callback list manipulation functions to chain into
3846 * the list of callbacks.
3847 */
3848 mncb = kmem_zalloc(sizeof (mac_notify_cb_t), KM_SLEEP);
3849 mncb->mncb_fn = notify_fn;
3850 mncb->mncb_arg = arg;
3851 mncb->mncb_mip = mip;
3852 mncb->mncb_link.mcb_objp = mncb;
3853 mncb->mncb_link.mcb_objsize = sizeof (mac_notify_cb_t);
3854 mncb->mncb_link.mcb_flags = MCB_NOTIFY_CB_T;
3855
3856 mcbi = &mip->mi_notify_cb_info;
3857
3858 i_mac_perim_enter(mip);
3859 mutex_enter(mcbi->mcbi_lockp);
3860
3861 mac_callback_add(&mip->mi_notify_cb_info, &mip->mi_notify_cb_list,
3862 &mncb->mncb_link);
3863
3864 mutex_exit(mcbi->mcbi_lockp);
3865 i_mac_perim_exit(mip);
3866 return ((mac_notify_handle_t)mncb);
3867 }
3868
3869 void
mac_notify_remove_wait(mac_handle_t mh)3870 mac_notify_remove_wait(mac_handle_t mh)
3871 {
3872 mac_impl_t *mip = (mac_impl_t *)mh;
3873 mac_cb_info_t *mcbi = &mip->mi_notify_cb_info;
3874
3875 mutex_enter(mcbi->mcbi_lockp);
3876 mac_callback_remove_wait(&mip->mi_notify_cb_info);
3877 mutex_exit(mcbi->mcbi_lockp);
3878 }
3879
3880 /*
3881 * Remove a mac client specified notification callback
3882 */
3883 int
mac_notify_remove(mac_notify_handle_t mnh,boolean_t wait)3884 mac_notify_remove(mac_notify_handle_t mnh, boolean_t wait)
3885 {
3886 mac_notify_cb_t *mncb = (mac_notify_cb_t *)mnh;
3887 mac_impl_t *mip = mncb->mncb_mip;
3888 mac_cb_info_t *mcbi;
3889 int err = 0;
3890
3891 mcbi = &mip->mi_notify_cb_info;
3892
3893 i_mac_perim_enter(mip);
3894 mutex_enter(mcbi->mcbi_lockp);
3895
3896 ASSERT(mncb->mncb_link.mcb_objp == mncb);
3897 /*
3898 * If there aren't any list walkers, the remove would succeed
3899 * inline, else we wait for the deferred remove to complete
3900 */
3901 if (mac_callback_remove(&mip->mi_notify_cb_info,
3902 &mip->mi_notify_cb_list, &mncb->mncb_link)) {
3903 kmem_free(mncb, sizeof (mac_notify_cb_t));
3904 } else {
3905 err = EBUSY;
3906 }
3907
3908 mutex_exit(mcbi->mcbi_lockp);
3909 i_mac_perim_exit(mip);
3910
3911 /*
3912 * If we failed to remove the notification callback and "wait" is set
3913 * to be B_TRUE, wait for the callback to finish after we exit the
3914 * mac perimeter.
3915 */
3916 if (err != 0 && wait) {
3917 mac_notify_remove_wait((mac_handle_t)mip);
3918 return (0);
3919 }
3920
3921 return (err);
3922 }
3923
3924 /*
3925 * Associate resource management callbacks with the specified MAC
3926 * clients.
3927 */
3928
3929 void
mac_resource_set_common(mac_client_handle_t mch,mac_resource_add_t add,mac_resource_remove_t remove,mac_resource_quiesce_t quiesce,mac_resource_restart_t restart,mac_resource_bind_t bind,void * arg)3930 mac_resource_set_common(mac_client_handle_t mch, mac_resource_add_t add,
3931 mac_resource_remove_t remove, mac_resource_quiesce_t quiesce,
3932 mac_resource_restart_t restart, mac_resource_bind_t bind,
3933 void *arg)
3934 {
3935 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3936
3937 mcip->mci_resource_add = add;
3938 mcip->mci_resource_remove = remove;
3939 mcip->mci_resource_quiesce = quiesce;
3940 mcip->mci_resource_restart = restart;
3941 mcip->mci_resource_bind = bind;
3942 mcip->mci_resource_arg = arg;
3943 }
3944
3945 void
mac_resource_set(mac_client_handle_t mch,mac_resource_add_t add,void * arg)3946 mac_resource_set(mac_client_handle_t mch, mac_resource_add_t add, void *arg)
3947 {
3948 /* update the 'resource_add' callback */
3949 mac_resource_set_common(mch, add, NULL, NULL, NULL, NULL, arg);
3950 }
3951
3952 /*
3953 * Sets up the client resources and enable the polling interface over all the
3954 * SRS's and the soft rings of the client
3955 */
3956 void
mac_client_poll_enable(mac_client_handle_t mch)3957 mac_client_poll_enable(mac_client_handle_t mch)
3958 {
3959 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3960 mac_soft_ring_set_t *mac_srs;
3961 flow_entry_t *flent;
3962 int i;
3963
3964 flent = mcip->mci_flent;
3965 ASSERT(flent != NULL);
3966
3967 mcip->mci_state_flags |= MCIS_CLIENT_POLL_CAPABLE;
3968 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
3969 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
3970 ASSERT(mac_srs->srs_mcip == mcip);
3971 mac_srs_client_poll_enable(mcip, mac_srs);
3972 }
3973 }
3974
3975 /*
3976 * Tears down the client resources and disable the polling interface over all
3977 * the SRS's and the soft rings of the client
3978 */
3979 void
mac_client_poll_disable(mac_client_handle_t mch)3980 mac_client_poll_disable(mac_client_handle_t mch)
3981 {
3982 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3983 mac_soft_ring_set_t *mac_srs;
3984 flow_entry_t *flent;
3985 int i;
3986
3987 flent = mcip->mci_flent;
3988 ASSERT(flent != NULL);
3989
3990 mcip->mci_state_flags &= ~MCIS_CLIENT_POLL_CAPABLE;
3991 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
3992 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
3993 ASSERT(mac_srs->srs_mcip == mcip);
3994 mac_srs_client_poll_disable(mcip, mac_srs);
3995 }
3996 }
3997
3998 /*
3999 * Associate the CPUs specified by the given property with a MAC client.
4000 */
4001 int
mac_cpu_set(mac_client_handle_t mch,mac_resource_props_t * mrp)4002 mac_cpu_set(mac_client_handle_t mch, mac_resource_props_t *mrp)
4003 {
4004 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
4005 mac_impl_t *mip = mcip->mci_mip;
4006 int err = 0;
4007
4008 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4009
4010 if ((err = mac_validate_props(mcip->mci_state_flags & MCIS_IS_VNIC ?
4011 mcip->mci_upper_mip : mip, mrp)) != 0) {
4012 return (err);
4013 }
4014 if (MCIP_DATAPATH_SETUP(mcip))
4015 mac_flow_modify(mip->mi_flow_tab, mcip->mci_flent, mrp);
4016
4017 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE);
4018 return (0);
4019 }
4020
4021 /*
4022 * Apply the specified properties to the specified MAC client.
4023 */
4024 int
mac_client_set_resources(mac_client_handle_t mch,mac_resource_props_t * mrp)4025 mac_client_set_resources(mac_client_handle_t mch, mac_resource_props_t *mrp)
4026 {
4027 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
4028 mac_impl_t *mip = mcip->mci_mip;
4029 int err = 0;
4030
4031 i_mac_perim_enter(mip);
4032
4033 if ((mrp->mrp_mask & MRP_MAXBW) || (mrp->mrp_mask & MRP_PRIORITY)) {
4034 err = mac_resource_ctl_set(mch, mrp);
4035 if (err != 0)
4036 goto done;
4037 }
4038
4039 if (mrp->mrp_mask & (MRP_CPUS|MRP_POOL)) {
4040 err = mac_cpu_set(mch, mrp);
4041 if (err != 0)
4042 goto done;
4043 }
4044
4045 if (mrp->mrp_mask & MRP_PROTECT) {
4046 err = mac_protect_set(mch, mrp);
4047 if (err != 0)
4048 goto done;
4049 }
4050
4051 if ((mrp->mrp_mask & MRP_RX_RINGS) || (mrp->mrp_mask & MRP_TX_RINGS))
4052 err = mac_resource_ctl_set(mch, mrp);
4053
4054 done:
4055 i_mac_perim_exit(mip);
4056 return (err);
4057 }
4058
4059 /*
4060 * Return the properties currently associated with the specified MAC client.
4061 */
4062 void
mac_client_get_resources(mac_client_handle_t mch,mac_resource_props_t * mrp)4063 mac_client_get_resources(mac_client_handle_t mch, mac_resource_props_t *mrp)
4064 {
4065 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
4066 mac_resource_props_t *mcip_mrp = MCIP_RESOURCE_PROPS(mcip);
4067
4068 bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t));
4069 }
4070
4071 /*
4072 * Return the effective properties currently associated with the specified
4073 * MAC client.
4074 */
4075 void
mac_client_get_effective_resources(mac_client_handle_t mch,mac_resource_props_t * mrp)4076 mac_client_get_effective_resources(mac_client_handle_t mch,
4077 mac_resource_props_t *mrp)
4078 {
4079 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
4080 mac_resource_props_t *mcip_mrp = MCIP_EFFECTIVE_PROPS(mcip);
4081
4082 bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t));
4083 }
4084
4085 /*
4086 * Pass a copy of the specified packet to the promiscuous callbacks
4087 * of the specified MAC.
4088 *
4089 * If sender is NULL, the function is being invoked for a packet chain
4090 * received from the wire. If sender is non-NULL, it points to
4091 * the MAC client from which the packet is being sent.
4092 *
4093 * The packets are distributed to the promiscuous callbacks as follows:
4094 *
4095 * - all packets are sent to the MAC_CLIENT_PROMISC_ALL callbacks
4096 * - all broadcast and multicast packets are sent to the
4097 * MAC_CLIENT_PROMISC_FILTER and MAC_CLIENT_PROMISC_MULTI.
4098 *
4099 * The unicast packets of MAC_CLIENT_PROMISC_FILTER callbacks are dispatched
4100 * after classification by mac_rx_deliver().
4101 */
4102 static void
mac_promisc_dispatch_one(mac_promisc_impl_t * mpip,mblk_t * mp,boolean_t loopback,boolean_t local)4103 mac_promisc_dispatch_one(mac_promisc_impl_t *mpip, mblk_t *mp,
4104 boolean_t loopback, boolean_t local)
4105 {
4106 mblk_t *mp_next;
4107
4108 if (!mpip->mpi_no_copy || mpip->mpi_strip_vlan_tag) {
4109 mblk_t *mp_copy;
4110
4111 mp_copy = copymsg(mp);
4112 if (mp_copy == NULL)
4113 return;
4114
4115 if (mpip->mpi_strip_vlan_tag) {
4116 mp_copy = mac_strip_vlan_tag_chain(mp_copy);
4117 if (mp_copy == NULL)
4118 return;
4119 }
4120
4121 /*
4122 * There is code upstack that can't deal with message
4123 * chains.
4124 */
4125 for (mblk_t *tmp = mp_copy; tmp != NULL; tmp = mp_next) {
4126 mp_next = tmp->b_next;
4127 tmp->b_next = NULL;
4128 mpip->mpi_fn(mpip->mpi_arg, NULL, tmp, loopback);
4129 }
4130
4131 return;
4132 }
4133
4134 mp_next = mp->b_next;
4135 mp->b_next = NULL;
4136 mpip->mpi_fn(mpip->mpi_arg, NULL, mp, loopback);
4137 mp->b_next = mp_next;
4138 }
4139
4140 /*
4141 * Return the VID of a packet. Zero if the packet is not tagged.
4142 */
4143 static uint16_t
mac_ether_vid(mblk_t * mp)4144 mac_ether_vid(mblk_t *mp)
4145 {
4146 struct ether_header *eth = (struct ether_header *)mp->b_rptr;
4147
4148 if (ntohs(eth->ether_type) == ETHERTYPE_VLAN) {
4149 struct ether_vlan_header *t_evhp =
4150 (struct ether_vlan_header *)mp->b_rptr;
4151 return (VLAN_ID(ntohs(t_evhp->ether_tci)));
4152 }
4153
4154 return (0);
4155 }
4156
4157 /*
4158 * Return whether the specified packet contains a multicast or broadcast
4159 * destination MAC address.
4160 */
4161 static boolean_t
mac_is_mcast(mac_impl_t * mip,mblk_t * mp)4162 mac_is_mcast(mac_impl_t *mip, mblk_t *mp)
4163 {
4164 mac_header_info_t hdr_info;
4165
4166 if (mac_header_info((mac_handle_t)mip, mp, &hdr_info) != 0)
4167 return (B_FALSE);
4168 return ((hdr_info.mhi_dsttype == MAC_ADDRTYPE_BROADCAST) ||
4169 (hdr_info.mhi_dsttype == MAC_ADDRTYPE_MULTICAST));
4170 }
4171
4172 /*
4173 * Send a copy of an mblk chain to the MAC clients of the specified MAC.
4174 * "sender" points to the sender MAC client for outbound packets, and
4175 * is set to NULL for inbound packets.
4176 */
4177 void
mac_promisc_dispatch(mac_impl_t * mip,mblk_t * mp_chain,mac_client_impl_t * sender,boolean_t local)4178 mac_promisc_dispatch(mac_impl_t *mip, mblk_t *mp_chain,
4179 mac_client_impl_t *sender, boolean_t local)
4180 {
4181 mac_promisc_impl_t *mpip;
4182 mac_cb_t *mcb;
4183 mblk_t *mp;
4184 boolean_t is_mcast, is_sender;
4185
4186 MAC_PROMISC_WALKER_INC(mip);
4187 for (mp = mp_chain; mp != NULL; mp = mp->b_next) {
4188 is_mcast = mac_is_mcast(mip, mp);
4189 /* send packet to interested callbacks */
4190 for (mcb = mip->mi_promisc_list; mcb != NULL;
4191 mcb = mcb->mcb_nextp) {
4192 mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
4193 is_sender = (mpip->mpi_mcip == sender);
4194
4195 if (is_sender && mpip->mpi_no_tx_loop)
4196 /*
4197 * The sender doesn't want to receive
4198 * copies of the packets it sends.
4199 */
4200 continue;
4201
4202 /* this client doesn't need any packets (bridge) */
4203 if (mpip->mpi_fn == NULL)
4204 continue;
4205
4206 /*
4207 * For an ethernet MAC, don't displatch a multicast
4208 * packet to a non-PROMISC_ALL callbacks unless the VID
4209 * of the packet matches the VID of the client.
4210 */
4211 if (is_mcast &&
4212 mpip->mpi_type != MAC_CLIENT_PROMISC_ALL &&
4213 !mac_client_check_flow_vid(mpip->mpi_mcip,
4214 mac_ether_vid(mp)))
4215 continue;
4216
4217 if (is_sender ||
4218 mpip->mpi_type == MAC_CLIENT_PROMISC_ALL ||
4219 is_mcast) {
4220 mac_promisc_dispatch_one(mpip, mp, is_sender,
4221 local);
4222 }
4223 }
4224 }
4225 MAC_PROMISC_WALKER_DCR(mip);
4226 }
4227
4228 void
mac_promisc_client_dispatch(mac_client_impl_t * mcip,mblk_t * mp_chain)4229 mac_promisc_client_dispatch(mac_client_impl_t *mcip, mblk_t *mp_chain)
4230 {
4231 mac_impl_t *mip = mcip->mci_mip;
4232 mac_promisc_impl_t *mpip;
4233 boolean_t is_mcast;
4234 mblk_t *mp;
4235 mac_cb_t *mcb;
4236
4237 /*
4238 * The unicast packets for the MAC client still
4239 * need to be delivered to the MAC_CLIENT_PROMISC_FILTERED
4240 * promiscuous callbacks. The broadcast and multicast
4241 * packets were delivered from mac_rx().
4242 */
4243 MAC_PROMISC_WALKER_INC(mip);
4244 for (mp = mp_chain; mp != NULL; mp = mp->b_next) {
4245 is_mcast = mac_is_mcast(mip, mp);
4246 for (mcb = mcip->mci_promisc_list; mcb != NULL;
4247 mcb = mcb->mcb_nextp) {
4248 mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
4249 if (mpip->mpi_type == MAC_CLIENT_PROMISC_FILTERED &&
4250 !is_mcast) {
4251 mac_promisc_dispatch_one(mpip, mp, B_FALSE,
4252 B_FALSE);
4253 }
4254 }
4255 }
4256 MAC_PROMISC_WALKER_DCR(mip);
4257 }
4258
4259 /*
4260 * Return the margin value currently assigned to the specified MAC instance.
4261 */
4262 void
mac_margin_get(mac_handle_t mh,uint32_t * marginp)4263 mac_margin_get(mac_handle_t mh, uint32_t *marginp)
4264 {
4265 mac_impl_t *mip = (mac_impl_t *)mh;
4266
4267 rw_enter(&(mip->mi_rw_lock), RW_READER);
4268 *marginp = mip->mi_margin;
4269 rw_exit(&(mip->mi_rw_lock));
4270 }
4271
4272 /*
4273 * mac_info_get() is used for retrieving the mac_info when a DL_INFO_REQ is
4274 * issued before a DL_ATTACH_REQ. we walk the i_mac_impl_hash table and find
4275 * the first mac_impl_t with a matching driver name; then we copy its mac_info_t
4276 * to the caller. we do all this with i_mac_impl_lock held so the mac_impl_t
4277 * cannot disappear while we are accessing it.
4278 */
4279 typedef struct i_mac_info_state_s {
4280 const char *mi_name;
4281 mac_info_t *mi_infop;
4282 } i_mac_info_state_t;
4283
4284 /*ARGSUSED*/
4285 static uint_t
i_mac_info_walker(mod_hash_key_t key,mod_hash_val_t * val,void * arg)4286 i_mac_info_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
4287 {
4288 i_mac_info_state_t *statep = arg;
4289 mac_impl_t *mip = (mac_impl_t *)val;
4290
4291 if (mip->mi_state_flags & MIS_DISABLED)
4292 return (MH_WALK_CONTINUE);
4293
4294 if (strcmp(statep->mi_name,
4295 ddi_driver_name(mip->mi_dip)) != 0)
4296 return (MH_WALK_CONTINUE);
4297
4298 statep->mi_infop = &mip->mi_info;
4299 return (MH_WALK_TERMINATE);
4300 }
4301
4302 boolean_t
mac_info_get(const char * name,mac_info_t * minfop)4303 mac_info_get(const char *name, mac_info_t *minfop)
4304 {
4305 i_mac_info_state_t state;
4306
4307 rw_enter(&i_mac_impl_lock, RW_READER);
4308 state.mi_name = name;
4309 state.mi_infop = NULL;
4310 mod_hash_walk(i_mac_impl_hash, i_mac_info_walker, &state);
4311 if (state.mi_infop == NULL) {
4312 rw_exit(&i_mac_impl_lock);
4313 return (B_FALSE);
4314 }
4315 *minfop = *state.mi_infop;
4316 rw_exit(&i_mac_impl_lock);
4317 return (B_TRUE);
4318 }
4319
4320 /*
4321 * To get the capabilities that MAC layer cares about, such as rings, factory
4322 * mac address, vnic or not, it should directly invoke this function. If the
4323 * link is part of a bridge, then the only "capability" it has is the inability
4324 * to do zero copy.
4325 */
4326 boolean_t
i_mac_capab_get(mac_handle_t mh,mac_capab_t cap,void * cap_data)4327 i_mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data)
4328 {
4329 mac_impl_t *mip = (mac_impl_t *)mh;
4330
4331 if (mip->mi_bridge_link != NULL) {
4332 return (cap == MAC_CAPAB_NO_ZCOPY);
4333 } else if (mip->mi_callbacks->mc_callbacks & MC_GETCAPAB) {
4334 boolean_t res;
4335
4336 res = mip->mi_getcapab(mip->mi_driver, cap, cap_data);
4337 /*
4338 * Until we have suppport for TSOv6 emulation in the MAC
4339 * loopback path, do not allow the TSOv6 capability to be
4340 * advertised to consumers.
4341 */
4342 if (res && cap == MAC_CAPAB_LSO) {
4343 mac_capab_lso_t *cap_lso = cap_data;
4344
4345 cap_lso->lso_flags &= ~LSO_TX_BASIC_TCP_IPV6;
4346 cap_lso->lso_basic_tcp_ipv6.lso_max = 0;
4347 }
4348 return (res);
4349 } else {
4350 return (B_FALSE);
4351 }
4352 }
4353
4354 /*
4355 * Capability query function. If number of active mac clients is greater than
4356 * 1, only limited capabilities can be advertised to the caller no matter the
4357 * driver has certain capability or not. Else, we query the driver to get the
4358 * capability.
4359 */
4360 boolean_t
mac_capab_get(mac_handle_t mh,mac_capab_t cap,void * cap_data)4361 mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data)
4362 {
4363 mac_impl_t *mip = (mac_impl_t *)mh;
4364
4365 /*
4366 * Some capabilities are restricted when there are more than one active
4367 * clients on the MAC resource. The ones noted below are safe,
4368 * independent of that count.
4369 */
4370 if (mip->mi_nactiveclients > 1) {
4371 switch (cap) {
4372 case MAC_CAPAB_NO_ZCOPY:
4373 return (B_TRUE);
4374 case MAC_CAPAB_LEGACY:
4375 case MAC_CAPAB_HCKSUM:
4376 case MAC_CAPAB_LSO:
4377 case MAC_CAPAB_NO_NATIVEVLAN:
4378 break;
4379 default:
4380 return (B_FALSE);
4381 }
4382 }
4383
4384 /* else get capab from driver */
4385 return (i_mac_capab_get(mh, cap, cap_data));
4386 }
4387
4388 boolean_t
mac_sap_verify(mac_handle_t mh,uint32_t sap,uint32_t * bind_sap)4389 mac_sap_verify(mac_handle_t mh, uint32_t sap, uint32_t *bind_sap)
4390 {
4391 mac_impl_t *mip = (mac_impl_t *)mh;
4392
4393 return (mip->mi_type->mt_ops.mtops_sap_verify(sap, bind_sap,
4394 mip->mi_pdata));
4395 }
4396
4397 mblk_t *
mac_header(mac_handle_t mh,const uint8_t * daddr,uint32_t sap,mblk_t * payload,size_t extra_len)4398 mac_header(mac_handle_t mh, const uint8_t *daddr, uint32_t sap, mblk_t *payload,
4399 size_t extra_len)
4400 {
4401 mac_impl_t *mip = (mac_impl_t *)mh;
4402 const uint8_t *hdr_daddr;
4403
4404 /*
4405 * If the MAC is point-to-point with a fixed destination address, then
4406 * we must always use that destination in the MAC header.
4407 */
4408 hdr_daddr = (mip->mi_dstaddr_set ? mip->mi_dstaddr : daddr);
4409 return (mip->mi_type->mt_ops.mtops_header(mip->mi_addr, hdr_daddr, sap,
4410 mip->mi_pdata, payload, extra_len));
4411 }
4412
4413 int
mac_header_info(mac_handle_t mh,mblk_t * mp,mac_header_info_t * mhip)4414 mac_header_info(mac_handle_t mh, mblk_t *mp, mac_header_info_t *mhip)
4415 {
4416 mac_impl_t *mip = (mac_impl_t *)mh;
4417
4418 return (mip->mi_type->mt_ops.mtops_header_info(mp, mip->mi_pdata,
4419 mhip));
4420 }
4421
4422 int
mac_vlan_header_info(mac_handle_t mh,mblk_t * mp,mac_header_info_t * mhip)4423 mac_vlan_header_info(mac_handle_t mh, mblk_t *mp, mac_header_info_t *mhip)
4424 {
4425 mac_impl_t *mip = (mac_impl_t *)mh;
4426 boolean_t is_ethernet = (mip->mi_info.mi_media == DL_ETHER);
4427 int err = 0;
4428
4429 /*
4430 * Packets should always be at least 16 bit aligned.
4431 */
4432 ASSERT(IS_P2ALIGNED(mp->b_rptr, sizeof (uint16_t)));
4433
4434 if ((err = mac_header_info(mh, mp, mhip)) != 0)
4435 return (err);
4436
4437 /*
4438 * If this is a VLAN-tagged Ethernet packet, then the SAP in the
4439 * mac_header_info_t as returned by mac_header_info() is
4440 * ETHERTYPE_VLAN. We need to grab the ethertype from the VLAN header.
4441 */
4442 if (is_ethernet && (mhip->mhi_bindsap == ETHERTYPE_VLAN)) {
4443 struct ether_vlan_header *evhp;
4444 uint16_t sap;
4445 mblk_t *tmp = NULL;
4446 size_t size;
4447
4448 size = sizeof (struct ether_vlan_header);
4449 if (MBLKL(mp) < size) {
4450 /*
4451 * Pullup the message in order to get the MAC header
4452 * infomation. Note that this is a read-only function,
4453 * we keep the input packet intact.
4454 */
4455 if ((tmp = msgpullup(mp, size)) == NULL)
4456 return (EINVAL);
4457
4458 mp = tmp;
4459 }
4460 evhp = (struct ether_vlan_header *)mp->b_rptr;
4461 sap = ntohs(evhp->ether_type);
4462 (void) mac_sap_verify(mh, sap, &mhip->mhi_bindsap);
4463 mhip->mhi_hdrsize = sizeof (struct ether_vlan_header);
4464 mhip->mhi_tci = ntohs(evhp->ether_tci);
4465 mhip->mhi_istagged = B_TRUE;
4466 freemsg(tmp);
4467
4468 if (VLAN_CFI(mhip->mhi_tci) != ETHER_CFI)
4469 return (EINVAL);
4470 } else {
4471 mhip->mhi_istagged = B_FALSE;
4472 mhip->mhi_tci = 0;
4473 }
4474
4475 return (0);
4476 }
4477
4478 mblk_t *
mac_header_cook(mac_handle_t mh,mblk_t * mp)4479 mac_header_cook(mac_handle_t mh, mblk_t *mp)
4480 {
4481 mac_impl_t *mip = (mac_impl_t *)mh;
4482
4483 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_COOK) {
4484 if (DB_REF(mp) > 1) {
4485 mblk_t *newmp = copymsg(mp);
4486 if (newmp == NULL)
4487 return (NULL);
4488 freemsg(mp);
4489 mp = newmp;
4490 }
4491 return (mip->mi_type->mt_ops.mtops_header_cook(mp,
4492 mip->mi_pdata));
4493 }
4494 return (mp);
4495 }
4496
4497 mblk_t *
mac_header_uncook(mac_handle_t mh,mblk_t * mp)4498 mac_header_uncook(mac_handle_t mh, mblk_t *mp)
4499 {
4500 mac_impl_t *mip = (mac_impl_t *)mh;
4501
4502 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_UNCOOK) {
4503 if (DB_REF(mp) > 1) {
4504 mblk_t *newmp = copymsg(mp);
4505 if (newmp == NULL)
4506 return (NULL);
4507 freemsg(mp);
4508 mp = newmp;
4509 }
4510 return (mip->mi_type->mt_ops.mtops_header_uncook(mp,
4511 mip->mi_pdata));
4512 }
4513 return (mp);
4514 }
4515
4516 uint_t
mac_addr_len(mac_handle_t mh)4517 mac_addr_len(mac_handle_t mh)
4518 {
4519 mac_impl_t *mip = (mac_impl_t *)mh;
4520
4521 return (mip->mi_type->mt_addr_length);
4522 }
4523
4524 /* True if a MAC is a VNIC */
4525 boolean_t
mac_is_vnic(mac_handle_t mh)4526 mac_is_vnic(mac_handle_t mh)
4527 {
4528 return ((((mac_impl_t *)mh)->mi_state_flags & MIS_IS_VNIC) != 0);
4529 }
4530
4531 boolean_t
mac_is_overlay(mac_handle_t mh)4532 mac_is_overlay(mac_handle_t mh)
4533 {
4534 return ((((mac_impl_t *)mh)->mi_state_flags & MIS_IS_OVERLAY) != 0);
4535 }
4536
4537 mac_handle_t
mac_get_lower_mac_handle(mac_handle_t mh)4538 mac_get_lower_mac_handle(mac_handle_t mh)
4539 {
4540 mac_impl_t *mip = (mac_impl_t *)mh;
4541
4542 ASSERT(mac_is_vnic(mh));
4543 return (((vnic_t *)mip->mi_driver)->vn_lower_mh);
4544 }
4545
4546 boolean_t
mac_is_vnic_primary(mac_handle_t mh)4547 mac_is_vnic_primary(mac_handle_t mh)
4548 {
4549 mac_impl_t *mip = (mac_impl_t *)mh;
4550
4551 ASSERT(mac_is_vnic(mh));
4552 return (((vnic_t *)mip->mi_driver)->vn_addr_type ==
4553 VNIC_MAC_ADDR_TYPE_PRIMARY);
4554 }
4555
4556 void
mac_update_resources(mac_resource_props_t * nmrp,mac_resource_props_t * cmrp,boolean_t is_user_flow)4557 mac_update_resources(mac_resource_props_t *nmrp, mac_resource_props_t *cmrp,
4558 boolean_t is_user_flow)
4559 {
4560 if (nmrp != NULL && cmrp != NULL) {
4561 if (nmrp->mrp_mask & MRP_PRIORITY) {
4562 if (nmrp->mrp_priority == MPL_RESET) {
4563 cmrp->mrp_mask &= ~MRP_PRIORITY;
4564 if (is_user_flow) {
4565 cmrp->mrp_priority =
4566 MPL_SUBFLOW_DEFAULT;
4567 } else {
4568 cmrp->mrp_priority = MPL_LINK_DEFAULT;
4569 }
4570 } else {
4571 cmrp->mrp_mask |= MRP_PRIORITY;
4572 cmrp->mrp_priority = nmrp->mrp_priority;
4573 }
4574 }
4575 if (nmrp->mrp_mask & MRP_MAXBW) {
4576 if (nmrp->mrp_maxbw == MRP_MAXBW_RESETVAL) {
4577 cmrp->mrp_mask &= ~MRP_MAXBW;
4578 cmrp->mrp_maxbw = 0;
4579 } else {
4580 cmrp->mrp_mask |= MRP_MAXBW;
4581 cmrp->mrp_maxbw = nmrp->mrp_maxbw;
4582 }
4583 }
4584 if (nmrp->mrp_mask & MRP_CPUS)
4585 MAC_COPY_CPUS(nmrp, cmrp);
4586
4587 if (nmrp->mrp_mask & MRP_POOL) {
4588 if (strlen(nmrp->mrp_pool) == 0) {
4589 cmrp->mrp_mask &= ~MRP_POOL;
4590 bzero(cmrp->mrp_pool, sizeof (cmrp->mrp_pool));
4591 } else {
4592 cmrp->mrp_mask |= MRP_POOL;
4593 (void) strncpy(cmrp->mrp_pool, nmrp->mrp_pool,
4594 sizeof (cmrp->mrp_pool));
4595 }
4596
4597 }
4598
4599 if (nmrp->mrp_mask & MRP_PROTECT)
4600 mac_protect_update(nmrp, cmrp);
4601
4602 /*
4603 * Update the rings specified.
4604 */
4605 if (nmrp->mrp_mask & MRP_RX_RINGS) {
4606 if (nmrp->mrp_mask & MRP_RINGS_RESET) {
4607 cmrp->mrp_mask &= ~MRP_RX_RINGS;
4608 if (cmrp->mrp_mask & MRP_RXRINGS_UNSPEC)
4609 cmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
4610 cmrp->mrp_nrxrings = 0;
4611 } else {
4612 cmrp->mrp_mask |= MRP_RX_RINGS;
4613 cmrp->mrp_nrxrings = nmrp->mrp_nrxrings;
4614 }
4615 }
4616 if (nmrp->mrp_mask & MRP_TX_RINGS) {
4617 if (nmrp->mrp_mask & MRP_RINGS_RESET) {
4618 cmrp->mrp_mask &= ~MRP_TX_RINGS;
4619 if (cmrp->mrp_mask & MRP_TXRINGS_UNSPEC)
4620 cmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
4621 cmrp->mrp_ntxrings = 0;
4622 } else {
4623 cmrp->mrp_mask |= MRP_TX_RINGS;
4624 cmrp->mrp_ntxrings = nmrp->mrp_ntxrings;
4625 }
4626 }
4627 if (nmrp->mrp_mask & MRP_RXRINGS_UNSPEC)
4628 cmrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
4629 else if (cmrp->mrp_mask & MRP_RXRINGS_UNSPEC)
4630 cmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
4631
4632 if (nmrp->mrp_mask & MRP_TXRINGS_UNSPEC)
4633 cmrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
4634 else if (cmrp->mrp_mask & MRP_TXRINGS_UNSPEC)
4635 cmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
4636 }
4637 }
4638
4639 /*
4640 * i_mac_set_resources:
4641 *
4642 * This routine associates properties with the primary MAC client of
4643 * the specified MAC instance.
4644 * - Cache the properties in mac_impl_t
4645 * - Apply the properties to the primary MAC client if exists
4646 */
4647 int
i_mac_set_resources(mac_handle_t mh,mac_resource_props_t * mrp)4648 i_mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp)
4649 {
4650 mac_impl_t *mip = (mac_impl_t *)mh;
4651 mac_client_impl_t *mcip;
4652 int err = 0;
4653 uint32_t resmask, newresmask;
4654 mac_resource_props_t *tmrp, *umrp;
4655
4656 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4657
4658 err = mac_validate_props(mip, mrp);
4659 if (err != 0)
4660 return (err);
4661
4662 umrp = kmem_zalloc(sizeof (*umrp), KM_SLEEP);
4663 bcopy(&mip->mi_resource_props, umrp, sizeof (*umrp));
4664 resmask = umrp->mrp_mask;
4665 mac_update_resources(mrp, umrp, B_FALSE);
4666 newresmask = umrp->mrp_mask;
4667
4668 if (resmask == 0 && newresmask != 0) {
4669 /*
4670 * Bandwidth, priority, cpu or pool link properties configured,
4671 * must disable fastpath.
4672 */
4673 if ((err = mac_fastpath_disable((mac_handle_t)mip)) != 0) {
4674 kmem_free(umrp, sizeof (*umrp));
4675 return (err);
4676 }
4677 }
4678
4679 /*
4680 * Since bind_cpu may be modified by mac_client_set_resources()
4681 * we use a copy of bind_cpu and finally cache bind_cpu in mip.
4682 * This allows us to cache only user edits in mip.
4683 */
4684 tmrp = kmem_zalloc(sizeof (*tmrp), KM_SLEEP);
4685 bcopy(mrp, tmrp, sizeof (*tmrp));
4686 mcip = mac_primary_client_handle(mip);
4687 if (mcip != NULL && (mcip->mci_state_flags & MCIS_IS_AGGR_PORT) == 0) {
4688 err = mac_client_set_resources((mac_client_handle_t)mcip, tmrp);
4689 } else if ((mrp->mrp_mask & MRP_RX_RINGS ||
4690 mrp->mrp_mask & MRP_TX_RINGS)) {
4691 mac_client_impl_t *vmcip;
4692
4693 /*
4694 * If the primary is not up, we need to check if there
4695 * are any VLANs on this primary. If there are then
4696 * we need to set this property on the VLANs since
4697 * VLANs follow the primary they are based on. Just
4698 * look for the first VLAN and change its properties,
4699 * all the other VLANs should be in the same group.
4700 */
4701 for (vmcip = mip->mi_clients_list; vmcip != NULL;
4702 vmcip = vmcip->mci_client_next) {
4703 if ((vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) &&
4704 mac_client_vid((mac_client_handle_t)vmcip) !=
4705 VLAN_ID_NONE) {
4706 break;
4707 }
4708 }
4709 if (vmcip != NULL) {
4710 mac_resource_props_t *omrp;
4711 mac_resource_props_t *vmrp;
4712
4713 omrp = kmem_zalloc(sizeof (*omrp), KM_SLEEP);
4714 bcopy(MCIP_RESOURCE_PROPS(vmcip), omrp, sizeof (*omrp));
4715 /*
4716 * We dont' call mac_update_resources since we
4717 * want to take only the ring properties and
4718 * not all the properties that may have changed.
4719 */
4720 vmrp = MCIP_RESOURCE_PROPS(vmcip);
4721 if (mrp->mrp_mask & MRP_RX_RINGS) {
4722 if (mrp->mrp_mask & MRP_RINGS_RESET) {
4723 vmrp->mrp_mask &= ~MRP_RX_RINGS;
4724 if (vmrp->mrp_mask &
4725 MRP_RXRINGS_UNSPEC) {
4726 vmrp->mrp_mask &=
4727 ~MRP_RXRINGS_UNSPEC;
4728 }
4729 vmrp->mrp_nrxrings = 0;
4730 } else {
4731 vmrp->mrp_mask |= MRP_RX_RINGS;
4732 vmrp->mrp_nrxrings = mrp->mrp_nrxrings;
4733 }
4734 }
4735 if (mrp->mrp_mask & MRP_TX_RINGS) {
4736 if (mrp->mrp_mask & MRP_RINGS_RESET) {
4737 vmrp->mrp_mask &= ~MRP_TX_RINGS;
4738 if (vmrp->mrp_mask &
4739 MRP_TXRINGS_UNSPEC) {
4740 vmrp->mrp_mask &=
4741 ~MRP_TXRINGS_UNSPEC;
4742 }
4743 vmrp->mrp_ntxrings = 0;
4744 } else {
4745 vmrp->mrp_mask |= MRP_TX_RINGS;
4746 vmrp->mrp_ntxrings = mrp->mrp_ntxrings;
4747 }
4748 }
4749 if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC)
4750 vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
4751
4752 if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC)
4753 vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
4754
4755 if ((err = mac_client_set_rings_prop(vmcip, mrp,
4756 omrp)) != 0) {
4757 bcopy(omrp, MCIP_RESOURCE_PROPS(vmcip),
4758 sizeof (*omrp));
4759 } else {
4760 mac_set_prim_vlan_rings(mip, vmrp);
4761 }
4762 kmem_free(omrp, sizeof (*omrp));
4763 }
4764 }
4765
4766 /* Only update the values if mac_client_set_resources succeeded */
4767 if (err == 0) {
4768 bcopy(umrp, &mip->mi_resource_props, sizeof (*umrp));
4769 /*
4770 * If bandwidth, priority or cpu link properties cleared,
4771 * renable fastpath.
4772 */
4773 if (resmask != 0 && newresmask == 0)
4774 mac_fastpath_enable((mac_handle_t)mip);
4775 } else if (resmask == 0 && newresmask != 0) {
4776 mac_fastpath_enable((mac_handle_t)mip);
4777 }
4778 kmem_free(tmrp, sizeof (*tmrp));
4779 kmem_free(umrp, sizeof (*umrp));
4780 return (err);
4781 }
4782
4783 int
mac_set_resources(mac_handle_t mh,mac_resource_props_t * mrp)4784 mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp)
4785 {
4786 int err;
4787
4788 i_mac_perim_enter((mac_impl_t *)mh);
4789 err = i_mac_set_resources(mh, mrp);
4790 i_mac_perim_exit((mac_impl_t *)mh);
4791 return (err);
4792 }
4793
4794 /*
4795 * Get the properties cached for the specified MAC instance.
4796 */
4797 void
mac_get_resources(mac_handle_t mh,mac_resource_props_t * mrp)4798 mac_get_resources(mac_handle_t mh, mac_resource_props_t *mrp)
4799 {
4800 mac_impl_t *mip = (mac_impl_t *)mh;
4801 mac_client_impl_t *mcip;
4802
4803 mcip = mac_primary_client_handle(mip);
4804 if (mcip != NULL) {
4805 mac_client_get_resources((mac_client_handle_t)mcip, mrp);
4806 return;
4807 }
4808 bcopy(&mip->mi_resource_props, mrp, sizeof (mac_resource_props_t));
4809 }
4810
4811 /*
4812 * Get the effective properties from the primary client of the
4813 * specified MAC instance.
4814 */
4815 void
mac_get_effective_resources(mac_handle_t mh,mac_resource_props_t * mrp)4816 mac_get_effective_resources(mac_handle_t mh, mac_resource_props_t *mrp)
4817 {
4818 mac_impl_t *mip = (mac_impl_t *)mh;
4819 mac_client_impl_t *mcip;
4820
4821 mcip = mac_primary_client_handle(mip);
4822 if (mcip != NULL) {
4823 mac_client_get_effective_resources((mac_client_handle_t)mcip,
4824 mrp);
4825 return;
4826 }
4827 bzero(mrp, sizeof (mac_resource_props_t));
4828 }
4829
4830 int
mac_set_pvid(mac_handle_t mh,uint16_t pvid)4831 mac_set_pvid(mac_handle_t mh, uint16_t pvid)
4832 {
4833 mac_impl_t *mip = (mac_impl_t *)mh;
4834 mac_client_impl_t *mcip;
4835 mac_unicast_impl_t *muip;
4836
4837 i_mac_perim_enter(mip);
4838 if (pvid != 0) {
4839 for (mcip = mip->mi_clients_list; mcip != NULL;
4840 mcip = mcip->mci_client_next) {
4841 for (muip = mcip->mci_unicast_list; muip != NULL;
4842 muip = muip->mui_next) {
4843 if (muip->mui_vid == pvid) {
4844 i_mac_perim_exit(mip);
4845 return (EBUSY);
4846 }
4847 }
4848 }
4849 }
4850 mip->mi_pvid = pvid;
4851 i_mac_perim_exit(mip);
4852 return (0);
4853 }
4854
4855 uint16_t
mac_get_pvid(mac_handle_t mh)4856 mac_get_pvid(mac_handle_t mh)
4857 {
4858 mac_impl_t *mip = (mac_impl_t *)mh;
4859
4860 return (mip->mi_pvid);
4861 }
4862
4863 uint32_t
mac_get_llimit(mac_handle_t mh)4864 mac_get_llimit(mac_handle_t mh)
4865 {
4866 mac_impl_t *mip = (mac_impl_t *)mh;
4867
4868 return (mip->mi_llimit);
4869 }
4870
4871 uint32_t
mac_get_ldecay(mac_handle_t mh)4872 mac_get_ldecay(mac_handle_t mh)
4873 {
4874 mac_impl_t *mip = (mac_impl_t *)mh;
4875
4876 return (mip->mi_ldecay);
4877 }
4878
4879 /*
4880 * Rename a mac client, its flow, and the kstat.
4881 */
4882 int
mac_rename_primary(mac_handle_t mh,const char * new_name)4883 mac_rename_primary(mac_handle_t mh, const char *new_name)
4884 {
4885 mac_impl_t *mip = (mac_impl_t *)mh;
4886 mac_client_impl_t *cur_clnt = NULL;
4887 flow_entry_t *fep;
4888
4889 i_mac_perim_enter(mip);
4890
4891 /*
4892 * VNICs: we need to change the sys flow name and
4893 * the associated flow kstat.
4894 */
4895 if (mip->mi_state_flags & MIS_IS_VNIC) {
4896 mac_client_impl_t *mcip = mac_vnic_lower(mip);
4897 ASSERT(new_name != NULL);
4898 mac_rename_flow_names(mcip, new_name);
4899 mac_stat_rename(mcip);
4900 goto done;
4901 }
4902 /*
4903 * This mac may itself be an aggr link, or it may have some client
4904 * which is an aggr port. For both cases, we need to change the
4905 * aggr port's mac client name, its flow name and the associated flow
4906 * kstat.
4907 */
4908 if (mip->mi_state_flags & MIS_IS_AGGR) {
4909 mac_capab_aggr_t aggr_cap;
4910 mac_rename_fn_t rename_fn;
4911 boolean_t ret;
4912
4913 ASSERT(new_name != NULL);
4914 ret = i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR,
4915 (void *)(&aggr_cap));
4916 ASSERT(ret == B_TRUE);
4917 rename_fn = aggr_cap.mca_rename_fn;
4918 rename_fn(new_name, mip->mi_driver);
4919 /*
4920 * The aggr's client name and kstat flow name will be
4921 * updated below, i.e. via mac_rename_flow_names.
4922 */
4923 }
4924
4925 for (cur_clnt = mip->mi_clients_list; cur_clnt != NULL;
4926 cur_clnt = cur_clnt->mci_client_next) {
4927 if (cur_clnt->mci_state_flags & MCIS_IS_AGGR_PORT) {
4928 if (new_name != NULL) {
4929 char *str_st = cur_clnt->mci_name;
4930 char *str_del = strchr(str_st, '-');
4931
4932 ASSERT(str_del != NULL);
4933 bzero(str_del + 1, MAXNAMELEN -
4934 (str_del - str_st + 1));
4935 bcopy(new_name, str_del + 1,
4936 strlen(new_name));
4937 }
4938 fep = cur_clnt->mci_flent;
4939 mac_rename_flow(fep, cur_clnt->mci_name);
4940 break;
4941 } else if (new_name != NULL &&
4942 cur_clnt->mci_state_flags & MCIS_USE_DATALINK_NAME) {
4943 mac_rename_flow_names(cur_clnt, new_name);
4944 break;
4945 }
4946 }
4947
4948 /* Recreate kstats associated with aggr pseudo rings */
4949 if (mip->mi_state_flags & MIS_IS_AGGR)
4950 mac_pseudo_ring_stat_rename(mip);
4951
4952 done:
4953 i_mac_perim_exit(mip);
4954 return (0);
4955 }
4956
4957 /*
4958 * Rename the MAC client's flow names
4959 */
4960 static void
mac_rename_flow_names(mac_client_impl_t * mcip,const char * new_name)4961 mac_rename_flow_names(mac_client_impl_t *mcip, const char *new_name)
4962 {
4963 flow_entry_t *flent;
4964 uint16_t vid;
4965 char flowname[MAXFLOWNAMELEN];
4966 mac_impl_t *mip = mcip->mci_mip;
4967
4968 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4969
4970 /*
4971 * Use mi_rw_lock to ensure that threads not in the mac perimeter
4972 * see a self-consistent value for mci_name
4973 */
4974 rw_enter(&mip->mi_rw_lock, RW_WRITER);
4975 (void) strlcpy(mcip->mci_name, new_name, sizeof (mcip->mci_name));
4976 rw_exit(&mip->mi_rw_lock);
4977
4978 mac_rename_flow(mcip->mci_flent, new_name);
4979
4980 if (mcip->mci_nflents == 1)
4981 return;
4982
4983 /*
4984 * We have to rename all the others too, no stats to destroy for
4985 * these.
4986 */
4987 for (flent = mcip->mci_flent_list; flent != NULL;
4988 flent = flent->fe_client_next) {
4989 if (flent != mcip->mci_flent) {
4990 vid = i_mac_flow_vid(flent);
4991 (void) sprintf(flowname, "%s%u", new_name, vid);
4992 mac_flow_set_name(flent, flowname);
4993 }
4994 }
4995 }
4996
4997
4998 /*
4999 * Add a flow to the MAC client's flow list - i.e list of MAC/VID tuples
5000 * defined for the specified MAC client.
5001 */
5002 static void
mac_client_add_to_flow_list(mac_client_impl_t * mcip,flow_entry_t * flent)5003 mac_client_add_to_flow_list(mac_client_impl_t *mcip, flow_entry_t *flent)
5004 {
5005 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
5006 /*
5007 * The promisc Rx data path walks the mci_flent_list. Protect by
5008 * using mi_rw_lock
5009 */
5010 rw_enter(&mcip->mci_rw_lock, RW_WRITER);
5011
5012 mcip->mci_vidcache = MCIP_VIDCACHE_INVALID;
5013
5014 /* Add it to the head */
5015 flent->fe_client_next = mcip->mci_flent_list;
5016 mcip->mci_flent_list = flent;
5017 mcip->mci_nflents++;
5018
5019 /*
5020 * Keep track of the number of non-zero VIDs addresses per MAC
5021 * client to avoid figuring it out in the data-path.
5022 */
5023 if (i_mac_flow_vid(flent) != VLAN_ID_NONE)
5024 mcip->mci_nvids++;
5025
5026 rw_exit(&mcip->mci_rw_lock);
5027 }
5028
5029 /*
5030 * Remove a flow entry from the MAC client's list.
5031 */
5032 static void
mac_client_remove_flow_from_list(mac_client_impl_t * mcip,flow_entry_t * flent)5033 mac_client_remove_flow_from_list(mac_client_impl_t *mcip, flow_entry_t *flent)
5034 {
5035 flow_entry_t *fe = mcip->mci_flent_list;
5036 flow_entry_t *prev_fe = NULL;
5037
5038 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
5039 /*
5040 * The promisc Rx data path walks the mci_flent_list. Protect by
5041 * using mci_rw_lock
5042 */
5043 rw_enter(&mcip->mci_rw_lock, RW_WRITER);
5044 mcip->mci_vidcache = MCIP_VIDCACHE_INVALID;
5045
5046 while ((fe != NULL) && (fe != flent)) {
5047 prev_fe = fe;
5048 fe = fe->fe_client_next;
5049 }
5050
5051 ASSERT(fe != NULL);
5052 if (prev_fe == NULL) {
5053 /* Deleting the first node */
5054 mcip->mci_flent_list = fe->fe_client_next;
5055 } else {
5056 prev_fe->fe_client_next = fe->fe_client_next;
5057 }
5058 mcip->mci_nflents--;
5059
5060 if (i_mac_flow_vid(flent) != VLAN_ID_NONE)
5061 mcip->mci_nvids--;
5062
5063 rw_exit(&mcip->mci_rw_lock);
5064 }
5065
5066 /*
5067 * Check if the given VID belongs to this MAC client.
5068 */
5069 boolean_t
mac_client_check_flow_vid(mac_client_impl_t * mcip,uint16_t vid)5070 mac_client_check_flow_vid(mac_client_impl_t *mcip, uint16_t vid)
5071 {
5072 flow_entry_t *flent;
5073 uint16_t mci_vid;
5074 uint32_t cache = mcip->mci_vidcache;
5075
5076 /*
5077 * In hopes of not having to touch the mci_rw_lock, check to see if
5078 * this vid matches our cached result.
5079 */
5080 if (MCIP_VIDCACHE_ISVALID(cache) && MCIP_VIDCACHE_VID(cache) == vid)
5081 return (MCIP_VIDCACHE_BOOL(cache) ? B_TRUE : B_FALSE);
5082
5083 /* The mci_flent_list is protected by mci_rw_lock */
5084 rw_enter(&mcip->mci_rw_lock, RW_WRITER);
5085 for (flent = mcip->mci_flent_list; flent != NULL;
5086 flent = flent->fe_client_next) {
5087 mci_vid = i_mac_flow_vid(flent);
5088 if (vid == mci_vid) {
5089 mcip->mci_vidcache = MCIP_VIDCACHE_CACHE(vid, B_TRUE);
5090 rw_exit(&mcip->mci_rw_lock);
5091 return (B_TRUE);
5092 }
5093 }
5094
5095 mcip->mci_vidcache = MCIP_VIDCACHE_CACHE(vid, B_FALSE);
5096 rw_exit(&mcip->mci_rw_lock);
5097 return (B_FALSE);
5098 }
5099
5100 /*
5101 * Get the flow entry for the specified <MAC addr, VID> tuple.
5102 */
5103 static flow_entry_t *
mac_client_get_flow(mac_client_impl_t * mcip,mac_unicast_impl_t * muip)5104 mac_client_get_flow(mac_client_impl_t *mcip, mac_unicast_impl_t *muip)
5105 {
5106 mac_address_t *map = mcip->mci_unicast;
5107 flow_entry_t *flent;
5108 uint16_t vid;
5109 flow_desc_t flow_desc;
5110
5111 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
5112
5113 mac_flow_get_desc(mcip->mci_flent, &flow_desc);
5114 if (bcmp(flow_desc.fd_dst_mac, map->ma_addr, map->ma_len) != 0)
5115 return (NULL);
5116
5117 for (flent = mcip->mci_flent_list; flent != NULL;
5118 flent = flent->fe_client_next) {
5119 vid = i_mac_flow_vid(flent);
5120 if (vid == muip->mui_vid) {
5121 return (flent);
5122 }
5123 }
5124
5125 return (NULL);
5126 }
5127
5128 /*
5129 * Since mci_flent has the SRSs, when we want to remove it, we replace
5130 * the flow_desc_t in mci_flent with that of an existing flent and then
5131 * remove that flent instead of mci_flent.
5132 */
5133 static flow_entry_t *
mac_client_swap_mciflent(mac_client_impl_t * mcip)5134 mac_client_swap_mciflent(mac_client_impl_t *mcip)
5135 {
5136 flow_entry_t *flent = mcip->mci_flent;
5137 flow_tab_t *ft = flent->fe_flow_tab;
5138 flow_entry_t *flent1;
5139 flow_desc_t fl_desc;
5140 char fl_name[MAXFLOWNAMELEN];
5141 int err;
5142
5143 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
5144 ASSERT(mcip->mci_nflents > 1);
5145
5146 /* get the next flent following the primary flent */
5147 flent1 = mcip->mci_flent_list->fe_client_next;
5148 ASSERT(flent1 != NULL && flent1->fe_flow_tab == ft);
5149
5150 /*
5151 * Remove the flent from the flow table before updating the
5152 * flow descriptor as the hash depends on the flow descriptor.
5153 * This also helps incoming packet classification avoid having
5154 * to grab fe_lock. Access to fe_flow_desc of a flent not in the
5155 * flow table is done under the fe_lock so that log or stat functions
5156 * see a self-consistent fe_flow_desc. The name and desc are specific
5157 * to a flow, the rest are shared by all the clients, including
5158 * resource control etc.
5159 */
5160 mac_flow_remove(ft, flent, B_TRUE);
5161 mac_flow_remove(ft, flent1, B_TRUE);
5162
5163 bcopy(&flent->fe_flow_desc, &fl_desc, sizeof (flow_desc_t));
5164 bcopy(flent->fe_flow_name, fl_name, MAXFLOWNAMELEN);
5165
5166 /* update the primary flow entry */
5167 mutex_enter(&flent->fe_lock);
5168 bcopy(&flent1->fe_flow_desc, &flent->fe_flow_desc,
5169 sizeof (flow_desc_t));
5170 bcopy(&flent1->fe_flow_name, &flent->fe_flow_name, MAXFLOWNAMELEN);
5171 mutex_exit(&flent->fe_lock);
5172
5173 /* update the flow entry that is to be freed */
5174 mutex_enter(&flent1->fe_lock);
5175 bcopy(&fl_desc, &flent1->fe_flow_desc, sizeof (flow_desc_t));
5176 bcopy(fl_name, &flent1->fe_flow_name, MAXFLOWNAMELEN);
5177 mutex_exit(&flent1->fe_lock);
5178
5179 /* now reinsert the flow entries in the table */
5180 err = mac_flow_add(ft, flent);
5181 ASSERT(err == 0);
5182
5183 err = mac_flow_add(ft, flent1);
5184 ASSERT(err == 0);
5185
5186 return (flent1);
5187 }
5188
5189 /*
5190 * Return whether there is only one flow entry associated with this
5191 * MAC client.
5192 */
5193 static boolean_t
mac_client_single_rcvr(mac_client_impl_t * mcip)5194 mac_client_single_rcvr(mac_client_impl_t *mcip)
5195 {
5196 return (mcip->mci_nflents == 1);
5197 }
5198
5199 int
mac_validate_props(mac_impl_t * mip,mac_resource_props_t * mrp)5200 mac_validate_props(mac_impl_t *mip, mac_resource_props_t *mrp)
5201 {
5202 boolean_t reset;
5203 uint32_t rings_needed;
5204 uint32_t rings_avail;
5205 mac_group_type_t gtype;
5206 mac_resource_props_t *mip_mrp;
5207
5208 if (mrp == NULL)
5209 return (0);
5210
5211 if (mrp->mrp_mask & MRP_PRIORITY) {
5212 mac_priority_level_t pri = mrp->mrp_priority;
5213
5214 if (pri < MPL_LOW || pri > MPL_RESET)
5215 return (EINVAL);
5216 }
5217
5218 if (mrp->mrp_mask & MRP_MAXBW) {
5219 uint64_t maxbw = mrp->mrp_maxbw;
5220
5221 if (maxbw < MRP_MAXBW_MINVAL && maxbw != 0)
5222 return (EINVAL);
5223 }
5224 if (mrp->mrp_mask & MRP_CPUS) {
5225 int i, j;
5226 mac_cpu_mode_t fanout;
5227
5228 if (mrp->mrp_ncpus > ncpus)
5229 return (EINVAL);
5230
5231 for (i = 0; i < mrp->mrp_ncpus; i++) {
5232 for (j = 0; j < mrp->mrp_ncpus; j++) {
5233 if (i != j &&
5234 mrp->mrp_cpu[i] == mrp->mrp_cpu[j]) {
5235 return (EINVAL);
5236 }
5237 }
5238 }
5239
5240 for (i = 0; i < mrp->mrp_ncpus; i++) {
5241 cpu_t *cp;
5242 int rv;
5243
5244 mutex_enter(&cpu_lock);
5245 cp = cpu_get(mrp->mrp_cpu[i]);
5246 if (cp != NULL)
5247 rv = cpu_is_online(cp);
5248 else
5249 rv = 0;
5250 mutex_exit(&cpu_lock);
5251 if (rv == 0)
5252 return (EINVAL);
5253 }
5254
5255 fanout = mrp->mrp_fanout_mode;
5256 if (fanout < 0 || fanout > MCM_CPUS)
5257 return (EINVAL);
5258 }
5259
5260 if (mrp->mrp_mask & MRP_PROTECT) {
5261 int err = mac_protect_validate(mrp);
5262 if (err != 0)
5263 return (err);
5264 }
5265
5266 if (!(mrp->mrp_mask & MRP_RX_RINGS) &&
5267 !(mrp->mrp_mask & MRP_TX_RINGS)) {
5268 return (0);
5269 }
5270
5271 /*
5272 * mip will be null when we come from mac_flow_create or
5273 * mac_link_flow_modify. In the latter case it is a user flow,
5274 * for which we don't support rings. In the former we would
5275 * have validated the props beforehand (i_mac_unicast_add ->
5276 * mac_client_set_resources -> validate for the primary and
5277 * vnic_dev_create -> mac_client_set_resources -> validate for
5278 * a vnic.
5279 */
5280 if (mip == NULL)
5281 return (0);
5282
5283 /*
5284 * We don't support setting rings property for a VNIC that is using a
5285 * primary address (VLAN)
5286 */
5287 if ((mip->mi_state_flags & MIS_IS_VNIC) &&
5288 mac_is_vnic_primary((mac_handle_t)mip)) {
5289 return (ENOTSUP);
5290 }
5291
5292 mip_mrp = &mip->mi_resource_props;
5293 /*
5294 * The rings property should be validated against the NICs
5295 * resources
5296 */
5297 if (mip->mi_state_flags & MIS_IS_VNIC)
5298 mip = (mac_impl_t *)mac_get_lower_mac_handle((mac_handle_t)mip);
5299
5300 reset = mrp->mrp_mask & MRP_RINGS_RESET;
5301 /*
5302 * If groups are not supported, return error.
5303 */
5304 if (((mrp->mrp_mask & MRP_RX_RINGS) && mip->mi_rx_groups == NULL) ||
5305 ((mrp->mrp_mask & MRP_TX_RINGS) && mip->mi_tx_groups == NULL)) {
5306 return (EINVAL);
5307 }
5308 /*
5309 * If we are just resetting, there is no validation needed.
5310 */
5311 if (reset)
5312 return (0);
5313
5314 if (mrp->mrp_mask & MRP_RX_RINGS) {
5315 rings_needed = mrp->mrp_nrxrings;
5316 /*
5317 * We just want to check if the number of additional
5318 * rings requested is available.
5319 */
5320 if (mip_mrp->mrp_mask & MRP_RX_RINGS) {
5321 if (mrp->mrp_nrxrings > mip_mrp->mrp_nrxrings)
5322 /* Just check for the additional rings */
5323 rings_needed -= mip_mrp->mrp_nrxrings;
5324 else
5325 /* We are not asking for additional rings */
5326 rings_needed = 0;
5327 }
5328 rings_avail = mip->mi_rxrings_avail;
5329 gtype = mip->mi_rx_group_type;
5330 } else {
5331 rings_needed = mrp->mrp_ntxrings;
5332 /* Similarly for the TX rings */
5333 if (mip_mrp->mrp_mask & MRP_TX_RINGS) {
5334 if (mrp->mrp_ntxrings > mip_mrp->mrp_ntxrings)
5335 /* Just check for the additional rings */
5336 rings_needed -= mip_mrp->mrp_ntxrings;
5337 else
5338 /* We are not asking for additional rings */
5339 rings_needed = 0;
5340 }
5341 rings_avail = mip->mi_txrings_avail;
5342 gtype = mip->mi_tx_group_type;
5343 }
5344
5345 /* Error if the group is dynamic .. */
5346 if (gtype == MAC_GROUP_TYPE_DYNAMIC) {
5347 /*
5348 * .. and rings specified are more than available.
5349 */
5350 if (rings_needed > rings_avail)
5351 return (EINVAL);
5352 } else {
5353 /*
5354 * OR group is static and we have specified some rings.
5355 */
5356 if (rings_needed > 0)
5357 return (EINVAL);
5358 }
5359 return (0);
5360 }
5361
5362 /*
5363 * Send a MAC_NOTE_LINK notification to all the MAC clients whenever the
5364 * underlying physical link is down. This is to allow MAC clients to
5365 * communicate with other clients.
5366 */
5367 void
mac_virtual_link_update(mac_impl_t * mip)5368 mac_virtual_link_update(mac_impl_t *mip)
5369 {
5370 if (mip->mi_linkstate != LINK_STATE_UP)
5371 i_mac_notify(mip, MAC_NOTE_LINK);
5372 }
5373
5374 /*
5375 * For clients that have a pass-thru MAC, e.g. VNIC, we set the VNIC's
5376 * mac handle in the client.
5377 */
5378 void
mac_set_upper_mac(mac_client_handle_t mch,mac_handle_t mh,mac_resource_props_t * mrp)5379 mac_set_upper_mac(mac_client_handle_t mch, mac_handle_t mh,
5380 mac_resource_props_t *mrp)
5381 {
5382 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
5383 mac_impl_t *mip = (mac_impl_t *)mh;
5384
5385 mcip->mci_upper_mip = mip;
5386 /* If there are any properties, copy it over too */
5387 if (mrp != NULL) {
5388 bcopy(mrp, &mip->mi_resource_props,
5389 sizeof (mac_resource_props_t));
5390 }
5391 }
5392
5393 /*
5394 * Mark the mac as being used exclusively by the single mac client that is
5395 * doing some control operation on this mac. No further opens of this mac
5396 * will be allowed until this client calls mac_unmark_exclusive. The mac
5397 * client calling this function must already be in the mac perimeter
5398 */
5399 int
mac_mark_exclusive(mac_handle_t mh)5400 mac_mark_exclusive(mac_handle_t mh)
5401 {
5402 mac_impl_t *mip = (mac_impl_t *)mh;
5403
5404 ASSERT(MAC_PERIM_HELD(mh));
5405 /*
5406 * Look up its entry in the global hash table.
5407 */
5408 rw_enter(&i_mac_impl_lock, RW_WRITER);
5409 if (mip->mi_state_flags & MIS_DISABLED) {
5410 rw_exit(&i_mac_impl_lock);
5411 return (ENOENT);
5412 }
5413
5414 /*
5415 * A reference to mac is held even if the link is not plumbed.
5416 * In i_dls_link_create() we open the MAC interface and hold the
5417 * reference. There is an additional reference for the mac_open
5418 * done in acquiring the mac perimeter
5419 */
5420 if (mip->mi_ref != 2) {
5421 rw_exit(&i_mac_impl_lock);
5422 return (EBUSY);
5423 }
5424
5425 ASSERT(!(mip->mi_state_flags & MIS_EXCLUSIVE_HELD));
5426 mip->mi_state_flags |= MIS_EXCLUSIVE_HELD;
5427 rw_exit(&i_mac_impl_lock);
5428 return (0);
5429 }
5430
5431 void
mac_unmark_exclusive(mac_handle_t mh)5432 mac_unmark_exclusive(mac_handle_t mh)
5433 {
5434 mac_impl_t *mip = (mac_impl_t *)mh;
5435
5436 ASSERT(MAC_PERIM_HELD(mh));
5437
5438 rw_enter(&i_mac_impl_lock, RW_WRITER);
5439 /* 1 for the creation and another for the perimeter */
5440 ASSERT(mip->mi_ref == 2 && (mip->mi_state_flags & MIS_EXCLUSIVE_HELD));
5441 mip->mi_state_flags &= ~MIS_EXCLUSIVE_HELD;
5442 rw_exit(&i_mac_impl_lock);
5443 }
5444
5445 /*
5446 * Set the MTU for the specified MAC.
5447 */
5448 int
mac_set_mtu(mac_handle_t mh,uint_t new_mtu,uint_t * old_mtu_arg)5449 mac_set_mtu(mac_handle_t mh, uint_t new_mtu, uint_t *old_mtu_arg)
5450 {
5451 mac_impl_t *mip = (mac_impl_t *)mh;
5452 uint_t old_mtu;
5453 int rv = 0;
5454
5455 i_mac_perim_enter(mip);
5456
5457 if (!(mip->mi_callbacks->mc_callbacks & (MC_SETPROP|MC_GETPROP))) {
5458 rv = ENOTSUP;
5459 goto bail;
5460 }
5461
5462 old_mtu = mip->mi_sdu_max;
5463
5464 if (new_mtu == 0 || new_mtu < mip->mi_sdu_min) {
5465 rv = EINVAL;
5466 goto bail;
5467 }
5468
5469 rw_enter(&mip->mi_rw_lock, RW_READER);
5470 if (mip->mi_mtrp != NULL && new_mtu < mip->mi_mtrp->mtr_mtu) {
5471 rv = EBUSY;
5472 rw_exit(&mip->mi_rw_lock);
5473 goto bail;
5474 }
5475 rw_exit(&mip->mi_rw_lock);
5476
5477 if (old_mtu != new_mtu) {
5478 rv = mip->mi_callbacks->mc_setprop(mip->mi_driver,
5479 "mtu", MAC_PROP_MTU, sizeof (uint_t), &new_mtu);
5480 if (rv != 0)
5481 goto bail;
5482 rv = mac_maxsdu_update(mh, new_mtu);
5483 ASSERT(rv == 0);
5484 }
5485
5486 bail:
5487 i_mac_perim_exit(mip);
5488
5489 if (rv == 0 && old_mtu_arg != NULL)
5490 *old_mtu_arg = old_mtu;
5491 return (rv);
5492 }
5493
5494 /*
5495 * Return the RX h/w information for the group indexed by grp_num.
5496 */
5497 void
mac_get_hwrxgrp_info(mac_handle_t mh,int grp_index,uint_t * grp_num,uint_t * n_rings,uint_t * rings,uint_t * type,uint_t * n_clnts,char * clnts_name)5498 mac_get_hwrxgrp_info(mac_handle_t mh, int grp_index, uint_t *grp_num,
5499 uint_t *n_rings, uint_t *rings, uint_t *type, uint_t *n_clnts,
5500 char *clnts_name)
5501 {
5502 mac_impl_t *mip = (mac_impl_t *)mh;
5503 mac_grp_client_t *mcip;
5504 uint_t i = 0, index = 0;
5505 mac_ring_t *ring;
5506
5507 /* Revisit when we implement fully dynamic group allocation */
5508 ASSERT(grp_index >= 0 && grp_index < mip->mi_rx_group_count);
5509
5510 rw_enter(&mip->mi_rw_lock, RW_READER);
5511 *grp_num = mip->mi_rx_groups[grp_index].mrg_index;
5512 *type = mip->mi_rx_groups[grp_index].mrg_type;
5513 *n_rings = mip->mi_rx_groups[grp_index].mrg_cur_count;
5514 ring = mip->mi_rx_groups[grp_index].mrg_rings;
5515 for (index = 0; index < mip->mi_rx_groups[grp_index].mrg_cur_count;
5516 index++) {
5517 rings[index] = ring->mr_index;
5518 ring = ring->mr_next;
5519 }
5520 /* Assuming the 1st is the default group */
5521 index = 0;
5522 if (grp_index == 0) {
5523 (void) strlcpy(clnts_name, "<default,mcast>,",
5524 MAXCLIENTNAMELEN);
5525 index += strlen("<default,mcast>,");
5526 }
5527 for (mcip = mip->mi_rx_groups[grp_index].mrg_clients; mcip != NULL;
5528 mcip = mcip->mgc_next) {
5529 int name_len = strlen(mcip->mgc_client->mci_name);
5530
5531 /*
5532 * MAXCLIENTNAMELEN is the buffer size reserved for client
5533 * names.
5534 * XXXX Formating the client name string needs to be moved
5535 * to user land when fixing the size of dhi_clnts in
5536 * dld_hwgrpinfo_t. We should use n_clients * client_name for
5537 * dhi_clntsin instead of MAXCLIENTNAMELEN
5538 */
5539 if (index + name_len >= MAXCLIENTNAMELEN) {
5540 index = MAXCLIENTNAMELEN;
5541 break;
5542 }
5543 bcopy(mcip->mgc_client->mci_name, &(clnts_name[index]),
5544 name_len);
5545 index += name_len;
5546 clnts_name[index++] = ',';
5547 i++;
5548 }
5549
5550 /* Get rid of the last , */
5551 if (index > 0)
5552 clnts_name[index - 1] = '\0';
5553 *n_clnts = i;
5554 rw_exit(&mip->mi_rw_lock);
5555 }
5556
5557 /*
5558 * Return the TX h/w information for the group indexed by grp_num.
5559 */
5560 void
mac_get_hwtxgrp_info(mac_handle_t mh,int grp_index,uint_t * grp_num,uint_t * n_rings,uint_t * rings,uint_t * type,uint_t * n_clnts,char * clnts_name)5561 mac_get_hwtxgrp_info(mac_handle_t mh, int grp_index, uint_t *grp_num,
5562 uint_t *n_rings, uint_t *rings, uint_t *type, uint_t *n_clnts,
5563 char *clnts_name)
5564 {
5565 mac_impl_t *mip = (mac_impl_t *)mh;
5566 mac_grp_client_t *mcip;
5567 uint_t i = 0, index = 0;
5568 mac_ring_t *ring;
5569
5570 /* Revisit when we implement fully dynamic group allocation */
5571 ASSERT(grp_index >= 0 && grp_index <= mip->mi_tx_group_count);
5572
5573 rw_enter(&mip->mi_rw_lock, RW_READER);
5574 *grp_num = mip->mi_tx_groups[grp_index].mrg_index > 0 ?
5575 mip->mi_tx_groups[grp_index].mrg_index : grp_index;
5576 *type = mip->mi_tx_groups[grp_index].mrg_type;
5577 *n_rings = mip->mi_tx_groups[grp_index].mrg_cur_count;
5578 ring = mip->mi_tx_groups[grp_index].mrg_rings;
5579 for (index = 0; index < mip->mi_tx_groups[grp_index].mrg_cur_count;
5580 index++) {
5581 rings[index] = ring->mr_index;
5582 ring = ring->mr_next;
5583 }
5584 index = 0;
5585 /* Default group has an index of -1 */
5586 if (mip->mi_tx_groups[grp_index].mrg_index < 0) {
5587 (void) strlcpy(clnts_name, "<default>,",
5588 MAXCLIENTNAMELEN);
5589 index += strlen("<default>,");
5590 }
5591 for (mcip = mip->mi_tx_groups[grp_index].mrg_clients; mcip != NULL;
5592 mcip = mcip->mgc_next) {
5593 int name_len = strlen(mcip->mgc_client->mci_name);
5594
5595 /*
5596 * MAXCLIENTNAMELEN is the buffer size reserved for client
5597 * names.
5598 * XXXX Formating the client name string needs to be moved
5599 * to user land when fixing the size of dhi_clnts in
5600 * dld_hwgrpinfo_t. We should use n_clients * client_name for
5601 * dhi_clntsin instead of MAXCLIENTNAMELEN
5602 */
5603 if (index + name_len >= MAXCLIENTNAMELEN) {
5604 index = MAXCLIENTNAMELEN;
5605 break;
5606 }
5607 bcopy(mcip->mgc_client->mci_name, &(clnts_name[index]),
5608 name_len);
5609 index += name_len;
5610 clnts_name[index++] = ',';
5611 i++;
5612 }
5613
5614 /* Get rid of the last , */
5615 if (index > 0)
5616 clnts_name[index - 1] = '\0';
5617 *n_clnts = i;
5618 rw_exit(&mip->mi_rw_lock);
5619 }
5620
5621 /*
5622 * Return the group count for RX or TX.
5623 */
5624 uint_t
mac_hwgrp_num(mac_handle_t mh,int type)5625 mac_hwgrp_num(mac_handle_t mh, int type)
5626 {
5627 mac_impl_t *mip = (mac_impl_t *)mh;
5628
5629 /*
5630 * Return the Rx and Tx group count; for the Tx we need to
5631 * include the default too.
5632 */
5633 return (type == MAC_RING_TYPE_RX ? mip->mi_rx_group_count :
5634 mip->mi_tx_groups != NULL ? mip->mi_tx_group_count + 1 : 0);
5635 }
5636
5637 /*
5638 * The total number of free TX rings for this MAC.
5639 */
5640 uint_t
mac_txavail_get(mac_handle_t mh)5641 mac_txavail_get(mac_handle_t mh)
5642 {
5643 mac_impl_t *mip = (mac_impl_t *)mh;
5644
5645 return (mip->mi_txrings_avail);
5646 }
5647
5648 /*
5649 * The total number of free RX rings for this MAC.
5650 */
5651 uint_t
mac_rxavail_get(mac_handle_t mh)5652 mac_rxavail_get(mac_handle_t mh)
5653 {
5654 mac_impl_t *mip = (mac_impl_t *)mh;
5655
5656 return (mip->mi_rxrings_avail);
5657 }
5658
5659 /*
5660 * The total number of reserved RX rings on this MAC.
5661 */
5662 uint_t
mac_rxrsvd_get(mac_handle_t mh)5663 mac_rxrsvd_get(mac_handle_t mh)
5664 {
5665 mac_impl_t *mip = (mac_impl_t *)mh;
5666
5667 return (mip->mi_rxrings_rsvd);
5668 }
5669
5670 /*
5671 * The total number of reserved TX rings on this MAC.
5672 */
5673 uint_t
mac_txrsvd_get(mac_handle_t mh)5674 mac_txrsvd_get(mac_handle_t mh)
5675 {
5676 mac_impl_t *mip = (mac_impl_t *)mh;
5677
5678 return (mip->mi_txrings_rsvd);
5679 }
5680
5681 /*
5682 * Total number of free RX groups on this MAC.
5683 */
5684 uint_t
mac_rxhwlnksavail_get(mac_handle_t mh)5685 mac_rxhwlnksavail_get(mac_handle_t mh)
5686 {
5687 mac_impl_t *mip = (mac_impl_t *)mh;
5688
5689 return (mip->mi_rxhwclnt_avail);
5690 }
5691
5692 /*
5693 * Total number of RX groups reserved on this MAC.
5694 */
5695 uint_t
mac_rxhwlnksrsvd_get(mac_handle_t mh)5696 mac_rxhwlnksrsvd_get(mac_handle_t mh)
5697 {
5698 mac_impl_t *mip = (mac_impl_t *)mh;
5699
5700 return (mip->mi_rxhwclnt_used);
5701 }
5702
5703 /*
5704 * Total number of free TX groups on this MAC.
5705 */
5706 uint_t
mac_txhwlnksavail_get(mac_handle_t mh)5707 mac_txhwlnksavail_get(mac_handle_t mh)
5708 {
5709 mac_impl_t *mip = (mac_impl_t *)mh;
5710
5711 return (mip->mi_txhwclnt_avail);
5712 }
5713
5714 /*
5715 * Total number of TX groups reserved on this MAC.
5716 */
5717 uint_t
mac_txhwlnksrsvd_get(mac_handle_t mh)5718 mac_txhwlnksrsvd_get(mac_handle_t mh)
5719 {
5720 mac_impl_t *mip = (mac_impl_t *)mh;
5721
5722 return (mip->mi_txhwclnt_used);
5723 }
5724
5725 /*
5726 * Initialize the rings property for a mac client. A non-0 value for
5727 * rxring or txring specifies the number of rings required, a value
5728 * of MAC_RXRINGS_NONE/MAC_TXRINGS_NONE specifies that it doesn't need
5729 * any RX/TX rings and a value of MAC_RXRINGS_DONTCARE/MAC_TXRINGS_DONTCARE
5730 * means the system can decide whether it can give any rings or not.
5731 */
5732 void
mac_client_set_rings(mac_client_handle_t mch,int rxrings,int txrings)5733 mac_client_set_rings(mac_client_handle_t mch, int rxrings, int txrings)
5734 {
5735 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
5736 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip);
5737
5738 if (rxrings != MAC_RXRINGS_DONTCARE) {
5739 mrp->mrp_mask |= MRP_RX_RINGS;
5740 mrp->mrp_nrxrings = rxrings;
5741 }
5742
5743 if (txrings != MAC_TXRINGS_DONTCARE) {
5744 mrp->mrp_mask |= MRP_TX_RINGS;
5745 mrp->mrp_ntxrings = txrings;
5746 }
5747 }
5748
5749 boolean_t
mac_get_promisc_filtered(mac_client_handle_t mch)5750 mac_get_promisc_filtered(mac_client_handle_t mch)
5751 {
5752 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
5753
5754 return (mcip->mci_protect_flags & MPT_FLAG_PROMISC_FILTERED);
5755 }
5756
5757 void
mac_set_promisc_filtered(mac_client_handle_t mch,boolean_t enable)5758 mac_set_promisc_filtered(mac_client_handle_t mch, boolean_t enable)
5759 {
5760 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
5761
5762 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
5763 if (enable)
5764 mcip->mci_protect_flags |= MPT_FLAG_PROMISC_FILTERED;
5765 else
5766 mcip->mci_protect_flags &= ~MPT_FLAG_PROMISC_FILTERED;
5767 }
5768