xref: /freebsd/contrib/lua/src/lgc.c (revision a9490b81b032b43cdb3c8c76b4d01bbad9ff82c1)
1  /*
2  ** $Id: lgc.c $
3  ** Garbage Collector
4  ** See Copyright Notice in lua.h
5  */
6  
7  #define lgc_c
8  #define LUA_CORE
9  
10  #include "lprefix.h"
11  
12  #include <stdio.h>
13  #include <string.h>
14  
15  
16  #include "lua.h"
17  
18  #include "ldebug.h"
19  #include "ldo.h"
20  #include "lfunc.h"
21  #include "lgc.h"
22  #include "lmem.h"
23  #include "lobject.h"
24  #include "lstate.h"
25  #include "lstring.h"
26  #include "ltable.h"
27  #include "ltm.h"
28  
29  
30  /*
31  ** Maximum number of elements to sweep in each single step.
32  ** (Large enough to dissipate fixed overheads but small enough
33  ** to allow small steps for the collector.)
34  */
35  #define GCSWEEPMAX	100
36  
37  /*
38  ** Maximum number of finalizers to call in each single step.
39  */
40  #define GCFINMAX	10
41  
42  
43  /*
44  ** Cost of calling one finalizer.
45  */
46  #define GCFINALIZECOST	50
47  
48  
49  /*
50  ** The equivalent, in bytes, of one unit of "work" (visiting a slot,
51  ** sweeping an object, etc.)
52  */
53  #define WORK2MEM	sizeof(TValue)
54  
55  
56  /*
57  ** macro to adjust 'pause': 'pause' is actually used like
58  ** 'pause / PAUSEADJ' (value chosen by tests)
59  */
60  #define PAUSEADJ		100
61  
62  
63  /* mask with all color bits */
64  #define maskcolors	(bitmask(BLACKBIT) | WHITEBITS)
65  
66  /* mask with all GC bits */
67  #define maskgcbits      (maskcolors | AGEBITS)
68  
69  
70  /* macro to erase all color bits then set only the current white bit */
71  #define makewhite(g,x)	\
72    (x->marked = cast_byte((x->marked & ~maskcolors) | luaC_white(g)))
73  
74  /* make an object gray (neither white nor black) */
75  #define set2gray(x)	resetbits(x->marked, maskcolors)
76  
77  
78  /* make an object black (coming from any color) */
79  #define set2black(x)  \
80    (x->marked = cast_byte((x->marked & ~WHITEBITS) | bitmask(BLACKBIT)))
81  
82  
83  #define valiswhite(x)   (iscollectable(x) && iswhite(gcvalue(x)))
84  
85  #define keyiswhite(n)   (keyiscollectable(n) && iswhite(gckey(n)))
86  
87  
88  /*
89  ** Protected access to objects in values
90  */
91  #define gcvalueN(o)     (iscollectable(o) ? gcvalue(o) : NULL)
92  
93  
94  #define markvalue(g,o) { checkliveness(g->mainthread,o); \
95    if (valiswhite(o)) reallymarkobject(g,gcvalue(o)); }
96  
97  #define markkey(g, n)	{ if keyiswhite(n) reallymarkobject(g,gckey(n)); }
98  
99  #define markobject(g,t)	{ if (iswhite(t)) reallymarkobject(g, obj2gco(t)); }
100  
101  /*
102  ** mark an object that can be NULL (either because it is really optional,
103  ** or it was stripped as debug info, or inside an uncompleted structure)
104  */
105  #define markobjectN(g,t)	{ if (t) markobject(g,t); }
106  
107  static void reallymarkobject (global_State *g, GCObject *o);
108  static lu_mem atomic (lua_State *L);
109  static void entersweep (lua_State *L);
110  
111  
112  /*
113  ** {======================================================
114  ** Generic functions
115  ** =======================================================
116  */
117  
118  
119  /*
120  ** one after last element in a hash array
121  */
122  #define gnodelast(h)	gnode(h, cast_sizet(sizenode(h)))
123  
124  
getgclist(GCObject * o)125  static GCObject **getgclist (GCObject *o) {
126    switch (o->tt) {
127      case LUA_VTABLE: return &gco2t(o)->gclist;
128      case LUA_VLCL: return &gco2lcl(o)->gclist;
129      case LUA_VCCL: return &gco2ccl(o)->gclist;
130      case LUA_VTHREAD: return &gco2th(o)->gclist;
131      case LUA_VPROTO: return &gco2p(o)->gclist;
132      case LUA_VUSERDATA: {
133        Udata *u = gco2u(o);
134        lua_assert(u->nuvalue > 0);
135        return &u->gclist;
136      }
137      default: lua_assert(0); return 0;
138    }
139  }
140  
141  
142  /*
143  ** Link a collectable object 'o' with a known type into the list 'p'.
144  ** (Must be a macro to access the 'gclist' field in different types.)
145  */
146  #define linkgclist(o,p)	linkgclist_(obj2gco(o), &(o)->gclist, &(p))
147  
linkgclist_(GCObject * o,GCObject ** pnext,GCObject ** list)148  static void linkgclist_ (GCObject *o, GCObject **pnext, GCObject **list) {
149    lua_assert(!isgray(o));  /* cannot be in a gray list */
150    *pnext = *list;
151    *list = o;
152    set2gray(o);  /* now it is */
153  }
154  
155  
156  /*
157  ** Link a generic collectable object 'o' into the list 'p'.
158  */
159  #define linkobjgclist(o,p) linkgclist_(obj2gco(o), getgclist(o), &(p))
160  
161  
162  
163  /*
164  ** Clear keys for empty entries in tables. If entry is empty, mark its
165  ** entry as dead. This allows the collection of the key, but keeps its
166  ** entry in the table: its removal could break a chain and could break
167  ** a table traversal.  Other places never manipulate dead keys, because
168  ** its associated empty value is enough to signal that the entry is
169  ** logically empty.
170  */
clearkey(Node * n)171  static void clearkey (Node *n) {
172    lua_assert(isempty(gval(n)));
173    if (keyiscollectable(n))
174      setdeadkey(n);  /* unused key; remove it */
175  }
176  
177  
178  /*
179  ** tells whether a key or value can be cleared from a weak
180  ** table. Non-collectable objects are never removed from weak
181  ** tables. Strings behave as 'values', so are never removed too. for
182  ** other objects: if really collected, cannot keep them; for objects
183  ** being finalized, keep them in keys, but not in values
184  */
iscleared(global_State * g,const GCObject * o)185  static int iscleared (global_State *g, const GCObject *o) {
186    if (o == NULL) return 0;  /* non-collectable value */
187    else if (novariant(o->tt) == LUA_TSTRING) {
188      markobject(g, o);  /* strings are 'values', so are never weak */
189      return 0;
190    }
191    else return iswhite(o);
192  }
193  
194  
195  /*
196  ** Barrier that moves collector forward, that is, marks the white object
197  ** 'v' being pointed by the black object 'o'.  In the generational
198  ** mode, 'v' must also become old, if 'o' is old; however, it cannot
199  ** be changed directly to OLD, because it may still point to non-old
200  ** objects. So, it is marked as OLD0. In the next cycle it will become
201  ** OLD1, and in the next it will finally become OLD (regular old). By
202  ** then, any object it points to will also be old.  If called in the
203  ** incremental sweep phase, it clears the black object to white (sweep
204  ** it) to avoid other barrier calls for this same object. (That cannot
205  ** be done is generational mode, as its sweep does not distinguish
206  ** whites from deads.)
207  */
luaC_barrier_(lua_State * L,GCObject * o,GCObject * v)208  void luaC_barrier_ (lua_State *L, GCObject *o, GCObject *v) {
209    global_State *g = G(L);
210    lua_assert(isblack(o) && iswhite(v) && !isdead(g, v) && !isdead(g, o));
211    if (keepinvariant(g)) {  /* must keep invariant? */
212      reallymarkobject(g, v);  /* restore invariant */
213      if (isold(o)) {
214        lua_assert(!isold(v));  /* white object could not be old */
215        setage(v, G_OLD0);  /* restore generational invariant */
216      }
217    }
218    else {  /* sweep phase */
219      lua_assert(issweepphase(g));
220      if (g->gckind == KGC_INC)  /* incremental mode? */
221        makewhite(g, o);  /* mark 'o' as white to avoid other barriers */
222    }
223  }
224  
225  
226  /*
227  ** barrier that moves collector backward, that is, mark the black object
228  ** pointing to a white object as gray again.
229  */
luaC_barrierback_(lua_State * L,GCObject * o)230  void luaC_barrierback_ (lua_State *L, GCObject *o) {
231    global_State *g = G(L);
232    lua_assert(isblack(o) && !isdead(g, o));
233    lua_assert((g->gckind == KGC_GEN) == (isold(o) && getage(o) != G_TOUCHED1));
234    if (getage(o) == G_TOUCHED2)  /* already in gray list? */
235      set2gray(o);  /* make it gray to become touched1 */
236    else  /* link it in 'grayagain' and paint it gray */
237      linkobjgclist(o, g->grayagain);
238    if (isold(o))  /* generational mode? */
239      setage(o, G_TOUCHED1);  /* touched in current cycle */
240  }
241  
242  
luaC_fix(lua_State * L,GCObject * o)243  void luaC_fix (lua_State *L, GCObject *o) {
244    global_State *g = G(L);
245    lua_assert(g->allgc == o);  /* object must be 1st in 'allgc' list! */
246    set2gray(o);  /* they will be gray forever */
247    setage(o, G_OLD);  /* and old forever */
248    g->allgc = o->next;  /* remove object from 'allgc' list */
249    o->next = g->fixedgc;  /* link it to 'fixedgc' list */
250    g->fixedgc = o;
251  }
252  
253  
254  /*
255  ** create a new collectable object (with given type, size, and offset)
256  ** and link it to 'allgc' list.
257  */
luaC_newobjdt(lua_State * L,int tt,size_t sz,size_t offset)258  GCObject *luaC_newobjdt (lua_State *L, int tt, size_t sz, size_t offset) {
259    global_State *g = G(L);
260    char *p = cast_charp(luaM_newobject(L, novariant(tt), sz));
261    GCObject *o = cast(GCObject *, p + offset);
262    o->marked = luaC_white(g);
263    o->tt = tt;
264    o->next = g->allgc;
265    g->allgc = o;
266    return o;
267  }
268  
269  
luaC_newobj(lua_State * L,int tt,size_t sz)270  GCObject *luaC_newobj (lua_State *L, int tt, size_t sz) {
271    return luaC_newobjdt(L, tt, sz, 0);
272  }
273  
274  /* }====================================================== */
275  
276  
277  
278  /*
279  ** {======================================================
280  ** Mark functions
281  ** =======================================================
282  */
283  
284  
285  /*
286  ** Mark an object.  Userdata with no user values, strings, and closed
287  ** upvalues are visited and turned black here.  Open upvalues are
288  ** already indirectly linked through their respective threads in the
289  ** 'twups' list, so they don't go to the gray list; nevertheless, they
290  ** are kept gray to avoid barriers, as their values will be revisited
291  ** by the thread or by 'remarkupvals'.  Other objects are added to the
292  ** gray list to be visited (and turned black) later.  Both userdata and
293  ** upvalues can call this function recursively, but this recursion goes
294  ** for at most two levels: An upvalue cannot refer to another upvalue
295  ** (only closures can), and a userdata's metatable must be a table.
296  */
reallymarkobject(global_State * g,GCObject * o)297  static void reallymarkobject (global_State *g, GCObject *o) {
298    switch (o->tt) {
299      case LUA_VSHRSTR:
300      case LUA_VLNGSTR: {
301        set2black(o);  /* nothing to visit */
302        break;
303      }
304      case LUA_VUPVAL: {
305        UpVal *uv = gco2upv(o);
306        if (upisopen(uv))
307          set2gray(uv);  /* open upvalues are kept gray */
308        else
309          set2black(uv);  /* closed upvalues are visited here */
310        markvalue(g, uv->v.p);  /* mark its content */
311        break;
312      }
313      case LUA_VUSERDATA: {
314        Udata *u = gco2u(o);
315        if (u->nuvalue == 0) {  /* no user values? */
316          markobjectN(g, u->metatable);  /* mark its metatable */
317          set2black(u);  /* nothing else to mark */
318          break;
319        }
320        /* else... */
321      }  /* FALLTHROUGH */
322      case LUA_VLCL: case LUA_VCCL: case LUA_VTABLE:
323      case LUA_VTHREAD: case LUA_VPROTO: {
324        linkobjgclist(o, g->gray);  /* to be visited later */
325        break;
326      }
327      default: lua_assert(0); break;
328    }
329  }
330  
331  
332  /*
333  ** mark metamethods for basic types
334  */
markmt(global_State * g)335  static void markmt (global_State *g) {
336    int i;
337    for (i=0; i < LUA_NUMTAGS; i++)
338      markobjectN(g, g->mt[i]);
339  }
340  
341  
342  /*
343  ** mark all objects in list of being-finalized
344  */
markbeingfnz(global_State * g)345  static lu_mem markbeingfnz (global_State *g) {
346    GCObject *o;
347    lu_mem count = 0;
348    for (o = g->tobefnz; o != NULL; o = o->next) {
349      count++;
350      markobject(g, o);
351    }
352    return count;
353  }
354  
355  
356  /*
357  ** For each non-marked thread, simulates a barrier between each open
358  ** upvalue and its value. (If the thread is collected, the value will be
359  ** assigned to the upvalue, but then it can be too late for the barrier
360  ** to act. The "barrier" does not need to check colors: A non-marked
361  ** thread must be young; upvalues cannot be older than their threads; so
362  ** any visited upvalue must be young too.) Also removes the thread from
363  ** the list, as it was already visited. Removes also threads with no
364  ** upvalues, as they have nothing to be checked. (If the thread gets an
365  ** upvalue later, it will be linked in the list again.)
366  */
remarkupvals(global_State * g)367  static int remarkupvals (global_State *g) {
368    lua_State *thread;
369    lua_State **p = &g->twups;
370    int work = 0;  /* estimate of how much work was done here */
371    while ((thread = *p) != NULL) {
372      work++;
373      if (!iswhite(thread) && thread->openupval != NULL)
374        p = &thread->twups;  /* keep marked thread with upvalues in the list */
375      else {  /* thread is not marked or without upvalues */
376        UpVal *uv;
377        lua_assert(!isold(thread) || thread->openupval == NULL);
378        *p = thread->twups;  /* remove thread from the list */
379        thread->twups = thread;  /* mark that it is out of list */
380        for (uv = thread->openupval; uv != NULL; uv = uv->u.open.next) {
381          lua_assert(getage(uv) <= getage(thread));
382          work++;
383          if (!iswhite(uv)) {  /* upvalue already visited? */
384            lua_assert(upisopen(uv) && isgray(uv));
385            markvalue(g, uv->v.p);  /* mark its value */
386          }
387        }
388      }
389    }
390    return work;
391  }
392  
393  
cleargraylists(global_State * g)394  static void cleargraylists (global_State *g) {
395    g->gray = g->grayagain = NULL;
396    g->weak = g->allweak = g->ephemeron = NULL;
397  }
398  
399  
400  /*
401  ** mark root set and reset all gray lists, to start a new collection
402  */
restartcollection(global_State * g)403  static void restartcollection (global_State *g) {
404    cleargraylists(g);
405    markobject(g, g->mainthread);
406    markvalue(g, &g->l_registry);
407    markmt(g);
408    markbeingfnz(g);  /* mark any finalizing object left from previous cycle */
409  }
410  
411  /* }====================================================== */
412  
413  
414  /*
415  ** {======================================================
416  ** Traverse functions
417  ** =======================================================
418  */
419  
420  
421  /*
422  ** Check whether object 'o' should be kept in the 'grayagain' list for
423  ** post-processing by 'correctgraylist'. (It could put all old objects
424  ** in the list and leave all the work to 'correctgraylist', but it is
425  ** more efficient to avoid adding elements that will be removed.) Only
426  ** TOUCHED1 objects need to be in the list. TOUCHED2 doesn't need to go
427  ** back to a gray list, but then it must become OLD. (That is what
428  ** 'correctgraylist' does when it finds a TOUCHED2 object.)
429  */
genlink(global_State * g,GCObject * o)430  static void genlink (global_State *g, GCObject *o) {
431    lua_assert(isblack(o));
432    if (getage(o) == G_TOUCHED1) {  /* touched in this cycle? */
433      linkobjgclist(o, g->grayagain);  /* link it back in 'grayagain' */
434    }  /* everything else do not need to be linked back */
435    else if (getage(o) == G_TOUCHED2)
436      changeage(o, G_TOUCHED2, G_OLD);  /* advance age */
437  }
438  
439  
440  /*
441  ** Traverse a table with weak values and link it to proper list. During
442  ** propagate phase, keep it in 'grayagain' list, to be revisited in the
443  ** atomic phase. In the atomic phase, if table has any white value,
444  ** put it in 'weak' list, to be cleared.
445  */
traverseweakvalue(global_State * g,Table * h)446  static void traverseweakvalue (global_State *g, Table *h) {
447    Node *n, *limit = gnodelast(h);
448    /* if there is array part, assume it may have white values (it is not
449       worth traversing it now just to check) */
450    int hasclears = (h->alimit > 0);
451    for (n = gnode(h, 0); n < limit; n++) {  /* traverse hash part */
452      if (isempty(gval(n)))  /* entry is empty? */
453        clearkey(n);  /* clear its key */
454      else {
455        lua_assert(!keyisnil(n));
456        markkey(g, n);
457        if (!hasclears && iscleared(g, gcvalueN(gval(n))))  /* a white value? */
458          hasclears = 1;  /* table will have to be cleared */
459      }
460    }
461    if (g->gcstate == GCSatomic && hasclears)
462      linkgclist(h, g->weak);  /* has to be cleared later */
463    else
464      linkgclist(h, g->grayagain);  /* must retraverse it in atomic phase */
465  }
466  
467  
468  /*
469  ** Traverse an ephemeron table and link it to proper list. Returns true
470  ** iff any object was marked during this traversal (which implies that
471  ** convergence has to continue). During propagation phase, keep table
472  ** in 'grayagain' list, to be visited again in the atomic phase. In
473  ** the atomic phase, if table has any white->white entry, it has to
474  ** be revisited during ephemeron convergence (as that key may turn
475  ** black). Otherwise, if it has any white key, table has to be cleared
476  ** (in the atomic phase). In generational mode, some tables
477  ** must be kept in some gray list for post-processing; this is done
478  ** by 'genlink'.
479  */
traverseephemeron(global_State * g,Table * h,int inv)480  static int traverseephemeron (global_State *g, Table *h, int inv) {
481    int marked = 0;  /* true if an object is marked in this traversal */
482    int hasclears = 0;  /* true if table has white keys */
483    int hasww = 0;  /* true if table has entry "white-key -> white-value" */
484    unsigned int i;
485    unsigned int asize = luaH_realasize(h);
486    unsigned int nsize = sizenode(h);
487    /* traverse array part */
488    for (i = 0; i < asize; i++) {
489      if (valiswhite(&h->array[i])) {
490        marked = 1;
491        reallymarkobject(g, gcvalue(&h->array[i]));
492      }
493    }
494    /* traverse hash part; if 'inv', traverse descending
495       (see 'convergeephemerons') */
496    for (i = 0; i < nsize; i++) {
497      Node *n = inv ? gnode(h, nsize - 1 - i) : gnode(h, i);
498      if (isempty(gval(n)))  /* entry is empty? */
499        clearkey(n);  /* clear its key */
500      else if (iscleared(g, gckeyN(n))) {  /* key is not marked (yet)? */
501        hasclears = 1;  /* table must be cleared */
502        if (valiswhite(gval(n)))  /* value not marked yet? */
503          hasww = 1;  /* white-white entry */
504      }
505      else if (valiswhite(gval(n))) {  /* value not marked yet? */
506        marked = 1;
507        reallymarkobject(g, gcvalue(gval(n)));  /* mark it now */
508      }
509    }
510    /* link table into proper list */
511    if (g->gcstate == GCSpropagate)
512      linkgclist(h, g->grayagain);  /* must retraverse it in atomic phase */
513    else if (hasww)  /* table has white->white entries? */
514      linkgclist(h, g->ephemeron);  /* have to propagate again */
515    else if (hasclears)  /* table has white keys? */
516      linkgclist(h, g->allweak);  /* may have to clean white keys */
517    else
518      genlink(g, obj2gco(h));  /* check whether collector still needs to see it */
519    return marked;
520  }
521  
522  
traversestrongtable(global_State * g,Table * h)523  static void traversestrongtable (global_State *g, Table *h) {
524    Node *n, *limit = gnodelast(h);
525    unsigned int i;
526    unsigned int asize = luaH_realasize(h);
527    for (i = 0; i < asize; i++)  /* traverse array part */
528      markvalue(g, &h->array[i]);
529    for (n = gnode(h, 0); n < limit; n++) {  /* traverse hash part */
530      if (isempty(gval(n)))  /* entry is empty? */
531        clearkey(n);  /* clear its key */
532      else {
533        lua_assert(!keyisnil(n));
534        markkey(g, n);
535        markvalue(g, gval(n));
536      }
537    }
538    genlink(g, obj2gco(h));
539  }
540  
541  
traversetable(global_State * g,Table * h)542  static lu_mem traversetable (global_State *g, Table *h) {
543    const char *weakkey, *weakvalue;
544    const TValue *mode = gfasttm(g, h->metatable, TM_MODE);
545    markobjectN(g, h->metatable);
546    if (mode && ttisstring(mode) &&  /* is there a weak mode? */
547        (cast_void(weakkey = strchr(svalue(mode), 'k')),
548         cast_void(weakvalue = strchr(svalue(mode), 'v')),
549         (weakkey || weakvalue))) {  /* is really weak? */
550      if (!weakkey)  /* strong keys? */
551        traverseweakvalue(g, h);
552      else if (!weakvalue)  /* strong values? */
553        traverseephemeron(g, h, 0);
554      else  /* all weak */
555        linkgclist(h, g->allweak);  /* nothing to traverse now */
556    }
557    else  /* not weak */
558      traversestrongtable(g, h);
559    return 1 + h->alimit + 2 * allocsizenode(h);
560  }
561  
562  
traverseudata(global_State * g,Udata * u)563  static int traverseudata (global_State *g, Udata *u) {
564    int i;
565    markobjectN(g, u->metatable);  /* mark its metatable */
566    for (i = 0; i < u->nuvalue; i++)
567      markvalue(g, &u->uv[i].uv);
568    genlink(g, obj2gco(u));
569    return 1 + u->nuvalue;
570  }
571  
572  
573  /*
574  ** Traverse a prototype. (While a prototype is being build, its
575  ** arrays can be larger than needed; the extra slots are filled with
576  ** NULL, so the use of 'markobjectN')
577  */
traverseproto(global_State * g,Proto * f)578  static int traverseproto (global_State *g, Proto *f) {
579    int i;
580    markobjectN(g, f->source);
581    for (i = 0; i < f->sizek; i++)  /* mark literals */
582      markvalue(g, &f->k[i]);
583    for (i = 0; i < f->sizeupvalues; i++)  /* mark upvalue names */
584      markobjectN(g, f->upvalues[i].name);
585    for (i = 0; i < f->sizep; i++)  /* mark nested protos */
586      markobjectN(g, f->p[i]);
587    for (i = 0; i < f->sizelocvars; i++)  /* mark local-variable names */
588      markobjectN(g, f->locvars[i].varname);
589    return 1 + f->sizek + f->sizeupvalues + f->sizep + f->sizelocvars;
590  }
591  
592  
traverseCclosure(global_State * g,CClosure * cl)593  static int traverseCclosure (global_State *g, CClosure *cl) {
594    int i;
595    for (i = 0; i < cl->nupvalues; i++)  /* mark its upvalues */
596      markvalue(g, &cl->upvalue[i]);
597    return 1 + cl->nupvalues;
598  }
599  
600  /*
601  ** Traverse a Lua closure, marking its prototype and its upvalues.
602  ** (Both can be NULL while closure is being created.)
603  */
traverseLclosure(global_State * g,LClosure * cl)604  static int traverseLclosure (global_State *g, LClosure *cl) {
605    int i;
606    markobjectN(g, cl->p);  /* mark its prototype */
607    for (i = 0; i < cl->nupvalues; i++) {  /* visit its upvalues */
608      UpVal *uv = cl->upvals[i];
609      markobjectN(g, uv);  /* mark upvalue */
610    }
611    return 1 + cl->nupvalues;
612  }
613  
614  
615  /*
616  ** Traverse a thread, marking the elements in the stack up to its top
617  ** and cleaning the rest of the stack in the final traversal. That
618  ** ensures that the entire stack have valid (non-dead) objects.
619  ** Threads have no barriers. In gen. mode, old threads must be visited
620  ** at every cycle, because they might point to young objects.  In inc.
621  ** mode, the thread can still be modified before the end of the cycle,
622  ** and therefore it must be visited again in the atomic phase. To ensure
623  ** these visits, threads must return to a gray list if they are not new
624  ** (which can only happen in generational mode) or if the traverse is in
625  ** the propagate phase (which can only happen in incremental mode).
626  */
traversethread(global_State * g,lua_State * th)627  static int traversethread (global_State *g, lua_State *th) {
628    UpVal *uv;
629    StkId o = th->stack.p;
630    if (isold(th) || g->gcstate == GCSpropagate)
631      linkgclist(th, g->grayagain);  /* insert into 'grayagain' list */
632    if (o == NULL)
633      return 1;  /* stack not completely built yet */
634    lua_assert(g->gcstate == GCSatomic ||
635               th->openupval == NULL || isintwups(th));
636    for (; o < th->top.p; o++)  /* mark live elements in the stack */
637      markvalue(g, s2v(o));
638    for (uv = th->openupval; uv != NULL; uv = uv->u.open.next)
639      markobject(g, uv);  /* open upvalues cannot be collected */
640    if (g->gcstate == GCSatomic) {  /* final traversal? */
641      for (; o < th->stack_last.p + EXTRA_STACK; o++)
642        setnilvalue(s2v(o));  /* clear dead stack slice */
643      /* 'remarkupvals' may have removed thread from 'twups' list */
644      if (!isintwups(th) && th->openupval != NULL) {
645        th->twups = g->twups;  /* link it back to the list */
646        g->twups = th;
647      }
648    }
649    else if (!g->gcemergency)
650      luaD_shrinkstack(th); /* do not change stack in emergency cycle */
651    return 1 + stacksize(th);
652  }
653  
654  
655  /*
656  ** traverse one gray object, turning it to black.
657  */
propagatemark(global_State * g)658  static lu_mem propagatemark (global_State *g) {
659    GCObject *o = g->gray;
660    nw2black(o);
661    g->gray = *getgclist(o);  /* remove from 'gray' list */
662    switch (o->tt) {
663      case LUA_VTABLE: return traversetable(g, gco2t(o));
664      case LUA_VUSERDATA: return traverseudata(g, gco2u(o));
665      case LUA_VLCL: return traverseLclosure(g, gco2lcl(o));
666      case LUA_VCCL: return traverseCclosure(g, gco2ccl(o));
667      case LUA_VPROTO: return traverseproto(g, gco2p(o));
668      case LUA_VTHREAD: return traversethread(g, gco2th(o));
669      default: lua_assert(0); return 0;
670    }
671  }
672  
673  
propagateall(global_State * g)674  static lu_mem propagateall (global_State *g) {
675    lu_mem tot = 0;
676    while (g->gray)
677      tot += propagatemark(g);
678    return tot;
679  }
680  
681  
682  /*
683  ** Traverse all ephemeron tables propagating marks from keys to values.
684  ** Repeat until it converges, that is, nothing new is marked. 'dir'
685  ** inverts the direction of the traversals, trying to speed up
686  ** convergence on chains in the same table.
687  **
688  */
convergeephemerons(global_State * g)689  static void convergeephemerons (global_State *g) {
690    int changed;
691    int dir = 0;
692    do {
693      GCObject *w;
694      GCObject *next = g->ephemeron;  /* get ephemeron list */
695      g->ephemeron = NULL;  /* tables may return to this list when traversed */
696      changed = 0;
697      while ((w = next) != NULL) {  /* for each ephemeron table */
698        Table *h = gco2t(w);
699        next = h->gclist;  /* list is rebuilt during loop */
700        nw2black(h);  /* out of the list (for now) */
701        if (traverseephemeron(g, h, dir)) {  /* marked some value? */
702          propagateall(g);  /* propagate changes */
703          changed = 1;  /* will have to revisit all ephemeron tables */
704        }
705      }
706      dir = !dir;  /* invert direction next time */
707    } while (changed);  /* repeat until no more changes */
708  }
709  
710  /* }====================================================== */
711  
712  
713  /*
714  ** {======================================================
715  ** Sweep Functions
716  ** =======================================================
717  */
718  
719  
720  /*
721  ** clear entries with unmarked keys from all weaktables in list 'l'
722  */
clearbykeys(global_State * g,GCObject * l)723  static void clearbykeys (global_State *g, GCObject *l) {
724    for (; l; l = gco2t(l)->gclist) {
725      Table *h = gco2t(l);
726      Node *limit = gnodelast(h);
727      Node *n;
728      for (n = gnode(h, 0); n < limit; n++) {
729        if (iscleared(g, gckeyN(n)))  /* unmarked key? */
730          setempty(gval(n));  /* remove entry */
731        if (isempty(gval(n)))  /* is entry empty? */
732          clearkey(n);  /* clear its key */
733      }
734    }
735  }
736  
737  
738  /*
739  ** clear entries with unmarked values from all weaktables in list 'l' up
740  ** to element 'f'
741  */
clearbyvalues(global_State * g,GCObject * l,GCObject * f)742  static void clearbyvalues (global_State *g, GCObject *l, GCObject *f) {
743    for (; l != f; l = gco2t(l)->gclist) {
744      Table *h = gco2t(l);
745      Node *n, *limit = gnodelast(h);
746      unsigned int i;
747      unsigned int asize = luaH_realasize(h);
748      for (i = 0; i < asize; i++) {
749        TValue *o = &h->array[i];
750        if (iscleared(g, gcvalueN(o)))  /* value was collected? */
751          setempty(o);  /* remove entry */
752      }
753      for (n = gnode(h, 0); n < limit; n++) {
754        if (iscleared(g, gcvalueN(gval(n))))  /* unmarked value? */
755          setempty(gval(n));  /* remove entry */
756        if (isempty(gval(n)))  /* is entry empty? */
757          clearkey(n);  /* clear its key */
758      }
759    }
760  }
761  
762  
freeupval(lua_State * L,UpVal * uv)763  static void freeupval (lua_State *L, UpVal *uv) {
764    if (upisopen(uv))
765      luaF_unlinkupval(uv);
766    luaM_free(L, uv);
767  }
768  
769  
freeobj(lua_State * L,GCObject * o)770  static void freeobj (lua_State *L, GCObject *o) {
771    switch (o->tt) {
772      case LUA_VPROTO:
773        luaF_freeproto(L, gco2p(o));
774        break;
775      case LUA_VUPVAL:
776        freeupval(L, gco2upv(o));
777        break;
778      case LUA_VLCL: {
779        LClosure *cl = gco2lcl(o);
780        luaM_freemem(L, cl, sizeLclosure(cl->nupvalues));
781        break;
782      }
783      case LUA_VCCL: {
784        CClosure *cl = gco2ccl(o);
785        luaM_freemem(L, cl, sizeCclosure(cl->nupvalues));
786        break;
787      }
788      case LUA_VTABLE:
789        luaH_free(L, gco2t(o));
790        break;
791      case LUA_VTHREAD:
792        luaE_freethread(L, gco2th(o));
793        break;
794      case LUA_VUSERDATA: {
795        Udata *u = gco2u(o);
796        luaM_freemem(L, o, sizeudata(u->nuvalue, u->len));
797        break;
798      }
799      case LUA_VSHRSTR: {
800        TString *ts = gco2ts(o);
801        luaS_remove(L, ts);  /* remove it from hash table */
802        luaM_freemem(L, ts, sizelstring(ts->shrlen));
803        break;
804      }
805      case LUA_VLNGSTR: {
806        TString *ts = gco2ts(o);
807        luaM_freemem(L, ts, sizelstring(ts->u.lnglen));
808        break;
809      }
810      default: lua_assert(0);
811    }
812  }
813  
814  
815  /*
816  ** sweep at most 'countin' elements from a list of GCObjects erasing dead
817  ** objects, where a dead object is one marked with the old (non current)
818  ** white; change all non-dead objects back to white, preparing for next
819  ** collection cycle. Return where to continue the traversal or NULL if
820  ** list is finished. ('*countout' gets the number of elements traversed.)
821  */
sweeplist(lua_State * L,GCObject ** p,int countin,int * countout)822  static GCObject **sweeplist (lua_State *L, GCObject **p, int countin,
823                               int *countout) {
824    global_State *g = G(L);
825    int ow = otherwhite(g);
826    int i;
827    int white = luaC_white(g);  /* current white */
828    for (i = 0; *p != NULL && i < countin; i++) {
829      GCObject *curr = *p;
830      int marked = curr->marked;
831      if (isdeadm(ow, marked)) {  /* is 'curr' dead? */
832        *p = curr->next;  /* remove 'curr' from list */
833        freeobj(L, curr);  /* erase 'curr' */
834      }
835      else {  /* change mark to 'white' */
836        curr->marked = cast_byte((marked & ~maskgcbits) | white);
837        p = &curr->next;  /* go to next element */
838      }
839    }
840    if (countout)
841      *countout = i;  /* number of elements traversed */
842    return (*p == NULL) ? NULL : p;
843  }
844  
845  
846  /*
847  ** sweep a list until a live object (or end of list)
848  */
sweeptolive(lua_State * L,GCObject ** p)849  static GCObject **sweeptolive (lua_State *L, GCObject **p) {
850    GCObject **old = p;
851    do {
852      p = sweeplist(L, p, 1, NULL);
853    } while (p == old);
854    return p;
855  }
856  
857  /* }====================================================== */
858  
859  
860  /*
861  ** {======================================================
862  ** Finalization
863  ** =======================================================
864  */
865  
866  /*
867  ** If possible, shrink string table.
868  */
checkSizes(lua_State * L,global_State * g)869  static void checkSizes (lua_State *L, global_State *g) {
870    if (!g->gcemergency) {
871      if (g->strt.nuse < g->strt.size / 4) {  /* string table too big? */
872        l_mem olddebt = g->GCdebt;
873        luaS_resize(L, g->strt.size / 2);
874        g->GCestimate += g->GCdebt - olddebt;  /* correct estimate */
875      }
876    }
877  }
878  
879  
880  /*
881  ** Get the next udata to be finalized from the 'tobefnz' list, and
882  ** link it back into the 'allgc' list.
883  */
udata2finalize(global_State * g)884  static GCObject *udata2finalize (global_State *g) {
885    GCObject *o = g->tobefnz;  /* get first element */
886    lua_assert(tofinalize(o));
887    g->tobefnz = o->next;  /* remove it from 'tobefnz' list */
888    o->next = g->allgc;  /* return it to 'allgc' list */
889    g->allgc = o;
890    resetbit(o->marked, FINALIZEDBIT);  /* object is "normal" again */
891    if (issweepphase(g))
892      makewhite(g, o);  /* "sweep" object */
893    else if (getage(o) == G_OLD1)
894      g->firstold1 = o;  /* it is the first OLD1 object in the list */
895    return o;
896  }
897  
898  
dothecall(lua_State * L,void * ud)899  static void dothecall (lua_State *L, void *ud) {
900    UNUSED(ud);
901    luaD_callnoyield(L, L->top.p - 2, 0);
902  }
903  
904  
GCTM(lua_State * L)905  static void GCTM (lua_State *L) {
906    global_State *g = G(L);
907    const TValue *tm;
908    TValue v;
909    lua_assert(!g->gcemergency);
910    setgcovalue(L, &v, udata2finalize(g));
911    tm = luaT_gettmbyobj(L, &v, TM_GC);
912    if (!notm(tm)) {  /* is there a finalizer? */
913      int status;
914      lu_byte oldah = L->allowhook;
915      int oldgcstp  = g->gcstp;
916      g->gcstp |= GCSTPGC;  /* avoid GC steps */
917      L->allowhook = 0;  /* stop debug hooks during GC metamethod */
918      setobj2s(L, L->top.p++, tm);  /* push finalizer... */
919      setobj2s(L, L->top.p++, &v);  /* ... and its argument */
920      L->ci->callstatus |= CIST_FIN;  /* will run a finalizer */
921      status = luaD_pcall(L, dothecall, NULL, savestack(L, L->top.p - 2), 0);
922      L->ci->callstatus &= ~CIST_FIN;  /* not running a finalizer anymore */
923      L->allowhook = oldah;  /* restore hooks */
924      g->gcstp = oldgcstp;  /* restore state */
925      if (l_unlikely(status != LUA_OK)) {  /* error while running __gc? */
926        luaE_warnerror(L, "__gc");
927        L->top.p--;  /* pops error object */
928      }
929    }
930  }
931  
932  
933  /*
934  ** Call a few finalizers
935  */
runafewfinalizers(lua_State * L,int n)936  static int runafewfinalizers (lua_State *L, int n) {
937    global_State *g = G(L);
938    int i;
939    for (i = 0; i < n && g->tobefnz; i++)
940      GCTM(L);  /* call one finalizer */
941    return i;
942  }
943  
944  
945  /*
946  ** call all pending finalizers
947  */
callallpendingfinalizers(lua_State * L)948  static void callallpendingfinalizers (lua_State *L) {
949    global_State *g = G(L);
950    while (g->tobefnz)
951      GCTM(L);
952  }
953  
954  
955  /*
956  ** find last 'next' field in list 'p' list (to add elements in its end)
957  */
findlast(GCObject ** p)958  static GCObject **findlast (GCObject **p) {
959    while (*p != NULL)
960      p = &(*p)->next;
961    return p;
962  }
963  
964  
965  /*
966  ** Move all unreachable objects (or 'all' objects) that need
967  ** finalization from list 'finobj' to list 'tobefnz' (to be finalized).
968  ** (Note that objects after 'finobjold1' cannot be white, so they
969  ** don't need to be traversed. In incremental mode, 'finobjold1' is NULL,
970  ** so the whole list is traversed.)
971  */
separatetobefnz(global_State * g,int all)972  static void separatetobefnz (global_State *g, int all) {
973    GCObject *curr;
974    GCObject **p = &g->finobj;
975    GCObject **lastnext = findlast(&g->tobefnz);
976    while ((curr = *p) != g->finobjold1) {  /* traverse all finalizable objects */
977      lua_assert(tofinalize(curr));
978      if (!(iswhite(curr) || all))  /* not being collected? */
979        p = &curr->next;  /* don't bother with it */
980      else {
981        if (curr == g->finobjsur)  /* removing 'finobjsur'? */
982          g->finobjsur = curr->next;  /* correct it */
983        *p = curr->next;  /* remove 'curr' from 'finobj' list */
984        curr->next = *lastnext;  /* link at the end of 'tobefnz' list */
985        *lastnext = curr;
986        lastnext = &curr->next;
987      }
988    }
989  }
990  
991  
992  /*
993  ** If pointer 'p' points to 'o', move it to the next element.
994  */
checkpointer(GCObject ** p,GCObject * o)995  static void checkpointer (GCObject **p, GCObject *o) {
996    if (o == *p)
997      *p = o->next;
998  }
999  
1000  
1001  /*
1002  ** Correct pointers to objects inside 'allgc' list when
1003  ** object 'o' is being removed from the list.
1004  */
correctpointers(global_State * g,GCObject * o)1005  static void correctpointers (global_State *g, GCObject *o) {
1006    checkpointer(&g->survival, o);
1007    checkpointer(&g->old1, o);
1008    checkpointer(&g->reallyold, o);
1009    checkpointer(&g->firstold1, o);
1010  }
1011  
1012  
1013  /*
1014  ** if object 'o' has a finalizer, remove it from 'allgc' list (must
1015  ** search the list to find it) and link it in 'finobj' list.
1016  */
luaC_checkfinalizer(lua_State * L,GCObject * o,Table * mt)1017  void luaC_checkfinalizer (lua_State *L, GCObject *o, Table *mt) {
1018    global_State *g = G(L);
1019    if (tofinalize(o) ||                 /* obj. is already marked... */
1020        gfasttm(g, mt, TM_GC) == NULL ||    /* or has no finalizer... */
1021        (g->gcstp & GCSTPCLS))                   /* or closing state? */
1022      return;  /* nothing to be done */
1023    else {  /* move 'o' to 'finobj' list */
1024      GCObject **p;
1025      if (issweepphase(g)) {
1026        makewhite(g, o);  /* "sweep" object 'o' */
1027        if (g->sweepgc == &o->next)  /* should not remove 'sweepgc' object */
1028          g->sweepgc = sweeptolive(L, g->sweepgc);  /* change 'sweepgc' */
1029      }
1030      else
1031        correctpointers(g, o);
1032      /* search for pointer pointing to 'o' */
1033      for (p = &g->allgc; *p != o; p = &(*p)->next) { /* empty */ }
1034      *p = o->next;  /* remove 'o' from 'allgc' list */
1035      o->next = g->finobj;  /* link it in 'finobj' list */
1036      g->finobj = o;
1037      l_setbit(o->marked, FINALIZEDBIT);  /* mark it as such */
1038    }
1039  }
1040  
1041  /* }====================================================== */
1042  
1043  
1044  /*
1045  ** {======================================================
1046  ** Generational Collector
1047  ** =======================================================
1048  */
1049  
1050  
1051  /*
1052  ** Set the "time" to wait before starting a new GC cycle; cycle will
1053  ** start when memory use hits the threshold of ('estimate' * pause /
1054  ** PAUSEADJ). (Division by 'estimate' should be OK: it cannot be zero,
1055  ** because Lua cannot even start with less than PAUSEADJ bytes).
1056  */
setpause(global_State * g)1057  static void setpause (global_State *g) {
1058    l_mem threshold, debt;
1059    int pause = getgcparam(g->gcpause);
1060    l_mem estimate = g->GCestimate / PAUSEADJ;  /* adjust 'estimate' */
1061    lua_assert(estimate > 0);
1062    threshold = (pause < MAX_LMEM / estimate)  /* overflow? */
1063              ? estimate * pause  /* no overflow */
1064              : MAX_LMEM;  /* overflow; truncate to maximum */
1065    debt = gettotalbytes(g) - threshold;
1066    if (debt > 0) debt = 0;
1067    luaE_setdebt(g, debt);
1068  }
1069  
1070  
1071  /*
1072  ** Sweep a list of objects to enter generational mode.  Deletes dead
1073  ** objects and turns the non dead to old. All non-dead threads---which
1074  ** are now old---must be in a gray list. Everything else is not in a
1075  ** gray list. Open upvalues are also kept gray.
1076  */
sweep2old(lua_State * L,GCObject ** p)1077  static void sweep2old (lua_State *L, GCObject **p) {
1078    GCObject *curr;
1079    global_State *g = G(L);
1080    while ((curr = *p) != NULL) {
1081      if (iswhite(curr)) {  /* is 'curr' dead? */
1082        lua_assert(isdead(g, curr));
1083        *p = curr->next;  /* remove 'curr' from list */
1084        freeobj(L, curr);  /* erase 'curr' */
1085      }
1086      else {  /* all surviving objects become old */
1087        setage(curr, G_OLD);
1088        if (curr->tt == LUA_VTHREAD) {  /* threads must be watched */
1089          lua_State *th = gco2th(curr);
1090          linkgclist(th, g->grayagain);  /* insert into 'grayagain' list */
1091        }
1092        else if (curr->tt == LUA_VUPVAL && upisopen(gco2upv(curr)))
1093          set2gray(curr);  /* open upvalues are always gray */
1094        else  /* everything else is black */
1095          nw2black(curr);
1096        p = &curr->next;  /* go to next element */
1097      }
1098    }
1099  }
1100  
1101  
1102  /*
1103  ** Sweep for generational mode. Delete dead objects. (Because the
1104  ** collection is not incremental, there are no "new white" objects
1105  ** during the sweep. So, any white object must be dead.) For
1106  ** non-dead objects, advance their ages and clear the color of
1107  ** new objects. (Old objects keep their colors.)
1108  ** The ages of G_TOUCHED1 and G_TOUCHED2 objects cannot be advanced
1109  ** here, because these old-generation objects are usually not swept
1110  ** here.  They will all be advanced in 'correctgraylist'. That function
1111  ** will also remove objects turned white here from any gray list.
1112  */
sweepgen(lua_State * L,global_State * g,GCObject ** p,GCObject * limit,GCObject ** pfirstold1)1113  static GCObject **sweepgen (lua_State *L, global_State *g, GCObject **p,
1114                              GCObject *limit, GCObject **pfirstold1) {
1115    static const lu_byte nextage[] = {
1116      G_SURVIVAL,  /* from G_NEW */
1117      G_OLD1,      /* from G_SURVIVAL */
1118      G_OLD1,      /* from G_OLD0 */
1119      G_OLD,       /* from G_OLD1 */
1120      G_OLD,       /* from G_OLD (do not change) */
1121      G_TOUCHED1,  /* from G_TOUCHED1 (do not change) */
1122      G_TOUCHED2   /* from G_TOUCHED2 (do not change) */
1123    };
1124    int white = luaC_white(g);
1125    GCObject *curr;
1126    while ((curr = *p) != limit) {
1127      if (iswhite(curr)) {  /* is 'curr' dead? */
1128        lua_assert(!isold(curr) && isdead(g, curr));
1129        *p = curr->next;  /* remove 'curr' from list */
1130        freeobj(L, curr);  /* erase 'curr' */
1131      }
1132      else {  /* correct mark and age */
1133        if (getage(curr) == G_NEW) {  /* new objects go back to white */
1134          int marked = curr->marked & ~maskgcbits;  /* erase GC bits */
1135          curr->marked = cast_byte(marked | G_SURVIVAL | white);
1136        }
1137        else {  /* all other objects will be old, and so keep their color */
1138          setage(curr, nextage[getage(curr)]);
1139          if (getage(curr) == G_OLD1 && *pfirstold1 == NULL)
1140            *pfirstold1 = curr;  /* first OLD1 object in the list */
1141        }
1142        p = &curr->next;  /* go to next element */
1143      }
1144    }
1145    return p;
1146  }
1147  
1148  
1149  /*
1150  ** Traverse a list making all its elements white and clearing their
1151  ** age. In incremental mode, all objects are 'new' all the time,
1152  ** except for fixed strings (which are always old).
1153  */
whitelist(global_State * g,GCObject * p)1154  static void whitelist (global_State *g, GCObject *p) {
1155    int white = luaC_white(g);
1156    for (; p != NULL; p = p->next)
1157      p->marked = cast_byte((p->marked & ~maskgcbits) | white);
1158  }
1159  
1160  
1161  /*
1162  ** Correct a list of gray objects. Return pointer to where rest of the
1163  ** list should be linked.
1164  ** Because this correction is done after sweeping, young objects might
1165  ** be turned white and still be in the list. They are only removed.
1166  ** 'TOUCHED1' objects are advanced to 'TOUCHED2' and remain on the list;
1167  ** Non-white threads also remain on the list; 'TOUCHED2' objects become
1168  ** regular old; they and anything else are removed from the list.
1169  */
correctgraylist(GCObject ** p)1170  static GCObject **correctgraylist (GCObject **p) {
1171    GCObject *curr;
1172    while ((curr = *p) != NULL) {
1173      GCObject **next = getgclist(curr);
1174      if (iswhite(curr))
1175        goto remove;  /* remove all white objects */
1176      else if (getage(curr) == G_TOUCHED1) {  /* touched in this cycle? */
1177        lua_assert(isgray(curr));
1178        nw2black(curr);  /* make it black, for next barrier */
1179        changeage(curr, G_TOUCHED1, G_TOUCHED2);
1180        goto remain;  /* keep it in the list and go to next element */
1181      }
1182      else if (curr->tt == LUA_VTHREAD) {
1183        lua_assert(isgray(curr));
1184        goto remain;  /* keep non-white threads on the list */
1185      }
1186      else {  /* everything else is removed */
1187        lua_assert(isold(curr));  /* young objects should be white here */
1188        if (getage(curr) == G_TOUCHED2)  /* advance from TOUCHED2... */
1189          changeage(curr, G_TOUCHED2, G_OLD);  /* ... to OLD */
1190        nw2black(curr);  /* make object black (to be removed) */
1191        goto remove;
1192      }
1193      remove: *p = *next; continue;
1194      remain: p = next; continue;
1195    }
1196    return p;
1197  }
1198  
1199  
1200  /*
1201  ** Correct all gray lists, coalescing them into 'grayagain'.
1202  */
correctgraylists(global_State * g)1203  static void correctgraylists (global_State *g) {
1204    GCObject **list = correctgraylist(&g->grayagain);
1205    *list = g->weak; g->weak = NULL;
1206    list = correctgraylist(list);
1207    *list = g->allweak; g->allweak = NULL;
1208    list = correctgraylist(list);
1209    *list = g->ephemeron; g->ephemeron = NULL;
1210    correctgraylist(list);
1211  }
1212  
1213  
1214  /*
1215  ** Mark black 'OLD1' objects when starting a new young collection.
1216  ** Gray objects are already in some gray list, and so will be visited
1217  ** in the atomic step.
1218  */
markold(global_State * g,GCObject * from,GCObject * to)1219  static void markold (global_State *g, GCObject *from, GCObject *to) {
1220    GCObject *p;
1221    for (p = from; p != to; p = p->next) {
1222      if (getage(p) == G_OLD1) {
1223        lua_assert(!iswhite(p));
1224        changeage(p, G_OLD1, G_OLD);  /* now they are old */
1225        if (isblack(p))
1226          reallymarkobject(g, p);
1227      }
1228    }
1229  }
1230  
1231  
1232  /*
1233  ** Finish a young-generation collection.
1234  */
finishgencycle(lua_State * L,global_State * g)1235  static void finishgencycle (lua_State *L, global_State *g) {
1236    correctgraylists(g);
1237    checkSizes(L, g);
1238    g->gcstate = GCSpropagate;  /* skip restart */
1239    if (!g->gcemergency)
1240      callallpendingfinalizers(L);
1241  }
1242  
1243  
1244  /*
1245  ** Does a young collection. First, mark 'OLD1' objects. Then does the
1246  ** atomic step. Then, sweep all lists and advance pointers. Finally,
1247  ** finish the collection.
1248  */
youngcollection(lua_State * L,global_State * g)1249  static void youngcollection (lua_State *L, global_State *g) {
1250    GCObject **psurvival;  /* to point to first non-dead survival object */
1251    GCObject *dummy;  /* dummy out parameter to 'sweepgen' */
1252    lua_assert(g->gcstate == GCSpropagate);
1253    if (g->firstold1) {  /* are there regular OLD1 objects? */
1254      markold(g, g->firstold1, g->reallyold);  /* mark them */
1255      g->firstold1 = NULL;  /* no more OLD1 objects (for now) */
1256    }
1257    markold(g, g->finobj, g->finobjrold);
1258    markold(g, g->tobefnz, NULL);
1259    atomic(L);
1260  
1261    /* sweep nursery and get a pointer to its last live element */
1262    g->gcstate = GCSswpallgc;
1263    psurvival = sweepgen(L, g, &g->allgc, g->survival, &g->firstold1);
1264    /* sweep 'survival' */
1265    sweepgen(L, g, psurvival, g->old1, &g->firstold1);
1266    g->reallyold = g->old1;
1267    g->old1 = *psurvival;  /* 'survival' survivals are old now */
1268    g->survival = g->allgc;  /* all news are survivals */
1269  
1270    /* repeat for 'finobj' lists */
1271    dummy = NULL;  /* no 'firstold1' optimization for 'finobj' lists */
1272    psurvival = sweepgen(L, g, &g->finobj, g->finobjsur, &dummy);
1273    /* sweep 'survival' */
1274    sweepgen(L, g, psurvival, g->finobjold1, &dummy);
1275    g->finobjrold = g->finobjold1;
1276    g->finobjold1 = *psurvival;  /* 'survival' survivals are old now */
1277    g->finobjsur = g->finobj;  /* all news are survivals */
1278  
1279    sweepgen(L, g, &g->tobefnz, NULL, &dummy);
1280    finishgencycle(L, g);
1281  }
1282  
1283  
1284  /*
1285  ** Clears all gray lists, sweeps objects, and prepare sublists to enter
1286  ** generational mode. The sweeps remove dead objects and turn all
1287  ** surviving objects to old. Threads go back to 'grayagain'; everything
1288  ** else is turned black (not in any gray list).
1289  */
atomic2gen(lua_State * L,global_State * g)1290  static void atomic2gen (lua_State *L, global_State *g) {
1291    cleargraylists(g);
1292    /* sweep all elements making them old */
1293    g->gcstate = GCSswpallgc;
1294    sweep2old(L, &g->allgc);
1295    /* everything alive now is old */
1296    g->reallyold = g->old1 = g->survival = g->allgc;
1297    g->firstold1 = NULL;  /* there are no OLD1 objects anywhere */
1298  
1299    /* repeat for 'finobj' lists */
1300    sweep2old(L, &g->finobj);
1301    g->finobjrold = g->finobjold1 = g->finobjsur = g->finobj;
1302  
1303    sweep2old(L, &g->tobefnz);
1304  
1305    g->gckind = KGC_GEN;
1306    g->lastatomic = 0;
1307    g->GCestimate = gettotalbytes(g);  /* base for memory control */
1308    finishgencycle(L, g);
1309  }
1310  
1311  
1312  /*
1313  ** Set debt for the next minor collection, which will happen when
1314  ** memory grows 'genminormul'%.
1315  */
setminordebt(global_State * g)1316  static void setminordebt (global_State *g) {
1317    luaE_setdebt(g, -(cast(l_mem, (gettotalbytes(g) / 100)) * g->genminormul));
1318  }
1319  
1320  
1321  /*
1322  ** Enter generational mode. Must go until the end of an atomic cycle
1323  ** to ensure that all objects are correctly marked and weak tables
1324  ** are cleared. Then, turn all objects into old and finishes the
1325  ** collection.
1326  */
entergen(lua_State * L,global_State * g)1327  static lu_mem entergen (lua_State *L, global_State *g) {
1328    lu_mem numobjs;
1329    luaC_runtilstate(L, bitmask(GCSpause));  /* prepare to start a new cycle */
1330    luaC_runtilstate(L, bitmask(GCSpropagate));  /* start new cycle */
1331    numobjs = atomic(L);  /* propagates all and then do the atomic stuff */
1332    atomic2gen(L, g);
1333    setminordebt(g);  /* set debt assuming next cycle will be minor */
1334    return numobjs;
1335  }
1336  
1337  
1338  /*
1339  ** Enter incremental mode. Turn all objects white, make all
1340  ** intermediate lists point to NULL (to avoid invalid pointers),
1341  ** and go to the pause state.
1342  */
enterinc(global_State * g)1343  static void enterinc (global_State *g) {
1344    whitelist(g, g->allgc);
1345    g->reallyold = g->old1 = g->survival = NULL;
1346    whitelist(g, g->finobj);
1347    whitelist(g, g->tobefnz);
1348    g->finobjrold = g->finobjold1 = g->finobjsur = NULL;
1349    g->gcstate = GCSpause;
1350    g->gckind = KGC_INC;
1351    g->lastatomic = 0;
1352  }
1353  
1354  
1355  /*
1356  ** Change collector mode to 'newmode'.
1357  */
luaC_changemode(lua_State * L,int newmode)1358  void luaC_changemode (lua_State *L, int newmode) {
1359    global_State *g = G(L);
1360    if (newmode != g->gckind) {
1361      if (newmode == KGC_GEN)  /* entering generational mode? */
1362        entergen(L, g);
1363      else
1364        enterinc(g);  /* entering incremental mode */
1365    }
1366    g->lastatomic = 0;
1367  }
1368  
1369  
1370  /*
1371  ** Does a full collection in generational mode.
1372  */
fullgen(lua_State * L,global_State * g)1373  static lu_mem fullgen (lua_State *L, global_State *g) {
1374    enterinc(g);
1375    return entergen(L, g);
1376  }
1377  
1378  
1379  /*
1380  ** Does a major collection after last collection was a "bad collection".
1381  **
1382  ** When the program is building a big structure, it allocates lots of
1383  ** memory but generates very little garbage. In those scenarios,
1384  ** the generational mode just wastes time doing small collections, and
1385  ** major collections are frequently what we call a "bad collection", a
1386  ** collection that frees too few objects. To avoid the cost of switching
1387  ** between generational mode and the incremental mode needed for full
1388  ** (major) collections, the collector tries to stay in incremental mode
1389  ** after a bad collection, and to switch back to generational mode only
1390  ** after a "good" collection (one that traverses less than 9/8 objects
1391  ** of the previous one).
1392  ** The collector must choose whether to stay in incremental mode or to
1393  ** switch back to generational mode before sweeping. At this point, it
1394  ** does not know the real memory in use, so it cannot use memory to
1395  ** decide whether to return to generational mode. Instead, it uses the
1396  ** number of objects traversed (returned by 'atomic') as a proxy. The
1397  ** field 'g->lastatomic' keeps this count from the last collection.
1398  ** ('g->lastatomic != 0' also means that the last collection was bad.)
1399  */
stepgenfull(lua_State * L,global_State * g)1400  static void stepgenfull (lua_State *L, global_State *g) {
1401    lu_mem newatomic;  /* count of traversed objects */
1402    lu_mem lastatomic = g->lastatomic;  /* count from last collection */
1403    if (g->gckind == KGC_GEN)  /* still in generational mode? */
1404      enterinc(g);  /* enter incremental mode */
1405    luaC_runtilstate(L, bitmask(GCSpropagate));  /* start new cycle */
1406    newatomic = atomic(L);  /* mark everybody */
1407    if (newatomic < lastatomic + (lastatomic >> 3)) {  /* good collection? */
1408      atomic2gen(L, g);  /* return to generational mode */
1409      setminordebt(g);
1410    }
1411    else {  /* another bad collection; stay in incremental mode */
1412      g->GCestimate = gettotalbytes(g);  /* first estimate */;
1413      entersweep(L);
1414      luaC_runtilstate(L, bitmask(GCSpause));  /* finish collection */
1415      setpause(g);
1416      g->lastatomic = newatomic;
1417    }
1418  }
1419  
1420  
1421  /*
1422  ** Does a generational "step".
1423  ** Usually, this means doing a minor collection and setting the debt to
1424  ** make another collection when memory grows 'genminormul'% larger.
1425  **
1426  ** However, there are exceptions.  If memory grows 'genmajormul'%
1427  ** larger than it was at the end of the last major collection (kept
1428  ** in 'g->GCestimate'), the function does a major collection. At the
1429  ** end, it checks whether the major collection was able to free a
1430  ** decent amount of memory (at least half the growth in memory since
1431  ** previous major collection). If so, the collector keeps its state,
1432  ** and the next collection will probably be minor again. Otherwise,
1433  ** we have what we call a "bad collection". In that case, set the field
1434  ** 'g->lastatomic' to signal that fact, so that the next collection will
1435  ** go to 'stepgenfull'.
1436  **
1437  ** 'GCdebt <= 0' means an explicit call to GC step with "size" zero;
1438  ** in that case, do a minor collection.
1439  */
genstep(lua_State * L,global_State * g)1440  static void genstep (lua_State *L, global_State *g) {
1441    if (g->lastatomic != 0)  /* last collection was a bad one? */
1442      stepgenfull(L, g);  /* do a full step */
1443    else {
1444      lu_mem majorbase = g->GCestimate;  /* memory after last major collection */
1445      lu_mem majorinc = (majorbase / 100) * getgcparam(g->genmajormul);
1446      if (g->GCdebt > 0 && gettotalbytes(g) > majorbase + majorinc) {
1447        lu_mem numobjs = fullgen(L, g);  /* do a major collection */
1448        if (gettotalbytes(g) < majorbase + (majorinc / 2)) {
1449          /* collected at least half of memory growth since last major
1450             collection; keep doing minor collections. */
1451          lua_assert(g->lastatomic == 0);
1452        }
1453        else {  /* bad collection */
1454          g->lastatomic = numobjs;  /* signal that last collection was bad */
1455          setpause(g);  /* do a long wait for next (major) collection */
1456        }
1457      }
1458      else {  /* regular case; do a minor collection */
1459        youngcollection(L, g);
1460        setminordebt(g);
1461        g->GCestimate = majorbase;  /* preserve base value */
1462      }
1463    }
1464    lua_assert(isdecGCmodegen(g));
1465  }
1466  
1467  /* }====================================================== */
1468  
1469  
1470  /*
1471  ** {======================================================
1472  ** GC control
1473  ** =======================================================
1474  */
1475  
1476  
1477  /*
1478  ** Enter first sweep phase.
1479  ** The call to 'sweeptolive' makes the pointer point to an object
1480  ** inside the list (instead of to the header), so that the real sweep do
1481  ** not need to skip objects created between "now" and the start of the
1482  ** real sweep.
1483  */
entersweep(lua_State * L)1484  static void entersweep (lua_State *L) {
1485    global_State *g = G(L);
1486    g->gcstate = GCSswpallgc;
1487    lua_assert(g->sweepgc == NULL);
1488    g->sweepgc = sweeptolive(L, &g->allgc);
1489  }
1490  
1491  
1492  /*
1493  ** Delete all objects in list 'p' until (but not including) object
1494  ** 'limit'.
1495  */
deletelist(lua_State * L,GCObject * p,GCObject * limit)1496  static void deletelist (lua_State *L, GCObject *p, GCObject *limit) {
1497    while (p != limit) {
1498      GCObject *next = p->next;
1499      freeobj(L, p);
1500      p = next;
1501    }
1502  }
1503  
1504  
1505  /*
1506  ** Call all finalizers of the objects in the given Lua state, and
1507  ** then free all objects, except for the main thread.
1508  */
luaC_freeallobjects(lua_State * L)1509  void luaC_freeallobjects (lua_State *L) {
1510    global_State *g = G(L);
1511    g->gcstp = GCSTPCLS;  /* no extra finalizers after here */
1512    luaC_changemode(L, KGC_INC);
1513    separatetobefnz(g, 1);  /* separate all objects with finalizers */
1514    lua_assert(g->finobj == NULL);
1515    callallpendingfinalizers(L);
1516    deletelist(L, g->allgc, obj2gco(g->mainthread));
1517    lua_assert(g->finobj == NULL);  /* no new finalizers */
1518    deletelist(L, g->fixedgc, NULL);  /* collect fixed objects */
1519    lua_assert(g->strt.nuse == 0);
1520  }
1521  
1522  
atomic(lua_State * L)1523  static lu_mem atomic (lua_State *L) {
1524    global_State *g = G(L);
1525    lu_mem work = 0;
1526    GCObject *origweak, *origall;
1527    GCObject *grayagain = g->grayagain;  /* save original list */
1528    g->grayagain = NULL;
1529    lua_assert(g->ephemeron == NULL && g->weak == NULL);
1530    lua_assert(!iswhite(g->mainthread));
1531    g->gcstate = GCSatomic;
1532    markobject(g, L);  /* mark running thread */
1533    /* registry and global metatables may be changed by API */
1534    markvalue(g, &g->l_registry);
1535    markmt(g);  /* mark global metatables */
1536    work += propagateall(g);  /* empties 'gray' list */
1537    /* remark occasional upvalues of (maybe) dead threads */
1538    work += remarkupvals(g);
1539    work += propagateall(g);  /* propagate changes */
1540    g->gray = grayagain;
1541    work += propagateall(g);  /* traverse 'grayagain' list */
1542    convergeephemerons(g);
1543    /* at this point, all strongly accessible objects are marked. */
1544    /* Clear values from weak tables, before checking finalizers */
1545    clearbyvalues(g, g->weak, NULL);
1546    clearbyvalues(g, g->allweak, NULL);
1547    origweak = g->weak; origall = g->allweak;
1548    separatetobefnz(g, 0);  /* separate objects to be finalized */
1549    work += markbeingfnz(g);  /* mark objects that will be finalized */
1550    work += propagateall(g);  /* remark, to propagate 'resurrection' */
1551    convergeephemerons(g);
1552    /* at this point, all resurrected objects are marked. */
1553    /* remove dead objects from weak tables */
1554    clearbykeys(g, g->ephemeron);  /* clear keys from all ephemeron tables */
1555    clearbykeys(g, g->allweak);  /* clear keys from all 'allweak' tables */
1556    /* clear values from resurrected weak tables */
1557    clearbyvalues(g, g->weak, origweak);
1558    clearbyvalues(g, g->allweak, origall);
1559    luaS_clearcache(g);
1560    g->currentwhite = cast_byte(otherwhite(g));  /* flip current white */
1561    lua_assert(g->gray == NULL);
1562    return work;  /* estimate of slots marked by 'atomic' */
1563  }
1564  
1565  
sweepstep(lua_State * L,global_State * g,int nextstate,GCObject ** nextlist)1566  static int sweepstep (lua_State *L, global_State *g,
1567                        int nextstate, GCObject **nextlist) {
1568    if (g->sweepgc) {
1569      l_mem olddebt = g->GCdebt;
1570      int count;
1571      g->sweepgc = sweeplist(L, g->sweepgc, GCSWEEPMAX, &count);
1572      g->GCestimate += g->GCdebt - olddebt;  /* update estimate */
1573      return count;
1574    }
1575    else {  /* enter next state */
1576      g->gcstate = nextstate;
1577      g->sweepgc = nextlist;
1578      return 0;  /* no work done */
1579    }
1580  }
1581  
1582  
singlestep(lua_State * L)1583  static lu_mem singlestep (lua_State *L) {
1584    global_State *g = G(L);
1585    lu_mem work;
1586    lua_assert(!g->gcstopem);  /* collector is not reentrant */
1587    g->gcstopem = 1;  /* no emergency collections while collecting */
1588    switch (g->gcstate) {
1589      case GCSpause: {
1590        restartcollection(g);
1591        g->gcstate = GCSpropagate;
1592        work = 1;
1593        break;
1594      }
1595      case GCSpropagate: {
1596        if (g->gray == NULL) {  /* no more gray objects? */
1597          g->gcstate = GCSenteratomic;  /* finish propagate phase */
1598          work = 0;
1599        }
1600        else
1601          work = propagatemark(g);  /* traverse one gray object */
1602        break;
1603      }
1604      case GCSenteratomic: {
1605        work = atomic(L);  /* work is what was traversed by 'atomic' */
1606        entersweep(L);
1607        g->GCestimate = gettotalbytes(g);  /* first estimate */;
1608        break;
1609      }
1610      case GCSswpallgc: {  /* sweep "regular" objects */
1611        work = sweepstep(L, g, GCSswpfinobj, &g->finobj);
1612        break;
1613      }
1614      case GCSswpfinobj: {  /* sweep objects with finalizers */
1615        work = sweepstep(L, g, GCSswptobefnz, &g->tobefnz);
1616        break;
1617      }
1618      case GCSswptobefnz: {  /* sweep objects to be finalized */
1619        work = sweepstep(L, g, GCSswpend, NULL);
1620        break;
1621      }
1622      case GCSswpend: {  /* finish sweeps */
1623        checkSizes(L, g);
1624        g->gcstate = GCScallfin;
1625        work = 0;
1626        break;
1627      }
1628      case GCScallfin: {  /* call remaining finalizers */
1629        if (g->tobefnz && !g->gcemergency) {
1630          g->gcstopem = 0;  /* ok collections during finalizers */
1631          work = runafewfinalizers(L, GCFINMAX) * GCFINALIZECOST;
1632        }
1633        else {  /* emergency mode or no more finalizers */
1634          g->gcstate = GCSpause;  /* finish collection */
1635          work = 0;
1636        }
1637        break;
1638      }
1639      default: lua_assert(0); return 0;
1640    }
1641    g->gcstopem = 0;
1642    return work;
1643  }
1644  
1645  
1646  /*
1647  ** advances the garbage collector until it reaches a state allowed
1648  ** by 'statemask'
1649  */
luaC_runtilstate(lua_State * L,int statesmask)1650  void luaC_runtilstate (lua_State *L, int statesmask) {
1651    global_State *g = G(L);
1652    while (!testbit(statesmask, g->gcstate))
1653      singlestep(L);
1654  }
1655  
1656  
1657  
1658  /*
1659  ** Performs a basic incremental step. The debt and step size are
1660  ** converted from bytes to "units of work"; then the function loops
1661  ** running single steps until adding that many units of work or
1662  ** finishing a cycle (pause state). Finally, it sets the debt that
1663  ** controls when next step will be performed.
1664  */
incstep(lua_State * L,global_State * g)1665  static void incstep (lua_State *L, global_State *g) {
1666    int stepmul = (getgcparam(g->gcstepmul) | 1);  /* avoid division by 0 */
1667    l_mem debt = (g->GCdebt / WORK2MEM) * stepmul;
1668    l_mem stepsize = (g->gcstepsize <= log2maxs(l_mem))
1669                   ? ((cast(l_mem, 1) << g->gcstepsize) / WORK2MEM) * stepmul
1670                   : MAX_LMEM;  /* overflow; keep maximum value */
1671    do {  /* repeat until pause or enough "credit" (negative debt) */
1672      lu_mem work = singlestep(L);  /* perform one single step */
1673      debt -= work;
1674    } while (debt > -stepsize && g->gcstate != GCSpause);
1675    if (g->gcstate == GCSpause)
1676      setpause(g);  /* pause until next cycle */
1677    else {
1678      debt = (debt / stepmul) * WORK2MEM;  /* convert 'work units' to bytes */
1679      luaE_setdebt(g, debt);
1680    }
1681  }
1682  
1683  /*
1684  ** Performs a basic GC step if collector is running. (If collector is
1685  ** not running, set a reasonable debt to avoid it being called at
1686  ** every single check.)
1687  */
luaC_step(lua_State * L)1688  void luaC_step (lua_State *L) {
1689    global_State *g = G(L);
1690    if (!gcrunning(g))  /* not running? */
1691      luaE_setdebt(g, -2000);
1692    else {
1693      if(isdecGCmodegen(g))
1694        genstep(L, g);
1695      else
1696        incstep(L, g);
1697    }
1698  }
1699  
1700  
1701  /*
1702  ** Perform a full collection in incremental mode.
1703  ** Before running the collection, check 'keepinvariant'; if it is true,
1704  ** there may be some objects marked as black, so the collector has
1705  ** to sweep all objects to turn them back to white (as white has not
1706  ** changed, nothing will be collected).
1707  */
fullinc(lua_State * L,global_State * g)1708  static void fullinc (lua_State *L, global_State *g) {
1709    if (keepinvariant(g))  /* black objects? */
1710      entersweep(L); /* sweep everything to turn them back to white */
1711    /* finish any pending sweep phase to start a new cycle */
1712    luaC_runtilstate(L, bitmask(GCSpause));
1713    luaC_runtilstate(L, bitmask(GCScallfin));  /* run up to finalizers */
1714    /* estimate must be correct after a full GC cycle */
1715    lua_assert(g->GCestimate == gettotalbytes(g));
1716    luaC_runtilstate(L, bitmask(GCSpause));  /* finish collection */
1717    setpause(g);
1718  }
1719  
1720  
1721  /*
1722  ** Performs a full GC cycle; if 'isemergency', set a flag to avoid
1723  ** some operations which could change the interpreter state in some
1724  ** unexpected ways (running finalizers and shrinking some structures).
1725  */
luaC_fullgc(lua_State * L,int isemergency)1726  void luaC_fullgc (lua_State *L, int isemergency) {
1727    global_State *g = G(L);
1728    lua_assert(!g->gcemergency);
1729    g->gcemergency = isemergency;  /* set flag */
1730    if (g->gckind == KGC_INC)
1731      fullinc(L, g);
1732    else
1733      fullgen(L, g);
1734    g->gcemergency = 0;
1735  }
1736  
1737  /* }====================================================== */
1738  
1739  
1740