1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27 /*
28 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
29 * Copyright 2025 Oxide Computer Company
30 */
31
32 #include <sys/param.h>
33 #include <sys/types.h>
34 #include <sys/sysmacros.h>
35 #include <sys/systm.h>
36 #include <sys/thread.h>
37 #include <sys/proc.h>
38 #include <sys/task.h>
39 #include <sys/project.h>
40 #include <sys/signal.h>
41 #include <sys/errno.h>
42 #include <sys/vmparam.h>
43 #include <sys/stack.h>
44 #include <sys/procfs.h>
45 #include <sys/prsystm.h>
46 #include <sys/cpuvar.h>
47 #include <sys/kmem.h>
48 #include <sys/vtrace.h>
49 #include <sys/door.h>
50 #include <vm/seg_kp.h>
51 #include <sys/debug.h>
52 #include <sys/schedctl.h>
53 #include <sys/poll.h>
54 #include <sys/copyops.h>
55 #include <sys/lwp_upimutex_impl.h>
56 #include <sys/cpupart.h>
57 #include <sys/lgrp.h>
58 #include <sys/rctl.h>
59 #include <sys/contract_impl.h>
60 #include <sys/cpc_impl.h>
61 #include <sys/sdt.h>
62 #include <sys/cmn_err.h>
63 #include <sys/brand.h>
64 #include <sys/cyclic.h>
65 #include <sys/pool.h>
66
67 /* hash function for the lwpid hash table, p->p_tidhash[] */
68 #define TIDHASH(tid, hash_sz) ((tid) & ((hash_sz) - 1))
69
70 void *segkp_lwp; /* cookie for pool of segkp resources */
71 extern void reapq_move_lq_to_tq(kthread_t *);
72 extern void freectx_ctx(struct ctxop *);
73
74 /*
75 * Create a kernel thread associated with a particular system process. Give
76 * it an LWP so that microstate accounting will be available for it.
77 */
78 kthread_t *
lwp_kernel_create(proc_t * p,void (* proc)(),void * arg,int state,pri_t pri)79 lwp_kernel_create(proc_t *p, void (*proc)(), void *arg, int state, pri_t pri)
80 {
81 klwp_t *lwp;
82
83 VERIFY((p->p_flag & SSYS) != 0);
84
85 lwp = lwp_create(proc, arg, 0, p, state, pri, &t0.t_hold, syscid, 0);
86
87 VERIFY(lwp != NULL);
88
89 return (lwptot(lwp));
90 }
91
92 /*
93 * Create a thread that appears to be stopped at sys_rtt.
94 */
95 klwp_t *
lwp_create(void (* proc)(),caddr_t arg,size_t len,proc_t * p,int state,int pri,const k_sigset_t * smask,int cid,id_t lwpid)96 lwp_create(void (*proc)(), caddr_t arg, size_t len, proc_t *p,
97 int state, int pri, const k_sigset_t *smask, int cid, id_t lwpid)
98 {
99 klwp_t *lwp = NULL;
100 kthread_t *t;
101 kthread_t *tx;
102 cpupart_t *oldpart = NULL;
103 size_t stksize;
104 caddr_t lwpdata = NULL;
105 processorid_t binding;
106 int err = 0;
107 kproject_t *oldkpj, *newkpj;
108 void *bufp = NULL;
109 klwp_t *curlwp;
110 lwpent_t *lep;
111 lwpdir_t *old_dir = NULL;
112 uint_t old_dirsz = 0;
113 tidhash_t *old_hash = NULL;
114 uint_t old_hashsz = 0;
115 ret_tidhash_t *ret_tidhash = NULL;
116 int i;
117 int rctlfail = 0;
118 boolean_t branded = 0;
119 struct ctxop *ctx = NULL;
120
121 ASSERT(cid != sysdccid); /* system threads must start in SYS */
122
123 ASSERT(p != &p0); /* No new LWPs in p0. */
124
125 mutex_enter(&p->p_lock);
126 mutex_enter(&p->p_zone->zone_nlwps_lock);
127 /*
128 * don't enforce rctl limits on system processes
129 */
130 if (!CLASS_KERNEL(cid)) {
131 if (p->p_task->tk_nlwps >= p->p_task->tk_nlwps_ctl)
132 if (rctl_test(rc_task_lwps, p->p_task->tk_rctls, p,
133 1, 0) & RCT_DENY)
134 rctlfail = 1;
135 if (p->p_task->tk_proj->kpj_nlwps >=
136 p->p_task->tk_proj->kpj_nlwps_ctl)
137 if (rctl_test(rc_project_nlwps,
138 p->p_task->tk_proj->kpj_rctls, p, 1, 0)
139 & RCT_DENY)
140 rctlfail = 1;
141 if (p->p_zone->zone_nlwps >= p->p_zone->zone_nlwps_ctl)
142 if (rctl_test(rc_zone_nlwps, p->p_zone->zone_rctls, p,
143 1, 0) & RCT_DENY)
144 rctlfail = 1;
145 }
146 if (rctlfail) {
147 mutex_exit(&p->p_zone->zone_nlwps_lock);
148 mutex_exit(&p->p_lock);
149 atomic_inc_32(&p->p_zone->zone_ffcap);
150 return (NULL);
151 }
152 p->p_task->tk_nlwps++;
153 p->p_task->tk_proj->kpj_nlwps++;
154 p->p_zone->zone_nlwps++;
155 mutex_exit(&p->p_zone->zone_nlwps_lock);
156 mutex_exit(&p->p_lock);
157
158 curlwp = ttolwp(curthread);
159 if (curlwp == NULL || (stksize = curlwp->lwp_childstksz) == 0)
160 stksize = lwp_default_stksize;
161
162 if (CLASS_KERNEL(cid)) {
163 /*
164 * Since we are creating an LWP in an SSYS process, we do not
165 * inherit anything from the current thread's LWP. We set
166 * stksize and lwpdata to 0 in order to let thread_create()
167 * allocate a regular kernel thread stack for this thread.
168 */
169 curlwp = NULL;
170 stksize = 0;
171 lwpdata = NULL;
172
173 } else if (stksize == lwp_default_stksize) {
174 /*
175 * Try to reuse an <lwp,stack> from the LWP deathrow.
176 */
177 if (lwp_reapcnt > 0) {
178 mutex_enter(&reaplock);
179 if ((t = lwp_deathrow) != NULL) {
180 ASSERT(t->t_swap);
181 lwp_deathrow = t->t_forw;
182 lwp_reapcnt--;
183 lwpdata = t->t_swap;
184 lwp = t->t_lwp;
185 ctx = t->t_ctx;
186 t->t_swap = NULL;
187 t->t_lwp = NULL;
188 t->t_ctx = NULL;
189 reapq_move_lq_to_tq(t);
190 }
191 mutex_exit(&reaplock);
192 if (lwp != NULL) {
193 lwp_stk_fini(lwp);
194 }
195 if (ctx != NULL) {
196 freectx_ctx(ctx);
197 }
198 }
199 if (lwpdata == NULL &&
200 (lwpdata = (caddr_t)segkp_cache_get(segkp_lwp)) == NULL) {
201 mutex_enter(&p->p_lock);
202 mutex_enter(&p->p_zone->zone_nlwps_lock);
203 p->p_task->tk_nlwps--;
204 p->p_task->tk_proj->kpj_nlwps--;
205 p->p_zone->zone_nlwps--;
206 mutex_exit(&p->p_zone->zone_nlwps_lock);
207 mutex_exit(&p->p_lock);
208 atomic_inc_32(&p->p_zone->zone_ffnomem);
209 return (NULL);
210 }
211 } else {
212 stksize = roundup(stksize, PAGESIZE);
213 if ((lwpdata = (caddr_t)segkp_get(segkp, stksize,
214 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED))) == NULL) {
215 mutex_enter(&p->p_lock);
216 mutex_enter(&p->p_zone->zone_nlwps_lock);
217 p->p_task->tk_nlwps--;
218 p->p_task->tk_proj->kpj_nlwps--;
219 p->p_zone->zone_nlwps--;
220 mutex_exit(&p->p_zone->zone_nlwps_lock);
221 mutex_exit(&p->p_lock);
222 atomic_inc_32(&p->p_zone->zone_ffnomem);
223 return (NULL);
224 }
225 }
226
227 /*
228 * Create a thread, initializing the stack pointer
229 */
230 t = thread_create(lwpdata, stksize, NULL, NULL, 0, p, TS_STOPPED, pri);
231
232 /*
233 * If a non-NULL stack base is passed in, thread_create() assumes
234 * that the stack might be statically allocated (as opposed to being
235 * allocated from segkp), and so it does not set t_swap. Since
236 * the lwpdata was allocated from segkp, we must set t_swap to point
237 * to it ourselves.
238 *
239 * This would be less confusing if t_swap had a better name; it really
240 * indicates that the stack is allocated from segkp, regardless of
241 * whether or not it is swappable.
242 */
243 if (lwpdata != NULL) {
244 ASSERT(!CLASS_KERNEL(cid));
245 ASSERT(t->t_swap == NULL);
246 t->t_swap = lwpdata; /* Start of page-able data */
247 }
248
249 /*
250 * If the stack and lwp can be reused, mark the thread as such.
251 * When we get to reapq_add() from resume_from_zombie(), these
252 * threads will go onto lwp_deathrow instead of thread_deathrow.
253 */
254 if (!CLASS_KERNEL(cid) && stksize == lwp_default_stksize)
255 t->t_flag |= T_LWPREUSE;
256
257 if (lwp == NULL)
258 lwp = kmem_cache_alloc(lwp_cache, KM_SLEEP);
259 bzero(lwp, sizeof (*lwp));
260 t->t_lwp = lwp;
261
262 t->t_hold = *smask;
263 lwp->lwp_thread = t;
264 lwp->lwp_procp = p;
265 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE;
266 if (curlwp != NULL && curlwp->lwp_childstksz != 0)
267 lwp->lwp_childstksz = curlwp->lwp_childstksz;
268
269 t->t_stk = lwp_stk_init(lwp, t->t_stk);
270 thread_load(t, proc, arg, len);
271
272 /*
273 * Allocate the SIGPROF buffer if ITIMER_REALPROF is in effect.
274 */
275 if (p->p_rprof_cyclic != CYCLIC_NONE)
276 t->t_rprof = kmem_zalloc(sizeof (struct rprof), KM_SLEEP);
277
278 if (cid != NOCLASS)
279 (void) CL_ALLOC(&bufp, cid, KM_SLEEP);
280
281 /*
282 * Allocate an lwp directory entry for the new lwp.
283 */
284 lep = kmem_zalloc(sizeof (*lep), KM_SLEEP);
285
286 mutex_enter(&p->p_lock);
287 grow:
288 /*
289 * Grow the lwp (thread) directory and lwpid hash table if necessary.
290 * A note on the growth algorithm:
291 * The new lwp directory size is computed as:
292 * new = 2 * old + 2
293 * Starting with an initial size of 2 (see exec_common()),
294 * this yields numbers that are a power of two minus 2:
295 * 2, 6, 14, 30, 62, 126, 254, 510, 1022, ...
296 * The size of the lwpid hash table must be a power of two
297 * and must be commensurate in size with the lwp directory
298 * so that hash bucket chains remain short. Therefore,
299 * the lwpid hash table size is computed as:
300 * hashsz = (dirsz + 2) / 2
301 * which leads to these hash table sizes corresponding to
302 * the above directory sizes:
303 * 2, 4, 8, 16, 32, 64, 128, 256, 512, ...
304 * A note on growing the hash table:
305 * For performance reasons, code in lwp_unpark() does not
306 * acquire curproc->p_lock when searching the hash table.
307 * Rather, it calls lwp_hash_lookup_and_lock() which
308 * acquires only the individual hash bucket lock, taking
309 * care to deal with reallocation of the hash table
310 * during the time it takes to acquire the lock.
311 *
312 * This is sufficient to protect the integrity of the
313 * hash table, but it requires us to acquire all of the
314 * old hash bucket locks before growing the hash table
315 * and to release them afterwards. It also requires us
316 * not to free the old hash table because some thread
317 * in lwp_hash_lookup_and_lock() might still be trying
318 * to acquire the old bucket lock.
319 *
320 * So we adopt the tactic of keeping all of the retired
321 * hash tables on a linked list, so they can be safely
322 * freed when the process exits or execs.
323 *
324 * Because the hash table grows in powers of two, the
325 * total size of all of the hash tables will be slightly
326 * less than twice the size of the largest hash table.
327 */
328 while (p->p_lwpfree == NULL) {
329 uint_t dirsz = p->p_lwpdir_sz;
330 lwpdir_t *new_dir;
331 uint_t new_dirsz;
332 lwpdir_t *ldp;
333 tidhash_t *new_hash;
334 uint_t new_hashsz;
335
336 mutex_exit(&p->p_lock);
337
338 /*
339 * Prepare to remember the old p_tidhash for later
340 * kmem_free()ing when the process exits or execs.
341 */
342 if (ret_tidhash == NULL)
343 ret_tidhash = kmem_zalloc(sizeof (ret_tidhash_t),
344 KM_SLEEP);
345 if (old_dir != NULL)
346 kmem_free(old_dir, old_dirsz * sizeof (*old_dir));
347 if (old_hash != NULL)
348 kmem_free(old_hash, old_hashsz * sizeof (*old_hash));
349
350 new_dirsz = 2 * dirsz + 2;
351 new_dir = kmem_zalloc(new_dirsz * sizeof (lwpdir_t), KM_SLEEP);
352 for (ldp = new_dir, i = 1; i < new_dirsz; i++, ldp++)
353 ldp->ld_next = ldp + 1;
354 new_hashsz = (new_dirsz + 2) / 2;
355 new_hash = kmem_zalloc(new_hashsz * sizeof (tidhash_t),
356 KM_SLEEP);
357
358 mutex_enter(&p->p_lock);
359 if (p == curproc)
360 prbarrier(p);
361
362 if (dirsz != p->p_lwpdir_sz || p->p_lwpfree != NULL) {
363 /*
364 * Someone else beat us to it or some lwp exited.
365 * Set up to free our memory and take a lap.
366 */
367 old_dir = new_dir;
368 old_dirsz = new_dirsz;
369 old_hash = new_hash;
370 old_hashsz = new_hashsz;
371 } else {
372 /*
373 * For the benefit of lwp_hash_lookup_and_lock(),
374 * called from lwp_unpark(), which searches the
375 * tid hash table without acquiring p->p_lock,
376 * we must acquire all of the tid hash table
377 * locks before replacing p->p_tidhash.
378 */
379 old_hash = p->p_tidhash;
380 old_hashsz = p->p_tidhash_sz;
381 for (i = 0; i < old_hashsz; i++) {
382 mutex_enter(&old_hash[i].th_lock);
383 mutex_enter(&new_hash[i].th_lock);
384 }
385
386 /*
387 * We simply hash in all of the old directory entries.
388 * This works because the old directory has no empty
389 * slots and the new hash table starts out empty.
390 * This reproduces the original directory ordering
391 * (required for /proc directory semantics).
392 */
393 old_dir = p->p_lwpdir;
394 old_dirsz = p->p_lwpdir_sz;
395 p->p_lwpdir = new_dir;
396 p->p_lwpfree = new_dir;
397 p->p_lwpdir_sz = new_dirsz;
398 for (ldp = old_dir, i = 0; i < old_dirsz; i++, ldp++)
399 lwp_hash_in(p, ldp->ld_entry,
400 new_hash, new_hashsz, 0);
401
402 /*
403 * Remember the old hash table along with all
404 * of the previously-remembered hash tables.
405 * We will free them at process exit or exec.
406 */
407 ret_tidhash->rth_tidhash = old_hash;
408 ret_tidhash->rth_tidhash_sz = old_hashsz;
409 ret_tidhash->rth_next = p->p_ret_tidhash;
410 p->p_ret_tidhash = ret_tidhash;
411
412 /*
413 * Now establish the new tid hash table.
414 * As soon as we assign p->p_tidhash,
415 * code in lwp_unpark() can start using it.
416 */
417 membar_producer();
418 p->p_tidhash = new_hash;
419
420 /*
421 * It is necessary that p_tidhash reach global
422 * visibility before p_tidhash_sz. Otherwise,
423 * code in lwp_hash_lookup_and_lock() could
424 * index into the old p_tidhash using the new
425 * p_tidhash_sz and thereby access invalid data.
426 */
427 membar_producer();
428 p->p_tidhash_sz = new_hashsz;
429
430 /*
431 * Release the locks; allow lwp_unpark() to carry on.
432 */
433 for (i = 0; i < old_hashsz; i++) {
434 mutex_exit(&old_hash[i].th_lock);
435 mutex_exit(&new_hash[i].th_lock);
436 }
437
438 /*
439 * Avoid freeing these objects below.
440 */
441 ret_tidhash = NULL;
442 old_hash = NULL;
443 old_hashsz = 0;
444 }
445 }
446
447 /*
448 * Block the process against /proc while we manipulate p->p_tlist,
449 * unless lwp_create() was called by /proc for the PCAGENT operation.
450 * We want to do this early enough so that we don't drop p->p_lock
451 * until the thread is put on the p->p_tlist.
452 */
453 if (p == curproc) {
454 prbarrier(p);
455 /*
456 * If the current lwp has been requested to stop, do so now.
457 * Otherwise we have a race condition between /proc attempting
458 * to stop the process and this thread creating a new lwp
459 * that was not seen when the /proc PCSTOP request was issued.
460 * We rely on stop() to call prbarrier(p) before returning.
461 */
462 while ((curthread->t_proc_flag & TP_PRSTOP) &&
463 !ttolwp(curthread)->lwp_nostop) {
464 /*
465 * We called pool_barrier_enter() before calling
466 * here to lwp_create(). We have to call
467 * pool_barrier_exit() before stopping.
468 */
469 pool_barrier_exit();
470 prbarrier(p);
471 stop(PR_REQUESTED, 0);
472 /*
473 * And we have to repeat the call to
474 * pool_barrier_enter after stopping.
475 */
476 pool_barrier_enter();
477 prbarrier(p);
478 }
479
480 /*
481 * If process is exiting, there could be a race between
482 * the agent lwp creation and the new lwp currently being
483 * created. So to prevent this race lwp creation is failed
484 * if the process is exiting.
485 */
486 if (p->p_flag & (SEXITLWPS|SKILLED)) {
487 err = 1;
488 goto error;
489 }
490
491 /*
492 * Since we might have dropped p->p_lock, the
493 * lwp directory free list might have changed.
494 */
495 if (p->p_lwpfree == NULL)
496 goto grow;
497 }
498
499 kpreempt_disable(); /* can't grab cpu_lock here */
500
501 /*
502 * Inherit processor and processor set bindings from curthread.
503 *
504 * For kernel LWPs, we do not inherit processor set bindings at
505 * process creation time (i.e. when p != curproc). After the
506 * kernel process is created, any subsequent LWPs must be created
507 * by threads in the kernel process, at which point we *will*
508 * inherit processor set bindings.
509 */
510 if (CLASS_KERNEL(cid) && p != curproc) {
511 t->t_bind_cpu = binding = PBIND_NONE;
512 t->t_cpupart = oldpart = &cp_default;
513 t->t_bind_pset = PS_NONE;
514 t->t_bindflag = (uchar_t)default_binding_mode;
515 } else {
516 binding = curthread->t_bind_cpu;
517 t->t_bind_cpu = binding;
518 oldpart = t->t_cpupart;
519 t->t_cpupart = curthread->t_cpupart;
520 t->t_bind_pset = curthread->t_bind_pset;
521 t->t_bindflag = curthread->t_bindflag |
522 (uchar_t)default_binding_mode;
523 }
524
525 /*
526 * thread_create() initializes this thread's home lgroup to the root.
527 * Choose a more suitable lgroup, since this thread is associated
528 * with an lwp.
529 */
530 ASSERT(oldpart != NULL);
531 if (binding != PBIND_NONE && t->t_affinitycnt == 0) {
532 t->t_bound_cpu = cpu[binding];
533 if (t->t_lpl != t->t_bound_cpu->cpu_lpl)
534 lgrp_move_thread(t, t->t_bound_cpu->cpu_lpl, 1);
535 } else if (CLASS_KERNEL(cid)) {
536 /*
537 * Kernel threads are always in the root lgrp.
538 */
539 lgrp_move_thread(t,
540 &t->t_cpupart->cp_lgrploads[LGRP_ROOTID], 1);
541 } else {
542 lgrp_move_thread(t, lgrp_choose(t, t->t_cpupart), 1);
543 }
544
545 kpreempt_enable();
546
547 /*
548 * make sure lpl points to our own partition
549 */
550 ASSERT(t->t_lpl >= t->t_cpupart->cp_lgrploads);
551 ASSERT(t->t_lpl < t->t_cpupart->cp_lgrploads +
552 t->t_cpupart->cp_nlgrploads);
553
554 /*
555 * It is safe to point the thread to the new project without holding it
556 * since we're holding the target process' p_lock here and therefore
557 * we're guaranteed that it will not move to another project.
558 */
559 newkpj = p->p_task->tk_proj;
560 oldkpj = ttoproj(t);
561 if (newkpj != oldkpj) {
562 t->t_proj = newkpj;
563 (void) project_hold(newkpj);
564 project_rele(oldkpj);
565 }
566
567 if (cid != NOCLASS) {
568 /*
569 * If the lwp is being created in the current process
570 * and matches the current thread's scheduling class,
571 * we should propagate the current thread's scheduling
572 * parameters by calling CL_FORK. Otherwise just use
573 * the defaults by calling CL_ENTERCLASS.
574 */
575 if (p != curproc || curthread->t_cid != cid) {
576 err = CL_ENTERCLASS(t, cid, NULL, NULL, bufp);
577 t->t_pri = pri; /* CL_ENTERCLASS may have changed it */
578 /*
579 * We don't call schedctl_set_cidpri(t) here
580 * because the schedctl data is not yet set
581 * up for the newly-created lwp.
582 */
583 } else {
584 t->t_clfuncs = &(sclass[cid].cl_funcs->thread);
585 err = CL_FORK(curthread, t, bufp);
586 t->t_cid = cid;
587 }
588 if (err) {
589 atomic_inc_32(&p->p_zone->zone_ffmisc);
590 goto error;
591 } else {
592 bufp = NULL;
593 }
594 }
595
596 /*
597 * If we were given an lwpid then use it, else allocate one.
598 */
599 if (lwpid != 0)
600 t->t_tid = lwpid;
601 else {
602 /*
603 * lwp/thread id 0 is never valid; reserved for special checks.
604 * lwp/thread id 1 is reserved for the main thread.
605 * Start again at 2 when INT_MAX has been reached
606 * (id_t is a signed 32-bit integer).
607 */
608 id_t prev_id = p->p_lwpid; /* last allocated tid */
609
610 do { /* avoid lwpid duplication */
611 if (p->p_lwpid == INT_MAX) {
612 p->p_flag |= SLWPWRAP;
613 p->p_lwpid = 1;
614 }
615 if ((t->t_tid = ++p->p_lwpid) == prev_id) {
616 /*
617 * All lwpids are allocated; fail the request.
618 */
619 err = 1;
620 atomic_inc_32(&p->p_zone->zone_ffnoproc);
621 goto error;
622 }
623 /*
624 * We only need to worry about colliding with an id
625 * that's already in use if this process has
626 * cycled through all available lwp ids.
627 */
628 if ((p->p_flag & SLWPWRAP) == 0)
629 break;
630 } while (lwp_hash_lookup(p, t->t_tid) != NULL);
631 }
632
633 /*
634 * If this is a branded process, let the brand do any necessary lwp
635 * initialization.
636 */
637 if (PROC_IS_BRANDED(p)) {
638 if (BROP(p)->b_initlwp(lwp)) {
639 err = 1;
640 atomic_inc_32(&p->p_zone->zone_ffmisc);
641 goto error;
642 }
643 branded = 1;
644 }
645
646 if (t->t_tid == 1) {
647 kpreempt_disable();
648 ASSERT(t->t_lpl != NULL);
649 p->p_t1_lgrpid = t->t_lpl->lpl_lgrpid;
650 kpreempt_enable();
651 if (p->p_tr_lgrpid != LGRP_NONE &&
652 p->p_tr_lgrpid != p->p_t1_lgrpid) {
653 lgrp_update_trthr_migrations(1);
654 }
655 }
656
657 p->p_lwpcnt++;
658 t->t_waitfor = -1;
659
660 /*
661 * Turn microstate accounting on for thread if on for process.
662 */
663 if (p->p_flag & SMSACCT)
664 t->t_proc_flag |= TP_MSACCT;
665
666 /*
667 * If the process has watchpoints, mark the new thread as such.
668 */
669 if (pr_watch_active(p))
670 watch_enable(t);
671
672 /*
673 * The lwp is being created in the stopped state.
674 * We set all the necessary flags to indicate that fact here.
675 * We omit the TS_CREATE flag from t_schedflag so that the lwp
676 * cannot be set running until the caller is finished with it,
677 * even if lwp_continue() is called on it after we drop p->p_lock.
678 * When the caller is finished with the newly-created lwp,
679 * the caller must call lwp_create_done() to allow the lwp
680 * to be set running. If the TP_HOLDLWP is left set, the
681 * lwp will suspend itself after reaching system call exit.
682 */
683 init_mstate(t, LMS_STOPPED);
684 t->t_proc_flag |= TP_HOLDLWP;
685 t->t_schedflag |= (TS_ALLSTART & ~(TS_CSTART | TS_CREATE));
686 t->t_whystop = PR_SUSPENDED;
687 t->t_whatstop = SUSPEND_NORMAL;
688 t->t_sig_check = 1; /* ensure that TP_HOLDLWP is honored */
689
690 /*
691 * Set system call processing flags in case tracing or profiling
692 * is set. The first system call will evaluate these and turn
693 * them off if they aren't needed.
694 */
695 t->t_pre_sys = 1;
696 t->t_post_sys = 1;
697
698 /*
699 * Insert the new thread into the list of all threads.
700 */
701 if ((tx = p->p_tlist) == NULL) {
702 t->t_back = t;
703 t->t_forw = t;
704 p->p_tlist = t;
705 } else {
706 t->t_forw = tx;
707 t->t_back = tx->t_back;
708 tx->t_back->t_forw = t;
709 tx->t_back = t;
710 }
711
712 /*
713 * Insert the new lwp into an lwp directory slot position
714 * and into the lwpid hash table.
715 */
716 lep->le_thread = t;
717 lep->le_lwpid = t->t_tid;
718 lep->le_start = t->t_start;
719 lwp_hash_in(p, lep, p->p_tidhash, p->p_tidhash_sz, 1);
720
721 lwp_fp_init(lwp);
722
723 if (state == TS_RUN) {
724 /*
725 * We set the new lwp running immediately.
726 */
727 t->t_proc_flag &= ~TP_HOLDLWP;
728 lwp_create_done(t);
729 }
730
731 error:
732 if (err) {
733 if (CLASS_KERNEL(cid)) {
734 /*
735 * This should only happen if a system process runs
736 * out of lwpids, which shouldn't occur.
737 */
738 panic("Failed to create a system LWP");
739 }
740 /*
741 * We have failed to create an lwp, so decrement the number
742 * of lwps in the task and let the lgroup load averages know
743 * that this thread isn't going to show up.
744 */
745 kpreempt_disable();
746 lgrp_move_thread(t, NULL, 1);
747 kpreempt_enable();
748
749 ASSERT(MUTEX_HELD(&p->p_lock));
750 mutex_enter(&p->p_zone->zone_nlwps_lock);
751 p->p_task->tk_nlwps--;
752 p->p_task->tk_proj->kpj_nlwps--;
753 p->p_zone->zone_nlwps--;
754 mutex_exit(&p->p_zone->zone_nlwps_lock);
755 if (cid != NOCLASS && bufp != NULL)
756 CL_FREE(cid, bufp);
757
758 if (branded)
759 BROP(p)->b_freelwp(lwp);
760
761 mutex_exit(&p->p_lock);
762 t->t_state = TS_FREE;
763 thread_rele(t);
764
765 /*
766 * We need to remove t from the list of all threads
767 * because thread_exit()/lwp_exit() isn't called on t.
768 */
769 mutex_enter(&pidlock);
770 ASSERT(t != t->t_next); /* t0 never exits */
771 t->t_next->t_prev = t->t_prev;
772 t->t_prev->t_next = t->t_next;
773 mutex_exit(&pidlock);
774
775 thread_free(t);
776 kmem_free(lep, sizeof (*lep));
777 lwp = NULL;
778 } else {
779 mutex_exit(&p->p_lock);
780 }
781
782 if (old_dir != NULL)
783 kmem_free(old_dir, old_dirsz * sizeof (*old_dir));
784 if (old_hash != NULL)
785 kmem_free(old_hash, old_hashsz * sizeof (*old_hash));
786 if (ret_tidhash != NULL)
787 kmem_free(ret_tidhash, sizeof (ret_tidhash_t));
788
789 DTRACE_PROC1(lwp__create, kthread_t *, t);
790 return (lwp);
791 }
792
793 /*
794 * lwp_create_done() is called by the caller of lwp_create() to set the
795 * newly-created lwp running after the caller has finished manipulating it.
796 */
797 void
lwp_create_done(kthread_t * t)798 lwp_create_done(kthread_t *t)
799 {
800 proc_t *p = ttoproc(t);
801
802 ASSERT(MUTEX_HELD(&p->p_lock));
803
804 /*
805 * We set the TS_CREATE and TS_CSTART flags and call setrun_locked().
806 * (The absence of the TS_CREATE flag prevents the lwp from running
807 * until we are finished with it, even if lwp_continue() is called on
808 * it by some other lwp in the process or elsewhere in the kernel.)
809 */
810 thread_lock(t);
811 ASSERT(t->t_state == TS_STOPPED && !(t->t_schedflag & TS_CREATE));
812 /*
813 * If TS_CSTART is set, lwp_continue(t) has been called and
814 * has already incremented p_lwprcnt; avoid doing this twice.
815 */
816 if (!(t->t_schedflag & TS_CSTART))
817 p->p_lwprcnt++;
818 t->t_schedflag |= (TS_CSTART | TS_CREATE);
819 setrun_locked(t);
820 thread_unlock(t);
821 }
822
823 /*
824 * Copy an LWP's active templates, and clear the latest contracts.
825 */
826 void
lwp_ctmpl_copy(klwp_t * dst,klwp_t * src)827 lwp_ctmpl_copy(klwp_t *dst, klwp_t *src)
828 {
829 int i;
830
831 for (i = 0; i < ct_ntypes; i++) {
832 dst->lwp_ct_active[i] = ctmpl_dup(src->lwp_ct_active[i]);
833 dst->lwp_ct_latest[i] = NULL;
834 }
835 }
836
837 /*
838 * Clear an LWP's contract template state.
839 */
840 void
lwp_ctmpl_clear(klwp_t * lwp)841 lwp_ctmpl_clear(klwp_t *lwp)
842 {
843 ct_template_t *tmpl;
844 int i;
845
846 for (i = 0; i < ct_ntypes; i++) {
847 if ((tmpl = lwp->lwp_ct_active[i]) != NULL) {
848 ctmpl_free(tmpl);
849 lwp->lwp_ct_active[i] = NULL;
850 }
851
852 if (lwp->lwp_ct_latest[i] != NULL) {
853 contract_rele(lwp->lwp_ct_latest[i]);
854 lwp->lwp_ct_latest[i] = NULL;
855 }
856 }
857 }
858
859 /*
860 * Individual lwp exit.
861 * If this is the last lwp, exit the whole process.
862 */
863 void
lwp_exit(void)864 lwp_exit(void)
865 {
866 kthread_t *t = curthread;
867 klwp_t *lwp = ttolwp(t);
868 proc_t *p = ttoproc(t);
869
870 ASSERT(MUTEX_HELD(&p->p_lock));
871
872 mutex_exit(&p->p_lock);
873
874 #if defined(__sparc)
875 /*
876 * Ensure that the user stack is fully abandoned..
877 */
878 trash_user_windows();
879 #endif
880
881 tsd_exit(); /* free thread specific data */
882
883 kcpc_passivate(); /* Clean up performance counter state */
884
885 pollcleanup();
886
887 if (t->t_door)
888 door_slam();
889
890 if (t->t_schedctl != NULL)
891 schedctl_lwp_cleanup(t);
892
893 if (t->t_upimutex != NULL)
894 upimutex_cleanup();
895
896 /*
897 * Perform any brand specific exit processing, then release any
898 * brand data associated with the lwp
899 */
900 if (PROC_IS_BRANDED(p))
901 BROP(p)->b_lwpexit(lwp);
902
903 lwp_pcb_exit();
904
905 mutex_enter(&p->p_lock);
906 lwp_cleanup();
907
908 /*
909 * When this process is dumping core, its lwps are held here
910 * until the core dump is finished. Then exitlwps() is called
911 * again to release these lwps so that they can finish exiting.
912 */
913 if (p->p_flag & SCOREDUMP)
914 stop(PR_SUSPENDED, SUSPEND_NORMAL);
915
916 /*
917 * Block the process against /proc now that we have really acquired
918 * p->p_lock (to decrement p_lwpcnt and manipulate p_tlist at least).
919 */
920 prbarrier(p);
921
922 /*
923 * Call proc_exit() if this is the last non-daemon lwp in the process.
924 */
925 if (!(t->t_proc_flag & TP_DAEMON) &&
926 p->p_lwpcnt == p->p_lwpdaemon + 1) {
927 mutex_exit(&p->p_lock);
928 if (proc_exit(CLD_EXITED, 0) == 0) {
929 /* Restarting init. */
930 return;
931 }
932
933 /*
934 * proc_exit() returns a non-zero value when some other
935 * lwp got there first. We just have to continue in
936 * lwp_exit().
937 */
938 mutex_enter(&p->p_lock);
939 ASSERT(curproc->p_flag & SEXITLWPS);
940 prbarrier(p);
941 }
942
943 DTRACE_PROC(lwp__exit);
944
945 /*
946 * If the lwp is a detached lwp or if the process is exiting,
947 * remove (lwp_hash_out()) the lwp from the lwp directory.
948 * Otherwise null out the lwp's le_thread pointer in the lwp
949 * directory so that other threads will see it as a zombie lwp.
950 */
951 prlwpexit(t); /* notify /proc */
952 if (!(t->t_proc_flag & TP_TWAIT) || (p->p_flag & SEXITLWPS))
953 lwp_hash_out(p, t->t_tid);
954 else {
955 ASSERT(!(t->t_proc_flag & TP_DAEMON));
956 p->p_lwpdir[t->t_dslot].ld_entry->le_thread = NULL;
957 p->p_zombcnt++;
958 cv_broadcast(&p->p_lwpexit);
959 }
960 if (t->t_proc_flag & TP_DAEMON) {
961 p->p_lwpdaemon--;
962 t->t_proc_flag &= ~TP_DAEMON;
963 }
964 t->t_proc_flag &= ~TP_TWAIT;
965
966 /*
967 * Maintain accurate lwp count for task.max-lwps resource control.
968 */
969 mutex_enter(&p->p_zone->zone_nlwps_lock);
970 p->p_task->tk_nlwps--;
971 p->p_task->tk_proj->kpj_nlwps--;
972 p->p_zone->zone_nlwps--;
973 mutex_exit(&p->p_zone->zone_nlwps_lock);
974
975 CL_EXIT(t); /* tell the scheduler that t is exiting */
976 ASSERT(p->p_lwpcnt != 0);
977 p->p_lwpcnt--;
978
979 /*
980 * If all remaining non-daemon lwps are waiting in lwp_wait(),
981 * wake them up so someone can return EDEADLK.
982 * (See the block comment preceeding lwp_wait().)
983 */
984 if (p->p_lwpcnt == p->p_lwpdaemon + (p->p_lwpwait - p->p_lwpdwait))
985 cv_broadcast(&p->p_lwpexit);
986
987 t->t_proc_flag |= TP_LWPEXIT;
988 term_mstate(t);
989
990 t->t_forw->t_back = t->t_back;
991 t->t_back->t_forw = t->t_forw;
992 if (t == p->p_tlist)
993 p->p_tlist = t->t_forw;
994
995 /*
996 * Clean up the signal state.
997 */
998 if (t->t_sigqueue != NULL)
999 sigdelq(p, t, 0);
1000 if (lwp->lwp_curinfo != NULL) {
1001 siginfofree(lwp->lwp_curinfo);
1002 lwp->lwp_curinfo = NULL;
1003 }
1004
1005 /*
1006 * If we have spymaster information (that is, if we're an agent LWP),
1007 * free that now.
1008 */
1009 if (lwp->lwp_spymaster != NULL) {
1010 kmem_free(lwp->lwp_spymaster, sizeof (psinfo_t));
1011 lwp->lwp_spymaster = NULL;
1012 }
1013
1014 thread_rele(t);
1015
1016 /*
1017 * Terminated lwps are associated with process zero and are put onto
1018 * death-row by resume(). Avoid preemption after resetting t->t_procp.
1019 */
1020 t->t_preempt++;
1021
1022 if (t->t_ctx != NULL)
1023 exitctx(t);
1024 if (p->p_pctx != NULL)
1025 exitpctx(p);
1026
1027 t->t_procp = &p0;
1028
1029 /*
1030 * Notify the HAT about the change of address space
1031 */
1032 hat_thread_exit(t);
1033 /*
1034 * When this is the last running lwp in this process and some lwp is
1035 * waiting for this condition to become true, or this thread was being
1036 * suspended, then the waiting lwp is awakened.
1037 *
1038 * Also, if the process is exiting, we may have a thread waiting in
1039 * exitlwps() that needs to be notified.
1040 */
1041 if (--p->p_lwprcnt == 0 || (t->t_proc_flag & TP_HOLDLWP) ||
1042 (p->p_flag & SEXITLWPS))
1043 cv_broadcast(&p->p_holdlwps);
1044
1045 /*
1046 * Need to drop p_lock so we can reacquire pidlock.
1047 */
1048 mutex_exit(&p->p_lock);
1049 mutex_enter(&pidlock);
1050
1051 ASSERT(t != t->t_next); /* t0 never exits */
1052 t->t_next->t_prev = t->t_prev;
1053 t->t_prev->t_next = t->t_next;
1054 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */
1055 mutex_exit(&pidlock);
1056
1057 t->t_state = TS_ZOMB;
1058 swtch_from_zombie();
1059 /* never returns */
1060 }
1061
1062
1063 /*
1064 * Cleanup function for an exiting lwp.
1065 * Called both from lwp_exit() and from proc_exit().
1066 * p->p_lock is repeatedly released and grabbed in this function.
1067 */
1068 void
lwp_cleanup(void)1069 lwp_cleanup(void)
1070 {
1071 kthread_t *t = curthread;
1072 proc_t *p = ttoproc(t);
1073
1074 ASSERT(MUTEX_HELD(&p->p_lock));
1075
1076 /* untimeout any lwp-bound realtime timers */
1077 if (p->p_itimer != NULL)
1078 timer_lwpexit();
1079
1080 /*
1081 * If this is the /proc agent lwp that is exiting, readjust p_lwpid
1082 * so it appears that the agent never existed, and clear p_agenttp.
1083 */
1084 if (t == p->p_agenttp) {
1085 ASSERT(t->t_tid == p->p_lwpid);
1086 p->p_lwpid--;
1087 p->p_agenttp = NULL;
1088 }
1089
1090 /*
1091 * Do lgroup bookkeeping to account for thread exiting.
1092 */
1093 kpreempt_disable();
1094 lgrp_move_thread(t, NULL, 1);
1095 if (t->t_tid == 1) {
1096 p->p_t1_lgrpid = LGRP_NONE;
1097 }
1098 kpreempt_enable();
1099
1100 lwp_ctmpl_clear(ttolwp(t));
1101 }
1102
1103 int
lwp_suspend(kthread_t * t)1104 lwp_suspend(kthread_t *t)
1105 {
1106 int tid;
1107 proc_t *p = ttoproc(t);
1108
1109 ASSERT(MUTEX_HELD(&p->p_lock));
1110
1111 /*
1112 * Set the thread's TP_HOLDLWP flag so it will stop in holdlwp().
1113 * If an lwp is stopping itself, there is no need to wait.
1114 */
1115 top:
1116 t->t_proc_flag |= TP_HOLDLWP;
1117 if (t == curthread) {
1118 t->t_sig_check = 1;
1119 } else {
1120 /*
1121 * Make sure the lwp stops promptly.
1122 */
1123 thread_lock(t);
1124 t->t_sig_check = 1;
1125 /*
1126 * XXX Should use virtual stop like /proc does instead of
1127 * XXX waking the thread to get it to stop.
1128 */
1129 if (ISWAKEABLE(t) || ISWAITING(t)) {
1130 setrun_locked(t);
1131 } else if (t->t_state == TS_ONPROC && t->t_cpu != CPU) {
1132 poke_cpu(t->t_cpu->cpu_id);
1133 }
1134
1135 tid = t->t_tid; /* remember thread ID */
1136 /*
1137 * Wait for lwp to stop
1138 */
1139 while (!SUSPENDED(t)) {
1140 /*
1141 * Drop the thread lock before waiting and reacquire it
1142 * afterwards, so the thread can change its t_state
1143 * field.
1144 */
1145 thread_unlock(t);
1146
1147 /*
1148 * Check if aborted by exitlwps().
1149 */
1150 if (p->p_flag & SEXITLWPS)
1151 lwp_exit();
1152
1153 /*
1154 * Cooperate with jobcontrol signals and /proc stopping
1155 * by calling cv_wait_sig() to wait for the target
1156 * lwp to stop. Just using cv_wait() can lead to
1157 * deadlock because, if some other lwp has stopped
1158 * by either of these mechanisms, then p_lwprcnt will
1159 * never become zero if we do a cv_wait().
1160 */
1161 if (!cv_wait_sig(&p->p_holdlwps, &p->p_lock))
1162 return (EINTR);
1163
1164 /*
1165 * Check to see if thread died while we were
1166 * waiting for it to suspend.
1167 */
1168 if (idtot(p, tid) == NULL)
1169 return (ESRCH);
1170
1171 thread_lock(t);
1172 /*
1173 * If the TP_HOLDLWP flag went away, lwp_continue()
1174 * or vfork() must have been called while we were
1175 * waiting, so start over again.
1176 */
1177 if ((t->t_proc_flag & TP_HOLDLWP) == 0) {
1178 thread_unlock(t);
1179 goto top;
1180 }
1181 }
1182 thread_unlock(t);
1183 }
1184 return (0);
1185 }
1186
1187 /*
1188 * continue a lwp that's been stopped by lwp_suspend().
1189 */
1190 void
lwp_continue(kthread_t * t)1191 lwp_continue(kthread_t *t)
1192 {
1193 proc_t *p = ttoproc(t);
1194 int was_suspended = t->t_proc_flag & TP_HOLDLWP;
1195
1196 ASSERT(MUTEX_HELD(&p->p_lock));
1197
1198 t->t_proc_flag &= ~TP_HOLDLWP;
1199 thread_lock(t);
1200 if (SUSPENDED(t) &&
1201 !(p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH))) {
1202 p->p_lwprcnt++;
1203 t->t_schedflag |= TS_CSTART;
1204 setrun_locked(t);
1205 }
1206 thread_unlock(t);
1207 /*
1208 * Wakeup anyone waiting for this thread to be suspended
1209 */
1210 if (was_suspended)
1211 cv_broadcast(&p->p_holdlwps);
1212 }
1213
1214 /*
1215 * ********************************
1216 * Miscellaneous lwp routines *
1217 * ********************************
1218 */
1219 /*
1220 * When a process is undergoing a forkall(), its p_flag is set to SHOLDFORK.
1221 * This will cause the process's lwps to stop at a hold point. A hold
1222 * point is where a kernel thread has a flat stack. This is at the
1223 * return from a system call and at the return from a user level trap.
1224 *
1225 * When a process is undergoing a fork1() or vfork(), its p_flag is set to
1226 * SHOLDFORK1. This will cause the process's lwps to stop at a modified
1227 * hold point. The lwps in the process are not being cloned, so they
1228 * are held at the usual hold points and also within issig_forreal().
1229 * This has the side-effect that their system calls do not return
1230 * showing EINTR.
1231 *
1232 * An lwp can also be held. This is identified by the TP_HOLDLWP flag on
1233 * the thread. The TP_HOLDLWP flag is set in lwp_suspend(), where the active
1234 * lwp is waiting for the target lwp to be stopped.
1235 */
1236 void
holdlwp(void)1237 holdlwp(void)
1238 {
1239 proc_t *p = curproc;
1240 kthread_t *t = curthread;
1241
1242 mutex_enter(&p->p_lock);
1243 /*
1244 * Don't terminate immediately if the process is dumping core.
1245 * Once the process has dumped core, all lwps are terminated.
1246 */
1247 if (!(p->p_flag & SCOREDUMP)) {
1248 if ((p->p_flag & SEXITLWPS) || (t->t_proc_flag & TP_EXITLWP))
1249 lwp_exit();
1250 }
1251 if (!(ISHOLD(p)) && !(p->p_flag & (SHOLDFORK1 | SHOLDWATCH))) {
1252 mutex_exit(&p->p_lock);
1253 return;
1254 }
1255 /*
1256 * stop() decrements p->p_lwprcnt and cv_signal()s &p->p_holdlwps
1257 * when p->p_lwprcnt becomes zero.
1258 */
1259 stop(PR_SUSPENDED, SUSPEND_NORMAL);
1260 if (p->p_flag & SEXITLWPS)
1261 lwp_exit();
1262 mutex_exit(&p->p_lock);
1263 }
1264
1265 /*
1266 * Have all lwps within the process hold at a point where they are
1267 * cloneable (SHOLDFORK) or just safe w.r.t. fork1 (SHOLDFORK1).
1268 */
1269 int
holdlwps(int holdflag)1270 holdlwps(int holdflag)
1271 {
1272 proc_t *p = curproc;
1273
1274 ASSERT(holdflag == SHOLDFORK || holdflag == SHOLDFORK1);
1275 mutex_enter(&p->p_lock);
1276 schedctl_finish_sigblock(curthread);
1277 again:
1278 while (p->p_flag & (SEXITLWPS | SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) {
1279 /*
1280 * If another lwp is doing a forkall() or proc_exit(), bail out.
1281 */
1282 if (p->p_flag & (SEXITLWPS | SHOLDFORK)) {
1283 mutex_exit(&p->p_lock);
1284 return (0);
1285 }
1286 /*
1287 * Another lwp is doing a fork1() or is undergoing
1288 * watchpoint activity. We hold here for it to complete.
1289 */
1290 stop(PR_SUSPENDED, SUSPEND_NORMAL);
1291 }
1292 p->p_flag |= holdflag;
1293 pokelwps(p);
1294 --p->p_lwprcnt;
1295 /*
1296 * Wait for the process to become quiescent (p->p_lwprcnt == 0).
1297 */
1298 while (p->p_lwprcnt > 0) {
1299 /*
1300 * Check if aborted by exitlwps().
1301 * Also check if SHOLDWATCH is set; it takes precedence.
1302 */
1303 if (p->p_flag & (SEXITLWPS | SHOLDWATCH)) {
1304 p->p_lwprcnt++;
1305 p->p_flag &= ~holdflag;
1306 cv_broadcast(&p->p_holdlwps);
1307 goto again;
1308 }
1309 /*
1310 * Cooperate with jobcontrol signals and /proc stopping.
1311 * If some other lwp has stopped by either of these
1312 * mechanisms, then p_lwprcnt will never become zero
1313 * and the process will appear deadlocked unless we
1314 * stop here in sympathy with the other lwp before
1315 * doing the cv_wait() below.
1316 *
1317 * If the other lwp stops after we do the cv_wait(), it
1318 * will wake us up to loop around and do the sympathy stop.
1319 *
1320 * Since stop() drops p->p_lock, we must start from
1321 * the top again on returning from stop().
1322 */
1323 if (p->p_stopsig | (curthread->t_proc_flag & TP_PRSTOP)) {
1324 int whystop = p->p_stopsig? PR_JOBCONTROL :
1325 PR_REQUESTED;
1326 p->p_lwprcnt++;
1327 p->p_flag &= ~holdflag;
1328 stop(whystop, p->p_stopsig);
1329 goto again;
1330 }
1331 cv_wait(&p->p_holdlwps, &p->p_lock);
1332 }
1333 p->p_lwprcnt++;
1334 p->p_flag &= ~holdflag;
1335 mutex_exit(&p->p_lock);
1336 return (1);
1337 }
1338
1339 /*
1340 * See comments for holdwatch(), below.
1341 */
1342 static int
holdcheck(int clearflags)1343 holdcheck(int clearflags)
1344 {
1345 proc_t *p = curproc;
1346
1347 /*
1348 * If we are trying to exit, that takes precedence over anything else.
1349 */
1350 if (p->p_flag & SEXITLWPS) {
1351 p->p_lwprcnt++;
1352 p->p_flag &= ~clearflags;
1353 lwp_exit();
1354 }
1355
1356 /*
1357 * If another thread is calling fork1(), stop the current thread so the
1358 * other can complete.
1359 */
1360 if (p->p_flag & SHOLDFORK1) {
1361 p->p_lwprcnt++;
1362 stop(PR_SUSPENDED, SUSPEND_NORMAL);
1363 if (p->p_flag & SEXITLWPS) {
1364 p->p_flag &= ~clearflags;
1365 lwp_exit();
1366 }
1367 return (-1);
1368 }
1369
1370 /*
1371 * If another thread is calling fork(), then indicate we are doing
1372 * watchpoint activity. This will cause holdlwps() above to stop the
1373 * forking thread, at which point we can continue with watchpoint
1374 * activity.
1375 */
1376 if (p->p_flag & SHOLDFORK) {
1377 p->p_lwprcnt++;
1378 while (p->p_flag & SHOLDFORK) {
1379 p->p_flag |= SHOLDWATCH;
1380 cv_broadcast(&p->p_holdlwps);
1381 cv_wait(&p->p_holdlwps, &p->p_lock);
1382 p->p_flag &= ~SHOLDWATCH;
1383 }
1384 return (-1);
1385 }
1386
1387 return (0);
1388 }
1389
1390 /*
1391 * Stop all lwps within the process, holding themselves in the kernel while the
1392 * active lwp undergoes watchpoint activity. This is more complicated than
1393 * expected because stop() relies on calling holdwatch() in order to copyin data
1394 * from the user's address space. A double barrier is used to prevent an
1395 * infinite loop.
1396 *
1397 * o The first thread into holdwatch() is the 'master' thread and does
1398 * the following:
1399 *
1400 * - Sets SHOLDWATCH on the current process
1401 * - Sets TP_WATCHSTOP on the current thread
1402 * - Waits for all threads to be either stopped or have
1403 * TP_WATCHSTOP set.
1404 * - Sets the SWATCHOK flag on the process
1405 * - Unsets TP_WATCHSTOP
1406 * - Waits for the other threads to completely stop
1407 * - Unsets SWATCHOK
1408 *
1409 * o If SHOLDWATCH is already set when we enter this function, then another
1410 * thread is already trying to stop this thread. This 'slave' thread
1411 * does the following:
1412 *
1413 * - Sets TP_WATCHSTOP on the current thread
1414 * - Waits for SWATCHOK flag to be set
1415 * - Calls stop()
1416 *
1417 * o If SWATCHOK is set on the process, then this function immediately
1418 * returns, as we must have been called via stop().
1419 *
1420 * In addition, there are other flags that take precedence over SHOLDWATCH:
1421 *
1422 * o If SEXITLWPS is set, exit immediately.
1423 *
1424 * o If SHOLDFORK1 is set, wait for fork1() to complete.
1425 *
1426 * o If SHOLDFORK is set, then watchpoint activity takes precedence In this
1427 * case, set SHOLDWATCH, signalling the forking thread to stop first.
1428 *
1429 * o If the process is being stopped via /proc (TP_PRSTOP is set), then we
1430 * stop the current thread.
1431 *
1432 * Returns 0 if all threads have been quiesced. Returns non-zero if not all
1433 * threads were stopped, or the list of watched pages has changed.
1434 */
1435 int
holdwatch(void)1436 holdwatch(void)
1437 {
1438 proc_t *p = curproc;
1439 kthread_t *t = curthread;
1440 int ret = 0;
1441
1442 mutex_enter(&p->p_lock);
1443
1444 p->p_lwprcnt--;
1445
1446 /*
1447 * Check for bail-out conditions as outlined above.
1448 */
1449 if (holdcheck(0) != 0) {
1450 mutex_exit(&p->p_lock);
1451 return (-1);
1452 }
1453
1454 if (!(p->p_flag & SHOLDWATCH)) {
1455 /*
1456 * We are the master watchpoint thread. Set SHOLDWATCH and poke
1457 * the other threads.
1458 */
1459 p->p_flag |= SHOLDWATCH;
1460 pokelwps(p);
1461
1462 /*
1463 * Wait for all threads to be stopped or have TP_WATCHSTOP set.
1464 */
1465 while (pr_allstopped(p, 1) > 0) {
1466 if (holdcheck(SHOLDWATCH) != 0) {
1467 p->p_flag &= ~SHOLDWATCH;
1468 mutex_exit(&p->p_lock);
1469 return (-1);
1470 }
1471
1472 cv_wait(&p->p_holdlwps, &p->p_lock);
1473 }
1474
1475 /*
1476 * All threads are now stopped or in the process of stopping.
1477 * Set SWATCHOK and let them stop completely.
1478 */
1479 p->p_flag |= SWATCHOK;
1480 t->t_proc_flag &= ~TP_WATCHSTOP;
1481 cv_broadcast(&p->p_holdlwps);
1482
1483 while (pr_allstopped(p, 0) > 0) {
1484 /*
1485 * At first glance, it may appear that we don't need a
1486 * call to holdcheck() here. But if the process gets a
1487 * SIGKILL signal, one of our stopped threads may have
1488 * been awakened and is waiting in exitlwps(), which
1489 * takes precedence over watchpoints.
1490 */
1491 if (holdcheck(SHOLDWATCH | SWATCHOK) != 0) {
1492 p->p_flag &= ~(SHOLDWATCH | SWATCHOK);
1493 mutex_exit(&p->p_lock);
1494 return (-1);
1495 }
1496
1497 cv_wait(&p->p_holdlwps, &p->p_lock);
1498 }
1499
1500 /*
1501 * All threads are now completely stopped.
1502 */
1503 p->p_flag &= ~SWATCHOK;
1504 p->p_flag &= ~SHOLDWATCH;
1505 p->p_lwprcnt++;
1506
1507 } else if (!(p->p_flag & SWATCHOK)) {
1508
1509 /*
1510 * SHOLDWATCH is set, so another thread is trying to do
1511 * watchpoint activity. Indicate this thread is stopping, and
1512 * wait for the OK from the master thread.
1513 */
1514 t->t_proc_flag |= TP_WATCHSTOP;
1515 cv_broadcast(&p->p_holdlwps);
1516
1517 while (!(p->p_flag & SWATCHOK)) {
1518 if (holdcheck(0) != 0) {
1519 t->t_proc_flag &= ~TP_WATCHSTOP;
1520 mutex_exit(&p->p_lock);
1521 return (-1);
1522 }
1523
1524 cv_wait(&p->p_holdlwps, &p->p_lock);
1525 }
1526
1527 /*
1528 * Once the master thread has given the OK, this thread can
1529 * actually call stop().
1530 */
1531 t->t_proc_flag &= ~TP_WATCHSTOP;
1532 p->p_lwprcnt++;
1533
1534 stop(PR_SUSPENDED, SUSPEND_NORMAL);
1535
1536 /*
1537 * It's not OK to do watchpoint activity, notify caller to
1538 * retry.
1539 */
1540 ret = -1;
1541
1542 } else {
1543
1544 /*
1545 * The only way we can hit the case where SHOLDWATCH is set and
1546 * SWATCHOK is set is if we are triggering this from within a
1547 * stop() call. Assert that this is the case.
1548 */
1549
1550 ASSERT(t->t_proc_flag & TP_STOPPING);
1551 p->p_lwprcnt++;
1552 }
1553
1554 mutex_exit(&p->p_lock);
1555
1556 return (ret);
1557 }
1558
1559 /*
1560 * force all interruptible lwps to trap into the kernel.
1561 */
1562 void
pokelwps(proc_t * p)1563 pokelwps(proc_t *p)
1564 {
1565 kthread_t *t;
1566
1567 ASSERT(MUTEX_HELD(&p->p_lock));
1568
1569 t = p->p_tlist;
1570 do {
1571 if (t == curthread)
1572 continue;
1573 thread_lock(t);
1574 aston(t); /* make thread trap or do post_syscall */
1575 if (ISWAKEABLE(t) || ISWAITING(t)) {
1576 setrun_locked(t);
1577 } else if (t->t_state == TS_STOPPED) {
1578 /*
1579 * Ensure that proc_exit() is not blocked by lwps
1580 * that were stopped via jobcontrol or /proc.
1581 */
1582 if (p->p_flag & SEXITLWPS) {
1583 p->p_stopsig = 0;
1584 t->t_schedflag |= (TS_XSTART | TS_PSTART);
1585 setrun_locked(t);
1586 }
1587 /*
1588 * If we are holding lwps for a forkall(),
1589 * force lwps that have been suspended via
1590 * lwp_suspend() and are suspended inside
1591 * of a system call to proceed to their
1592 * holdlwp() points where they are clonable.
1593 */
1594 if ((p->p_flag & SHOLDFORK) && SUSPENDED(t)) {
1595 if ((t->t_schedflag & TS_CSTART) == 0) {
1596 p->p_lwprcnt++;
1597 t->t_schedflag |= TS_CSTART;
1598 setrun_locked(t);
1599 }
1600 }
1601 } else if (t->t_state == TS_ONPROC) {
1602 if (t->t_cpu != CPU)
1603 poke_cpu(t->t_cpu->cpu_id);
1604 }
1605 thread_unlock(t);
1606 } while ((t = t->t_forw) != p->p_tlist);
1607 }
1608
1609 /*
1610 * Set the schedbits on the process' stopped threads and try running them.
1611 *
1612 * runlwps() is mainly useful to get a stopped process running in order to
1613 * witness an event such as SIGKILL. It operates on stopped threads without
1614 * regard to t_whystop or p_flag; callers must ensure that this is acceptable in
1615 * combination with the schedbits to be set on those threads.
1616 */
1617 void
runlwps(proc_t * p,ushort_t schedbits)1618 runlwps(proc_t *p, ushort_t schedbits)
1619 {
1620 kthread_t *t;
1621
1622 ASSERT(MUTEX_HELD(&p->p_lock));
1623
1624 p->p_stopsig = 0;
1625 t = p->p_tlist;
1626
1627 do {
1628 thread_lock(t);
1629 if (t->t_state == TS_STOPPED) {
1630 t->t_dtrace_stop = 0;
1631 t->t_schedflag |= schedbits;
1632 setrun_locked(t);
1633 }
1634 thread_unlock(t);
1635 } while ((t = t->t_forw) != p->p_tlist);
1636 }
1637
1638 /*
1639 * undo the effects of holdlwps() or holdwatch().
1640 */
1641 void
continuelwps(proc_t * p)1642 continuelwps(proc_t *p)
1643 {
1644 kthread_t *t;
1645
1646 /*
1647 * If this flag is set, then the original holdwatch() didn't actually
1648 * stop the process. See comments for holdwatch().
1649 */
1650 if (p->p_flag & SWATCHOK) {
1651 ASSERT(curthread->t_proc_flag & TP_STOPPING);
1652 return;
1653 }
1654
1655 ASSERT(MUTEX_HELD(&p->p_lock));
1656 ASSERT((p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) == 0);
1657
1658 t = p->p_tlist;
1659 do {
1660 thread_lock(t); /* SUSPENDED looks at t_schedflag */
1661 if (SUSPENDED(t) && !(t->t_proc_flag & TP_HOLDLWP)) {
1662 p->p_lwprcnt++;
1663 t->t_schedflag |= TS_CSTART;
1664 setrun_locked(t);
1665 }
1666 thread_unlock(t);
1667 } while ((t = t->t_forw) != p->p_tlist);
1668 }
1669
1670 /*
1671 * Force all other LWPs in the current process other than the caller to exit,
1672 * and then cv_wait() on p_holdlwps for them to exit. The exitlwps() function
1673 * is typically used in these situations:
1674 *
1675 * (a) prior to an exec() system call
1676 * (b) prior to dumping a core file
1677 * (c) prior to a uadmin() shutdown
1678 *
1679 * If the 'coredump' flag is set, other LWPs are quiesced but not destroyed.
1680 * Multiple threads in the process can call this function at one time by
1681 * triggering execs or core dumps simultaneously, so the SEXITLWPS bit is used
1682 * to declare one particular thread the winner who gets to kill the others.
1683 * If a thread wins the exitlwps() dance, zero is returned; otherwise an
1684 * appropriate errno value is returned to caller for its system call to return.
1685 */
1686 int
exitlwps(int coredump)1687 exitlwps(int coredump)
1688 {
1689 proc_t *p = curproc;
1690 int heldcnt;
1691
1692 if (curthread->t_door)
1693 door_slam();
1694 if (p->p_door_list)
1695 door_revoke_all();
1696 if (curthread->t_schedctl != NULL)
1697 schedctl_lwp_cleanup(curthread);
1698
1699 /*
1700 * Ensure that before starting to wait for other lwps to exit,
1701 * cleanup all upimutexes held by curthread. Otherwise, some other
1702 * lwp could be waiting (uninterruptibly) for a upimutex held by
1703 * curthread, and the call to pokelwps() below would deadlock.
1704 * Even if a blocked upimutex_lock is made interruptible,
1705 * curthread's upimutexes need to be unlocked: do it here.
1706 */
1707 if (curthread->t_upimutex != NULL)
1708 upimutex_cleanup();
1709
1710 /*
1711 * Grab p_lock in order to check and set SEXITLWPS to declare a winner.
1712 * We must also block any further /proc access from this point forward.
1713 */
1714 mutex_enter(&p->p_lock);
1715 prbarrier(p);
1716
1717 if (p->p_flag & SEXITLWPS) {
1718 mutex_exit(&p->p_lock);
1719 aston(curthread); /* force a trip through post_syscall */
1720 return (set_errno(EINTR));
1721 }
1722
1723 p->p_flag |= SEXITLWPS;
1724 if (coredump) /* tell other lwps to stop, not exit */
1725 p->p_flag |= SCOREDUMP;
1726
1727 /*
1728 * Give precedence to exitlwps() if a holdlwps() is
1729 * in progress. The lwp doing the holdlwps() operation
1730 * is aborted when it is awakened.
1731 */
1732 while (p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) {
1733 cv_broadcast(&p->p_holdlwps);
1734 cv_wait(&p->p_holdlwps, &p->p_lock);
1735 prbarrier(p);
1736 }
1737 p->p_flag |= SHOLDFORK;
1738 pokelwps(p);
1739
1740 /*
1741 * Wait for process to become quiescent.
1742 */
1743 --p->p_lwprcnt;
1744 while (p->p_lwprcnt > 0) {
1745 cv_wait(&p->p_holdlwps, &p->p_lock);
1746 prbarrier(p);
1747 }
1748 p->p_lwprcnt++;
1749 ASSERT(p->p_lwprcnt == 1);
1750
1751 /*
1752 * The SCOREDUMP flag puts the process into a quiescent
1753 * state. The process's lwps remain attached to this
1754 * process until exitlwps() is called again without the
1755 * 'coredump' flag set, then the lwps are terminated
1756 * and the process can exit.
1757 */
1758 if (coredump) {
1759 p->p_flag &= ~(SCOREDUMP | SHOLDFORK | SEXITLWPS);
1760 goto out;
1761 }
1762
1763 /*
1764 * Determine if there are any lwps left dangling in
1765 * the stopped state. This happens when exitlwps()
1766 * aborts a holdlwps() operation.
1767 */
1768 p->p_flag &= ~SHOLDFORK;
1769 if ((heldcnt = p->p_lwpcnt) > 1) {
1770 kthread_t *t;
1771 for (t = curthread->t_forw; --heldcnt > 0; t = t->t_forw) {
1772 t->t_proc_flag &= ~TP_TWAIT;
1773 lwp_continue(t);
1774 }
1775 }
1776
1777 /*
1778 * Wait for all other lwps to exit.
1779 */
1780 --p->p_lwprcnt;
1781 while (p->p_lwpcnt > 1) {
1782 cv_wait(&p->p_holdlwps, &p->p_lock);
1783 prbarrier(p);
1784 }
1785 ++p->p_lwprcnt;
1786 ASSERT(p->p_lwpcnt == 1 && p->p_lwprcnt == 1);
1787
1788 p->p_flag &= ~SEXITLWPS;
1789 curthread->t_proc_flag &= ~TP_TWAIT;
1790
1791 out:
1792 if (!coredump && p->p_zombcnt) { /* cleanup the zombie lwps */
1793 lwpdir_t *ldp;
1794 lwpent_t *lep;
1795 int i;
1796
1797 for (ldp = p->p_lwpdir, i = 0; i < p->p_lwpdir_sz; i++, ldp++) {
1798 lep = ldp->ld_entry;
1799 if (lep != NULL && lep->le_thread != curthread) {
1800 ASSERT(lep->le_thread == NULL);
1801 p->p_zombcnt--;
1802 lwp_hash_out(p, lep->le_lwpid);
1803 }
1804 }
1805 ASSERT(p->p_zombcnt == 0);
1806 }
1807
1808 /*
1809 * If some other LWP in the process wanted us to suspend ourself,
1810 * then we will not do it. The other LWP is now terminated and
1811 * no one will ever continue us again if we suspend ourself.
1812 */
1813 curthread->t_proc_flag &= ~TP_HOLDLWP;
1814 p->p_flag &= ~(SHOLDFORK | SHOLDFORK1 | SHOLDWATCH | SLWPWRAP);
1815 mutex_exit(&p->p_lock);
1816 return (0);
1817 }
1818
1819 /*
1820 * duplicate a lwp.
1821 */
1822 klwp_t *
forklwp(klwp_t * lwp,proc_t * cp,id_t lwpid)1823 forklwp(klwp_t *lwp, proc_t *cp, id_t lwpid)
1824 {
1825 klwp_t *clwp;
1826 void *tregs, *tfpu;
1827 kthread_t *t = lwptot(lwp);
1828 kthread_t *ct;
1829 proc_t *p = lwptoproc(lwp);
1830 int cid;
1831 void *bufp;
1832 void *brand_data;
1833 int val;
1834
1835 ASSERT(p == curproc);
1836 ASSERT(t == curthread || (SUSPENDED(t) && lwp->lwp_asleep == 0));
1837
1838 #if defined(__sparc)
1839 if (t == curthread)
1840 (void) flush_user_windows_to_stack(NULL);
1841 #endif
1842
1843 if (t == curthread)
1844 /* copy args out of registers first */
1845 (void) save_syscall_args();
1846
1847 clwp = lwp_create(cp->p_lwpcnt == 0 ? lwp_rtt_initial : lwp_rtt,
1848 NULL, 0, cp, TS_STOPPED, t->t_pri, &t->t_hold, NOCLASS, lwpid);
1849 if (clwp == NULL)
1850 return (NULL);
1851
1852 /*
1853 * most of the parent's lwp can be copied to its duplicate,
1854 * except for the fields that are unique to each lwp, like
1855 * lwp_thread, lwp_procp, lwp_regs, and lwp_ap.
1856 */
1857 ct = clwp->lwp_thread;
1858 tregs = clwp->lwp_regs;
1859 tfpu = clwp->lwp_fpu;
1860 brand_data = clwp->lwp_brand;
1861
1862 /*
1863 * Copy parent lwp to child lwp. Hold child's p_lock to prevent
1864 * mstate_aggr_state() from reading stale mstate entries copied
1865 * from lwp to clwp.
1866 */
1867 mutex_enter(&cp->p_lock);
1868 *clwp = *lwp;
1869
1870 /* clear microstate and resource usage data in new lwp */
1871 init_mstate(ct, LMS_STOPPED);
1872 bzero(&clwp->lwp_ru, sizeof (clwp->lwp_ru));
1873 mutex_exit(&cp->p_lock);
1874
1875 /* fix up child's lwp */
1876
1877 clwp->lwp_pcb.pcb_flags = 0;
1878 #if defined(__sparc)
1879 clwp->lwp_pcb.pcb_step = STEP_NONE;
1880 #endif
1881 clwp->lwp_cursig = 0;
1882 clwp->lwp_extsig = 0;
1883 clwp->lwp_curinfo = (struct sigqueue *)0;
1884 clwp->lwp_thread = ct;
1885 ct->t_sysnum = t->t_sysnum;
1886 clwp->lwp_regs = tregs;
1887 clwp->lwp_fpu = tfpu;
1888 clwp->lwp_brand = brand_data;
1889 clwp->lwp_ap = clwp->lwp_arg;
1890 clwp->lwp_procp = cp;
1891 bzero(clwp->lwp_timer, sizeof (clwp->lwp_timer));
1892 clwp->lwp_lastfault = 0;
1893 clwp->lwp_lastfaddr = 0;
1894
1895 /* copy parent's struct regs to child. */
1896 lwp_forkregs(lwp, clwp);
1897
1898 /*
1899 * Fork thread context ops, if any.
1900 */
1901 if (t->t_ctx)
1902 forkctx(t, ct);
1903
1904 /* fix door state in the child */
1905 if (t->t_door)
1906 door_fork(t, ct);
1907
1908 /* copy current contract templates, clear latest contracts */
1909 lwp_ctmpl_copy(clwp, lwp);
1910
1911 mutex_enter(&cp->p_lock);
1912 /* lwp_create() set the TP_HOLDLWP flag */
1913 if (!(t->t_proc_flag & TP_HOLDLWP))
1914 ct->t_proc_flag &= ~TP_HOLDLWP;
1915 if (cp->p_flag & SMSACCT)
1916 ct->t_proc_flag |= TP_MSACCT;
1917 mutex_exit(&cp->p_lock);
1918
1919 /* Allow brand to propagate brand-specific state */
1920 if (PROC_IS_BRANDED(p))
1921 BROP(p)->b_forklwp(lwp, clwp);
1922
1923 retry:
1924 cid = t->t_cid;
1925
1926 val = CL_ALLOC(&bufp, cid, KM_SLEEP);
1927 ASSERT(val == 0);
1928
1929 mutex_enter(&p->p_lock);
1930 if (cid != t->t_cid) {
1931 /*
1932 * Someone just changed this thread's scheduling class,
1933 * so try pre-allocating the buffer again. Hopefully we
1934 * don't hit this often.
1935 */
1936 mutex_exit(&p->p_lock);
1937 CL_FREE(cid, bufp);
1938 goto retry;
1939 }
1940
1941 ct->t_unpark = t->t_unpark;
1942 ct->t_clfuncs = t->t_clfuncs;
1943 CL_FORK(t, ct, bufp);
1944 ct->t_cid = t->t_cid; /* after data allocated so prgetpsinfo works */
1945 mutex_exit(&p->p_lock);
1946
1947 return (clwp);
1948 }
1949
1950 /*
1951 * Add a new lwp entry to the lwp directory and to the lwpid hash table.
1952 */
1953 void
lwp_hash_in(proc_t * p,lwpent_t * lep,tidhash_t * tidhash,uint_t tidhash_sz,int do_lock)1954 lwp_hash_in(proc_t *p, lwpent_t *lep, tidhash_t *tidhash, uint_t tidhash_sz,
1955 int do_lock)
1956 {
1957 tidhash_t *thp = &tidhash[TIDHASH(lep->le_lwpid, tidhash_sz)];
1958 lwpdir_t **ldpp;
1959 lwpdir_t *ldp;
1960 kthread_t *t;
1961
1962 /*
1963 * Allocate a directory element from the free list.
1964 * Code elsewhere guarantees a free slot.
1965 */
1966 ldp = p->p_lwpfree;
1967 p->p_lwpfree = ldp->ld_next;
1968 ASSERT(ldp->ld_entry == NULL);
1969 ldp->ld_entry = lep;
1970
1971 if (do_lock)
1972 mutex_enter(&thp->th_lock);
1973
1974 /*
1975 * Insert it into the lwpid hash table.
1976 */
1977 ldpp = &thp->th_list;
1978 ldp->ld_next = *ldpp;
1979 *ldpp = ldp;
1980
1981 /*
1982 * Set the active thread's directory slot entry.
1983 */
1984 if ((t = lep->le_thread) != NULL) {
1985 ASSERT(lep->le_lwpid == t->t_tid);
1986 t->t_dslot = (int)(ldp - p->p_lwpdir);
1987 }
1988
1989 if (do_lock)
1990 mutex_exit(&thp->th_lock);
1991 }
1992
1993 /*
1994 * Remove an lwp from the lwpid hash table and free its directory entry.
1995 * This is done when a detached lwp exits in lwp_exit() or
1996 * when a non-detached lwp is waited for in lwp_wait() or
1997 * when a zombie lwp is detached in lwp_detach().
1998 */
1999 void
lwp_hash_out(proc_t * p,id_t lwpid)2000 lwp_hash_out(proc_t *p, id_t lwpid)
2001 {
2002 tidhash_t *thp = &p->p_tidhash[TIDHASH(lwpid, p->p_tidhash_sz)];
2003 lwpdir_t **ldpp;
2004 lwpdir_t *ldp;
2005 lwpent_t *lep;
2006
2007 mutex_enter(&thp->th_lock);
2008 for (ldpp = &thp->th_list;
2009 (ldp = *ldpp) != NULL; ldpp = &ldp->ld_next) {
2010 lep = ldp->ld_entry;
2011 if (lep->le_lwpid == lwpid) {
2012 prlwpfree(p, lep); /* /proc deals with le_trace */
2013 *ldpp = ldp->ld_next;
2014 ldp->ld_entry = NULL;
2015 ldp->ld_next = p->p_lwpfree;
2016 p->p_lwpfree = ldp;
2017 kmem_free(lep, sizeof (*lep));
2018 break;
2019 }
2020 }
2021 mutex_exit(&thp->th_lock);
2022 }
2023
2024 /*
2025 * Lookup an lwp in the lwpid hash table by lwpid.
2026 */
2027 lwpdir_t *
lwp_hash_lookup(proc_t * p,id_t lwpid)2028 lwp_hash_lookup(proc_t *p, id_t lwpid)
2029 {
2030 tidhash_t *thp;
2031 lwpdir_t *ldp;
2032
2033 /*
2034 * The process may be exiting, after p_tidhash has been set to NULL in
2035 * proc_exit() but before prfee() has been called. Return failure in
2036 * this case.
2037 */
2038 if (p->p_tidhash == NULL)
2039 return (NULL);
2040
2041 thp = &p->p_tidhash[TIDHASH(lwpid, p->p_tidhash_sz)];
2042 for (ldp = thp->th_list; ldp != NULL; ldp = ldp->ld_next) {
2043 if (ldp->ld_entry->le_lwpid == lwpid)
2044 return (ldp);
2045 }
2046
2047 return (NULL);
2048 }
2049
2050 /*
2051 * Same as lwp_hash_lookup(), but acquire and return
2052 * the tid hash table entry lock on success.
2053 */
2054 lwpdir_t *
lwp_hash_lookup_and_lock(proc_t * p,id_t lwpid,kmutex_t ** mpp)2055 lwp_hash_lookup_and_lock(proc_t *p, id_t lwpid, kmutex_t **mpp)
2056 {
2057 tidhash_t *tidhash;
2058 uint_t tidhash_sz;
2059 tidhash_t *thp;
2060 lwpdir_t *ldp;
2061
2062 top:
2063 tidhash_sz = p->p_tidhash_sz;
2064 membar_consumer();
2065 if ((tidhash = p->p_tidhash) == NULL)
2066 return (NULL);
2067
2068 thp = &tidhash[TIDHASH(lwpid, tidhash_sz)];
2069 mutex_enter(&thp->th_lock);
2070
2071 /*
2072 * Since we are not holding p->p_lock, the tid hash table
2073 * may have changed. If so, start over. If not, then
2074 * it cannot change until after we drop &thp->th_lock;
2075 */
2076 if (tidhash != p->p_tidhash || tidhash_sz != p->p_tidhash_sz) {
2077 mutex_exit(&thp->th_lock);
2078 goto top;
2079 }
2080
2081 for (ldp = thp->th_list; ldp != NULL; ldp = ldp->ld_next) {
2082 if (ldp->ld_entry->le_lwpid == lwpid) {
2083 *mpp = &thp->th_lock;
2084 return (ldp);
2085 }
2086 }
2087
2088 mutex_exit(&thp->th_lock);
2089 return (NULL);
2090 }
2091
2092 /*
2093 * Update the indicated LWP usage statistic for the current LWP.
2094 */
2095 void
lwp_stat_update(lwp_stat_id_t lwp_stat_id,long inc)2096 lwp_stat_update(lwp_stat_id_t lwp_stat_id, long inc)
2097 {
2098 klwp_t *lwp = ttolwp(curthread);
2099
2100 if (lwp == NULL)
2101 return;
2102
2103 switch (lwp_stat_id) {
2104 case LWP_STAT_INBLK:
2105 lwp->lwp_ru.inblock += inc;
2106 break;
2107 case LWP_STAT_OUBLK:
2108 lwp->lwp_ru.oublock += inc;
2109 break;
2110 case LWP_STAT_MSGRCV:
2111 lwp->lwp_ru.msgrcv += inc;
2112 break;
2113 case LWP_STAT_MSGSND:
2114 lwp->lwp_ru.msgsnd += inc;
2115 break;
2116 default:
2117 panic("lwp_stat_update: invalid lwp_stat_id 0x%x", lwp_stat_id);
2118 }
2119 }
2120