1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/pipe.c
4 *
5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
6 */
7
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 #include <linux/watch_queue.h>
28 #include <linux/sysctl.h>
29
30 #include <linux/uaccess.h>
31 #include <asm/ioctls.h>
32
33 #include "internal.h"
34
35 /*
36 * New pipe buffers will be restricted to this size while the user is exceeding
37 * their pipe buffer quota. The general pipe use case needs at least two
38 * buffers: one for data yet to be read, and one for new data. If this is less
39 * than two, then a write to a non-empty pipe may block even if the pipe is not
40 * full. This can occur with GNU make jobserver or similar uses of pipes as
41 * semaphores: multiple processes may be waiting to write tokens back to the
42 * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
43 *
44 * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
45 * own risk, namely: pipe writes to non-full pipes may block until the pipe is
46 * emptied.
47 */
48 #define PIPE_MIN_DEF_BUFFERS 2
49
50 /*
51 * The max size that a non-root user is allowed to grow the pipe. Can
52 * be set by root in /proc/sys/fs/pipe-max-size
53 */
54 static unsigned int pipe_max_size = 1048576;
55
56 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
57 * matches default values.
58 */
59 static unsigned long pipe_user_pages_hard;
60 static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
61
62 /*
63 * We use head and tail indices that aren't masked off, except at the point of
64 * dereference, but rather they're allowed to wrap naturally. This means there
65 * isn't a dead spot in the buffer, but the ring has to be a power of two and
66 * <= 2^31.
67 * -- David Howells 2019-09-23.
68 *
69 * Reads with count = 0 should always return 0.
70 * -- Julian Bradfield 1999-06-07.
71 *
72 * FIFOs and Pipes now generate SIGIO for both readers and writers.
73 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
74 *
75 * pipe_read & write cleanup
76 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
77 */
78
79 #define cmp_int(l, r) ((l > r) - (l < r))
80
81 #ifdef CONFIG_PROVE_LOCKING
pipe_lock_cmp_fn(const struct lockdep_map * a,const struct lockdep_map * b)82 static int pipe_lock_cmp_fn(const struct lockdep_map *a,
83 const struct lockdep_map *b)
84 {
85 return cmp_int((unsigned long) a, (unsigned long) b);
86 }
87 #endif
88
pipe_lock(struct pipe_inode_info * pipe)89 void pipe_lock(struct pipe_inode_info *pipe)
90 {
91 if (pipe->files)
92 mutex_lock(&pipe->mutex);
93 }
94 EXPORT_SYMBOL(pipe_lock);
95
pipe_unlock(struct pipe_inode_info * pipe)96 void pipe_unlock(struct pipe_inode_info *pipe)
97 {
98 if (pipe->files)
99 mutex_unlock(&pipe->mutex);
100 }
101 EXPORT_SYMBOL(pipe_unlock);
102
pipe_double_lock(struct pipe_inode_info * pipe1,struct pipe_inode_info * pipe2)103 void pipe_double_lock(struct pipe_inode_info *pipe1,
104 struct pipe_inode_info *pipe2)
105 {
106 BUG_ON(pipe1 == pipe2);
107
108 if (pipe1 > pipe2)
109 swap(pipe1, pipe2);
110
111 pipe_lock(pipe1);
112 pipe_lock(pipe2);
113 }
114
anon_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)115 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
116 struct pipe_buffer *buf)
117 {
118 struct page *page = buf->page;
119
120 /*
121 * If nobody else uses this page, and we don't already have a
122 * temporary page, let's keep track of it as a one-deep
123 * allocation cache. (Otherwise just release our reference to it)
124 */
125 if (page_count(page) == 1 && !pipe->tmp_page)
126 pipe->tmp_page = page;
127 else
128 put_page(page);
129 }
130
anon_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)131 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
132 struct pipe_buffer *buf)
133 {
134 struct page *page = buf->page;
135
136 if (page_count(page) != 1)
137 return false;
138 memcg_kmem_uncharge_page(page, 0);
139 __SetPageLocked(page);
140 return true;
141 }
142
143 /**
144 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
145 * @pipe: the pipe that the buffer belongs to
146 * @buf: the buffer to attempt to steal
147 *
148 * Description:
149 * This function attempts to steal the &struct page attached to
150 * @buf. If successful, this function returns 0 and returns with
151 * the page locked. The caller may then reuse the page for whatever
152 * he wishes; the typical use is insertion into a different file
153 * page cache.
154 */
generic_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)155 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
156 struct pipe_buffer *buf)
157 {
158 struct page *page = buf->page;
159
160 /*
161 * A reference of one is golden, that means that the owner of this
162 * page is the only one holding a reference to it. lock the page
163 * and return OK.
164 */
165 if (page_count(page) == 1) {
166 lock_page(page);
167 return true;
168 }
169 return false;
170 }
171 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
172
173 /**
174 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
175 * @pipe: the pipe that the buffer belongs to
176 * @buf: the buffer to get a reference to
177 *
178 * Description:
179 * This function grabs an extra reference to @buf. It's used in
180 * the tee() system call, when we duplicate the buffers in one
181 * pipe into another.
182 */
generic_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)183 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
184 {
185 return try_get_page(buf->page);
186 }
187 EXPORT_SYMBOL(generic_pipe_buf_get);
188
189 /**
190 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
191 * @pipe: the pipe that the buffer belongs to
192 * @buf: the buffer to put a reference to
193 *
194 * Description:
195 * This function releases a reference to @buf.
196 */
generic_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)197 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
198 struct pipe_buffer *buf)
199 {
200 put_page(buf->page);
201 }
202 EXPORT_SYMBOL(generic_pipe_buf_release);
203
204 static const struct pipe_buf_operations anon_pipe_buf_ops = {
205 .release = anon_pipe_buf_release,
206 .try_steal = anon_pipe_buf_try_steal,
207 .get = generic_pipe_buf_get,
208 };
209
210 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
pipe_readable(const struct pipe_inode_info * pipe)211 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
212 {
213 union pipe_index idx = { .head_tail = READ_ONCE(pipe->head_tail) };
214 unsigned int writers = READ_ONCE(pipe->writers);
215
216 return !pipe_empty(idx.head, idx.tail) || !writers;
217 }
218
pipe_update_tail(struct pipe_inode_info * pipe,struct pipe_buffer * buf,unsigned int tail)219 static inline unsigned int pipe_update_tail(struct pipe_inode_info *pipe,
220 struct pipe_buffer *buf,
221 unsigned int tail)
222 {
223 pipe_buf_release(pipe, buf);
224
225 /*
226 * If the pipe has a watch_queue, we need additional protection
227 * by the spinlock because notifications get posted with only
228 * this spinlock, no mutex
229 */
230 if (pipe_has_watch_queue(pipe)) {
231 spin_lock_irq(&pipe->rd_wait.lock);
232 #ifdef CONFIG_WATCH_QUEUE
233 if (buf->flags & PIPE_BUF_FLAG_LOSS)
234 pipe->note_loss = true;
235 #endif
236 pipe->tail = ++tail;
237 spin_unlock_irq(&pipe->rd_wait.lock);
238 return tail;
239 }
240
241 /*
242 * Without a watch_queue, we can simply increment the tail
243 * without the spinlock - the mutex is enough.
244 */
245 pipe->tail = ++tail;
246 return tail;
247 }
248
249 static ssize_t
pipe_read(struct kiocb * iocb,struct iov_iter * to)250 pipe_read(struct kiocb *iocb, struct iov_iter *to)
251 {
252 size_t total_len = iov_iter_count(to);
253 struct file *filp = iocb->ki_filp;
254 struct pipe_inode_info *pipe = filp->private_data;
255 bool wake_writer = false, wake_next_reader = false;
256 ssize_t ret;
257
258 /* Null read succeeds. */
259 if (unlikely(total_len == 0))
260 return 0;
261
262 ret = 0;
263 mutex_lock(&pipe->mutex);
264
265 /*
266 * We only wake up writers if the pipe was full when we started reading
267 * and it is no longer full after reading to avoid unnecessary wakeups.
268 *
269 * But when we do wake up writers, we do so using a sync wakeup
270 * (WF_SYNC), because we want them to get going and generate more
271 * data for us.
272 */
273 for (;;) {
274 /* Read ->head with a barrier vs post_one_notification() */
275 unsigned int head = smp_load_acquire(&pipe->head);
276 unsigned int tail = pipe->tail;
277 unsigned int mask = pipe->ring_size - 1;
278
279 #ifdef CONFIG_WATCH_QUEUE
280 if (pipe->note_loss) {
281 struct watch_notification n;
282
283 if (total_len < 8) {
284 if (ret == 0)
285 ret = -ENOBUFS;
286 break;
287 }
288
289 n.type = WATCH_TYPE_META;
290 n.subtype = WATCH_META_LOSS_NOTIFICATION;
291 n.info = watch_sizeof(n);
292 if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
293 if (ret == 0)
294 ret = -EFAULT;
295 break;
296 }
297 ret += sizeof(n);
298 total_len -= sizeof(n);
299 pipe->note_loss = false;
300 }
301 #endif
302
303 if (!pipe_empty(head, tail)) {
304 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
305 size_t chars = buf->len;
306 size_t written;
307 int error;
308
309 if (chars > total_len) {
310 if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
311 if (ret == 0)
312 ret = -ENOBUFS;
313 break;
314 }
315 chars = total_len;
316 }
317
318 error = pipe_buf_confirm(pipe, buf);
319 if (error) {
320 if (!ret)
321 ret = error;
322 break;
323 }
324
325 written = copy_page_to_iter(buf->page, buf->offset, chars, to);
326 if (unlikely(written < chars)) {
327 if (!ret)
328 ret = -EFAULT;
329 break;
330 }
331 ret += chars;
332 buf->offset += chars;
333 buf->len -= chars;
334
335 /* Was it a packet buffer? Clean up and exit */
336 if (buf->flags & PIPE_BUF_FLAG_PACKET) {
337 total_len = chars;
338 buf->len = 0;
339 }
340
341 if (!buf->len) {
342 wake_writer |= pipe_full(head, tail, pipe->max_usage);
343 tail = pipe_update_tail(pipe, buf, tail);
344 }
345 total_len -= chars;
346 if (!total_len)
347 break; /* common path: read succeeded */
348 if (!pipe_empty(head, tail)) /* More to do? */
349 continue;
350 }
351
352 if (!pipe->writers)
353 break;
354 if (ret)
355 break;
356 if ((filp->f_flags & O_NONBLOCK) ||
357 (iocb->ki_flags & IOCB_NOWAIT)) {
358 ret = -EAGAIN;
359 break;
360 }
361 mutex_unlock(&pipe->mutex);
362
363 /*
364 * We only get here if we didn't actually read anything.
365 *
366 * However, we could have seen (and removed) a zero-sized
367 * pipe buffer, and might have made space in the buffers
368 * that way.
369 *
370 * You can't make zero-sized pipe buffers by doing an empty
371 * write (not even in packet mode), but they can happen if
372 * the writer gets an EFAULT when trying to fill a buffer
373 * that already got allocated and inserted in the buffer
374 * array.
375 *
376 * So we still need to wake up any pending writers in the
377 * _very_ unlikely case that the pipe was full, but we got
378 * no data.
379 */
380 if (unlikely(wake_writer))
381 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
382 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
383
384 /*
385 * But because we didn't read anything, at this point we can
386 * just return directly with -ERESTARTSYS if we're interrupted,
387 * since we've done any required wakeups and there's no need
388 * to mark anything accessed. And we've dropped the lock.
389 */
390 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
391 return -ERESTARTSYS;
392
393 wake_writer = false;
394 wake_next_reader = true;
395 mutex_lock(&pipe->mutex);
396 }
397 if (pipe_is_empty(pipe))
398 wake_next_reader = false;
399 mutex_unlock(&pipe->mutex);
400
401 if (wake_writer)
402 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
403 if (wake_next_reader)
404 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
405 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
406 if (ret > 0)
407 file_accessed(filp);
408 return ret;
409 }
410
is_packetized(struct file * file)411 static inline int is_packetized(struct file *file)
412 {
413 return (file->f_flags & O_DIRECT) != 0;
414 }
415
416 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
pipe_writable(const struct pipe_inode_info * pipe)417 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
418 {
419 union pipe_index idx = { .head_tail = READ_ONCE(pipe->head_tail) };
420 unsigned int max_usage = READ_ONCE(pipe->max_usage);
421
422 return !pipe_full(idx.head, idx.tail, max_usage) ||
423 !READ_ONCE(pipe->readers);
424 }
425
426 static ssize_t
pipe_write(struct kiocb * iocb,struct iov_iter * from)427 pipe_write(struct kiocb *iocb, struct iov_iter *from)
428 {
429 struct file *filp = iocb->ki_filp;
430 struct pipe_inode_info *pipe = filp->private_data;
431 unsigned int head;
432 ssize_t ret = 0;
433 size_t total_len = iov_iter_count(from);
434 ssize_t chars;
435 bool was_empty = false;
436 bool wake_next_writer = false;
437
438 /*
439 * Reject writing to watch queue pipes before the point where we lock
440 * the pipe.
441 * Otherwise, lockdep would be unhappy if the caller already has another
442 * pipe locked.
443 * If we had to support locking a normal pipe and a notification pipe at
444 * the same time, we could set up lockdep annotations for that, but
445 * since we don't actually need that, it's simpler to just bail here.
446 */
447 if (pipe_has_watch_queue(pipe))
448 return -EXDEV;
449
450 /* Null write succeeds. */
451 if (unlikely(total_len == 0))
452 return 0;
453
454 mutex_lock(&pipe->mutex);
455
456 if (!pipe->readers) {
457 send_sig(SIGPIPE, current, 0);
458 ret = -EPIPE;
459 goto out;
460 }
461
462 /*
463 * If it wasn't empty we try to merge new data into
464 * the last buffer.
465 *
466 * That naturally merges small writes, but it also
467 * page-aligns the rest of the writes for large writes
468 * spanning multiple pages.
469 */
470 head = pipe->head;
471 was_empty = pipe_empty(head, pipe->tail);
472 chars = total_len & (PAGE_SIZE-1);
473 if (chars && !was_empty) {
474 unsigned int mask = pipe->ring_size - 1;
475 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
476 int offset = buf->offset + buf->len;
477
478 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
479 offset + chars <= PAGE_SIZE) {
480 ret = pipe_buf_confirm(pipe, buf);
481 if (ret)
482 goto out;
483
484 ret = copy_page_from_iter(buf->page, offset, chars, from);
485 if (unlikely(ret < chars)) {
486 ret = -EFAULT;
487 goto out;
488 }
489
490 buf->len += ret;
491 if (!iov_iter_count(from))
492 goto out;
493 }
494 }
495
496 for (;;) {
497 if (!pipe->readers) {
498 send_sig(SIGPIPE, current, 0);
499 if (!ret)
500 ret = -EPIPE;
501 break;
502 }
503
504 head = pipe->head;
505 if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
506 unsigned int mask = pipe->ring_size - 1;
507 struct pipe_buffer *buf;
508 struct page *page = pipe->tmp_page;
509 int copied;
510
511 if (!page) {
512 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
513 if (unlikely(!page)) {
514 ret = ret ? : -ENOMEM;
515 break;
516 }
517 pipe->tmp_page = page;
518 }
519
520 /* Allocate a slot in the ring in advance and attach an
521 * empty buffer. If we fault or otherwise fail to use
522 * it, either the reader will consume it or it'll still
523 * be there for the next write.
524 */
525 pipe->head = head + 1;
526
527 /* Insert it into the buffer array */
528 buf = &pipe->bufs[head & mask];
529 buf->page = page;
530 buf->ops = &anon_pipe_buf_ops;
531 buf->offset = 0;
532 buf->len = 0;
533 if (is_packetized(filp))
534 buf->flags = PIPE_BUF_FLAG_PACKET;
535 else
536 buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
537 pipe->tmp_page = NULL;
538
539 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
540 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
541 if (!ret)
542 ret = -EFAULT;
543 break;
544 }
545 ret += copied;
546 buf->len = copied;
547
548 if (!iov_iter_count(from))
549 break;
550 }
551
552 if (!pipe_full(head, pipe->tail, pipe->max_usage))
553 continue;
554
555 /* Wait for buffer space to become available. */
556 if ((filp->f_flags & O_NONBLOCK) ||
557 (iocb->ki_flags & IOCB_NOWAIT)) {
558 if (!ret)
559 ret = -EAGAIN;
560 break;
561 }
562 if (signal_pending(current)) {
563 if (!ret)
564 ret = -ERESTARTSYS;
565 break;
566 }
567
568 /*
569 * We're going to release the pipe lock and wait for more
570 * space. We wake up any readers if necessary, and then
571 * after waiting we need to re-check whether the pipe
572 * become empty while we dropped the lock.
573 */
574 mutex_unlock(&pipe->mutex);
575 if (was_empty)
576 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
577 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
578 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
579 mutex_lock(&pipe->mutex);
580 was_empty = pipe_is_empty(pipe);
581 wake_next_writer = true;
582 }
583 out:
584 if (pipe_is_full(pipe))
585 wake_next_writer = false;
586 mutex_unlock(&pipe->mutex);
587
588 /*
589 * If we do do a wakeup event, we do a 'sync' wakeup, because we
590 * want the reader to start processing things asap, rather than
591 * leave the data pending.
592 *
593 * This is particularly important for small writes, because of
594 * how (for example) the GNU make jobserver uses small writes to
595 * wake up pending jobs
596 *
597 * Epoll nonsensically wants a wakeup whether the pipe
598 * was already empty or not.
599 */
600 if (was_empty || pipe->poll_usage)
601 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
602 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
603 if (wake_next_writer)
604 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
605 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
606 int err = file_update_time(filp);
607 if (err)
608 ret = err;
609 sb_end_write(file_inode(filp)->i_sb);
610 }
611 return ret;
612 }
613
pipe_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)614 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
615 {
616 struct pipe_inode_info *pipe = filp->private_data;
617 unsigned int count, head, tail;
618
619 switch (cmd) {
620 case FIONREAD:
621 mutex_lock(&pipe->mutex);
622 count = 0;
623 head = pipe->head;
624 tail = pipe->tail;
625
626 while (!pipe_empty(head, tail)) {
627 count += pipe_buf(pipe, tail)->len;
628 tail++;
629 }
630 mutex_unlock(&pipe->mutex);
631
632 return put_user(count, (int __user *)arg);
633
634 #ifdef CONFIG_WATCH_QUEUE
635 case IOC_WATCH_QUEUE_SET_SIZE: {
636 int ret;
637 mutex_lock(&pipe->mutex);
638 ret = watch_queue_set_size(pipe, arg);
639 mutex_unlock(&pipe->mutex);
640 return ret;
641 }
642
643 case IOC_WATCH_QUEUE_SET_FILTER:
644 return watch_queue_set_filter(
645 pipe, (struct watch_notification_filter __user *)arg);
646 #endif
647
648 default:
649 return -ENOIOCTLCMD;
650 }
651 }
652
653 /* No kernel lock held - fine */
654 static __poll_t
pipe_poll(struct file * filp,poll_table * wait)655 pipe_poll(struct file *filp, poll_table *wait)
656 {
657 __poll_t mask;
658 struct pipe_inode_info *pipe = filp->private_data;
659 union pipe_index idx;
660
661 /* Epoll has some historical nasty semantics, this enables them */
662 WRITE_ONCE(pipe->poll_usage, true);
663
664 /*
665 * Reading pipe state only -- no need for acquiring the semaphore.
666 *
667 * But because this is racy, the code has to add the
668 * entry to the poll table _first_ ..
669 */
670 if (filp->f_mode & FMODE_READ)
671 poll_wait(filp, &pipe->rd_wait, wait);
672 if (filp->f_mode & FMODE_WRITE)
673 poll_wait(filp, &pipe->wr_wait, wait);
674
675 /*
676 * .. and only then can you do the racy tests. That way,
677 * if something changes and you got it wrong, the poll
678 * table entry will wake you up and fix it.
679 */
680 idx.head_tail = READ_ONCE(pipe->head_tail);
681
682 mask = 0;
683 if (filp->f_mode & FMODE_READ) {
684 if (!pipe_empty(idx.head, idx.tail))
685 mask |= EPOLLIN | EPOLLRDNORM;
686 if (!pipe->writers && filp->f_pipe != pipe->w_counter)
687 mask |= EPOLLHUP;
688 }
689
690 if (filp->f_mode & FMODE_WRITE) {
691 if (!pipe_full(idx.head, idx.tail, pipe->max_usage))
692 mask |= EPOLLOUT | EPOLLWRNORM;
693 /*
694 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
695 * behave exactly like pipes for poll().
696 */
697 if (!pipe->readers)
698 mask |= EPOLLERR;
699 }
700
701 return mask;
702 }
703
put_pipe_info(struct inode * inode,struct pipe_inode_info * pipe)704 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
705 {
706 int kill = 0;
707
708 spin_lock(&inode->i_lock);
709 if (!--pipe->files) {
710 inode->i_pipe = NULL;
711 kill = 1;
712 }
713 spin_unlock(&inode->i_lock);
714
715 if (kill)
716 free_pipe_info(pipe);
717 }
718
719 static int
pipe_release(struct inode * inode,struct file * file)720 pipe_release(struct inode *inode, struct file *file)
721 {
722 struct pipe_inode_info *pipe = file->private_data;
723
724 mutex_lock(&pipe->mutex);
725 if (file->f_mode & FMODE_READ)
726 pipe->readers--;
727 if (file->f_mode & FMODE_WRITE)
728 pipe->writers--;
729
730 /* Was that the last reader or writer, but not the other side? */
731 if (!pipe->readers != !pipe->writers) {
732 wake_up_interruptible_all(&pipe->rd_wait);
733 wake_up_interruptible_all(&pipe->wr_wait);
734 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
735 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
736 }
737 mutex_unlock(&pipe->mutex);
738
739 put_pipe_info(inode, pipe);
740 return 0;
741 }
742
743 static int
pipe_fasync(int fd,struct file * filp,int on)744 pipe_fasync(int fd, struct file *filp, int on)
745 {
746 struct pipe_inode_info *pipe = filp->private_data;
747 int retval = 0;
748
749 mutex_lock(&pipe->mutex);
750 if (filp->f_mode & FMODE_READ)
751 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
752 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
753 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
754 if (retval < 0 && (filp->f_mode & FMODE_READ))
755 /* this can happen only if on == T */
756 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
757 }
758 mutex_unlock(&pipe->mutex);
759 return retval;
760 }
761
account_pipe_buffers(struct user_struct * user,unsigned long old,unsigned long new)762 unsigned long account_pipe_buffers(struct user_struct *user,
763 unsigned long old, unsigned long new)
764 {
765 return atomic_long_add_return(new - old, &user->pipe_bufs);
766 }
767
too_many_pipe_buffers_soft(unsigned long user_bufs)768 bool too_many_pipe_buffers_soft(unsigned long user_bufs)
769 {
770 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
771
772 return soft_limit && user_bufs > soft_limit;
773 }
774
too_many_pipe_buffers_hard(unsigned long user_bufs)775 bool too_many_pipe_buffers_hard(unsigned long user_bufs)
776 {
777 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
778
779 return hard_limit && user_bufs > hard_limit;
780 }
781
pipe_is_unprivileged_user(void)782 bool pipe_is_unprivileged_user(void)
783 {
784 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
785 }
786
alloc_pipe_info(void)787 struct pipe_inode_info *alloc_pipe_info(void)
788 {
789 struct pipe_inode_info *pipe;
790 unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
791 struct user_struct *user = get_current_user();
792 unsigned long user_bufs;
793 unsigned int max_size = READ_ONCE(pipe_max_size);
794
795 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
796 if (pipe == NULL)
797 goto out_free_uid;
798
799 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
800 pipe_bufs = max_size >> PAGE_SHIFT;
801
802 user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
803
804 if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
805 user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
806 pipe_bufs = PIPE_MIN_DEF_BUFFERS;
807 }
808
809 if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
810 goto out_revert_acct;
811
812 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
813 GFP_KERNEL_ACCOUNT);
814
815 if (pipe->bufs) {
816 init_waitqueue_head(&pipe->rd_wait);
817 init_waitqueue_head(&pipe->wr_wait);
818 pipe->r_counter = pipe->w_counter = 1;
819 pipe->max_usage = pipe_bufs;
820 pipe->ring_size = pipe_bufs;
821 pipe->nr_accounted = pipe_bufs;
822 pipe->user = user;
823 mutex_init(&pipe->mutex);
824 lock_set_cmp_fn(&pipe->mutex, pipe_lock_cmp_fn, NULL);
825 return pipe;
826 }
827
828 out_revert_acct:
829 (void) account_pipe_buffers(user, pipe_bufs, 0);
830 kfree(pipe);
831 out_free_uid:
832 free_uid(user);
833 return NULL;
834 }
835
free_pipe_info(struct pipe_inode_info * pipe)836 void free_pipe_info(struct pipe_inode_info *pipe)
837 {
838 unsigned int i;
839
840 #ifdef CONFIG_WATCH_QUEUE
841 if (pipe->watch_queue)
842 watch_queue_clear(pipe->watch_queue);
843 #endif
844
845 (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
846 free_uid(pipe->user);
847 for (i = 0; i < pipe->ring_size; i++) {
848 struct pipe_buffer *buf = pipe->bufs + i;
849 if (buf->ops)
850 pipe_buf_release(pipe, buf);
851 }
852 #ifdef CONFIG_WATCH_QUEUE
853 if (pipe->watch_queue)
854 put_watch_queue(pipe->watch_queue);
855 #endif
856 if (pipe->tmp_page)
857 __free_page(pipe->tmp_page);
858 kfree(pipe->bufs);
859 kfree(pipe);
860 }
861
862 static struct vfsmount *pipe_mnt __ro_after_init;
863
864 /*
865 * pipefs_dname() is called from d_path().
866 */
pipefs_dname(struct dentry * dentry,char * buffer,int buflen)867 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
868 {
869 return dynamic_dname(buffer, buflen, "pipe:[%lu]",
870 d_inode(dentry)->i_ino);
871 }
872
873 static const struct dentry_operations pipefs_dentry_operations = {
874 .d_dname = pipefs_dname,
875 };
876
get_pipe_inode(void)877 static struct inode * get_pipe_inode(void)
878 {
879 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
880 struct pipe_inode_info *pipe;
881
882 if (!inode)
883 goto fail_inode;
884
885 inode->i_ino = get_next_ino();
886
887 pipe = alloc_pipe_info();
888 if (!pipe)
889 goto fail_iput;
890
891 inode->i_pipe = pipe;
892 pipe->files = 2;
893 pipe->readers = pipe->writers = 1;
894 inode->i_fop = &pipefifo_fops;
895
896 /*
897 * Mark the inode dirty from the very beginning,
898 * that way it will never be moved to the dirty
899 * list because "mark_inode_dirty()" will think
900 * that it already _is_ on the dirty list.
901 */
902 inode->i_state = I_DIRTY;
903 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
904 inode->i_uid = current_fsuid();
905 inode->i_gid = current_fsgid();
906 simple_inode_init_ts(inode);
907
908 return inode;
909
910 fail_iput:
911 iput(inode);
912
913 fail_inode:
914 return NULL;
915 }
916
create_pipe_files(struct file ** res,int flags)917 int create_pipe_files(struct file **res, int flags)
918 {
919 struct inode *inode = get_pipe_inode();
920 struct file *f;
921 int error;
922
923 if (!inode)
924 return -ENFILE;
925
926 if (flags & O_NOTIFICATION_PIPE) {
927 error = watch_queue_init(inode->i_pipe);
928 if (error) {
929 free_pipe_info(inode->i_pipe);
930 iput(inode);
931 return error;
932 }
933 }
934
935 f = alloc_file_pseudo(inode, pipe_mnt, "",
936 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
937 &pipefifo_fops);
938 if (IS_ERR(f)) {
939 free_pipe_info(inode->i_pipe);
940 iput(inode);
941 return PTR_ERR(f);
942 }
943
944 f->private_data = inode->i_pipe;
945 f->f_pipe = 0;
946
947 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
948 &pipefifo_fops);
949 if (IS_ERR(res[0])) {
950 put_pipe_info(inode, inode->i_pipe);
951 fput(f);
952 return PTR_ERR(res[0]);
953 }
954 res[0]->private_data = inode->i_pipe;
955 res[0]->f_pipe = 0;
956 res[1] = f;
957 stream_open(inode, res[0]);
958 stream_open(inode, res[1]);
959 /*
960 * Disable permission and pre-content events, but enable legacy
961 * inotify events for legacy users.
962 */
963 file_set_fsnotify_mode(res[0], FMODE_NONOTIFY_PERM);
964 file_set_fsnotify_mode(res[1], FMODE_NONOTIFY_PERM);
965 return 0;
966 }
967
__do_pipe_flags(int * fd,struct file ** files,int flags)968 static int __do_pipe_flags(int *fd, struct file **files, int flags)
969 {
970 int error;
971 int fdw, fdr;
972
973 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
974 return -EINVAL;
975
976 error = create_pipe_files(files, flags);
977 if (error)
978 return error;
979
980 error = get_unused_fd_flags(flags);
981 if (error < 0)
982 goto err_read_pipe;
983 fdr = error;
984
985 error = get_unused_fd_flags(flags);
986 if (error < 0)
987 goto err_fdr;
988 fdw = error;
989
990 audit_fd_pair(fdr, fdw);
991 fd[0] = fdr;
992 fd[1] = fdw;
993 /* pipe groks IOCB_NOWAIT */
994 files[0]->f_mode |= FMODE_NOWAIT;
995 files[1]->f_mode |= FMODE_NOWAIT;
996 return 0;
997
998 err_fdr:
999 put_unused_fd(fdr);
1000 err_read_pipe:
1001 fput(files[0]);
1002 fput(files[1]);
1003 return error;
1004 }
1005
do_pipe_flags(int * fd,int flags)1006 int do_pipe_flags(int *fd, int flags)
1007 {
1008 struct file *files[2];
1009 int error = __do_pipe_flags(fd, files, flags);
1010 if (!error) {
1011 fd_install(fd[0], files[0]);
1012 fd_install(fd[1], files[1]);
1013 }
1014 return error;
1015 }
1016
1017 /*
1018 * sys_pipe() is the normal C calling standard for creating
1019 * a pipe. It's not the way Unix traditionally does this, though.
1020 */
do_pipe2(int __user * fildes,int flags)1021 static int do_pipe2(int __user *fildes, int flags)
1022 {
1023 struct file *files[2];
1024 int fd[2];
1025 int error;
1026
1027 error = __do_pipe_flags(fd, files, flags);
1028 if (!error) {
1029 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1030 fput(files[0]);
1031 fput(files[1]);
1032 put_unused_fd(fd[0]);
1033 put_unused_fd(fd[1]);
1034 error = -EFAULT;
1035 } else {
1036 fd_install(fd[0], files[0]);
1037 fd_install(fd[1], files[1]);
1038 }
1039 }
1040 return error;
1041 }
1042
SYSCALL_DEFINE2(pipe2,int __user *,fildes,int,flags)1043 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1044 {
1045 return do_pipe2(fildes, flags);
1046 }
1047
SYSCALL_DEFINE1(pipe,int __user *,fildes)1048 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1049 {
1050 return do_pipe2(fildes, 0);
1051 }
1052
1053 /*
1054 * This is the stupid "wait for pipe to be readable or writable"
1055 * model.
1056 *
1057 * See pipe_read/write() for the proper kind of exclusive wait,
1058 * but that requires that we wake up any other readers/writers
1059 * if we then do not end up reading everything (ie the whole
1060 * "wake_next_reader/writer" logic in pipe_read/write()).
1061 */
pipe_wait_readable(struct pipe_inode_info * pipe)1062 void pipe_wait_readable(struct pipe_inode_info *pipe)
1063 {
1064 pipe_unlock(pipe);
1065 wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1066 pipe_lock(pipe);
1067 }
1068
pipe_wait_writable(struct pipe_inode_info * pipe)1069 void pipe_wait_writable(struct pipe_inode_info *pipe)
1070 {
1071 pipe_unlock(pipe);
1072 wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1073 pipe_lock(pipe);
1074 }
1075
1076 /*
1077 * This depends on both the wait (here) and the wakeup (wake_up_partner)
1078 * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1079 * race with the count check and waitqueue prep.
1080 *
1081 * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1082 * then check the condition you're waiting for, and only then sleep. But
1083 * because of the pipe lock, we can check the condition before being on
1084 * the wait queue.
1085 *
1086 * We use the 'rd_wait' waitqueue for pipe partner waiting.
1087 */
wait_for_partner(struct pipe_inode_info * pipe,unsigned int * cnt)1088 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1089 {
1090 DEFINE_WAIT(rdwait);
1091 int cur = *cnt;
1092
1093 while (cur == *cnt) {
1094 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1095 pipe_unlock(pipe);
1096 schedule();
1097 finish_wait(&pipe->rd_wait, &rdwait);
1098 pipe_lock(pipe);
1099 if (signal_pending(current))
1100 break;
1101 }
1102 return cur == *cnt ? -ERESTARTSYS : 0;
1103 }
1104
wake_up_partner(struct pipe_inode_info * pipe)1105 static void wake_up_partner(struct pipe_inode_info *pipe)
1106 {
1107 wake_up_interruptible_all(&pipe->rd_wait);
1108 }
1109
fifo_open(struct inode * inode,struct file * filp)1110 static int fifo_open(struct inode *inode, struct file *filp)
1111 {
1112 struct pipe_inode_info *pipe;
1113 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1114 int ret;
1115
1116 filp->f_pipe = 0;
1117
1118 spin_lock(&inode->i_lock);
1119 if (inode->i_pipe) {
1120 pipe = inode->i_pipe;
1121 pipe->files++;
1122 spin_unlock(&inode->i_lock);
1123 } else {
1124 spin_unlock(&inode->i_lock);
1125 pipe = alloc_pipe_info();
1126 if (!pipe)
1127 return -ENOMEM;
1128 pipe->files = 1;
1129 spin_lock(&inode->i_lock);
1130 if (unlikely(inode->i_pipe)) {
1131 inode->i_pipe->files++;
1132 spin_unlock(&inode->i_lock);
1133 free_pipe_info(pipe);
1134 pipe = inode->i_pipe;
1135 } else {
1136 inode->i_pipe = pipe;
1137 spin_unlock(&inode->i_lock);
1138 }
1139 }
1140 filp->private_data = pipe;
1141 /* OK, we have a pipe and it's pinned down */
1142
1143 mutex_lock(&pipe->mutex);
1144
1145 /* We can only do regular read/write on fifos */
1146 stream_open(inode, filp);
1147
1148 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1149 case FMODE_READ:
1150 /*
1151 * O_RDONLY
1152 * POSIX.1 says that O_NONBLOCK means return with the FIFO
1153 * opened, even when there is no process writing the FIFO.
1154 */
1155 pipe->r_counter++;
1156 if (pipe->readers++ == 0)
1157 wake_up_partner(pipe);
1158
1159 if (!is_pipe && !pipe->writers) {
1160 if ((filp->f_flags & O_NONBLOCK)) {
1161 /* suppress EPOLLHUP until we have
1162 * seen a writer */
1163 filp->f_pipe = pipe->w_counter;
1164 } else {
1165 if (wait_for_partner(pipe, &pipe->w_counter))
1166 goto err_rd;
1167 }
1168 }
1169 break;
1170
1171 case FMODE_WRITE:
1172 /*
1173 * O_WRONLY
1174 * POSIX.1 says that O_NONBLOCK means return -1 with
1175 * errno=ENXIO when there is no process reading the FIFO.
1176 */
1177 ret = -ENXIO;
1178 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1179 goto err;
1180
1181 pipe->w_counter++;
1182 if (!pipe->writers++)
1183 wake_up_partner(pipe);
1184
1185 if (!is_pipe && !pipe->readers) {
1186 if (wait_for_partner(pipe, &pipe->r_counter))
1187 goto err_wr;
1188 }
1189 break;
1190
1191 case FMODE_READ | FMODE_WRITE:
1192 /*
1193 * O_RDWR
1194 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1195 * This implementation will NEVER block on a O_RDWR open, since
1196 * the process can at least talk to itself.
1197 */
1198
1199 pipe->readers++;
1200 pipe->writers++;
1201 pipe->r_counter++;
1202 pipe->w_counter++;
1203 if (pipe->readers == 1 || pipe->writers == 1)
1204 wake_up_partner(pipe);
1205 break;
1206
1207 default:
1208 ret = -EINVAL;
1209 goto err;
1210 }
1211
1212 /* Ok! */
1213 mutex_unlock(&pipe->mutex);
1214 return 0;
1215
1216 err_rd:
1217 if (!--pipe->readers)
1218 wake_up_interruptible(&pipe->wr_wait);
1219 ret = -ERESTARTSYS;
1220 goto err;
1221
1222 err_wr:
1223 if (!--pipe->writers)
1224 wake_up_interruptible_all(&pipe->rd_wait);
1225 ret = -ERESTARTSYS;
1226 goto err;
1227
1228 err:
1229 mutex_unlock(&pipe->mutex);
1230
1231 put_pipe_info(inode, pipe);
1232 return ret;
1233 }
1234
1235 const struct file_operations pipefifo_fops = {
1236 .open = fifo_open,
1237 .read_iter = pipe_read,
1238 .write_iter = pipe_write,
1239 .poll = pipe_poll,
1240 .unlocked_ioctl = pipe_ioctl,
1241 .release = pipe_release,
1242 .fasync = pipe_fasync,
1243 .splice_write = iter_file_splice_write,
1244 };
1245
1246 /*
1247 * Currently we rely on the pipe array holding a power-of-2 number
1248 * of pages. Returns 0 on error.
1249 */
round_pipe_size(unsigned int size)1250 unsigned int round_pipe_size(unsigned int size)
1251 {
1252 if (size > (1U << 31))
1253 return 0;
1254
1255 /* Minimum pipe size, as required by POSIX */
1256 if (size < PAGE_SIZE)
1257 return PAGE_SIZE;
1258
1259 return roundup_pow_of_two(size);
1260 }
1261
1262 /*
1263 * Resize the pipe ring to a number of slots.
1264 *
1265 * Note the pipe can be reduced in capacity, but only if the current
1266 * occupancy doesn't exceed nr_slots; if it does, EBUSY will be
1267 * returned instead.
1268 */
pipe_resize_ring(struct pipe_inode_info * pipe,unsigned int nr_slots)1269 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1270 {
1271 struct pipe_buffer *bufs;
1272 unsigned int head, tail, mask, n;
1273
1274 bufs = kcalloc(nr_slots, sizeof(*bufs),
1275 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1276 if (unlikely(!bufs))
1277 return -ENOMEM;
1278
1279 spin_lock_irq(&pipe->rd_wait.lock);
1280 mask = pipe->ring_size - 1;
1281 head = pipe->head;
1282 tail = pipe->tail;
1283
1284 n = pipe_occupancy(head, tail);
1285 if (nr_slots < n) {
1286 spin_unlock_irq(&pipe->rd_wait.lock);
1287 kfree(bufs);
1288 return -EBUSY;
1289 }
1290
1291 /*
1292 * The pipe array wraps around, so just start the new one at zero
1293 * and adjust the indices.
1294 */
1295 if (n > 0) {
1296 unsigned int h = head & mask;
1297 unsigned int t = tail & mask;
1298 if (h > t) {
1299 memcpy(bufs, pipe->bufs + t,
1300 n * sizeof(struct pipe_buffer));
1301 } else {
1302 unsigned int tsize = pipe->ring_size - t;
1303 if (h > 0)
1304 memcpy(bufs + tsize, pipe->bufs,
1305 h * sizeof(struct pipe_buffer));
1306 memcpy(bufs, pipe->bufs + t,
1307 tsize * sizeof(struct pipe_buffer));
1308 }
1309 }
1310
1311 head = n;
1312 tail = 0;
1313
1314 kfree(pipe->bufs);
1315 pipe->bufs = bufs;
1316 pipe->ring_size = nr_slots;
1317 if (pipe->max_usage > nr_slots)
1318 pipe->max_usage = nr_slots;
1319 pipe->tail = tail;
1320 pipe->head = head;
1321
1322 if (!pipe_has_watch_queue(pipe)) {
1323 pipe->max_usage = nr_slots;
1324 pipe->nr_accounted = nr_slots;
1325 }
1326
1327 spin_unlock_irq(&pipe->rd_wait.lock);
1328
1329 /* This might have made more room for writers */
1330 wake_up_interruptible(&pipe->wr_wait);
1331 return 0;
1332 }
1333
1334 /*
1335 * Allocate a new array of pipe buffers and copy the info over. Returns the
1336 * pipe size if successful, or return -ERROR on error.
1337 */
pipe_set_size(struct pipe_inode_info * pipe,unsigned int arg)1338 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned int arg)
1339 {
1340 unsigned long user_bufs;
1341 unsigned int nr_slots, size;
1342 long ret = 0;
1343
1344 if (pipe_has_watch_queue(pipe))
1345 return -EBUSY;
1346
1347 size = round_pipe_size(arg);
1348 nr_slots = size >> PAGE_SHIFT;
1349
1350 if (!nr_slots)
1351 return -EINVAL;
1352
1353 /*
1354 * If trying to increase the pipe capacity, check that an
1355 * unprivileged user is not trying to exceed various limits
1356 * (soft limit check here, hard limit check just below).
1357 * Decreasing the pipe capacity is always permitted, even
1358 * if the user is currently over a limit.
1359 */
1360 if (nr_slots > pipe->max_usage &&
1361 size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1362 return -EPERM;
1363
1364 user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1365
1366 if (nr_slots > pipe->max_usage &&
1367 (too_many_pipe_buffers_hard(user_bufs) ||
1368 too_many_pipe_buffers_soft(user_bufs)) &&
1369 pipe_is_unprivileged_user()) {
1370 ret = -EPERM;
1371 goto out_revert_acct;
1372 }
1373
1374 ret = pipe_resize_ring(pipe, nr_slots);
1375 if (ret < 0)
1376 goto out_revert_acct;
1377
1378 return pipe->max_usage * PAGE_SIZE;
1379
1380 out_revert_acct:
1381 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1382 return ret;
1383 }
1384
1385 /*
1386 * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1387 * not enough to verify that this is a pipe.
1388 */
get_pipe_info(struct file * file,bool for_splice)1389 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1390 {
1391 struct pipe_inode_info *pipe = file->private_data;
1392
1393 if (file->f_op != &pipefifo_fops || !pipe)
1394 return NULL;
1395 if (for_splice && pipe_has_watch_queue(pipe))
1396 return NULL;
1397 return pipe;
1398 }
1399
pipe_fcntl(struct file * file,unsigned int cmd,unsigned int arg)1400 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned int arg)
1401 {
1402 struct pipe_inode_info *pipe;
1403 long ret;
1404
1405 pipe = get_pipe_info(file, false);
1406 if (!pipe)
1407 return -EBADF;
1408
1409 mutex_lock(&pipe->mutex);
1410
1411 switch (cmd) {
1412 case F_SETPIPE_SZ:
1413 ret = pipe_set_size(pipe, arg);
1414 break;
1415 case F_GETPIPE_SZ:
1416 ret = pipe->max_usage * PAGE_SIZE;
1417 break;
1418 default:
1419 ret = -EINVAL;
1420 break;
1421 }
1422
1423 mutex_unlock(&pipe->mutex);
1424 return ret;
1425 }
1426
1427 static const struct super_operations pipefs_ops = {
1428 .destroy_inode = free_inode_nonrcu,
1429 .statfs = simple_statfs,
1430 };
1431
1432 /*
1433 * pipefs should _never_ be mounted by userland - too much of security hassle,
1434 * no real gain from having the whole file system mounted. So we don't need
1435 * any operations on the root directory. However, we need a non-trivial
1436 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1437 */
1438
pipefs_init_fs_context(struct fs_context * fc)1439 static int pipefs_init_fs_context(struct fs_context *fc)
1440 {
1441 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1442 if (!ctx)
1443 return -ENOMEM;
1444 ctx->ops = &pipefs_ops;
1445 ctx->dops = &pipefs_dentry_operations;
1446 return 0;
1447 }
1448
1449 static struct file_system_type pipe_fs_type = {
1450 .name = "pipefs",
1451 .init_fs_context = pipefs_init_fs_context,
1452 .kill_sb = kill_anon_super,
1453 };
1454
1455 #ifdef CONFIG_SYSCTL
do_proc_dopipe_max_size_conv(unsigned long * lvalp,unsigned int * valp,int write,void * data)1456 static int do_proc_dopipe_max_size_conv(unsigned long *lvalp,
1457 unsigned int *valp,
1458 int write, void *data)
1459 {
1460 if (write) {
1461 unsigned int val;
1462
1463 val = round_pipe_size(*lvalp);
1464 if (val == 0)
1465 return -EINVAL;
1466
1467 *valp = val;
1468 } else {
1469 unsigned int val = *valp;
1470 *lvalp = (unsigned long) val;
1471 }
1472
1473 return 0;
1474 }
1475
proc_dopipe_max_size(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1476 static int proc_dopipe_max_size(const struct ctl_table *table, int write,
1477 void *buffer, size_t *lenp, loff_t *ppos)
1478 {
1479 return do_proc_douintvec(table, write, buffer, lenp, ppos,
1480 do_proc_dopipe_max_size_conv, NULL);
1481 }
1482
1483 static const struct ctl_table fs_pipe_sysctls[] = {
1484 {
1485 .procname = "pipe-max-size",
1486 .data = &pipe_max_size,
1487 .maxlen = sizeof(pipe_max_size),
1488 .mode = 0644,
1489 .proc_handler = proc_dopipe_max_size,
1490 },
1491 {
1492 .procname = "pipe-user-pages-hard",
1493 .data = &pipe_user_pages_hard,
1494 .maxlen = sizeof(pipe_user_pages_hard),
1495 .mode = 0644,
1496 .proc_handler = proc_doulongvec_minmax,
1497 },
1498 {
1499 .procname = "pipe-user-pages-soft",
1500 .data = &pipe_user_pages_soft,
1501 .maxlen = sizeof(pipe_user_pages_soft),
1502 .mode = 0644,
1503 .proc_handler = proc_doulongvec_minmax,
1504 },
1505 };
1506 #endif
1507
init_pipe_fs(void)1508 static int __init init_pipe_fs(void)
1509 {
1510 int err = register_filesystem(&pipe_fs_type);
1511
1512 if (!err) {
1513 pipe_mnt = kern_mount(&pipe_fs_type);
1514 if (IS_ERR(pipe_mnt)) {
1515 err = PTR_ERR(pipe_mnt);
1516 unregister_filesystem(&pipe_fs_type);
1517 }
1518 }
1519 #ifdef CONFIG_SYSCTL
1520 register_sysctl_init("fs", fs_pipe_sysctls);
1521 #endif
1522 return err;
1523 }
1524
1525 fs_initcall(init_pipe_fs);
1526