1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2016 Joyent, Inc.
25 * Copyright 2015 Garrett D'Amore <garrett@damore.org>
26 */
27
28 /*
29 * MAC Services Module
30 *
31 * The GLDv3 framework locking - The MAC layer
32 * --------------------------------------------
33 *
34 * The MAC layer is central to the GLD framework and can provide the locking
35 * framework needed for itself and for the use of MAC clients. MAC end points
36 * are fairly disjoint and don't share a lot of state. So a coarse grained
37 * multi-threading scheme is to single thread all create/modify/delete or set
38 * type of control operations on a per mac end point while allowing data threads
39 * concurrently.
40 *
41 * Control operations (set) that modify a mac end point are always serialized on
42 * a per mac end point basis, We have at most 1 such thread per mac end point
43 * at a time.
44 *
45 * All other operations that are not serialized are essentially multi-threaded.
46 * For example a control operation (get) like getting statistics which may not
47 * care about reading values atomically or data threads sending or receiving
48 * data. Mostly these type of operations don't modify the control state. Any
49 * state these operations care about are protected using traditional locks.
50 *
51 * The perimeter only serializes serial operations. It does not imply there
52 * aren't any other concurrent operations. However a serialized operation may
53 * sometimes need to make sure it is the only thread. In this case it needs
54 * to use reference counting mechanisms to cv_wait until any current data
55 * threads are done.
56 *
57 * The mac layer itself does not hold any locks across a call to another layer.
58 * The perimeter is however held across a down call to the driver to make the
59 * whole control operation atomic with respect to other control operations.
60 * Also the data path and get type control operations may proceed concurrently.
61 * These operations synchronize with the single serial operation on a given mac
62 * end point using regular locks. The perimeter ensures that conflicting
63 * operations like say a mac_multicast_add and a mac_multicast_remove on the
64 * same mac end point don't interfere with each other and also ensures that the
65 * changes in the mac layer and the call to the underlying driver to say add a
66 * multicast address are done atomically without interference from a thread
67 * trying to delete the same address.
68 *
69 * For example, consider
70 * mac_multicst_add()
71 * {
72 * mac_perimeter_enter(); serialize all control operations
73 *
74 * grab list lock protect against access by data threads
75 * add to list
76 * drop list lock
77 *
78 * call driver's mi_multicst
79 *
80 * mac_perimeter_exit();
81 * }
82 *
83 * To lessen the number of serialization locks and simplify the lock hierarchy,
84 * we serialize all the control operations on a per mac end point by using a
85 * single serialization lock called the perimeter. We allow recursive entry into
86 * the perimeter to facilitate use of this mechanism by both the mac client and
87 * the MAC layer itself.
88 *
89 * MAC client means an entity that does an operation on a mac handle
90 * obtained from a mac_open/mac_client_open. Similarly MAC driver means
91 * an entity that does an operation on a mac handle obtained from a
92 * mac_register. An entity could be both client and driver but on different
93 * handles eg. aggr. and should only make the corresponding mac interface calls
94 * i.e. mac driver interface or mac client interface as appropriate for that
95 * mac handle.
96 *
97 * General rules.
98 * -------------
99 *
100 * R1. The lock order of upcall threads is natually opposite to downcall
101 * threads. Hence upcalls must not hold any locks across layers for fear of
102 * recursive lock enter and lock order violation. This applies to all layers.
103 *
104 * R2. The perimeter is just another lock. Since it is held in the down
105 * direction, acquiring the perimeter in an upcall is prohibited as it would
106 * cause a deadlock. This applies to all layers.
107 *
108 * Note that upcalls that need to grab the mac perimeter (for example
109 * mac_notify upcalls) can still achieve that by posting the request to a
110 * thread, which can then grab all the required perimeters and locks in the
111 * right global order. Note that in the above example the mac layer iself
112 * won't grab the mac perimeter in the mac_notify upcall, instead the upcall
113 * to the client must do that. Please see the aggr code for an example.
114 *
115 * MAC client rules
116 * ----------------
117 *
118 * R3. A MAC client may use the MAC provided perimeter facility to serialize
119 * control operations on a per mac end point. It does this by by acquring
120 * and holding the perimeter across a sequence of calls to the mac layer.
121 * This ensures atomicity across the entire block of mac calls. In this
122 * model the MAC client must not hold any client locks across the calls to
123 * the mac layer. This model is the preferred solution.
124 *
125 * R4. However if a MAC client has a lot of global state across all mac end
126 * points the per mac end point serialization may not be sufficient. In this
127 * case the client may choose to use global locks or use its own serialization.
128 * To avoid deadlocks, these client layer locks held across the mac calls
129 * in the control path must never be acquired by the data path for the reason
130 * mentioned below.
131 *
132 * (Assume that a control operation that holds a client lock blocks in the
133 * mac layer waiting for upcall reference counts to drop to zero. If an upcall
134 * data thread that holds this reference count, tries to acquire the same
135 * client lock subsequently it will deadlock).
136 *
137 * A MAC client may follow either the R3 model or the R4 model, but can't
138 * mix both. In the former, the hierarchy is Perim -> client locks, but in
139 * the latter it is client locks -> Perim.
140 *
141 * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able
142 * context since they may block while trying to acquire the perimeter.
143 * In addition some calls may block waiting for upcall refcnts to come down to
144 * zero.
145 *
146 * R6. MAC clients must make sure that they are single threaded and all threads
147 * from the top (in particular data threads) have finished before calling
148 * mac_client_close. The MAC framework does not track the number of client
149 * threads using the mac client handle. Also mac clients must make sure
150 * they have undone all the control operations before calling mac_client_close.
151 * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding
152 * mac_unicast_add/mac_multicast_add.
153 *
154 * MAC framework rules
155 * -------------------
156 *
157 * R7. The mac layer itself must not hold any mac layer locks (except the mac
158 * perimeter) across a call to any other layer from the mac layer. The call to
159 * any other layer could be via mi_* entry points, classifier entry points into
160 * the driver or via upcall pointers into layers above. The mac perimeter may
161 * be acquired or held only in the down direction, for e.g. when calling into
162 * a mi_* driver enty point to provide atomicity of the operation.
163 *
164 * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across
165 * mac driver interfaces, the MAC layer must provide a cut out for control
166 * interfaces like upcall notifications and start them in a separate thread.
167 *
168 * R9. Note that locking order also implies a plumbing order. For example
169 * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt
170 * to plumb in any other order must be failed at mac_open time, otherwise it
171 * could lead to deadlocks due to inverse locking order.
172 *
173 * R10. MAC driver interfaces must not block since the driver could call them
174 * in interrupt context.
175 *
176 * R11. Walkers must preferably not hold any locks while calling walker
177 * callbacks. Instead these can operate on reference counts. In simple
178 * callbacks it may be ok to hold a lock and call the callbacks, but this is
179 * harder to maintain in the general case of arbitrary callbacks.
180 *
181 * R12. The MAC layer must protect upcall notification callbacks using reference
182 * counts rather than holding locks across the callbacks.
183 *
184 * R13. Given the variety of drivers, it is preferable if the MAC layer can make
185 * sure that any pointers (such as mac ring pointers) it passes to the driver
186 * remain valid until mac unregister time. Currently the mac layer achieves
187 * this by using generation numbers for rings and freeing the mac rings only
188 * at unregister time. The MAC layer must provide a layer of indirection and
189 * must not expose underlying driver rings or driver data structures/pointers
190 * directly to MAC clients.
191 *
192 * MAC driver rules
193 * ----------------
194 *
195 * R14. It would be preferable if MAC drivers don't hold any locks across any
196 * mac call. However at a minimum they must not hold any locks across data
197 * upcalls. They must also make sure that all references to mac data structures
198 * are cleaned up and that it is single threaded at mac_unregister time.
199 *
200 * R15. MAC driver interfaces don't block and so the action may be done
201 * asynchronously in a separate thread as for example handling notifications.
202 * The driver must not assume that the action is complete when the call
203 * returns.
204 *
205 * R16. Drivers must maintain a generation number per Rx ring, and pass it
206 * back to mac_rx_ring(); They are expected to increment the generation
207 * number whenever the ring's stop routine is invoked.
208 * See comments in mac_rx_ring();
209 *
210 * R17 Similarly mi_stop is another synchronization point and the driver must
211 * ensure that all upcalls are done and there won't be any future upcall
212 * before returning from mi_stop.
213 *
214 * R18. The driver may assume that all set/modify control operations via
215 * the mi_* entry points are single threaded on a per mac end point.
216 *
217 * Lock and Perimeter hierarchy scenarios
218 * ---------------------------------------
219 *
220 * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify]
221 *
222 * ft_lock -> fe_lock [mac_flow_lookup]
223 *
224 * mi_rw_lock -> fe_lock [mac_bcast_send]
225 *
226 * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw]
227 *
228 * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind]
229 *
230 * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename]
231 *
232 * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac
233 * client to driver. In the case of clients that explictly use the mac provided
234 * perimeter mechanism for its serialization, the hierarchy is
235 * Perimeter -> mac layer locks, since the client never holds any locks across
236 * the mac calls. In the case of clients that use its own locks the hierarchy
237 * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly
238 * calls mac_perim_enter/exit in this case.
239 *
240 * Subflow creation rules
241 * ---------------------------
242 * o In case of a user specified cpulist present on underlying link and flows,
243 * the flows cpulist must be a subset of the underlying link.
244 * o In case of a user specified fanout mode present on link and flow, the
245 * subflow fanout count has to be less than or equal to that of the
246 * underlying link. The cpu-bindings for the subflows will be a subset of
247 * the underlying link.
248 * o In case if no cpulist specified on both underlying link and flow, the
249 * underlying link relies on a MAC tunable to provide out of box fanout.
250 * The subflow will have no cpulist (the subflow will be unbound)
251 * o In case if no cpulist is specified on the underlying link, a subflow can
252 * carry either a user-specified cpulist or fanout count. The cpu-bindings
253 * for the subflow will not adhere to restriction that they need to be subset
254 * of the underlying link.
255 * o In case where the underlying link is carrying either a user specified
256 * cpulist or fanout mode and for a unspecified subflow, the subflow will be
257 * created unbound.
258 * o While creating unbound subflows, bandwidth mode changes attempt to
259 * figure a right fanout count. In such cases the fanout count will override
260 * the unbound cpu-binding behavior.
261 * o In addition to this, while cycling between flow and link properties, we
262 * impose a restriction that if a link property has a subflow with
263 * user-specified attributes, we will not allow changing the link property.
264 * The administrator needs to reset all the user specified properties for the
265 * subflows before attempting a link property change.
266 * Some of the above rules can be overridden by specifying additional command
267 * line options while creating or modifying link or subflow properties.
268 *
269 * Datapath
270 * --------
271 *
272 * For information on the datapath, the world of soft rings, hardware rings, how
273 * it is structured, and the path of an mblk_t between a driver and a mac
274 * client, see mac_sched.c.
275 */
276
277 #include <sys/types.h>
278 #include <sys/conf.h>
279 #include <sys/id_space.h>
280 #include <sys/esunddi.h>
281 #include <sys/stat.h>
282 #include <sys/mkdev.h>
283 #include <sys/stream.h>
284 #include <sys/strsun.h>
285 #include <sys/strsubr.h>
286 #include <sys/dlpi.h>
287 #include <sys/list.h>
288 #include <sys/modhash.h>
289 #include <sys/mac_provider.h>
290 #include <sys/mac_client_impl.h>
291 #include <sys/mac_soft_ring.h>
292 #include <sys/mac_stat.h>
293 #include <sys/mac_impl.h>
294 #include <sys/mac.h>
295 #include <sys/dls.h>
296 #include <sys/dld.h>
297 #include <sys/modctl.h>
298 #include <sys/fs/dv_node.h>
299 #include <sys/thread.h>
300 #include <sys/proc.h>
301 #include <sys/callb.h>
302 #include <sys/cpuvar.h>
303 #include <sys/atomic.h>
304 #include <sys/bitmap.h>
305 #include <sys/sdt.h>
306 #include <sys/mac_flow.h>
307 #include <sys/ddi_intr_impl.h>
308 #include <sys/disp.h>
309 #include <sys/sdt.h>
310 #include <sys/vnic.h>
311 #include <sys/vnic_impl.h>
312 #include <sys/vlan.h>
313 #include <inet/ip.h>
314 #include <inet/ip6.h>
315 #include <sys/exacct.h>
316 #include <sys/exacct_impl.h>
317 #include <inet/nd.h>
318 #include <sys/ethernet.h>
319 #include <sys/pool.h>
320 #include <sys/pool_pset.h>
321 #include <sys/cpupart.h>
322 #include <inet/wifi_ioctl.h>
323 #include <net/wpa.h>
324
325 #define IMPL_HASHSZ 67 /* prime */
326
327 kmem_cache_t *i_mac_impl_cachep;
328 mod_hash_t *i_mac_impl_hash;
329 krwlock_t i_mac_impl_lock;
330 uint_t i_mac_impl_count;
331 static kmem_cache_t *mac_ring_cache;
332 static id_space_t *minor_ids;
333 static uint32_t minor_count;
334 static pool_event_cb_t mac_pool_event_reg;
335
336 /*
337 * Logging stuff. Perhaps mac_logging_interval could be broken into
338 * mac_flow_log_interval and mac_link_log_interval if we want to be
339 * able to schedule them differently.
340 */
341 uint_t mac_logging_interval;
342 boolean_t mac_flow_log_enable;
343 boolean_t mac_link_log_enable;
344 timeout_id_t mac_logging_timer;
345
346 /* for debugging, see MAC_DBG_PRT() in mac_impl.h */
347 int mac_dbg = 0;
348
349 #define MACTYPE_KMODDIR "mac"
350 #define MACTYPE_HASHSZ 67
351 static mod_hash_t *i_mactype_hash;
352 /*
353 * i_mactype_lock synchronizes threads that obtain references to mactype_t
354 * structures through i_mactype_getplugin().
355 */
356 static kmutex_t i_mactype_lock;
357
358 /*
359 * mac_tx_percpu_cnt
360 *
361 * Number of per cpu locks per mac_client_impl_t. Used by the transmit side
362 * in mac_tx to reduce lock contention. This is sized at boot time in mac_init.
363 * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2.
364 * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1.
365 */
366 int mac_tx_percpu_cnt;
367 int mac_tx_percpu_cnt_max = 128;
368
369 /*
370 * Call back functions for the bridge module. These are guaranteed to be valid
371 * when holding a reference on a link or when holding mip->mi_bridge_lock and
372 * mi_bridge_link is non-NULL.
373 */
374 mac_bridge_tx_t mac_bridge_tx_cb;
375 mac_bridge_rx_t mac_bridge_rx_cb;
376 mac_bridge_ref_t mac_bridge_ref_cb;
377 mac_bridge_ls_t mac_bridge_ls_cb;
378
379 static int i_mac_constructor(void *, void *, int);
380 static void i_mac_destructor(void *, void *);
381 static int i_mac_ring_ctor(void *, void *, int);
382 static void i_mac_ring_dtor(void *, void *);
383 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *);
384 void mac_tx_client_flush(mac_client_impl_t *);
385 void mac_tx_client_block(mac_client_impl_t *);
386 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t);
387 static int mac_start_group_and_rings(mac_group_t *);
388 static void mac_stop_group_and_rings(mac_group_t *);
389 static void mac_pool_event_cb(pool_event_t, int, void *);
390
391 typedef struct netinfo_s {
392 list_node_t ni_link;
393 void *ni_record;
394 int ni_size;
395 int ni_type;
396 } netinfo_t;
397
398 /*
399 * Module initialization functions.
400 */
401
402 void
mac_init(void)403 mac_init(void)
404 {
405 mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus :
406 boot_max_ncpus);
407
408 /* Upper bound is mac_tx_percpu_cnt_max */
409 if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max)
410 mac_tx_percpu_cnt = mac_tx_percpu_cnt_max;
411
412 if (mac_tx_percpu_cnt < 1) {
413 /* Someone set max_tx_percpu_cnt_max to 0 or less */
414 mac_tx_percpu_cnt = 1;
415 }
416
417 ASSERT(mac_tx_percpu_cnt >= 1);
418 mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1));
419 /*
420 * Make it of the form 2**N - 1 in the range
421 * [0 .. mac_tx_percpu_cnt_max - 1]
422 */
423 mac_tx_percpu_cnt--;
424
425 i_mac_impl_cachep = kmem_cache_create("mac_impl_cache",
426 sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor,
427 NULL, NULL, NULL, 0);
428 ASSERT(i_mac_impl_cachep != NULL);
429
430 mac_ring_cache = kmem_cache_create("mac_ring_cache",
431 sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL,
432 NULL, NULL, 0);
433 ASSERT(mac_ring_cache != NULL);
434
435 i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash",
436 IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor,
437 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
438 rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL);
439
440 mac_flow_init();
441 mac_soft_ring_init();
442 mac_bcast_init();
443 mac_client_init();
444
445 i_mac_impl_count = 0;
446
447 i_mactype_hash = mod_hash_create_extended("mactype_hash",
448 MACTYPE_HASHSZ,
449 mod_hash_null_keydtor, mod_hash_null_valdtor,
450 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
451
452 /*
453 * Allocate an id space to manage minor numbers. The range of the
454 * space will be from MAC_MAX_MINOR+1 to MAC_PRIVATE_MINOR-1. This
455 * leaves half of the 32-bit minors available for driver private use.
456 */
457 minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1,
458 MAC_PRIVATE_MINOR-1);
459 ASSERT(minor_ids != NULL);
460 minor_count = 0;
461
462 /* Let's default to 20 seconds */
463 mac_logging_interval = 20;
464 mac_flow_log_enable = B_FALSE;
465 mac_link_log_enable = B_FALSE;
466 mac_logging_timer = 0;
467
468 /* Register to be notified of noteworthy pools events */
469 mac_pool_event_reg.pec_func = mac_pool_event_cb;
470 mac_pool_event_reg.pec_arg = NULL;
471 pool_event_cb_register(&mac_pool_event_reg);
472 }
473
474 int
mac_fini(void)475 mac_fini(void)
476 {
477
478 if (i_mac_impl_count > 0 || minor_count > 0)
479 return (EBUSY);
480
481 pool_event_cb_unregister(&mac_pool_event_reg);
482
483 id_space_destroy(minor_ids);
484 mac_flow_fini();
485
486 mod_hash_destroy_hash(i_mac_impl_hash);
487 rw_destroy(&i_mac_impl_lock);
488
489 mac_client_fini();
490 kmem_cache_destroy(mac_ring_cache);
491
492 mod_hash_destroy_hash(i_mactype_hash);
493 mac_soft_ring_finish();
494
495
496 return (0);
497 }
498
499 /*
500 * Initialize a GLDv3 driver's device ops. A driver that manages its own ops
501 * (e.g. softmac) may pass in a NULL ops argument.
502 */
503 void
mac_init_ops(struct dev_ops * ops,const char * name)504 mac_init_ops(struct dev_ops *ops, const char *name)
505 {
506 major_t major = ddi_name_to_major((char *)name);
507
508 /*
509 * By returning on error below, we are not letting the driver continue
510 * in an undefined context. The mac_register() function will faill if
511 * DN_GLDV3_DRIVER isn't set.
512 */
513 if (major == DDI_MAJOR_T_NONE)
514 return;
515 LOCK_DEV_OPS(&devnamesp[major].dn_lock);
516 devnamesp[major].dn_flags |= (DN_GLDV3_DRIVER | DN_NETWORK_DRIVER);
517 UNLOCK_DEV_OPS(&devnamesp[major].dn_lock);
518 if (ops != NULL)
519 dld_init_ops(ops, name);
520 }
521
522 void
mac_fini_ops(struct dev_ops * ops)523 mac_fini_ops(struct dev_ops *ops)
524 {
525 dld_fini_ops(ops);
526 }
527
528 /*ARGSUSED*/
529 static int
i_mac_constructor(void * buf,void * arg,int kmflag)530 i_mac_constructor(void *buf, void *arg, int kmflag)
531 {
532 mac_impl_t *mip = buf;
533
534 bzero(buf, sizeof (mac_impl_t));
535
536 mip->mi_linkstate = LINK_STATE_UNKNOWN;
537
538 rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL);
539 mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL);
540 mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL);
541 mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL);
542
543 mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock;
544 cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
545 mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock;
546 cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
547
548 mutex_init(&mip->mi_bridge_lock, NULL, MUTEX_DEFAULT, NULL);
549
550 return (0);
551 }
552
553 /*ARGSUSED*/
554 static void
i_mac_destructor(void * buf,void * arg)555 i_mac_destructor(void *buf, void *arg)
556 {
557 mac_impl_t *mip = buf;
558 mac_cb_info_t *mcbi;
559
560 ASSERT(mip->mi_ref == 0);
561 ASSERT(mip->mi_active == 0);
562 ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN);
563 ASSERT(mip->mi_devpromisc == 0);
564 ASSERT(mip->mi_ksp == NULL);
565 ASSERT(mip->mi_kstat_count == 0);
566 ASSERT(mip->mi_nclients == 0);
567 ASSERT(mip->mi_nactiveclients == 0);
568 ASSERT(mip->mi_single_active_client == NULL);
569 ASSERT(mip->mi_state_flags == 0);
570 ASSERT(mip->mi_factory_addr == NULL);
571 ASSERT(mip->mi_factory_addr_num == 0);
572 ASSERT(mip->mi_default_tx_ring == NULL);
573
574 mcbi = &mip->mi_notify_cb_info;
575 ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0);
576 ASSERT(mip->mi_notify_bits == 0);
577 ASSERT(mip->mi_notify_thread == NULL);
578 ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock);
579 mcbi->mcbi_lockp = NULL;
580
581 mcbi = &mip->mi_promisc_cb_info;
582 ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL);
583 ASSERT(mip->mi_promisc_list == NULL);
584 ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock);
585 mcbi->mcbi_lockp = NULL;
586
587 ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL);
588 ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0);
589
590 rw_destroy(&mip->mi_rw_lock);
591
592 mutex_destroy(&mip->mi_promisc_lock);
593 cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv);
594 mutex_destroy(&mip->mi_notify_lock);
595 cv_destroy(&mip->mi_notify_cb_info.mcbi_cv);
596 mutex_destroy(&mip->mi_ring_lock);
597
598 ASSERT(mip->mi_bridge_link == NULL);
599 }
600
601 /* ARGSUSED */
602 static int
i_mac_ring_ctor(void * buf,void * arg,int kmflag)603 i_mac_ring_ctor(void *buf, void *arg, int kmflag)
604 {
605 mac_ring_t *ring = (mac_ring_t *)buf;
606
607 bzero(ring, sizeof (mac_ring_t));
608 cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL);
609 mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL);
610 ring->mr_state = MR_FREE;
611 return (0);
612 }
613
614 /* ARGSUSED */
615 static void
i_mac_ring_dtor(void * buf,void * arg)616 i_mac_ring_dtor(void *buf, void *arg)
617 {
618 mac_ring_t *ring = (mac_ring_t *)buf;
619
620 cv_destroy(&ring->mr_cv);
621 mutex_destroy(&ring->mr_lock);
622 }
623
624 /*
625 * Common functions to do mac callback addition and deletion. Currently this is
626 * used by promisc callbacks and notify callbacks. List addition and deletion
627 * need to take care of list walkers. List walkers in general, can't hold list
628 * locks and make upcall callbacks due to potential lock order and recursive
629 * reentry issues. Instead list walkers increment the list walker count to mark
630 * the presence of a walker thread. Addition can be carefully done to ensure
631 * that the list walker always sees either the old list or the new list.
632 * However the deletion can't be done while the walker is active, instead the
633 * deleting thread simply marks the entry as logically deleted. The last walker
634 * physically deletes and frees up the logically deleted entries when the walk
635 * is complete.
636 */
637 void
mac_callback_add(mac_cb_info_t * mcbi,mac_cb_t ** mcb_head,mac_cb_t * mcb_elem)638 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
639 mac_cb_t *mcb_elem)
640 {
641 mac_cb_t *p;
642 mac_cb_t **pp;
643
644 /* Verify it is not already in the list */
645 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
646 if (p == mcb_elem)
647 break;
648 }
649 VERIFY(p == NULL);
650
651 /*
652 * Add it to the head of the callback list. The membar ensures that
653 * the following list pointer manipulations reach global visibility
654 * in exactly the program order below.
655 */
656 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
657
658 mcb_elem->mcb_nextp = *mcb_head;
659 membar_producer();
660 *mcb_head = mcb_elem;
661 }
662
663 /*
664 * Mark the entry as logically deleted. If there aren't any walkers unlink
665 * from the list. In either case return the corresponding status.
666 */
667 boolean_t
mac_callback_remove(mac_cb_info_t * mcbi,mac_cb_t ** mcb_head,mac_cb_t * mcb_elem)668 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
669 mac_cb_t *mcb_elem)
670 {
671 mac_cb_t *p;
672 mac_cb_t **pp;
673
674 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
675 /*
676 * Search the callback list for the entry to be removed
677 */
678 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
679 if (p == mcb_elem)
680 break;
681 }
682 VERIFY(p != NULL);
683
684 /*
685 * If there are walkers just mark it as deleted and the last walker
686 * will remove from the list and free it.
687 */
688 if (mcbi->mcbi_walker_cnt != 0) {
689 p->mcb_flags |= MCB_CONDEMNED;
690 mcbi->mcbi_del_cnt++;
691 return (B_FALSE);
692 }
693
694 ASSERT(mcbi->mcbi_del_cnt == 0);
695 *pp = p->mcb_nextp;
696 p->mcb_nextp = NULL;
697 return (B_TRUE);
698 }
699
700 /*
701 * Wait for all pending callback removals to be completed
702 */
703 void
mac_callback_remove_wait(mac_cb_info_t * mcbi)704 mac_callback_remove_wait(mac_cb_info_t *mcbi)
705 {
706 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
707 while (mcbi->mcbi_del_cnt != 0) {
708 DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi);
709 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
710 }
711 }
712
713 /*
714 * The last mac callback walker does the cleanup. Walk the list and unlik
715 * all the logically deleted entries and construct a temporary list of
716 * removed entries. Return the list of removed entries to the caller.
717 */
718 mac_cb_t *
mac_callback_walker_cleanup(mac_cb_info_t * mcbi,mac_cb_t ** mcb_head)719 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head)
720 {
721 mac_cb_t *p;
722 mac_cb_t **pp;
723 mac_cb_t *rmlist = NULL; /* List of removed elements */
724 int cnt = 0;
725
726 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
727 ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0);
728
729 pp = mcb_head;
730 while (*pp != NULL) {
731 if ((*pp)->mcb_flags & MCB_CONDEMNED) {
732 p = *pp;
733 *pp = p->mcb_nextp;
734 p->mcb_nextp = rmlist;
735 rmlist = p;
736 cnt++;
737 continue;
738 }
739 pp = &(*pp)->mcb_nextp;
740 }
741
742 ASSERT(mcbi->mcbi_del_cnt == cnt);
743 mcbi->mcbi_del_cnt = 0;
744 return (rmlist);
745 }
746
747 boolean_t
mac_callback_lookup(mac_cb_t ** mcb_headp,mac_cb_t * mcb_elem)748 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
749 {
750 mac_cb_t *mcb;
751
752 /* Verify it is not already in the list */
753 for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) {
754 if (mcb == mcb_elem)
755 return (B_TRUE);
756 }
757
758 return (B_FALSE);
759 }
760
761 boolean_t
mac_callback_find(mac_cb_info_t * mcbi,mac_cb_t ** mcb_headp,mac_cb_t * mcb_elem)762 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
763 {
764 boolean_t found;
765
766 mutex_enter(mcbi->mcbi_lockp);
767 found = mac_callback_lookup(mcb_headp, mcb_elem);
768 mutex_exit(mcbi->mcbi_lockp);
769
770 return (found);
771 }
772
773 /* Free the list of removed callbacks */
774 void
mac_callback_free(mac_cb_t * rmlist)775 mac_callback_free(mac_cb_t *rmlist)
776 {
777 mac_cb_t *mcb;
778 mac_cb_t *mcb_next;
779
780 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
781 mcb_next = mcb->mcb_nextp;
782 kmem_free(mcb->mcb_objp, mcb->mcb_objsize);
783 }
784 }
785
786 /*
787 * The promisc callbacks are in 2 lists, one off the 'mip' and another off the
788 * 'mcip' threaded by mpi_mi_link and mpi_mci_link respectively. However there
789 * is only a single shared total walker count, and an entry can't be physically
790 * unlinked if a walker is active on either list. The last walker does this
791 * cleanup of logically deleted entries.
792 */
793 void
i_mac_promisc_walker_cleanup(mac_impl_t * mip)794 i_mac_promisc_walker_cleanup(mac_impl_t *mip)
795 {
796 mac_cb_t *rmlist;
797 mac_cb_t *mcb;
798 mac_cb_t *mcb_next;
799 mac_promisc_impl_t *mpip;
800
801 /*
802 * Construct a temporary list of deleted callbacks by walking the
803 * the mi_promisc_list. Then for each entry in the temporary list,
804 * remove it from the mci_promisc_list and free the entry.
805 */
806 rmlist = mac_callback_walker_cleanup(&mip->mi_promisc_cb_info,
807 &mip->mi_promisc_list);
808
809 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
810 mcb_next = mcb->mcb_nextp;
811 mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
812 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info,
813 &mpip->mpi_mcip->mci_promisc_list, &mpip->mpi_mci_link));
814 mcb->mcb_flags = 0;
815 mcb->mcb_nextp = NULL;
816 kmem_cache_free(mac_promisc_impl_cache, mpip);
817 }
818 }
819
820 void
i_mac_notify(mac_impl_t * mip,mac_notify_type_t type)821 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type)
822 {
823 mac_cb_info_t *mcbi;
824
825 /*
826 * Signal the notify thread even after mi_ref has become zero and
827 * mi_disabled is set. The synchronization with the notify thread
828 * happens in mac_unregister and that implies the driver must make
829 * sure it is single-threaded (with respect to mac calls) and that
830 * all pending mac calls have returned before it calls mac_unregister
831 */
832 rw_enter(&i_mac_impl_lock, RW_READER);
833 if (mip->mi_state_flags & MIS_DISABLED)
834 goto exit;
835
836 /*
837 * Guard against incorrect notifications. (Running a newer
838 * mac client against an older implementation?)
839 */
840 if (type >= MAC_NNOTE)
841 goto exit;
842
843 mcbi = &mip->mi_notify_cb_info;
844 mutex_enter(mcbi->mcbi_lockp);
845 mip->mi_notify_bits |= (1 << type);
846 cv_broadcast(&mcbi->mcbi_cv);
847 mutex_exit(mcbi->mcbi_lockp);
848
849 exit:
850 rw_exit(&i_mac_impl_lock);
851 }
852
853 /*
854 * Mac serialization primitives. Please see the block comment at the
855 * top of the file.
856 */
857 void
i_mac_perim_enter(mac_impl_t * mip)858 i_mac_perim_enter(mac_impl_t *mip)
859 {
860 mac_client_impl_t *mcip;
861
862 if (mip->mi_state_flags & MIS_IS_VNIC) {
863 /*
864 * This is a VNIC. Return the lower mac since that is what
865 * we want to serialize on.
866 */
867 mcip = mac_vnic_lower(mip);
868 mip = mcip->mci_mip;
869 }
870
871 mutex_enter(&mip->mi_perim_lock);
872 if (mip->mi_perim_owner == curthread) {
873 mip->mi_perim_ocnt++;
874 mutex_exit(&mip->mi_perim_lock);
875 return;
876 }
877
878 while (mip->mi_perim_owner != NULL)
879 cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock);
880
881 mip->mi_perim_owner = curthread;
882 ASSERT(mip->mi_perim_ocnt == 0);
883 mip->mi_perim_ocnt++;
884 #ifdef DEBUG
885 mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack,
886 MAC_PERIM_STACK_DEPTH);
887 #endif
888 mutex_exit(&mip->mi_perim_lock);
889 }
890
891 int
i_mac_perim_enter_nowait(mac_impl_t * mip)892 i_mac_perim_enter_nowait(mac_impl_t *mip)
893 {
894 /*
895 * The vnic is a special case, since the serialization is done based
896 * on the lower mac. If the lower mac is busy, it does not imply the
897 * vnic can't be unregistered. But in the case of other drivers,
898 * a busy perimeter or open mac handles implies that the mac is busy
899 * and can't be unregistered.
900 */
901 if (mip->mi_state_flags & MIS_IS_VNIC) {
902 i_mac_perim_enter(mip);
903 return (0);
904 }
905
906 mutex_enter(&mip->mi_perim_lock);
907 if (mip->mi_perim_owner != NULL) {
908 mutex_exit(&mip->mi_perim_lock);
909 return (EBUSY);
910 }
911 ASSERT(mip->mi_perim_ocnt == 0);
912 mip->mi_perim_owner = curthread;
913 mip->mi_perim_ocnt++;
914 mutex_exit(&mip->mi_perim_lock);
915
916 return (0);
917 }
918
919 void
i_mac_perim_exit(mac_impl_t * mip)920 i_mac_perim_exit(mac_impl_t *mip)
921 {
922 mac_client_impl_t *mcip;
923
924 if (mip->mi_state_flags & MIS_IS_VNIC) {
925 /*
926 * This is a VNIC. Return the lower mac since that is what
927 * we want to serialize on.
928 */
929 mcip = mac_vnic_lower(mip);
930 mip = mcip->mci_mip;
931 }
932
933 ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0);
934
935 mutex_enter(&mip->mi_perim_lock);
936 if (--mip->mi_perim_ocnt == 0) {
937 mip->mi_perim_owner = NULL;
938 cv_signal(&mip->mi_perim_cv);
939 }
940 mutex_exit(&mip->mi_perim_lock);
941 }
942
943 /*
944 * Returns whether the current thread holds the mac perimeter. Used in making
945 * assertions.
946 */
947 boolean_t
mac_perim_held(mac_handle_t mh)948 mac_perim_held(mac_handle_t mh)
949 {
950 mac_impl_t *mip = (mac_impl_t *)mh;
951 mac_client_impl_t *mcip;
952
953 if (mip->mi_state_flags & MIS_IS_VNIC) {
954 /*
955 * This is a VNIC. Return the lower mac since that is what
956 * we want to serialize on.
957 */
958 mcip = mac_vnic_lower(mip);
959 mip = mcip->mci_mip;
960 }
961 return (mip->mi_perim_owner == curthread);
962 }
963
964 /*
965 * mac client interfaces to enter the mac perimeter of a mac end point, given
966 * its mac handle, or macname or linkid.
967 */
968 void
mac_perim_enter_by_mh(mac_handle_t mh,mac_perim_handle_t * mphp)969 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp)
970 {
971 mac_impl_t *mip = (mac_impl_t *)mh;
972
973 i_mac_perim_enter(mip);
974 /*
975 * The mac_perim_handle_t returned encodes the 'mip' and whether a
976 * mac_open has been done internally while entering the perimeter.
977 * This information is used in mac_perim_exit
978 */
979 MAC_ENCODE_MPH(*mphp, mip, 0);
980 }
981
982 int
mac_perim_enter_by_macname(const char * name,mac_perim_handle_t * mphp)983 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp)
984 {
985 int err;
986 mac_handle_t mh;
987
988 if ((err = mac_open(name, &mh)) != 0)
989 return (err);
990
991 mac_perim_enter_by_mh(mh, mphp);
992 MAC_ENCODE_MPH(*mphp, mh, 1);
993 return (0);
994 }
995
996 int
mac_perim_enter_by_linkid(datalink_id_t linkid,mac_perim_handle_t * mphp)997 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp)
998 {
999 int err;
1000 mac_handle_t mh;
1001
1002 if ((err = mac_open_by_linkid(linkid, &mh)) != 0)
1003 return (err);
1004
1005 mac_perim_enter_by_mh(mh, mphp);
1006 MAC_ENCODE_MPH(*mphp, mh, 1);
1007 return (0);
1008 }
1009
1010 void
mac_perim_exit(mac_perim_handle_t mph)1011 mac_perim_exit(mac_perim_handle_t mph)
1012 {
1013 mac_impl_t *mip;
1014 boolean_t need_close;
1015
1016 MAC_DECODE_MPH(mph, mip, need_close);
1017 i_mac_perim_exit(mip);
1018 if (need_close)
1019 mac_close((mac_handle_t)mip);
1020 }
1021
1022 int
mac_hold(const char * macname,mac_impl_t ** pmip)1023 mac_hold(const char *macname, mac_impl_t **pmip)
1024 {
1025 mac_impl_t *mip;
1026 int err;
1027
1028 /*
1029 * Check the device name length to make sure it won't overflow our
1030 * buffer.
1031 */
1032 if (strlen(macname) >= MAXNAMELEN)
1033 return (EINVAL);
1034
1035 /*
1036 * Look up its entry in the global hash table.
1037 */
1038 rw_enter(&i_mac_impl_lock, RW_WRITER);
1039 err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname,
1040 (mod_hash_val_t *)&mip);
1041
1042 if (err != 0) {
1043 rw_exit(&i_mac_impl_lock);
1044 return (ENOENT);
1045 }
1046
1047 if (mip->mi_state_flags & MIS_DISABLED) {
1048 rw_exit(&i_mac_impl_lock);
1049 return (ENOENT);
1050 }
1051
1052 if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) {
1053 rw_exit(&i_mac_impl_lock);
1054 return (EBUSY);
1055 }
1056
1057 mip->mi_ref++;
1058 rw_exit(&i_mac_impl_lock);
1059
1060 *pmip = mip;
1061 return (0);
1062 }
1063
1064 void
mac_rele(mac_impl_t * mip)1065 mac_rele(mac_impl_t *mip)
1066 {
1067 rw_enter(&i_mac_impl_lock, RW_WRITER);
1068 ASSERT(mip->mi_ref != 0);
1069 if (--mip->mi_ref == 0) {
1070 ASSERT(mip->mi_nactiveclients == 0 &&
1071 !(mip->mi_state_flags & MIS_EXCLUSIVE));
1072 }
1073 rw_exit(&i_mac_impl_lock);
1074 }
1075
1076 /*
1077 * Private GLDv3 function to start a MAC instance.
1078 */
1079 int
mac_start(mac_handle_t mh)1080 mac_start(mac_handle_t mh)
1081 {
1082 mac_impl_t *mip = (mac_impl_t *)mh;
1083 int err = 0;
1084 mac_group_t *defgrp;
1085
1086 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1087 ASSERT(mip->mi_start != NULL);
1088
1089 /*
1090 * Check whether the device is already started.
1091 */
1092 if (mip->mi_active++ == 0) {
1093 mac_ring_t *ring = NULL;
1094
1095 /*
1096 * Start the device.
1097 */
1098 err = mip->mi_start(mip->mi_driver);
1099 if (err != 0) {
1100 mip->mi_active--;
1101 return (err);
1102 }
1103
1104 /*
1105 * Start the default tx ring.
1106 */
1107 if (mip->mi_default_tx_ring != NULL) {
1108
1109 ring = (mac_ring_t *)mip->mi_default_tx_ring;
1110 if (ring->mr_state != MR_INUSE) {
1111 err = mac_start_ring(ring);
1112 if (err != 0) {
1113 mip->mi_active--;
1114 return (err);
1115 }
1116 }
1117 }
1118
1119 if ((defgrp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) {
1120 /*
1121 * Start the default ring, since it will be needed
1122 * to receive broadcast and multicast traffic for
1123 * both primary and non-primary MAC clients.
1124 */
1125 ASSERT(defgrp->mrg_state == MAC_GROUP_STATE_REGISTERED);
1126 err = mac_start_group_and_rings(defgrp);
1127 if (err != 0) {
1128 mip->mi_active--;
1129 if ((ring != NULL) &&
1130 (ring->mr_state == MR_INUSE))
1131 mac_stop_ring(ring);
1132 return (err);
1133 }
1134 mac_set_group_state(defgrp, MAC_GROUP_STATE_SHARED);
1135 }
1136 }
1137
1138 return (err);
1139 }
1140
1141 /*
1142 * Private GLDv3 function to stop a MAC instance.
1143 */
1144 void
mac_stop(mac_handle_t mh)1145 mac_stop(mac_handle_t mh)
1146 {
1147 mac_impl_t *mip = (mac_impl_t *)mh;
1148 mac_group_t *grp;
1149
1150 ASSERT(mip->mi_stop != NULL);
1151 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1152
1153 /*
1154 * Check whether the device is still needed.
1155 */
1156 ASSERT(mip->mi_active != 0);
1157 if (--mip->mi_active == 0) {
1158 if ((grp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) {
1159 /*
1160 * There should be no more active clients since the
1161 * MAC is being stopped. Stop the default RX group
1162 * and transition it back to registered state.
1163 *
1164 * When clients are torn down, the groups
1165 * are release via mac_release_rx_group which
1166 * knows the the default group is always in
1167 * started mode since broadcast uses it. So
1168 * we can assert that their are no clients
1169 * (since mac_bcast_add doesn't register itself
1170 * as a client) and group is in SHARED state.
1171 */
1172 ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED);
1173 ASSERT(MAC_GROUP_NO_CLIENT(grp) &&
1174 mip->mi_nactiveclients == 0);
1175 mac_stop_group_and_rings(grp);
1176 mac_set_group_state(grp, MAC_GROUP_STATE_REGISTERED);
1177 }
1178
1179 if (mip->mi_default_tx_ring != NULL) {
1180 mac_ring_t *ring;
1181
1182 ring = (mac_ring_t *)mip->mi_default_tx_ring;
1183 if (ring->mr_state == MR_INUSE) {
1184 mac_stop_ring(ring);
1185 ring->mr_flag = 0;
1186 }
1187 }
1188
1189 /*
1190 * Stop the device.
1191 */
1192 mip->mi_stop(mip->mi_driver);
1193 }
1194 }
1195
1196 int
i_mac_promisc_set(mac_impl_t * mip,boolean_t on)1197 i_mac_promisc_set(mac_impl_t *mip, boolean_t on)
1198 {
1199 int err = 0;
1200
1201 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1202 ASSERT(mip->mi_setpromisc != NULL);
1203
1204 if (on) {
1205 /*
1206 * Enable promiscuous mode on the device if not yet enabled.
1207 */
1208 if (mip->mi_devpromisc++ == 0) {
1209 err = mip->mi_setpromisc(mip->mi_driver, B_TRUE);
1210 if (err != 0) {
1211 mip->mi_devpromisc--;
1212 return (err);
1213 }
1214 i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1215 }
1216 } else {
1217 if (mip->mi_devpromisc == 0)
1218 return (EPROTO);
1219
1220 /*
1221 * Disable promiscuous mode on the device if this is the last
1222 * enabling.
1223 */
1224 if (--mip->mi_devpromisc == 0) {
1225 err = mip->mi_setpromisc(mip->mi_driver, B_FALSE);
1226 if (err != 0) {
1227 mip->mi_devpromisc++;
1228 return (err);
1229 }
1230 i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1231 }
1232 }
1233
1234 return (0);
1235 }
1236
1237 /*
1238 * The promiscuity state can change any time. If the caller needs to take
1239 * actions that are atomic with the promiscuity state, then the caller needs
1240 * to bracket the entire sequence with mac_perim_enter/exit
1241 */
1242 boolean_t
mac_promisc_get(mac_handle_t mh)1243 mac_promisc_get(mac_handle_t mh)
1244 {
1245 mac_impl_t *mip = (mac_impl_t *)mh;
1246
1247 /*
1248 * Return the current promiscuity.
1249 */
1250 return (mip->mi_devpromisc != 0);
1251 }
1252
1253 /*
1254 * Invoked at MAC instance attach time to initialize the list
1255 * of factory MAC addresses supported by a MAC instance. This function
1256 * builds a local cache in the mac_impl_t for the MAC addresses
1257 * supported by the underlying hardware. The MAC clients themselves
1258 * use the mac_addr_factory*() functions to query and reserve
1259 * factory MAC addresses.
1260 */
1261 void
mac_addr_factory_init(mac_impl_t * mip)1262 mac_addr_factory_init(mac_impl_t *mip)
1263 {
1264 mac_capab_multifactaddr_t capab;
1265 uint8_t *addr;
1266 int i;
1267
1268 /*
1269 * First round to see how many factory MAC addresses are available.
1270 */
1271 bzero(&capab, sizeof (capab));
1272 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR,
1273 &capab) || (capab.mcm_naddr == 0)) {
1274 /*
1275 * The MAC instance doesn't support multiple factory
1276 * MAC addresses, we're done here.
1277 */
1278 return;
1279 }
1280
1281 /*
1282 * Allocate the space and get all the factory addresses.
1283 */
1284 addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP);
1285 capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr);
1286
1287 mip->mi_factory_addr_num = capab.mcm_naddr;
1288 mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num *
1289 sizeof (mac_factory_addr_t), KM_SLEEP);
1290
1291 for (i = 0; i < capab.mcm_naddr; i++) {
1292 bcopy(addr + i * MAXMACADDRLEN,
1293 mip->mi_factory_addr[i].mfa_addr,
1294 mip->mi_type->mt_addr_length);
1295 mip->mi_factory_addr[i].mfa_in_use = B_FALSE;
1296 }
1297
1298 kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN);
1299 }
1300
1301 void
mac_addr_factory_fini(mac_impl_t * mip)1302 mac_addr_factory_fini(mac_impl_t *mip)
1303 {
1304 if (mip->mi_factory_addr == NULL) {
1305 ASSERT(mip->mi_factory_addr_num == 0);
1306 return;
1307 }
1308
1309 kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num *
1310 sizeof (mac_factory_addr_t));
1311
1312 mip->mi_factory_addr = NULL;
1313 mip->mi_factory_addr_num = 0;
1314 }
1315
1316 /*
1317 * Reserve a factory MAC address. If *slot is set to -1, the function
1318 * attempts to reserve any of the available factory MAC addresses and
1319 * returns the reserved slot id. If no slots are available, the function
1320 * returns ENOSPC. If *slot is not set to -1, the function reserves
1321 * the specified slot if it is available, or returns EBUSY is the slot
1322 * is already used. Returns ENOTSUP if the underlying MAC does not
1323 * support multiple factory addresses. If the slot number is not -1 but
1324 * is invalid, returns EINVAL.
1325 */
1326 int
mac_addr_factory_reserve(mac_client_handle_t mch,int * slot)1327 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot)
1328 {
1329 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1330 mac_impl_t *mip = mcip->mci_mip;
1331 int i, ret = 0;
1332
1333 i_mac_perim_enter(mip);
1334 /*
1335 * Protect against concurrent readers that may need a self-consistent
1336 * view of the factory addresses
1337 */
1338 rw_enter(&mip->mi_rw_lock, RW_WRITER);
1339
1340 if (mip->mi_factory_addr_num == 0) {
1341 ret = ENOTSUP;
1342 goto bail;
1343 }
1344
1345 if (*slot != -1) {
1346 /* check the specified slot */
1347 if (*slot < 1 || *slot > mip->mi_factory_addr_num) {
1348 ret = EINVAL;
1349 goto bail;
1350 }
1351 if (mip->mi_factory_addr[*slot-1].mfa_in_use) {
1352 ret = EBUSY;
1353 goto bail;
1354 }
1355 } else {
1356 /* pick the next available slot */
1357 for (i = 0; i < mip->mi_factory_addr_num; i++) {
1358 if (!mip->mi_factory_addr[i].mfa_in_use)
1359 break;
1360 }
1361
1362 if (i == mip->mi_factory_addr_num) {
1363 ret = ENOSPC;
1364 goto bail;
1365 }
1366 *slot = i+1;
1367 }
1368
1369 mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE;
1370 mip->mi_factory_addr[*slot-1].mfa_client = mcip;
1371
1372 bail:
1373 rw_exit(&mip->mi_rw_lock);
1374 i_mac_perim_exit(mip);
1375 return (ret);
1376 }
1377
1378 /*
1379 * Release the specified factory MAC address slot.
1380 */
1381 void
mac_addr_factory_release(mac_client_handle_t mch,uint_t slot)1382 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot)
1383 {
1384 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1385 mac_impl_t *mip = mcip->mci_mip;
1386
1387 i_mac_perim_enter(mip);
1388 /*
1389 * Protect against concurrent readers that may need a self-consistent
1390 * view of the factory addresses
1391 */
1392 rw_enter(&mip->mi_rw_lock, RW_WRITER);
1393
1394 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1395 ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use);
1396
1397 mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE;
1398
1399 rw_exit(&mip->mi_rw_lock);
1400 i_mac_perim_exit(mip);
1401 }
1402
1403 /*
1404 * Stores in mac_addr the value of the specified MAC address. Returns
1405 * 0 on success, or EINVAL if the slot number is not valid for the MAC.
1406 * The caller must provide a string of at least MAXNAMELEN bytes.
1407 */
1408 void
mac_addr_factory_value(mac_handle_t mh,int slot,uchar_t * mac_addr,uint_t * addr_len,char * client_name,boolean_t * in_use_arg)1409 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr,
1410 uint_t *addr_len, char *client_name, boolean_t *in_use_arg)
1411 {
1412 mac_impl_t *mip = (mac_impl_t *)mh;
1413 boolean_t in_use;
1414
1415 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1416
1417 /*
1418 * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter
1419 * and mi_rw_lock
1420 */
1421 rw_enter(&mip->mi_rw_lock, RW_READER);
1422 bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN);
1423 *addr_len = mip->mi_type->mt_addr_length;
1424 in_use = mip->mi_factory_addr[slot-1].mfa_in_use;
1425 if (in_use && client_name != NULL) {
1426 bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name,
1427 client_name, MAXNAMELEN);
1428 }
1429 if (in_use_arg != NULL)
1430 *in_use_arg = in_use;
1431 rw_exit(&mip->mi_rw_lock);
1432 }
1433
1434 /*
1435 * Returns the number of factory MAC addresses (in addition to the
1436 * primary MAC address), 0 if the underlying MAC doesn't support
1437 * that feature.
1438 */
1439 uint_t
mac_addr_factory_num(mac_handle_t mh)1440 mac_addr_factory_num(mac_handle_t mh)
1441 {
1442 mac_impl_t *mip = (mac_impl_t *)mh;
1443
1444 return (mip->mi_factory_addr_num);
1445 }
1446
1447
1448 void
mac_rx_group_unmark(mac_group_t * grp,uint_t flag)1449 mac_rx_group_unmark(mac_group_t *grp, uint_t flag)
1450 {
1451 mac_ring_t *ring;
1452
1453 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next)
1454 ring->mr_flag &= ~flag;
1455 }
1456
1457 /*
1458 * The following mac_hwrings_xxx() functions are private mac client functions
1459 * used by the aggr driver to access and control the underlying HW Rx group
1460 * and rings. In this case, the aggr driver has exclusive control of the
1461 * underlying HW Rx group/rings, it calls the following functions to
1462 * start/stop the HW Rx rings, disable/enable polling, add/remove mac'
1463 * addresses, or set up the Rx callback.
1464 */
1465 /* ARGSUSED */
1466 static void
mac_hwrings_rx_process(void * arg,mac_resource_handle_t srs,mblk_t * mp_chain,boolean_t loopback)1467 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs,
1468 mblk_t *mp_chain, boolean_t loopback)
1469 {
1470 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs;
1471 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx;
1472 mac_direct_rx_t proc;
1473 void *arg1;
1474 mac_resource_handle_t arg2;
1475
1476 proc = srs_rx->sr_func;
1477 arg1 = srs_rx->sr_arg1;
1478 arg2 = mac_srs->srs_mrh;
1479
1480 proc(arg1, arg2, mp_chain, NULL);
1481 }
1482
1483 /*
1484 * This function is called to get the list of HW rings that are reserved by
1485 * an exclusive mac client.
1486 *
1487 * Return value: the number of HW rings.
1488 */
1489 int
mac_hwrings_get(mac_client_handle_t mch,mac_group_handle_t * hwgh,mac_ring_handle_t * hwrh,mac_ring_type_t rtype)1490 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh,
1491 mac_ring_handle_t *hwrh, mac_ring_type_t rtype)
1492 {
1493 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1494 flow_entry_t *flent = mcip->mci_flent;
1495 mac_group_t *grp;
1496 mac_ring_t *ring;
1497 int cnt = 0;
1498
1499 if (rtype == MAC_RING_TYPE_RX) {
1500 grp = flent->fe_rx_ring_group;
1501 } else if (rtype == MAC_RING_TYPE_TX) {
1502 grp = flent->fe_tx_ring_group;
1503 } else {
1504 ASSERT(B_FALSE);
1505 return (-1);
1506 }
1507 /*
1508 * The mac client did not reserve any RX group, return directly.
1509 * This is probably because the underlying MAC does not support
1510 * any groups.
1511 */
1512 if (hwgh != NULL)
1513 *hwgh = NULL;
1514 if (grp == NULL)
1515 return (0);
1516 /*
1517 * This group must be reserved by this mac client.
1518 */
1519 ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) &&
1520 (mcip == MAC_GROUP_ONLY_CLIENT(grp)));
1521
1522 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) {
1523 ASSERT(cnt < MAX_RINGS_PER_GROUP);
1524 hwrh[cnt] = (mac_ring_handle_t)ring;
1525 }
1526 if (hwgh != NULL)
1527 *hwgh = (mac_group_handle_t)grp;
1528
1529 return (cnt);
1530 }
1531
1532 /*
1533 * This function is called to get info about Tx/Rx rings.
1534 *
1535 * Return value: returns uint_t which will have various bits set
1536 * that indicates different properties of the ring.
1537 */
1538 uint_t
mac_hwring_getinfo(mac_ring_handle_t rh)1539 mac_hwring_getinfo(mac_ring_handle_t rh)
1540 {
1541 mac_ring_t *ring = (mac_ring_t *)rh;
1542 mac_ring_info_t *info = &ring->mr_info;
1543
1544 return (info->mri_flags);
1545 }
1546
1547 /*
1548 * Export ddi interrupt handles from the HW ring to the pseudo ring and
1549 * setup the RX callback of the mac client which exclusively controls
1550 * HW ring.
1551 */
1552 void
mac_hwring_setup(mac_ring_handle_t hwrh,mac_resource_handle_t prh,mac_ring_handle_t pseudo_rh)1553 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh,
1554 mac_ring_handle_t pseudo_rh)
1555 {
1556 mac_ring_t *hw_ring = (mac_ring_t *)hwrh;
1557 mac_ring_t *pseudo_ring;
1558 mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs;
1559
1560 if (pseudo_rh != NULL) {
1561 pseudo_ring = (mac_ring_t *)pseudo_rh;
1562 /* Export the ddi handles to pseudo ring */
1563 pseudo_ring->mr_info.mri_intr.mi_ddi_handle =
1564 hw_ring->mr_info.mri_intr.mi_ddi_handle;
1565 pseudo_ring->mr_info.mri_intr.mi_ddi_shared =
1566 hw_ring->mr_info.mri_intr.mi_ddi_shared;
1567 /*
1568 * Save a pointer to pseudo ring in the hw ring. If
1569 * interrupt handle changes, the hw ring will be
1570 * notified of the change (see mac_ring_intr_set())
1571 * and the appropriate change has to be made to
1572 * the pseudo ring that has exported the ddi handle.
1573 */
1574 hw_ring->mr_prh = pseudo_rh;
1575 }
1576
1577 if (hw_ring->mr_type == MAC_RING_TYPE_RX) {
1578 ASSERT(!(mac_srs->srs_type & SRST_TX));
1579 mac_srs->srs_mrh = prh;
1580 mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process;
1581 }
1582 }
1583
1584 void
mac_hwring_teardown(mac_ring_handle_t hwrh)1585 mac_hwring_teardown(mac_ring_handle_t hwrh)
1586 {
1587 mac_ring_t *hw_ring = (mac_ring_t *)hwrh;
1588 mac_soft_ring_set_t *mac_srs;
1589
1590 if (hw_ring == NULL)
1591 return;
1592 hw_ring->mr_prh = NULL;
1593 if (hw_ring->mr_type == MAC_RING_TYPE_RX) {
1594 mac_srs = hw_ring->mr_srs;
1595 ASSERT(!(mac_srs->srs_type & SRST_TX));
1596 mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process;
1597 mac_srs->srs_mrh = NULL;
1598 }
1599 }
1600
1601 int
mac_hwring_disable_intr(mac_ring_handle_t rh)1602 mac_hwring_disable_intr(mac_ring_handle_t rh)
1603 {
1604 mac_ring_t *rr_ring = (mac_ring_t *)rh;
1605 mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1606
1607 return (intr->mi_disable(intr->mi_handle));
1608 }
1609
1610 int
mac_hwring_enable_intr(mac_ring_handle_t rh)1611 mac_hwring_enable_intr(mac_ring_handle_t rh)
1612 {
1613 mac_ring_t *rr_ring = (mac_ring_t *)rh;
1614 mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1615
1616 return (intr->mi_enable(intr->mi_handle));
1617 }
1618
1619 int
mac_hwring_start(mac_ring_handle_t rh)1620 mac_hwring_start(mac_ring_handle_t rh)
1621 {
1622 mac_ring_t *rr_ring = (mac_ring_t *)rh;
1623
1624 MAC_RING_UNMARK(rr_ring, MR_QUIESCE);
1625 return (0);
1626 }
1627
1628 void
mac_hwring_stop(mac_ring_handle_t rh)1629 mac_hwring_stop(mac_ring_handle_t rh)
1630 {
1631 mac_ring_t *rr_ring = (mac_ring_t *)rh;
1632
1633 mac_rx_ring_quiesce(rr_ring, MR_QUIESCE);
1634 }
1635
1636 mblk_t *
mac_hwring_poll(mac_ring_handle_t rh,int bytes_to_pickup)1637 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup)
1638 {
1639 mac_ring_t *rr_ring = (mac_ring_t *)rh;
1640 mac_ring_info_t *info = &rr_ring->mr_info;
1641
1642 return (info->mri_poll(info->mri_driver, bytes_to_pickup));
1643 }
1644
1645 /*
1646 * Send packets through a selected tx ring.
1647 */
1648 mblk_t *
mac_hwring_tx(mac_ring_handle_t rh,mblk_t * mp)1649 mac_hwring_tx(mac_ring_handle_t rh, mblk_t *mp)
1650 {
1651 mac_ring_t *ring = (mac_ring_t *)rh;
1652 mac_ring_info_t *info = &ring->mr_info;
1653
1654 ASSERT(ring->mr_type == MAC_RING_TYPE_TX &&
1655 ring->mr_state >= MR_INUSE);
1656 return (info->mri_tx(info->mri_driver, mp));
1657 }
1658
1659 /*
1660 * Query stats for a particular rx/tx ring
1661 */
1662 int
mac_hwring_getstat(mac_ring_handle_t rh,uint_t stat,uint64_t * val)1663 mac_hwring_getstat(mac_ring_handle_t rh, uint_t stat, uint64_t *val)
1664 {
1665 mac_ring_t *ring = (mac_ring_t *)rh;
1666 mac_ring_info_t *info = &ring->mr_info;
1667
1668 return (info->mri_stat(info->mri_driver, stat, val));
1669 }
1670
1671 /*
1672 * Private function that is only used by aggr to send packets through
1673 * a port/Tx ring. Since aggr exposes a pseudo Tx ring even for ports
1674 * that does not expose Tx rings, aggr_ring_tx() entry point needs
1675 * access to mac_impl_t to send packets through m_tx() entry point.
1676 * It accomplishes this by calling mac_hwring_send_priv() function.
1677 */
1678 mblk_t *
mac_hwring_send_priv(mac_client_handle_t mch,mac_ring_handle_t rh,mblk_t * mp)1679 mac_hwring_send_priv(mac_client_handle_t mch, mac_ring_handle_t rh, mblk_t *mp)
1680 {
1681 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1682 mac_impl_t *mip = mcip->mci_mip;
1683
1684 MAC_TX(mip, rh, mp, mcip);
1685 return (mp);
1686 }
1687
1688 /*
1689 * Private function that is only used by aggr to update the default transmission
1690 * ring. Because aggr exposes a pseudo Tx ring even for ports that may
1691 * temporarily be down, it may need to update the default ring that is used by
1692 * MAC such that it refers to a link that can actively be used to send traffic.
1693 * Note that this is different from the case where the port has been removed
1694 * from the group. In those cases, all of the rings will be torn down because
1695 * the ring will no longer exist. It's important to give aggr a case where the
1696 * rings can still exist such that it may be able to continue to send LACP PDUs
1697 * to potentially restore the link.
1698 *
1699 * Finally, we explicitly don't do anything if the ring hasn't been enabled yet.
1700 * This is to help out aggr which doesn't really know the internal state that
1701 * MAC does about the rings and can't know that it's not quite ready for use
1702 * yet.
1703 */
1704 void
mac_hwring_set_default(mac_handle_t mh,mac_ring_handle_t rh)1705 mac_hwring_set_default(mac_handle_t mh, mac_ring_handle_t rh)
1706 {
1707 mac_impl_t *mip = (mac_impl_t *)mh;
1708 mac_ring_t *ring = (mac_ring_t *)rh;
1709
1710 ASSERT(MAC_PERIM_HELD(mh));
1711 VERIFY(mip->mi_state_flags & MIS_IS_AGGR);
1712
1713 if (ring->mr_state != MR_INUSE)
1714 return;
1715
1716 mip->mi_default_tx_ring = rh;
1717 }
1718
1719 int
mac_hwgroup_addmac(mac_group_handle_t gh,const uint8_t * addr)1720 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr)
1721 {
1722 mac_group_t *group = (mac_group_t *)gh;
1723
1724 return (mac_group_addmac(group, addr));
1725 }
1726
1727 int
mac_hwgroup_remmac(mac_group_handle_t gh,const uint8_t * addr)1728 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr)
1729 {
1730 mac_group_t *group = (mac_group_t *)gh;
1731
1732 return (mac_group_remmac(group, addr));
1733 }
1734
1735 /*
1736 * Set the RX group to be shared/reserved. Note that the group must be
1737 * started/stopped outside of this function.
1738 */
1739 void
mac_set_group_state(mac_group_t * grp,mac_group_state_t state)1740 mac_set_group_state(mac_group_t *grp, mac_group_state_t state)
1741 {
1742 /*
1743 * If there is no change in the group state, just return.
1744 */
1745 if (grp->mrg_state == state)
1746 return;
1747
1748 switch (state) {
1749 case MAC_GROUP_STATE_RESERVED:
1750 /*
1751 * Successfully reserved the group.
1752 *
1753 * Given that there is an exclusive client controlling this
1754 * group, we enable the group level polling when available,
1755 * so that SRSs get to turn on/off individual rings they's
1756 * assigned to.
1757 */
1758 ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
1759
1760 if (grp->mrg_type == MAC_RING_TYPE_RX &&
1761 GROUP_INTR_DISABLE_FUNC(grp) != NULL) {
1762 GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
1763 }
1764 break;
1765
1766 case MAC_GROUP_STATE_SHARED:
1767 /*
1768 * Set all rings of this group to software classified.
1769 * If the group has an overriding interrupt, then re-enable it.
1770 */
1771 ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
1772
1773 if (grp->mrg_type == MAC_RING_TYPE_RX &&
1774 GROUP_INTR_ENABLE_FUNC(grp) != NULL) {
1775 GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
1776 }
1777 /* The ring is not available for reservations any more */
1778 break;
1779
1780 case MAC_GROUP_STATE_REGISTERED:
1781 /* Also callable from mac_register, perim is not held */
1782 break;
1783
1784 default:
1785 ASSERT(B_FALSE);
1786 break;
1787 }
1788
1789 grp->mrg_state = state;
1790 }
1791
1792 /*
1793 * Quiesce future hardware classified packets for the specified Rx ring
1794 */
1795 static void
mac_rx_ring_quiesce(mac_ring_t * rx_ring,uint_t ring_flag)1796 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag)
1797 {
1798 ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER);
1799 ASSERT(ring_flag == MR_CONDEMNED || ring_flag == MR_QUIESCE);
1800
1801 mutex_enter(&rx_ring->mr_lock);
1802 rx_ring->mr_flag |= ring_flag;
1803 while (rx_ring->mr_refcnt != 0)
1804 cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock);
1805 mutex_exit(&rx_ring->mr_lock);
1806 }
1807
1808 /*
1809 * Please see mac_tx for details about the per cpu locking scheme
1810 */
1811 static void
mac_tx_lock_all(mac_client_impl_t * mcip)1812 mac_tx_lock_all(mac_client_impl_t *mcip)
1813 {
1814 int i;
1815
1816 for (i = 0; i <= mac_tx_percpu_cnt; i++)
1817 mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1818 }
1819
1820 static void
mac_tx_unlock_all(mac_client_impl_t * mcip)1821 mac_tx_unlock_all(mac_client_impl_t *mcip)
1822 {
1823 int i;
1824
1825 for (i = mac_tx_percpu_cnt; i >= 0; i--)
1826 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1827 }
1828
1829 static void
mac_tx_unlock_allbutzero(mac_client_impl_t * mcip)1830 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip)
1831 {
1832 int i;
1833
1834 for (i = mac_tx_percpu_cnt; i > 0; i--)
1835 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1836 }
1837
1838 static int
mac_tx_sum_refcnt(mac_client_impl_t * mcip)1839 mac_tx_sum_refcnt(mac_client_impl_t *mcip)
1840 {
1841 int i;
1842 int refcnt = 0;
1843
1844 for (i = 0; i <= mac_tx_percpu_cnt; i++)
1845 refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt;
1846
1847 return (refcnt);
1848 }
1849
1850 /*
1851 * Stop future Tx packets coming down from the client in preparation for
1852 * quiescing the Tx side. This is needed for dynamic reclaim and reassignment
1853 * of rings between clients
1854 */
1855 void
mac_tx_client_block(mac_client_impl_t * mcip)1856 mac_tx_client_block(mac_client_impl_t *mcip)
1857 {
1858 mac_tx_lock_all(mcip);
1859 mcip->mci_tx_flag |= MCI_TX_QUIESCE;
1860 while (mac_tx_sum_refcnt(mcip) != 0) {
1861 mac_tx_unlock_allbutzero(mcip);
1862 cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock);
1863 mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock);
1864 mac_tx_lock_all(mcip);
1865 }
1866 mac_tx_unlock_all(mcip);
1867 }
1868
1869 void
mac_tx_client_unblock(mac_client_impl_t * mcip)1870 mac_tx_client_unblock(mac_client_impl_t *mcip)
1871 {
1872 mac_tx_lock_all(mcip);
1873 mcip->mci_tx_flag &= ~MCI_TX_QUIESCE;
1874 mac_tx_unlock_all(mcip);
1875 /*
1876 * We may fail to disable flow control for the last MAC_NOTE_TX
1877 * notification because the MAC client is quiesced. Send the
1878 * notification again.
1879 */
1880 i_mac_notify(mcip->mci_mip, MAC_NOTE_TX);
1881 }
1882
1883 /*
1884 * Wait for an SRS to quiesce. The SRS worker will signal us when the
1885 * quiesce is done.
1886 */
1887 static void
mac_srs_quiesce_wait(mac_soft_ring_set_t * srs,uint_t srs_flag)1888 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag)
1889 {
1890 mutex_enter(&srs->srs_lock);
1891 while (!(srs->srs_state & srs_flag))
1892 cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock);
1893 mutex_exit(&srs->srs_lock);
1894 }
1895
1896 /*
1897 * Quiescing an Rx SRS is achieved by the following sequence. The protocol
1898 * works bottom up by cutting off packet flow from the bottommost point in the
1899 * mac, then the SRS, and then the soft rings. There are 2 use cases of this
1900 * mechanism. One is a temporary quiesce of the SRS, such as say while changing
1901 * the Rx callbacks. Another use case is Rx SRS teardown. In the former case
1902 * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used
1903 * for the SRS and MR flags. In the former case the threads pause waiting for
1904 * a restart, while in the latter case the threads exit. The Tx SRS teardown
1905 * is also mostly similar to the above.
1906 *
1907 * 1. Stop future hardware classified packets at the lowest level in the mac.
1908 * Remove any hardware classification rule (CONDEMNED case) and mark the
1909 * rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt
1910 * from increasing. Upcalls from the driver that come through hardware
1911 * classification will be dropped in mac_rx from now on. Then we wait for
1912 * the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are
1913 * sure there aren't any upcall threads from the driver through hardware
1914 * classification. In the case of SRS teardown we also remove the
1915 * classification rule in the driver.
1916 *
1917 * 2. Stop future software classified packets by marking the flow entry with
1918 * FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from
1919 * increasing. We also remove the flow entry from the table in the latter
1920 * case. Then wait for the fe_refcnt to reach an appropriate quiescent value
1921 * that indicates there aren't any active threads using that flow entry.
1922 *
1923 * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread,
1924 * SRS worker thread, and the soft ring threads are quiesced in sequence
1925 * with the SRS worker thread serving as a master controller. This
1926 * mechansim is explained in mac_srs_worker_quiesce().
1927 *
1928 * The restart mechanism to reactivate the SRS and softrings is explained
1929 * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the
1930 * restart sequence.
1931 */
1932 void
mac_rx_srs_quiesce(mac_soft_ring_set_t * srs,uint_t srs_quiesce_flag)1933 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
1934 {
1935 flow_entry_t *flent = srs->srs_flent;
1936 uint_t mr_flag, srs_done_flag;
1937
1938 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
1939 ASSERT(!(srs->srs_type & SRST_TX));
1940
1941 if (srs_quiesce_flag == SRS_CONDEMNED) {
1942 mr_flag = MR_CONDEMNED;
1943 srs_done_flag = SRS_CONDEMNED_DONE;
1944 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
1945 mac_srs_client_poll_disable(srs->srs_mcip, srs);
1946 } else {
1947 ASSERT(srs_quiesce_flag == SRS_QUIESCE);
1948 mr_flag = MR_QUIESCE;
1949 srs_done_flag = SRS_QUIESCE_DONE;
1950 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
1951 mac_srs_client_poll_quiesce(srs->srs_mcip, srs);
1952 }
1953
1954 if (srs->srs_ring != NULL) {
1955 mac_rx_ring_quiesce(srs->srs_ring, mr_flag);
1956 } else {
1957 /*
1958 * SRS is driven by software classification. In case
1959 * of CONDEMNED, the top level teardown functions will
1960 * deal with flow removal.
1961 */
1962 if (srs_quiesce_flag != SRS_CONDEMNED) {
1963 FLOW_MARK(flent, FE_QUIESCE);
1964 mac_flow_wait(flent, FLOW_DRIVER_UPCALL);
1965 }
1966 }
1967
1968 /*
1969 * Signal the SRS to quiesce itself, and then cv_wait for the
1970 * SRS quiesce to complete. The SRS worker thread will wake us
1971 * up when the quiesce is complete
1972 */
1973 mac_srs_signal(srs, srs_quiesce_flag);
1974 mac_srs_quiesce_wait(srs, srs_done_flag);
1975 }
1976
1977 /*
1978 * Remove an SRS.
1979 */
1980 void
mac_rx_srs_remove(mac_soft_ring_set_t * srs)1981 mac_rx_srs_remove(mac_soft_ring_set_t *srs)
1982 {
1983 flow_entry_t *flent = srs->srs_flent;
1984 int i;
1985
1986 mac_rx_srs_quiesce(srs, SRS_CONDEMNED);
1987 /*
1988 * Locate and remove our entry in the fe_rx_srs[] array, and
1989 * adjust the fe_rx_srs array entries and array count by
1990 * moving the last entry into the vacated spot.
1991 */
1992 mutex_enter(&flent->fe_lock);
1993 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
1994 if (flent->fe_rx_srs[i] == srs)
1995 break;
1996 }
1997
1998 ASSERT(i != 0 && i < flent->fe_rx_srs_cnt);
1999 if (i != flent->fe_rx_srs_cnt - 1) {
2000 flent->fe_rx_srs[i] =
2001 flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1];
2002 i = flent->fe_rx_srs_cnt - 1;
2003 }
2004
2005 flent->fe_rx_srs[i] = NULL;
2006 flent->fe_rx_srs_cnt--;
2007 mutex_exit(&flent->fe_lock);
2008
2009 mac_srs_free(srs);
2010 }
2011
2012 static void
mac_srs_clear_flag(mac_soft_ring_set_t * srs,uint_t flag)2013 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag)
2014 {
2015 mutex_enter(&srs->srs_lock);
2016 srs->srs_state &= ~flag;
2017 mutex_exit(&srs->srs_lock);
2018 }
2019
2020 void
mac_rx_srs_restart(mac_soft_ring_set_t * srs)2021 mac_rx_srs_restart(mac_soft_ring_set_t *srs)
2022 {
2023 flow_entry_t *flent = srs->srs_flent;
2024 mac_ring_t *mr;
2025
2026 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
2027 ASSERT((srs->srs_type & SRST_TX) == 0);
2028
2029 /*
2030 * This handles a change in the number of SRSs between the quiesce and
2031 * and restart operation of a flow.
2032 */
2033 if (!SRS_QUIESCED(srs))
2034 return;
2035
2036 /*
2037 * Signal the SRS to restart itself. Wait for the restart to complete
2038 * Note that we only restart the SRS if it is not marked as
2039 * permanently quiesced.
2040 */
2041 if (!SRS_QUIESCED_PERMANENT(srs)) {
2042 mac_srs_signal(srs, SRS_RESTART);
2043 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2044 mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2045
2046 mac_srs_client_poll_restart(srs->srs_mcip, srs);
2047 }
2048
2049 /* Finally clear the flags to let the packets in */
2050 mr = srs->srs_ring;
2051 if (mr != NULL) {
2052 MAC_RING_UNMARK(mr, MR_QUIESCE);
2053 /* In case the ring was stopped, safely restart it */
2054 if (mr->mr_state != MR_INUSE)
2055 (void) mac_start_ring(mr);
2056 } else {
2057 FLOW_UNMARK(flent, FE_QUIESCE);
2058 }
2059 }
2060
2061 /*
2062 * Temporary quiesce of a flow and associated Rx SRS.
2063 * Please see block comment above mac_rx_classify_flow_rem.
2064 */
2065 /* ARGSUSED */
2066 int
mac_rx_classify_flow_quiesce(flow_entry_t * flent,void * arg)2067 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg)
2068 {
2069 int i;
2070
2071 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2072 mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i],
2073 SRS_QUIESCE);
2074 }
2075 return (0);
2076 }
2077
2078 /*
2079 * Restart a flow and associated Rx SRS that has been quiesced temporarily
2080 * Please see block comment above mac_rx_classify_flow_rem
2081 */
2082 /* ARGSUSED */
2083 int
mac_rx_classify_flow_restart(flow_entry_t * flent,void * arg)2084 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg)
2085 {
2086 int i;
2087
2088 for (i = 0; i < flent->fe_rx_srs_cnt; i++)
2089 mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]);
2090
2091 return (0);
2092 }
2093
2094 void
mac_srs_perm_quiesce(mac_client_handle_t mch,boolean_t on)2095 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on)
2096 {
2097 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2098 flow_entry_t *flent = mcip->mci_flent;
2099 mac_impl_t *mip = mcip->mci_mip;
2100 mac_soft_ring_set_t *mac_srs;
2101 int i;
2102
2103 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2104
2105 if (flent == NULL)
2106 return;
2107
2108 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2109 mac_srs = flent->fe_rx_srs[i];
2110 mutex_enter(&mac_srs->srs_lock);
2111 if (on)
2112 mac_srs->srs_state |= SRS_QUIESCE_PERM;
2113 else
2114 mac_srs->srs_state &= ~SRS_QUIESCE_PERM;
2115 mutex_exit(&mac_srs->srs_lock);
2116 }
2117 }
2118
2119 void
mac_rx_client_quiesce(mac_client_handle_t mch)2120 mac_rx_client_quiesce(mac_client_handle_t mch)
2121 {
2122 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2123 mac_impl_t *mip = mcip->mci_mip;
2124
2125 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2126
2127 if (MCIP_DATAPATH_SETUP(mcip)) {
2128 (void) mac_rx_classify_flow_quiesce(mcip->mci_flent,
2129 NULL);
2130 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2131 mac_rx_classify_flow_quiesce, NULL);
2132 }
2133 }
2134
2135 void
mac_rx_client_restart(mac_client_handle_t mch)2136 mac_rx_client_restart(mac_client_handle_t mch)
2137 {
2138 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2139 mac_impl_t *mip = mcip->mci_mip;
2140
2141 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2142
2143 if (MCIP_DATAPATH_SETUP(mcip)) {
2144 (void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL);
2145 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2146 mac_rx_classify_flow_restart, NULL);
2147 }
2148 }
2149
2150 /*
2151 * This function only quiesces the Tx SRS and softring worker threads. Callers
2152 * need to make sure that there aren't any mac client threads doing current or
2153 * future transmits in the mac before calling this function.
2154 */
2155 void
mac_tx_srs_quiesce(mac_soft_ring_set_t * srs,uint_t srs_quiesce_flag)2156 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
2157 {
2158 mac_client_impl_t *mcip = srs->srs_mcip;
2159
2160 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2161
2162 ASSERT(srs->srs_type & SRST_TX);
2163 ASSERT(srs_quiesce_flag == SRS_CONDEMNED ||
2164 srs_quiesce_flag == SRS_QUIESCE);
2165
2166 /*
2167 * Signal the SRS to quiesce itself, and then cv_wait for the
2168 * SRS quiesce to complete. The SRS worker thread will wake us
2169 * up when the quiesce is complete
2170 */
2171 mac_srs_signal(srs, srs_quiesce_flag);
2172 mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ?
2173 SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE);
2174 }
2175
2176 void
mac_tx_srs_restart(mac_soft_ring_set_t * srs)2177 mac_tx_srs_restart(mac_soft_ring_set_t *srs)
2178 {
2179 /*
2180 * Resizing the fanout could result in creation of new SRSs.
2181 * They may not necessarily be in the quiesced state in which
2182 * case it need be restarted
2183 */
2184 if (!SRS_QUIESCED(srs))
2185 return;
2186
2187 mac_srs_signal(srs, SRS_RESTART);
2188 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2189 mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2190 }
2191
2192 /*
2193 * Temporary quiesce of a flow and associated Rx SRS.
2194 * Please see block comment above mac_rx_srs_quiesce
2195 */
2196 /* ARGSUSED */
2197 int
mac_tx_flow_quiesce(flow_entry_t * flent,void * arg)2198 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg)
2199 {
2200 /*
2201 * The fe_tx_srs is null for a subflow on an interface that is
2202 * not plumbed
2203 */
2204 if (flent->fe_tx_srs != NULL)
2205 mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE);
2206 return (0);
2207 }
2208
2209 /* ARGSUSED */
2210 int
mac_tx_flow_restart(flow_entry_t * flent,void * arg)2211 mac_tx_flow_restart(flow_entry_t *flent, void *arg)
2212 {
2213 /*
2214 * The fe_tx_srs is null for a subflow on an interface that is
2215 * not plumbed
2216 */
2217 if (flent->fe_tx_srs != NULL)
2218 mac_tx_srs_restart(flent->fe_tx_srs);
2219 return (0);
2220 }
2221
2222 static void
i_mac_tx_client_quiesce(mac_client_handle_t mch,uint_t srs_quiesce_flag)2223 i_mac_tx_client_quiesce(mac_client_handle_t mch, uint_t srs_quiesce_flag)
2224 {
2225 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2226
2227 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2228
2229 mac_tx_client_block(mcip);
2230 if (MCIP_TX_SRS(mcip) != NULL) {
2231 mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag);
2232 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2233 mac_tx_flow_quiesce, NULL);
2234 }
2235 }
2236
2237 void
mac_tx_client_quiesce(mac_client_handle_t mch)2238 mac_tx_client_quiesce(mac_client_handle_t mch)
2239 {
2240 i_mac_tx_client_quiesce(mch, SRS_QUIESCE);
2241 }
2242
2243 void
mac_tx_client_condemn(mac_client_handle_t mch)2244 mac_tx_client_condemn(mac_client_handle_t mch)
2245 {
2246 i_mac_tx_client_quiesce(mch, SRS_CONDEMNED);
2247 }
2248
2249 void
mac_tx_client_restart(mac_client_handle_t mch)2250 mac_tx_client_restart(mac_client_handle_t mch)
2251 {
2252 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2253
2254 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2255
2256 mac_tx_client_unblock(mcip);
2257 if (MCIP_TX_SRS(mcip) != NULL) {
2258 mac_tx_srs_restart(MCIP_TX_SRS(mcip));
2259 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2260 mac_tx_flow_restart, NULL);
2261 }
2262 }
2263
2264 void
mac_tx_client_flush(mac_client_impl_t * mcip)2265 mac_tx_client_flush(mac_client_impl_t *mcip)
2266 {
2267 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2268
2269 mac_tx_client_quiesce((mac_client_handle_t)mcip);
2270 mac_tx_client_restart((mac_client_handle_t)mcip);
2271 }
2272
2273 void
mac_client_quiesce(mac_client_impl_t * mcip)2274 mac_client_quiesce(mac_client_impl_t *mcip)
2275 {
2276 mac_rx_client_quiesce((mac_client_handle_t)mcip);
2277 mac_tx_client_quiesce((mac_client_handle_t)mcip);
2278 }
2279
2280 void
mac_client_restart(mac_client_impl_t * mcip)2281 mac_client_restart(mac_client_impl_t *mcip)
2282 {
2283 mac_rx_client_restart((mac_client_handle_t)mcip);
2284 mac_tx_client_restart((mac_client_handle_t)mcip);
2285 }
2286
2287 /*
2288 * Allocate a minor number.
2289 */
2290 minor_t
mac_minor_hold(boolean_t sleep)2291 mac_minor_hold(boolean_t sleep)
2292 {
2293 minor_t minor;
2294
2295 /*
2296 * Grab a value from the arena.
2297 */
2298 atomic_inc_32(&minor_count);
2299
2300 if (sleep)
2301 minor = (uint_t)id_alloc(minor_ids);
2302 else
2303 minor = (uint_t)id_alloc_nosleep(minor_ids);
2304
2305 if (minor == 0) {
2306 atomic_dec_32(&minor_count);
2307 return (0);
2308 }
2309
2310 return (minor);
2311 }
2312
2313 /*
2314 * Release a previously allocated minor number.
2315 */
2316 void
mac_minor_rele(minor_t minor)2317 mac_minor_rele(minor_t minor)
2318 {
2319 /*
2320 * Return the value to the arena.
2321 */
2322 id_free(minor_ids, minor);
2323 atomic_dec_32(&minor_count);
2324 }
2325
2326 uint32_t
mac_no_notification(mac_handle_t mh)2327 mac_no_notification(mac_handle_t mh)
2328 {
2329 mac_impl_t *mip = (mac_impl_t *)mh;
2330
2331 return (((mip->mi_state_flags & MIS_LEGACY) != 0) ?
2332 mip->mi_capab_legacy.ml_unsup_note : 0);
2333 }
2334
2335 /*
2336 * Prevent any new opens of this mac in preparation for unregister
2337 */
2338 int
i_mac_disable(mac_impl_t * mip)2339 i_mac_disable(mac_impl_t *mip)
2340 {
2341 mac_client_impl_t *mcip;
2342
2343 rw_enter(&i_mac_impl_lock, RW_WRITER);
2344 if (mip->mi_state_flags & MIS_DISABLED) {
2345 /* Already disabled, return success */
2346 rw_exit(&i_mac_impl_lock);
2347 return (0);
2348 }
2349 /*
2350 * See if there are any other references to this mac_t (e.g., VLAN's).
2351 * If so return failure. If all the other checks below pass, then
2352 * set mi_disabled atomically under the i_mac_impl_lock to prevent
2353 * any new VLAN's from being created or new mac client opens of this
2354 * mac end point.
2355 */
2356 if (mip->mi_ref > 0) {
2357 rw_exit(&i_mac_impl_lock);
2358 return (EBUSY);
2359 }
2360
2361 /*
2362 * mac clients must delete all multicast groups they join before
2363 * closing. bcast groups are reference counted, the last client
2364 * to delete the group will wait till the group is physically
2365 * deleted. Since all clients have closed this mac end point
2366 * mi_bcast_ngrps must be zero at this point
2367 */
2368 ASSERT(mip->mi_bcast_ngrps == 0);
2369
2370 /*
2371 * Don't let go of this if it has some flows.
2372 * All other code guarantees no flows are added to a disabled
2373 * mac, therefore it is sufficient to check for the flow table
2374 * only here.
2375 */
2376 mcip = mac_primary_client_handle(mip);
2377 if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) {
2378 rw_exit(&i_mac_impl_lock);
2379 return (ENOTEMPTY);
2380 }
2381
2382 mip->mi_state_flags |= MIS_DISABLED;
2383 rw_exit(&i_mac_impl_lock);
2384 return (0);
2385 }
2386
2387 int
mac_disable_nowait(mac_handle_t mh)2388 mac_disable_nowait(mac_handle_t mh)
2389 {
2390 mac_impl_t *mip = (mac_impl_t *)mh;
2391 int err;
2392
2393 if ((err = i_mac_perim_enter_nowait(mip)) != 0)
2394 return (err);
2395 err = i_mac_disable(mip);
2396 i_mac_perim_exit(mip);
2397 return (err);
2398 }
2399
2400 int
mac_disable(mac_handle_t mh)2401 mac_disable(mac_handle_t mh)
2402 {
2403 mac_impl_t *mip = (mac_impl_t *)mh;
2404 int err;
2405
2406 i_mac_perim_enter(mip);
2407 err = i_mac_disable(mip);
2408 i_mac_perim_exit(mip);
2409
2410 /*
2411 * Clean up notification thread and wait for it to exit.
2412 */
2413 if (err == 0)
2414 i_mac_notify_exit(mip);
2415
2416 return (err);
2417 }
2418
2419 /*
2420 * Called when the MAC instance has a non empty flow table, to de-multiplex
2421 * incoming packets to the right flow.
2422 * The MAC's rw lock is assumed held as a READER.
2423 */
2424 /* ARGSUSED */
2425 static mblk_t *
mac_rx_classify(mac_impl_t * mip,mac_resource_handle_t mrh,mblk_t * mp)2426 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp)
2427 {
2428 flow_entry_t *flent = NULL;
2429 uint_t flags = FLOW_INBOUND;
2430 int err;
2431
2432 /*
2433 * If the mac is a port of an aggregation, pass FLOW_IGNORE_VLAN
2434 * to mac_flow_lookup() so that the VLAN packets can be successfully
2435 * passed to the non-VLAN aggregation flows.
2436 *
2437 * Note that there is possibly a race between this and
2438 * mac_unicast_remove/add() and VLAN packets could be incorrectly
2439 * classified to non-VLAN flows of non-aggregation mac clients. These
2440 * VLAN packets will be then filtered out by the mac module.
2441 */
2442 if ((mip->mi_state_flags & MIS_EXCLUSIVE) != 0)
2443 flags |= FLOW_IGNORE_VLAN;
2444
2445 err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent);
2446 if (err != 0) {
2447 /* no registered receive function */
2448 return (mp);
2449 } else {
2450 mac_client_impl_t *mcip;
2451
2452 /*
2453 * This flent might just be an additional one on the MAC client,
2454 * i.e. for classification purposes (different fdesc), however
2455 * the resources, SRS et. al., are in the mci_flent, so if
2456 * this isn't the mci_flent, we need to get it.
2457 */
2458 if ((mcip = flent->fe_mcip) != NULL &&
2459 mcip->mci_flent != flent) {
2460 FLOW_REFRELE(flent);
2461 flent = mcip->mci_flent;
2462 FLOW_TRY_REFHOLD(flent, err);
2463 if (err != 0)
2464 return (mp);
2465 }
2466 (flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp,
2467 B_FALSE);
2468 FLOW_REFRELE(flent);
2469 }
2470 return (NULL);
2471 }
2472
2473 mblk_t *
mac_rx_flow(mac_handle_t mh,mac_resource_handle_t mrh,mblk_t * mp_chain)2474 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
2475 {
2476 mac_impl_t *mip = (mac_impl_t *)mh;
2477 mblk_t *bp, *bp1, **bpp, *list = NULL;
2478
2479 /*
2480 * We walk the chain and attempt to classify each packet.
2481 * The packets that couldn't be classified will be returned
2482 * back to the caller.
2483 */
2484 bp = mp_chain;
2485 bpp = &list;
2486 while (bp != NULL) {
2487 bp1 = bp;
2488 bp = bp->b_next;
2489 bp1->b_next = NULL;
2490
2491 if (mac_rx_classify(mip, mrh, bp1) != NULL) {
2492 *bpp = bp1;
2493 bpp = &bp1->b_next;
2494 }
2495 }
2496 return (list);
2497 }
2498
2499 static int
mac_tx_flow_srs_wakeup(flow_entry_t * flent,void * arg)2500 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg)
2501 {
2502 mac_ring_handle_t ring = arg;
2503
2504 if (flent->fe_tx_srs)
2505 mac_tx_srs_wakeup(flent->fe_tx_srs, ring);
2506 return (0);
2507 }
2508
2509 void
i_mac_tx_srs_notify(mac_impl_t * mip,mac_ring_handle_t ring)2510 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring)
2511 {
2512 mac_client_impl_t *cclient;
2513 mac_soft_ring_set_t *mac_srs;
2514
2515 /*
2516 * After grabbing the mi_rw_lock, the list of clients can't change.
2517 * If there are any clients mi_disabled must be B_FALSE and can't
2518 * get set since there are clients. If there aren't any clients we
2519 * don't do anything. In any case the mip has to be valid. The driver
2520 * must make sure that it goes single threaded (with respect to mac
2521 * calls) and wait for all pending mac calls to finish before calling
2522 * mac_unregister.
2523 */
2524 rw_enter(&i_mac_impl_lock, RW_READER);
2525 if (mip->mi_state_flags & MIS_DISABLED) {
2526 rw_exit(&i_mac_impl_lock);
2527 return;
2528 }
2529
2530 /*
2531 * Get MAC tx srs from walking mac_client_handle list.
2532 */
2533 rw_enter(&mip->mi_rw_lock, RW_READER);
2534 for (cclient = mip->mi_clients_list; cclient != NULL;
2535 cclient = cclient->mci_client_next) {
2536 if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) {
2537 mac_tx_srs_wakeup(mac_srs, ring);
2538 } else {
2539 /*
2540 * Aggr opens underlying ports in exclusive mode
2541 * and registers flow control callbacks using
2542 * mac_tx_client_notify(). When opened in
2543 * exclusive mode, Tx SRS won't be created
2544 * during mac_unicast_add().
2545 */
2546 if (cclient->mci_state_flags & MCIS_EXCLUSIVE) {
2547 mac_tx_invoke_callbacks(cclient,
2548 (mac_tx_cookie_t)ring);
2549 }
2550 }
2551 (void) mac_flow_walk(cclient->mci_subflow_tab,
2552 mac_tx_flow_srs_wakeup, ring);
2553 }
2554 rw_exit(&mip->mi_rw_lock);
2555 rw_exit(&i_mac_impl_lock);
2556 }
2557
2558 /* ARGSUSED */
2559 void
mac_multicast_refresh(mac_handle_t mh,mac_multicst_t refresh,void * arg,boolean_t add)2560 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg,
2561 boolean_t add)
2562 {
2563 mac_impl_t *mip = (mac_impl_t *)mh;
2564
2565 i_mac_perim_enter((mac_impl_t *)mh);
2566 /*
2567 * If no specific refresh function was given then default to the
2568 * driver's m_multicst entry point.
2569 */
2570 if (refresh == NULL) {
2571 refresh = mip->mi_multicst;
2572 arg = mip->mi_driver;
2573 }
2574
2575 mac_bcast_refresh(mip, refresh, arg, add);
2576 i_mac_perim_exit((mac_impl_t *)mh);
2577 }
2578
2579 void
mac_promisc_refresh(mac_handle_t mh,mac_setpromisc_t refresh,void * arg)2580 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg)
2581 {
2582 mac_impl_t *mip = (mac_impl_t *)mh;
2583
2584 /*
2585 * If no specific refresh function was given then default to the
2586 * driver's m_promisc entry point.
2587 */
2588 if (refresh == NULL) {
2589 refresh = mip->mi_setpromisc;
2590 arg = mip->mi_driver;
2591 }
2592 ASSERT(refresh != NULL);
2593
2594 /*
2595 * Call the refresh function with the current promiscuity.
2596 */
2597 refresh(arg, (mip->mi_devpromisc != 0));
2598 }
2599
2600 /*
2601 * The mac client requests that the mac not to change its margin size to
2602 * be less than the specified value. If "current" is B_TRUE, then the client
2603 * requests the mac not to change its margin size to be smaller than the
2604 * current size. Further, return the current margin size value in this case.
2605 *
2606 * We keep every requested size in an ordered list from largest to smallest.
2607 */
2608 int
mac_margin_add(mac_handle_t mh,uint32_t * marginp,boolean_t current)2609 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current)
2610 {
2611 mac_impl_t *mip = (mac_impl_t *)mh;
2612 mac_margin_req_t **pp, *p;
2613 int err = 0;
2614
2615 rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2616 if (current)
2617 *marginp = mip->mi_margin;
2618
2619 /*
2620 * If the current margin value cannot satisfy the margin requested,
2621 * return ENOTSUP directly.
2622 */
2623 if (*marginp > mip->mi_margin) {
2624 err = ENOTSUP;
2625 goto done;
2626 }
2627
2628 /*
2629 * Check whether the given margin is already in the list. If so,
2630 * bump the reference count.
2631 */
2632 for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) {
2633 if (p->mmr_margin == *marginp) {
2634 /*
2635 * The margin requested is already in the list,
2636 * so just bump the reference count.
2637 */
2638 p->mmr_ref++;
2639 goto done;
2640 }
2641 if (p->mmr_margin < *marginp)
2642 break;
2643 }
2644
2645
2646 p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP);
2647 p->mmr_margin = *marginp;
2648 p->mmr_ref++;
2649 p->mmr_nextp = *pp;
2650 *pp = p;
2651
2652 done:
2653 rw_exit(&(mip->mi_rw_lock));
2654 return (err);
2655 }
2656
2657 /*
2658 * The mac client requests to cancel its previous mac_margin_add() request.
2659 * We remove the requested margin size from the list.
2660 */
2661 int
mac_margin_remove(mac_handle_t mh,uint32_t margin)2662 mac_margin_remove(mac_handle_t mh, uint32_t margin)
2663 {
2664 mac_impl_t *mip = (mac_impl_t *)mh;
2665 mac_margin_req_t **pp, *p;
2666 int err = 0;
2667
2668 rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2669 /*
2670 * Find the entry in the list for the given margin.
2671 */
2672 for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) {
2673 if (p->mmr_margin == margin) {
2674 if (--p->mmr_ref == 0)
2675 break;
2676
2677 /*
2678 * There is still a reference to this address so
2679 * there's nothing more to do.
2680 */
2681 goto done;
2682 }
2683 }
2684
2685 /*
2686 * We did not find an entry for the given margin.
2687 */
2688 if (p == NULL) {
2689 err = ENOENT;
2690 goto done;
2691 }
2692
2693 ASSERT(p->mmr_ref == 0);
2694
2695 /*
2696 * Remove it from the list.
2697 */
2698 *pp = p->mmr_nextp;
2699 kmem_free(p, sizeof (mac_margin_req_t));
2700 done:
2701 rw_exit(&(mip->mi_rw_lock));
2702 return (err);
2703 }
2704
2705 boolean_t
mac_margin_update(mac_handle_t mh,uint32_t margin)2706 mac_margin_update(mac_handle_t mh, uint32_t margin)
2707 {
2708 mac_impl_t *mip = (mac_impl_t *)mh;
2709 uint32_t margin_needed = 0;
2710
2711 rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2712
2713 if (mip->mi_mmrp != NULL)
2714 margin_needed = mip->mi_mmrp->mmr_margin;
2715
2716 if (margin_needed <= margin)
2717 mip->mi_margin = margin;
2718
2719 rw_exit(&(mip->mi_rw_lock));
2720
2721 if (margin_needed <= margin)
2722 i_mac_notify(mip, MAC_NOTE_MARGIN);
2723
2724 return (margin_needed <= margin);
2725 }
2726
2727 /*
2728 * MAC clients use this interface to request that a MAC device not change its
2729 * MTU below the specified amount. At this time, that amount must be within the
2730 * range of the device's current minimum and the device's current maximum. eg. a
2731 * client cannot request a 3000 byte MTU when the device's MTU is currently
2732 * 2000.
2733 *
2734 * If "current" is set to B_TRUE, then the request is to simply to reserve the
2735 * current underlying mac's maximum for this mac client and return it in mtup.
2736 */
2737 int
mac_mtu_add(mac_handle_t mh,uint32_t * mtup,boolean_t current)2738 mac_mtu_add(mac_handle_t mh, uint32_t *mtup, boolean_t current)
2739 {
2740 mac_impl_t *mip = (mac_impl_t *)mh;
2741 mac_mtu_req_t *prev, *cur;
2742 mac_propval_range_t mpr;
2743 int err;
2744
2745 i_mac_perim_enter(mip);
2746 rw_enter(&mip->mi_rw_lock, RW_WRITER);
2747
2748 if (current == B_TRUE)
2749 *mtup = mip->mi_sdu_max;
2750 mpr.mpr_count = 1;
2751 err = mac_prop_info(mh, MAC_PROP_MTU, "mtu", NULL, 0, &mpr, NULL);
2752 if (err != 0) {
2753 rw_exit(&mip->mi_rw_lock);
2754 i_mac_perim_exit(mip);
2755 return (err);
2756 }
2757
2758 if (*mtup > mip->mi_sdu_max ||
2759 *mtup < mpr.mpr_range_uint32[0].mpur_min) {
2760 rw_exit(&mip->mi_rw_lock);
2761 i_mac_perim_exit(mip);
2762 return (ENOTSUP);
2763 }
2764
2765 prev = NULL;
2766 for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) {
2767 if (*mtup == cur->mtr_mtu) {
2768 cur->mtr_ref++;
2769 rw_exit(&mip->mi_rw_lock);
2770 i_mac_perim_exit(mip);
2771 return (0);
2772 }
2773
2774 if (*mtup > cur->mtr_mtu)
2775 break;
2776
2777 prev = cur;
2778 }
2779
2780 cur = kmem_alloc(sizeof (mac_mtu_req_t), KM_SLEEP);
2781 cur->mtr_mtu = *mtup;
2782 cur->mtr_ref = 1;
2783 if (prev != NULL) {
2784 cur->mtr_nextp = prev->mtr_nextp;
2785 prev->mtr_nextp = cur;
2786 } else {
2787 cur->mtr_nextp = mip->mi_mtrp;
2788 mip->mi_mtrp = cur;
2789 }
2790
2791 rw_exit(&mip->mi_rw_lock);
2792 i_mac_perim_exit(mip);
2793 return (0);
2794 }
2795
2796 int
mac_mtu_remove(mac_handle_t mh,uint32_t mtu)2797 mac_mtu_remove(mac_handle_t mh, uint32_t mtu)
2798 {
2799 mac_impl_t *mip = (mac_impl_t *)mh;
2800 mac_mtu_req_t *cur, *prev;
2801
2802 i_mac_perim_enter(mip);
2803 rw_enter(&mip->mi_rw_lock, RW_WRITER);
2804
2805 prev = NULL;
2806 for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) {
2807 if (cur->mtr_mtu == mtu) {
2808 ASSERT(cur->mtr_ref > 0);
2809 cur->mtr_ref--;
2810 if (cur->mtr_ref == 0) {
2811 if (prev == NULL) {
2812 mip->mi_mtrp = cur->mtr_nextp;
2813 } else {
2814 prev->mtr_nextp = cur->mtr_nextp;
2815 }
2816 kmem_free(cur, sizeof (mac_mtu_req_t));
2817 }
2818 rw_exit(&mip->mi_rw_lock);
2819 i_mac_perim_exit(mip);
2820 return (0);
2821 }
2822
2823 prev = cur;
2824 }
2825
2826 rw_exit(&mip->mi_rw_lock);
2827 i_mac_perim_exit(mip);
2828 return (ENOENT);
2829 }
2830
2831 /*
2832 * MAC Type Plugin functions.
2833 */
2834
2835 mactype_t *
mactype_getplugin(const char * pname)2836 mactype_getplugin(const char *pname)
2837 {
2838 mactype_t *mtype = NULL;
2839 boolean_t tried_modload = B_FALSE;
2840
2841 mutex_enter(&i_mactype_lock);
2842
2843 find_registered_mactype:
2844 if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname,
2845 (mod_hash_val_t *)&mtype) != 0) {
2846 if (!tried_modload) {
2847 /*
2848 * If the plugin has not yet been loaded, then
2849 * attempt to load it now. If modload() succeeds,
2850 * the plugin should have registered using
2851 * mactype_register(), in which case we can go back
2852 * and attempt to find it again.
2853 */
2854 if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) {
2855 tried_modload = B_TRUE;
2856 goto find_registered_mactype;
2857 }
2858 }
2859 } else {
2860 /*
2861 * Note that there's no danger that the plugin we've loaded
2862 * could be unloaded between the modload() step and the
2863 * reference count bump here, as we're holding
2864 * i_mactype_lock, which mactype_unregister() also holds.
2865 */
2866 atomic_inc_32(&mtype->mt_ref);
2867 }
2868
2869 mutex_exit(&i_mactype_lock);
2870 return (mtype);
2871 }
2872
2873 mactype_register_t *
mactype_alloc(uint_t mactype_version)2874 mactype_alloc(uint_t mactype_version)
2875 {
2876 mactype_register_t *mtrp;
2877
2878 /*
2879 * Make sure there isn't a version mismatch between the plugin and
2880 * the framework. In the future, if multiple versions are
2881 * supported, this check could become more sophisticated.
2882 */
2883 if (mactype_version != MACTYPE_VERSION)
2884 return (NULL);
2885
2886 mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP);
2887 mtrp->mtr_version = mactype_version;
2888 return (mtrp);
2889 }
2890
2891 void
mactype_free(mactype_register_t * mtrp)2892 mactype_free(mactype_register_t *mtrp)
2893 {
2894 kmem_free(mtrp, sizeof (mactype_register_t));
2895 }
2896
2897 int
mactype_register(mactype_register_t * mtrp)2898 mactype_register(mactype_register_t *mtrp)
2899 {
2900 mactype_t *mtp;
2901 mactype_ops_t *ops = mtrp->mtr_ops;
2902
2903 /* Do some sanity checking before we register this MAC type. */
2904 if (mtrp->mtr_ident == NULL || ops == NULL)
2905 return (EINVAL);
2906
2907 /*
2908 * Verify that all mandatory callbacks are set in the ops
2909 * vector.
2910 */
2911 if (ops->mtops_unicst_verify == NULL ||
2912 ops->mtops_multicst_verify == NULL ||
2913 ops->mtops_sap_verify == NULL ||
2914 ops->mtops_header == NULL ||
2915 ops->mtops_header_info == NULL) {
2916 return (EINVAL);
2917 }
2918
2919 mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP);
2920 mtp->mt_ident = mtrp->mtr_ident;
2921 mtp->mt_ops = *ops;
2922 mtp->mt_type = mtrp->mtr_mactype;
2923 mtp->mt_nativetype = mtrp->mtr_nativetype;
2924 mtp->mt_addr_length = mtrp->mtr_addrlen;
2925 if (mtrp->mtr_brdcst_addr != NULL) {
2926 mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP);
2927 bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr,
2928 mtrp->mtr_addrlen);
2929 }
2930
2931 mtp->mt_stats = mtrp->mtr_stats;
2932 mtp->mt_statcount = mtrp->mtr_statcount;
2933
2934 mtp->mt_mapping = mtrp->mtr_mapping;
2935 mtp->mt_mappingcount = mtrp->mtr_mappingcount;
2936
2937 if (mod_hash_insert(i_mactype_hash,
2938 (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) {
2939 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
2940 kmem_free(mtp, sizeof (*mtp));
2941 return (EEXIST);
2942 }
2943 return (0);
2944 }
2945
2946 int
mactype_unregister(const char * ident)2947 mactype_unregister(const char *ident)
2948 {
2949 mactype_t *mtp;
2950 mod_hash_val_t val;
2951 int err;
2952
2953 /*
2954 * Let's not allow MAC drivers to use this plugin while we're
2955 * trying to unregister it. Holding i_mactype_lock also prevents a
2956 * plugin from unregistering while a MAC driver is attempting to
2957 * hold a reference to it in i_mactype_getplugin().
2958 */
2959 mutex_enter(&i_mactype_lock);
2960
2961 if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident,
2962 (mod_hash_val_t *)&mtp)) != 0) {
2963 /* A plugin is trying to unregister, but it never registered. */
2964 err = ENXIO;
2965 goto done;
2966 }
2967
2968 if (mtp->mt_ref != 0) {
2969 err = EBUSY;
2970 goto done;
2971 }
2972
2973 err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val);
2974 ASSERT(err == 0);
2975 if (err != 0) {
2976 /* This should never happen, thus the ASSERT() above. */
2977 err = EINVAL;
2978 goto done;
2979 }
2980 ASSERT(mtp == (mactype_t *)val);
2981
2982 if (mtp->mt_brdcst_addr != NULL)
2983 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
2984 kmem_free(mtp, sizeof (mactype_t));
2985 done:
2986 mutex_exit(&i_mactype_lock);
2987 return (err);
2988 }
2989
2990 /*
2991 * Checks the size of the value size specified for a property as
2992 * part of a property operation. Returns B_TRUE if the size is
2993 * correct, B_FALSE otherwise.
2994 */
2995 boolean_t
mac_prop_check_size(mac_prop_id_t id,uint_t valsize,boolean_t is_range)2996 mac_prop_check_size(mac_prop_id_t id, uint_t valsize, boolean_t is_range)
2997 {
2998 uint_t minsize = 0;
2999
3000 if (is_range)
3001 return (valsize >= sizeof (mac_propval_range_t));
3002
3003 switch (id) {
3004 case MAC_PROP_ZONE:
3005 minsize = sizeof (dld_ioc_zid_t);
3006 break;
3007 case MAC_PROP_AUTOPUSH:
3008 if (valsize != 0)
3009 minsize = sizeof (struct dlautopush);
3010 break;
3011 case MAC_PROP_TAGMODE:
3012 minsize = sizeof (link_tagmode_t);
3013 break;
3014 case MAC_PROP_RESOURCE:
3015 case MAC_PROP_RESOURCE_EFF:
3016 minsize = sizeof (mac_resource_props_t);
3017 break;
3018 case MAC_PROP_DUPLEX:
3019 minsize = sizeof (link_duplex_t);
3020 break;
3021 case MAC_PROP_SPEED:
3022 minsize = sizeof (uint64_t);
3023 break;
3024 case MAC_PROP_STATUS:
3025 minsize = sizeof (link_state_t);
3026 break;
3027 case MAC_PROP_AUTONEG:
3028 case MAC_PROP_EN_AUTONEG:
3029 minsize = sizeof (uint8_t);
3030 break;
3031 case MAC_PROP_MTU:
3032 case MAC_PROP_LLIMIT:
3033 case MAC_PROP_LDECAY:
3034 minsize = sizeof (uint32_t);
3035 break;
3036 case MAC_PROP_FLOWCTRL:
3037 minsize = sizeof (link_flowctrl_t);
3038 break;
3039 case MAC_PROP_ADV_5000FDX_CAP:
3040 case MAC_PROP_EN_5000FDX_CAP:
3041 case MAC_PROP_ADV_2500FDX_CAP:
3042 case MAC_PROP_EN_2500FDX_CAP:
3043 case MAC_PROP_ADV_100GFDX_CAP:
3044 case MAC_PROP_EN_100GFDX_CAP:
3045 case MAC_PROP_ADV_50GFDX_CAP:
3046 case MAC_PROP_EN_50GFDX_CAP:
3047 case MAC_PROP_ADV_40GFDX_CAP:
3048 case MAC_PROP_EN_40GFDX_CAP:
3049 case MAC_PROP_ADV_25GFDX_CAP:
3050 case MAC_PROP_EN_25GFDX_CAP:
3051 case MAC_PROP_ADV_10GFDX_CAP:
3052 case MAC_PROP_EN_10GFDX_CAP:
3053 case MAC_PROP_ADV_1000HDX_CAP:
3054 case MAC_PROP_EN_1000HDX_CAP:
3055 case MAC_PROP_ADV_100FDX_CAP:
3056 case MAC_PROP_EN_100FDX_CAP:
3057 case MAC_PROP_ADV_100HDX_CAP:
3058 case MAC_PROP_EN_100HDX_CAP:
3059 case MAC_PROP_ADV_10FDX_CAP:
3060 case MAC_PROP_EN_10FDX_CAP:
3061 case MAC_PROP_ADV_10HDX_CAP:
3062 case MAC_PROP_EN_10HDX_CAP:
3063 case MAC_PROP_ADV_100T4_CAP:
3064 case MAC_PROP_EN_100T4_CAP:
3065 minsize = sizeof (uint8_t);
3066 break;
3067 case MAC_PROP_PVID:
3068 minsize = sizeof (uint16_t);
3069 break;
3070 case MAC_PROP_IPTUN_HOPLIMIT:
3071 minsize = sizeof (uint32_t);
3072 break;
3073 case MAC_PROP_IPTUN_ENCAPLIMIT:
3074 minsize = sizeof (uint32_t);
3075 break;
3076 case MAC_PROP_MAX_TX_RINGS_AVAIL:
3077 case MAC_PROP_MAX_RX_RINGS_AVAIL:
3078 case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3079 case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3080 minsize = sizeof (uint_t);
3081 break;
3082 case MAC_PROP_WL_ESSID:
3083 minsize = sizeof (wl_linkstatus_t);
3084 break;
3085 case MAC_PROP_WL_BSSID:
3086 minsize = sizeof (wl_bssid_t);
3087 break;
3088 case MAC_PROP_WL_BSSTYPE:
3089 minsize = sizeof (wl_bss_type_t);
3090 break;
3091 case MAC_PROP_WL_LINKSTATUS:
3092 minsize = sizeof (wl_linkstatus_t);
3093 break;
3094 case MAC_PROP_WL_DESIRED_RATES:
3095 minsize = sizeof (wl_rates_t);
3096 break;
3097 case MAC_PROP_WL_SUPPORTED_RATES:
3098 minsize = sizeof (wl_rates_t);
3099 break;
3100 case MAC_PROP_WL_AUTH_MODE:
3101 minsize = sizeof (wl_authmode_t);
3102 break;
3103 case MAC_PROP_WL_ENCRYPTION:
3104 minsize = sizeof (wl_encryption_t);
3105 break;
3106 case MAC_PROP_WL_RSSI:
3107 minsize = sizeof (wl_rssi_t);
3108 break;
3109 case MAC_PROP_WL_PHY_CONFIG:
3110 minsize = sizeof (wl_phy_conf_t);
3111 break;
3112 case MAC_PROP_WL_CAPABILITY:
3113 minsize = sizeof (wl_capability_t);
3114 break;
3115 case MAC_PROP_WL_WPA:
3116 minsize = sizeof (wl_wpa_t);
3117 break;
3118 case MAC_PROP_WL_SCANRESULTS:
3119 minsize = sizeof (wl_wpa_ess_t);
3120 break;
3121 case MAC_PROP_WL_POWER_MODE:
3122 minsize = sizeof (wl_ps_mode_t);
3123 break;
3124 case MAC_PROP_WL_RADIO:
3125 minsize = sizeof (wl_radio_t);
3126 break;
3127 case MAC_PROP_WL_ESS_LIST:
3128 minsize = sizeof (wl_ess_list_t);
3129 break;
3130 case MAC_PROP_WL_KEY_TAB:
3131 minsize = sizeof (wl_wep_key_tab_t);
3132 break;
3133 case MAC_PROP_WL_CREATE_IBSS:
3134 minsize = sizeof (wl_create_ibss_t);
3135 break;
3136 case MAC_PROP_WL_SETOPTIE:
3137 minsize = sizeof (wl_wpa_ie_t);
3138 break;
3139 case MAC_PROP_WL_DELKEY:
3140 minsize = sizeof (wl_del_key_t);
3141 break;
3142 case MAC_PROP_WL_KEY:
3143 minsize = sizeof (wl_key_t);
3144 break;
3145 case MAC_PROP_WL_MLME:
3146 minsize = sizeof (wl_mlme_t);
3147 break;
3148 case MAC_PROP_VN_PROMISC_FILTERED:
3149 minsize = sizeof (boolean_t);
3150 break;
3151 }
3152
3153 return (valsize >= minsize);
3154 }
3155
3156 /*
3157 * mac_set_prop() sets MAC or hardware driver properties:
3158 *
3159 * - MAC-managed properties such as resource properties include maxbw,
3160 * priority, and cpu binding list, as well as the default port VID
3161 * used by bridging. These properties are consumed by the MAC layer
3162 * itself and not passed down to the driver. For resource control
3163 * properties, this function invokes mac_set_resources() which will
3164 * cache the property value in mac_impl_t and may call
3165 * mac_client_set_resource() to update property value of the primary
3166 * mac client, if it exists.
3167 *
3168 * - Properties which act on the hardware and must be passed to the
3169 * driver, such as MTU, through the driver's mc_setprop() entry point.
3170 */
3171 int
mac_set_prop(mac_handle_t mh,mac_prop_id_t id,char * name,void * val,uint_t valsize)3172 mac_set_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val,
3173 uint_t valsize)
3174 {
3175 int err = ENOTSUP;
3176 mac_impl_t *mip = (mac_impl_t *)mh;
3177
3178 ASSERT(MAC_PERIM_HELD(mh));
3179
3180 switch (id) {
3181 case MAC_PROP_RESOURCE: {
3182 mac_resource_props_t *mrp;
3183
3184 /* call mac_set_resources() for MAC properties */
3185 ASSERT(valsize >= sizeof (mac_resource_props_t));
3186 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3187 bcopy(val, mrp, sizeof (*mrp));
3188 err = mac_set_resources(mh, mrp);
3189 kmem_free(mrp, sizeof (*mrp));
3190 break;
3191 }
3192
3193 case MAC_PROP_PVID:
3194 ASSERT(valsize >= sizeof (uint16_t));
3195 if (mip->mi_state_flags & MIS_IS_VNIC)
3196 return (EINVAL);
3197 err = mac_set_pvid(mh, *(uint16_t *)val);
3198 break;
3199
3200 case MAC_PROP_MTU: {
3201 uint32_t mtu;
3202
3203 ASSERT(valsize >= sizeof (uint32_t));
3204 bcopy(val, &mtu, sizeof (mtu));
3205 err = mac_set_mtu(mh, mtu, NULL);
3206 break;
3207 }
3208
3209 case MAC_PROP_LLIMIT:
3210 case MAC_PROP_LDECAY: {
3211 uint32_t learnval;
3212
3213 if (valsize < sizeof (learnval) ||
3214 (mip->mi_state_flags & MIS_IS_VNIC))
3215 return (EINVAL);
3216 bcopy(val, &learnval, sizeof (learnval));
3217 if (learnval == 0 && id == MAC_PROP_LDECAY)
3218 return (EINVAL);
3219 if (id == MAC_PROP_LLIMIT)
3220 mip->mi_llimit = learnval;
3221 else
3222 mip->mi_ldecay = learnval;
3223 err = 0;
3224 break;
3225 }
3226
3227 default:
3228 /* For other driver properties, call driver's callback */
3229 if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) {
3230 err = mip->mi_callbacks->mc_setprop(mip->mi_driver,
3231 name, id, valsize, val);
3232 }
3233 }
3234 return (err);
3235 }
3236
3237 /*
3238 * mac_get_prop() gets MAC or device driver properties.
3239 *
3240 * If the property is a driver property, mac_get_prop() calls driver's callback
3241 * entry point to get it.
3242 * If the property is a MAC property, mac_get_prop() invokes mac_get_resources()
3243 * which returns the cached value in mac_impl_t.
3244 */
3245 int
mac_get_prop(mac_handle_t mh,mac_prop_id_t id,char * name,void * val,uint_t valsize)3246 mac_get_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val,
3247 uint_t valsize)
3248 {
3249 int err = ENOTSUP;
3250 mac_impl_t *mip = (mac_impl_t *)mh;
3251 uint_t rings;
3252 uint_t vlinks;
3253
3254 bzero(val, valsize);
3255
3256 switch (id) {
3257 case MAC_PROP_RESOURCE: {
3258 mac_resource_props_t *mrp;
3259
3260 /* If mac property, read from cache */
3261 ASSERT(valsize >= sizeof (mac_resource_props_t));
3262 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3263 mac_get_resources(mh, mrp);
3264 bcopy(mrp, val, sizeof (*mrp));
3265 kmem_free(mrp, sizeof (*mrp));
3266 return (0);
3267 }
3268 case MAC_PROP_RESOURCE_EFF: {
3269 mac_resource_props_t *mrp;
3270
3271 /* If mac effective property, read from client */
3272 ASSERT(valsize >= sizeof (mac_resource_props_t));
3273 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3274 mac_get_effective_resources(mh, mrp);
3275 bcopy(mrp, val, sizeof (*mrp));
3276 kmem_free(mrp, sizeof (*mrp));
3277 return (0);
3278 }
3279
3280 case MAC_PROP_PVID:
3281 ASSERT(valsize >= sizeof (uint16_t));
3282 if (mip->mi_state_flags & MIS_IS_VNIC)
3283 return (EINVAL);
3284 *(uint16_t *)val = mac_get_pvid(mh);
3285 return (0);
3286
3287 case MAC_PROP_LLIMIT:
3288 case MAC_PROP_LDECAY:
3289 ASSERT(valsize >= sizeof (uint32_t));
3290 if (mip->mi_state_flags & MIS_IS_VNIC)
3291 return (EINVAL);
3292 if (id == MAC_PROP_LLIMIT)
3293 bcopy(&mip->mi_llimit, val, sizeof (mip->mi_llimit));
3294 else
3295 bcopy(&mip->mi_ldecay, val, sizeof (mip->mi_ldecay));
3296 return (0);
3297
3298 case MAC_PROP_MTU: {
3299 uint32_t sdu;
3300
3301 ASSERT(valsize >= sizeof (uint32_t));
3302 mac_sdu_get2(mh, NULL, &sdu, NULL);
3303 bcopy(&sdu, val, sizeof (sdu));
3304
3305 return (0);
3306 }
3307 case MAC_PROP_STATUS: {
3308 link_state_t link_state;
3309
3310 if (valsize < sizeof (link_state))
3311 return (EINVAL);
3312 link_state = mac_link_get(mh);
3313 bcopy(&link_state, val, sizeof (link_state));
3314
3315 return (0);
3316 }
3317
3318 case MAC_PROP_MAX_RX_RINGS_AVAIL:
3319 case MAC_PROP_MAX_TX_RINGS_AVAIL:
3320 ASSERT(valsize >= sizeof (uint_t));
3321 rings = id == MAC_PROP_MAX_RX_RINGS_AVAIL ?
3322 mac_rxavail_get(mh) : mac_txavail_get(mh);
3323 bcopy(&rings, val, sizeof (uint_t));
3324 return (0);
3325
3326 case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3327 case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3328 ASSERT(valsize >= sizeof (uint_t));
3329 vlinks = id == MAC_PROP_MAX_RXHWCLNT_AVAIL ?
3330 mac_rxhwlnksavail_get(mh) : mac_txhwlnksavail_get(mh);
3331 bcopy(&vlinks, val, sizeof (uint_t));
3332 return (0);
3333
3334 case MAC_PROP_RXRINGSRANGE:
3335 case MAC_PROP_TXRINGSRANGE:
3336 /*
3337 * The value for these properties are returned through
3338 * the MAC_PROP_RESOURCE property.
3339 */
3340 return (0);
3341
3342 default:
3343 break;
3344
3345 }
3346
3347 /* If driver property, request from driver */
3348 if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) {
3349 err = mip->mi_callbacks->mc_getprop(mip->mi_driver, name, id,
3350 valsize, val);
3351 }
3352
3353 return (err);
3354 }
3355
3356 /*
3357 * Helper function to initialize the range structure for use in
3358 * mac_get_prop. If the type can be other than uint32, we can
3359 * pass that as an arg.
3360 */
3361 static void
_mac_set_range(mac_propval_range_t * range,uint32_t min,uint32_t max)3362 _mac_set_range(mac_propval_range_t *range, uint32_t min, uint32_t max)
3363 {
3364 range->mpr_count = 1;
3365 range->mpr_type = MAC_PROPVAL_UINT32;
3366 range->mpr_range_uint32[0].mpur_min = min;
3367 range->mpr_range_uint32[0].mpur_max = max;
3368 }
3369
3370 /*
3371 * Returns information about the specified property, such as default
3372 * values or permissions.
3373 */
3374 int
mac_prop_info(mac_handle_t mh,mac_prop_id_t id,char * name,void * default_val,uint_t default_size,mac_propval_range_t * range,uint_t * perm)3375 mac_prop_info(mac_handle_t mh, mac_prop_id_t id, char *name,
3376 void *default_val, uint_t default_size, mac_propval_range_t *range,
3377 uint_t *perm)
3378 {
3379 mac_prop_info_state_t state;
3380 mac_impl_t *mip = (mac_impl_t *)mh;
3381 uint_t max;
3382
3383 /*
3384 * A property is read/write by default unless the driver says
3385 * otherwise.
3386 */
3387 if (perm != NULL)
3388 *perm = MAC_PROP_PERM_RW;
3389
3390 if (default_val != NULL)
3391 bzero(default_val, default_size);
3392
3393 /*
3394 * First, handle framework properties for which we don't need to
3395 * involve the driver.
3396 */
3397 switch (id) {
3398 case MAC_PROP_RESOURCE:
3399 case MAC_PROP_PVID:
3400 case MAC_PROP_LLIMIT:
3401 case MAC_PROP_LDECAY:
3402 return (0);
3403
3404 case MAC_PROP_MAX_RX_RINGS_AVAIL:
3405 case MAC_PROP_MAX_TX_RINGS_AVAIL:
3406 case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3407 case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3408 if (perm != NULL)
3409 *perm = MAC_PROP_PERM_READ;
3410 return (0);
3411
3412 case MAC_PROP_RXRINGSRANGE:
3413 case MAC_PROP_TXRINGSRANGE:
3414 /*
3415 * Currently, we support range for RX and TX rings properties.
3416 * When we extend this support to maxbw, cpus and priority,
3417 * we should move this to mac_get_resources.
3418 * There is no default value for RX or TX rings.
3419 */
3420 if ((mip->mi_state_flags & MIS_IS_VNIC) &&
3421 mac_is_vnic_primary(mh)) {
3422 /*
3423 * We don't support setting rings for a VLAN
3424 * data link because it shares its ring with the
3425 * primary MAC client.
3426 */
3427 if (perm != NULL)
3428 *perm = MAC_PROP_PERM_READ;
3429 if (range != NULL)
3430 range->mpr_count = 0;
3431 } else if (range != NULL) {
3432 if (mip->mi_state_flags & MIS_IS_VNIC)
3433 mh = mac_get_lower_mac_handle(mh);
3434 mip = (mac_impl_t *)mh;
3435 if ((id == MAC_PROP_RXRINGSRANGE &&
3436 mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) ||
3437 (id == MAC_PROP_TXRINGSRANGE &&
3438 mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC)) {
3439 if (id == MAC_PROP_RXRINGSRANGE) {
3440 if ((mac_rxhwlnksavail_get(mh) +
3441 mac_rxhwlnksrsvd_get(mh)) <= 1) {
3442 /*
3443 * doesn't support groups or
3444 * rings
3445 */
3446 range->mpr_count = 0;
3447 } else {
3448 /*
3449 * supports specifying groups,
3450 * but not rings
3451 */
3452 _mac_set_range(range, 0, 0);
3453 }
3454 } else {
3455 if ((mac_txhwlnksavail_get(mh) +
3456 mac_txhwlnksrsvd_get(mh)) <= 1) {
3457 /*
3458 * doesn't support groups or
3459 * rings
3460 */
3461 range->mpr_count = 0;
3462 } else {
3463 /*
3464 * supports specifying groups,
3465 * but not rings
3466 */
3467 _mac_set_range(range, 0, 0);
3468 }
3469 }
3470 } else {
3471 max = id == MAC_PROP_RXRINGSRANGE ?
3472 mac_rxavail_get(mh) + mac_rxrsvd_get(mh) :
3473 mac_txavail_get(mh) + mac_txrsvd_get(mh);
3474 if (max <= 1) {
3475 /*
3476 * doesn't support groups or
3477 * rings
3478 */
3479 range->mpr_count = 0;
3480 } else {
3481 /*
3482 * -1 because we have to leave out the
3483 * default ring.
3484 */
3485 _mac_set_range(range, 1, max - 1);
3486 }
3487 }
3488 }
3489 return (0);
3490
3491 case MAC_PROP_STATUS:
3492 if (perm != NULL)
3493 *perm = MAC_PROP_PERM_READ;
3494 return (0);
3495 }
3496
3497 /*
3498 * Get the property info from the driver if it implements the
3499 * property info entry point.
3500 */
3501 bzero(&state, sizeof (state));
3502
3503 if (mip->mi_callbacks->mc_callbacks & MC_PROPINFO) {
3504 state.pr_default = default_val;
3505 state.pr_default_size = default_size;
3506
3507 /*
3508 * The caller specifies the maximum number of ranges
3509 * it can accomodate using mpr_count. We don't touch
3510 * this value until the driver returns from its
3511 * mc_propinfo() callback, and ensure we don't exceed
3512 * this number of range as the driver defines
3513 * supported range from its mc_propinfo().
3514 *
3515 * pr_range_cur_count keeps track of how many ranges
3516 * were defined by the driver from its mc_propinfo()
3517 * entry point.
3518 *
3519 * On exit, the user-specified range mpr_count returns
3520 * the number of ranges specified by the driver on
3521 * success, or the number of ranges it wanted to
3522 * define if that number of ranges could not be
3523 * accomodated by the specified range structure. In
3524 * the latter case, the caller will be able to
3525 * allocate a larger range structure, and query the
3526 * property again.
3527 */
3528 state.pr_range_cur_count = 0;
3529 state.pr_range = range;
3530
3531 mip->mi_callbacks->mc_propinfo(mip->mi_driver, name, id,
3532 (mac_prop_info_handle_t)&state);
3533
3534 if (state.pr_flags & MAC_PROP_INFO_RANGE)
3535 range->mpr_count = state.pr_range_cur_count;
3536
3537 /*
3538 * The operation could fail if the buffer supplied by
3539 * the user was too small for the range or default
3540 * value of the property.
3541 */
3542 if (state.pr_errno != 0)
3543 return (state.pr_errno);
3544
3545 if (perm != NULL && state.pr_flags & MAC_PROP_INFO_PERM)
3546 *perm = state.pr_perm;
3547 }
3548
3549 /*
3550 * The MAC layer may want to provide default values or allowed
3551 * ranges for properties if the driver does not provide a
3552 * property info entry point, or that entry point exists, but
3553 * it did not provide a default value or allowed ranges for
3554 * that property.
3555 */
3556 switch (id) {
3557 case MAC_PROP_MTU: {
3558 uint32_t sdu;
3559
3560 mac_sdu_get2(mh, NULL, &sdu, NULL);
3561
3562 if (range != NULL && !(state.pr_flags &
3563 MAC_PROP_INFO_RANGE)) {
3564 /* MTU range */
3565 _mac_set_range(range, sdu, sdu);
3566 }
3567
3568 if (default_val != NULL && !(state.pr_flags &
3569 MAC_PROP_INFO_DEFAULT)) {
3570 if (mip->mi_info.mi_media == DL_ETHER)
3571 sdu = ETHERMTU;
3572 /* default MTU value */
3573 bcopy(&sdu, default_val, sizeof (sdu));
3574 }
3575 }
3576 }
3577
3578 return (0);
3579 }
3580
3581 int
mac_fastpath_disable(mac_handle_t mh)3582 mac_fastpath_disable(mac_handle_t mh)
3583 {
3584 mac_impl_t *mip = (mac_impl_t *)mh;
3585
3586 if ((mip->mi_state_flags & MIS_LEGACY) == 0)
3587 return (0);
3588
3589 return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver));
3590 }
3591
3592 void
mac_fastpath_enable(mac_handle_t mh)3593 mac_fastpath_enable(mac_handle_t mh)
3594 {
3595 mac_impl_t *mip = (mac_impl_t *)mh;
3596
3597 if ((mip->mi_state_flags & MIS_LEGACY) == 0)
3598 return;
3599
3600 mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver);
3601 }
3602
3603 void
mac_register_priv_prop(mac_impl_t * mip,char ** priv_props)3604 mac_register_priv_prop(mac_impl_t *mip, char **priv_props)
3605 {
3606 uint_t nprops, i;
3607
3608 if (priv_props == NULL)
3609 return;
3610
3611 nprops = 0;
3612 while (priv_props[nprops] != NULL)
3613 nprops++;
3614 if (nprops == 0)
3615 return;
3616
3617
3618 mip->mi_priv_prop = kmem_zalloc(nprops * sizeof (char *), KM_SLEEP);
3619
3620 for (i = 0; i < nprops; i++) {
3621 mip->mi_priv_prop[i] = kmem_zalloc(MAXLINKPROPNAME, KM_SLEEP);
3622 (void) strlcpy(mip->mi_priv_prop[i], priv_props[i],
3623 MAXLINKPROPNAME);
3624 }
3625
3626 mip->mi_priv_prop_count = nprops;
3627 }
3628
3629 void
mac_unregister_priv_prop(mac_impl_t * mip)3630 mac_unregister_priv_prop(mac_impl_t *mip)
3631 {
3632 uint_t i;
3633
3634 if (mip->mi_priv_prop_count == 0) {
3635 ASSERT(mip->mi_priv_prop == NULL);
3636 return;
3637 }
3638
3639 for (i = 0; i < mip->mi_priv_prop_count; i++)
3640 kmem_free(mip->mi_priv_prop[i], MAXLINKPROPNAME);
3641 kmem_free(mip->mi_priv_prop, mip->mi_priv_prop_count *
3642 sizeof (char *));
3643
3644 mip->mi_priv_prop = NULL;
3645 mip->mi_priv_prop_count = 0;
3646 }
3647
3648 /*
3649 * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure
3650 * (by invoking mac_rx()) even after processing mac_stop_ring(). In such
3651 * cases if MAC free's the ring structure after mac_stop_ring(), any
3652 * illegal access to the ring structure coming from the driver will panic
3653 * the system. In order to protect the system from such inadverent access,
3654 * we maintain a cache of rings in the mac_impl_t after they get free'd up.
3655 * When packets are received on free'd up rings, MAC (through the generation
3656 * count mechanism) will drop such packets.
3657 */
3658 static mac_ring_t *
mac_ring_alloc(mac_impl_t * mip)3659 mac_ring_alloc(mac_impl_t *mip)
3660 {
3661 mac_ring_t *ring;
3662
3663 mutex_enter(&mip->mi_ring_lock);
3664 if (mip->mi_ring_freelist != NULL) {
3665 ring = mip->mi_ring_freelist;
3666 mip->mi_ring_freelist = ring->mr_next;
3667 bzero(ring, sizeof (mac_ring_t));
3668 mutex_exit(&mip->mi_ring_lock);
3669 } else {
3670 mutex_exit(&mip->mi_ring_lock);
3671 ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP);
3672 }
3673 ASSERT((ring != NULL) && (ring->mr_state == MR_FREE));
3674 return (ring);
3675 }
3676
3677 static void
mac_ring_free(mac_impl_t * mip,mac_ring_t * ring)3678 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring)
3679 {
3680 ASSERT(ring->mr_state == MR_FREE);
3681
3682 mutex_enter(&mip->mi_ring_lock);
3683 ring->mr_state = MR_FREE;
3684 ring->mr_flag = 0;
3685 ring->mr_next = mip->mi_ring_freelist;
3686 ring->mr_mip = NULL;
3687 mip->mi_ring_freelist = ring;
3688 mac_ring_stat_delete(ring);
3689 mutex_exit(&mip->mi_ring_lock);
3690 }
3691
3692 static void
mac_ring_freeall(mac_impl_t * mip)3693 mac_ring_freeall(mac_impl_t *mip)
3694 {
3695 mac_ring_t *ring_next;
3696 mutex_enter(&mip->mi_ring_lock);
3697 mac_ring_t *ring = mip->mi_ring_freelist;
3698 while (ring != NULL) {
3699 ring_next = ring->mr_next;
3700 kmem_cache_free(mac_ring_cache, ring);
3701 ring = ring_next;
3702 }
3703 mip->mi_ring_freelist = NULL;
3704 mutex_exit(&mip->mi_ring_lock);
3705 }
3706
3707 int
mac_start_ring(mac_ring_t * ring)3708 mac_start_ring(mac_ring_t *ring)
3709 {
3710 int rv = 0;
3711
3712 ASSERT(ring->mr_state == MR_FREE);
3713
3714 if (ring->mr_start != NULL) {
3715 rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num);
3716 if (rv != 0)
3717 return (rv);
3718 }
3719
3720 ring->mr_state = MR_INUSE;
3721 return (rv);
3722 }
3723
3724 void
mac_stop_ring(mac_ring_t * ring)3725 mac_stop_ring(mac_ring_t *ring)
3726 {
3727 ASSERT(ring->mr_state == MR_INUSE);
3728
3729 if (ring->mr_stop != NULL)
3730 ring->mr_stop(ring->mr_driver);
3731
3732 ring->mr_state = MR_FREE;
3733
3734 /*
3735 * Increment the ring generation number for this ring.
3736 */
3737 ring->mr_gen_num++;
3738 }
3739
3740 int
mac_start_group(mac_group_t * group)3741 mac_start_group(mac_group_t *group)
3742 {
3743 int rv = 0;
3744
3745 if (group->mrg_start != NULL)
3746 rv = group->mrg_start(group->mrg_driver);
3747
3748 return (rv);
3749 }
3750
3751 void
mac_stop_group(mac_group_t * group)3752 mac_stop_group(mac_group_t *group)
3753 {
3754 if (group->mrg_stop != NULL)
3755 group->mrg_stop(group->mrg_driver);
3756 }
3757
3758 /*
3759 * Called from mac_start() on the default Rx group. Broadcast and multicast
3760 * packets are received only on the default group. Hence the default group
3761 * needs to be up even if the primary client is not up, for the other groups
3762 * to be functional. We do this by calling this function at mac_start time
3763 * itself. However the broadcast packets that are received can't make their
3764 * way beyond mac_rx until a mac client creates a broadcast flow.
3765 */
3766 static int
mac_start_group_and_rings(mac_group_t * group)3767 mac_start_group_and_rings(mac_group_t *group)
3768 {
3769 mac_ring_t *ring;
3770 int rv = 0;
3771
3772 ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED);
3773 if ((rv = mac_start_group(group)) != 0)
3774 return (rv);
3775
3776 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
3777 ASSERT(ring->mr_state == MR_FREE);
3778 if ((rv = mac_start_ring(ring)) != 0)
3779 goto error;
3780 ring->mr_classify_type = MAC_SW_CLASSIFIER;
3781 }
3782 return (0);
3783
3784 error:
3785 mac_stop_group_and_rings(group);
3786 return (rv);
3787 }
3788
3789 /* Called from mac_stop on the default Rx group */
3790 static void
mac_stop_group_and_rings(mac_group_t * group)3791 mac_stop_group_and_rings(mac_group_t *group)
3792 {
3793 mac_ring_t *ring;
3794
3795 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
3796 if (ring->mr_state != MR_FREE) {
3797 mac_stop_ring(ring);
3798 ring->mr_flag = 0;
3799 ring->mr_classify_type = MAC_NO_CLASSIFIER;
3800 }
3801 }
3802 mac_stop_group(group);
3803 }
3804
3805
3806 static mac_ring_t *
mac_init_ring(mac_impl_t * mip,mac_group_t * group,int index,mac_capab_rings_t * cap_rings)3807 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index,
3808 mac_capab_rings_t *cap_rings)
3809 {
3810 mac_ring_t *ring, *rnext;
3811 mac_ring_info_t ring_info;
3812 ddi_intr_handle_t ddi_handle;
3813
3814 ring = mac_ring_alloc(mip);
3815
3816 /* Prepare basic information of ring */
3817
3818 /*
3819 * Ring index is numbered to be unique across a particular device.
3820 * Ring index computation makes following assumptions:
3821 * - For drivers with static grouping (e.g. ixgbe, bge),
3822 * ring index exchanged with the driver (e.g. during mr_rget)
3823 * is unique only across the group the ring belongs to.
3824 * - Drivers with dynamic grouping (e.g. nxge), start
3825 * with single group (mrg_index = 0).
3826 */
3827 ring->mr_index = group->mrg_index * group->mrg_info.mgi_count + index;
3828 ring->mr_type = group->mrg_type;
3829 ring->mr_gh = (mac_group_handle_t)group;
3830
3831 /* Insert the new ring to the list. */
3832 ring->mr_next = group->mrg_rings;
3833 group->mrg_rings = ring;
3834
3835 /* Zero to reuse the info data structure */
3836 bzero(&ring_info, sizeof (ring_info));
3837
3838 /* Query ring information from driver */
3839 cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index,
3840 index, &ring_info, (mac_ring_handle_t)ring);
3841
3842 ring->mr_info = ring_info;
3843
3844 /*
3845 * The interrupt handle could be shared among multiple rings.
3846 * Thus if there is a bunch of rings that are sharing an
3847 * interrupt, then only one ring among the bunch will be made
3848 * available for interrupt re-targeting; the rest will have
3849 * ddi_shared flag set to TRUE and would not be available for
3850 * be interrupt re-targeting.
3851 */
3852 if ((ddi_handle = ring_info.mri_intr.mi_ddi_handle) != NULL) {
3853 rnext = ring->mr_next;
3854 while (rnext != NULL) {
3855 if (rnext->mr_info.mri_intr.mi_ddi_handle ==
3856 ddi_handle) {
3857 /*
3858 * If default ring (mr_index == 0) is part
3859 * of a group of rings sharing an
3860 * interrupt, then set ddi_shared flag for
3861 * the default ring and give another ring
3862 * the chance to be re-targeted.
3863 */
3864 if (rnext->mr_index == 0 &&
3865 !rnext->mr_info.mri_intr.mi_ddi_shared) {
3866 rnext->mr_info.mri_intr.mi_ddi_shared =
3867 B_TRUE;
3868 } else {
3869 ring->mr_info.mri_intr.mi_ddi_shared =
3870 B_TRUE;
3871 }
3872 break;
3873 }
3874 rnext = rnext->mr_next;
3875 }
3876 /*
3877 * If rnext is NULL, then no matching ddi_handle was found.
3878 * Rx rings get registered first. So if this is a Tx ring,
3879 * then go through all the Rx rings and see if there is a
3880 * matching ddi handle.
3881 */
3882 if (rnext == NULL && ring->mr_type == MAC_RING_TYPE_TX) {
3883 mac_compare_ddi_handle(mip->mi_rx_groups,
3884 mip->mi_rx_group_count, ring);
3885 }
3886 }
3887
3888 /* Update ring's status */
3889 ring->mr_state = MR_FREE;
3890 ring->mr_flag = 0;
3891
3892 /* Update the ring count of the group */
3893 group->mrg_cur_count++;
3894
3895 /* Create per ring kstats */
3896 if (ring->mr_stat != NULL) {
3897 ring->mr_mip = mip;
3898 mac_ring_stat_create(ring);
3899 }
3900
3901 return (ring);
3902 }
3903
3904 /*
3905 * Rings are chained together for easy regrouping.
3906 */
3907 static void
mac_init_group(mac_impl_t * mip,mac_group_t * group,int size,mac_capab_rings_t * cap_rings)3908 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size,
3909 mac_capab_rings_t *cap_rings)
3910 {
3911 int index;
3912
3913 /*
3914 * Initialize all ring members of this group. Size of zero will not
3915 * enter the loop, so it's safe for initializing an empty group.
3916 */
3917 for (index = size - 1; index >= 0; index--)
3918 (void) mac_init_ring(mip, group, index, cap_rings);
3919 }
3920
3921 int
mac_init_rings(mac_impl_t * mip,mac_ring_type_t rtype)3922 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype)
3923 {
3924 mac_capab_rings_t *cap_rings;
3925 mac_group_t *group;
3926 mac_group_t *groups;
3927 mac_group_info_t group_info;
3928 uint_t group_free = 0;
3929 uint_t ring_left;
3930 mac_ring_t *ring;
3931 int g;
3932 int err = 0;
3933 uint_t grpcnt;
3934 boolean_t pseudo_txgrp = B_FALSE;
3935
3936 switch (rtype) {
3937 case MAC_RING_TYPE_RX:
3938 ASSERT(mip->mi_rx_groups == NULL);
3939
3940 cap_rings = &mip->mi_rx_rings_cap;
3941 cap_rings->mr_type = MAC_RING_TYPE_RX;
3942 break;
3943 case MAC_RING_TYPE_TX:
3944 ASSERT(mip->mi_tx_groups == NULL);
3945
3946 cap_rings = &mip->mi_tx_rings_cap;
3947 cap_rings->mr_type = MAC_RING_TYPE_TX;
3948 break;
3949 default:
3950 ASSERT(B_FALSE);
3951 }
3952
3953 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, cap_rings))
3954 return (0);
3955 grpcnt = cap_rings->mr_gnum;
3956
3957 /*
3958 * If we have multiple TX rings, but only one TX group, we can
3959 * create pseudo TX groups (one per TX ring) in the MAC layer,
3960 * except for an aggr. For an aggr currently we maintain only
3961 * one group with all the rings (for all its ports), going
3962 * forwards we might change this.
3963 */
3964 if (rtype == MAC_RING_TYPE_TX &&
3965 cap_rings->mr_gnum == 0 && cap_rings->mr_rnum > 0 &&
3966 (mip->mi_state_flags & MIS_IS_AGGR) == 0) {
3967 /*
3968 * The -1 here is because we create a default TX group
3969 * with all the rings in it.
3970 */
3971 grpcnt = cap_rings->mr_rnum - 1;
3972 pseudo_txgrp = B_TRUE;
3973 }
3974
3975 /*
3976 * Allocate a contiguous buffer for all groups.
3977 */
3978 groups = kmem_zalloc(sizeof (mac_group_t) * (grpcnt+ 1), KM_SLEEP);
3979
3980 ring_left = cap_rings->mr_rnum;
3981
3982 /*
3983 * Get all ring groups if any, and get their ring members
3984 * if any.
3985 */
3986 for (g = 0; g < grpcnt; g++) {
3987 group = groups + g;
3988
3989 /* Prepare basic information of the group */
3990 group->mrg_index = g;
3991 group->mrg_type = rtype;
3992 group->mrg_state = MAC_GROUP_STATE_UNINIT;
3993 group->mrg_mh = (mac_handle_t)mip;
3994 group->mrg_next = group + 1;
3995
3996 /* Zero to reuse the info data structure */
3997 bzero(&group_info, sizeof (group_info));
3998
3999 if (pseudo_txgrp) {
4000 /*
4001 * This is a pseudo group that we created, apart
4002 * from setting the state there is nothing to be
4003 * done.
4004 */
4005 group->mrg_state = MAC_GROUP_STATE_REGISTERED;
4006 group_free++;
4007 continue;
4008 }
4009 /* Query group information from driver */
4010 cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info,
4011 (mac_group_handle_t)group);
4012
4013 switch (cap_rings->mr_group_type) {
4014 case MAC_GROUP_TYPE_DYNAMIC:
4015 if (cap_rings->mr_gaddring == NULL ||
4016 cap_rings->mr_gremring == NULL) {
4017 DTRACE_PROBE3(
4018 mac__init__rings_no_addremring,
4019 char *, mip->mi_name,
4020 mac_group_add_ring_t,
4021 cap_rings->mr_gaddring,
4022 mac_group_add_ring_t,
4023 cap_rings->mr_gremring);
4024 err = EINVAL;
4025 goto bail;
4026 }
4027
4028 switch (rtype) {
4029 case MAC_RING_TYPE_RX:
4030 /*
4031 * The first RX group must have non-zero
4032 * rings, and the following groups must
4033 * have zero rings.
4034 */
4035 if (g == 0 && group_info.mgi_count == 0) {
4036 DTRACE_PROBE1(
4037 mac__init__rings__rx__def__zero,
4038 char *, mip->mi_name);
4039 err = EINVAL;
4040 goto bail;
4041 }
4042 if (g > 0 && group_info.mgi_count != 0) {
4043 DTRACE_PROBE3(
4044 mac__init__rings__rx__nonzero,
4045 char *, mip->mi_name,
4046 int, g, int, group_info.mgi_count);
4047 err = EINVAL;
4048 goto bail;
4049 }
4050 break;
4051 case MAC_RING_TYPE_TX:
4052 /*
4053 * All TX ring groups must have zero rings.
4054 */
4055 if (group_info.mgi_count != 0) {
4056 DTRACE_PROBE3(
4057 mac__init__rings__tx__nonzero,
4058 char *, mip->mi_name,
4059 int, g, int, group_info.mgi_count);
4060 err = EINVAL;
4061 goto bail;
4062 }
4063 break;
4064 }
4065 break;
4066 case MAC_GROUP_TYPE_STATIC:
4067 /*
4068 * Note that an empty group is allowed, e.g., an aggr
4069 * would start with an empty group.
4070 */
4071 break;
4072 default:
4073 /* unknown group type */
4074 DTRACE_PROBE2(mac__init__rings__unknown__type,
4075 char *, mip->mi_name,
4076 int, cap_rings->mr_group_type);
4077 err = EINVAL;
4078 goto bail;
4079 }
4080
4081
4082 /*
4083 * Driver must register group->mgi_addmac/remmac() for rx groups
4084 * to support multiple MAC addresses.
4085 */
4086 if (rtype == MAC_RING_TYPE_RX &&
4087 ((group_info.mgi_addmac == NULL) ||
4088 (group_info.mgi_remmac == NULL))) {
4089 err = EINVAL;
4090 goto bail;
4091 }
4092
4093 /* Cache driver-supplied information */
4094 group->mrg_info = group_info;
4095
4096 /* Update the group's status and group count. */
4097 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED);
4098 group_free++;
4099
4100 group->mrg_rings = NULL;
4101 group->mrg_cur_count = 0;
4102 mac_init_group(mip, group, group_info.mgi_count, cap_rings);
4103 ring_left -= group_info.mgi_count;
4104
4105 /* The current group size should be equal to default value */
4106 ASSERT(group->mrg_cur_count == group_info.mgi_count);
4107 }
4108
4109 /* Build up a dummy group for free resources as a pool */
4110 group = groups + grpcnt;
4111
4112 /* Prepare basic information of the group */
4113 group->mrg_index = -1;
4114 group->mrg_type = rtype;
4115 group->mrg_state = MAC_GROUP_STATE_UNINIT;
4116 group->mrg_mh = (mac_handle_t)mip;
4117 group->mrg_next = NULL;
4118
4119 /*
4120 * If there are ungrouped rings, allocate a continuous buffer for
4121 * remaining resources.
4122 */
4123 if (ring_left != 0) {
4124 group->mrg_rings = NULL;
4125 group->mrg_cur_count = 0;
4126 mac_init_group(mip, group, ring_left, cap_rings);
4127
4128 /* The current group size should be equal to ring_left */
4129 ASSERT(group->mrg_cur_count == ring_left);
4130
4131 ring_left = 0;
4132
4133 /* Update this group's status */
4134 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED);
4135 } else
4136 group->mrg_rings = NULL;
4137
4138 ASSERT(ring_left == 0);
4139
4140 bail:
4141
4142 /* Cache other important information to finalize the initialization */
4143 switch (rtype) {
4144 case MAC_RING_TYPE_RX:
4145 mip->mi_rx_group_type = cap_rings->mr_group_type;
4146 mip->mi_rx_group_count = cap_rings->mr_gnum;
4147 mip->mi_rx_groups = groups;
4148 mip->mi_rx_donor_grp = groups;
4149 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
4150 /*
4151 * The default ring is reserved since it is
4152 * used for sending the broadcast etc. packets.
4153 */
4154 mip->mi_rxrings_avail =
4155 mip->mi_rx_groups->mrg_cur_count - 1;
4156 mip->mi_rxrings_rsvd = 1;
4157 }
4158 /*
4159 * The default group cannot be reserved. It is used by
4160 * all the clients that do not have an exclusive group.
4161 */
4162 mip->mi_rxhwclnt_avail = mip->mi_rx_group_count - 1;
4163 mip->mi_rxhwclnt_used = 1;
4164 break;
4165 case MAC_RING_TYPE_TX:
4166 mip->mi_tx_group_type = pseudo_txgrp ? MAC_GROUP_TYPE_DYNAMIC :
4167 cap_rings->mr_group_type;
4168 mip->mi_tx_group_count = grpcnt;
4169 mip->mi_tx_group_free = group_free;
4170 mip->mi_tx_groups = groups;
4171
4172 group = groups + grpcnt;
4173 ring = group->mrg_rings;
4174 /*
4175 * The ring can be NULL in the case of aggr. Aggr will
4176 * have an empty Tx group which will get populated
4177 * later when pseudo Tx rings are added after
4178 * mac_register() is done.
4179 */
4180 if (ring == NULL) {
4181 ASSERT(mip->mi_state_flags & MIS_IS_AGGR);
4182 /*
4183 * pass the group to aggr so it can add Tx
4184 * rings to the group later.
4185 */
4186 cap_rings->mr_gget(mip->mi_driver, rtype, 0, NULL,
4187 (mac_group_handle_t)group);
4188 /*
4189 * Even though there are no rings at this time
4190 * (rings will come later), set the group
4191 * state to registered.
4192 */
4193 group->mrg_state = MAC_GROUP_STATE_REGISTERED;
4194 } else {
4195 /*
4196 * Ring 0 is used as the default one and it could be
4197 * assigned to a client as well.
4198 */
4199 while ((ring->mr_index != 0) && (ring->mr_next != NULL))
4200 ring = ring->mr_next;
4201 ASSERT(ring->mr_index == 0);
4202 mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
4203 }
4204 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
4205 mip->mi_txrings_avail = group->mrg_cur_count - 1;
4206 /*
4207 * The default ring cannot be reserved.
4208 */
4209 mip->mi_txrings_rsvd = 1;
4210 }
4211 /*
4212 * The default group cannot be reserved. It will be shared
4213 * by clients that do not have an exclusive group.
4214 */
4215 mip->mi_txhwclnt_avail = mip->mi_tx_group_count;
4216 mip->mi_txhwclnt_used = 1;
4217 break;
4218 default:
4219 ASSERT(B_FALSE);
4220 }
4221
4222 if (err != 0)
4223 mac_free_rings(mip, rtype);
4224
4225 return (err);
4226 }
4227
4228 /*
4229 * The ddi interrupt handle could be shared amoung rings. If so, compare
4230 * the new ring's ddi handle with the existing ones and set ddi_shared
4231 * flag.
4232 */
4233 void
mac_compare_ddi_handle(mac_group_t * groups,uint_t grpcnt,mac_ring_t * cring)4234 mac_compare_ddi_handle(mac_group_t *groups, uint_t grpcnt, mac_ring_t *cring)
4235 {
4236 mac_group_t *group;
4237 mac_ring_t *ring;
4238 ddi_intr_handle_t ddi_handle;
4239 int g;
4240
4241 ddi_handle = cring->mr_info.mri_intr.mi_ddi_handle;
4242 for (g = 0; g < grpcnt; g++) {
4243 group = groups + g;
4244 for (ring = group->mrg_rings; ring != NULL;
4245 ring = ring->mr_next) {
4246 if (ring == cring)
4247 continue;
4248 if (ring->mr_info.mri_intr.mi_ddi_handle ==
4249 ddi_handle) {
4250 if (cring->mr_type == MAC_RING_TYPE_RX &&
4251 ring->mr_index == 0 &&
4252 !ring->mr_info.mri_intr.mi_ddi_shared) {
4253 ring->mr_info.mri_intr.mi_ddi_shared =
4254 B_TRUE;
4255 } else {
4256 cring->mr_info.mri_intr.mi_ddi_shared =
4257 B_TRUE;
4258 }
4259 return;
4260 }
4261 }
4262 }
4263 }
4264
4265 /*
4266 * Called to free all groups of particular type (RX or TX). It's assumed that
4267 * no clients are using these groups.
4268 */
4269 void
mac_free_rings(mac_impl_t * mip,mac_ring_type_t rtype)4270 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype)
4271 {
4272 mac_group_t *group, *groups;
4273 uint_t group_count;
4274
4275 switch (rtype) {
4276 case MAC_RING_TYPE_RX:
4277 if (mip->mi_rx_groups == NULL)
4278 return;
4279
4280 groups = mip->mi_rx_groups;
4281 group_count = mip->mi_rx_group_count;
4282
4283 mip->mi_rx_groups = NULL;
4284 mip->mi_rx_donor_grp = NULL;
4285 mip->mi_rx_group_count = 0;
4286 break;
4287 case MAC_RING_TYPE_TX:
4288 ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free);
4289
4290 if (mip->mi_tx_groups == NULL)
4291 return;
4292
4293 groups = mip->mi_tx_groups;
4294 group_count = mip->mi_tx_group_count;
4295
4296 mip->mi_tx_groups = NULL;
4297 mip->mi_tx_group_count = 0;
4298 mip->mi_tx_group_free = 0;
4299 mip->mi_default_tx_ring = NULL;
4300 break;
4301 default:
4302 ASSERT(B_FALSE);
4303 }
4304
4305 for (group = groups; group != NULL; group = group->mrg_next) {
4306 mac_ring_t *ring;
4307
4308 if (group->mrg_cur_count == 0)
4309 continue;
4310
4311 ASSERT(group->mrg_rings != NULL);
4312
4313 while ((ring = group->mrg_rings) != NULL) {
4314 group->mrg_rings = ring->mr_next;
4315 mac_ring_free(mip, ring);
4316 }
4317 }
4318
4319 /* Free all the cached rings */
4320 mac_ring_freeall(mip);
4321 /* Free the block of group data strutures */
4322 kmem_free(groups, sizeof (mac_group_t) * (group_count + 1));
4323 }
4324
4325 /*
4326 * Associate a MAC address with a receive group.
4327 *
4328 * The return value of this function should always be checked properly, because
4329 * any type of failure could cause unexpected results. A group can be added
4330 * or removed with a MAC address only after it has been reserved. Ideally,
4331 * a successful reservation always leads to calling mac_group_addmac() to
4332 * steer desired traffic. Failure of adding an unicast MAC address doesn't
4333 * always imply that the group is functioning abnormally.
4334 *
4335 * Currently this function is called everywhere, and it reflects assumptions
4336 * about MAC addresses in the implementation. CR 6735196.
4337 */
4338 int
mac_group_addmac(mac_group_t * group,const uint8_t * addr)4339 mac_group_addmac(mac_group_t *group, const uint8_t *addr)
4340 {
4341 ASSERT(group->mrg_type == MAC_RING_TYPE_RX);
4342 ASSERT(group->mrg_info.mgi_addmac != NULL);
4343
4344 return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr));
4345 }
4346
4347 /*
4348 * Remove the association between MAC address and receive group.
4349 */
4350 int
mac_group_remmac(mac_group_t * group,const uint8_t * addr)4351 mac_group_remmac(mac_group_t *group, const uint8_t *addr)
4352 {
4353 ASSERT(group->mrg_type == MAC_RING_TYPE_RX);
4354 ASSERT(group->mrg_info.mgi_remmac != NULL);
4355
4356 return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr));
4357 }
4358
4359 /*
4360 * This is the entry point for packets transmitted through the bridging code.
4361 * If no bridge is in place, MAC_RING_TX transmits using tx ring. The 'rh'
4362 * pointer may be NULL to select the default ring.
4363 */
4364 mblk_t *
mac_bridge_tx(mac_impl_t * mip,mac_ring_handle_t rh,mblk_t * mp)4365 mac_bridge_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp)
4366 {
4367 mac_handle_t mh;
4368
4369 /*
4370 * Once we take a reference on the bridge link, the bridge
4371 * module itself can't unload, so the callback pointers are
4372 * stable.
4373 */
4374 mutex_enter(&mip->mi_bridge_lock);
4375 if ((mh = mip->mi_bridge_link) != NULL)
4376 mac_bridge_ref_cb(mh, B_TRUE);
4377 mutex_exit(&mip->mi_bridge_lock);
4378 if (mh == NULL) {
4379 MAC_RING_TX(mip, rh, mp, mp);
4380 } else {
4381 mp = mac_bridge_tx_cb(mh, rh, mp);
4382 mac_bridge_ref_cb(mh, B_FALSE);
4383 }
4384
4385 return (mp);
4386 }
4387
4388 /*
4389 * Find a ring from its index.
4390 */
4391 mac_ring_handle_t
mac_find_ring(mac_group_handle_t gh,int index)4392 mac_find_ring(mac_group_handle_t gh, int index)
4393 {
4394 mac_group_t *group = (mac_group_t *)gh;
4395 mac_ring_t *ring = group->mrg_rings;
4396
4397 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next)
4398 if (ring->mr_index == index)
4399 break;
4400
4401 return ((mac_ring_handle_t)ring);
4402 }
4403 /*
4404 * Add a ring to an existing group.
4405 *
4406 * The ring must be either passed directly (for example if the ring
4407 * movement is initiated by the framework), or specified through a driver
4408 * index (for example when the ring is added by the driver.
4409 *
4410 * The caller needs to call mac_perim_enter() before calling this function.
4411 */
4412 int
i_mac_group_add_ring(mac_group_t * group,mac_ring_t * ring,int index)4413 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index)
4414 {
4415 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
4416 mac_capab_rings_t *cap_rings;
4417 boolean_t driver_call = (ring == NULL);
4418 mac_group_type_t group_type;
4419 int ret = 0;
4420 flow_entry_t *flent;
4421
4422 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4423
4424 switch (group->mrg_type) {
4425 case MAC_RING_TYPE_RX:
4426 cap_rings = &mip->mi_rx_rings_cap;
4427 group_type = mip->mi_rx_group_type;
4428 break;
4429 case MAC_RING_TYPE_TX:
4430 cap_rings = &mip->mi_tx_rings_cap;
4431 group_type = mip->mi_tx_group_type;
4432 break;
4433 default:
4434 ASSERT(B_FALSE);
4435 }
4436
4437 /*
4438 * There should be no ring with the same ring index in the target
4439 * group.
4440 */
4441 ASSERT(mac_find_ring((mac_group_handle_t)group,
4442 driver_call ? index : ring->mr_index) == NULL);
4443
4444 if (driver_call) {
4445 /*
4446 * The function is called as a result of a request from
4447 * a driver to add a ring to an existing group, for example
4448 * from the aggregation driver. Allocate a new mac_ring_t
4449 * for that ring.
4450 */
4451 ring = mac_init_ring(mip, group, index, cap_rings);
4452 ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT);
4453 } else {
4454 /*
4455 * The function is called as a result of a MAC layer request
4456 * to add a ring to an existing group. In this case the
4457 * ring is being moved between groups, which requires
4458 * the underlying driver to support dynamic grouping,
4459 * and the mac_ring_t already exists.
4460 */
4461 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
4462 ASSERT(group->mrg_driver == NULL ||
4463 cap_rings->mr_gaddring != NULL);
4464 ASSERT(ring->mr_gh == NULL);
4465 }
4466
4467 /*
4468 * At this point the ring should not be in use, and it should be
4469 * of the right for the target group.
4470 */
4471 ASSERT(ring->mr_state < MR_INUSE);
4472 ASSERT(ring->mr_srs == NULL);
4473 ASSERT(ring->mr_type == group->mrg_type);
4474
4475 if (!driver_call) {
4476 /*
4477 * Add the driver level hardware ring if the process was not
4478 * initiated by the driver, and the target group is not the
4479 * group.
4480 */
4481 if (group->mrg_driver != NULL) {
4482 cap_rings->mr_gaddring(group->mrg_driver,
4483 ring->mr_driver, ring->mr_type);
4484 }
4485
4486 /*
4487 * Insert the ring ahead existing rings.
4488 */
4489 ring->mr_next = group->mrg_rings;
4490 group->mrg_rings = ring;
4491 ring->mr_gh = (mac_group_handle_t)group;
4492 group->mrg_cur_count++;
4493 }
4494
4495 /*
4496 * If the group has not been actively used, we're done.
4497 */
4498 if (group->mrg_index != -1 &&
4499 group->mrg_state < MAC_GROUP_STATE_RESERVED)
4500 return (0);
4501
4502 /*
4503 * Start the ring if needed. Failure causes to undo the grouping action.
4504 */
4505 if (ring->mr_state != MR_INUSE) {
4506 if ((ret = mac_start_ring(ring)) != 0) {
4507 if (!driver_call) {
4508 cap_rings->mr_gremring(group->mrg_driver,
4509 ring->mr_driver, ring->mr_type);
4510 }
4511 group->mrg_cur_count--;
4512 group->mrg_rings = ring->mr_next;
4513
4514 ring->mr_gh = NULL;
4515
4516 if (driver_call)
4517 mac_ring_free(mip, ring);
4518
4519 return (ret);
4520 }
4521 }
4522
4523 /*
4524 * Set up SRS/SR according to the ring type.
4525 */
4526 switch (ring->mr_type) {
4527 case MAC_RING_TYPE_RX:
4528 /*
4529 * Setup SRS on top of the new ring if the group is
4530 * reserved for someones exclusive use.
4531 */
4532 if (group->mrg_state == MAC_GROUP_STATE_RESERVED) {
4533 mac_client_impl_t *mcip;
4534
4535 mcip = MAC_GROUP_ONLY_CLIENT(group);
4536 /*
4537 * Even though this group is reserved we migth still
4538 * have multiple clients, i.e a VLAN shares the
4539 * group with the primary mac client.
4540 */
4541 if (mcip != NULL) {
4542 flent = mcip->mci_flent;
4543 ASSERT(flent->fe_rx_srs_cnt > 0);
4544 mac_rx_srs_group_setup(mcip, flent, SRST_LINK);
4545 mac_fanout_setup(mcip, flent,
4546 MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver,
4547 mcip, NULL, NULL);
4548 } else {
4549 ring->mr_classify_type = MAC_SW_CLASSIFIER;
4550 }
4551 }
4552 break;
4553 case MAC_RING_TYPE_TX:
4554 {
4555 mac_grp_client_t *mgcp = group->mrg_clients;
4556 mac_client_impl_t *mcip;
4557 mac_soft_ring_set_t *mac_srs;
4558 mac_srs_tx_t *tx;
4559
4560 if (MAC_GROUP_NO_CLIENT(group)) {
4561 if (ring->mr_state == MR_INUSE)
4562 mac_stop_ring(ring);
4563 ring->mr_flag = 0;
4564 break;
4565 }
4566 /*
4567 * If the rings are being moved to a group that has
4568 * clients using it, then add the new rings to the
4569 * clients SRS.
4570 */
4571 while (mgcp != NULL) {
4572 boolean_t is_aggr;
4573
4574 mcip = mgcp->mgc_client;
4575 flent = mcip->mci_flent;
4576 is_aggr = (mcip->mci_state_flags & MCIS_IS_AGGR);
4577 mac_srs = MCIP_TX_SRS(mcip);
4578 tx = &mac_srs->srs_tx;
4579 mac_tx_client_quiesce((mac_client_handle_t)mcip);
4580 /*
4581 * If we are growing from 1 to multiple rings.
4582 */
4583 if (tx->st_mode == SRS_TX_BW ||
4584 tx->st_mode == SRS_TX_SERIALIZE ||
4585 tx->st_mode == SRS_TX_DEFAULT) {
4586 mac_ring_t *tx_ring = tx->st_arg2;
4587
4588 tx->st_arg2 = NULL;
4589 mac_tx_srs_stat_recreate(mac_srs, B_TRUE);
4590 mac_tx_srs_add_ring(mac_srs, tx_ring);
4591 if (mac_srs->srs_type & SRST_BW_CONTROL) {
4592 tx->st_mode = is_aggr ? SRS_TX_BW_AGGR :
4593 SRS_TX_BW_FANOUT;
4594 } else {
4595 tx->st_mode = is_aggr ? SRS_TX_AGGR :
4596 SRS_TX_FANOUT;
4597 }
4598 tx->st_func = mac_tx_get_func(tx->st_mode);
4599 }
4600 mac_tx_srs_add_ring(mac_srs, ring);
4601 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
4602 mac_rx_deliver, mcip, NULL, NULL);
4603 mac_tx_client_restart((mac_client_handle_t)mcip);
4604 mgcp = mgcp->mgc_next;
4605 }
4606 break;
4607 }
4608 default:
4609 ASSERT(B_FALSE);
4610 }
4611 /*
4612 * For aggr, the default ring will be NULL to begin with. If it
4613 * is NULL, then pick the first ring that gets added as the
4614 * default ring. Any ring in an aggregation can be removed at
4615 * any time (by the user action of removing a link) and if the
4616 * current default ring gets removed, then a new one gets
4617 * picked (see i_mac_group_rem_ring()).
4618 */
4619 if (mip->mi_state_flags & MIS_IS_AGGR &&
4620 mip->mi_default_tx_ring == NULL &&
4621 ring->mr_type == MAC_RING_TYPE_TX) {
4622 mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
4623 }
4624
4625 MAC_RING_UNMARK(ring, MR_INCIPIENT);
4626 return (0);
4627 }
4628
4629 /*
4630 * Remove a ring from it's current group. MAC internal function for dynamic
4631 * grouping.
4632 *
4633 * The caller needs to call mac_perim_enter() before calling this function.
4634 */
4635 void
i_mac_group_rem_ring(mac_group_t * group,mac_ring_t * ring,boolean_t driver_call)4636 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring,
4637 boolean_t driver_call)
4638 {
4639 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
4640 mac_capab_rings_t *cap_rings = NULL;
4641 mac_group_type_t group_type;
4642
4643 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4644
4645 ASSERT(mac_find_ring((mac_group_handle_t)group,
4646 ring->mr_index) == (mac_ring_handle_t)ring);
4647 ASSERT((mac_group_t *)ring->mr_gh == group);
4648 ASSERT(ring->mr_type == group->mrg_type);
4649
4650 if (ring->mr_state == MR_INUSE)
4651 mac_stop_ring(ring);
4652 switch (ring->mr_type) {
4653 case MAC_RING_TYPE_RX:
4654 group_type = mip->mi_rx_group_type;
4655 cap_rings = &mip->mi_rx_rings_cap;
4656
4657 /*
4658 * Only hardware classified packets hold a reference to the
4659 * ring all the way up the Rx path. mac_rx_srs_remove()
4660 * will take care of quiescing the Rx path and removing the
4661 * SRS. The software classified path neither holds a reference
4662 * nor any association with the ring in mac_rx.
4663 */
4664 if (ring->mr_srs != NULL) {
4665 mac_rx_srs_remove(ring->mr_srs);
4666 ring->mr_srs = NULL;
4667 }
4668
4669 break;
4670 case MAC_RING_TYPE_TX:
4671 {
4672 mac_grp_client_t *mgcp;
4673 mac_client_impl_t *mcip;
4674 mac_soft_ring_set_t *mac_srs;
4675 mac_srs_tx_t *tx;
4676 mac_ring_t *rem_ring;
4677 mac_group_t *defgrp;
4678 uint_t ring_info = 0;
4679
4680 /*
4681 * For TX this function is invoked in three
4682 * cases:
4683 *
4684 * 1) In the case of a failure during the
4685 * initial creation of a group when a share is
4686 * associated with a MAC client. So the SRS is not
4687 * yet setup, and will be setup later after the
4688 * group has been reserved and populated.
4689 *
4690 * 2) From mac_release_tx_group() when freeing
4691 * a TX SRS.
4692 *
4693 * 3) In the case of aggr, when a port gets removed,
4694 * the pseudo Tx rings that it exposed gets removed.
4695 *
4696 * In the first two cases the SRS and its soft
4697 * rings are already quiesced.
4698 */
4699 if (driver_call) {
4700 mac_client_impl_t *mcip;
4701 mac_soft_ring_set_t *mac_srs;
4702 mac_soft_ring_t *sringp;
4703 mac_srs_tx_t *srs_tx;
4704
4705 if (mip->mi_state_flags & MIS_IS_AGGR &&
4706 mip->mi_default_tx_ring ==
4707 (mac_ring_handle_t)ring) {
4708 /* pick a new default Tx ring */
4709 mip->mi_default_tx_ring =
4710 (group->mrg_rings != ring) ?
4711 (mac_ring_handle_t)group->mrg_rings :
4712 (mac_ring_handle_t)(ring->mr_next);
4713 }
4714 /* Presently only aggr case comes here */
4715 if (group->mrg_state != MAC_GROUP_STATE_RESERVED)
4716 break;
4717
4718 mcip = MAC_GROUP_ONLY_CLIENT(group);
4719 ASSERT(mcip != NULL);
4720 ASSERT(mcip->mci_state_flags & MCIS_IS_AGGR);
4721 mac_srs = MCIP_TX_SRS(mcip);
4722 ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_AGGR ||
4723 mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR);
4724 srs_tx = &mac_srs->srs_tx;
4725 /*
4726 * Wakeup any callers blocked on this
4727 * Tx ring due to flow control.
4728 */
4729 sringp = srs_tx->st_soft_rings[ring->mr_index];
4730 ASSERT(sringp != NULL);
4731 mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)sringp);
4732 mac_tx_client_quiesce((mac_client_handle_t)mcip);
4733 mac_tx_srs_del_ring(mac_srs, ring);
4734 mac_tx_client_restart((mac_client_handle_t)mcip);
4735 break;
4736 }
4737 ASSERT(ring != (mac_ring_t *)mip->mi_default_tx_ring);
4738 group_type = mip->mi_tx_group_type;
4739 cap_rings = &mip->mi_tx_rings_cap;
4740 /*
4741 * See if we need to take it out of the MAC clients using
4742 * this group
4743 */
4744 if (MAC_GROUP_NO_CLIENT(group))
4745 break;
4746 mgcp = group->mrg_clients;
4747 defgrp = MAC_DEFAULT_TX_GROUP(mip);
4748 while (mgcp != NULL) {
4749 mcip = mgcp->mgc_client;
4750 mac_srs = MCIP_TX_SRS(mcip);
4751 tx = &mac_srs->srs_tx;
4752 mac_tx_client_quiesce((mac_client_handle_t)mcip);
4753 /*
4754 * If we are here when removing rings from the
4755 * defgroup, mac_reserve_tx_ring would have
4756 * already deleted the ring from the MAC
4757 * clients in the group.
4758 */
4759 if (group != defgrp) {
4760 mac_tx_invoke_callbacks(mcip,
4761 (mac_tx_cookie_t)
4762 mac_tx_srs_get_soft_ring(mac_srs, ring));
4763 mac_tx_srs_del_ring(mac_srs, ring);
4764 }
4765 /*
4766 * Additionally, if we are left with only
4767 * one ring in the group after this, we need
4768 * to modify the mode etc. to. (We haven't
4769 * yet taken the ring out, so we check with 2).
4770 */
4771 if (group->mrg_cur_count == 2) {
4772 if (ring->mr_next == NULL)
4773 rem_ring = group->mrg_rings;
4774 else
4775 rem_ring = ring->mr_next;
4776 mac_tx_invoke_callbacks(mcip,
4777 (mac_tx_cookie_t)
4778 mac_tx_srs_get_soft_ring(mac_srs,
4779 rem_ring));
4780 mac_tx_srs_del_ring(mac_srs, rem_ring);
4781 if (rem_ring->mr_state != MR_INUSE) {
4782 (void) mac_start_ring(rem_ring);
4783 }
4784 tx->st_arg2 = (void *)rem_ring;
4785 mac_tx_srs_stat_recreate(mac_srs, B_FALSE);
4786 ring_info = mac_hwring_getinfo(
4787 (mac_ring_handle_t)rem_ring);
4788 /*
4789 * We are shrinking from multiple
4790 * to 1 ring.
4791 */
4792 if (mac_srs->srs_type & SRST_BW_CONTROL) {
4793 tx->st_mode = SRS_TX_BW;
4794 } else if (mac_tx_serialize ||
4795 (ring_info & MAC_RING_TX_SERIALIZE)) {
4796 tx->st_mode = SRS_TX_SERIALIZE;
4797 } else {
4798 tx->st_mode = SRS_TX_DEFAULT;
4799 }
4800 tx->st_func = mac_tx_get_func(tx->st_mode);
4801 }
4802 mac_tx_client_restart((mac_client_handle_t)mcip);
4803 mgcp = mgcp->mgc_next;
4804 }
4805 break;
4806 }
4807 default:
4808 ASSERT(B_FALSE);
4809 }
4810
4811 /*
4812 * Remove the ring from the group.
4813 */
4814 if (ring == group->mrg_rings)
4815 group->mrg_rings = ring->mr_next;
4816 else {
4817 mac_ring_t *pre;
4818
4819 pre = group->mrg_rings;
4820 while (pre->mr_next != ring)
4821 pre = pre->mr_next;
4822 pre->mr_next = ring->mr_next;
4823 }
4824 group->mrg_cur_count--;
4825
4826 if (!driver_call) {
4827 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
4828 ASSERT(group->mrg_driver == NULL ||
4829 cap_rings->mr_gremring != NULL);
4830
4831 /*
4832 * Remove the driver level hardware ring.
4833 */
4834 if (group->mrg_driver != NULL) {
4835 cap_rings->mr_gremring(group->mrg_driver,
4836 ring->mr_driver, ring->mr_type);
4837 }
4838 }
4839
4840 ring->mr_gh = NULL;
4841 if (driver_call)
4842 mac_ring_free(mip, ring);
4843 else
4844 ring->mr_flag = 0;
4845 }
4846
4847 /*
4848 * Move a ring to the target group. If needed, remove the ring from the group
4849 * that it currently belongs to.
4850 *
4851 * The caller need to enter MAC's perimeter by calling mac_perim_enter().
4852 */
4853 static int
mac_group_mov_ring(mac_impl_t * mip,mac_group_t * d_group,mac_ring_t * ring)4854 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring)
4855 {
4856 mac_group_t *s_group = (mac_group_t *)ring->mr_gh;
4857 int rv;
4858
4859 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4860 ASSERT(d_group != NULL);
4861 ASSERT(s_group->mrg_mh == d_group->mrg_mh);
4862
4863 if (s_group == d_group)
4864 return (0);
4865
4866 /*
4867 * Remove it from current group first.
4868 */
4869 if (s_group != NULL)
4870 i_mac_group_rem_ring(s_group, ring, B_FALSE);
4871
4872 /*
4873 * Add it to the new group.
4874 */
4875 rv = i_mac_group_add_ring(d_group, ring, 0);
4876 if (rv != 0) {
4877 /*
4878 * Failed to add ring back to source group. If
4879 * that fails, the ring is stuck in limbo, log message.
4880 */
4881 if (i_mac_group_add_ring(s_group, ring, 0)) {
4882 cmn_err(CE_WARN, "%s: failed to move ring %p\n",
4883 mip->mi_name, (void *)ring);
4884 }
4885 }
4886
4887 return (rv);
4888 }
4889
4890 /*
4891 * Find a MAC address according to its value.
4892 */
4893 mac_address_t *
mac_find_macaddr(mac_impl_t * mip,uint8_t * mac_addr)4894 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr)
4895 {
4896 mac_address_t *map;
4897
4898 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4899
4900 for (map = mip->mi_addresses; map != NULL; map = map->ma_next) {
4901 if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0)
4902 break;
4903 }
4904
4905 return (map);
4906 }
4907
4908 /*
4909 * Check whether the MAC address is shared by multiple clients.
4910 */
4911 boolean_t
mac_check_macaddr_shared(mac_address_t * map)4912 mac_check_macaddr_shared(mac_address_t *map)
4913 {
4914 ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip));
4915
4916 return (map->ma_nusers > 1);
4917 }
4918
4919 /*
4920 * Remove the specified MAC address from the MAC address list and free it.
4921 */
4922 static void
mac_free_macaddr(mac_address_t * map)4923 mac_free_macaddr(mac_address_t *map)
4924 {
4925 mac_impl_t *mip = map->ma_mip;
4926
4927 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4928 ASSERT(mip->mi_addresses != NULL);
4929
4930 map = mac_find_macaddr(mip, map->ma_addr);
4931
4932 ASSERT(map != NULL);
4933 ASSERT(map->ma_nusers == 0);
4934
4935 if (map == mip->mi_addresses) {
4936 mip->mi_addresses = map->ma_next;
4937 } else {
4938 mac_address_t *pre;
4939
4940 pre = mip->mi_addresses;
4941 while (pre->ma_next != map)
4942 pre = pre->ma_next;
4943 pre->ma_next = map->ma_next;
4944 }
4945
4946 kmem_free(map, sizeof (mac_address_t));
4947 }
4948
4949 /*
4950 * Add a MAC address reference for a client. If the desired MAC address
4951 * exists, add a reference to it. Otherwise, add the new address by adding
4952 * it to a reserved group or setting promiscuous mode. Won't try different
4953 * group is the group is non-NULL, so the caller must explictly share
4954 * default group when needed.
4955 *
4956 * Note, the primary MAC address is initialized at registration time, so
4957 * to add it to default group only need to activate it if its reference
4958 * count is still zero. Also, some drivers may not have advertised RINGS
4959 * capability.
4960 */
4961 int
mac_add_macaddr(mac_impl_t * mip,mac_group_t * group,uint8_t * mac_addr,boolean_t use_hw)4962 mac_add_macaddr(mac_impl_t *mip, mac_group_t *group, uint8_t *mac_addr,
4963 boolean_t use_hw)
4964 {
4965 mac_address_t *map;
4966 int err = 0;
4967 boolean_t allocated_map = B_FALSE;
4968
4969 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4970
4971 map = mac_find_macaddr(mip, mac_addr);
4972
4973 /*
4974 * If the new MAC address has not been added. Allocate a new one
4975 * and set it up.
4976 */
4977 if (map == NULL) {
4978 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
4979 map->ma_len = mip->mi_type->mt_addr_length;
4980 bcopy(mac_addr, map->ma_addr, map->ma_len);
4981 map->ma_nusers = 0;
4982 map->ma_group = group;
4983 map->ma_mip = mip;
4984
4985 /* add the new MAC address to the head of the address list */
4986 map->ma_next = mip->mi_addresses;
4987 mip->mi_addresses = map;
4988
4989 allocated_map = B_TRUE;
4990 }
4991
4992 ASSERT(map->ma_group == NULL || map->ma_group == group);
4993 if (map->ma_group == NULL)
4994 map->ma_group = group;
4995
4996 /*
4997 * If the MAC address is already in use, simply account for the
4998 * new client.
4999 */
5000 if (map->ma_nusers++ > 0)
5001 return (0);
5002
5003 /*
5004 * Activate this MAC address by adding it to the reserved group.
5005 */
5006 if (group != NULL) {
5007 err = mac_group_addmac(group, (const uint8_t *)mac_addr);
5008 if (err == 0) {
5009 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5010 return (0);
5011 }
5012 }
5013
5014 /*
5015 * The MAC address addition failed. If the client requires a
5016 * hardware classified MAC address, fail the operation.
5017 */
5018 if (use_hw) {
5019 err = ENOSPC;
5020 goto bail;
5021 }
5022
5023 /*
5024 * Try promiscuous mode.
5025 *
5026 * For drivers that don't advertise RINGS capability, do
5027 * nothing for the primary address.
5028 */
5029 if ((group == NULL) &&
5030 (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) {
5031 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5032 return (0);
5033 }
5034
5035 /*
5036 * Enable promiscuous mode in order to receive traffic
5037 * to the new MAC address.
5038 */
5039 if ((err = i_mac_promisc_set(mip, B_TRUE)) == 0) {
5040 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC;
5041 return (0);
5042 }
5043
5044 /*
5045 * Free the MAC address that could not be added. Don't free
5046 * a pre-existing address, it could have been the entry
5047 * for the primary MAC address which was pre-allocated by
5048 * mac_init_macaddr(), and which must remain on the list.
5049 */
5050 bail:
5051 map->ma_nusers--;
5052 if (allocated_map)
5053 mac_free_macaddr(map);
5054 return (err);
5055 }
5056
5057 /*
5058 * Remove a reference to a MAC address. This may cause to remove the MAC
5059 * address from an associated group or to turn off promiscuous mode.
5060 * The caller needs to handle the failure properly.
5061 */
5062 int
mac_remove_macaddr(mac_address_t * map)5063 mac_remove_macaddr(mac_address_t *map)
5064 {
5065 mac_impl_t *mip = map->ma_mip;
5066 int err = 0;
5067
5068 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5069
5070 ASSERT(map == mac_find_macaddr(mip, map->ma_addr));
5071
5072 /*
5073 * If it's not the last client using this MAC address, only update
5074 * the MAC clients count.
5075 */
5076 if (--map->ma_nusers > 0)
5077 return (0);
5078
5079 /*
5080 * The MAC address is no longer used by any MAC client, so remove
5081 * it from its associated group, or turn off promiscuous mode
5082 * if it was enabled for the MAC address.
5083 */
5084 switch (map->ma_type) {
5085 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
5086 /*
5087 * Don't free the preset primary address for drivers that
5088 * don't advertise RINGS capability.
5089 */
5090 if (map->ma_group == NULL)
5091 return (0);
5092
5093 err = mac_group_remmac(map->ma_group, map->ma_addr);
5094 if (err == 0)
5095 map->ma_group = NULL;
5096 break;
5097 case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
5098 err = i_mac_promisc_set(mip, B_FALSE);
5099 break;
5100 default:
5101 ASSERT(B_FALSE);
5102 }
5103
5104 if (err != 0)
5105 return (err);
5106
5107 /*
5108 * We created MAC address for the primary one at registration, so we
5109 * won't free it here. mac_fini_macaddr() will take care of it.
5110 */
5111 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0)
5112 mac_free_macaddr(map);
5113
5114 return (0);
5115 }
5116
5117 /*
5118 * Update an existing MAC address. The caller need to make sure that the new
5119 * value has not been used.
5120 */
5121 int
mac_update_macaddr(mac_address_t * map,uint8_t * mac_addr)5122 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr)
5123 {
5124 mac_impl_t *mip = map->ma_mip;
5125 int err = 0;
5126
5127 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5128 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
5129
5130 switch (map->ma_type) {
5131 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
5132 /*
5133 * Update the primary address for drivers that are not
5134 * RINGS capable.
5135 */
5136 if (mip->mi_rx_groups == NULL) {
5137 err = mip->mi_unicst(mip->mi_driver, (const uint8_t *)
5138 mac_addr);
5139 if (err != 0)
5140 return (err);
5141 break;
5142 }
5143
5144 /*
5145 * If this MAC address is not currently in use,
5146 * simply break out and update the value.
5147 */
5148 if (map->ma_nusers == 0)
5149 break;
5150
5151 /*
5152 * Need to replace the MAC address associated with a group.
5153 */
5154 err = mac_group_remmac(map->ma_group, map->ma_addr);
5155 if (err != 0)
5156 return (err);
5157
5158 err = mac_group_addmac(map->ma_group, mac_addr);
5159
5160 /*
5161 * Failure hints hardware error. The MAC layer needs to
5162 * have error notification facility to handle this.
5163 * Now, simply try to restore the value.
5164 */
5165 if (err != 0)
5166 (void) mac_group_addmac(map->ma_group, map->ma_addr);
5167
5168 break;
5169 case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
5170 /*
5171 * Need to do nothing more if in promiscuous mode.
5172 */
5173 break;
5174 default:
5175 ASSERT(B_FALSE);
5176 }
5177
5178 /*
5179 * Successfully replaced the MAC address.
5180 */
5181 if (err == 0)
5182 bcopy(mac_addr, map->ma_addr, map->ma_len);
5183
5184 return (err);
5185 }
5186
5187 /*
5188 * Freshen the MAC address with new value. Its caller must have updated the
5189 * hardware MAC address before calling this function.
5190 * This funcitons is supposed to be used to handle the MAC address change
5191 * notification from underlying drivers.
5192 */
5193 void
mac_freshen_macaddr(mac_address_t * map,uint8_t * mac_addr)5194 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr)
5195 {
5196 mac_impl_t *mip = map->ma_mip;
5197
5198 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5199 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
5200
5201 /*
5202 * Freshen the MAC address with new value.
5203 */
5204 bcopy(mac_addr, map->ma_addr, map->ma_len);
5205 bcopy(mac_addr, mip->mi_addr, map->ma_len);
5206
5207 /*
5208 * Update all MAC clients that share this MAC address.
5209 */
5210 mac_unicast_update_clients(mip, map);
5211 }
5212
5213 /*
5214 * Set up the primary MAC address.
5215 */
5216 void
mac_init_macaddr(mac_impl_t * mip)5217 mac_init_macaddr(mac_impl_t *mip)
5218 {
5219 mac_address_t *map;
5220
5221 /*
5222 * The reference count is initialized to zero, until it's really
5223 * activated.
5224 */
5225 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
5226 map->ma_len = mip->mi_type->mt_addr_length;
5227 bcopy(mip->mi_addr, map->ma_addr, map->ma_len);
5228
5229 /*
5230 * If driver advertises RINGS capability, it shouldn't have initialized
5231 * its primary MAC address. For other drivers, including VNIC, the
5232 * primary address must work after registration.
5233 */
5234 if (mip->mi_rx_groups == NULL)
5235 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5236
5237 map->ma_mip = mip;
5238
5239 mip->mi_addresses = map;
5240 }
5241
5242 /*
5243 * Clean up the primary MAC address. Note, only one primary MAC address
5244 * is allowed. All other MAC addresses must have been freed appropriately.
5245 */
5246 void
mac_fini_macaddr(mac_impl_t * mip)5247 mac_fini_macaddr(mac_impl_t *mip)
5248 {
5249 mac_address_t *map = mip->mi_addresses;
5250
5251 if (map == NULL)
5252 return;
5253
5254 /*
5255 * If mi_addresses is initialized, there should be exactly one
5256 * entry left on the list with no users.
5257 */
5258 ASSERT(map->ma_nusers == 0);
5259 ASSERT(map->ma_next == NULL);
5260
5261 kmem_free(map, sizeof (mac_address_t));
5262 mip->mi_addresses = NULL;
5263 }
5264
5265 /*
5266 * Logging related functions.
5267 *
5268 * Note that Kernel statistics have been extended to maintain fine
5269 * granularity of statistics viz. hardware lane, software lane, fanout
5270 * stats etc. However, extended accounting continues to support only
5271 * aggregate statistics like before.
5272 */
5273
5274 /* Write the flow description to a netinfo_t record */
5275 static netinfo_t *
mac_write_flow_desc(flow_entry_t * flent,mac_client_impl_t * mcip)5276 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip)
5277 {
5278 netinfo_t *ninfo;
5279 net_desc_t *ndesc;
5280 flow_desc_t *fdesc;
5281 mac_resource_props_t *mrp;
5282
5283 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5284 if (ninfo == NULL)
5285 return (NULL);
5286 ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP);
5287 if (ndesc == NULL) {
5288 kmem_free(ninfo, sizeof (netinfo_t));
5289 return (NULL);
5290 }
5291
5292 /*
5293 * Grab the fe_lock to see a self-consistent fe_flow_desc.
5294 * Updates to the fe_flow_desc are done under the fe_lock
5295 */
5296 mutex_enter(&flent->fe_lock);
5297 fdesc = &flent->fe_flow_desc;
5298 mrp = &flent->fe_resource_props;
5299
5300 ndesc->nd_name = flent->fe_flow_name;
5301 ndesc->nd_devname = mcip->mci_name;
5302 bcopy(fdesc->fd_src_mac, ndesc->nd_ehost, ETHERADDRL);
5303 bcopy(fdesc->fd_dst_mac, ndesc->nd_edest, ETHERADDRL);
5304 ndesc->nd_sap = htonl(fdesc->fd_sap);
5305 ndesc->nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION;
5306 ndesc->nd_bw_limit = mrp->mrp_maxbw;
5307 if (ndesc->nd_isv4) {
5308 ndesc->nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]);
5309 ndesc->nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]);
5310 } else {
5311 bcopy(&fdesc->fd_local_addr, ndesc->nd_saddr, IPV6_ADDR_LEN);
5312 bcopy(&fdesc->fd_remote_addr, ndesc->nd_daddr, IPV6_ADDR_LEN);
5313 }
5314 ndesc->nd_sport = htons(fdesc->fd_local_port);
5315 ndesc->nd_dport = htons(fdesc->fd_remote_port);
5316 ndesc->nd_protocol = (uint8_t)fdesc->fd_protocol;
5317 mutex_exit(&flent->fe_lock);
5318
5319 ninfo->ni_record = ndesc;
5320 ninfo->ni_size = sizeof (net_desc_t);
5321 ninfo->ni_type = EX_NET_FLDESC_REC;
5322
5323 return (ninfo);
5324 }
5325
5326 /* Write the flow statistics to a netinfo_t record */
5327 static netinfo_t *
mac_write_flow_stats(flow_entry_t * flent)5328 mac_write_flow_stats(flow_entry_t *flent)
5329 {
5330 netinfo_t *ninfo;
5331 net_stat_t *nstat;
5332 mac_soft_ring_set_t *mac_srs;
5333 mac_rx_stats_t *mac_rx_stat;
5334 mac_tx_stats_t *mac_tx_stat;
5335 int i;
5336
5337 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5338 if (ninfo == NULL)
5339 return (NULL);
5340 nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP);
5341 if (nstat == NULL) {
5342 kmem_free(ninfo, sizeof (netinfo_t));
5343 return (NULL);
5344 }
5345
5346 nstat->ns_name = flent->fe_flow_name;
5347 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
5348 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
5349 mac_rx_stat = &mac_srs->srs_rx.sr_stat;
5350
5351 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes +
5352 mac_rx_stat->mrs_pollbytes + mac_rx_stat->mrs_lclbytes;
5353 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt +
5354 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
5355 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors;
5356 }
5357
5358 mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs);
5359 if (mac_srs != NULL) {
5360 mac_tx_stat = &mac_srs->srs_tx.st_stat;
5361
5362 nstat->ns_obytes = mac_tx_stat->mts_obytes;
5363 nstat->ns_opackets = mac_tx_stat->mts_opackets;
5364 nstat->ns_oerrors = mac_tx_stat->mts_oerrors;
5365 }
5366
5367 ninfo->ni_record = nstat;
5368 ninfo->ni_size = sizeof (net_stat_t);
5369 ninfo->ni_type = EX_NET_FLSTAT_REC;
5370
5371 return (ninfo);
5372 }
5373
5374 /* Write the link description to a netinfo_t record */
5375 static netinfo_t *
mac_write_link_desc(mac_client_impl_t * mcip)5376 mac_write_link_desc(mac_client_impl_t *mcip)
5377 {
5378 netinfo_t *ninfo;
5379 net_desc_t *ndesc;
5380 flow_entry_t *flent = mcip->mci_flent;
5381
5382 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5383 if (ninfo == NULL)
5384 return (NULL);
5385 ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP);
5386 if (ndesc == NULL) {
5387 kmem_free(ninfo, sizeof (netinfo_t));
5388 return (NULL);
5389 }
5390
5391 ndesc->nd_name = mcip->mci_name;
5392 ndesc->nd_devname = mcip->mci_name;
5393 ndesc->nd_isv4 = B_TRUE;
5394 /*
5395 * Grab the fe_lock to see a self-consistent fe_flow_desc.
5396 * Updates to the fe_flow_desc are done under the fe_lock
5397 * after removing the flent from the flow table.
5398 */
5399 mutex_enter(&flent->fe_lock);
5400 bcopy(flent->fe_flow_desc.fd_src_mac, ndesc->nd_ehost, ETHERADDRL);
5401 mutex_exit(&flent->fe_lock);
5402
5403 ninfo->ni_record = ndesc;
5404 ninfo->ni_size = sizeof (net_desc_t);
5405 ninfo->ni_type = EX_NET_LNDESC_REC;
5406
5407 return (ninfo);
5408 }
5409
5410 /* Write the link statistics to a netinfo_t record */
5411 static netinfo_t *
mac_write_link_stats(mac_client_impl_t * mcip)5412 mac_write_link_stats(mac_client_impl_t *mcip)
5413 {
5414 netinfo_t *ninfo;
5415 net_stat_t *nstat;
5416 flow_entry_t *flent;
5417 mac_soft_ring_set_t *mac_srs;
5418 mac_rx_stats_t *mac_rx_stat;
5419 mac_tx_stats_t *mac_tx_stat;
5420 int i;
5421
5422 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5423 if (ninfo == NULL)
5424 return (NULL);
5425 nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP);
5426 if (nstat == NULL) {
5427 kmem_free(ninfo, sizeof (netinfo_t));
5428 return (NULL);
5429 }
5430
5431 nstat->ns_name = mcip->mci_name;
5432 flent = mcip->mci_flent;
5433 if (flent != NULL) {
5434 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
5435 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
5436 mac_rx_stat = &mac_srs->srs_rx.sr_stat;
5437
5438 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes +
5439 mac_rx_stat->mrs_pollbytes +
5440 mac_rx_stat->mrs_lclbytes;
5441 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt +
5442 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
5443 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors;
5444 }
5445 }
5446
5447 mac_srs = (mac_soft_ring_set_t *)(mcip->mci_flent->fe_tx_srs);
5448 if (mac_srs != NULL) {
5449 mac_tx_stat = &mac_srs->srs_tx.st_stat;
5450
5451 nstat->ns_obytes = mac_tx_stat->mts_obytes;
5452 nstat->ns_opackets = mac_tx_stat->mts_opackets;
5453 nstat->ns_oerrors = mac_tx_stat->mts_oerrors;
5454 }
5455
5456 ninfo->ni_record = nstat;
5457 ninfo->ni_size = sizeof (net_stat_t);
5458 ninfo->ni_type = EX_NET_LNSTAT_REC;
5459
5460 return (ninfo);
5461 }
5462
5463 typedef struct i_mac_log_state_s {
5464 boolean_t mi_last;
5465 int mi_fenable;
5466 int mi_lenable;
5467 list_t *mi_list;
5468 } i_mac_log_state_t;
5469
5470 /*
5471 * For a given flow, if the description has not been logged before, do it now.
5472 * If it is a VNIC, then we have collected information about it from the MAC
5473 * table, so skip it.
5474 *
5475 * Called through mac_flow_walk_nolock()
5476 *
5477 * Return 0 if successful.
5478 */
5479 static int
mac_log_flowinfo(flow_entry_t * flent,void * arg)5480 mac_log_flowinfo(flow_entry_t *flent, void *arg)
5481 {
5482 mac_client_impl_t *mcip = flent->fe_mcip;
5483 i_mac_log_state_t *lstate = arg;
5484 netinfo_t *ninfo;
5485
5486 if (mcip == NULL)
5487 return (0);
5488
5489 /*
5490 * If the name starts with "vnic", and fe_user_generated is true (to
5491 * exclude the mcast and active flow entries created implicitly for
5492 * a vnic, it is a VNIC flow. i.e. vnic1 is a vnic flow,
5493 * vnic/bge1/mcast1 is not and neither is vnic/bge1/active.
5494 */
5495 if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 &&
5496 (flent->fe_type & FLOW_USER) != 0) {
5497 return (0);
5498 }
5499
5500 if (!flent->fe_desc_logged) {
5501 /*
5502 * We don't return error because we want to continue the
5503 * walk in case this is the last walk which means we
5504 * need to reset fe_desc_logged in all the flows.
5505 */
5506 if ((ninfo = mac_write_flow_desc(flent, mcip)) == NULL)
5507 return (0);
5508 list_insert_tail(lstate->mi_list, ninfo);
5509 flent->fe_desc_logged = B_TRUE;
5510 }
5511
5512 /*
5513 * Regardless of the error, we want to proceed in case we have to
5514 * reset fe_desc_logged.
5515 */
5516 ninfo = mac_write_flow_stats(flent);
5517 if (ninfo == NULL)
5518 return (-1);
5519
5520 list_insert_tail(lstate->mi_list, ninfo);
5521
5522 if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED))
5523 flent->fe_desc_logged = B_FALSE;
5524
5525 return (0);
5526 }
5527
5528 /*
5529 * Log the description for each mac client of this mac_impl_t, if it
5530 * hasn't already been done. Additionally, log statistics for the link as
5531 * well. Walk the flow table and log information for each flow as well.
5532 * If it is the last walk (mci_last), then we turn off mci_desc_logged (and
5533 * also fe_desc_logged, if flow logging is on) since we want to log the
5534 * description if and when logging is restarted.
5535 *
5536 * Return 0 upon success or -1 upon failure
5537 */
5538 static int
i_mac_impl_log(mac_impl_t * mip,i_mac_log_state_t * lstate)5539 i_mac_impl_log(mac_impl_t *mip, i_mac_log_state_t *lstate)
5540 {
5541 mac_client_impl_t *mcip;
5542 netinfo_t *ninfo;
5543
5544 i_mac_perim_enter(mip);
5545 /*
5546 * Only walk the client list for NIC and etherstub
5547 */
5548 if ((mip->mi_state_flags & MIS_DISABLED) ||
5549 ((mip->mi_state_flags & MIS_IS_VNIC) &&
5550 (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) {
5551 i_mac_perim_exit(mip);
5552 return (0);
5553 }
5554
5555 for (mcip = mip->mi_clients_list; mcip != NULL;
5556 mcip = mcip->mci_client_next) {
5557 if (!MCIP_DATAPATH_SETUP(mcip))
5558 continue;
5559 if (lstate->mi_lenable) {
5560 if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) {
5561 ninfo = mac_write_link_desc(mcip);
5562 if (ninfo == NULL) {
5563 /*
5564 * We can't terminate it if this is the last
5565 * walk, else there might be some links with
5566 * mi_desc_logged set to true, which means
5567 * their description won't be logged the next
5568 * time logging is started (similarly for the
5569 * flows within such links). We can continue
5570 * without walking the flow table (i.e. to
5571 * set fe_desc_logged to false) because we
5572 * won't have written any flow stuff for this
5573 * link as we haven't logged the link itself.
5574 */
5575 i_mac_perim_exit(mip);
5576 if (lstate->mi_last)
5577 return (0);
5578 else
5579 return (-1);
5580 }
5581 mcip->mci_state_flags |= MCIS_DESC_LOGGED;
5582 list_insert_tail(lstate->mi_list, ninfo);
5583 }
5584 }
5585
5586 ninfo = mac_write_link_stats(mcip);
5587 if (ninfo == NULL && !lstate->mi_last) {
5588 i_mac_perim_exit(mip);
5589 return (-1);
5590 }
5591 list_insert_tail(lstate->mi_list, ninfo);
5592
5593 if (lstate->mi_last)
5594 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED;
5595
5596 if (lstate->mi_fenable) {
5597 if (mcip->mci_subflow_tab != NULL) {
5598 (void) mac_flow_walk_nolock(
5599 mcip->mci_subflow_tab, mac_log_flowinfo,
5600 lstate);
5601 }
5602 }
5603 }
5604 i_mac_perim_exit(mip);
5605 return (0);
5606 }
5607
5608 /*
5609 * modhash walker function to add a mac_impl_t to a list
5610 */
5611 /*ARGSUSED*/
5612 static uint_t
i_mac_impl_list_walker(mod_hash_key_t key,mod_hash_val_t * val,void * arg)5613 i_mac_impl_list_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
5614 {
5615 list_t *list = (list_t *)arg;
5616 mac_impl_t *mip = (mac_impl_t *)val;
5617
5618 if ((mip->mi_state_flags & MIS_DISABLED) == 0) {
5619 list_insert_tail(list, mip);
5620 mip->mi_ref++;
5621 }
5622
5623 return (MH_WALK_CONTINUE);
5624 }
5625
5626 void
i_mac_log_info(list_t * net_log_list,i_mac_log_state_t * lstate)5627 i_mac_log_info(list_t *net_log_list, i_mac_log_state_t *lstate)
5628 {
5629 list_t mac_impl_list;
5630 mac_impl_t *mip;
5631 netinfo_t *ninfo;
5632
5633 /* Create list of mac_impls */
5634 ASSERT(RW_LOCK_HELD(&i_mac_impl_lock));
5635 list_create(&mac_impl_list, sizeof (mac_impl_t), offsetof(mac_impl_t,
5636 mi_node));
5637 mod_hash_walk(i_mac_impl_hash, i_mac_impl_list_walker, &mac_impl_list);
5638 rw_exit(&i_mac_impl_lock);
5639
5640 /* Create log entries for each mac_impl */
5641 for (mip = list_head(&mac_impl_list); mip != NULL;
5642 mip = list_next(&mac_impl_list, mip)) {
5643 if (i_mac_impl_log(mip, lstate) != 0)
5644 continue;
5645 }
5646
5647 /* Remove elements and destroy list of mac_impls */
5648 rw_enter(&i_mac_impl_lock, RW_WRITER);
5649 while ((mip = list_remove_tail(&mac_impl_list)) != NULL) {
5650 mip->mi_ref--;
5651 }
5652 rw_exit(&i_mac_impl_lock);
5653 list_destroy(&mac_impl_list);
5654
5655 /*
5656 * Write log entries to files outside of locks, free associated
5657 * structures, and remove entries from the list.
5658 */
5659 while ((ninfo = list_head(net_log_list)) != NULL) {
5660 (void) exacct_commit_netinfo(ninfo->ni_record, ninfo->ni_type);
5661 list_remove(net_log_list, ninfo);
5662 kmem_free(ninfo->ni_record, ninfo->ni_size);
5663 kmem_free(ninfo, sizeof (*ninfo));
5664 }
5665 list_destroy(net_log_list);
5666 }
5667
5668 /*
5669 * The timer thread that runs every mac_logging_interval seconds and logs
5670 * link and/or flow information.
5671 */
5672 /* ARGSUSED */
5673 void
mac_log_linkinfo(void * arg)5674 mac_log_linkinfo(void *arg)
5675 {
5676 i_mac_log_state_t lstate;
5677 list_t net_log_list;
5678
5679 list_create(&net_log_list, sizeof (netinfo_t),
5680 offsetof(netinfo_t, ni_link));
5681
5682 rw_enter(&i_mac_impl_lock, RW_READER);
5683 if (!mac_flow_log_enable && !mac_link_log_enable) {
5684 rw_exit(&i_mac_impl_lock);
5685 return;
5686 }
5687 lstate.mi_fenable = mac_flow_log_enable;
5688 lstate.mi_lenable = mac_link_log_enable;
5689 lstate.mi_last = B_FALSE;
5690 lstate.mi_list = &net_log_list;
5691
5692 /* Write log entries for each mac_impl in the list */
5693 i_mac_log_info(&net_log_list, &lstate);
5694
5695 if (mac_flow_log_enable || mac_link_log_enable) {
5696 mac_logging_timer = timeout(mac_log_linkinfo, NULL,
5697 SEC_TO_TICK(mac_logging_interval));
5698 }
5699 }
5700
5701 typedef struct i_mac_fastpath_state_s {
5702 boolean_t mf_disable;
5703 int mf_err;
5704 } i_mac_fastpath_state_t;
5705
5706 /* modhash walker function to enable or disable fastpath */
5707 /*ARGSUSED*/
5708 static uint_t
i_mac_fastpath_walker(mod_hash_key_t key,mod_hash_val_t * val,void * arg)5709 i_mac_fastpath_walker(mod_hash_key_t key, mod_hash_val_t *val,
5710 void *arg)
5711 {
5712 i_mac_fastpath_state_t *state = arg;
5713 mac_handle_t mh = (mac_handle_t)val;
5714
5715 if (state->mf_disable)
5716 state->mf_err = mac_fastpath_disable(mh);
5717 else
5718 mac_fastpath_enable(mh);
5719
5720 return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE);
5721 }
5722
5723 /*
5724 * Start the logging timer.
5725 */
5726 int
mac_start_logusage(mac_logtype_t type,uint_t interval)5727 mac_start_logusage(mac_logtype_t type, uint_t interval)
5728 {
5729 i_mac_fastpath_state_t dstate = {B_TRUE, 0};
5730 i_mac_fastpath_state_t estate = {B_FALSE, 0};
5731 int err;
5732
5733 rw_enter(&i_mac_impl_lock, RW_WRITER);
5734 switch (type) {
5735 case MAC_LOGTYPE_FLOW:
5736 if (mac_flow_log_enable) {
5737 rw_exit(&i_mac_impl_lock);
5738 return (0);
5739 }
5740 /* FALLTHRU */
5741 case MAC_LOGTYPE_LINK:
5742 if (mac_link_log_enable) {
5743 rw_exit(&i_mac_impl_lock);
5744 return (0);
5745 }
5746 break;
5747 default:
5748 ASSERT(0);
5749 }
5750
5751 /* Disable fastpath */
5752 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &dstate);
5753 if ((err = dstate.mf_err) != 0) {
5754 /* Reenable fastpath */
5755 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate);
5756 rw_exit(&i_mac_impl_lock);
5757 return (err);
5758 }
5759
5760 switch (type) {
5761 case MAC_LOGTYPE_FLOW:
5762 mac_flow_log_enable = B_TRUE;
5763 /* FALLTHRU */
5764 case MAC_LOGTYPE_LINK:
5765 mac_link_log_enable = B_TRUE;
5766 break;
5767 }
5768
5769 mac_logging_interval = interval;
5770 rw_exit(&i_mac_impl_lock);
5771 mac_log_linkinfo(NULL);
5772 return (0);
5773 }
5774
5775 /*
5776 * Stop the logging timer if both link and flow logging are turned off.
5777 */
5778 void
mac_stop_logusage(mac_logtype_t type)5779 mac_stop_logusage(mac_logtype_t type)
5780 {
5781 i_mac_log_state_t lstate;
5782 i_mac_fastpath_state_t estate = {B_FALSE, 0};
5783 list_t net_log_list;
5784
5785 list_create(&net_log_list, sizeof (netinfo_t),
5786 offsetof(netinfo_t, ni_link));
5787
5788 rw_enter(&i_mac_impl_lock, RW_WRITER);
5789
5790 lstate.mi_fenable = mac_flow_log_enable;
5791 lstate.mi_lenable = mac_link_log_enable;
5792 lstate.mi_list = &net_log_list;
5793
5794 /* Last walk */
5795 lstate.mi_last = B_TRUE;
5796
5797 switch (type) {
5798 case MAC_LOGTYPE_FLOW:
5799 if (lstate.mi_fenable) {
5800 ASSERT(mac_link_log_enable);
5801 mac_flow_log_enable = B_FALSE;
5802 mac_link_log_enable = B_FALSE;
5803 break;
5804 }
5805 /* FALLTHRU */
5806 case MAC_LOGTYPE_LINK:
5807 if (!lstate.mi_lenable || mac_flow_log_enable) {
5808 rw_exit(&i_mac_impl_lock);
5809 return;
5810 }
5811 mac_link_log_enable = B_FALSE;
5812 break;
5813 default:
5814 ASSERT(0);
5815 }
5816
5817 /* Reenable fastpath */
5818 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate);
5819
5820 (void) untimeout(mac_logging_timer);
5821 mac_logging_timer = 0;
5822
5823 /* Write log entries for each mac_impl in the list */
5824 i_mac_log_info(&net_log_list, &lstate);
5825 }
5826
5827 /*
5828 * Walk the rx and tx SRS/SRs for a flow and update the priority value.
5829 */
5830 void
mac_flow_update_priority(mac_client_impl_t * mcip,flow_entry_t * flent)5831 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent)
5832 {
5833 pri_t pri;
5834 int count;
5835 mac_soft_ring_set_t *mac_srs;
5836
5837 if (flent->fe_rx_srs_cnt <= 0)
5838 return;
5839
5840 if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type ==
5841 SRST_FLOW) {
5842 pri = FLOW_PRIORITY(mcip->mci_min_pri,
5843 mcip->mci_max_pri,
5844 flent->fe_resource_props.mrp_priority);
5845 } else {
5846 pri = mcip->mci_max_pri;
5847 }
5848
5849 for (count = 0; count < flent->fe_rx_srs_cnt; count++) {
5850 mac_srs = flent->fe_rx_srs[count];
5851 mac_update_srs_priority(mac_srs, pri);
5852 }
5853 /*
5854 * If we have a Tx SRS, we need to modify all the threads associated
5855 * with it.
5856 */
5857 if (flent->fe_tx_srs != NULL)
5858 mac_update_srs_priority(flent->fe_tx_srs, pri);
5859 }
5860
5861 /*
5862 * RX and TX rings are reserved according to different semantics depending
5863 * on the requests from the MAC clients and type of rings:
5864 *
5865 * On the Tx side, by default we reserve individual rings, independently from
5866 * the groups.
5867 *
5868 * On the Rx side, the reservation is at the granularity of the group
5869 * of rings, and used for v12n level 1 only. It has a special case for the
5870 * primary client.
5871 *
5872 * If a share is allocated to a MAC client, we allocate a TX group and an
5873 * RX group to the client, and assign TX rings and RX rings to these
5874 * groups according to information gathered from the driver through
5875 * the share capability.
5876 *
5877 * The foreseable evolution of Rx rings will handle v12n level 2 and higher
5878 * to allocate individual rings out of a group and program the hw classifier
5879 * based on IP address or higher level criteria.
5880 */
5881
5882 /*
5883 * mac_reserve_tx_ring()
5884 * Reserve a unused ring by marking it with MR_INUSE state.
5885 * As reserved, the ring is ready to function.
5886 *
5887 * Notes for Hybrid I/O:
5888 *
5889 * If a specific ring is needed, it is specified through the desired_ring
5890 * argument. Otherwise that argument is set to NULL.
5891 * If the desired ring was previous allocated to another client, this
5892 * function swaps it with a new ring from the group of unassigned rings.
5893 */
5894 mac_ring_t *
mac_reserve_tx_ring(mac_impl_t * mip,mac_ring_t * desired_ring)5895 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring)
5896 {
5897 mac_group_t *group;
5898 mac_grp_client_t *mgcp;
5899 mac_client_impl_t *mcip;
5900 mac_soft_ring_set_t *srs;
5901
5902 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5903
5904 /*
5905 * Find an available ring and start it before changing its status.
5906 * The unassigned rings are at the end of the mi_tx_groups
5907 * array.
5908 */
5909 group = MAC_DEFAULT_TX_GROUP(mip);
5910
5911 /* Can't take the default ring out of the default group */
5912 ASSERT(desired_ring != (mac_ring_t *)mip->mi_default_tx_ring);
5913
5914 if (desired_ring->mr_state == MR_FREE) {
5915 ASSERT(MAC_GROUP_NO_CLIENT(group));
5916 if (mac_start_ring(desired_ring) != 0)
5917 return (NULL);
5918 return (desired_ring);
5919 }
5920 /*
5921 * There are clients using this ring, so let's move the clients
5922 * away from using this ring.
5923 */
5924 for (mgcp = group->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
5925 mcip = mgcp->mgc_client;
5926 mac_tx_client_quiesce((mac_client_handle_t)mcip);
5927 srs = MCIP_TX_SRS(mcip);
5928 ASSERT(mac_tx_srs_ring_present(srs, desired_ring));
5929 mac_tx_invoke_callbacks(mcip,
5930 (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(srs,
5931 desired_ring));
5932 mac_tx_srs_del_ring(srs, desired_ring);
5933 mac_tx_client_restart((mac_client_handle_t)mcip);
5934 }
5935 return (desired_ring);
5936 }
5937
5938 /*
5939 * For a reserved group with multiple clients, return the primary client.
5940 */
5941 static mac_client_impl_t *
mac_get_grp_primary(mac_group_t * grp)5942 mac_get_grp_primary(mac_group_t *grp)
5943 {
5944 mac_grp_client_t *mgcp = grp->mrg_clients;
5945 mac_client_impl_t *mcip;
5946
5947 while (mgcp != NULL) {
5948 mcip = mgcp->mgc_client;
5949 if (mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC)
5950 return (mcip);
5951 mgcp = mgcp->mgc_next;
5952 }
5953 return (NULL);
5954 }
5955
5956 /*
5957 * Hybrid I/O specifies the ring that should be given to a share.
5958 * If the ring is already used by clients, then we need to release
5959 * the ring back to the default group so that we can give it to
5960 * the share. This means the clients using this ring now get a
5961 * replacement ring. If there aren't any replacement rings, this
5962 * function returns a failure.
5963 */
5964 static int
mac_reclaim_ring_from_grp(mac_impl_t * mip,mac_ring_type_t ring_type,mac_ring_t * ring,mac_ring_t ** rings,int nrings)5965 mac_reclaim_ring_from_grp(mac_impl_t *mip, mac_ring_type_t ring_type,
5966 mac_ring_t *ring, mac_ring_t **rings, int nrings)
5967 {
5968 mac_group_t *group = (mac_group_t *)ring->mr_gh;
5969 mac_resource_props_t *mrp;
5970 mac_client_impl_t *mcip;
5971 mac_group_t *defgrp;
5972 mac_ring_t *tring;
5973 mac_group_t *tgrp;
5974 int i;
5975 int j;
5976
5977 mcip = MAC_GROUP_ONLY_CLIENT(group);
5978 if (mcip == NULL)
5979 mcip = mac_get_grp_primary(group);
5980 ASSERT(mcip != NULL);
5981 ASSERT(mcip->mci_share == NULL);
5982
5983 mrp = MCIP_RESOURCE_PROPS(mcip);
5984 if (ring_type == MAC_RING_TYPE_RX) {
5985 defgrp = mip->mi_rx_donor_grp;
5986 if ((mrp->mrp_mask & MRP_RX_RINGS) == 0) {
5987 /* Need to put this mac client in the default group */
5988 if (mac_rx_switch_group(mcip, group, defgrp) != 0)
5989 return (ENOSPC);
5990 } else {
5991 /*
5992 * Switch this ring with some other ring from
5993 * the default group.
5994 */
5995 for (tring = defgrp->mrg_rings; tring != NULL;
5996 tring = tring->mr_next) {
5997 if (tring->mr_index == 0)
5998 continue;
5999 for (j = 0; j < nrings; j++) {
6000 if (rings[j] == tring)
6001 break;
6002 }
6003 if (j >= nrings)
6004 break;
6005 }
6006 if (tring == NULL)
6007 return (ENOSPC);
6008 if (mac_group_mov_ring(mip, group, tring) != 0)
6009 return (ENOSPC);
6010 if (mac_group_mov_ring(mip, defgrp, ring) != 0) {
6011 (void) mac_group_mov_ring(mip, defgrp, tring);
6012 return (ENOSPC);
6013 }
6014 }
6015 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp);
6016 return (0);
6017 }
6018
6019 defgrp = MAC_DEFAULT_TX_GROUP(mip);
6020 if (ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6021 /*
6022 * See if we can get a spare ring to replace the default
6023 * ring.
6024 */
6025 if (defgrp->mrg_cur_count == 1) {
6026 /*
6027 * Need to get a ring from another client, see if
6028 * there are any clients that can be moved to
6029 * the default group, thereby freeing some rings.
6030 */
6031 for (i = 0; i < mip->mi_tx_group_count; i++) {
6032 tgrp = &mip->mi_tx_groups[i];
6033 if (tgrp->mrg_state ==
6034 MAC_GROUP_STATE_REGISTERED) {
6035 continue;
6036 }
6037 mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
6038 if (mcip == NULL)
6039 mcip = mac_get_grp_primary(tgrp);
6040 ASSERT(mcip != NULL);
6041 mrp = MCIP_RESOURCE_PROPS(mcip);
6042 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) {
6043 ASSERT(tgrp->mrg_cur_count == 1);
6044 /*
6045 * If this ring is part of the
6046 * rings asked by the share we cannot
6047 * use it as the default ring.
6048 */
6049 for (j = 0; j < nrings; j++) {
6050 if (rings[j] == tgrp->mrg_rings)
6051 break;
6052 }
6053 if (j < nrings)
6054 continue;
6055 mac_tx_client_quiesce(
6056 (mac_client_handle_t)mcip);
6057 mac_tx_switch_group(mcip, tgrp,
6058 defgrp);
6059 mac_tx_client_restart(
6060 (mac_client_handle_t)mcip);
6061 break;
6062 }
6063 }
6064 /*
6065 * All the rings are reserved, can't give up the
6066 * default ring.
6067 */
6068 if (defgrp->mrg_cur_count <= 1)
6069 return (ENOSPC);
6070 }
6071 /*
6072 * Swap the default ring with another.
6073 */
6074 for (tring = defgrp->mrg_rings; tring != NULL;
6075 tring = tring->mr_next) {
6076 /*
6077 * If this ring is part of the rings asked by the
6078 * share we cannot use it as the default ring.
6079 */
6080 for (j = 0; j < nrings; j++) {
6081 if (rings[j] == tring)
6082 break;
6083 }
6084 if (j >= nrings)
6085 break;
6086 }
6087 ASSERT(tring != NULL);
6088 mip->mi_default_tx_ring = (mac_ring_handle_t)tring;
6089 return (0);
6090 }
6091 /*
6092 * The Tx ring is with a group reserved by a MAC client. See if
6093 * we can swap it.
6094 */
6095 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
6096 mcip = MAC_GROUP_ONLY_CLIENT(group);
6097 if (mcip == NULL)
6098 mcip = mac_get_grp_primary(group);
6099 ASSERT(mcip != NULL);
6100 mrp = MCIP_RESOURCE_PROPS(mcip);
6101 mac_tx_client_quiesce((mac_client_handle_t)mcip);
6102 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) {
6103 ASSERT(group->mrg_cur_count == 1);
6104 /* Put this mac client in the default group */
6105 mac_tx_switch_group(mcip, group, defgrp);
6106 } else {
6107 /*
6108 * Switch this ring with some other ring from
6109 * the default group.
6110 */
6111 for (tring = defgrp->mrg_rings; tring != NULL;
6112 tring = tring->mr_next) {
6113 if (tring == (mac_ring_t *)mip->mi_default_tx_ring)
6114 continue;
6115 /*
6116 * If this ring is part of the rings asked by the
6117 * share we cannot use it for swapping.
6118 */
6119 for (j = 0; j < nrings; j++) {
6120 if (rings[j] == tring)
6121 break;
6122 }
6123 if (j >= nrings)
6124 break;
6125 }
6126 if (tring == NULL) {
6127 mac_tx_client_restart((mac_client_handle_t)mcip);
6128 return (ENOSPC);
6129 }
6130 if (mac_group_mov_ring(mip, group, tring) != 0) {
6131 mac_tx_client_restart((mac_client_handle_t)mcip);
6132 return (ENOSPC);
6133 }
6134 if (mac_group_mov_ring(mip, defgrp, ring) != 0) {
6135 (void) mac_group_mov_ring(mip, defgrp, tring);
6136 mac_tx_client_restart((mac_client_handle_t)mcip);
6137 return (ENOSPC);
6138 }
6139 }
6140 mac_tx_client_restart((mac_client_handle_t)mcip);
6141 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp);
6142 return (0);
6143 }
6144
6145 /*
6146 * Populate a zero-ring group with rings. If the share is non-NULL,
6147 * the rings are chosen according to that share.
6148 * Invoked after allocating a new RX or TX group through
6149 * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively.
6150 * Returns zero on success, an errno otherwise.
6151 */
6152 int
i_mac_group_allocate_rings(mac_impl_t * mip,mac_ring_type_t ring_type,mac_group_t * src_group,mac_group_t * new_group,mac_share_handle_t share,uint32_t ringcnt)6153 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type,
6154 mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share,
6155 uint32_t ringcnt)
6156 {
6157 mac_ring_t **rings, *ring;
6158 uint_t nrings;
6159 int rv = 0, i = 0, j;
6160
6161 ASSERT((ring_type == MAC_RING_TYPE_RX &&
6162 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) ||
6163 (ring_type == MAC_RING_TYPE_TX &&
6164 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC));
6165
6166 /*
6167 * First find the rings to allocate to the group.
6168 */
6169 if (share != NULL) {
6170 /* get rings through ms_squery() */
6171 mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings);
6172 ASSERT(nrings != 0);
6173 rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t),
6174 KM_SLEEP);
6175 mip->mi_share_capab.ms_squery(share, ring_type,
6176 (mac_ring_handle_t *)rings, &nrings);
6177 for (i = 0; i < nrings; i++) {
6178 /*
6179 * If we have given this ring to a non-default
6180 * group, we need to check if we can get this
6181 * ring.
6182 */
6183 ring = rings[i];
6184 if (ring->mr_gh != (mac_group_handle_t)src_group ||
6185 ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6186 if (mac_reclaim_ring_from_grp(mip, ring_type,
6187 ring, rings, nrings) != 0) {
6188 rv = ENOSPC;
6189 goto bail;
6190 }
6191 }
6192 }
6193 } else {
6194 /*
6195 * Pick one ring from default group.
6196 *
6197 * for now pick the second ring which requires the first ring
6198 * at index 0 to stay in the default group, since it is the
6199 * ring which carries the multicast traffic.
6200 * We need a better way for a driver to indicate this,
6201 * for example a per-ring flag.
6202 */
6203 rings = kmem_alloc(ringcnt * sizeof (mac_ring_handle_t),
6204 KM_SLEEP);
6205 for (ring = src_group->mrg_rings; ring != NULL;
6206 ring = ring->mr_next) {
6207 if (ring_type == MAC_RING_TYPE_RX &&
6208 ring->mr_index == 0) {
6209 continue;
6210 }
6211 if (ring_type == MAC_RING_TYPE_TX &&
6212 ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6213 continue;
6214 }
6215 rings[i++] = ring;
6216 if (i == ringcnt)
6217 break;
6218 }
6219 ASSERT(ring != NULL);
6220 nrings = i;
6221 /* Not enough rings as required */
6222 if (nrings != ringcnt) {
6223 rv = ENOSPC;
6224 goto bail;
6225 }
6226 }
6227
6228 switch (ring_type) {
6229 case MAC_RING_TYPE_RX:
6230 if (src_group->mrg_cur_count - nrings < 1) {
6231 /* we ran out of rings */
6232 rv = ENOSPC;
6233 goto bail;
6234 }
6235
6236 /* move receive rings to new group */
6237 for (i = 0; i < nrings; i++) {
6238 rv = mac_group_mov_ring(mip, new_group, rings[i]);
6239 if (rv != 0) {
6240 /* move rings back on failure */
6241 for (j = 0; j < i; j++) {
6242 (void) mac_group_mov_ring(mip,
6243 src_group, rings[j]);
6244 }
6245 goto bail;
6246 }
6247 }
6248 break;
6249
6250 case MAC_RING_TYPE_TX: {
6251 mac_ring_t *tmp_ring;
6252
6253 /* move the TX rings to the new group */
6254 for (i = 0; i < nrings; i++) {
6255 /* get the desired ring */
6256 tmp_ring = mac_reserve_tx_ring(mip, rings[i]);
6257 if (tmp_ring == NULL) {
6258 rv = ENOSPC;
6259 goto bail;
6260 }
6261 ASSERT(tmp_ring == rings[i]);
6262 rv = mac_group_mov_ring(mip, new_group, rings[i]);
6263 if (rv != 0) {
6264 /* cleanup on failure */
6265 for (j = 0; j < i; j++) {
6266 (void) mac_group_mov_ring(mip,
6267 MAC_DEFAULT_TX_GROUP(mip),
6268 rings[j]);
6269 }
6270 goto bail;
6271 }
6272 }
6273 break;
6274 }
6275 }
6276
6277 /* add group to share */
6278 if (share != NULL)
6279 mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver);
6280
6281 bail:
6282 /* free temporary array of rings */
6283 kmem_free(rings, nrings * sizeof (mac_ring_handle_t));
6284
6285 return (rv);
6286 }
6287
6288 void
mac_group_add_client(mac_group_t * grp,mac_client_impl_t * mcip)6289 mac_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip)
6290 {
6291 mac_grp_client_t *mgcp;
6292
6293 for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
6294 if (mgcp->mgc_client == mcip)
6295 break;
6296 }
6297
6298 VERIFY(mgcp == NULL);
6299
6300 mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP);
6301 mgcp->mgc_client = mcip;
6302 mgcp->mgc_next = grp->mrg_clients;
6303 grp->mrg_clients = mgcp;
6304
6305 }
6306
6307 void
mac_group_remove_client(mac_group_t * grp,mac_client_impl_t * mcip)6308 mac_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip)
6309 {
6310 mac_grp_client_t *mgcp, **pprev;
6311
6312 for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL;
6313 pprev = &mgcp->mgc_next, mgcp = *pprev) {
6314 if (mgcp->mgc_client == mcip)
6315 break;
6316 }
6317
6318 ASSERT(mgcp != NULL);
6319
6320 *pprev = mgcp->mgc_next;
6321 kmem_free(mgcp, sizeof (mac_grp_client_t));
6322 }
6323
6324 /*
6325 * mac_reserve_rx_group()
6326 *
6327 * Finds an available group and exclusively reserves it for a client.
6328 * The group is chosen to suit the flow's resource controls (bandwidth and
6329 * fanout requirements) and the address type.
6330 * If the requestor is the pimary MAC then return the group with the
6331 * largest number of rings, otherwise the default ring when available.
6332 */
6333 mac_group_t *
mac_reserve_rx_group(mac_client_impl_t * mcip,uint8_t * mac_addr,boolean_t move)6334 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, boolean_t move)
6335 {
6336 mac_share_handle_t share = mcip->mci_share;
6337 mac_impl_t *mip = mcip->mci_mip;
6338 mac_group_t *grp = NULL;
6339 int i;
6340 int err = 0;
6341 mac_address_t *map;
6342 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip);
6343 int nrings;
6344 int donor_grp_rcnt;
6345 boolean_t need_exclgrp = B_FALSE;
6346 int need_rings = 0;
6347 mac_group_t *candidate_grp = NULL;
6348 mac_client_impl_t *gclient;
6349 mac_resource_props_t *gmrp;
6350 mac_group_t *donorgrp = NULL;
6351 boolean_t rxhw = mrp->mrp_mask & MRP_RX_RINGS;
6352 boolean_t unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC;
6353 boolean_t isprimary;
6354
6355 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
6356
6357 isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC;
6358
6359 /*
6360 * Check if a group already has this mac address (case of VLANs)
6361 * unless we are moving this MAC client from one group to another.
6362 */
6363 if (!move && (map = mac_find_macaddr(mip, mac_addr)) != NULL) {
6364 if (map->ma_group != NULL)
6365 return (map->ma_group);
6366 }
6367 if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0)
6368 return (NULL);
6369 /*
6370 * If exclusive open, return NULL which will enable the
6371 * caller to use the default group.
6372 */
6373 if (mcip->mci_state_flags & MCIS_EXCLUSIVE)
6374 return (NULL);
6375
6376 /* For dynamic groups default unspecified to 1 */
6377 if (rxhw && unspec &&
6378 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6379 mrp->mrp_nrxrings = 1;
6380 }
6381 /*
6382 * For static grouping we allow only specifying rings=0 and
6383 * unspecified
6384 */
6385 if (rxhw && mrp->mrp_nrxrings > 0 &&
6386 mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) {
6387 return (NULL);
6388 }
6389 if (rxhw) {
6390 /*
6391 * We have explicitly asked for a group (with nrxrings,
6392 * if unspec).
6393 */
6394 if (unspec || mrp->mrp_nrxrings > 0) {
6395 need_exclgrp = B_TRUE;
6396 need_rings = mrp->mrp_nrxrings;
6397 } else if (mrp->mrp_nrxrings == 0) {
6398 /*
6399 * We have asked for a software group.
6400 */
6401 return (NULL);
6402 }
6403 } else if (isprimary && mip->mi_nactiveclients == 1 &&
6404 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6405 /*
6406 * If the primary is the only active client on this
6407 * mip and we have not asked for any rings, we give
6408 * it the default group so that the primary gets to
6409 * use all the rings.
6410 */
6411 return (NULL);
6412 }
6413
6414 /* The group that can donate rings */
6415 donorgrp = mip->mi_rx_donor_grp;
6416
6417 /*
6418 * The number of rings that the default group can donate.
6419 * We need to leave at least one ring.
6420 */
6421 donor_grp_rcnt = donorgrp->mrg_cur_count - 1;
6422
6423 /*
6424 * Try to exclusively reserve a RX group.
6425 *
6426 * For flows requiring HW_DEFAULT_RING (unicast flow of the primary
6427 * client), try to reserve the a non-default RX group and give
6428 * it all the rings from the donor group, except the default ring
6429 *
6430 * For flows requiring HW_RING (unicast flow of other clients), try
6431 * to reserve non-default RX group with the specified number of
6432 * rings, if available.
6433 *
6434 * For flows that have not asked for software or hardware ring,
6435 * try to reserve a non-default group with 1 ring, if available.
6436 */
6437 for (i = 1; i < mip->mi_rx_group_count; i++) {
6438 grp = &mip->mi_rx_groups[i];
6439
6440 DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name,
6441 int, grp->mrg_index, mac_group_state_t, grp->mrg_state);
6442
6443 /*
6444 * Check if this group could be a candidate group for
6445 * eviction if we need a group for this MAC client,
6446 * but there aren't any. A candidate group is one
6447 * that didn't ask for an exclusive group, but got
6448 * one and it has enough rings (combined with what
6449 * the donor group can donate) for the new MAC
6450 * client
6451 */
6452 if (grp->mrg_state >= MAC_GROUP_STATE_RESERVED) {
6453 /*
6454 * If the primary/donor group is not the default
6455 * group, don't bother looking for a candidate group.
6456 * If we don't have enough rings we will check
6457 * if the primary group can be vacated.
6458 */
6459 if (candidate_grp == NULL &&
6460 donorgrp == MAC_DEFAULT_RX_GROUP(mip)) {
6461 ASSERT(!MAC_GROUP_NO_CLIENT(grp));
6462 gclient = MAC_GROUP_ONLY_CLIENT(grp);
6463 if (gclient == NULL)
6464 gclient = mac_get_grp_primary(grp);
6465 ASSERT(gclient != NULL);
6466 gmrp = MCIP_RESOURCE_PROPS(gclient);
6467 if (gclient->mci_share == NULL &&
6468 (gmrp->mrp_mask & MRP_RX_RINGS) == 0 &&
6469 (unspec ||
6470 (grp->mrg_cur_count + donor_grp_rcnt >=
6471 need_rings))) {
6472 candidate_grp = grp;
6473 }
6474 }
6475 continue;
6476 }
6477 /*
6478 * This group could already be SHARED by other multicast
6479 * flows on this client. In that case, the group would
6480 * be shared and has already been started.
6481 */
6482 ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT);
6483
6484 if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) &&
6485 (mac_start_group(grp) != 0)) {
6486 continue;
6487 }
6488
6489 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC)
6490 break;
6491 ASSERT(grp->mrg_cur_count == 0);
6492
6493 /*
6494 * Populate the group. Rings should be taken
6495 * from the donor group.
6496 */
6497 nrings = rxhw ? need_rings : isprimary ? donor_grp_rcnt: 1;
6498
6499 /*
6500 * If the donor group can't donate, let's just walk and
6501 * see if someone can vacate a group, so that we have
6502 * enough rings for this, unless we already have
6503 * identified a candiate group..
6504 */
6505 if (nrings <= donor_grp_rcnt) {
6506 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
6507 donorgrp, grp, share, nrings);
6508 if (err == 0) {
6509 /*
6510 * For a share i_mac_group_allocate_rings gets
6511 * the rings from the driver, let's populate
6512 * the property for the client now.
6513 */
6514 if (share != NULL) {
6515 mac_client_set_rings(
6516 (mac_client_handle_t)mcip,
6517 grp->mrg_cur_count, -1);
6518 }
6519 if (mac_is_primary_client(mcip) && !rxhw)
6520 mip->mi_rx_donor_grp = grp;
6521 break;
6522 }
6523 }
6524
6525 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
6526 mip->mi_name, int, grp->mrg_index, int, err);
6527
6528 /*
6529 * It's a dynamic group but the grouping operation
6530 * failed.
6531 */
6532 mac_stop_group(grp);
6533 }
6534 /* We didn't find an exclusive group for this MAC client */
6535 if (i >= mip->mi_rx_group_count) {
6536
6537 if (!need_exclgrp)
6538 return (NULL);
6539
6540 /*
6541 * If we found a candidate group then we switch the
6542 * MAC client from the candidate_group to the default
6543 * group and give the group to this MAC client. If
6544 * we didn't find a candidate_group, check if the
6545 * primary is in its own group and if it can make way
6546 * for this MAC client.
6547 */
6548 if (candidate_grp == NULL &&
6549 donorgrp != MAC_DEFAULT_RX_GROUP(mip) &&
6550 donorgrp->mrg_cur_count >= need_rings) {
6551 candidate_grp = donorgrp;
6552 }
6553 if (candidate_grp != NULL) {
6554 boolean_t prim_grp = B_FALSE;
6555
6556 /*
6557 * Switch the MAC client from the candidate group
6558 * to the default group.. If this group was the
6559 * donor group, then after the switch we need
6560 * to update the donor group too.
6561 */
6562 grp = candidate_grp;
6563 gclient = MAC_GROUP_ONLY_CLIENT(grp);
6564 if (gclient == NULL)
6565 gclient = mac_get_grp_primary(grp);
6566 if (grp == mip->mi_rx_donor_grp)
6567 prim_grp = B_TRUE;
6568 if (mac_rx_switch_group(gclient, grp,
6569 MAC_DEFAULT_RX_GROUP(mip)) != 0) {
6570 return (NULL);
6571 }
6572 if (prim_grp) {
6573 mip->mi_rx_donor_grp =
6574 MAC_DEFAULT_RX_GROUP(mip);
6575 donorgrp = MAC_DEFAULT_RX_GROUP(mip);
6576 }
6577
6578
6579 /*
6580 * Now give this group with the required rings
6581 * to this MAC client.
6582 */
6583 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
6584 if (mac_start_group(grp) != 0)
6585 return (NULL);
6586
6587 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC)
6588 return (grp);
6589
6590 donor_grp_rcnt = donorgrp->mrg_cur_count - 1;
6591 ASSERT(grp->mrg_cur_count == 0);
6592 ASSERT(donor_grp_rcnt >= need_rings);
6593 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
6594 donorgrp, grp, share, need_rings);
6595 if (err == 0) {
6596 /*
6597 * For a share i_mac_group_allocate_rings gets
6598 * the rings from the driver, let's populate
6599 * the property for the client now.
6600 */
6601 if (share != NULL) {
6602 mac_client_set_rings(
6603 (mac_client_handle_t)mcip,
6604 grp->mrg_cur_count, -1);
6605 }
6606 DTRACE_PROBE2(rx__group__reserved,
6607 char *, mip->mi_name, int, grp->mrg_index);
6608 return (grp);
6609 }
6610 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
6611 mip->mi_name, int, grp->mrg_index, int, err);
6612 mac_stop_group(grp);
6613 }
6614 return (NULL);
6615 }
6616 ASSERT(grp != NULL);
6617
6618 DTRACE_PROBE2(rx__group__reserved,
6619 char *, mip->mi_name, int, grp->mrg_index);
6620 return (grp);
6621 }
6622
6623 /*
6624 * mac_rx_release_group()
6625 *
6626 * This is called when there are no clients left for the group.
6627 * The group is stopped and marked MAC_GROUP_STATE_REGISTERED,
6628 * and if it is a non default group, the shares are removed and
6629 * all rings are assigned back to default group.
6630 */
6631 void
mac_release_rx_group(mac_client_impl_t * mcip,mac_group_t * group)6632 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group)
6633 {
6634 mac_impl_t *mip = mcip->mci_mip;
6635 mac_ring_t *ring;
6636
6637 ASSERT(group != MAC_DEFAULT_RX_GROUP(mip));
6638
6639 if (mip->mi_rx_donor_grp == group)
6640 mip->mi_rx_donor_grp = MAC_DEFAULT_RX_GROUP(mip);
6641
6642 /*
6643 * This is the case where there are no clients left. Any
6644 * SRS etc on this group have also be quiesced.
6645 */
6646 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
6647 if (ring->mr_classify_type == MAC_HW_CLASSIFIER) {
6648 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
6649 /*
6650 * Remove the SRS associated with the HW ring.
6651 * As a result, polling will be disabled.
6652 */
6653 ring->mr_srs = NULL;
6654 }
6655 ASSERT(group->mrg_state < MAC_GROUP_STATE_RESERVED ||
6656 ring->mr_state == MR_INUSE);
6657 if (ring->mr_state == MR_INUSE) {
6658 mac_stop_ring(ring);
6659 ring->mr_flag = 0;
6660 }
6661 }
6662
6663 /* remove group from share */
6664 if (mcip->mci_share != NULL) {
6665 mip->mi_share_capab.ms_sremove(mcip->mci_share,
6666 group->mrg_driver);
6667 }
6668
6669 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6670 mac_ring_t *ring;
6671
6672 /*
6673 * Rings were dynamically allocated to group.
6674 * Move rings back to default group.
6675 */
6676 while ((ring = group->mrg_rings) != NULL) {
6677 (void) mac_group_mov_ring(mip, mip->mi_rx_donor_grp,
6678 ring);
6679 }
6680 }
6681 mac_stop_group(group);
6682 /*
6683 * Possible improvement: See if we can assign the group just released
6684 * to a another client of the mip
6685 */
6686 }
6687
6688 /*
6689 * When we move the primary's mac address between groups, we need to also
6690 * take all the clients sharing the same mac address along with it (VLANs)
6691 * We remove the mac address for such clients from the group after quiescing
6692 * them. When we add the mac address we restart the client. Note that
6693 * the primary's mac address is removed from the group after all the
6694 * other clients sharing the address are removed. Similarly, the primary's
6695 * mac address is added before all the other client's mac address are
6696 * added. While grp is the group where the clients reside, tgrp is
6697 * the group where the addresses have to be added.
6698 */
6699 static void
mac_rx_move_macaddr_prim(mac_client_impl_t * mcip,mac_group_t * grp,mac_group_t * tgrp,uint8_t * maddr,boolean_t add)6700 mac_rx_move_macaddr_prim(mac_client_impl_t *mcip, mac_group_t *grp,
6701 mac_group_t *tgrp, uint8_t *maddr, boolean_t add)
6702 {
6703 mac_impl_t *mip = mcip->mci_mip;
6704 mac_grp_client_t *mgcp = grp->mrg_clients;
6705 mac_client_impl_t *gmcip;
6706 boolean_t prim;
6707
6708 prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0;
6709
6710 /*
6711 * If the clients are in a non-default group, we just have to
6712 * walk the group's client list. If it is in the default group
6713 * (which will be shared by other clients as well, we need to
6714 * check if the unicast address matches mcip's unicast.
6715 */
6716 while (mgcp != NULL) {
6717 gmcip = mgcp->mgc_client;
6718 if (gmcip != mcip &&
6719 (grp != MAC_DEFAULT_RX_GROUP(mip) ||
6720 mcip->mci_unicast == gmcip->mci_unicast)) {
6721 if (!add) {
6722 mac_rx_client_quiesce(
6723 (mac_client_handle_t)gmcip);
6724 (void) mac_remove_macaddr(mcip->mci_unicast);
6725 } else {
6726 (void) mac_add_macaddr(mip, tgrp, maddr, prim);
6727 mac_rx_client_restart(
6728 (mac_client_handle_t)gmcip);
6729 }
6730 }
6731 mgcp = mgcp->mgc_next;
6732 }
6733 }
6734
6735
6736 /*
6737 * Move the MAC address from fgrp to tgrp. If this is the primary client,
6738 * we need to take any VLANs etc. together too.
6739 */
6740 static int
mac_rx_move_macaddr(mac_client_impl_t * mcip,mac_group_t * fgrp,mac_group_t * tgrp)6741 mac_rx_move_macaddr(mac_client_impl_t *mcip, mac_group_t *fgrp,
6742 mac_group_t *tgrp)
6743 {
6744 mac_impl_t *mip = mcip->mci_mip;
6745 uint8_t maddr[MAXMACADDRLEN];
6746 int err = 0;
6747 boolean_t prim;
6748 boolean_t multiclnt = B_FALSE;
6749
6750 mac_rx_client_quiesce((mac_client_handle_t)mcip);
6751 ASSERT(mcip->mci_unicast != NULL);
6752 bcopy(mcip->mci_unicast->ma_addr, maddr, mcip->mci_unicast->ma_len);
6753
6754 prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0;
6755 if (mcip->mci_unicast->ma_nusers > 1) {
6756 mac_rx_move_macaddr_prim(mcip, fgrp, NULL, maddr, B_FALSE);
6757 multiclnt = B_TRUE;
6758 }
6759 ASSERT(mcip->mci_unicast->ma_nusers == 1);
6760 err = mac_remove_macaddr(mcip->mci_unicast);
6761 if (err != 0) {
6762 mac_rx_client_restart((mac_client_handle_t)mcip);
6763 if (multiclnt) {
6764 mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr,
6765 B_TRUE);
6766 }
6767 return (err);
6768 }
6769 /*
6770 * Program the H/W Classifier first, if this fails we need
6771 * not proceed with the other stuff.
6772 */
6773 if ((err = mac_add_macaddr(mip, tgrp, maddr, prim)) != 0) {
6774 /* Revert back the H/W Classifier */
6775 if ((err = mac_add_macaddr(mip, fgrp, maddr, prim)) != 0) {
6776 /*
6777 * This should not fail now since it worked earlier,
6778 * should we panic?
6779 */
6780 cmn_err(CE_WARN,
6781 "mac_rx_switch_group: switching %p back"
6782 " to group %p failed!!", (void *)mcip,
6783 (void *)fgrp);
6784 }
6785 mac_rx_client_restart((mac_client_handle_t)mcip);
6786 if (multiclnt) {
6787 mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr,
6788 B_TRUE);
6789 }
6790 return (err);
6791 }
6792 mcip->mci_unicast = mac_find_macaddr(mip, maddr);
6793 mac_rx_client_restart((mac_client_handle_t)mcip);
6794 if (multiclnt)
6795 mac_rx_move_macaddr_prim(mcip, fgrp, tgrp, maddr, B_TRUE);
6796 return (err);
6797 }
6798
6799 /*
6800 * Switch the MAC client from one group to another. This means we need
6801 * to remove the MAC address from the group, remove the MAC client,
6802 * teardown the SRSs and revert the group state. Then, we add the client
6803 * to the destination group, set the SRSs, and add the MAC address to the
6804 * group.
6805 */
6806 int
mac_rx_switch_group(mac_client_impl_t * mcip,mac_group_t * fgrp,mac_group_t * tgrp)6807 mac_rx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp,
6808 mac_group_t *tgrp)
6809 {
6810 int err;
6811 mac_group_state_t next_state;
6812 mac_client_impl_t *group_only_mcip;
6813 mac_client_impl_t *gmcip;
6814 mac_impl_t *mip = mcip->mci_mip;
6815 mac_grp_client_t *mgcp;
6816
6817 ASSERT(fgrp == mcip->mci_flent->fe_rx_ring_group);
6818
6819 if ((err = mac_rx_move_macaddr(mcip, fgrp, tgrp)) != 0)
6820 return (err);
6821
6822 /*
6823 * The group might be reserved, but SRSs may not be set up, e.g.
6824 * primary and its vlans using a reserved group.
6825 */
6826 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED &&
6827 MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) {
6828 mac_rx_srs_group_teardown(mcip->mci_flent, B_TRUE);
6829 }
6830 if (fgrp != MAC_DEFAULT_RX_GROUP(mip)) {
6831 mgcp = fgrp->mrg_clients;
6832 while (mgcp != NULL) {
6833 gmcip = mgcp->mgc_client;
6834 mgcp = mgcp->mgc_next;
6835 mac_group_remove_client(fgrp, gmcip);
6836 mac_group_add_client(tgrp, gmcip);
6837 gmcip->mci_flent->fe_rx_ring_group = tgrp;
6838 }
6839 mac_release_rx_group(mcip, fgrp);
6840 ASSERT(MAC_GROUP_NO_CLIENT(fgrp));
6841 mac_set_group_state(fgrp, MAC_GROUP_STATE_REGISTERED);
6842 } else {
6843 mac_group_remove_client(fgrp, mcip);
6844 mac_group_add_client(tgrp, mcip);
6845 mcip->mci_flent->fe_rx_ring_group = tgrp;
6846 /*
6847 * If there are other clients (VLANs) sharing this address
6848 * we should be here only for the primary.
6849 */
6850 if (mcip->mci_unicast->ma_nusers > 1) {
6851 /*
6852 * We need to move all the clients that are using
6853 * this h/w address.
6854 */
6855 mgcp = fgrp->mrg_clients;
6856 while (mgcp != NULL) {
6857 gmcip = mgcp->mgc_client;
6858 mgcp = mgcp->mgc_next;
6859 if (mcip->mci_unicast == gmcip->mci_unicast) {
6860 mac_group_remove_client(fgrp, gmcip);
6861 mac_group_add_client(tgrp, gmcip);
6862 gmcip->mci_flent->fe_rx_ring_group =
6863 tgrp;
6864 }
6865 }
6866 }
6867 /*
6868 * The default group will still take the multicast,
6869 * broadcast traffic etc., so it won't go to
6870 * MAC_GROUP_STATE_REGISTERED.
6871 */
6872 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED)
6873 mac_rx_group_unmark(fgrp, MR_CONDEMNED);
6874 mac_set_group_state(fgrp, MAC_GROUP_STATE_SHARED);
6875 }
6876 next_state = mac_group_next_state(tgrp, &group_only_mcip,
6877 MAC_DEFAULT_RX_GROUP(mip), B_TRUE);
6878 mac_set_group_state(tgrp, next_state);
6879 /*
6880 * If the destination group is reserved, setup the SRSs etc.
6881 */
6882 if (tgrp->mrg_state == MAC_GROUP_STATE_RESERVED) {
6883 mac_rx_srs_group_setup(mcip, mcip->mci_flent, SRST_LINK);
6884 mac_fanout_setup(mcip, mcip->mci_flent,
6885 MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, mcip, NULL,
6886 NULL);
6887 mac_rx_group_unmark(tgrp, MR_INCIPIENT);
6888 } else {
6889 mac_rx_switch_grp_to_sw(tgrp);
6890 }
6891 return (0);
6892 }
6893
6894 /*
6895 * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup()
6896 * when a share was allocated to the client.
6897 */
6898 mac_group_t *
mac_reserve_tx_group(mac_client_impl_t * mcip,boolean_t move)6899 mac_reserve_tx_group(mac_client_impl_t *mcip, boolean_t move)
6900 {
6901 mac_impl_t *mip = mcip->mci_mip;
6902 mac_group_t *grp = NULL;
6903 int rv;
6904 int i;
6905 int err;
6906 mac_group_t *defgrp;
6907 mac_share_handle_t share = mcip->mci_share;
6908 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip);
6909 int nrings;
6910 int defnrings;
6911 boolean_t need_exclgrp = B_FALSE;
6912 int need_rings = 0;
6913 mac_group_t *candidate_grp = NULL;
6914 mac_client_impl_t *gclient;
6915 mac_resource_props_t *gmrp;
6916 boolean_t txhw = mrp->mrp_mask & MRP_TX_RINGS;
6917 boolean_t unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC;
6918 boolean_t isprimary;
6919
6920 isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC;
6921 /*
6922 * When we come here for a VLAN on the primary (dladm create-vlan),
6923 * we need to pair it along with the primary (to keep it consistent
6924 * with the RX side). So, we check if the primary is already assigned
6925 * to a group and return the group if so. The other way is also
6926 * true, i.e. the VLAN is already created and now we are plumbing
6927 * the primary.
6928 */
6929 if (!move && isprimary) {
6930 for (gclient = mip->mi_clients_list; gclient != NULL;
6931 gclient = gclient->mci_client_next) {
6932 if (gclient->mci_flent->fe_type & FLOW_PRIMARY_MAC &&
6933 gclient->mci_flent->fe_tx_ring_group != NULL) {
6934 return (gclient->mci_flent->fe_tx_ring_group);
6935 }
6936 }
6937 }
6938
6939 if (mip->mi_tx_groups == NULL || mip->mi_tx_group_count == 0)
6940 return (NULL);
6941
6942 /* For dynamic groups, default unspec to 1 */
6943 if (txhw && unspec &&
6944 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6945 mrp->mrp_ntxrings = 1;
6946 }
6947 /*
6948 * For static grouping we allow only specifying rings=0 and
6949 * unspecified
6950 */
6951 if (txhw && mrp->mrp_ntxrings > 0 &&
6952 mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC) {
6953 return (NULL);
6954 }
6955
6956 if (txhw) {
6957 /*
6958 * We have explicitly asked for a group (with ntxrings,
6959 * if unspec).
6960 */
6961 if (unspec || mrp->mrp_ntxrings > 0) {
6962 need_exclgrp = B_TRUE;
6963 need_rings = mrp->mrp_ntxrings;
6964 } else if (mrp->mrp_ntxrings == 0) {
6965 /*
6966 * We have asked for a software group.
6967 */
6968 return (NULL);
6969 }
6970 }
6971 defgrp = MAC_DEFAULT_TX_GROUP(mip);
6972 /*
6973 * The number of rings that the default group can donate.
6974 * We need to leave at least one ring - the default ring - in
6975 * this group.
6976 */
6977 defnrings = defgrp->mrg_cur_count - 1;
6978
6979 /*
6980 * Primary gets default group unless explicitly told not
6981 * to (i.e. rings > 0).
6982 */
6983 if (isprimary && !need_exclgrp)
6984 return (NULL);
6985
6986 nrings = (mrp->mrp_mask & MRP_TX_RINGS) != 0 ? mrp->mrp_ntxrings : 1;
6987 for (i = 0; i < mip->mi_tx_group_count; i++) {
6988 grp = &mip->mi_tx_groups[i];
6989 if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) ||
6990 (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) {
6991 /*
6992 * Select a candidate for replacement if we don't
6993 * get an exclusive group. A candidate group is one
6994 * that didn't ask for an exclusive group, but got
6995 * one and it has enough rings (combined with what
6996 * the default group can donate) for the new MAC
6997 * client.
6998 */
6999 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED &&
7000 candidate_grp == NULL) {
7001 gclient = MAC_GROUP_ONLY_CLIENT(grp);
7002 if (gclient == NULL)
7003 gclient = mac_get_grp_primary(grp);
7004 gmrp = MCIP_RESOURCE_PROPS(gclient);
7005 if (gclient->mci_share == NULL &&
7006 (gmrp->mrp_mask & MRP_TX_RINGS) == 0 &&
7007 (unspec ||
7008 (grp->mrg_cur_count + defnrings) >=
7009 need_rings)) {
7010 candidate_grp = grp;
7011 }
7012 }
7013 continue;
7014 }
7015 /*
7016 * If the default can't donate let's just walk and
7017 * see if someone can vacate a group, so that we have
7018 * enough rings for this.
7019 */
7020 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC ||
7021 nrings <= defnrings) {
7022 if (grp->mrg_state == MAC_GROUP_STATE_REGISTERED) {
7023 rv = mac_start_group(grp);
7024 ASSERT(rv == 0);
7025 }
7026 break;
7027 }
7028 }
7029
7030 /* The default group */
7031 if (i >= mip->mi_tx_group_count) {
7032 /*
7033 * If we need an exclusive group and have identified a
7034 * candidate group we switch the MAC client from the
7035 * candidate group to the default group and give the
7036 * candidate group to this client.
7037 */
7038 if (need_exclgrp && candidate_grp != NULL) {
7039 /*
7040 * Switch the MAC client from the candidate group
7041 * to the default group.
7042 */
7043 grp = candidate_grp;
7044 gclient = MAC_GROUP_ONLY_CLIENT(grp);
7045 if (gclient == NULL)
7046 gclient = mac_get_grp_primary(grp);
7047 mac_tx_client_quiesce((mac_client_handle_t)gclient);
7048 mac_tx_switch_group(gclient, grp, defgrp);
7049 mac_tx_client_restart((mac_client_handle_t)gclient);
7050
7051 /*
7052 * Give the candidate group with the specified number
7053 * of rings to this MAC client.
7054 */
7055 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
7056 rv = mac_start_group(grp);
7057 ASSERT(rv == 0);
7058
7059 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC)
7060 return (grp);
7061
7062 ASSERT(grp->mrg_cur_count == 0);
7063 ASSERT(defgrp->mrg_cur_count > need_rings);
7064
7065 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX,
7066 defgrp, grp, share, need_rings);
7067 if (err == 0) {
7068 /*
7069 * For a share i_mac_group_allocate_rings gets
7070 * the rings from the driver, let's populate
7071 * the property for the client now.
7072 */
7073 if (share != NULL) {
7074 mac_client_set_rings(
7075 (mac_client_handle_t)mcip, -1,
7076 grp->mrg_cur_count);
7077 }
7078 mip->mi_tx_group_free--;
7079 return (grp);
7080 }
7081 DTRACE_PROBE3(tx__group__reserve__alloc__rings, char *,
7082 mip->mi_name, int, grp->mrg_index, int, err);
7083 mac_stop_group(grp);
7084 }
7085 return (NULL);
7086 }
7087 /*
7088 * We got an exclusive group, but it is not dynamic.
7089 */
7090 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) {
7091 mip->mi_tx_group_free--;
7092 return (grp);
7093 }
7094
7095 rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, defgrp, grp,
7096 share, nrings);
7097 if (rv != 0) {
7098 DTRACE_PROBE3(tx__group__reserve__alloc__rings,
7099 char *, mip->mi_name, int, grp->mrg_index, int, rv);
7100 mac_stop_group(grp);
7101 return (NULL);
7102 }
7103 /*
7104 * For a share i_mac_group_allocate_rings gets the rings from the
7105 * driver, let's populate the property for the client now.
7106 */
7107 if (share != NULL) {
7108 mac_client_set_rings((mac_client_handle_t)mcip, -1,
7109 grp->mrg_cur_count);
7110 }
7111 mip->mi_tx_group_free--;
7112 return (grp);
7113 }
7114
7115 void
mac_release_tx_group(mac_client_impl_t * mcip,mac_group_t * grp)7116 mac_release_tx_group(mac_client_impl_t *mcip, mac_group_t *grp)
7117 {
7118 mac_impl_t *mip = mcip->mci_mip;
7119 mac_share_handle_t share = mcip->mci_share;
7120 mac_ring_t *ring;
7121 mac_soft_ring_set_t *srs = MCIP_TX_SRS(mcip);
7122 mac_group_t *defgrp;
7123
7124 defgrp = MAC_DEFAULT_TX_GROUP(mip);
7125 if (srs != NULL) {
7126 if (srs->srs_soft_ring_count > 0) {
7127 for (ring = grp->mrg_rings; ring != NULL;
7128 ring = ring->mr_next) {
7129 ASSERT(mac_tx_srs_ring_present(srs, ring));
7130 mac_tx_invoke_callbacks(mcip,
7131 (mac_tx_cookie_t)
7132 mac_tx_srs_get_soft_ring(srs, ring));
7133 mac_tx_srs_del_ring(srs, ring);
7134 }
7135 } else {
7136 ASSERT(srs->srs_tx.st_arg2 != NULL);
7137 srs->srs_tx.st_arg2 = NULL;
7138 mac_srs_stat_delete(srs);
7139 }
7140 }
7141 if (share != NULL)
7142 mip->mi_share_capab.ms_sremove(share, grp->mrg_driver);
7143
7144 /* move the ring back to the pool */
7145 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
7146 while ((ring = grp->mrg_rings) != NULL)
7147 (void) mac_group_mov_ring(mip, defgrp, ring);
7148 }
7149 mac_stop_group(grp);
7150 mip->mi_tx_group_free++;
7151 }
7152
7153 /*
7154 * Disassociate a MAC client from a group, i.e go through the rings in the
7155 * group and delete all the soft rings tied to them.
7156 */
7157 static void
mac_tx_dismantle_soft_rings(mac_group_t * fgrp,flow_entry_t * flent)7158 mac_tx_dismantle_soft_rings(mac_group_t *fgrp, flow_entry_t *flent)
7159 {
7160 mac_client_impl_t *mcip = flent->fe_mcip;
7161 mac_soft_ring_set_t *tx_srs;
7162 mac_srs_tx_t *tx;
7163 mac_ring_t *ring;
7164
7165 tx_srs = flent->fe_tx_srs;
7166 tx = &tx_srs->srs_tx;
7167
7168 /* Single ring case we haven't created any soft rings */
7169 if (tx->st_mode == SRS_TX_BW || tx->st_mode == SRS_TX_SERIALIZE ||
7170 tx->st_mode == SRS_TX_DEFAULT) {
7171 tx->st_arg2 = NULL;
7172 mac_srs_stat_delete(tx_srs);
7173 /* Fanout case, where we have to dismantle the soft rings */
7174 } else {
7175 for (ring = fgrp->mrg_rings; ring != NULL;
7176 ring = ring->mr_next) {
7177 ASSERT(mac_tx_srs_ring_present(tx_srs, ring));
7178 mac_tx_invoke_callbacks(mcip,
7179 (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(tx_srs,
7180 ring));
7181 mac_tx_srs_del_ring(tx_srs, ring);
7182 }
7183 ASSERT(tx->st_arg2 == NULL);
7184 }
7185 }
7186
7187 /*
7188 * Switch the MAC client from one group to another. This means we need
7189 * to remove the MAC client, teardown the SRSs and revert the group state.
7190 * Then, we add the client to the destination roup, set the SRSs etc.
7191 */
7192 void
mac_tx_switch_group(mac_client_impl_t * mcip,mac_group_t * fgrp,mac_group_t * tgrp)7193 mac_tx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp,
7194 mac_group_t *tgrp)
7195 {
7196 mac_client_impl_t *group_only_mcip;
7197 mac_impl_t *mip = mcip->mci_mip;
7198 flow_entry_t *flent = mcip->mci_flent;
7199 mac_group_t *defgrp;
7200 mac_grp_client_t *mgcp;
7201 mac_client_impl_t *gmcip;
7202 flow_entry_t *gflent;
7203
7204 defgrp = MAC_DEFAULT_TX_GROUP(mip);
7205 ASSERT(fgrp == flent->fe_tx_ring_group);
7206
7207 if (fgrp == defgrp) {
7208 /*
7209 * If this is the primary we need to find any VLANs on
7210 * the primary and move them too.
7211 */
7212 mac_group_remove_client(fgrp, mcip);
7213 mac_tx_dismantle_soft_rings(fgrp, flent);
7214 if (mcip->mci_unicast->ma_nusers > 1) {
7215 mgcp = fgrp->mrg_clients;
7216 while (mgcp != NULL) {
7217 gmcip = mgcp->mgc_client;
7218 mgcp = mgcp->mgc_next;
7219 if (mcip->mci_unicast != gmcip->mci_unicast)
7220 continue;
7221 mac_tx_client_quiesce(
7222 (mac_client_handle_t)gmcip);
7223
7224 gflent = gmcip->mci_flent;
7225 mac_group_remove_client(fgrp, gmcip);
7226 mac_tx_dismantle_soft_rings(fgrp, gflent);
7227
7228 mac_group_add_client(tgrp, gmcip);
7229 gflent->fe_tx_ring_group = tgrp;
7230 /* We could directly set this to SHARED */
7231 tgrp->mrg_state = mac_group_next_state(tgrp,
7232 &group_only_mcip, defgrp, B_FALSE);
7233
7234 mac_tx_srs_group_setup(gmcip, gflent,
7235 SRST_LINK);
7236 mac_fanout_setup(gmcip, gflent,
7237 MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver,
7238 gmcip, NULL, NULL);
7239
7240 mac_tx_client_restart(
7241 (mac_client_handle_t)gmcip);
7242 }
7243 }
7244 if (MAC_GROUP_NO_CLIENT(fgrp)) {
7245 mac_ring_t *ring;
7246 int cnt;
7247 int ringcnt;
7248
7249 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED;
7250 /*
7251 * Additionally, we also need to stop all
7252 * the rings in the default group, except
7253 * the default ring. The reason being
7254 * this group won't be released since it is
7255 * the default group, so the rings won't
7256 * be stopped otherwise.
7257 */
7258 ringcnt = fgrp->mrg_cur_count;
7259 ring = fgrp->mrg_rings;
7260 for (cnt = 0; cnt < ringcnt; cnt++) {
7261 if (ring->mr_state == MR_INUSE &&
7262 ring !=
7263 (mac_ring_t *)mip->mi_default_tx_ring) {
7264 mac_stop_ring(ring);
7265 ring->mr_flag = 0;
7266 }
7267 ring = ring->mr_next;
7268 }
7269 } else if (MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) {
7270 fgrp->mrg_state = MAC_GROUP_STATE_RESERVED;
7271 } else {
7272 ASSERT(fgrp->mrg_state == MAC_GROUP_STATE_SHARED);
7273 }
7274 } else {
7275 /*
7276 * We could have VLANs sharing the non-default group with
7277 * the primary.
7278 */
7279 mgcp = fgrp->mrg_clients;
7280 while (mgcp != NULL) {
7281 gmcip = mgcp->mgc_client;
7282 mgcp = mgcp->mgc_next;
7283 if (gmcip == mcip)
7284 continue;
7285 mac_tx_client_quiesce((mac_client_handle_t)gmcip);
7286 gflent = gmcip->mci_flent;
7287
7288 mac_group_remove_client(fgrp, gmcip);
7289 mac_tx_dismantle_soft_rings(fgrp, gflent);
7290
7291 mac_group_add_client(tgrp, gmcip);
7292 gflent->fe_tx_ring_group = tgrp;
7293 /* We could directly set this to SHARED */
7294 tgrp->mrg_state = mac_group_next_state(tgrp,
7295 &group_only_mcip, defgrp, B_FALSE);
7296 mac_tx_srs_group_setup(gmcip, gflent, SRST_LINK);
7297 mac_fanout_setup(gmcip, gflent,
7298 MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver,
7299 gmcip, NULL, NULL);
7300
7301 mac_tx_client_restart((mac_client_handle_t)gmcip);
7302 }
7303 mac_group_remove_client(fgrp, mcip);
7304 mac_release_tx_group(mcip, fgrp);
7305 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED;
7306 }
7307
7308 /* Add it to the tgroup */
7309 mac_group_add_client(tgrp, mcip);
7310 flent->fe_tx_ring_group = tgrp;
7311 tgrp->mrg_state = mac_group_next_state(tgrp, &group_only_mcip,
7312 defgrp, B_FALSE);
7313
7314 mac_tx_srs_group_setup(mcip, flent, SRST_LINK);
7315 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
7316 mac_rx_deliver, mcip, NULL, NULL);
7317 }
7318
7319 /*
7320 * This is a 1-time control path activity initiated by the client (IP).
7321 * The mac perimeter protects against other simultaneous control activities,
7322 * for example an ioctl that attempts to change the degree of fanout and
7323 * increase or decrease the number of softrings associated with this Tx SRS.
7324 */
7325 static mac_tx_notify_cb_t *
mac_client_tx_notify_add(mac_client_impl_t * mcip,mac_tx_notify_t notify,void * arg)7326 mac_client_tx_notify_add(mac_client_impl_t *mcip,
7327 mac_tx_notify_t notify, void *arg)
7328 {
7329 mac_cb_info_t *mcbi;
7330 mac_tx_notify_cb_t *mtnfp;
7331
7332 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
7333
7334 mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP);
7335 mtnfp->mtnf_fn = notify;
7336 mtnfp->mtnf_arg = arg;
7337 mtnfp->mtnf_link.mcb_objp = mtnfp;
7338 mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t);
7339 mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T;
7340
7341 mcbi = &mcip->mci_tx_notify_cb_info;
7342 mutex_enter(mcbi->mcbi_lockp);
7343 mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link);
7344 mutex_exit(mcbi->mcbi_lockp);
7345 return (mtnfp);
7346 }
7347
7348 static void
mac_client_tx_notify_remove(mac_client_impl_t * mcip,mac_tx_notify_cb_t * mtnfp)7349 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp)
7350 {
7351 mac_cb_info_t *mcbi;
7352 mac_cb_t **cblist;
7353
7354 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
7355
7356 if (!mac_callback_find(&mcip->mci_tx_notify_cb_info,
7357 &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) {
7358 cmn_err(CE_WARN,
7359 "mac_client_tx_notify_remove: callback not "
7360 "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp);
7361 return;
7362 }
7363
7364 mcbi = &mcip->mci_tx_notify_cb_info;
7365 cblist = &mcip->mci_tx_notify_cb_list;
7366 mutex_enter(mcbi->mcbi_lockp);
7367 if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link))
7368 kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t));
7369 else
7370 mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info);
7371 mutex_exit(mcbi->mcbi_lockp);
7372 }
7373
7374 /*
7375 * mac_client_tx_notify():
7376 * call to add and remove flow control callback routine.
7377 */
7378 mac_tx_notify_handle_t
mac_client_tx_notify(mac_client_handle_t mch,mac_tx_notify_t callb_func,void * ptr)7379 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func,
7380 void *ptr)
7381 {
7382 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
7383 mac_tx_notify_cb_t *mtnfp = NULL;
7384
7385 i_mac_perim_enter(mcip->mci_mip);
7386
7387 if (callb_func != NULL) {
7388 /* Add a notify callback */
7389 mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr);
7390 } else {
7391 mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr);
7392 }
7393 i_mac_perim_exit(mcip->mci_mip);
7394
7395 return ((mac_tx_notify_handle_t)mtnfp);
7396 }
7397
7398 void
mac_bridge_vectors(mac_bridge_tx_t txf,mac_bridge_rx_t rxf,mac_bridge_ref_t reff,mac_bridge_ls_t lsf)7399 mac_bridge_vectors(mac_bridge_tx_t txf, mac_bridge_rx_t rxf,
7400 mac_bridge_ref_t reff, mac_bridge_ls_t lsf)
7401 {
7402 mac_bridge_tx_cb = txf;
7403 mac_bridge_rx_cb = rxf;
7404 mac_bridge_ref_cb = reff;
7405 mac_bridge_ls_cb = lsf;
7406 }
7407
7408 int
mac_bridge_set(mac_handle_t mh,mac_handle_t link)7409 mac_bridge_set(mac_handle_t mh, mac_handle_t link)
7410 {
7411 mac_impl_t *mip = (mac_impl_t *)mh;
7412 int retv;
7413
7414 mutex_enter(&mip->mi_bridge_lock);
7415 if (mip->mi_bridge_link == NULL) {
7416 mip->mi_bridge_link = link;
7417 retv = 0;
7418 } else {
7419 retv = EBUSY;
7420 }
7421 mutex_exit(&mip->mi_bridge_lock);
7422 if (retv == 0) {
7423 mac_poll_state_change(mh, B_FALSE);
7424 mac_capab_update(mh);
7425 }
7426 return (retv);
7427 }
7428
7429 /*
7430 * Disable bridging on the indicated link.
7431 */
7432 void
mac_bridge_clear(mac_handle_t mh,mac_handle_t link)7433 mac_bridge_clear(mac_handle_t mh, mac_handle_t link)
7434 {
7435 mac_impl_t *mip = (mac_impl_t *)mh;
7436
7437 mutex_enter(&mip->mi_bridge_lock);
7438 ASSERT(mip->mi_bridge_link == link);
7439 mip->mi_bridge_link = NULL;
7440 mutex_exit(&mip->mi_bridge_lock);
7441 mac_poll_state_change(mh, B_TRUE);
7442 mac_capab_update(mh);
7443 }
7444
7445 void
mac_no_active(mac_handle_t mh)7446 mac_no_active(mac_handle_t mh)
7447 {
7448 mac_impl_t *mip = (mac_impl_t *)mh;
7449
7450 i_mac_perim_enter(mip);
7451 mip->mi_state_flags |= MIS_NO_ACTIVE;
7452 i_mac_perim_exit(mip);
7453 }
7454
7455 /*
7456 * Walk the primary VLAN clients whenever the primary's rings property
7457 * changes and update the mac_resource_props_t for the VLAN's client.
7458 * We need to do this since we don't support setting these properties
7459 * on the primary's VLAN clients, but the VLAN clients have to
7460 * follow the primary w.r.t the rings property;
7461 */
7462 void
mac_set_prim_vlan_rings(mac_impl_t * mip,mac_resource_props_t * mrp)7463 mac_set_prim_vlan_rings(mac_impl_t *mip, mac_resource_props_t *mrp)
7464 {
7465 mac_client_impl_t *vmcip;
7466 mac_resource_props_t *vmrp;
7467
7468 for (vmcip = mip->mi_clients_list; vmcip != NULL;
7469 vmcip = vmcip->mci_client_next) {
7470 if (!(vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) ||
7471 mac_client_vid((mac_client_handle_t)vmcip) ==
7472 VLAN_ID_NONE) {
7473 continue;
7474 }
7475 vmrp = MCIP_RESOURCE_PROPS(vmcip);
7476
7477 vmrp->mrp_nrxrings = mrp->mrp_nrxrings;
7478 if (mrp->mrp_mask & MRP_RX_RINGS)
7479 vmrp->mrp_mask |= MRP_RX_RINGS;
7480 else if (vmrp->mrp_mask & MRP_RX_RINGS)
7481 vmrp->mrp_mask &= ~MRP_RX_RINGS;
7482
7483 vmrp->mrp_ntxrings = mrp->mrp_ntxrings;
7484 if (mrp->mrp_mask & MRP_TX_RINGS)
7485 vmrp->mrp_mask |= MRP_TX_RINGS;
7486 else if (vmrp->mrp_mask & MRP_TX_RINGS)
7487 vmrp->mrp_mask &= ~MRP_TX_RINGS;
7488
7489 if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC)
7490 vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
7491 else
7492 vmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
7493
7494 if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC)
7495 vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
7496 else
7497 vmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
7498 }
7499 }
7500
7501 /*
7502 * We are adding or removing ring(s) from a group. The source for taking
7503 * rings is the default group. The destination for giving rings back is
7504 * the default group.
7505 */
7506 int
mac_group_ring_modify(mac_client_impl_t * mcip,mac_group_t * group,mac_group_t * defgrp)7507 mac_group_ring_modify(mac_client_impl_t *mcip, mac_group_t *group,
7508 mac_group_t *defgrp)
7509 {
7510 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip);
7511 uint_t modify;
7512 int count;
7513 mac_ring_t *ring;
7514 mac_ring_t *next;
7515 mac_impl_t *mip = mcip->mci_mip;
7516 mac_ring_t **rings;
7517 uint_t ringcnt;
7518 int i = 0;
7519 boolean_t rx_group = group->mrg_type == MAC_RING_TYPE_RX;
7520 int start;
7521 int end;
7522 mac_group_t *tgrp;
7523 int j;
7524 int rv = 0;
7525
7526 /*
7527 * If we are asked for just a group, we give 1 ring, else
7528 * the specified number of rings.
7529 */
7530 if (rx_group) {
7531 ringcnt = (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) ? 1:
7532 mrp->mrp_nrxrings;
7533 } else {
7534 ringcnt = (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) ? 1:
7535 mrp->mrp_ntxrings;
7536 }
7537
7538 /* don't allow modifying rings for a share for now. */
7539 ASSERT(mcip->mci_share == NULL);
7540
7541 if (ringcnt == group->mrg_cur_count)
7542 return (0);
7543
7544 if (group->mrg_cur_count > ringcnt) {
7545 modify = group->mrg_cur_count - ringcnt;
7546 if (rx_group) {
7547 if (mip->mi_rx_donor_grp == group) {
7548 ASSERT(mac_is_primary_client(mcip));
7549 mip->mi_rx_donor_grp = defgrp;
7550 } else {
7551 defgrp = mip->mi_rx_donor_grp;
7552 }
7553 }
7554 ring = group->mrg_rings;
7555 rings = kmem_alloc(modify * sizeof (mac_ring_handle_t),
7556 KM_SLEEP);
7557 j = 0;
7558 for (count = 0; count < modify; count++) {
7559 next = ring->mr_next;
7560 rv = mac_group_mov_ring(mip, defgrp, ring);
7561 if (rv != 0) {
7562 /* cleanup on failure */
7563 for (j = 0; j < count; j++) {
7564 (void) mac_group_mov_ring(mip, group,
7565 rings[j]);
7566 }
7567 break;
7568 }
7569 rings[j++] = ring;
7570 ring = next;
7571 }
7572 kmem_free(rings, modify * sizeof (mac_ring_handle_t));
7573 return (rv);
7574 }
7575 if (ringcnt >= MAX_RINGS_PER_GROUP)
7576 return (EINVAL);
7577
7578 modify = ringcnt - group->mrg_cur_count;
7579
7580 if (rx_group) {
7581 if (group != mip->mi_rx_donor_grp)
7582 defgrp = mip->mi_rx_donor_grp;
7583 else
7584 /*
7585 * This is the donor group with all the remaining
7586 * rings. Default group now gets to be the donor
7587 */
7588 mip->mi_rx_donor_grp = defgrp;
7589 start = 1;
7590 end = mip->mi_rx_group_count;
7591 } else {
7592 start = 0;
7593 end = mip->mi_tx_group_count - 1;
7594 }
7595 /*
7596 * If the default doesn't have any rings, lets see if we can
7597 * take rings given to an h/w client that doesn't need it.
7598 * For now, we just see if there is any one client that can donate
7599 * all the required rings.
7600 */
7601 if (defgrp->mrg_cur_count < (modify + 1)) {
7602 for (i = start; i < end; i++) {
7603 if (rx_group) {
7604 tgrp = &mip->mi_rx_groups[i];
7605 if (tgrp == group || tgrp->mrg_state <
7606 MAC_GROUP_STATE_RESERVED) {
7607 continue;
7608 }
7609 mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
7610 if (mcip == NULL)
7611 mcip = mac_get_grp_primary(tgrp);
7612 ASSERT(mcip != NULL);
7613 mrp = MCIP_RESOURCE_PROPS(mcip);
7614 if ((mrp->mrp_mask & MRP_RX_RINGS) != 0)
7615 continue;
7616 if ((tgrp->mrg_cur_count +
7617 defgrp->mrg_cur_count) < (modify + 1)) {
7618 continue;
7619 }
7620 if (mac_rx_switch_group(mcip, tgrp,
7621 defgrp) != 0) {
7622 return (ENOSPC);
7623 }
7624 } else {
7625 tgrp = &mip->mi_tx_groups[i];
7626 if (tgrp == group || tgrp->mrg_state <
7627 MAC_GROUP_STATE_RESERVED) {
7628 continue;
7629 }
7630 mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
7631 if (mcip == NULL)
7632 mcip = mac_get_grp_primary(tgrp);
7633 mrp = MCIP_RESOURCE_PROPS(mcip);
7634 if ((mrp->mrp_mask & MRP_TX_RINGS) != 0)
7635 continue;
7636 if ((tgrp->mrg_cur_count +
7637 defgrp->mrg_cur_count) < (modify + 1)) {
7638 continue;
7639 }
7640 /* OK, we can switch this to s/w */
7641 mac_tx_client_quiesce(
7642 (mac_client_handle_t)mcip);
7643 mac_tx_switch_group(mcip, tgrp, defgrp);
7644 mac_tx_client_restart(
7645 (mac_client_handle_t)mcip);
7646 }
7647 }
7648 if (defgrp->mrg_cur_count < (modify + 1))
7649 return (ENOSPC);
7650 }
7651 if ((rv = i_mac_group_allocate_rings(mip, group->mrg_type, defgrp,
7652 group, mcip->mci_share, modify)) != 0) {
7653 return (rv);
7654 }
7655 return (0);
7656 }
7657
7658 /*
7659 * Given the poolname in mac_resource_props, find the cpupart
7660 * that is associated with this pool. The cpupart will be used
7661 * later for finding the cpus to be bound to the networking threads.
7662 *
7663 * use_default is set B_TRUE if pools are enabled and pool_default
7664 * is returned. This avoids a 2nd lookup to set the poolname
7665 * for pool-effective.
7666 *
7667 * returns:
7668 *
7669 * NULL - pools are disabled or if the 'cpus' property is set.
7670 * cpupart of pool_default - pools are enabled and the pool
7671 * is not available or poolname is blank
7672 * cpupart of named pool - pools are enabled and the pool
7673 * is available.
7674 */
7675 cpupart_t *
mac_pset_find(mac_resource_props_t * mrp,boolean_t * use_default)7676 mac_pset_find(mac_resource_props_t *mrp, boolean_t *use_default)
7677 {
7678 pool_t *pool;
7679 cpupart_t *cpupart;
7680
7681 *use_default = B_FALSE;
7682
7683 /* CPUs property is set */
7684 if (mrp->mrp_mask & MRP_CPUS)
7685 return (NULL);
7686
7687 ASSERT(pool_lock_held());
7688
7689 /* Pools are disabled, no pset */
7690 if (pool_state == POOL_DISABLED)
7691 return (NULL);
7692
7693 /* Pools property is set */
7694 if (mrp->mrp_mask & MRP_POOL) {
7695 if ((pool = pool_lookup_pool_by_name(mrp->mrp_pool)) == NULL) {
7696 /* Pool not found */
7697 DTRACE_PROBE1(mac_pset_find_no_pool, char *,
7698 mrp->mrp_pool);
7699 *use_default = B_TRUE;
7700 pool = pool_default;
7701 }
7702 /* Pools property is not set */
7703 } else {
7704 *use_default = B_TRUE;
7705 pool = pool_default;
7706 }
7707
7708 /* Find the CPU pset that corresponds to the pool */
7709 mutex_enter(&cpu_lock);
7710 if ((cpupart = cpupart_find(pool->pool_pset->pset_id)) == NULL) {
7711 DTRACE_PROBE1(mac_find_pset_no_pset, psetid_t,
7712 pool->pool_pset->pset_id);
7713 }
7714 mutex_exit(&cpu_lock);
7715
7716 return (cpupart);
7717 }
7718
7719 void
mac_set_pool_effective(boolean_t use_default,cpupart_t * cpupart,mac_resource_props_t * mrp,mac_resource_props_t * emrp)7720 mac_set_pool_effective(boolean_t use_default, cpupart_t *cpupart,
7721 mac_resource_props_t *mrp, mac_resource_props_t *emrp)
7722 {
7723 ASSERT(pool_lock_held());
7724
7725 if (cpupart != NULL) {
7726 emrp->mrp_mask |= MRP_POOL;
7727 if (use_default) {
7728 (void) strcpy(emrp->mrp_pool,
7729 "pool_default");
7730 } else {
7731 ASSERT(strlen(mrp->mrp_pool) != 0);
7732 (void) strcpy(emrp->mrp_pool,
7733 mrp->mrp_pool);
7734 }
7735 } else {
7736 emrp->mrp_mask &= ~MRP_POOL;
7737 bzero(emrp->mrp_pool, MAXPATHLEN);
7738 }
7739 }
7740
7741 struct mac_pool_arg {
7742 char mpa_poolname[MAXPATHLEN];
7743 pool_event_t mpa_what;
7744 };
7745
7746 /*ARGSUSED*/
7747 static uint_t
mac_pool_link_update(mod_hash_key_t key,mod_hash_val_t * val,void * arg)7748 mac_pool_link_update(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
7749 {
7750 struct mac_pool_arg *mpa = arg;
7751 mac_impl_t *mip = (mac_impl_t *)val;
7752 mac_client_impl_t *mcip;
7753 mac_resource_props_t *mrp, *emrp;
7754 boolean_t pool_update = B_FALSE;
7755 boolean_t pool_clear = B_FALSE;
7756 boolean_t use_default = B_FALSE;
7757 cpupart_t *cpupart = NULL;
7758
7759 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
7760 i_mac_perim_enter(mip);
7761 for (mcip = mip->mi_clients_list; mcip != NULL;
7762 mcip = mcip->mci_client_next) {
7763 pool_update = B_FALSE;
7764 pool_clear = B_FALSE;
7765 use_default = B_FALSE;
7766 mac_client_get_resources((mac_client_handle_t)mcip, mrp);
7767 emrp = MCIP_EFFECTIVE_PROPS(mcip);
7768
7769 /*
7770 * When pools are enabled
7771 */
7772 if ((mpa->mpa_what == POOL_E_ENABLE) &&
7773 ((mrp->mrp_mask & MRP_CPUS) == 0)) {
7774 mrp->mrp_mask |= MRP_POOL;
7775 pool_update = B_TRUE;
7776 }
7777
7778 /*
7779 * When pools are disabled
7780 */
7781 if ((mpa->mpa_what == POOL_E_DISABLE) &&
7782 ((mrp->mrp_mask & MRP_CPUS) == 0)) {
7783 mrp->mrp_mask |= MRP_POOL;
7784 pool_clear = B_TRUE;
7785 }
7786
7787 /*
7788 * Look for links with the pool property set and the poolname
7789 * matching the one which is changing.
7790 */
7791 if (strcmp(mrp->mrp_pool, mpa->mpa_poolname) == 0) {
7792 /*
7793 * The pool associated with the link has changed.
7794 */
7795 if (mpa->mpa_what == POOL_E_CHANGE) {
7796 mrp->mrp_mask |= MRP_POOL;
7797 pool_update = B_TRUE;
7798 }
7799 }
7800
7801 /*
7802 * This link is associated with pool_default and
7803 * pool_default has changed.
7804 */
7805 if ((mpa->mpa_what == POOL_E_CHANGE) &&
7806 (strcmp(emrp->mrp_pool, "pool_default") == 0) &&
7807 (strcmp(mpa->mpa_poolname, "pool_default") == 0)) {
7808 mrp->mrp_mask |= MRP_POOL;
7809 pool_update = B_TRUE;
7810 }
7811
7812 /*
7813 * Get new list of cpus for the pool, bind network
7814 * threads to new list of cpus and update resources.
7815 */
7816 if (pool_update) {
7817 if (MCIP_DATAPATH_SETUP(mcip)) {
7818 pool_lock();
7819 cpupart = mac_pset_find(mrp, &use_default);
7820 mac_fanout_setup(mcip, mcip->mci_flent, mrp,
7821 mac_rx_deliver, mcip, NULL, cpupart);
7822 mac_set_pool_effective(use_default, cpupart,
7823 mrp, emrp);
7824 pool_unlock();
7825 }
7826 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip),
7827 B_FALSE);
7828 }
7829
7830 /*
7831 * Clear the effective pool and bind network threads
7832 * to any available CPU.
7833 */
7834 if (pool_clear) {
7835 if (MCIP_DATAPATH_SETUP(mcip)) {
7836 emrp->mrp_mask &= ~MRP_POOL;
7837 bzero(emrp->mrp_pool, MAXPATHLEN);
7838 mac_fanout_setup(mcip, mcip->mci_flent, mrp,
7839 mac_rx_deliver, mcip, NULL, NULL);
7840 }
7841 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip),
7842 B_FALSE);
7843 }
7844 }
7845 i_mac_perim_exit(mip);
7846 kmem_free(mrp, sizeof (*mrp));
7847 return (MH_WALK_CONTINUE);
7848 }
7849
7850 static void
mac_pool_update(void * arg)7851 mac_pool_update(void *arg)
7852 {
7853 mod_hash_walk(i_mac_impl_hash, mac_pool_link_update, arg);
7854 kmem_free(arg, sizeof (struct mac_pool_arg));
7855 }
7856
7857 /*
7858 * Callback function to be executed when a noteworthy pool event
7859 * takes place.
7860 */
7861 /* ARGSUSED */
7862 static void
mac_pool_event_cb(pool_event_t what,poolid_t id,void * arg)7863 mac_pool_event_cb(pool_event_t what, poolid_t id, void *arg)
7864 {
7865 pool_t *pool;
7866 char *poolname = NULL;
7867 struct mac_pool_arg *mpa;
7868
7869 pool_lock();
7870 mpa = kmem_zalloc(sizeof (struct mac_pool_arg), KM_SLEEP);
7871
7872 switch (what) {
7873 case POOL_E_ENABLE:
7874 case POOL_E_DISABLE:
7875 break;
7876
7877 case POOL_E_CHANGE:
7878 pool = pool_lookup_pool_by_id(id);
7879 if (pool == NULL) {
7880 kmem_free(mpa, sizeof (struct mac_pool_arg));
7881 pool_unlock();
7882 return;
7883 }
7884 pool_get_name(pool, &poolname);
7885 (void) strlcpy(mpa->mpa_poolname, poolname,
7886 sizeof (mpa->mpa_poolname));
7887 break;
7888
7889 default:
7890 kmem_free(mpa, sizeof (struct mac_pool_arg));
7891 pool_unlock();
7892 return;
7893 }
7894 pool_unlock();
7895
7896 mpa->mpa_what = what;
7897
7898 mac_pool_update(mpa);
7899 }
7900
7901 /*
7902 * Set effective rings property. This could be called from datapath_setup/
7903 * datapath_teardown or set-linkprop.
7904 * If the group is reserved we just go ahead and set the effective rings.
7905 * Additionally, for TX this could mean the default group has lost/gained
7906 * some rings, so if the default group is reserved, we need to adjust the
7907 * effective rings for the default group clients. For RX, if we are working
7908 * with the non-default group, we just need * to reset the effective props
7909 * for the default group clients.
7910 */
7911 void
mac_set_rings_effective(mac_client_impl_t * mcip)7912 mac_set_rings_effective(mac_client_impl_t *mcip)
7913 {
7914 mac_impl_t *mip = mcip->mci_mip;
7915 mac_group_t *grp;
7916 mac_group_t *defgrp;
7917 flow_entry_t *flent = mcip->mci_flent;
7918 mac_resource_props_t *emrp = MCIP_EFFECTIVE_PROPS(mcip);
7919 mac_grp_client_t *mgcp;
7920 mac_client_impl_t *gmcip;
7921
7922 grp = flent->fe_rx_ring_group;
7923 if (grp != NULL) {
7924 defgrp = MAC_DEFAULT_RX_GROUP(mip);
7925 /*
7926 * If we have reserved a group, set the effective rings
7927 * to the ring count in the group.
7928 */
7929 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7930 emrp->mrp_mask |= MRP_RX_RINGS;
7931 emrp->mrp_nrxrings = grp->mrg_cur_count;
7932 }
7933
7934 /*
7935 * We go through the clients in the shared group and
7936 * reset the effective properties. It is possible this
7937 * might have already been done for some client (i.e.
7938 * if some client is being moved to a group that is
7939 * already shared). The case where the default group is
7940 * RESERVED is taken care of above (note in the RX side if
7941 * there is a non-default group, the default group is always
7942 * SHARED).
7943 */
7944 if (grp != defgrp || grp->mrg_state == MAC_GROUP_STATE_SHARED) {
7945 if (grp->mrg_state == MAC_GROUP_STATE_SHARED)
7946 mgcp = grp->mrg_clients;
7947 else
7948 mgcp = defgrp->mrg_clients;
7949 while (mgcp != NULL) {
7950 gmcip = mgcp->mgc_client;
7951 emrp = MCIP_EFFECTIVE_PROPS(gmcip);
7952 if (emrp->mrp_mask & MRP_RX_RINGS) {
7953 emrp->mrp_mask &= ~MRP_RX_RINGS;
7954 emrp->mrp_nrxrings = 0;
7955 }
7956 mgcp = mgcp->mgc_next;
7957 }
7958 }
7959 }
7960
7961 /* Now the TX side */
7962 grp = flent->fe_tx_ring_group;
7963 if (grp != NULL) {
7964 defgrp = MAC_DEFAULT_TX_GROUP(mip);
7965
7966 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7967 emrp->mrp_mask |= MRP_TX_RINGS;
7968 emrp->mrp_ntxrings = grp->mrg_cur_count;
7969 } else if (grp->mrg_state == MAC_GROUP_STATE_SHARED) {
7970 mgcp = grp->mrg_clients;
7971 while (mgcp != NULL) {
7972 gmcip = mgcp->mgc_client;
7973 emrp = MCIP_EFFECTIVE_PROPS(gmcip);
7974 if (emrp->mrp_mask & MRP_TX_RINGS) {
7975 emrp->mrp_mask &= ~MRP_TX_RINGS;
7976 emrp->mrp_ntxrings = 0;
7977 }
7978 mgcp = mgcp->mgc_next;
7979 }
7980 }
7981
7982 /*
7983 * If the group is not the default group and the default
7984 * group is reserved, the ring count in the default group
7985 * might have changed, update it.
7986 */
7987 if (grp != defgrp &&
7988 defgrp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7989 gmcip = MAC_GROUP_ONLY_CLIENT(defgrp);
7990 emrp = MCIP_EFFECTIVE_PROPS(gmcip);
7991 emrp->mrp_ntxrings = defgrp->mrg_cur_count;
7992 }
7993 }
7994 emrp = MCIP_EFFECTIVE_PROPS(mcip);
7995 }
7996
7997 /*
7998 * Check if the primary is in the default group. If so, see if we
7999 * can give it a an exclusive group now that another client is
8000 * being configured. We take the primary out of the default group
8001 * because the multicast/broadcast packets for the all the clients
8002 * will land in the default ring in the default group which means
8003 * any client in the default group, even if it is the only on in
8004 * the group, will lose exclusive access to the rings, hence
8005 * polling.
8006 */
8007 mac_client_impl_t *
mac_check_primary_relocation(mac_client_impl_t * mcip,boolean_t rxhw)8008 mac_check_primary_relocation(mac_client_impl_t *mcip, boolean_t rxhw)
8009 {
8010 mac_impl_t *mip = mcip->mci_mip;
8011 mac_group_t *defgrp = MAC_DEFAULT_RX_GROUP(mip);
8012 flow_entry_t *flent = mcip->mci_flent;
8013 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip);
8014 uint8_t *mac_addr;
8015 mac_group_t *ngrp;
8016
8017 /*
8018 * Check if the primary is in the default group, if not
8019 * or if it is explicitly configured to be in the default
8020 * group OR set the RX rings property, return.
8021 */
8022 if (flent->fe_rx_ring_group != defgrp || mrp->mrp_mask & MRP_RX_RINGS)
8023 return (NULL);
8024
8025 /*
8026 * If the new client needs an exclusive group and we
8027 * don't have another for the primary, return.
8028 */
8029 if (rxhw && mip->mi_rxhwclnt_avail < 2)
8030 return (NULL);
8031
8032 mac_addr = flent->fe_flow_desc.fd_dst_mac;
8033 /*
8034 * We call this when we are setting up the datapath for
8035 * the first non-primary.
8036 */
8037 ASSERT(mip->mi_nactiveclients == 2);
8038 /*
8039 * OK, now we have the primary that needs to be relocated.
8040 */
8041 ngrp = mac_reserve_rx_group(mcip, mac_addr, B_TRUE);
8042 if (ngrp == NULL)
8043 return (NULL);
8044 if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) {
8045 mac_stop_group(ngrp);
8046 return (NULL);
8047 }
8048 return (mcip);
8049 }
8050