1 /*******************************************************************
2 * This file is part of the Emulex Linux Device Driver for *
3 * Fibre Channel Host Bus Adapters. *
4 * Copyright (C) 2017-2025 Broadcom. All Rights Reserved. The term *
5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. *
6 * Copyright (C) 2004-2016 Emulex. All rights reserved. *
7 * EMULEX and SLI are trademarks of Emulex. *
8 * www.broadcom.com *
9 * Portions Copyright (C) 2004-2005 Christoph Hellwig *
10 * *
11 * This program is free software; you can redistribute it and/or *
12 * modify it under the terms of version 2 of the GNU General *
13 * Public License as published by the Free Software Foundation. *
14 * This program is distributed in the hope that it will be useful. *
15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19 * TO BE LEGALLY INVALID. See the GNU General Public License for *
20 * more details, a copy of which can be found in the file COPYING *
21 * included with this package. *
22 *******************************************************************/
23
24 #include <linux/blkdev.h>
25 #include <linux/pci.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/lockdep.h>
30
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_cmnd.h>
33 #include <scsi/scsi_device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport_fc.h>
36 #include <scsi/fc/fc_fs.h>
37 #include <linux/crash_dump.h>
38 #ifdef CONFIG_X86
39 #include <asm/set_memory.h>
40 #endif
41
42 #include "lpfc_hw4.h"
43 #include "lpfc_hw.h"
44 #include "lpfc_sli.h"
45 #include "lpfc_sli4.h"
46 #include "lpfc_nl.h"
47 #include "lpfc_disc.h"
48 #include "lpfc.h"
49 #include "lpfc_scsi.h"
50 #include "lpfc_nvme.h"
51 #include "lpfc_crtn.h"
52 #include "lpfc_logmsg.h"
53 #include "lpfc_compat.h"
54 #include "lpfc_debugfs.h"
55 #include "lpfc_vport.h"
56 #include "lpfc_version.h"
57
58 /* There are only four IOCB completion types. */
59 typedef enum _lpfc_iocb_type {
60 LPFC_UNKNOWN_IOCB,
61 LPFC_UNSOL_IOCB,
62 LPFC_SOL_IOCB,
63 LPFC_ABORT_IOCB
64 } lpfc_iocb_type;
65
66
67 /* Provide function prototypes local to this module. */
68 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *,
69 uint32_t);
70 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *,
71 uint8_t *, uint32_t *);
72 static struct lpfc_iocbq *
73 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba,
74 struct lpfc_iocbq *rspiocbq);
75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *,
76 struct hbq_dmabuf *);
77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
78 struct hbq_dmabuf *dmabuf);
79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba,
80 struct lpfc_queue *cq, struct lpfc_cqe *cqe);
81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *,
82 int);
83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba,
84 struct lpfc_queue *eq,
85 struct lpfc_eqe *eqe,
86 enum lpfc_poll_mode poll_mode);
87 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba);
88 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba);
89 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q);
90 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba,
91 struct lpfc_queue *cq,
92 struct lpfc_cqe *cqe);
93 static uint16_t lpfc_wqe_bpl2sgl(struct lpfc_hba *phba,
94 struct lpfc_iocbq *pwqeq,
95 struct lpfc_sglq *sglq);
96
97 union lpfc_wqe128 lpfc_iread_cmd_template;
98 union lpfc_wqe128 lpfc_iwrite_cmd_template;
99 union lpfc_wqe128 lpfc_icmnd_cmd_template;
100
101 /* Setup WQE templates for IOs */
lpfc_wqe_cmd_template(void)102 void lpfc_wqe_cmd_template(void)
103 {
104 union lpfc_wqe128 *wqe;
105
106 /* IREAD template */
107 wqe = &lpfc_iread_cmd_template;
108 memset(wqe, 0, sizeof(union lpfc_wqe128));
109
110 /* Word 0, 1, 2 - BDE is variable */
111
112 /* Word 3 - cmd_buff_len, payload_offset_len is zero */
113
114 /* Word 4 - total_xfer_len is variable */
115
116 /* Word 5 - is zero */
117
118 /* Word 6 - ctxt_tag, xri_tag is variable */
119
120 /* Word 7 */
121 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE);
122 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK);
123 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3);
124 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI);
125
126 /* Word 8 - abort_tag is variable */
127
128 /* Word 9 - reqtag is variable */
129
130 /* Word 10 - dbde, wqes is variable */
131 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0);
132 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
133 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4);
134 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0);
135 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1);
136
137 /* Word 11 - pbde is variable */
138 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN);
139 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
140 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0);
141
142 /* Word 12 - is zero */
143
144 /* Word 13, 14, 15 - PBDE is variable */
145
146 /* IWRITE template */
147 wqe = &lpfc_iwrite_cmd_template;
148 memset(wqe, 0, sizeof(union lpfc_wqe128));
149
150 /* Word 0, 1, 2 - BDE is variable */
151
152 /* Word 3 - cmd_buff_len, payload_offset_len is zero */
153
154 /* Word 4 - total_xfer_len is variable */
155
156 /* Word 5 - initial_xfer_len is variable */
157
158 /* Word 6 - ctxt_tag, xri_tag is variable */
159
160 /* Word 7 */
161 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE);
162 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK);
163 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3);
164 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI);
165
166 /* Word 8 - abort_tag is variable */
167
168 /* Word 9 - reqtag is variable */
169
170 /* Word 10 - dbde, wqes is variable */
171 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0);
172 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
173 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4);
174 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
175 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
176
177 /* Word 11 - pbde is variable */
178 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT);
179 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
180 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0);
181
182 /* Word 12 - is zero */
183
184 /* Word 13, 14, 15 - PBDE is variable */
185
186 /* ICMND template */
187 wqe = &lpfc_icmnd_cmd_template;
188 memset(wqe, 0, sizeof(union lpfc_wqe128));
189
190 /* Word 0, 1, 2 - BDE is variable */
191
192 /* Word 3 - payload_offset_len is variable */
193
194 /* Word 4, 5 - is zero */
195
196 /* Word 6 - ctxt_tag, xri_tag is variable */
197
198 /* Word 7 */
199 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE);
200 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
201 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3);
202 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI);
203
204 /* Word 8 - abort_tag is variable */
205
206 /* Word 9 - reqtag is variable */
207
208 /* Word 10 - dbde, wqes is variable */
209 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
210 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE);
211 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE);
212 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0);
213 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1);
214
215 /* Word 11 */
216 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN);
217 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
218 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0);
219
220 /* Word 12, 13, 14, 15 - is zero */
221 }
222
223 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN)
224 /**
225 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function
226 * @srcp: Source memory pointer.
227 * @destp: Destination memory pointer.
228 * @cnt: Number of words required to be copied.
229 * Must be a multiple of sizeof(uint64_t)
230 *
231 * This function is used for copying data between driver memory
232 * and the SLI WQ. This function also changes the endianness
233 * of each word if native endianness is different from SLI
234 * endianness. This function can be called with or without
235 * lock.
236 **/
237 static void
lpfc_sli4_pcimem_bcopy(void * srcp,void * destp,uint32_t cnt)238 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
239 {
240 uint64_t *src = srcp;
241 uint64_t *dest = destp;
242 int i;
243
244 for (i = 0; i < (int)cnt; i += sizeof(uint64_t))
245 *dest++ = *src++;
246 }
247 #else
248 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c)
249 #endif
250
251 /**
252 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue
253 * @q: The Work Queue to operate on.
254 * @wqe: The work Queue Entry to put on the Work queue.
255 *
256 * This routine will copy the contents of @wqe to the next available entry on
257 * the @q. This function will then ring the Work Queue Doorbell to signal the
258 * HBA to start processing the Work Queue Entry. This function returns 0 if
259 * successful. If no entries are available on @q then this function will return
260 * -ENOMEM.
261 * The caller is expected to hold the hbalock when calling this routine.
262 **/
263 static int
lpfc_sli4_wq_put(struct lpfc_queue * q,union lpfc_wqe128 * wqe)264 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe)
265 {
266 union lpfc_wqe *temp_wqe;
267 struct lpfc_register doorbell;
268 uint32_t host_index;
269 uint32_t idx;
270 uint32_t i = 0;
271 uint8_t *tmp;
272 u32 if_type;
273
274 /* sanity check on queue memory */
275 if (unlikely(!q))
276 return -ENOMEM;
277
278 temp_wqe = lpfc_sli4_qe(q, q->host_index);
279
280 /* If the host has not yet processed the next entry then we are done */
281 idx = ((q->host_index + 1) % q->entry_count);
282 if (idx == q->hba_index) {
283 q->WQ_overflow++;
284 return -EBUSY;
285 }
286 q->WQ_posted++;
287 /* set consumption flag every once in a while */
288 if (!((q->host_index + 1) % q->notify_interval))
289 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1);
290 else
291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0);
292 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED)
293 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id);
294 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size);
295 if (q->dpp_enable && q->phba->cfg_enable_dpp) {
296 /* write to DPP aperture taking advatage of Combined Writes */
297 tmp = (uint8_t *)temp_wqe;
298 #ifdef __raw_writeq
299 for (i = 0; i < q->entry_size; i += sizeof(uint64_t))
300 __raw_writeq(*((uint64_t *)(tmp + i)),
301 q->dpp_regaddr + i);
302 #else
303 for (i = 0; i < q->entry_size; i += sizeof(uint32_t))
304 __raw_writel(*((uint32_t *)(tmp + i)),
305 q->dpp_regaddr + i);
306 #endif
307 }
308 /* ensure WQE bcopy and DPP flushed before doorbell write */
309 wmb();
310
311 /* Update the host index before invoking device */
312 host_index = q->host_index;
313
314 q->host_index = idx;
315
316 /* Ring Doorbell */
317 doorbell.word0 = 0;
318 if (q->db_format == LPFC_DB_LIST_FORMAT) {
319 if (q->dpp_enable && q->phba->cfg_enable_dpp) {
320 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1);
321 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1);
322 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell,
323 q->dpp_id);
324 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell,
325 q->queue_id);
326 } else {
327 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1);
328 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id);
329
330 /* Leave bits <23:16> clear for if_type 6 dpp */
331 if_type = bf_get(lpfc_sli_intf_if_type,
332 &q->phba->sli4_hba.sli_intf);
333 if (if_type != LPFC_SLI_INTF_IF_TYPE_6)
334 bf_set(lpfc_wq_db_list_fm_index, &doorbell,
335 host_index);
336 }
337 } else if (q->db_format == LPFC_DB_RING_FORMAT) {
338 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1);
339 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id);
340 } else {
341 return -EINVAL;
342 }
343 writel(doorbell.word0, q->db_regaddr);
344
345 return 0;
346 }
347
348 /**
349 * lpfc_sli4_wq_release - Updates internal hba index for WQ
350 * @q: The Work Queue to operate on.
351 * @index: The index to advance the hba index to.
352 *
353 * This routine will update the HBA index of a queue to reflect consumption of
354 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed
355 * an entry the host calls this function to update the queue's internal
356 * pointers.
357 **/
358 static void
lpfc_sli4_wq_release(struct lpfc_queue * q,uint32_t index)359 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index)
360 {
361 /* sanity check on queue memory */
362 if (unlikely(!q))
363 return;
364
365 q->hba_index = index;
366 }
367
368 /**
369 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue
370 * @q: The Mailbox Queue to operate on.
371 * @mqe: The Mailbox Queue Entry to put on the Work queue.
372 *
373 * This routine will copy the contents of @mqe to the next available entry on
374 * the @q. This function will then ring the Work Queue Doorbell to signal the
375 * HBA to start processing the Work Queue Entry. This function returns 0 if
376 * successful. If no entries are available on @q then this function will return
377 * -ENOMEM.
378 * The caller is expected to hold the hbalock when calling this routine.
379 **/
380 static uint32_t
lpfc_sli4_mq_put(struct lpfc_queue * q,struct lpfc_mqe * mqe)381 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe)
382 {
383 struct lpfc_mqe *temp_mqe;
384 struct lpfc_register doorbell;
385
386 /* sanity check on queue memory */
387 if (unlikely(!q))
388 return -ENOMEM;
389 temp_mqe = lpfc_sli4_qe(q, q->host_index);
390
391 /* If the host has not yet processed the next entry then we are done */
392 if (((q->host_index + 1) % q->entry_count) == q->hba_index)
393 return -ENOMEM;
394 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size);
395 /* Save off the mailbox pointer for completion */
396 q->phba->mbox = (MAILBOX_t *)temp_mqe;
397
398 /* Update the host index before invoking device */
399 q->host_index = ((q->host_index + 1) % q->entry_count);
400
401 /* Ring Doorbell */
402 doorbell.word0 = 0;
403 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1);
404 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id);
405 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr);
406 return 0;
407 }
408
409 /**
410 * lpfc_sli4_mq_release - Updates internal hba index for MQ
411 * @q: The Mailbox Queue to operate on.
412 *
413 * This routine will update the HBA index of a queue to reflect consumption of
414 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed
415 * an entry the host calls this function to update the queue's internal
416 * pointers. This routine returns the number of entries that were consumed by
417 * the HBA.
418 **/
419 static uint32_t
lpfc_sli4_mq_release(struct lpfc_queue * q)420 lpfc_sli4_mq_release(struct lpfc_queue *q)
421 {
422 /* sanity check on queue memory */
423 if (unlikely(!q))
424 return 0;
425
426 /* Clear the mailbox pointer for completion */
427 q->phba->mbox = NULL;
428 q->hba_index = ((q->hba_index + 1) % q->entry_count);
429 return 1;
430 }
431
432 /**
433 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ
434 * @q: The Event Queue to get the first valid EQE from
435 *
436 * This routine will get the first valid Event Queue Entry from @q, update
437 * the queue's internal hba index, and return the EQE. If no valid EQEs are in
438 * the Queue (no more work to do), or the Queue is full of EQEs that have been
439 * processed, but not popped back to the HBA then this routine will return NULL.
440 **/
441 static struct lpfc_eqe *
lpfc_sli4_eq_get(struct lpfc_queue * q)442 lpfc_sli4_eq_get(struct lpfc_queue *q)
443 {
444 struct lpfc_eqe *eqe;
445
446 /* sanity check on queue memory */
447 if (unlikely(!q))
448 return NULL;
449 eqe = lpfc_sli4_qe(q, q->host_index);
450
451 /* If the next EQE is not valid then we are done */
452 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid)
453 return NULL;
454
455 /*
456 * insert barrier for instruction interlock : data from the hardware
457 * must have the valid bit checked before it can be copied and acted
458 * upon. Speculative instructions were allowing a bcopy at the start
459 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately
460 * after our return, to copy data before the valid bit check above
461 * was done. As such, some of the copied data was stale. The barrier
462 * ensures the check is before any data is copied.
463 */
464 mb();
465 return eqe;
466 }
467
468 /**
469 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ
470 * @q: The Event Queue to disable interrupts
471 *
472 **/
473 void
lpfc_sli4_eq_clr_intr(struct lpfc_queue * q)474 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q)
475 {
476 struct lpfc_register doorbell;
477
478 doorbell.word0 = 0;
479 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
480 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
481 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
482 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
483 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
484 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
485 }
486
487 /**
488 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ
489 * @q: The Event Queue to disable interrupts
490 *
491 **/
492 void
lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue * q)493 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q)
494 {
495 struct lpfc_register doorbell;
496
497 doorbell.word0 = 0;
498 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
499 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
500 }
501
502 /**
503 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state
504 * @phba: adapter with EQ
505 * @q: The Event Queue that the host has completed processing for.
506 * @count: Number of elements that have been consumed
507 * @arm: Indicates whether the host wants to arms this CQ.
508 *
509 * This routine will notify the HBA, by ringing the doorbell, that count
510 * number of EQEs have been processed. The @arm parameter indicates whether
511 * the queue should be rearmed when ringing the doorbell.
512 **/
513 void
lpfc_sli4_write_eq_db(struct lpfc_hba * phba,struct lpfc_queue * q,uint32_t count,bool arm)514 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
515 uint32_t count, bool arm)
516 {
517 struct lpfc_register doorbell;
518
519 /* sanity check on queue memory */
520 if (unlikely(!q || (count == 0 && !arm)))
521 return;
522
523 /* ring doorbell for number popped */
524 doorbell.word0 = 0;
525 if (arm) {
526 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
527 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
528 }
529 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
530 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
531 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
532 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
533 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
534 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
535 /* PCI read to flush PCI pipeline on re-arming for INTx mode */
536 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
537 readl(q->phba->sli4_hba.EQDBregaddr);
538 }
539
540 /**
541 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state
542 * @phba: adapter with EQ
543 * @q: The Event Queue that the host has completed processing for.
544 * @count: Number of elements that have been consumed
545 * @arm: Indicates whether the host wants to arms this CQ.
546 *
547 * This routine will notify the HBA, by ringing the doorbell, that count
548 * number of EQEs have been processed. The @arm parameter indicates whether
549 * the queue should be rearmed when ringing the doorbell.
550 **/
551 void
lpfc_sli4_if6_write_eq_db(struct lpfc_hba * phba,struct lpfc_queue * q,uint32_t count,bool arm)552 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
553 uint32_t count, bool arm)
554 {
555 struct lpfc_register doorbell;
556
557 /* sanity check on queue memory */
558 if (unlikely(!q || (count == 0 && !arm)))
559 return;
560
561 /* ring doorbell for number popped */
562 doorbell.word0 = 0;
563 if (arm)
564 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1);
565 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count);
566 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
567 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
568 /* PCI read to flush PCI pipeline on re-arming for INTx mode */
569 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
570 readl(q->phba->sli4_hba.EQDBregaddr);
571 }
572
573 static void
__lpfc_sli4_consume_eqe(struct lpfc_hba * phba,struct lpfc_queue * eq,struct lpfc_eqe * eqe)574 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
575 struct lpfc_eqe *eqe)
576 {
577 if (!phba->sli4_hba.pc_sli4_params.eqav)
578 bf_set_le32(lpfc_eqe_valid, eqe, 0);
579
580 eq->host_index = ((eq->host_index + 1) % eq->entry_count);
581
582 /* if the index wrapped around, toggle the valid bit */
583 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index)
584 eq->qe_valid = (eq->qe_valid) ? 0 : 1;
585 }
586
587 static void
lpfc_sli4_eqcq_flush(struct lpfc_hba * phba,struct lpfc_queue * eq)588 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq)
589 {
590 struct lpfc_eqe *eqe = NULL;
591 u32 eq_count = 0, cq_count = 0;
592 struct lpfc_cqe *cqe = NULL;
593 struct lpfc_queue *cq = NULL, *childq = NULL;
594 int cqid = 0;
595
596 /* walk all the EQ entries and drop on the floor */
597 eqe = lpfc_sli4_eq_get(eq);
598 while (eqe) {
599 /* Get the reference to the corresponding CQ */
600 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
601 cq = NULL;
602
603 list_for_each_entry(childq, &eq->child_list, list) {
604 if (childq->queue_id == cqid) {
605 cq = childq;
606 break;
607 }
608 }
609 /* If CQ is valid, iterate through it and drop all the CQEs */
610 if (cq) {
611 cqe = lpfc_sli4_cq_get(cq);
612 while (cqe) {
613 __lpfc_sli4_consume_cqe(phba, cq, cqe);
614 cq_count++;
615 cqe = lpfc_sli4_cq_get(cq);
616 }
617 /* Clear and re-arm the CQ */
618 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count,
619 LPFC_QUEUE_REARM);
620 cq_count = 0;
621 }
622 __lpfc_sli4_consume_eqe(phba, eq, eqe);
623 eq_count++;
624 eqe = lpfc_sli4_eq_get(eq);
625 }
626
627 /* Clear and re-arm the EQ */
628 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM);
629 }
630
631 static int
lpfc_sli4_process_eq(struct lpfc_hba * phba,struct lpfc_queue * eq,u8 rearm,enum lpfc_poll_mode poll_mode)632 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq,
633 u8 rearm, enum lpfc_poll_mode poll_mode)
634 {
635 struct lpfc_eqe *eqe;
636 int count = 0, consumed = 0;
637
638 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0)
639 goto rearm_and_exit;
640
641 eqe = lpfc_sli4_eq_get(eq);
642 while (eqe) {
643 lpfc_sli4_hba_handle_eqe(phba, eq, eqe, poll_mode);
644 __lpfc_sli4_consume_eqe(phba, eq, eqe);
645
646 consumed++;
647 if (!(++count % eq->max_proc_limit))
648 break;
649
650 if (!(count % eq->notify_interval)) {
651 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed,
652 LPFC_QUEUE_NOARM);
653 consumed = 0;
654 }
655
656 eqe = lpfc_sli4_eq_get(eq);
657 }
658 eq->EQ_processed += count;
659
660 /* Track the max number of EQEs processed in 1 intr */
661 if (count > eq->EQ_max_eqe)
662 eq->EQ_max_eqe = count;
663
664 xchg(&eq->queue_claimed, 0);
665
666 rearm_and_exit:
667 /* Always clear the EQ. */
668 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm);
669
670 return count;
671 }
672
673 /**
674 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ
675 * @q: The Completion Queue to get the first valid CQE from
676 *
677 * This routine will get the first valid Completion Queue Entry from @q, update
678 * the queue's internal hba index, and return the CQE. If no valid CQEs are in
679 * the Queue (no more work to do), or the Queue is full of CQEs that have been
680 * processed, but not popped back to the HBA then this routine will return NULL.
681 **/
682 static struct lpfc_cqe *
lpfc_sli4_cq_get(struct lpfc_queue * q)683 lpfc_sli4_cq_get(struct lpfc_queue *q)
684 {
685 struct lpfc_cqe *cqe;
686
687 /* sanity check on queue memory */
688 if (unlikely(!q))
689 return NULL;
690 cqe = lpfc_sli4_qe(q, q->host_index);
691
692 /* If the next CQE is not valid then we are done */
693 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid)
694 return NULL;
695
696 /*
697 * insert barrier for instruction interlock : data from the hardware
698 * must have the valid bit checked before it can be copied and acted
699 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative
700 * instructions allowing action on content before valid bit checked,
701 * add barrier here as well. May not be needed as "content" is a
702 * single 32-bit entity here (vs multi word structure for cq's).
703 */
704 mb();
705 return cqe;
706 }
707
708 static void
__lpfc_sli4_consume_cqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_cqe * cqe)709 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
710 struct lpfc_cqe *cqe)
711 {
712 if (!phba->sli4_hba.pc_sli4_params.cqav)
713 bf_set_le32(lpfc_cqe_valid, cqe, 0);
714
715 cq->host_index = ((cq->host_index + 1) % cq->entry_count);
716
717 /* if the index wrapped around, toggle the valid bit */
718 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index)
719 cq->qe_valid = (cq->qe_valid) ? 0 : 1;
720 }
721
722 /**
723 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state.
724 * @phba: the adapter with the CQ
725 * @q: The Completion Queue that the host has completed processing for.
726 * @count: the number of elements that were consumed
727 * @arm: Indicates whether the host wants to arms this CQ.
728 *
729 * This routine will notify the HBA, by ringing the doorbell, that the
730 * CQEs have been processed. The @arm parameter specifies whether the
731 * queue should be rearmed when ringing the doorbell.
732 **/
733 void
lpfc_sli4_write_cq_db(struct lpfc_hba * phba,struct lpfc_queue * q,uint32_t count,bool arm)734 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
735 uint32_t count, bool arm)
736 {
737 struct lpfc_register doorbell;
738
739 /* sanity check on queue memory */
740 if (unlikely(!q || (count == 0 && !arm)))
741 return;
742
743 /* ring doorbell for number popped */
744 doorbell.word0 = 0;
745 if (arm)
746 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
747 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
748 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION);
749 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell,
750 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT));
751 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id);
752 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
753 }
754
755 /**
756 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state.
757 * @phba: the adapter with the CQ
758 * @q: The Completion Queue that the host has completed processing for.
759 * @count: the number of elements that were consumed
760 * @arm: Indicates whether the host wants to arms this CQ.
761 *
762 * This routine will notify the HBA, by ringing the doorbell, that the
763 * CQEs have been processed. The @arm parameter specifies whether the
764 * queue should be rearmed when ringing the doorbell.
765 **/
766 void
lpfc_sli4_if6_write_cq_db(struct lpfc_hba * phba,struct lpfc_queue * q,uint32_t count,bool arm)767 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
768 uint32_t count, bool arm)
769 {
770 struct lpfc_register doorbell;
771
772 /* sanity check on queue memory */
773 if (unlikely(!q || (count == 0 && !arm)))
774 return;
775
776 /* ring doorbell for number popped */
777 doorbell.word0 = 0;
778 if (arm)
779 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1);
780 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count);
781 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id);
782 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
783 }
784
785 /*
786 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue
787 *
788 * This routine will copy the contents of @wqe to the next available entry on
789 * the @q. This function will then ring the Receive Queue Doorbell to signal the
790 * HBA to start processing the Receive Queue Entry. This function returns the
791 * index that the rqe was copied to if successful. If no entries are available
792 * on @q then this function will return -ENOMEM.
793 * The caller is expected to hold the hbalock when calling this routine.
794 **/
795 int
lpfc_sli4_rq_put(struct lpfc_queue * hq,struct lpfc_queue * dq,struct lpfc_rqe * hrqe,struct lpfc_rqe * drqe)796 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq,
797 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe)
798 {
799 struct lpfc_rqe *temp_hrqe;
800 struct lpfc_rqe *temp_drqe;
801 struct lpfc_register doorbell;
802 int hq_put_index;
803 int dq_put_index;
804
805 /* sanity check on queue memory */
806 if (unlikely(!hq) || unlikely(!dq))
807 return -ENOMEM;
808 hq_put_index = hq->host_index;
809 dq_put_index = dq->host_index;
810 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index);
811 temp_drqe = lpfc_sli4_qe(dq, dq_put_index);
812
813 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ)
814 return -EINVAL;
815 if (hq_put_index != dq_put_index)
816 return -EINVAL;
817 /* If the host has not yet processed the next entry then we are done */
818 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index)
819 return -EBUSY;
820 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size);
821 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size);
822
823 /* Update the host index to point to the next slot */
824 hq->host_index = ((hq_put_index + 1) % hq->entry_count);
825 dq->host_index = ((dq_put_index + 1) % dq->entry_count);
826 hq->RQ_buf_posted++;
827
828 /* Ring The Header Receive Queue Doorbell */
829 if (!(hq->host_index % hq->notify_interval)) {
830 doorbell.word0 = 0;
831 if (hq->db_format == LPFC_DB_RING_FORMAT) {
832 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell,
833 hq->notify_interval);
834 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id);
835 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) {
836 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell,
837 hq->notify_interval);
838 bf_set(lpfc_rq_db_list_fm_index, &doorbell,
839 hq->host_index);
840 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id);
841 } else {
842 return -EINVAL;
843 }
844 writel(doorbell.word0, hq->db_regaddr);
845 }
846 return hq_put_index;
847 }
848
849 /*
850 * lpfc_sli4_rq_release - Updates internal hba index for RQ
851 *
852 * This routine will update the HBA index of a queue to reflect consumption of
853 * one Receive Queue Entry by the HBA. When the HBA indicates that it has
854 * consumed an entry the host calls this function to update the queue's
855 * internal pointers. This routine returns the number of entries that were
856 * consumed by the HBA.
857 **/
858 static uint32_t
lpfc_sli4_rq_release(struct lpfc_queue * hq,struct lpfc_queue * dq)859 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq)
860 {
861 /* sanity check on queue memory */
862 if (unlikely(!hq) || unlikely(!dq))
863 return 0;
864
865 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ))
866 return 0;
867 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count);
868 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count);
869 return 1;
870 }
871
872 /**
873 * lpfc_cmd_iocb - Get next command iocb entry in the ring
874 * @phba: Pointer to HBA context object.
875 * @pring: Pointer to driver SLI ring object.
876 *
877 * This function returns pointer to next command iocb entry
878 * in the command ring. The caller must hold hbalock to prevent
879 * other threads consume the next command iocb.
880 * SLI-2/SLI-3 provide different sized iocbs.
881 **/
882 static inline IOCB_t *
lpfc_cmd_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)883 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
884 {
885 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) +
886 pring->sli.sli3.cmdidx * phba->iocb_cmd_size);
887 }
888
889 /**
890 * lpfc_resp_iocb - Get next response iocb entry in the ring
891 * @phba: Pointer to HBA context object.
892 * @pring: Pointer to driver SLI ring object.
893 *
894 * This function returns pointer to next response iocb entry
895 * in the response ring. The caller must hold hbalock to make sure
896 * that no other thread consume the next response iocb.
897 * SLI-2/SLI-3 provide different sized iocbs.
898 **/
899 static inline IOCB_t *
lpfc_resp_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)900 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
901 {
902 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) +
903 pring->sli.sli3.rspidx * phba->iocb_rsp_size);
904 }
905
906 /**
907 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
908 * @phba: Pointer to HBA context object.
909 *
910 * This function is called with hbalock held. This function
911 * allocates a new driver iocb object from the iocb pool. If the
912 * allocation is successful, it returns pointer to the newly
913 * allocated iocb object else it returns NULL.
914 **/
915 struct lpfc_iocbq *
__lpfc_sli_get_iocbq(struct lpfc_hba * phba)916 __lpfc_sli_get_iocbq(struct lpfc_hba *phba)
917 {
918 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list;
919 struct lpfc_iocbq * iocbq = NULL;
920
921 lockdep_assert_held(&phba->hbalock);
922
923 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list);
924 if (iocbq)
925 phba->iocb_cnt++;
926 if (phba->iocb_cnt > phba->iocb_max)
927 phba->iocb_max = phba->iocb_cnt;
928 return iocbq;
929 }
930
931 /**
932 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI.
933 * @phba: Pointer to HBA context object.
934 * @xritag: XRI value.
935 *
936 * This function clears the sglq pointer from the array of active
937 * sglq's. The xritag that is passed in is used to index into the
938 * array. Before the xritag can be used it needs to be adjusted
939 * by subtracting the xribase.
940 *
941 * Returns sglq ponter = success, NULL = Failure.
942 **/
943 struct lpfc_sglq *
__lpfc_clear_active_sglq(struct lpfc_hba * phba,uint16_t xritag)944 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
945 {
946 struct lpfc_sglq *sglq;
947
948 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
949 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL;
950 return sglq;
951 }
952
953 /**
954 * __lpfc_get_active_sglq - Get the active sglq for this XRI.
955 * @phba: Pointer to HBA context object.
956 * @xritag: XRI value.
957 *
958 * This function returns the sglq pointer from the array of active
959 * sglq's. The xritag that is passed in is used to index into the
960 * array. Before the xritag can be used it needs to be adjusted
961 * by subtracting the xribase.
962 *
963 * Returns sglq ponter = success, NULL = Failure.
964 **/
965 struct lpfc_sglq *
__lpfc_get_active_sglq(struct lpfc_hba * phba,uint16_t xritag)966 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
967 {
968 struct lpfc_sglq *sglq;
969
970 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
971 return sglq;
972 }
973
974 /**
975 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap.
976 * @phba: Pointer to HBA context object.
977 * @xritag: xri used in this exchange.
978 * @rrq: The RRQ to be cleared.
979 *
980 **/
981 void
lpfc_clr_rrq_active(struct lpfc_hba * phba,uint16_t xritag,struct lpfc_node_rrq * rrq)982 lpfc_clr_rrq_active(struct lpfc_hba *phba,
983 uint16_t xritag,
984 struct lpfc_node_rrq *rrq)
985 {
986 struct lpfc_nodelist *ndlp = NULL;
987
988 /* Lookup did to verify if did is still active on this vport */
989 if (rrq->vport)
990 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID);
991
992 if (!ndlp)
993 goto out;
994
995 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) {
996 rrq->send_rrq = 0;
997 rrq->xritag = 0;
998 rrq->rrq_stop_time = 0;
999 }
1000 out:
1001 mempool_free(rrq, phba->rrq_pool);
1002 }
1003
1004 /**
1005 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV.
1006 * @phba: Pointer to HBA context object.
1007 *
1008 * This function is called with hbalock held. This function
1009 * Checks if stop_time (ratov from setting rrq active) has
1010 * been reached, if it has and the send_rrq flag is set then
1011 * it will call lpfc_send_rrq. If the send_rrq flag is not set
1012 * then it will just call the routine to clear the rrq and
1013 * free the rrq resource.
1014 * The timer is set to the next rrq that is going to expire before
1015 * leaving the routine.
1016 *
1017 **/
1018 void
lpfc_handle_rrq_active(struct lpfc_hba * phba)1019 lpfc_handle_rrq_active(struct lpfc_hba *phba)
1020 {
1021 struct lpfc_node_rrq *rrq;
1022 struct lpfc_node_rrq *nextrrq;
1023 unsigned long next_time;
1024 unsigned long iflags;
1025 LIST_HEAD(send_rrq);
1026
1027 clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag);
1028 next_time = jiffies + secs_to_jiffies(phba->fc_ratov + 1);
1029 spin_lock_irqsave(&phba->rrq_list_lock, iflags);
1030 list_for_each_entry_safe(rrq, nextrrq,
1031 &phba->active_rrq_list, list) {
1032 if (time_after(jiffies, rrq->rrq_stop_time))
1033 list_move(&rrq->list, &send_rrq);
1034 else if (time_before(rrq->rrq_stop_time, next_time))
1035 next_time = rrq->rrq_stop_time;
1036 }
1037 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags);
1038 if ((!list_empty(&phba->active_rrq_list)) &&
1039 (!test_bit(FC_UNLOADING, &phba->pport->load_flag)))
1040 mod_timer(&phba->rrq_tmr, next_time);
1041 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) {
1042 list_del(&rrq->list);
1043 if (!rrq->send_rrq) {
1044 /* this call will free the rrq */
1045 lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
1046 } else if (lpfc_send_rrq(phba, rrq)) {
1047 /* if we send the rrq then the completion handler
1048 * will clear the bit in the xribitmap.
1049 */
1050 lpfc_clr_rrq_active(phba, rrq->xritag,
1051 rrq);
1052 }
1053 }
1054 }
1055
1056 /**
1057 * lpfc_get_active_rrq - Get the active RRQ for this exchange.
1058 * @vport: Pointer to vport context object.
1059 * @xri: The xri used in the exchange.
1060 * @did: The targets DID for this exchange.
1061 *
1062 * returns NULL = rrq not found in the phba->active_rrq_list.
1063 * rrq = rrq for this xri and target.
1064 **/
1065 struct lpfc_node_rrq *
lpfc_get_active_rrq(struct lpfc_vport * vport,uint16_t xri,uint32_t did)1066 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did)
1067 {
1068 struct lpfc_hba *phba = vport->phba;
1069 struct lpfc_node_rrq *rrq;
1070 struct lpfc_node_rrq *nextrrq;
1071 unsigned long iflags;
1072
1073 if (phba->sli_rev != LPFC_SLI_REV4)
1074 return NULL;
1075 spin_lock_irqsave(&phba->rrq_list_lock, iflags);
1076 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
1077 if (rrq->vport == vport && rrq->xritag == xri &&
1078 rrq->nlp_DID == did){
1079 list_del(&rrq->list);
1080 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags);
1081 return rrq;
1082 }
1083 }
1084 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags);
1085 return NULL;
1086 }
1087
1088 /**
1089 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport.
1090 * @vport: Pointer to vport context object.
1091 * @ndlp: Pointer to the lpfc_node_list structure.
1092 * If ndlp is NULL Remove all active RRQs for this vport from the
1093 * phba->active_rrq_list and clear the rrq.
1094 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp.
1095 **/
1096 void
lpfc_cleanup_vports_rrqs(struct lpfc_vport * vport,struct lpfc_nodelist * ndlp)1097 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
1098
1099 {
1100 struct lpfc_hba *phba = vport->phba;
1101 struct lpfc_node_rrq *rrq;
1102 struct lpfc_node_rrq *nextrrq;
1103 unsigned long iflags;
1104 LIST_HEAD(rrq_list);
1105
1106 if (phba->sli_rev != LPFC_SLI_REV4)
1107 return;
1108 if (!ndlp) {
1109 lpfc_sli4_vport_delete_els_xri_aborted(vport);
1110 lpfc_sli4_vport_delete_fcp_xri_aborted(vport);
1111 }
1112 spin_lock_irqsave(&phba->rrq_list_lock, iflags);
1113 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
1114 if (rrq->vport != vport)
1115 continue;
1116
1117 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID))
1118 list_move(&rrq->list, &rrq_list);
1119
1120 }
1121 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags);
1122
1123 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) {
1124 list_del(&rrq->list);
1125 lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
1126 }
1127 }
1128
1129 /**
1130 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap.
1131 * @phba: Pointer to HBA context object.
1132 * @ndlp: Targets nodelist pointer for this exchange.
1133 * @xritag: the xri in the bitmap to test.
1134 *
1135 * This function returns:
1136 * 0 = rrq not active for this xri
1137 * 1 = rrq is valid for this xri.
1138 **/
1139 int
lpfc_test_rrq_active(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,uint16_t xritag)1140 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1141 uint16_t xritag)
1142 {
1143 if (!ndlp)
1144 return 0;
1145 if (!ndlp->active_rrqs_xri_bitmap)
1146 return 0;
1147 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1148 return 1;
1149 else
1150 return 0;
1151 }
1152
1153 /**
1154 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap.
1155 * @phba: Pointer to HBA context object.
1156 * @ndlp: nodelist pointer for this target.
1157 * @xritag: xri used in this exchange.
1158 * @rxid: Remote Exchange ID.
1159 * @send_rrq: Flag used to determine if we should send rrq els cmd.
1160 *
1161 * This function takes the hbalock.
1162 * The active bit is always set in the active rrq xri_bitmap even
1163 * if there is no slot avaiable for the other rrq information.
1164 *
1165 * returns 0 rrq actived for this xri
1166 * < 0 No memory or invalid ndlp.
1167 **/
1168 int
lpfc_set_rrq_active(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,uint16_t xritag,uint16_t rxid,uint16_t send_rrq)1169 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1170 uint16_t xritag, uint16_t rxid, uint16_t send_rrq)
1171 {
1172 unsigned long iflags;
1173 struct lpfc_node_rrq *rrq;
1174 int empty;
1175
1176 if (!ndlp)
1177 return -EINVAL;
1178
1179 if (!phba->cfg_enable_rrq)
1180 return -EINVAL;
1181
1182 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) {
1183 clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag);
1184 goto outnl;
1185 }
1186
1187 spin_lock_irqsave(&phba->hbalock, iflags);
1188 if (ndlp->vport && test_bit(FC_UNLOADING, &ndlp->vport->load_flag))
1189 goto out;
1190
1191 if (!ndlp->active_rrqs_xri_bitmap)
1192 goto out;
1193
1194 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1195 goto out;
1196
1197 spin_unlock_irqrestore(&phba->hbalock, iflags);
1198 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC);
1199 if (!rrq) {
1200 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1201 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x"
1202 " DID:0x%x Send:%d\n",
1203 xritag, rxid, ndlp->nlp_DID, send_rrq);
1204 return -EINVAL;
1205 }
1206 if (phba->cfg_enable_rrq == 1)
1207 rrq->send_rrq = send_rrq;
1208 else
1209 rrq->send_rrq = 0;
1210 rrq->xritag = xritag;
1211 rrq->rrq_stop_time = jiffies + secs_to_jiffies(phba->fc_ratov + 1);
1212 rrq->nlp_DID = ndlp->nlp_DID;
1213 rrq->vport = ndlp->vport;
1214 rrq->rxid = rxid;
1215
1216 spin_lock_irqsave(&phba->rrq_list_lock, iflags);
1217 empty = list_empty(&phba->active_rrq_list);
1218 list_add_tail(&rrq->list, &phba->active_rrq_list);
1219 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags);
1220 set_bit(HBA_RRQ_ACTIVE, &phba->hba_flag);
1221 if (empty)
1222 lpfc_worker_wake_up(phba);
1223 return 0;
1224 out:
1225 spin_unlock_irqrestore(&phba->hbalock, iflags);
1226 outnl:
1227 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1228 "2921 Can't set rrq active xri:0x%x rxid:0x%x"
1229 " DID:0x%x Send:%d\n",
1230 xritag, rxid, ndlp->nlp_DID, send_rrq);
1231 return -EINVAL;
1232 }
1233
1234 /**
1235 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool
1236 * @phba: Pointer to HBA context object.
1237 * @piocbq: Pointer to the iocbq.
1238 *
1239 * The driver calls this function with either the nvme ls ring lock
1240 * or the fc els ring lock held depending on the iocb usage. This function
1241 * gets a new driver sglq object from the sglq list. If the list is not empty
1242 * then it is successful, it returns pointer to the newly allocated sglq
1243 * object else it returns NULL.
1244 **/
1245 static struct lpfc_sglq *
__lpfc_sli_get_els_sglq(struct lpfc_hba * phba,struct lpfc_iocbq * piocbq)1246 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1247 {
1248 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list;
1249 struct lpfc_sglq *sglq = NULL;
1250 struct lpfc_sglq *start_sglq = NULL;
1251 struct lpfc_io_buf *lpfc_cmd;
1252 struct lpfc_nodelist *ndlp;
1253 int found = 0;
1254 u8 cmnd;
1255
1256 cmnd = get_job_cmnd(phba, piocbq);
1257
1258 if (piocbq->cmd_flag & LPFC_IO_FCP) {
1259 lpfc_cmd = piocbq->io_buf;
1260 ndlp = lpfc_cmd->rdata->pnode;
1261 } else if ((cmnd == CMD_GEN_REQUEST64_CR) &&
1262 !(piocbq->cmd_flag & LPFC_IO_LIBDFC)) {
1263 ndlp = piocbq->ndlp;
1264 } else if (piocbq->cmd_flag & LPFC_IO_LIBDFC) {
1265 if (piocbq->cmd_flag & LPFC_IO_LOOPBACK)
1266 ndlp = NULL;
1267 else
1268 ndlp = piocbq->ndlp;
1269 } else {
1270 ndlp = piocbq->ndlp;
1271 }
1272
1273 spin_lock(&phba->sli4_hba.sgl_list_lock);
1274 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list);
1275 start_sglq = sglq;
1276 while (!found) {
1277 if (!sglq)
1278 break;
1279 if (ndlp && ndlp->active_rrqs_xri_bitmap &&
1280 test_bit(sglq->sli4_lxritag,
1281 ndlp->active_rrqs_xri_bitmap)) {
1282 /* This xri has an rrq outstanding for this DID.
1283 * put it back in the list and get another xri.
1284 */
1285 list_add_tail(&sglq->list, lpfc_els_sgl_list);
1286 sglq = NULL;
1287 list_remove_head(lpfc_els_sgl_list, sglq,
1288 struct lpfc_sglq, list);
1289 if (sglq == start_sglq) {
1290 list_add_tail(&sglq->list, lpfc_els_sgl_list);
1291 sglq = NULL;
1292 break;
1293 } else
1294 continue;
1295 }
1296 sglq->ndlp = ndlp;
1297 found = 1;
1298 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1299 sglq->state = SGL_ALLOCATED;
1300 }
1301 spin_unlock(&phba->sli4_hba.sgl_list_lock);
1302 return sglq;
1303 }
1304
1305 /**
1306 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool
1307 * @phba: Pointer to HBA context object.
1308 * @piocbq: Pointer to the iocbq.
1309 *
1310 * This function is called with the sgl_list lock held. This function
1311 * gets a new driver sglq object from the sglq list. If the
1312 * list is not empty then it is successful, it returns pointer to the newly
1313 * allocated sglq object else it returns NULL.
1314 **/
1315 struct lpfc_sglq *
__lpfc_sli_get_nvmet_sglq(struct lpfc_hba * phba,struct lpfc_iocbq * piocbq)1316 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1317 {
1318 struct list_head *lpfc_nvmet_sgl_list;
1319 struct lpfc_sglq *sglq = NULL;
1320
1321 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list;
1322
1323 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock);
1324
1325 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list);
1326 if (!sglq)
1327 return NULL;
1328 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1329 sglq->state = SGL_ALLOCATED;
1330 return sglq;
1331 }
1332
1333 /**
1334 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
1335 * @phba: Pointer to HBA context object.
1336 *
1337 * This function is called with no lock held. This function
1338 * allocates a new driver iocb object from the iocb pool. If the
1339 * allocation is successful, it returns pointer to the newly
1340 * allocated iocb object else it returns NULL.
1341 **/
1342 struct lpfc_iocbq *
lpfc_sli_get_iocbq(struct lpfc_hba * phba)1343 lpfc_sli_get_iocbq(struct lpfc_hba *phba)
1344 {
1345 struct lpfc_iocbq * iocbq = NULL;
1346 unsigned long iflags;
1347
1348 spin_lock_irqsave(&phba->hbalock, iflags);
1349 iocbq = __lpfc_sli_get_iocbq(phba);
1350 spin_unlock_irqrestore(&phba->hbalock, iflags);
1351 return iocbq;
1352 }
1353
1354 /**
1355 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool
1356 * @phba: Pointer to HBA context object.
1357 * @iocbq: Pointer to driver iocb object.
1358 *
1359 * This function is called to release the driver iocb object
1360 * to the iocb pool. The iotag in the iocb object
1361 * does not change for each use of the iocb object. This function
1362 * clears all other fields of the iocb object when it is freed.
1363 * The sqlq structure that holds the xritag and phys and virtual
1364 * mappings for the scatter gather list is retrieved from the
1365 * active array of sglq. The get of the sglq pointer also clears
1366 * the entry in the array. If the status of the IO indiactes that
1367 * this IO was aborted then the sglq entry it put on the
1368 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the
1369 * IO has good status or fails for any other reason then the sglq
1370 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is
1371 * asserted held in the code path calling this routine.
1372 **/
1373 static void
__lpfc_sli_release_iocbq_s4(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)1374 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1375 {
1376 struct lpfc_sglq *sglq;
1377 unsigned long iflag = 0;
1378 struct lpfc_sli_ring *pring;
1379
1380 if (iocbq->sli4_xritag == NO_XRI)
1381 sglq = NULL;
1382 else
1383 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag);
1384
1385
1386 if (sglq) {
1387 if (iocbq->cmd_flag & LPFC_IO_NVMET) {
1388 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1389 iflag);
1390 sglq->state = SGL_FREED;
1391 sglq->ndlp = NULL;
1392 list_add_tail(&sglq->list,
1393 &phba->sli4_hba.lpfc_nvmet_sgl_list);
1394 spin_unlock_irqrestore(
1395 &phba->sli4_hba.sgl_list_lock, iflag);
1396 goto out;
1397 }
1398
1399 if ((iocbq->cmd_flag & LPFC_EXCHANGE_BUSY) &&
1400 (!(unlikely(pci_channel_offline(phba->pcidev)))) &&
1401 sglq->state != SGL_XRI_ABORTED) {
1402 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1403 iflag);
1404
1405 /* Check if we can get a reference on ndlp */
1406 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp))
1407 sglq->ndlp = NULL;
1408
1409 list_add(&sglq->list,
1410 &phba->sli4_hba.lpfc_abts_els_sgl_list);
1411 spin_unlock_irqrestore(
1412 &phba->sli4_hba.sgl_list_lock, iflag);
1413 } else {
1414 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1415 iflag);
1416 sglq->state = SGL_FREED;
1417 sglq->ndlp = NULL;
1418 list_add_tail(&sglq->list,
1419 &phba->sli4_hba.lpfc_els_sgl_list);
1420 spin_unlock_irqrestore(
1421 &phba->sli4_hba.sgl_list_lock, iflag);
1422 pring = lpfc_phba_elsring(phba);
1423 /* Check if TXQ queue needs to be serviced */
1424 if (pring && (!list_empty(&pring->txq)))
1425 lpfc_worker_wake_up(phba);
1426 }
1427 }
1428
1429 out:
1430 /*
1431 * Clean all volatile data fields, preserve iotag and node struct.
1432 */
1433 memset_startat(iocbq, 0, wqe);
1434 iocbq->sli4_lxritag = NO_XRI;
1435 iocbq->sli4_xritag = NO_XRI;
1436 iocbq->cmd_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF |
1437 LPFC_IO_NVME_LS);
1438 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1439 }
1440
1441
1442 /**
1443 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool
1444 * @phba: Pointer to HBA context object.
1445 * @iocbq: Pointer to driver iocb object.
1446 *
1447 * This function is called to release the driver iocb object to the
1448 * iocb pool. The iotag in the iocb object does not change for each
1449 * use of the iocb object. This function clears all other fields of
1450 * the iocb object when it is freed. The hbalock is asserted held in
1451 * the code path calling this routine.
1452 **/
1453 static void
__lpfc_sli_release_iocbq_s3(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)1454 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1455 {
1456
1457 /*
1458 * Clean all volatile data fields, preserve iotag and node struct.
1459 */
1460 memset_startat(iocbq, 0, iocb);
1461 iocbq->sli4_xritag = NO_XRI;
1462 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1463 }
1464
1465 /**
1466 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool
1467 * @phba: Pointer to HBA context object.
1468 * @iocbq: Pointer to driver iocb object.
1469 *
1470 * This function is called with hbalock held to release driver
1471 * iocb object to the iocb pool. The iotag in the iocb object
1472 * does not change for each use of the iocb object. This function
1473 * clears all other fields of the iocb object when it is freed.
1474 **/
1475 static void
__lpfc_sli_release_iocbq(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)1476 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1477 {
1478 lockdep_assert_held(&phba->hbalock);
1479
1480 phba->__lpfc_sli_release_iocbq(phba, iocbq);
1481 phba->iocb_cnt--;
1482 }
1483
1484 /**
1485 * lpfc_sli_release_iocbq - Release iocb to the iocb pool
1486 * @phba: Pointer to HBA context object.
1487 * @iocbq: Pointer to driver iocb object.
1488 *
1489 * This function is called with no lock held to release the iocb to
1490 * iocb pool.
1491 **/
1492 void
lpfc_sli_release_iocbq(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)1493 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1494 {
1495 unsigned long iflags;
1496
1497 /*
1498 * Clean all volatile data fields, preserve iotag and node struct.
1499 */
1500 spin_lock_irqsave(&phba->hbalock, iflags);
1501 __lpfc_sli_release_iocbq(phba, iocbq);
1502 spin_unlock_irqrestore(&phba->hbalock, iflags);
1503 }
1504
1505 /**
1506 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list.
1507 * @phba: Pointer to HBA context object.
1508 * @iocblist: List of IOCBs.
1509 * @ulpstatus: ULP status in IOCB command field.
1510 * @ulpWord4: ULP word-4 in IOCB command field.
1511 *
1512 * This function is called with a list of IOCBs to cancel. It cancels the IOCB
1513 * on the list by invoking the complete callback function associated with the
1514 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond
1515 * fields.
1516 **/
1517 void
lpfc_sli_cancel_iocbs(struct lpfc_hba * phba,struct list_head * iocblist,uint32_t ulpstatus,uint32_t ulpWord4)1518 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist,
1519 uint32_t ulpstatus, uint32_t ulpWord4)
1520 {
1521 struct lpfc_iocbq *piocb;
1522
1523 while (!list_empty(iocblist)) {
1524 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list);
1525 if (piocb->cmd_cmpl) {
1526 if (piocb->cmd_flag & LPFC_IO_NVME) {
1527 lpfc_nvme_cancel_iocb(phba, piocb,
1528 ulpstatus, ulpWord4);
1529 } else {
1530 if (phba->sli_rev == LPFC_SLI_REV4) {
1531 bf_set(lpfc_wcqe_c_status,
1532 &piocb->wcqe_cmpl, ulpstatus);
1533 piocb->wcqe_cmpl.parameter = ulpWord4;
1534 } else {
1535 piocb->iocb.ulpStatus = ulpstatus;
1536 piocb->iocb.un.ulpWord[4] = ulpWord4;
1537 }
1538 (piocb->cmd_cmpl) (phba, piocb, piocb);
1539 }
1540 } else {
1541 lpfc_sli_release_iocbq(phba, piocb);
1542 }
1543 }
1544 return;
1545 }
1546
1547 /**
1548 * lpfc_sli_iocb_cmd_type - Get the iocb type
1549 * @iocb_cmnd: iocb command code.
1550 *
1551 * This function is called by ring event handler function to get the iocb type.
1552 * This function translates the iocb command to an iocb command type used to
1553 * decide the final disposition of each completed IOCB.
1554 * The function returns
1555 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb
1556 * LPFC_SOL_IOCB if it is a solicited iocb completion
1557 * LPFC_ABORT_IOCB if it is an abort iocb
1558 * LPFC_UNSOL_IOCB if it is an unsolicited iocb
1559 *
1560 * The caller is not required to hold any lock.
1561 **/
1562 static lpfc_iocb_type
lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)1563 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)
1564 {
1565 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB;
1566
1567 if (iocb_cmnd > CMD_MAX_IOCB_CMD)
1568 return 0;
1569
1570 switch (iocb_cmnd) {
1571 case CMD_XMIT_SEQUENCE_CR:
1572 case CMD_XMIT_SEQUENCE_CX:
1573 case CMD_XMIT_BCAST_CN:
1574 case CMD_XMIT_BCAST_CX:
1575 case CMD_ELS_REQUEST_CR:
1576 case CMD_ELS_REQUEST_CX:
1577 case CMD_CREATE_XRI_CR:
1578 case CMD_CREATE_XRI_CX:
1579 case CMD_GET_RPI_CN:
1580 case CMD_XMIT_ELS_RSP_CX:
1581 case CMD_GET_RPI_CR:
1582 case CMD_FCP_IWRITE_CR:
1583 case CMD_FCP_IWRITE_CX:
1584 case CMD_FCP_IREAD_CR:
1585 case CMD_FCP_IREAD_CX:
1586 case CMD_FCP_ICMND_CR:
1587 case CMD_FCP_ICMND_CX:
1588 case CMD_FCP_TSEND_CX:
1589 case CMD_FCP_TRSP_CX:
1590 case CMD_FCP_TRECEIVE_CX:
1591 case CMD_FCP_AUTO_TRSP_CX:
1592 case CMD_ADAPTER_MSG:
1593 case CMD_ADAPTER_DUMP:
1594 case CMD_XMIT_SEQUENCE64_CR:
1595 case CMD_XMIT_SEQUENCE64_CX:
1596 case CMD_XMIT_BCAST64_CN:
1597 case CMD_XMIT_BCAST64_CX:
1598 case CMD_ELS_REQUEST64_CR:
1599 case CMD_ELS_REQUEST64_CX:
1600 case CMD_FCP_IWRITE64_CR:
1601 case CMD_FCP_IWRITE64_CX:
1602 case CMD_FCP_IREAD64_CR:
1603 case CMD_FCP_IREAD64_CX:
1604 case CMD_FCP_ICMND64_CR:
1605 case CMD_FCP_ICMND64_CX:
1606 case CMD_FCP_TSEND64_CX:
1607 case CMD_FCP_TRSP64_CX:
1608 case CMD_FCP_TRECEIVE64_CX:
1609 case CMD_GEN_REQUEST64_CR:
1610 case CMD_GEN_REQUEST64_CX:
1611 case CMD_XMIT_ELS_RSP64_CX:
1612 case DSSCMD_IWRITE64_CR:
1613 case DSSCMD_IWRITE64_CX:
1614 case DSSCMD_IREAD64_CR:
1615 case DSSCMD_IREAD64_CX:
1616 case CMD_SEND_FRAME:
1617 type = LPFC_SOL_IOCB;
1618 break;
1619 case CMD_ABORT_XRI_CN:
1620 case CMD_ABORT_XRI_CX:
1621 case CMD_CLOSE_XRI_CN:
1622 case CMD_CLOSE_XRI_CX:
1623 case CMD_XRI_ABORTED_CX:
1624 case CMD_ABORT_MXRI64_CN:
1625 case CMD_XMIT_BLS_RSP64_CX:
1626 type = LPFC_ABORT_IOCB;
1627 break;
1628 case CMD_RCV_SEQUENCE_CX:
1629 case CMD_RCV_ELS_REQ_CX:
1630 case CMD_RCV_SEQUENCE64_CX:
1631 case CMD_RCV_ELS_REQ64_CX:
1632 case CMD_ASYNC_STATUS:
1633 case CMD_IOCB_RCV_SEQ64_CX:
1634 case CMD_IOCB_RCV_ELS64_CX:
1635 case CMD_IOCB_RCV_CONT64_CX:
1636 case CMD_IOCB_RET_XRI64_CX:
1637 type = LPFC_UNSOL_IOCB;
1638 break;
1639 case CMD_IOCB_XMIT_MSEQ64_CR:
1640 case CMD_IOCB_XMIT_MSEQ64_CX:
1641 case CMD_IOCB_RCV_SEQ_LIST64_CX:
1642 case CMD_IOCB_RCV_ELS_LIST64_CX:
1643 case CMD_IOCB_CLOSE_EXTENDED_CN:
1644 case CMD_IOCB_ABORT_EXTENDED_CN:
1645 case CMD_IOCB_RET_HBQE64_CN:
1646 case CMD_IOCB_FCP_IBIDIR64_CR:
1647 case CMD_IOCB_FCP_IBIDIR64_CX:
1648 case CMD_IOCB_FCP_ITASKMGT64_CX:
1649 case CMD_IOCB_LOGENTRY_CN:
1650 case CMD_IOCB_LOGENTRY_ASYNC_CN:
1651 printk("%s - Unhandled SLI-3 Command x%x\n",
1652 __func__, iocb_cmnd);
1653 type = LPFC_UNKNOWN_IOCB;
1654 break;
1655 default:
1656 type = LPFC_UNKNOWN_IOCB;
1657 break;
1658 }
1659
1660 return type;
1661 }
1662
1663 /**
1664 * lpfc_sli_ring_map - Issue config_ring mbox for all rings
1665 * @phba: Pointer to HBA context object.
1666 *
1667 * This function is called from SLI initialization code
1668 * to configure every ring of the HBA's SLI interface. The
1669 * caller is not required to hold any lock. This function issues
1670 * a config_ring mailbox command for each ring.
1671 * This function returns zero if successful else returns a negative
1672 * error code.
1673 **/
1674 static int
lpfc_sli_ring_map(struct lpfc_hba * phba)1675 lpfc_sli_ring_map(struct lpfc_hba *phba)
1676 {
1677 struct lpfc_sli *psli = &phba->sli;
1678 LPFC_MBOXQ_t *pmb;
1679 MAILBOX_t *pmbox;
1680 int i, rc, ret = 0;
1681
1682 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1683 if (!pmb)
1684 return -ENOMEM;
1685 pmbox = &pmb->u.mb;
1686 phba->link_state = LPFC_INIT_MBX_CMDS;
1687 for (i = 0; i < psli->num_rings; i++) {
1688 lpfc_config_ring(phba, i, pmb);
1689 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
1690 if (rc != MBX_SUCCESS) {
1691 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1692 "0446 Adapter failed to init (%d), "
1693 "mbxCmd x%x CFG_RING, mbxStatus x%x, "
1694 "ring %d\n",
1695 rc, pmbox->mbxCommand,
1696 pmbox->mbxStatus, i);
1697 phba->link_state = LPFC_HBA_ERROR;
1698 ret = -ENXIO;
1699 break;
1700 }
1701 }
1702 mempool_free(pmb, phba->mbox_mem_pool);
1703 return ret;
1704 }
1705
1706 /**
1707 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq
1708 * @phba: Pointer to HBA context object.
1709 * @pring: Pointer to driver SLI ring object.
1710 * @piocb: Pointer to the driver iocb object.
1711 *
1712 * The driver calls this function with the hbalock held for SLI3 ports or
1713 * the ring lock held for SLI4 ports. The function adds the
1714 * new iocb to txcmplq of the given ring. This function always returns
1715 * 0. If this function is called for ELS ring, this function checks if
1716 * there is a vport associated with the ELS command. This function also
1717 * starts els_tmofunc timer if this is an ELS command.
1718 **/
1719 static int
lpfc_sli_ringtxcmpl_put(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * piocb)1720 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1721 struct lpfc_iocbq *piocb)
1722 {
1723 u32 ulp_command = 0;
1724
1725 BUG_ON(!piocb);
1726 ulp_command = get_job_cmnd(phba, piocb);
1727
1728 list_add_tail(&piocb->list, &pring->txcmplq);
1729 piocb->cmd_flag |= LPFC_IO_ON_TXCMPLQ;
1730 pring->txcmplq_cnt++;
1731 if ((unlikely(pring->ringno == LPFC_ELS_RING)) &&
1732 (ulp_command != CMD_ABORT_XRI_WQE) &&
1733 (ulp_command != CMD_ABORT_XRI_CN) &&
1734 (ulp_command != CMD_CLOSE_XRI_CN)) {
1735 BUG_ON(!piocb->vport);
1736 if (!test_bit(FC_UNLOADING, &piocb->vport->load_flag))
1737 mod_timer(&piocb->vport->els_tmofunc,
1738 jiffies + secs_to_jiffies(phba->fc_ratov << 1));
1739 }
1740
1741 return 0;
1742 }
1743
1744 /**
1745 * lpfc_sli_ringtx_get - Get first element of the txq
1746 * @phba: Pointer to HBA context object.
1747 * @pring: Pointer to driver SLI ring object.
1748 *
1749 * This function is called with hbalock held to get next
1750 * iocb in txq of the given ring. If there is any iocb in
1751 * the txq, the function returns first iocb in the list after
1752 * removing the iocb from the list, else it returns NULL.
1753 **/
1754 struct lpfc_iocbq *
lpfc_sli_ringtx_get(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)1755 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1756 {
1757 struct lpfc_iocbq *cmd_iocb;
1758
1759 lockdep_assert_held(&phba->hbalock);
1760
1761 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list);
1762 return cmd_iocb;
1763 }
1764
1765 /**
1766 * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl
1767 * @phba: Pointer to HBA context object.
1768 * @cmdiocb: Pointer to driver command iocb object.
1769 * @rspiocb: Pointer to driver response iocb object.
1770 *
1771 * This routine will inform the driver of any BW adjustments we need
1772 * to make. These changes will be picked up during the next CMF
1773 * timer interrupt. In addition, any BW changes will be logged
1774 * with LOG_CGN_MGMT.
1775 **/
1776 static void
lpfc_cmf_sync_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,struct lpfc_iocbq * rspiocb)1777 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
1778 struct lpfc_iocbq *rspiocb)
1779 {
1780 union lpfc_wqe128 *wqe;
1781 uint32_t status, info;
1782 struct lpfc_wcqe_complete *wcqe = &rspiocb->wcqe_cmpl;
1783 uint64_t bw, bwdif, slop;
1784 uint64_t pcent, bwpcent;
1785 int asig, afpin, sigcnt, fpincnt;
1786 int wsigmax, wfpinmax, cg, tdp;
1787 char *s;
1788
1789 /* First check for error */
1790 status = bf_get(lpfc_wcqe_c_status, wcqe);
1791 if (status) {
1792 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1793 "6211 CMF_SYNC_WQE Error "
1794 "req_tag x%x status x%x hwstatus x%x "
1795 "tdatap x%x parm x%x\n",
1796 bf_get(lpfc_wcqe_c_request_tag, wcqe),
1797 bf_get(lpfc_wcqe_c_status, wcqe),
1798 bf_get(lpfc_wcqe_c_hw_status, wcqe),
1799 wcqe->total_data_placed,
1800 wcqe->parameter);
1801 goto out;
1802 }
1803
1804 /* Gather congestion information on a successful cmpl */
1805 info = wcqe->parameter;
1806 phba->cmf_active_info = info;
1807
1808 /* See if firmware info count is valid or has changed */
1809 if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info)
1810 info = 0;
1811 else
1812 phba->cmf_info_per_interval = info;
1813
1814 tdp = bf_get(lpfc_wcqe_c_cmf_bw, wcqe);
1815 cg = bf_get(lpfc_wcqe_c_cmf_cg, wcqe);
1816
1817 /* Get BW requirement from firmware */
1818 bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE;
1819 if (!bw) {
1820 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1821 "6212 CMF_SYNC_WQE x%x: NULL bw\n",
1822 bf_get(lpfc_wcqe_c_request_tag, wcqe));
1823 goto out;
1824 }
1825
1826 /* Gather information needed for logging if a BW change is required */
1827 wqe = &cmdiocb->wqe;
1828 asig = bf_get(cmf_sync_asig, &wqe->cmf_sync);
1829 afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync);
1830 fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync);
1831 sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync);
1832 if (phba->cmf_max_bytes_per_interval != bw ||
1833 (asig || afpin || sigcnt || fpincnt)) {
1834 /* Are we increasing or decreasing BW */
1835 if (phba->cmf_max_bytes_per_interval < bw) {
1836 bwdif = bw - phba->cmf_max_bytes_per_interval;
1837 s = "Increase";
1838 } else {
1839 bwdif = phba->cmf_max_bytes_per_interval - bw;
1840 s = "Decrease";
1841 }
1842
1843 /* What is the change percentage */
1844 slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/
1845 pcent = div64_u64(bwdif * 100 + slop,
1846 phba->cmf_link_byte_count);
1847 bwpcent = div64_u64(bw * 100 + slop,
1848 phba->cmf_link_byte_count);
1849 /* Because of bytes adjustment due to shorter timer in
1850 * lpfc_cmf_timer() the cmf_link_byte_count can be shorter and
1851 * may seem like BW is above 100%.
1852 */
1853 if (bwpcent > 100)
1854 bwpcent = 100;
1855
1856 if (phba->cmf_max_bytes_per_interval < bw &&
1857 bwpcent > 95)
1858 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1859 "6208 Congestion bandwidth "
1860 "limits removed\n");
1861 else if ((phba->cmf_max_bytes_per_interval > bw) &&
1862 ((bwpcent + pcent) <= 100) && ((bwpcent + pcent) > 95))
1863 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1864 "6209 Congestion bandwidth "
1865 "limits in effect\n");
1866
1867 if (asig) {
1868 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1869 "6237 BW Threshold %lld%% (%lld): "
1870 "%lld%% %s: Signal Alarm: cg:%d "
1871 "Info:%u\n",
1872 bwpcent, bw, pcent, s, cg,
1873 phba->cmf_active_info);
1874 } else if (afpin) {
1875 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1876 "6238 BW Threshold %lld%% (%lld): "
1877 "%lld%% %s: FPIN Alarm: cg:%d "
1878 "Info:%u\n",
1879 bwpcent, bw, pcent, s, cg,
1880 phba->cmf_active_info);
1881 } else if (sigcnt) {
1882 wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync);
1883 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1884 "6239 BW Threshold %lld%% (%lld): "
1885 "%lld%% %s: Signal Warning: "
1886 "Cnt %d Max %d: cg:%d Info:%u\n",
1887 bwpcent, bw, pcent, s, sigcnt,
1888 wsigmax, cg, phba->cmf_active_info);
1889 } else if (fpincnt) {
1890 wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync);
1891 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1892 "6240 BW Threshold %lld%% (%lld): "
1893 "%lld%% %s: FPIN Warning: "
1894 "Cnt %d Max %d: cg:%d Info:%u\n",
1895 bwpcent, bw, pcent, s, fpincnt,
1896 wfpinmax, cg, phba->cmf_active_info);
1897 } else {
1898 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1899 "6241 BW Threshold %lld%% (%lld): "
1900 "CMF %lld%% %s: cg:%d Info:%u\n",
1901 bwpcent, bw, pcent, s, cg,
1902 phba->cmf_active_info);
1903 }
1904 } else if (info) {
1905 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1906 "6246 Info Threshold %u\n", info);
1907 }
1908
1909 /* Save BW change to be picked up during next timer interrupt */
1910 phba->cmf_last_sync_bw = bw;
1911 out:
1912 lpfc_sli_release_iocbq(phba, cmdiocb);
1913 }
1914
1915 /**
1916 * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE
1917 * @phba: Pointer to HBA context object.
1918 * @ms: ms to set in WQE interval, 0 means use init op
1919 * @total: Total rcv bytes for this interval
1920 *
1921 * This routine is called every CMF timer interrupt. Its purpose is
1922 * to issue a CMF_SYNC_WQE to the firmware to inform it of any events
1923 * that may indicate we have congestion (FPINs or Signals). Upon
1924 * completion, the firmware will indicate any BW restrictions the
1925 * driver may need to take.
1926 **/
1927 int
lpfc_issue_cmf_sync_wqe(struct lpfc_hba * phba,u32 ms,u64 total)1928 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total)
1929 {
1930 union lpfc_wqe128 *wqe;
1931 struct lpfc_iocbq *sync_buf;
1932 unsigned long iflags;
1933 u32 ret_val, cgn_sig_freq;
1934 u32 atot, wtot, max;
1935 u8 warn_sync_period = 0;
1936
1937 /* First address any alarm / warning activity */
1938 atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0);
1939 wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0);
1940
1941 spin_lock_irqsave(&phba->hbalock, iflags);
1942
1943 /* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */
1944 if (phba->cmf_active_mode != LPFC_CFG_MANAGED ||
1945 phba->link_state < LPFC_LINK_UP) {
1946 ret_val = 0;
1947 goto out_unlock;
1948 }
1949
1950 sync_buf = __lpfc_sli_get_iocbq(phba);
1951 if (!sync_buf) {
1952 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT,
1953 "6244 No available WQEs for CMF_SYNC_WQE\n");
1954 ret_val = ENOMEM;
1955 goto out_unlock;
1956 }
1957
1958 wqe = &sync_buf->wqe;
1959
1960 /* WQEs are reused. Clear stale data and set key fields to zero */
1961 memset(wqe, 0, sizeof(*wqe));
1962
1963 /* If this is the very first CMF_SYNC_WQE, issue an init operation */
1964 if (!ms) {
1965 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1966 "6441 CMF Init %d - CMF_SYNC_WQE\n",
1967 phba->fc_eventTag);
1968 bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */
1969 bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL);
1970 goto initpath;
1971 }
1972
1973 bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */
1974 bf_set(cmf_sync_interval, &wqe->cmf_sync, ms);
1975
1976 /* Check for alarms / warnings */
1977 if (atot) {
1978 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
1979 /* We hit an Signal alarm condition */
1980 bf_set(cmf_sync_asig, &wqe->cmf_sync, 1);
1981 } else {
1982 /* We hit a FPIN alarm condition */
1983 bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1);
1984 }
1985 } else if (wtot) {
1986 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
1987 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
1988 cgn_sig_freq = phba->cgn_sig_freq ? phba->cgn_sig_freq :
1989 lpfc_fabric_cgn_frequency;
1990 /* We hit an Signal warning condition */
1991 max = LPFC_SEC_TO_MSEC / cgn_sig_freq *
1992 lpfc_acqe_cgn_frequency;
1993 bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max);
1994 bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot);
1995 warn_sync_period = lpfc_acqe_cgn_frequency;
1996 } else {
1997 /* We hit a FPIN warning condition */
1998 bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1);
1999 bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1);
2000 if (phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ)
2001 warn_sync_period =
2002 LPFC_MSECS_TO_SECS(phba->cgn_fpin_frequency);
2003 }
2004 }
2005
2006 /* Update total read blocks during previous timer interval */
2007 wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE);
2008
2009 initpath:
2010 bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER);
2011 wqe->cmf_sync.event_tag = phba->fc_eventTag;
2012 bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE);
2013
2014 /* Setup reqtag to match the wqe completion. */
2015 bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag);
2016
2017 bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1);
2018 bf_set(cmf_sync_period, &wqe->cmf_sync, warn_sync_period);
2019
2020 bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND);
2021 bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1);
2022 bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT);
2023
2024 sync_buf->vport = phba->pport;
2025 sync_buf->cmd_cmpl = lpfc_cmf_sync_cmpl;
2026 sync_buf->cmd_dmabuf = NULL;
2027 sync_buf->rsp_dmabuf = NULL;
2028 sync_buf->bpl_dmabuf = NULL;
2029 sync_buf->sli4_xritag = NO_XRI;
2030
2031 sync_buf->cmd_flag |= LPFC_IO_CMF;
2032 ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf);
2033 if (ret_val) {
2034 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
2035 "6214 Cannot issue CMF_SYNC_WQE: x%x\n",
2036 ret_val);
2037 __lpfc_sli_release_iocbq(phba, sync_buf);
2038 }
2039 out_unlock:
2040 spin_unlock_irqrestore(&phba->hbalock, iflags);
2041 return ret_val;
2042 }
2043
2044 /**
2045 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring
2046 * @phba: Pointer to HBA context object.
2047 * @pring: Pointer to driver SLI ring object.
2048 *
2049 * This function is called with hbalock held and the caller must post the
2050 * iocb without releasing the lock. If the caller releases the lock,
2051 * iocb slot returned by the function is not guaranteed to be available.
2052 * The function returns pointer to the next available iocb slot if there
2053 * is available slot in the ring, else it returns NULL.
2054 * If the get index of the ring is ahead of the put index, the function
2055 * will post an error attention event to the worker thread to take the
2056 * HBA to offline state.
2057 **/
2058 static IOCB_t *
lpfc_sli_next_iocb_slot(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)2059 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2060 {
2061 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
2062 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb;
2063
2064 lockdep_assert_held(&phba->hbalock);
2065
2066 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) &&
2067 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx))
2068 pring->sli.sli3.next_cmdidx = 0;
2069
2070 if (unlikely(pring->sli.sli3.local_getidx ==
2071 pring->sli.sli3.next_cmdidx)) {
2072
2073 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
2074
2075 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) {
2076 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2077 "0315 Ring %d issue: portCmdGet %d "
2078 "is bigger than cmd ring %d\n",
2079 pring->ringno,
2080 pring->sli.sli3.local_getidx,
2081 max_cmd_idx);
2082
2083 phba->link_state = LPFC_HBA_ERROR;
2084 /*
2085 * All error attention handlers are posted to
2086 * worker thread
2087 */
2088 phba->work_ha |= HA_ERATT;
2089 phba->work_hs = HS_FFER3;
2090
2091 lpfc_worker_wake_up(phba);
2092
2093 return NULL;
2094 }
2095
2096 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx)
2097 return NULL;
2098 }
2099
2100 return lpfc_cmd_iocb(phba, pring);
2101 }
2102
2103 /**
2104 * lpfc_sli_next_iotag - Get an iotag for the iocb
2105 * @phba: Pointer to HBA context object.
2106 * @iocbq: Pointer to driver iocb object.
2107 *
2108 * This function gets an iotag for the iocb. If there is no unused iotag and
2109 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup
2110 * array and assigns a new iotag.
2111 * The function returns the allocated iotag if successful, else returns zero.
2112 * Zero is not a valid iotag.
2113 * The caller is not required to hold any lock.
2114 **/
2115 uint16_t
lpfc_sli_next_iotag(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)2116 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
2117 {
2118 struct lpfc_iocbq **new_arr;
2119 struct lpfc_iocbq **old_arr;
2120 size_t new_len;
2121 struct lpfc_sli *psli = &phba->sli;
2122 uint16_t iotag;
2123
2124 spin_lock_irq(&phba->hbalock);
2125 iotag = psli->last_iotag;
2126 if(++iotag < psli->iocbq_lookup_len) {
2127 psli->last_iotag = iotag;
2128 psli->iocbq_lookup[iotag] = iocbq;
2129 spin_unlock_irq(&phba->hbalock);
2130 iocbq->iotag = iotag;
2131 return iotag;
2132 } else if (psli->iocbq_lookup_len < (0xffff
2133 - LPFC_IOCBQ_LOOKUP_INCREMENT)) {
2134 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT;
2135 spin_unlock_irq(&phba->hbalock);
2136 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *),
2137 GFP_KERNEL);
2138 if (new_arr) {
2139 spin_lock_irq(&phba->hbalock);
2140 old_arr = psli->iocbq_lookup;
2141 if (new_len <= psli->iocbq_lookup_len) {
2142 /* highly unprobable case */
2143 kfree(new_arr);
2144 iotag = psli->last_iotag;
2145 if(++iotag < psli->iocbq_lookup_len) {
2146 psli->last_iotag = iotag;
2147 psli->iocbq_lookup[iotag] = iocbq;
2148 spin_unlock_irq(&phba->hbalock);
2149 iocbq->iotag = iotag;
2150 return iotag;
2151 }
2152 spin_unlock_irq(&phba->hbalock);
2153 return 0;
2154 }
2155 if (psli->iocbq_lookup)
2156 memcpy(new_arr, old_arr,
2157 ((psli->last_iotag + 1) *
2158 sizeof (struct lpfc_iocbq *)));
2159 psli->iocbq_lookup = new_arr;
2160 psli->iocbq_lookup_len = new_len;
2161 psli->last_iotag = iotag;
2162 psli->iocbq_lookup[iotag] = iocbq;
2163 spin_unlock_irq(&phba->hbalock);
2164 iocbq->iotag = iotag;
2165 kfree(old_arr);
2166 return iotag;
2167 }
2168 } else
2169 spin_unlock_irq(&phba->hbalock);
2170
2171 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
2172 "0318 Failed to allocate IOTAG.last IOTAG is %d\n",
2173 psli->last_iotag);
2174
2175 return 0;
2176 }
2177
2178 /**
2179 * lpfc_sli_submit_iocb - Submit an iocb to the firmware
2180 * @phba: Pointer to HBA context object.
2181 * @pring: Pointer to driver SLI ring object.
2182 * @iocb: Pointer to iocb slot in the ring.
2183 * @nextiocb: Pointer to driver iocb object which need to be
2184 * posted to firmware.
2185 *
2186 * This function is called to post a new iocb to the firmware. This
2187 * function copies the new iocb to ring iocb slot and updates the
2188 * ring pointers. It adds the new iocb to txcmplq if there is
2189 * a completion call back for this iocb else the function will free the
2190 * iocb object. The hbalock is asserted held in the code path calling
2191 * this routine.
2192 **/
2193 static void
lpfc_sli_submit_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,IOCB_t * iocb,struct lpfc_iocbq * nextiocb)2194 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2195 IOCB_t *iocb, struct lpfc_iocbq *nextiocb)
2196 {
2197 /*
2198 * Set up an iotag
2199 */
2200 nextiocb->iocb.ulpIoTag = (nextiocb->cmd_cmpl) ? nextiocb->iotag : 0;
2201
2202
2203 if (pring->ringno == LPFC_ELS_RING) {
2204 lpfc_debugfs_slow_ring_trc(phba,
2205 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x",
2206 *(((uint32_t *) &nextiocb->iocb) + 4),
2207 *(((uint32_t *) &nextiocb->iocb) + 6),
2208 *(((uint32_t *) &nextiocb->iocb) + 7));
2209 }
2210
2211 /*
2212 * Issue iocb command to adapter
2213 */
2214 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size);
2215 wmb();
2216 pring->stats.iocb_cmd++;
2217
2218 /*
2219 * If there is no completion routine to call, we can release the
2220 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF,
2221 * that have no rsp ring completion, cmd_cmpl MUST be NULL.
2222 */
2223 if (nextiocb->cmd_cmpl)
2224 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb);
2225 else
2226 __lpfc_sli_release_iocbq(phba, nextiocb);
2227
2228 /*
2229 * Let the HBA know what IOCB slot will be the next one the
2230 * driver will put a command into.
2231 */
2232 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx;
2233 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx);
2234 }
2235
2236 /**
2237 * lpfc_sli_update_full_ring - Update the chip attention register
2238 * @phba: Pointer to HBA context object.
2239 * @pring: Pointer to driver SLI ring object.
2240 *
2241 * The caller is not required to hold any lock for calling this function.
2242 * This function updates the chip attention bits for the ring to inform firmware
2243 * that there are pending work to be done for this ring and requests an
2244 * interrupt when there is space available in the ring. This function is
2245 * called when the driver is unable to post more iocbs to the ring due
2246 * to unavailability of space in the ring.
2247 **/
2248 static void
lpfc_sli_update_full_ring(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)2249 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2250 {
2251 int ringno = pring->ringno;
2252
2253 pring->flag |= LPFC_CALL_RING_AVAILABLE;
2254
2255 wmb();
2256
2257 /*
2258 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register.
2259 * The HBA will tell us when an IOCB entry is available.
2260 */
2261 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr);
2262 readl(phba->CAregaddr); /* flush */
2263
2264 pring->stats.iocb_cmd_full++;
2265 }
2266
2267 /**
2268 * lpfc_sli_update_ring - Update chip attention register
2269 * @phba: Pointer to HBA context object.
2270 * @pring: Pointer to driver SLI ring object.
2271 *
2272 * This function updates the chip attention register bit for the
2273 * given ring to inform HBA that there is more work to be done
2274 * in this ring. The caller is not required to hold any lock.
2275 **/
2276 static void
lpfc_sli_update_ring(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)2277 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2278 {
2279 int ringno = pring->ringno;
2280
2281 /*
2282 * Tell the HBA that there is work to do in this ring.
2283 */
2284 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) {
2285 wmb();
2286 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr);
2287 readl(phba->CAregaddr); /* flush */
2288 }
2289 }
2290
2291 /**
2292 * lpfc_sli_resume_iocb - Process iocbs in the txq
2293 * @phba: Pointer to HBA context object.
2294 * @pring: Pointer to driver SLI ring object.
2295 *
2296 * This function is called with hbalock held to post pending iocbs
2297 * in the txq to the firmware. This function is called when driver
2298 * detects space available in the ring.
2299 **/
2300 static void
lpfc_sli_resume_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)2301 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2302 {
2303 IOCB_t *iocb;
2304 struct lpfc_iocbq *nextiocb;
2305
2306 lockdep_assert_held(&phba->hbalock);
2307
2308 /*
2309 * Check to see if:
2310 * (a) there is anything on the txq to send
2311 * (b) link is up
2312 * (c) link attention events can be processed (fcp ring only)
2313 * (d) IOCB processing is not blocked by the outstanding mbox command.
2314 */
2315
2316 if (lpfc_is_link_up(phba) &&
2317 (!list_empty(&pring->txq)) &&
2318 (pring->ringno != LPFC_FCP_RING ||
2319 phba->sli.sli_flag & LPFC_PROCESS_LA)) {
2320
2321 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
2322 (nextiocb = lpfc_sli_ringtx_get(phba, pring)))
2323 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
2324
2325 if (iocb)
2326 lpfc_sli_update_ring(phba, pring);
2327 else
2328 lpfc_sli_update_full_ring(phba, pring);
2329 }
2330
2331 return;
2332 }
2333
2334 /**
2335 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ
2336 * @phba: Pointer to HBA context object.
2337 * @hbqno: HBQ number.
2338 *
2339 * This function is called with hbalock held to get the next
2340 * available slot for the given HBQ. If there is free slot
2341 * available for the HBQ it will return pointer to the next available
2342 * HBQ entry else it will return NULL.
2343 **/
2344 static struct lpfc_hbq_entry *
lpfc_sli_next_hbq_slot(struct lpfc_hba * phba,uint32_t hbqno)2345 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno)
2346 {
2347 struct hbq_s *hbqp = &phba->hbqs[hbqno];
2348
2349 lockdep_assert_held(&phba->hbalock);
2350
2351 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx &&
2352 ++hbqp->next_hbqPutIdx >= hbqp->entry_count)
2353 hbqp->next_hbqPutIdx = 0;
2354
2355 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) {
2356 uint32_t raw_index = phba->hbq_get[hbqno];
2357 uint32_t getidx = le32_to_cpu(raw_index);
2358
2359 hbqp->local_hbqGetIdx = getidx;
2360
2361 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) {
2362 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2363 "1802 HBQ %d: local_hbqGetIdx "
2364 "%u is > than hbqp->entry_count %u\n",
2365 hbqno, hbqp->local_hbqGetIdx,
2366 hbqp->entry_count);
2367
2368 phba->link_state = LPFC_HBA_ERROR;
2369 return NULL;
2370 }
2371
2372 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)
2373 return NULL;
2374 }
2375
2376 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt +
2377 hbqp->hbqPutIdx;
2378 }
2379
2380 /**
2381 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers
2382 * @phba: Pointer to HBA context object.
2383 *
2384 * This function is called with no lock held to free all the
2385 * hbq buffers while uninitializing the SLI interface. It also
2386 * frees the HBQ buffers returned by the firmware but not yet
2387 * processed by the upper layers.
2388 **/
2389 void
lpfc_sli_hbqbuf_free_all(struct lpfc_hba * phba)2390 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba)
2391 {
2392 struct lpfc_dmabuf *dmabuf, *next_dmabuf;
2393 struct hbq_dmabuf *hbq_buf;
2394 unsigned long flags;
2395 int i, hbq_count;
2396
2397 hbq_count = lpfc_sli_hbq_count();
2398 /* Return all memory used by all HBQs */
2399 spin_lock_irqsave(&phba->hbalock, flags);
2400 for (i = 0; i < hbq_count; ++i) {
2401 list_for_each_entry_safe(dmabuf, next_dmabuf,
2402 &phba->hbqs[i].hbq_buffer_list, list) {
2403 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
2404 list_del(&hbq_buf->dbuf.list);
2405 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf);
2406 }
2407 phba->hbqs[i].buffer_count = 0;
2408 }
2409
2410 /* Mark the HBQs not in use */
2411 phba->hbq_in_use = 0;
2412 spin_unlock_irqrestore(&phba->hbalock, flags);
2413 }
2414
2415 /**
2416 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware
2417 * @phba: Pointer to HBA context object.
2418 * @hbqno: HBQ number.
2419 * @hbq_buf: Pointer to HBQ buffer.
2420 *
2421 * This function is called with the hbalock held to post a
2422 * hbq buffer to the firmware. If the function finds an empty
2423 * slot in the HBQ, it will post the buffer. The function will return
2424 * pointer to the hbq entry if it successfully post the buffer
2425 * else it will return NULL.
2426 **/
2427 static int
lpfc_sli_hbq_to_firmware(struct lpfc_hba * phba,uint32_t hbqno,struct hbq_dmabuf * hbq_buf)2428 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno,
2429 struct hbq_dmabuf *hbq_buf)
2430 {
2431 lockdep_assert_held(&phba->hbalock);
2432 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf);
2433 }
2434
2435 /**
2436 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware
2437 * @phba: Pointer to HBA context object.
2438 * @hbqno: HBQ number.
2439 * @hbq_buf: Pointer to HBQ buffer.
2440 *
2441 * This function is called with the hbalock held to post a hbq buffer to the
2442 * firmware. If the function finds an empty slot in the HBQ, it will post the
2443 * buffer and place it on the hbq_buffer_list. The function will return zero if
2444 * it successfully post the buffer else it will return an error.
2445 **/
2446 static int
lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba * phba,uint32_t hbqno,struct hbq_dmabuf * hbq_buf)2447 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno,
2448 struct hbq_dmabuf *hbq_buf)
2449 {
2450 struct lpfc_hbq_entry *hbqe;
2451 dma_addr_t physaddr = hbq_buf->dbuf.phys;
2452
2453 lockdep_assert_held(&phba->hbalock);
2454 /* Get next HBQ entry slot to use */
2455 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno);
2456 if (hbqe) {
2457 struct hbq_s *hbqp = &phba->hbqs[hbqno];
2458
2459 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
2460 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr));
2461 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size;
2462 hbqe->bde.tus.f.bdeFlags = 0;
2463 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w);
2464 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag);
2465 /* Sync SLIM */
2466 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx;
2467 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno);
2468 /* flush */
2469 readl(phba->hbq_put + hbqno);
2470 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list);
2471 return 0;
2472 } else
2473 return -ENOMEM;
2474 }
2475
2476 /**
2477 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware
2478 * @phba: Pointer to HBA context object.
2479 * @hbqno: HBQ number.
2480 * @hbq_buf: Pointer to HBQ buffer.
2481 *
2482 * This function is called with the hbalock held to post an RQE to the SLI4
2483 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to
2484 * the hbq_buffer_list and return zero, otherwise it will return an error.
2485 **/
2486 static int
lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba * phba,uint32_t hbqno,struct hbq_dmabuf * hbq_buf)2487 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno,
2488 struct hbq_dmabuf *hbq_buf)
2489 {
2490 int rc;
2491 struct lpfc_rqe hrqe;
2492 struct lpfc_rqe drqe;
2493 struct lpfc_queue *hrq;
2494 struct lpfc_queue *drq;
2495
2496 if (hbqno != LPFC_ELS_HBQ)
2497 return 1;
2498 hrq = phba->sli4_hba.hdr_rq;
2499 drq = phba->sli4_hba.dat_rq;
2500
2501 lockdep_assert_held(&phba->hbalock);
2502 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys);
2503 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys);
2504 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys);
2505 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys);
2506 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
2507 if (rc < 0)
2508 return rc;
2509 hbq_buf->tag = (rc | (hbqno << 16));
2510 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list);
2511 return 0;
2512 }
2513
2514 /* HBQ for ELS and CT traffic. */
2515 static struct lpfc_hbq_init lpfc_els_hbq = {
2516 .rn = 1,
2517 .entry_count = 256,
2518 .mask_count = 0,
2519 .profile = 0,
2520 .ring_mask = (1 << LPFC_ELS_RING),
2521 .buffer_count = 0,
2522 .init_count = 40,
2523 .add_count = 40,
2524 };
2525
2526 /* Array of HBQs */
2527 struct lpfc_hbq_init *lpfc_hbq_defs[] = {
2528 &lpfc_els_hbq,
2529 };
2530
2531 /**
2532 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ
2533 * @phba: Pointer to HBA context object.
2534 * @hbqno: HBQ number.
2535 * @count: Number of HBQ buffers to be posted.
2536 *
2537 * This function is called with no lock held to post more hbq buffers to the
2538 * given HBQ. The function returns the number of HBQ buffers successfully
2539 * posted.
2540 **/
2541 static int
lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba * phba,uint32_t hbqno,uint32_t count)2542 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count)
2543 {
2544 uint32_t i, posted = 0;
2545 unsigned long flags;
2546 struct hbq_dmabuf *hbq_buffer;
2547 LIST_HEAD(hbq_buf_list);
2548 if (!phba->hbqs[hbqno].hbq_alloc_buffer)
2549 return 0;
2550
2551 if ((phba->hbqs[hbqno].buffer_count + count) >
2552 lpfc_hbq_defs[hbqno]->entry_count)
2553 count = lpfc_hbq_defs[hbqno]->entry_count -
2554 phba->hbqs[hbqno].buffer_count;
2555 if (!count)
2556 return 0;
2557 /* Allocate HBQ entries */
2558 for (i = 0; i < count; i++) {
2559 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba);
2560 if (!hbq_buffer)
2561 break;
2562 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list);
2563 }
2564 /* Check whether HBQ is still in use */
2565 spin_lock_irqsave(&phba->hbalock, flags);
2566 if (!phba->hbq_in_use)
2567 goto err;
2568 while (!list_empty(&hbq_buf_list)) {
2569 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2570 dbuf.list);
2571 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count |
2572 (hbqno << 16));
2573 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) {
2574 phba->hbqs[hbqno].buffer_count++;
2575 posted++;
2576 } else
2577 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2578 }
2579 spin_unlock_irqrestore(&phba->hbalock, flags);
2580 return posted;
2581 err:
2582 spin_unlock_irqrestore(&phba->hbalock, flags);
2583 while (!list_empty(&hbq_buf_list)) {
2584 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2585 dbuf.list);
2586 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2587 }
2588 return 0;
2589 }
2590
2591 /**
2592 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware
2593 * @phba: Pointer to HBA context object.
2594 * @qno: HBQ number.
2595 *
2596 * This function posts more buffers to the HBQ. This function
2597 * is called with no lock held. The function returns the number of HBQ entries
2598 * successfully allocated.
2599 **/
2600 int
lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba * phba,uint32_t qno)2601 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno)
2602 {
2603 if (phba->sli_rev == LPFC_SLI_REV4)
2604 return 0;
2605 else
2606 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2607 lpfc_hbq_defs[qno]->add_count);
2608 }
2609
2610 /**
2611 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ
2612 * @phba: Pointer to HBA context object.
2613 * @qno: HBQ queue number.
2614 *
2615 * This function is called from SLI initialization code path with
2616 * no lock held to post initial HBQ buffers to firmware. The
2617 * function returns the number of HBQ entries successfully allocated.
2618 **/
2619 static int
lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba * phba,uint32_t qno)2620 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno)
2621 {
2622 if (phba->sli_rev == LPFC_SLI_REV4)
2623 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2624 lpfc_hbq_defs[qno]->entry_count);
2625 else
2626 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2627 lpfc_hbq_defs[qno]->init_count);
2628 }
2629
2630 /*
2631 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list
2632 *
2633 * This function removes the first hbq buffer on an hbq list and returns a
2634 * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2635 **/
2636 static struct hbq_dmabuf *
lpfc_sli_hbqbuf_get(struct list_head * rb_list)2637 lpfc_sli_hbqbuf_get(struct list_head *rb_list)
2638 {
2639 struct lpfc_dmabuf *d_buf;
2640
2641 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list);
2642 if (!d_buf)
2643 return NULL;
2644 return container_of(d_buf, struct hbq_dmabuf, dbuf);
2645 }
2646
2647 /**
2648 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list
2649 * @phba: Pointer to HBA context object.
2650 * @hrq: HBQ number.
2651 *
2652 * This function removes the first RQ buffer on an RQ buffer list and returns a
2653 * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2654 **/
2655 static struct rqb_dmabuf *
lpfc_sli_rqbuf_get(struct lpfc_hba * phba,struct lpfc_queue * hrq)2656 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq)
2657 {
2658 struct lpfc_dmabuf *h_buf;
2659 struct lpfc_rqb *rqbp;
2660
2661 rqbp = hrq->rqbp;
2662 list_remove_head(&rqbp->rqb_buffer_list, h_buf,
2663 struct lpfc_dmabuf, list);
2664 if (!h_buf)
2665 return NULL;
2666 rqbp->buffer_count--;
2667 return container_of(h_buf, struct rqb_dmabuf, hbuf);
2668 }
2669
2670 /**
2671 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag
2672 * @phba: Pointer to HBA context object.
2673 * @tag: Tag of the hbq buffer.
2674 *
2675 * This function searches for the hbq buffer associated with the given tag in
2676 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer
2677 * otherwise it returns NULL.
2678 **/
2679 static struct hbq_dmabuf *
lpfc_sli_hbqbuf_find(struct lpfc_hba * phba,uint32_t tag)2680 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag)
2681 {
2682 struct lpfc_dmabuf *d_buf;
2683 struct hbq_dmabuf *hbq_buf;
2684 uint32_t hbqno;
2685
2686 hbqno = tag >> 16;
2687 if (hbqno >= LPFC_MAX_HBQS)
2688 return NULL;
2689
2690 spin_lock_irq(&phba->hbalock);
2691 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) {
2692 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2693 if (hbq_buf->tag == tag) {
2694 spin_unlock_irq(&phba->hbalock);
2695 return hbq_buf;
2696 }
2697 }
2698 spin_unlock_irq(&phba->hbalock);
2699 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2700 "1803 Bad hbq tag. Data: x%x x%x\n",
2701 tag, phba->hbqs[tag >> 16].buffer_count);
2702 return NULL;
2703 }
2704
2705 /**
2706 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware
2707 * @phba: Pointer to HBA context object.
2708 * @hbq_buffer: Pointer to HBQ buffer.
2709 *
2710 * This function is called with hbalock. This function gives back
2711 * the hbq buffer to firmware. If the HBQ does not have space to
2712 * post the buffer, it will free the buffer.
2713 **/
2714 void
lpfc_sli_free_hbq(struct lpfc_hba * phba,struct hbq_dmabuf * hbq_buffer)2715 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer)
2716 {
2717 uint32_t hbqno;
2718
2719 if (hbq_buffer) {
2720 hbqno = hbq_buffer->tag >> 16;
2721 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer))
2722 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2723 }
2724 }
2725
2726 /**
2727 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox
2728 * @mbxCommand: mailbox command code.
2729 *
2730 * This function is called by the mailbox event handler function to verify
2731 * that the completed mailbox command is a legitimate mailbox command. If the
2732 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN
2733 * and the mailbox event handler will take the HBA offline.
2734 **/
2735 static int
lpfc_sli_chk_mbx_command(uint8_t mbxCommand)2736 lpfc_sli_chk_mbx_command(uint8_t mbxCommand)
2737 {
2738 uint8_t ret;
2739
2740 switch (mbxCommand) {
2741 case MBX_LOAD_SM:
2742 case MBX_READ_NV:
2743 case MBX_WRITE_NV:
2744 case MBX_WRITE_VPARMS:
2745 case MBX_RUN_BIU_DIAG:
2746 case MBX_INIT_LINK:
2747 case MBX_DOWN_LINK:
2748 case MBX_CONFIG_LINK:
2749 case MBX_CONFIG_RING:
2750 case MBX_RESET_RING:
2751 case MBX_READ_CONFIG:
2752 case MBX_READ_RCONFIG:
2753 case MBX_READ_SPARM:
2754 case MBX_READ_STATUS:
2755 case MBX_READ_RPI:
2756 case MBX_READ_XRI:
2757 case MBX_READ_REV:
2758 case MBX_READ_LNK_STAT:
2759 case MBX_REG_LOGIN:
2760 case MBX_UNREG_LOGIN:
2761 case MBX_CLEAR_LA:
2762 case MBX_DUMP_MEMORY:
2763 case MBX_DUMP_CONTEXT:
2764 case MBX_RUN_DIAGS:
2765 case MBX_RESTART:
2766 case MBX_UPDATE_CFG:
2767 case MBX_DOWN_LOAD:
2768 case MBX_DEL_LD_ENTRY:
2769 case MBX_RUN_PROGRAM:
2770 case MBX_SET_MASK:
2771 case MBX_SET_VARIABLE:
2772 case MBX_UNREG_D_ID:
2773 case MBX_KILL_BOARD:
2774 case MBX_CONFIG_FARP:
2775 case MBX_BEACON:
2776 case MBX_LOAD_AREA:
2777 case MBX_RUN_BIU_DIAG64:
2778 case MBX_CONFIG_PORT:
2779 case MBX_READ_SPARM64:
2780 case MBX_READ_RPI64:
2781 case MBX_REG_LOGIN64:
2782 case MBX_READ_TOPOLOGY:
2783 case MBX_WRITE_WWN:
2784 case MBX_SET_DEBUG:
2785 case MBX_LOAD_EXP_ROM:
2786 case MBX_ASYNCEVT_ENABLE:
2787 case MBX_REG_VPI:
2788 case MBX_UNREG_VPI:
2789 case MBX_HEARTBEAT:
2790 case MBX_PORT_CAPABILITIES:
2791 case MBX_PORT_IOV_CONTROL:
2792 case MBX_SLI4_CONFIG:
2793 case MBX_SLI4_REQ_FTRS:
2794 case MBX_REG_FCFI:
2795 case MBX_UNREG_FCFI:
2796 case MBX_REG_VFI:
2797 case MBX_UNREG_VFI:
2798 case MBX_INIT_VPI:
2799 case MBX_INIT_VFI:
2800 case MBX_RESUME_RPI:
2801 case MBX_READ_EVENT_LOG_STATUS:
2802 case MBX_READ_EVENT_LOG:
2803 case MBX_SECURITY_MGMT:
2804 case MBX_AUTH_PORT:
2805 case MBX_ACCESS_VDATA:
2806 ret = mbxCommand;
2807 break;
2808 default:
2809 ret = MBX_SHUTDOWN;
2810 break;
2811 }
2812 return ret;
2813 }
2814
2815 /**
2816 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler
2817 * @phba: Pointer to HBA context object.
2818 * @pmboxq: Pointer to mailbox command.
2819 *
2820 * This is completion handler function for mailbox commands issued from
2821 * lpfc_sli_issue_mbox_wait function. This function is called by the
2822 * mailbox event handler function with no lock held. This function
2823 * will wake up thread waiting on the wait queue pointed by context1
2824 * of the mailbox.
2825 **/
2826 void
lpfc_sli_wake_mbox_wait(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmboxq)2827 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
2828 {
2829 unsigned long drvr_flag;
2830 struct completion *pmbox_done;
2831
2832 /*
2833 * If pmbox_done is empty, the driver thread gave up waiting and
2834 * continued running.
2835 */
2836 pmboxq->mbox_flag |= LPFC_MBX_WAKE;
2837 spin_lock_irqsave(&phba->hbalock, drvr_flag);
2838 pmbox_done = pmboxq->ctx_u.mbox_wait;
2839 if (pmbox_done)
2840 complete(pmbox_done);
2841 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
2842 return;
2843 }
2844
2845 /**
2846 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler
2847 * @phba: Pointer to HBA context object.
2848 * @pmb: Pointer to mailbox object.
2849 *
2850 * This function is the default mailbox completion handler. It
2851 * frees the memory resources associated with the completed mailbox
2852 * command. If the completed command is a REG_LOGIN mailbox command,
2853 * this function will issue a UREG_LOGIN to re-claim the RPI.
2854 **/
2855 void
lpfc_sli_def_mbox_cmpl(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmb)2856 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2857 {
2858 struct lpfc_vport *vport = pmb->vport;
2859 struct lpfc_dmabuf *mp;
2860 struct lpfc_nodelist *ndlp;
2861 struct Scsi_Host *shost;
2862 uint16_t rpi, vpi;
2863 int rc;
2864
2865 /*
2866 * If a REG_LOGIN succeeded after node is destroyed or node
2867 * is in re-discovery driver need to cleanup the RPI.
2868 */
2869 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag) &&
2870 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 &&
2871 !pmb->u.mb.mbxStatus) {
2872 mp = pmb->ctx_buf;
2873 if (mp) {
2874 pmb->ctx_buf = NULL;
2875 lpfc_mbuf_free(phba, mp->virt, mp->phys);
2876 kfree(mp);
2877 }
2878 rpi = pmb->u.mb.un.varWords[0];
2879 vpi = pmb->u.mb.un.varRegLogin.vpi;
2880 if (phba->sli_rev == LPFC_SLI_REV4)
2881 vpi -= phba->sli4_hba.max_cfg_param.vpi_base;
2882 lpfc_unreg_login(phba, vpi, rpi, pmb);
2883 pmb->vport = vport;
2884 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
2885 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2886 if (rc != MBX_NOT_FINISHED)
2887 return;
2888 }
2889
2890 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) &&
2891 !test_bit(FC_UNLOADING, &phba->pport->load_flag) &&
2892 !pmb->u.mb.mbxStatus) {
2893 shost = lpfc_shost_from_vport(vport);
2894 spin_lock_irq(shost->host_lock);
2895 vport->vpi_state |= LPFC_VPI_REGISTERED;
2896 spin_unlock_irq(shost->host_lock);
2897 clear_bit(FC_VPORT_NEEDS_REG_VPI, &vport->fc_flag);
2898 }
2899
2900 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
2901 ndlp = pmb->ctx_ndlp;
2902 lpfc_nlp_put(ndlp);
2903 }
2904
2905 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2906 ndlp = pmb->ctx_ndlp;
2907
2908 /* Check to see if there are any deferred events to process */
2909 if (ndlp) {
2910 lpfc_printf_vlog(
2911 vport,
2912 KERN_INFO, LOG_MBOX | LOG_DISCOVERY,
2913 "1438 UNREG cmpl deferred mbox x%x "
2914 "on NPort x%x Data: x%lx x%x x%px x%lx x%x\n",
2915 ndlp->nlp_rpi, ndlp->nlp_DID,
2916 ndlp->nlp_flag, ndlp->nlp_defer_did,
2917 ndlp, vport->load_flag, kref_read(&ndlp->kref));
2918
2919 if (test_bit(NLP_UNREG_INP, &ndlp->nlp_flag) &&
2920 ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING) {
2921 clear_bit(NLP_UNREG_INP, &ndlp->nlp_flag);
2922 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING;
2923 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0);
2924 } else {
2925 clear_bit(NLP_UNREG_INP, &ndlp->nlp_flag);
2926 }
2927
2928 /* The unreg_login mailbox is complete and had a
2929 * reference that has to be released. The PLOGI
2930 * got its own ref.
2931 */
2932 lpfc_nlp_put(ndlp);
2933 pmb->ctx_ndlp = NULL;
2934 }
2935 }
2936
2937 /* This nlp_put pairs with lpfc_sli4_resume_rpi */
2938 if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) {
2939 ndlp = pmb->ctx_ndlp;
2940 lpfc_nlp_put(ndlp);
2941 }
2942
2943 /* Check security permission status on INIT_LINK mailbox command */
2944 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) &&
2945 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION))
2946 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2947 "2860 SLI authentication is required "
2948 "for INIT_LINK but has not done yet\n");
2949
2950 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG)
2951 lpfc_sli4_mbox_cmd_free(phba, pmb);
2952 else
2953 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
2954 }
2955 /**
2956 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler
2957 * @phba: Pointer to HBA context object.
2958 * @pmb: Pointer to mailbox object.
2959 *
2960 * This function is the unreg rpi mailbox completion handler. It
2961 * frees the memory resources associated with the completed mailbox
2962 * command. An additional reference is put on the ndlp to prevent
2963 * lpfc_nlp_release from freeing the rpi bit in the bitmask before
2964 * the unreg mailbox command completes, this routine puts the
2965 * reference back.
2966 *
2967 **/
2968 void
lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmb)2969 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2970 {
2971 struct lpfc_vport *vport = pmb->vport;
2972 struct lpfc_nodelist *ndlp;
2973 bool unreg_inp;
2974
2975 ndlp = pmb->ctx_ndlp;
2976 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2977 if (phba->sli_rev == LPFC_SLI_REV4 &&
2978 (bf_get(lpfc_sli_intf_if_type,
2979 &phba->sli4_hba.sli_intf) >=
2980 LPFC_SLI_INTF_IF_TYPE_2)) {
2981 if (ndlp) {
2982 lpfc_printf_vlog(
2983 vport, KERN_INFO,
2984 LOG_MBOX | LOG_SLI | LOG_NODE,
2985 "0010 UNREG_LOGIN vpi:x%x "
2986 "rpi:%x DID:%x defer x%x flg x%lx "
2987 "x%px\n",
2988 vport->vpi, ndlp->nlp_rpi,
2989 ndlp->nlp_DID, ndlp->nlp_defer_did,
2990 ndlp->nlp_flag,
2991 ndlp);
2992
2993 /* Cleanup the nlp_flag now that the UNREG RPI
2994 * has completed.
2995 */
2996 unreg_inp = test_and_clear_bit(NLP_UNREG_INP,
2997 &ndlp->nlp_flag);
2998 clear_bit(NLP_LOGO_ACC, &ndlp->nlp_flag);
2999
3000 /* Check to see if there are any deferred
3001 * events to process
3002 */
3003 if (unreg_inp &&
3004 ndlp->nlp_defer_did !=
3005 NLP_EVT_NOTHING_PENDING) {
3006 lpfc_printf_vlog(
3007 vport, KERN_INFO,
3008 LOG_MBOX | LOG_SLI | LOG_NODE,
3009 "4111 UNREG cmpl deferred "
3010 "clr x%x on "
3011 "NPort x%x Data: x%x x%px\n",
3012 ndlp->nlp_rpi, ndlp->nlp_DID,
3013 ndlp->nlp_defer_did, ndlp);
3014 ndlp->nlp_defer_did =
3015 NLP_EVT_NOTHING_PENDING;
3016 lpfc_issue_els_plogi(
3017 vport, ndlp->nlp_DID, 0);
3018 }
3019
3020 lpfc_nlp_put(ndlp);
3021 }
3022 }
3023 }
3024
3025 mempool_free(pmb, phba->mbox_mem_pool);
3026 }
3027
3028 /**
3029 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware
3030 * @phba: Pointer to HBA context object.
3031 *
3032 * This function is called with no lock held. This function processes all
3033 * the completed mailbox commands and gives it to upper layers. The interrupt
3034 * service routine processes mailbox completion interrupt and adds completed
3035 * mailbox commands to the mboxq_cmpl queue and signals the worker thread.
3036 * Worker thread call lpfc_sli_handle_mb_event, which will return the
3037 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This
3038 * function returns the mailbox commands to the upper layer by calling the
3039 * completion handler function of each mailbox.
3040 **/
3041 int
lpfc_sli_handle_mb_event(struct lpfc_hba * phba)3042 lpfc_sli_handle_mb_event(struct lpfc_hba *phba)
3043 {
3044 MAILBOX_t *pmbox;
3045 LPFC_MBOXQ_t *pmb;
3046 int rc;
3047 LIST_HEAD(cmplq);
3048
3049 phba->sli.slistat.mbox_event++;
3050
3051 /* Get all completed mailboxe buffers into the cmplq */
3052 spin_lock_irq(&phba->hbalock);
3053 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq);
3054 spin_unlock_irq(&phba->hbalock);
3055
3056 /* Get a Mailbox buffer to setup mailbox commands for callback */
3057 do {
3058 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list);
3059 if (pmb == NULL)
3060 break;
3061
3062 pmbox = &pmb->u.mb;
3063
3064 if (pmbox->mbxCommand != MBX_HEARTBEAT) {
3065 if (pmb->vport) {
3066 lpfc_debugfs_disc_trc(pmb->vport,
3067 LPFC_DISC_TRC_MBOX_VPORT,
3068 "MBOX cmpl vport: cmd:x%x mb:x%x x%x",
3069 (uint32_t)pmbox->mbxCommand,
3070 pmbox->un.varWords[0],
3071 pmbox->un.varWords[1]);
3072 }
3073 else {
3074 lpfc_debugfs_disc_trc(phba->pport,
3075 LPFC_DISC_TRC_MBOX,
3076 "MBOX cmpl: cmd:x%x mb:x%x x%x",
3077 (uint32_t)pmbox->mbxCommand,
3078 pmbox->un.varWords[0],
3079 pmbox->un.varWords[1]);
3080 }
3081 }
3082
3083 /*
3084 * It is a fatal error if unknown mbox command completion.
3085 */
3086 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) ==
3087 MBX_SHUTDOWN) {
3088 /* Unknown mailbox command compl */
3089 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3090 "(%d):0323 Unknown Mailbox command "
3091 "x%x (x%x/x%x) Cmpl\n",
3092 pmb->vport ? pmb->vport->vpi :
3093 LPFC_VPORT_UNKNOWN,
3094 pmbox->mbxCommand,
3095 lpfc_sli_config_mbox_subsys_get(phba,
3096 pmb),
3097 lpfc_sli_config_mbox_opcode_get(phba,
3098 pmb));
3099 phba->link_state = LPFC_HBA_ERROR;
3100 phba->work_hs = HS_FFER3;
3101 lpfc_handle_eratt(phba);
3102 continue;
3103 }
3104
3105 if (pmbox->mbxStatus) {
3106 phba->sli.slistat.mbox_stat_err++;
3107 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) {
3108 /* Mbox cmd cmpl error - RETRYing */
3109 lpfc_printf_log(phba, KERN_INFO,
3110 LOG_MBOX | LOG_SLI,
3111 "(%d):0305 Mbox cmd cmpl "
3112 "error - RETRYing Data: x%x "
3113 "(x%x/x%x) x%x x%x x%x\n",
3114 pmb->vport ? pmb->vport->vpi :
3115 LPFC_VPORT_UNKNOWN,
3116 pmbox->mbxCommand,
3117 lpfc_sli_config_mbox_subsys_get(phba,
3118 pmb),
3119 lpfc_sli_config_mbox_opcode_get(phba,
3120 pmb),
3121 pmbox->mbxStatus,
3122 pmbox->un.varWords[0],
3123 pmb->vport ? pmb->vport->port_state :
3124 LPFC_VPORT_UNKNOWN);
3125 pmbox->mbxStatus = 0;
3126 pmbox->mbxOwner = OWN_HOST;
3127 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
3128 if (rc != MBX_NOT_FINISHED)
3129 continue;
3130 }
3131 }
3132
3133 /* Mailbox cmd <cmd> Cmpl <cmpl> */
3134 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
3135 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps "
3136 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
3137 "x%x x%x x%x\n",
3138 pmb->vport ? pmb->vport->vpi : 0,
3139 pmbox->mbxCommand,
3140 lpfc_sli_config_mbox_subsys_get(phba, pmb),
3141 lpfc_sli_config_mbox_opcode_get(phba, pmb),
3142 pmb->mbox_cmpl,
3143 *((uint32_t *) pmbox),
3144 pmbox->un.varWords[0],
3145 pmbox->un.varWords[1],
3146 pmbox->un.varWords[2],
3147 pmbox->un.varWords[3],
3148 pmbox->un.varWords[4],
3149 pmbox->un.varWords[5],
3150 pmbox->un.varWords[6],
3151 pmbox->un.varWords[7],
3152 pmbox->un.varWords[8],
3153 pmbox->un.varWords[9],
3154 pmbox->un.varWords[10]);
3155
3156 if (pmb->mbox_cmpl)
3157 pmb->mbox_cmpl(phba,pmb);
3158 } while (1);
3159 return 0;
3160 }
3161
3162 /**
3163 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag
3164 * @phba: Pointer to HBA context object.
3165 * @pring: Pointer to driver SLI ring object.
3166 * @tag: buffer tag.
3167 *
3168 * This function is called with no lock held. When QUE_BUFTAG_BIT bit
3169 * is set in the tag the buffer is posted for a particular exchange,
3170 * the function will return the buffer without replacing the buffer.
3171 * If the buffer is for unsolicited ELS or CT traffic, this function
3172 * returns the buffer and also posts another buffer to the firmware.
3173 **/
3174 static struct lpfc_dmabuf *
lpfc_sli_get_buff(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t tag)3175 lpfc_sli_get_buff(struct lpfc_hba *phba,
3176 struct lpfc_sli_ring *pring,
3177 uint32_t tag)
3178 {
3179 struct hbq_dmabuf *hbq_entry;
3180
3181 if (tag & QUE_BUFTAG_BIT)
3182 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag);
3183 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag);
3184 if (!hbq_entry)
3185 return NULL;
3186 return &hbq_entry->dbuf;
3187 }
3188
3189 /**
3190 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer
3191 * containing a NVME LS request.
3192 * @phba: pointer to lpfc hba data structure.
3193 * @piocb: pointer to the iocbq struct representing the sequence starting
3194 * frame.
3195 *
3196 * This routine initially validates the NVME LS, validates there is a login
3197 * with the port that sent the LS, and then calls the appropriate nvme host
3198 * or target LS request handler.
3199 **/
3200 static void
lpfc_nvme_unsol_ls_handler(struct lpfc_hba * phba,struct lpfc_iocbq * piocb)3201 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
3202 {
3203 struct lpfc_nodelist *ndlp;
3204 struct lpfc_dmabuf *d_buf;
3205 struct hbq_dmabuf *nvmebuf;
3206 struct fc_frame_header *fc_hdr;
3207 struct lpfc_async_xchg_ctx *axchg = NULL;
3208 char *failwhy = NULL;
3209 uint32_t oxid, sid, did, fctl, size;
3210 int ret = 1;
3211
3212 d_buf = piocb->cmd_dmabuf;
3213
3214 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
3215 fc_hdr = nvmebuf->hbuf.virt;
3216 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
3217 sid = sli4_sid_from_fc_hdr(fc_hdr);
3218 did = sli4_did_from_fc_hdr(fc_hdr);
3219 fctl = (fc_hdr->fh_f_ctl[0] << 16 |
3220 fc_hdr->fh_f_ctl[1] << 8 |
3221 fc_hdr->fh_f_ctl[2]);
3222 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl);
3223
3224 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n",
3225 oxid, size, sid);
3226
3227 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) {
3228 failwhy = "Driver Unloading";
3229 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) {
3230 failwhy = "NVME FC4 Disabled";
3231 } else if (!phba->nvmet_support && !phba->pport->localport) {
3232 failwhy = "No Localport";
3233 } else if (phba->nvmet_support && !phba->targetport) {
3234 failwhy = "No Targetport";
3235 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) {
3236 failwhy = "Bad NVME LS R_CTL";
3237 } else if (unlikely((fctl & 0x00FF0000) !=
3238 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) {
3239 failwhy = "Bad NVME LS F_CTL";
3240 } else {
3241 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC);
3242 if (!axchg)
3243 failwhy = "No CTX memory";
3244 }
3245
3246 if (unlikely(failwhy)) {
3247 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3248 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n",
3249 sid, oxid, failwhy);
3250 goto out_fail;
3251 }
3252
3253 /* validate the source of the LS is logged in */
3254 ndlp = lpfc_findnode_did(phba->pport, sid);
3255 if (!ndlp ||
3256 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
3257 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
3258 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC,
3259 "6216 NVME Unsol rcv: No ndlp: "
3260 "NPort_ID x%x oxid x%x\n",
3261 sid, oxid);
3262 goto out_fail;
3263 }
3264
3265 axchg->phba = phba;
3266 axchg->ndlp = ndlp;
3267 axchg->size = size;
3268 axchg->oxid = oxid;
3269 axchg->sid = sid;
3270 axchg->wqeq = NULL;
3271 axchg->state = LPFC_NVME_STE_LS_RCV;
3272 axchg->entry_cnt = 1;
3273 axchg->rqb_buffer = (void *)nvmebuf;
3274 axchg->hdwq = &phba->sli4_hba.hdwq[0];
3275 axchg->payload = nvmebuf->dbuf.virt;
3276 INIT_LIST_HEAD(&axchg->list);
3277
3278 if (phba->nvmet_support) {
3279 ret = lpfc_nvmet_handle_lsreq(phba, axchg);
3280 spin_lock_irq(&ndlp->lock);
3281 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) {
3282 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH;
3283 spin_unlock_irq(&ndlp->lock);
3284
3285 /* This reference is a single occurrence to hold the
3286 * node valid until the nvmet transport calls
3287 * host_release.
3288 */
3289 if (!lpfc_nlp_get(ndlp))
3290 goto out_fail;
3291
3292 lpfc_printf_log(phba, KERN_ERR, LOG_NODE,
3293 "6206 NVMET unsol ls_req ndlp x%px "
3294 "DID x%x xflags x%x refcnt %d\n",
3295 ndlp, ndlp->nlp_DID,
3296 ndlp->fc4_xpt_flags,
3297 kref_read(&ndlp->kref));
3298 } else {
3299 spin_unlock_irq(&ndlp->lock);
3300 }
3301 } else {
3302 ret = lpfc_nvme_handle_lsreq(phba, axchg);
3303 }
3304
3305 /* if zero, LS was successfully handled. If non-zero, LS not handled */
3306 if (!ret)
3307 return;
3308
3309 out_fail:
3310 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3311 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X "
3312 "NVMe%s handler failed %d\n",
3313 did, sid, oxid,
3314 (phba->nvmet_support) ? "T" : "I", ret);
3315
3316 /* recycle receive buffer */
3317 lpfc_in_buf_free(phba, &nvmebuf->dbuf);
3318
3319 /* If start of new exchange, abort it */
3320 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX)))
3321 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid);
3322
3323 if (ret)
3324 kfree(axchg);
3325 }
3326
3327 /**
3328 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence
3329 * @phba: Pointer to HBA context object.
3330 * @pring: Pointer to driver SLI ring object.
3331 * @saveq: Pointer to the iocbq struct representing the sequence starting frame.
3332 * @fch_r_ctl: the r_ctl for the first frame of the sequence.
3333 * @fch_type: the type for the first frame of the sequence.
3334 *
3335 * This function is called with no lock held. This function uses the r_ctl and
3336 * type of the received sequence to find the correct callback function to call
3337 * to process the sequence.
3338 **/
3339 static int
lpfc_complete_unsol_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * saveq,uint32_t fch_r_ctl,uint32_t fch_type)3340 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3341 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl,
3342 uint32_t fch_type)
3343 {
3344 int i;
3345
3346 switch (fch_type) {
3347 case FC_TYPE_NVME:
3348 lpfc_nvme_unsol_ls_handler(phba, saveq);
3349 return 1;
3350 default:
3351 break;
3352 }
3353
3354 /* unSolicited Responses */
3355 if (pring->prt[0].profile) {
3356 if (pring->prt[0].lpfc_sli_rcv_unsol_event)
3357 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring,
3358 saveq);
3359 return 1;
3360 }
3361 /* We must search, based on rctl / type
3362 for the right routine */
3363 for (i = 0; i < pring->num_mask; i++) {
3364 if ((pring->prt[i].rctl == fch_r_ctl) &&
3365 (pring->prt[i].type == fch_type)) {
3366 if (pring->prt[i].lpfc_sli_rcv_unsol_event)
3367 (pring->prt[i].lpfc_sli_rcv_unsol_event)
3368 (phba, pring, saveq);
3369 return 1;
3370 }
3371 }
3372 return 0;
3373 }
3374
3375 static void
lpfc_sli_prep_unsol_wqe(struct lpfc_hba * phba,struct lpfc_iocbq * saveq)3376 lpfc_sli_prep_unsol_wqe(struct lpfc_hba *phba,
3377 struct lpfc_iocbq *saveq)
3378 {
3379 IOCB_t *irsp;
3380 union lpfc_wqe128 *wqe;
3381 u16 i = 0;
3382
3383 irsp = &saveq->iocb;
3384 wqe = &saveq->wqe;
3385
3386 /* Fill wcqe with the IOCB status fields */
3387 bf_set(lpfc_wcqe_c_status, &saveq->wcqe_cmpl, irsp->ulpStatus);
3388 saveq->wcqe_cmpl.word3 = irsp->ulpBdeCount;
3389 saveq->wcqe_cmpl.parameter = irsp->un.ulpWord[4];
3390 saveq->wcqe_cmpl.total_data_placed = irsp->unsli3.rcvsli3.acc_len;
3391
3392 /* Source ID */
3393 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, irsp->un.rcvels.parmRo);
3394
3395 /* rx-id of the response frame */
3396 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, irsp->ulpContext);
3397
3398 /* ox-id of the frame */
3399 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com,
3400 irsp->unsli3.rcvsli3.ox_id);
3401
3402 /* DID */
3403 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest,
3404 irsp->un.rcvels.remoteID);
3405
3406 /* unsol data len */
3407 for (i = 0; i < irsp->ulpBdeCount; i++) {
3408 struct lpfc_hbq_entry *hbqe = NULL;
3409
3410 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
3411 if (i == 0) {
3412 hbqe = (struct lpfc_hbq_entry *)
3413 &irsp->un.ulpWord[0];
3414 saveq->wqe.gen_req.bde.tus.f.bdeSize =
3415 hbqe->bde.tus.f.bdeSize;
3416 } else if (i == 1) {
3417 hbqe = (struct lpfc_hbq_entry *)
3418 &irsp->unsli3.sli3Words[4];
3419 saveq->unsol_rcv_len = hbqe->bde.tus.f.bdeSize;
3420 }
3421 }
3422 }
3423 }
3424
3425 /**
3426 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler
3427 * @phba: Pointer to HBA context object.
3428 * @pring: Pointer to driver SLI ring object.
3429 * @saveq: Pointer to the unsolicited iocb.
3430 *
3431 * This function is called with no lock held by the ring event handler
3432 * when there is an unsolicited iocb posted to the response ring by the
3433 * firmware. This function gets the buffer associated with the iocbs
3434 * and calls the event handler for the ring. This function handles both
3435 * qring buffers and hbq buffers.
3436 * When the function returns 1 the caller can free the iocb object otherwise
3437 * upper layer functions will free the iocb objects.
3438 **/
3439 static int
lpfc_sli_process_unsol_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * saveq)3440 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3441 struct lpfc_iocbq *saveq)
3442 {
3443 IOCB_t * irsp;
3444 WORD5 * w5p;
3445 dma_addr_t paddr;
3446 uint32_t Rctl, Type;
3447 struct lpfc_iocbq *iocbq;
3448 struct lpfc_dmabuf *dmzbuf;
3449
3450 irsp = &saveq->iocb;
3451 saveq->vport = phba->pport;
3452
3453 if (irsp->ulpCommand == CMD_ASYNC_STATUS) {
3454 if (pring->lpfc_sli_rcv_async_status)
3455 pring->lpfc_sli_rcv_async_status(phba, pring, saveq);
3456 else
3457 lpfc_printf_log(phba,
3458 KERN_WARNING,
3459 LOG_SLI,
3460 "0316 Ring %d handler: unexpected "
3461 "ASYNC_STATUS iocb received evt_code "
3462 "0x%x\n",
3463 pring->ringno,
3464 irsp->un.asyncstat.evt_code);
3465 return 1;
3466 }
3467
3468 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) &&
3469 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) {
3470 if (irsp->ulpBdeCount > 0) {
3471 dmzbuf = lpfc_sli_get_buff(phba, pring,
3472 irsp->un.ulpWord[3]);
3473 lpfc_in_buf_free(phba, dmzbuf);
3474 }
3475
3476 if (irsp->ulpBdeCount > 1) {
3477 dmzbuf = lpfc_sli_get_buff(phba, pring,
3478 irsp->unsli3.sli3Words[3]);
3479 lpfc_in_buf_free(phba, dmzbuf);
3480 }
3481
3482 if (irsp->ulpBdeCount > 2) {
3483 dmzbuf = lpfc_sli_get_buff(phba, pring,
3484 irsp->unsli3.sli3Words[7]);
3485 lpfc_in_buf_free(phba, dmzbuf);
3486 }
3487
3488 return 1;
3489 }
3490
3491 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
3492 if (irsp->ulpBdeCount != 0) {
3493 saveq->cmd_dmabuf = lpfc_sli_get_buff(phba, pring,
3494 irsp->un.ulpWord[3]);
3495 if (!saveq->cmd_dmabuf)
3496 lpfc_printf_log(phba,
3497 KERN_ERR,
3498 LOG_SLI,
3499 "0341 Ring %d Cannot find buffer for "
3500 "an unsolicited iocb. tag 0x%x\n",
3501 pring->ringno,
3502 irsp->un.ulpWord[3]);
3503 }
3504 if (irsp->ulpBdeCount == 2) {
3505 saveq->bpl_dmabuf = lpfc_sli_get_buff(phba, pring,
3506 irsp->unsli3.sli3Words[7]);
3507 if (!saveq->bpl_dmabuf)
3508 lpfc_printf_log(phba,
3509 KERN_ERR,
3510 LOG_SLI,
3511 "0342 Ring %d Cannot find buffer for an"
3512 " unsolicited iocb. tag 0x%x\n",
3513 pring->ringno,
3514 irsp->unsli3.sli3Words[7]);
3515 }
3516 list_for_each_entry(iocbq, &saveq->list, list) {
3517 irsp = &iocbq->iocb;
3518 if (irsp->ulpBdeCount != 0) {
3519 iocbq->cmd_dmabuf = lpfc_sli_get_buff(phba,
3520 pring,
3521 irsp->un.ulpWord[3]);
3522 if (!iocbq->cmd_dmabuf)
3523 lpfc_printf_log(phba,
3524 KERN_ERR,
3525 LOG_SLI,
3526 "0343 Ring %d Cannot find "
3527 "buffer for an unsolicited iocb"
3528 ". tag 0x%x\n", pring->ringno,
3529 irsp->un.ulpWord[3]);
3530 }
3531 if (irsp->ulpBdeCount == 2) {
3532 iocbq->bpl_dmabuf = lpfc_sli_get_buff(phba,
3533 pring,
3534 irsp->unsli3.sli3Words[7]);
3535 if (!iocbq->bpl_dmabuf)
3536 lpfc_printf_log(phba,
3537 KERN_ERR,
3538 LOG_SLI,
3539 "0344 Ring %d Cannot find "
3540 "buffer for an unsolicited "
3541 "iocb. tag 0x%x\n",
3542 pring->ringno,
3543 irsp->unsli3.sli3Words[7]);
3544 }
3545 }
3546 } else {
3547 paddr = getPaddr(irsp->un.cont64[0].addrHigh,
3548 irsp->un.cont64[0].addrLow);
3549 saveq->cmd_dmabuf = lpfc_sli_ringpostbuf_get(phba, pring,
3550 paddr);
3551 if (irsp->ulpBdeCount == 2) {
3552 paddr = getPaddr(irsp->un.cont64[1].addrHigh,
3553 irsp->un.cont64[1].addrLow);
3554 saveq->bpl_dmabuf = lpfc_sli_ringpostbuf_get(phba,
3555 pring,
3556 paddr);
3557 }
3558 }
3559
3560 if (irsp->ulpBdeCount != 0 &&
3561 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX ||
3562 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) {
3563 int found = 0;
3564
3565 /* search continue save q for same XRI */
3566 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) {
3567 if (iocbq->iocb.unsli3.rcvsli3.ox_id ==
3568 saveq->iocb.unsli3.rcvsli3.ox_id) {
3569 list_add_tail(&saveq->list, &iocbq->list);
3570 found = 1;
3571 break;
3572 }
3573 }
3574 if (!found)
3575 list_add_tail(&saveq->clist,
3576 &pring->iocb_continue_saveq);
3577
3578 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) {
3579 list_del_init(&iocbq->clist);
3580 saveq = iocbq;
3581 irsp = &saveq->iocb;
3582 } else {
3583 return 0;
3584 }
3585 }
3586 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) ||
3587 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) ||
3588 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) {
3589 Rctl = FC_RCTL_ELS_REQ;
3590 Type = FC_TYPE_ELS;
3591 } else {
3592 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]);
3593 Rctl = w5p->hcsw.Rctl;
3594 Type = w5p->hcsw.Type;
3595
3596 /* Firmware Workaround */
3597 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) &&
3598 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX ||
3599 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
3600 Rctl = FC_RCTL_ELS_REQ;
3601 Type = FC_TYPE_ELS;
3602 w5p->hcsw.Rctl = Rctl;
3603 w5p->hcsw.Type = Type;
3604 }
3605 }
3606
3607 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) &&
3608 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX ||
3609 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
3610 if (irsp->unsli3.rcvsli3.vpi == 0xffff)
3611 saveq->vport = phba->pport;
3612 else
3613 saveq->vport = lpfc_find_vport_by_vpid(phba,
3614 irsp->unsli3.rcvsli3.vpi);
3615 }
3616
3617 /* Prepare WQE with Unsol frame */
3618 lpfc_sli_prep_unsol_wqe(phba, saveq);
3619
3620 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type))
3621 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3622 "0313 Ring %d handler: unexpected Rctl x%x "
3623 "Type x%x received\n",
3624 pring->ringno, Rctl, Type);
3625
3626 return 1;
3627 }
3628
3629 /**
3630 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb
3631 * @phba: Pointer to HBA context object.
3632 * @pring: Pointer to driver SLI ring object.
3633 * @prspiocb: Pointer to response iocb object.
3634 *
3635 * This function looks up the iocb_lookup table to get the command iocb
3636 * corresponding to the given response iocb using the iotag of the
3637 * response iocb. The driver calls this function with the hbalock held
3638 * for SLI3 ports or the ring lock held for SLI4 ports.
3639 * This function returns the command iocb object if it finds the command
3640 * iocb else returns NULL.
3641 **/
3642 static struct lpfc_iocbq *
lpfc_sli_iocbq_lookup(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * prspiocb)3643 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba,
3644 struct lpfc_sli_ring *pring,
3645 struct lpfc_iocbq *prspiocb)
3646 {
3647 struct lpfc_iocbq *cmd_iocb = NULL;
3648 u16 iotag;
3649
3650 if (phba->sli_rev == LPFC_SLI_REV4)
3651 iotag = get_wqe_reqtag(prspiocb);
3652 else
3653 iotag = prspiocb->iocb.ulpIoTag;
3654
3655 if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3656 cmd_iocb = phba->sli.iocbq_lookup[iotag];
3657 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) {
3658 /* remove from txcmpl queue list */
3659 list_del_init(&cmd_iocb->list);
3660 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
3661 pring->txcmplq_cnt--;
3662 return cmd_iocb;
3663 }
3664 }
3665
3666 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3667 "0317 iotag x%x is out of "
3668 "range: max iotag x%x\n",
3669 iotag, phba->sli.last_iotag);
3670 return NULL;
3671 }
3672
3673 /**
3674 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag
3675 * @phba: Pointer to HBA context object.
3676 * @pring: Pointer to driver SLI ring object.
3677 * @iotag: IOCB tag.
3678 *
3679 * This function looks up the iocb_lookup table to get the command iocb
3680 * corresponding to the given iotag. The driver calls this function with
3681 * the ring lock held because this function is an SLI4 port only helper.
3682 * This function returns the command iocb object if it finds the command
3683 * iocb else returns NULL.
3684 **/
3685 static struct lpfc_iocbq *
lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint16_t iotag)3686 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba,
3687 struct lpfc_sli_ring *pring, uint16_t iotag)
3688 {
3689 struct lpfc_iocbq *cmd_iocb = NULL;
3690
3691 if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3692 cmd_iocb = phba->sli.iocbq_lookup[iotag];
3693 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) {
3694 /* remove from txcmpl queue list */
3695 list_del_init(&cmd_iocb->list);
3696 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
3697 pring->txcmplq_cnt--;
3698 return cmd_iocb;
3699 }
3700 }
3701
3702 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3703 "0372 iotag x%x lookup error: max iotag (x%x) "
3704 "cmd_flag x%x\n",
3705 iotag, phba->sli.last_iotag,
3706 cmd_iocb ? cmd_iocb->cmd_flag : 0xffff);
3707 return NULL;
3708 }
3709
3710 /**
3711 * lpfc_sli_process_sol_iocb - process solicited iocb completion
3712 * @phba: Pointer to HBA context object.
3713 * @pring: Pointer to driver SLI ring object.
3714 * @saveq: Pointer to the response iocb to be processed.
3715 *
3716 * This function is called by the ring event handler for non-fcp
3717 * rings when there is a new response iocb in the response ring.
3718 * The caller is not required to hold any locks. This function
3719 * gets the command iocb associated with the response iocb and
3720 * calls the completion handler for the command iocb. If there
3721 * is no completion handler, the function will free the resources
3722 * associated with command iocb. If the response iocb is for
3723 * an already aborted command iocb, the status of the completion
3724 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED.
3725 * This function always returns 1.
3726 **/
3727 static int
lpfc_sli_process_sol_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * saveq)3728 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3729 struct lpfc_iocbq *saveq)
3730 {
3731 struct lpfc_iocbq *cmdiocbp;
3732 unsigned long iflag;
3733 u32 ulp_command, ulp_status, ulp_word4, ulp_context, iotag;
3734
3735 if (phba->sli_rev == LPFC_SLI_REV4)
3736 spin_lock_irqsave(&pring->ring_lock, iflag);
3737 else
3738 spin_lock_irqsave(&phba->hbalock, iflag);
3739 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq);
3740 if (phba->sli_rev == LPFC_SLI_REV4)
3741 spin_unlock_irqrestore(&pring->ring_lock, iflag);
3742 else
3743 spin_unlock_irqrestore(&phba->hbalock, iflag);
3744
3745 ulp_command = get_job_cmnd(phba, saveq);
3746 ulp_status = get_job_ulpstatus(phba, saveq);
3747 ulp_word4 = get_job_word4(phba, saveq);
3748 ulp_context = get_job_ulpcontext(phba, saveq);
3749 if (phba->sli_rev == LPFC_SLI_REV4)
3750 iotag = get_wqe_reqtag(saveq);
3751 else
3752 iotag = saveq->iocb.ulpIoTag;
3753
3754 if (cmdiocbp) {
3755 ulp_command = get_job_cmnd(phba, cmdiocbp);
3756 if (cmdiocbp->cmd_cmpl) {
3757 /*
3758 * If an ELS command failed send an event to mgmt
3759 * application.
3760 */
3761 if (ulp_status &&
3762 (pring->ringno == LPFC_ELS_RING) &&
3763 (ulp_command == CMD_ELS_REQUEST64_CR))
3764 lpfc_send_els_failure_event(phba,
3765 cmdiocbp, saveq);
3766
3767 /*
3768 * Post all ELS completions to the worker thread.
3769 * All other are passed to the completion callback.
3770 */
3771 if (pring->ringno == LPFC_ELS_RING) {
3772 if ((phba->sli_rev < LPFC_SLI_REV4) &&
3773 (cmdiocbp->cmd_flag &
3774 LPFC_DRIVER_ABORTED)) {
3775 spin_lock_irqsave(&phba->hbalock,
3776 iflag);
3777 cmdiocbp->cmd_flag &=
3778 ~LPFC_DRIVER_ABORTED;
3779 spin_unlock_irqrestore(&phba->hbalock,
3780 iflag);
3781 saveq->iocb.ulpStatus =
3782 IOSTAT_LOCAL_REJECT;
3783 saveq->iocb.un.ulpWord[4] =
3784 IOERR_SLI_ABORTED;
3785
3786 /* Firmware could still be in progress
3787 * of DMAing payload, so don't free data
3788 * buffer till after a hbeat.
3789 */
3790 spin_lock_irqsave(&phba->hbalock,
3791 iflag);
3792 saveq->cmd_flag |= LPFC_DELAY_MEM_FREE;
3793 spin_unlock_irqrestore(&phba->hbalock,
3794 iflag);
3795 }
3796 if (phba->sli_rev == LPFC_SLI_REV4) {
3797 if (saveq->cmd_flag &
3798 LPFC_EXCHANGE_BUSY) {
3799 /* Set cmdiocb flag for the
3800 * exchange busy so sgl (xri)
3801 * will not be released until
3802 * the abort xri is received
3803 * from hba.
3804 */
3805 spin_lock_irqsave(
3806 &phba->hbalock, iflag);
3807 cmdiocbp->cmd_flag |=
3808 LPFC_EXCHANGE_BUSY;
3809 spin_unlock_irqrestore(
3810 &phba->hbalock, iflag);
3811 }
3812 if (cmdiocbp->cmd_flag &
3813 LPFC_DRIVER_ABORTED) {
3814 /*
3815 * Clear LPFC_DRIVER_ABORTED
3816 * bit in case it was driver
3817 * initiated abort.
3818 */
3819 spin_lock_irqsave(
3820 &phba->hbalock, iflag);
3821 cmdiocbp->cmd_flag &=
3822 ~LPFC_DRIVER_ABORTED;
3823 spin_unlock_irqrestore(
3824 &phba->hbalock, iflag);
3825 set_job_ulpstatus(cmdiocbp,
3826 IOSTAT_LOCAL_REJECT);
3827 set_job_ulpword4(cmdiocbp,
3828 IOERR_ABORT_REQUESTED);
3829 /*
3830 * For SLI4, irspiocb contains
3831 * NO_XRI in sli_xritag, it
3832 * shall not affect releasing
3833 * sgl (xri) process.
3834 */
3835 set_job_ulpstatus(saveq,
3836 IOSTAT_LOCAL_REJECT);
3837 set_job_ulpword4(saveq,
3838 IOERR_SLI_ABORTED);
3839 spin_lock_irqsave(
3840 &phba->hbalock, iflag);
3841 saveq->cmd_flag |=
3842 LPFC_DELAY_MEM_FREE;
3843 spin_unlock_irqrestore(
3844 &phba->hbalock, iflag);
3845 }
3846 }
3847 }
3848 cmdiocbp->cmd_cmpl(phba, cmdiocbp, saveq);
3849 } else
3850 lpfc_sli_release_iocbq(phba, cmdiocbp);
3851 } else {
3852 /*
3853 * Unknown initiating command based on the response iotag.
3854 * This could be the case on the ELS ring because of
3855 * lpfc_els_abort().
3856 */
3857 if (pring->ringno != LPFC_ELS_RING) {
3858 /*
3859 * Ring <ringno> handler: unexpected completion IoTag
3860 * <IoTag>
3861 */
3862 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3863 "0322 Ring %d handler: "
3864 "unexpected completion IoTag x%x "
3865 "Data: x%x x%x x%x x%x\n",
3866 pring->ringno, iotag, ulp_status,
3867 ulp_word4, ulp_command, ulp_context);
3868 }
3869 }
3870
3871 return 1;
3872 }
3873
3874 /**
3875 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler
3876 * @phba: Pointer to HBA context object.
3877 * @pring: Pointer to driver SLI ring object.
3878 *
3879 * This function is called from the iocb ring event handlers when
3880 * put pointer is ahead of the get pointer for a ring. This function signal
3881 * an error attention condition to the worker thread and the worker
3882 * thread will transition the HBA to offline state.
3883 **/
3884 static void
lpfc_sli_rsp_pointers_error(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)3885 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3886 {
3887 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3888 /*
3889 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3890 * rsp ring <portRspMax>
3891 */
3892 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3893 "0312 Ring %d handler: portRspPut %d "
3894 "is bigger than rsp ring %d\n",
3895 pring->ringno, le32_to_cpu(pgp->rspPutInx),
3896 pring->sli.sli3.numRiocb);
3897
3898 phba->link_state = LPFC_HBA_ERROR;
3899
3900 /*
3901 * All error attention handlers are posted to
3902 * worker thread
3903 */
3904 phba->work_ha |= HA_ERATT;
3905 phba->work_hs = HS_FFER3;
3906
3907 lpfc_worker_wake_up(phba);
3908
3909 return;
3910 }
3911
3912 /**
3913 * lpfc_poll_eratt - Error attention polling timer timeout handler
3914 * @t: Context to fetch pointer to address of HBA context object from.
3915 *
3916 * This function is invoked by the Error Attention polling timer when the
3917 * timer times out. It will check the SLI Error Attention register for
3918 * possible attention events. If so, it will post an Error Attention event
3919 * and wake up worker thread to process it. Otherwise, it will set up the
3920 * Error Attention polling timer for the next poll.
3921 **/
lpfc_poll_eratt(struct timer_list * t)3922 void lpfc_poll_eratt(struct timer_list *t)
3923 {
3924 struct lpfc_hba *phba;
3925 uint32_t eratt = 0;
3926 uint64_t sli_intr, cnt;
3927
3928 phba = timer_container_of(phba, t, eratt_poll);
3929
3930 if (test_bit(FC_UNLOADING, &phba->pport->load_flag))
3931 return;
3932
3933 if (phba->sli_rev == LPFC_SLI_REV4 &&
3934 !test_bit(HBA_SETUP, &phba->hba_flag)) {
3935 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3936 "0663 HBA still initializing 0x%lx, restart "
3937 "timer\n",
3938 phba->hba_flag);
3939 goto restart_timer;
3940 }
3941
3942 /* Here we will also keep track of interrupts per sec of the hba */
3943 sli_intr = phba->sli.slistat.sli_intr;
3944
3945 if (phba->sli.slistat.sli_prev_intr > sli_intr)
3946 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) +
3947 sli_intr);
3948 else
3949 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr);
3950
3951 /* 64-bit integer division not supported on 32-bit x86 - use do_div */
3952 do_div(cnt, phba->eratt_poll_interval);
3953 phba->sli.slistat.sli_ips = cnt;
3954
3955 phba->sli.slistat.sli_prev_intr = sli_intr;
3956
3957 /* Check chip HA register for error event */
3958 eratt = lpfc_sli_check_eratt(phba);
3959
3960 if (eratt) {
3961 /* Tell the worker thread there is work to do */
3962 lpfc_worker_wake_up(phba);
3963 return;
3964 }
3965
3966 restart_timer:
3967 /* Restart the timer for next eratt poll */
3968 mod_timer(&phba->eratt_poll,
3969 jiffies + secs_to_jiffies(phba->eratt_poll_interval));
3970 return;
3971 }
3972
3973
3974 /**
3975 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring
3976 * @phba: Pointer to HBA context object.
3977 * @pring: Pointer to driver SLI ring object.
3978 * @mask: Host attention register mask for this ring.
3979 *
3980 * This function is called from the interrupt context when there is a ring
3981 * event for the fcp ring. The caller does not hold any lock.
3982 * The function processes each response iocb in the response ring until it
3983 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with
3984 * LE bit set. The function will call the completion handler of the command iocb
3985 * if the response iocb indicates a completion for a command iocb or it is
3986 * an abort completion. The function will call lpfc_sli_process_unsol_iocb
3987 * function if this is an unsolicited iocb.
3988 * This routine presumes LPFC_FCP_RING handling and doesn't bother
3989 * to check it explicitly.
3990 */
3991 int
lpfc_sli_handle_fast_ring_event(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t mask)3992 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba,
3993 struct lpfc_sli_ring *pring, uint32_t mask)
3994 {
3995 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3996 IOCB_t *irsp = NULL;
3997 IOCB_t *entry = NULL;
3998 struct lpfc_iocbq *cmdiocbq = NULL;
3999 struct lpfc_iocbq rspiocbq;
4000 uint32_t status;
4001 uint32_t portRspPut, portRspMax;
4002 int rc = 1;
4003 lpfc_iocb_type type;
4004 unsigned long iflag;
4005 uint32_t rsp_cmpl = 0;
4006
4007 spin_lock_irqsave(&phba->hbalock, iflag);
4008 pring->stats.iocb_event++;
4009
4010 /*
4011 * The next available response entry should never exceed the maximum
4012 * entries. If it does, treat it as an adapter hardware error.
4013 */
4014 portRspMax = pring->sli.sli3.numRiocb;
4015 portRspPut = le32_to_cpu(pgp->rspPutInx);
4016 if (unlikely(portRspPut >= portRspMax)) {
4017 lpfc_sli_rsp_pointers_error(phba, pring);
4018 spin_unlock_irqrestore(&phba->hbalock, iflag);
4019 return 1;
4020 }
4021 if (phba->fcp_ring_in_use) {
4022 spin_unlock_irqrestore(&phba->hbalock, iflag);
4023 return 1;
4024 } else
4025 phba->fcp_ring_in_use = 1;
4026
4027 rmb();
4028 while (pring->sli.sli3.rspidx != portRspPut) {
4029 /*
4030 * Fetch an entry off the ring and copy it into a local data
4031 * structure. The copy involves a byte-swap since the
4032 * network byte order and pci byte orders are different.
4033 */
4034 entry = lpfc_resp_iocb(phba, pring);
4035 phba->last_completion_time = jiffies;
4036
4037 if (++pring->sli.sli3.rspidx >= portRspMax)
4038 pring->sli.sli3.rspidx = 0;
4039
4040 lpfc_sli_pcimem_bcopy((uint32_t *) entry,
4041 (uint32_t *) &rspiocbq.iocb,
4042 phba->iocb_rsp_size);
4043 INIT_LIST_HEAD(&(rspiocbq.list));
4044 irsp = &rspiocbq.iocb;
4045
4046 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK);
4047 pring->stats.iocb_rsp++;
4048 rsp_cmpl++;
4049
4050 if (unlikely(irsp->ulpStatus)) {
4051 /*
4052 * If resource errors reported from HBA, reduce
4053 * queuedepths of the SCSI device.
4054 */
4055 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
4056 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
4057 IOERR_NO_RESOURCES)) {
4058 spin_unlock_irqrestore(&phba->hbalock, iflag);
4059 phba->lpfc_rampdown_queue_depth(phba);
4060 spin_lock_irqsave(&phba->hbalock, iflag);
4061 }
4062
4063 /* Rsp ring <ringno> error: IOCB */
4064 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
4065 "0336 Rsp Ring %d error: IOCB Data: "
4066 "x%x x%x x%x x%x x%x x%x x%x x%x\n",
4067 pring->ringno,
4068 irsp->un.ulpWord[0],
4069 irsp->un.ulpWord[1],
4070 irsp->un.ulpWord[2],
4071 irsp->un.ulpWord[3],
4072 irsp->un.ulpWord[4],
4073 irsp->un.ulpWord[5],
4074 *(uint32_t *)&irsp->un1,
4075 *((uint32_t *)&irsp->un1 + 1));
4076 }
4077
4078 switch (type) {
4079 case LPFC_ABORT_IOCB:
4080 case LPFC_SOL_IOCB:
4081 /*
4082 * Idle exchange closed via ABTS from port. No iocb
4083 * resources need to be recovered.
4084 */
4085 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) {
4086 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4087 "0333 IOCB cmd 0x%x"
4088 " processed. Skipping"
4089 " completion\n",
4090 irsp->ulpCommand);
4091 break;
4092 }
4093
4094 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring,
4095 &rspiocbq);
4096 if (unlikely(!cmdiocbq))
4097 break;
4098 if (cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED)
4099 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED;
4100 if (cmdiocbq->cmd_cmpl) {
4101 spin_unlock_irqrestore(&phba->hbalock, iflag);
4102 cmdiocbq->cmd_cmpl(phba, cmdiocbq, &rspiocbq);
4103 spin_lock_irqsave(&phba->hbalock, iflag);
4104 }
4105 break;
4106 case LPFC_UNSOL_IOCB:
4107 spin_unlock_irqrestore(&phba->hbalock, iflag);
4108 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq);
4109 spin_lock_irqsave(&phba->hbalock, iflag);
4110 break;
4111 default:
4112 if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
4113 char adaptermsg[LPFC_MAX_ADPTMSG];
4114 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
4115 memcpy(&adaptermsg[0], (uint8_t *) irsp,
4116 MAX_MSG_DATA);
4117 dev_warn(&((phba->pcidev)->dev),
4118 "lpfc%d: %s\n",
4119 phba->brd_no, adaptermsg);
4120 } else {
4121 /* Unknown IOCB command */
4122 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4123 "0334 Unknown IOCB command "
4124 "Data: x%x, x%x x%x x%x x%x\n",
4125 type, irsp->ulpCommand,
4126 irsp->ulpStatus,
4127 irsp->ulpIoTag,
4128 irsp->ulpContext);
4129 }
4130 break;
4131 }
4132
4133 /*
4134 * The response IOCB has been processed. Update the ring
4135 * pointer in SLIM. If the port response put pointer has not
4136 * been updated, sync the pgp->rspPutInx and fetch the new port
4137 * response put pointer.
4138 */
4139 writel(pring->sli.sli3.rspidx,
4140 &phba->host_gp[pring->ringno].rspGetInx);
4141
4142 if (pring->sli.sli3.rspidx == portRspPut)
4143 portRspPut = le32_to_cpu(pgp->rspPutInx);
4144 }
4145
4146 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) {
4147 pring->stats.iocb_rsp_full++;
4148 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
4149 writel(status, phba->CAregaddr);
4150 readl(phba->CAregaddr);
4151 }
4152 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
4153 pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
4154 pring->stats.iocb_cmd_empty++;
4155
4156 /* Force update of the local copy of cmdGetInx */
4157 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
4158 lpfc_sli_resume_iocb(phba, pring);
4159
4160 if ((pring->lpfc_sli_cmd_available))
4161 (pring->lpfc_sli_cmd_available) (phba, pring);
4162
4163 }
4164
4165 phba->fcp_ring_in_use = 0;
4166 spin_unlock_irqrestore(&phba->hbalock, iflag);
4167 return rc;
4168 }
4169
4170 /**
4171 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb
4172 * @phba: Pointer to HBA context object.
4173 * @pring: Pointer to driver SLI ring object.
4174 * @rspiocbp: Pointer to driver response IOCB object.
4175 *
4176 * This function is called from the worker thread when there is a slow-path
4177 * response IOCB to process. This function chains all the response iocbs until
4178 * seeing the iocb with the LE bit set. The function will call
4179 * lpfc_sli_process_sol_iocb function if the response iocb indicates a
4180 * completion of a command iocb. The function will call the
4181 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb.
4182 * The function frees the resources or calls the completion handler if this
4183 * iocb is an abort completion. The function returns NULL when the response
4184 * iocb has the LE bit set and all the chained iocbs are processed, otherwise
4185 * this function shall chain the iocb on to the iocb_continueq and return the
4186 * response iocb passed in.
4187 **/
4188 static struct lpfc_iocbq *
lpfc_sli_sp_handle_rspiocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * rspiocbp)4189 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
4190 struct lpfc_iocbq *rspiocbp)
4191 {
4192 struct lpfc_iocbq *saveq;
4193 struct lpfc_iocbq *cmdiocb;
4194 struct lpfc_iocbq *next_iocb;
4195 IOCB_t *irsp;
4196 uint32_t free_saveq;
4197 u8 cmd_type;
4198 lpfc_iocb_type type;
4199 unsigned long iflag;
4200 u32 ulp_status = get_job_ulpstatus(phba, rspiocbp);
4201 u32 ulp_word4 = get_job_word4(phba, rspiocbp);
4202 u32 ulp_command = get_job_cmnd(phba, rspiocbp);
4203 int rc;
4204
4205 spin_lock_irqsave(&phba->hbalock, iflag);
4206 /* First add the response iocb to the countinueq list */
4207 list_add_tail(&rspiocbp->list, &pring->iocb_continueq);
4208 pring->iocb_continueq_cnt++;
4209
4210 /*
4211 * By default, the driver expects to free all resources
4212 * associated with this iocb completion.
4213 */
4214 free_saveq = 1;
4215 saveq = list_get_first(&pring->iocb_continueq,
4216 struct lpfc_iocbq, list);
4217 list_del_init(&pring->iocb_continueq);
4218 pring->iocb_continueq_cnt = 0;
4219
4220 pring->stats.iocb_rsp++;
4221
4222 /*
4223 * If resource errors reported from HBA, reduce
4224 * queuedepths of the SCSI device.
4225 */
4226 if (ulp_status == IOSTAT_LOCAL_REJECT &&
4227 ((ulp_word4 & IOERR_PARAM_MASK) ==
4228 IOERR_NO_RESOURCES)) {
4229 spin_unlock_irqrestore(&phba->hbalock, iflag);
4230 phba->lpfc_rampdown_queue_depth(phba);
4231 spin_lock_irqsave(&phba->hbalock, iflag);
4232 }
4233
4234 if (ulp_status) {
4235 /* Rsp ring <ringno> error: IOCB */
4236 if (phba->sli_rev < LPFC_SLI_REV4) {
4237 irsp = &rspiocbp->iocb;
4238 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
4239 "0328 Rsp Ring %d error: ulp_status x%x "
4240 "IOCB Data: "
4241 "x%08x x%08x x%08x x%08x "
4242 "x%08x x%08x x%08x x%08x "
4243 "x%08x x%08x x%08x x%08x "
4244 "x%08x x%08x x%08x x%08x\n",
4245 pring->ringno, ulp_status,
4246 get_job_ulpword(rspiocbp, 0),
4247 get_job_ulpword(rspiocbp, 1),
4248 get_job_ulpword(rspiocbp, 2),
4249 get_job_ulpword(rspiocbp, 3),
4250 get_job_ulpword(rspiocbp, 4),
4251 get_job_ulpword(rspiocbp, 5),
4252 *(((uint32_t *)irsp) + 6),
4253 *(((uint32_t *)irsp) + 7),
4254 *(((uint32_t *)irsp) + 8),
4255 *(((uint32_t *)irsp) + 9),
4256 *(((uint32_t *)irsp) + 10),
4257 *(((uint32_t *)irsp) + 11),
4258 *(((uint32_t *)irsp) + 12),
4259 *(((uint32_t *)irsp) + 13),
4260 *(((uint32_t *)irsp) + 14),
4261 *(((uint32_t *)irsp) + 15));
4262 } else {
4263 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
4264 "0321 Rsp Ring %d error: "
4265 "IOCB Data: "
4266 "x%x x%x x%x x%x\n",
4267 pring->ringno,
4268 rspiocbp->wcqe_cmpl.word0,
4269 rspiocbp->wcqe_cmpl.total_data_placed,
4270 rspiocbp->wcqe_cmpl.parameter,
4271 rspiocbp->wcqe_cmpl.word3);
4272 }
4273 }
4274
4275
4276 /*
4277 * Fetch the iocb command type and call the correct completion
4278 * routine. Solicited and Unsolicited IOCBs on the ELS ring
4279 * get freed back to the lpfc_iocb_list by the discovery
4280 * kernel thread.
4281 */
4282 cmd_type = ulp_command & CMD_IOCB_MASK;
4283 type = lpfc_sli_iocb_cmd_type(cmd_type);
4284 switch (type) {
4285 case LPFC_SOL_IOCB:
4286 spin_unlock_irqrestore(&phba->hbalock, iflag);
4287 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq);
4288 spin_lock_irqsave(&phba->hbalock, iflag);
4289 break;
4290 case LPFC_UNSOL_IOCB:
4291 spin_unlock_irqrestore(&phba->hbalock, iflag);
4292 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq);
4293 spin_lock_irqsave(&phba->hbalock, iflag);
4294 if (!rc)
4295 free_saveq = 0;
4296 break;
4297 case LPFC_ABORT_IOCB:
4298 cmdiocb = NULL;
4299 if (ulp_command != CMD_XRI_ABORTED_CX)
4300 cmdiocb = lpfc_sli_iocbq_lookup(phba, pring,
4301 saveq);
4302 if (cmdiocb) {
4303 /* Call the specified completion routine */
4304 if (cmdiocb->cmd_cmpl) {
4305 spin_unlock_irqrestore(&phba->hbalock, iflag);
4306 cmdiocb->cmd_cmpl(phba, cmdiocb, saveq);
4307 spin_lock_irqsave(&phba->hbalock, iflag);
4308 } else {
4309 __lpfc_sli_release_iocbq(phba, cmdiocb);
4310 }
4311 }
4312 break;
4313 case LPFC_UNKNOWN_IOCB:
4314 if (ulp_command == CMD_ADAPTER_MSG) {
4315 char adaptermsg[LPFC_MAX_ADPTMSG];
4316
4317 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
4318 memcpy(&adaptermsg[0], (uint8_t *)&rspiocbp->wqe,
4319 MAX_MSG_DATA);
4320 dev_warn(&((phba->pcidev)->dev),
4321 "lpfc%d: %s\n",
4322 phba->brd_no, adaptermsg);
4323 } else {
4324 /* Unknown command */
4325 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4326 "0335 Unknown IOCB "
4327 "command Data: x%x "
4328 "x%x x%x x%x\n",
4329 ulp_command,
4330 ulp_status,
4331 get_wqe_reqtag(rspiocbp),
4332 get_job_ulpcontext(phba, rspiocbp));
4333 }
4334 break;
4335 }
4336
4337 if (free_saveq) {
4338 list_for_each_entry_safe(rspiocbp, next_iocb,
4339 &saveq->list, list) {
4340 list_del_init(&rspiocbp->list);
4341 __lpfc_sli_release_iocbq(phba, rspiocbp);
4342 }
4343 __lpfc_sli_release_iocbq(phba, saveq);
4344 }
4345 rspiocbp = NULL;
4346 spin_unlock_irqrestore(&phba->hbalock, iflag);
4347 return rspiocbp;
4348 }
4349
4350 /**
4351 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs
4352 * @phba: Pointer to HBA context object.
4353 * @pring: Pointer to driver SLI ring object.
4354 * @mask: Host attention register mask for this ring.
4355 *
4356 * This routine wraps the actual slow_ring event process routine from the
4357 * API jump table function pointer from the lpfc_hba struct.
4358 **/
4359 void
lpfc_sli_handle_slow_ring_event(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t mask)4360 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba,
4361 struct lpfc_sli_ring *pring, uint32_t mask)
4362 {
4363 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask);
4364 }
4365
4366 /**
4367 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings
4368 * @phba: Pointer to HBA context object.
4369 * @pring: Pointer to driver SLI ring object.
4370 * @mask: Host attention register mask for this ring.
4371 *
4372 * This function is called from the worker thread when there is a ring event
4373 * for non-fcp rings. The caller does not hold any lock. The function will
4374 * remove each response iocb in the response ring and calls the handle
4375 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
4376 **/
4377 static void
lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t mask)4378 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba,
4379 struct lpfc_sli_ring *pring, uint32_t mask)
4380 {
4381 struct lpfc_pgp *pgp;
4382 IOCB_t *entry;
4383 IOCB_t *irsp = NULL;
4384 struct lpfc_iocbq *rspiocbp = NULL;
4385 uint32_t portRspPut, portRspMax;
4386 unsigned long iflag;
4387 uint32_t status;
4388
4389 pgp = &phba->port_gp[pring->ringno];
4390 spin_lock_irqsave(&phba->hbalock, iflag);
4391 pring->stats.iocb_event++;
4392
4393 /*
4394 * The next available response entry should never exceed the maximum
4395 * entries. If it does, treat it as an adapter hardware error.
4396 */
4397 portRspMax = pring->sli.sli3.numRiocb;
4398 portRspPut = le32_to_cpu(pgp->rspPutInx);
4399 if (portRspPut >= portRspMax) {
4400 /*
4401 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
4402 * rsp ring <portRspMax>
4403 */
4404 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4405 "0303 Ring %d handler: portRspPut %d "
4406 "is bigger than rsp ring %d\n",
4407 pring->ringno, portRspPut, portRspMax);
4408
4409 phba->link_state = LPFC_HBA_ERROR;
4410 spin_unlock_irqrestore(&phba->hbalock, iflag);
4411
4412 phba->work_hs = HS_FFER3;
4413 lpfc_handle_eratt(phba);
4414
4415 return;
4416 }
4417
4418 rmb();
4419 while (pring->sli.sli3.rspidx != portRspPut) {
4420 /*
4421 * Build a completion list and call the appropriate handler.
4422 * The process is to get the next available response iocb, get
4423 * a free iocb from the list, copy the response data into the
4424 * free iocb, insert to the continuation list, and update the
4425 * next response index to slim. This process makes response
4426 * iocb's in the ring available to DMA as fast as possible but
4427 * pays a penalty for a copy operation. Since the iocb is
4428 * only 32 bytes, this penalty is considered small relative to
4429 * the PCI reads for register values and a slim write. When
4430 * the ulpLe field is set, the entire Command has been
4431 * received.
4432 */
4433 entry = lpfc_resp_iocb(phba, pring);
4434
4435 phba->last_completion_time = jiffies;
4436 rspiocbp = __lpfc_sli_get_iocbq(phba);
4437 if (rspiocbp == NULL) {
4438 printk(KERN_ERR "%s: out of buffers! Failing "
4439 "completion.\n", __func__);
4440 break;
4441 }
4442
4443 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb,
4444 phba->iocb_rsp_size);
4445 irsp = &rspiocbp->iocb;
4446
4447 if (++pring->sli.sli3.rspidx >= portRspMax)
4448 pring->sli.sli3.rspidx = 0;
4449
4450 if (pring->ringno == LPFC_ELS_RING) {
4451 lpfc_debugfs_slow_ring_trc(phba,
4452 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x",
4453 *(((uint32_t *) irsp) + 4),
4454 *(((uint32_t *) irsp) + 6),
4455 *(((uint32_t *) irsp) + 7));
4456 }
4457
4458 writel(pring->sli.sli3.rspidx,
4459 &phba->host_gp[pring->ringno].rspGetInx);
4460
4461 spin_unlock_irqrestore(&phba->hbalock, iflag);
4462 /* Handle the response IOCB */
4463 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp);
4464 spin_lock_irqsave(&phba->hbalock, iflag);
4465
4466 /*
4467 * If the port response put pointer has not been updated, sync
4468 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port
4469 * response put pointer.
4470 */
4471 if (pring->sli.sli3.rspidx == portRspPut) {
4472 portRspPut = le32_to_cpu(pgp->rspPutInx);
4473 }
4474 } /* while (pring->sli.sli3.rspidx != portRspPut) */
4475
4476 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) {
4477 /* At least one response entry has been freed */
4478 pring->stats.iocb_rsp_full++;
4479 /* SET RxRE_RSP in Chip Att register */
4480 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
4481 writel(status, phba->CAregaddr);
4482 readl(phba->CAregaddr); /* flush */
4483 }
4484 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
4485 pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
4486 pring->stats.iocb_cmd_empty++;
4487
4488 /* Force update of the local copy of cmdGetInx */
4489 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
4490 lpfc_sli_resume_iocb(phba, pring);
4491
4492 if ((pring->lpfc_sli_cmd_available))
4493 (pring->lpfc_sli_cmd_available) (phba, pring);
4494
4495 }
4496
4497 spin_unlock_irqrestore(&phba->hbalock, iflag);
4498 return;
4499 }
4500
4501 /**
4502 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events
4503 * @phba: Pointer to HBA context object.
4504 * @pring: Pointer to driver SLI ring object.
4505 * @mask: Host attention register mask for this ring.
4506 *
4507 * This function is called from the worker thread when there is a pending
4508 * ELS response iocb on the driver internal slow-path response iocb worker
4509 * queue. The caller does not hold any lock. The function will remove each
4510 * response iocb from the response worker queue and calls the handle
4511 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
4512 **/
4513 static void
lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t mask)4514 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba,
4515 struct lpfc_sli_ring *pring, uint32_t mask)
4516 {
4517 struct lpfc_iocbq *irspiocbq;
4518 struct hbq_dmabuf *dmabuf;
4519 struct lpfc_cq_event *cq_event;
4520 unsigned long iflag;
4521 int count = 0;
4522
4523 clear_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag);
4524 while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
4525 /* Get the response iocb from the head of work queue */
4526 spin_lock_irqsave(&phba->hbalock, iflag);
4527 list_remove_head(&phba->sli4_hba.sp_queue_event,
4528 cq_event, struct lpfc_cq_event, list);
4529 spin_unlock_irqrestore(&phba->hbalock, iflag);
4530
4531 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
4532 case CQE_CODE_COMPL_WQE:
4533 irspiocbq = container_of(cq_event, struct lpfc_iocbq,
4534 cq_event);
4535 /* Translate ELS WCQE to response IOCBQ */
4536 irspiocbq = lpfc_sli4_els_preprocess_rspiocbq(phba,
4537 irspiocbq);
4538 if (irspiocbq)
4539 lpfc_sli_sp_handle_rspiocb(phba, pring,
4540 irspiocbq);
4541 count++;
4542 break;
4543 case CQE_CODE_RECEIVE:
4544 case CQE_CODE_RECEIVE_V1:
4545 dmabuf = container_of(cq_event, struct hbq_dmabuf,
4546 cq_event);
4547 lpfc_sli4_handle_received_buffer(phba, dmabuf);
4548 count++;
4549 break;
4550 default:
4551 break;
4552 }
4553
4554 /* Limit the number of events to 64 to avoid soft lockups */
4555 if (count == 64)
4556 break;
4557 }
4558 }
4559
4560 /**
4561 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring
4562 * @phba: Pointer to HBA context object.
4563 * @pring: Pointer to driver SLI ring object.
4564 *
4565 * This function aborts all iocbs in the given ring and frees all the iocb
4566 * objects in txq. This function issues an abort iocb for all the iocb commands
4567 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
4568 * the return of this function. The caller is not required to hold any locks.
4569 **/
4570 void
lpfc_sli_abort_iocb_ring(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)4571 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
4572 {
4573 LIST_HEAD(tx_completions);
4574 LIST_HEAD(txcmplq_completions);
4575 struct lpfc_iocbq *iocb, *next_iocb;
4576 int offline;
4577
4578 if (pring->ringno == LPFC_ELS_RING) {
4579 lpfc_fabric_abort_hba(phba);
4580 }
4581 offline = pci_channel_offline(phba->pcidev);
4582
4583 /* Error everything on txq and txcmplq
4584 * First do the txq.
4585 */
4586 if (phba->sli_rev >= LPFC_SLI_REV4) {
4587 spin_lock_irq(&pring->ring_lock);
4588 list_splice_init(&pring->txq, &tx_completions);
4589 pring->txq_cnt = 0;
4590
4591 if (offline) {
4592 list_splice_init(&pring->txcmplq,
4593 &txcmplq_completions);
4594 } else {
4595 /* Next issue ABTS for everything on the txcmplq */
4596 list_for_each_entry_safe(iocb, next_iocb,
4597 &pring->txcmplq, list)
4598 lpfc_sli_issue_abort_iotag(phba, pring,
4599 iocb, NULL);
4600 }
4601 spin_unlock_irq(&pring->ring_lock);
4602 } else {
4603 spin_lock_irq(&phba->hbalock);
4604 list_splice_init(&pring->txq, &tx_completions);
4605 pring->txq_cnt = 0;
4606
4607 if (offline) {
4608 list_splice_init(&pring->txcmplq, &txcmplq_completions);
4609 } else {
4610 /* Next issue ABTS for everything on the txcmplq */
4611 list_for_each_entry_safe(iocb, next_iocb,
4612 &pring->txcmplq, list)
4613 lpfc_sli_issue_abort_iotag(phba, pring,
4614 iocb, NULL);
4615 }
4616 spin_unlock_irq(&phba->hbalock);
4617 }
4618
4619 if (offline) {
4620 /* Cancel all the IOCBs from the completions list */
4621 lpfc_sli_cancel_iocbs(phba, &txcmplq_completions,
4622 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
4623 } else {
4624 /* Make sure HBA is alive */
4625 lpfc_issue_hb_tmo(phba);
4626 }
4627 /* Cancel all the IOCBs from the completions list */
4628 lpfc_sli_cancel_iocbs(phba, &tx_completions, IOSTAT_LOCAL_REJECT,
4629 IOERR_SLI_ABORTED);
4630 }
4631
4632 /**
4633 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings
4634 * @phba: Pointer to HBA context object.
4635 *
4636 * This function aborts all iocbs in FCP rings and frees all the iocb
4637 * objects in txq. This function issues an abort iocb for all the iocb commands
4638 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
4639 * the return of this function. The caller is not required to hold any locks.
4640 **/
4641 void
lpfc_sli_abort_fcp_rings(struct lpfc_hba * phba)4642 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba)
4643 {
4644 struct lpfc_sli *psli = &phba->sli;
4645 struct lpfc_sli_ring *pring;
4646 uint32_t i;
4647
4648 /* Look on all the FCP Rings for the iotag */
4649 if (phba->sli_rev >= LPFC_SLI_REV4) {
4650 for (i = 0; i < phba->cfg_hdw_queue; i++) {
4651 pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4652 lpfc_sli_abort_iocb_ring(phba, pring);
4653 }
4654 } else {
4655 pring = &psli->sli3_ring[LPFC_FCP_RING];
4656 lpfc_sli_abort_iocb_ring(phba, pring);
4657 }
4658 }
4659
4660 /**
4661 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring
4662 * @phba: Pointer to HBA context object.
4663 *
4664 * This function flushes all iocbs in the IO ring and frees all the iocb
4665 * objects in txq and txcmplq. This function will not issue abort iocbs
4666 * for all the iocb commands in txcmplq, they will just be returned with
4667 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
4668 * slot has been permanently disabled.
4669 **/
4670 void
lpfc_sli_flush_io_rings(struct lpfc_hba * phba)4671 lpfc_sli_flush_io_rings(struct lpfc_hba *phba)
4672 {
4673 LIST_HEAD(txq);
4674 LIST_HEAD(txcmplq);
4675 struct lpfc_sli *psli = &phba->sli;
4676 struct lpfc_sli_ring *pring;
4677 uint32_t i;
4678 struct lpfc_iocbq *piocb, *next_iocb;
4679
4680 /* Indicate the I/O queues are flushed */
4681 set_bit(HBA_IOQ_FLUSH, &phba->hba_flag);
4682
4683 /* Look on all the FCP Rings for the iotag */
4684 if (phba->sli_rev >= LPFC_SLI_REV4) {
4685 for (i = 0; i < phba->cfg_hdw_queue; i++) {
4686 if (!phba->sli4_hba.hdwq ||
4687 !phba->sli4_hba.hdwq[i].io_wq) {
4688 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
4689 "7777 hdwq's deleted %lx "
4690 "%lx %x %x\n",
4691 phba->pport->load_flag,
4692 phba->hba_flag,
4693 phba->link_state,
4694 phba->sli.sli_flag);
4695 return;
4696 }
4697 pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4698
4699 spin_lock_irq(&pring->ring_lock);
4700 /* Retrieve everything on txq */
4701 list_splice_init(&pring->txq, &txq);
4702 list_for_each_entry_safe(piocb, next_iocb,
4703 &pring->txcmplq, list)
4704 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
4705 /* Retrieve everything on the txcmplq */
4706 list_splice_init(&pring->txcmplq, &txcmplq);
4707 pring->txq_cnt = 0;
4708 pring->txcmplq_cnt = 0;
4709 spin_unlock_irq(&pring->ring_lock);
4710
4711 /* Flush the txq */
4712 lpfc_sli_cancel_iocbs(phba, &txq,
4713 IOSTAT_LOCAL_REJECT,
4714 IOERR_SLI_DOWN);
4715 /* Flush the txcmplq */
4716 lpfc_sli_cancel_iocbs(phba, &txcmplq,
4717 IOSTAT_LOCAL_REJECT,
4718 IOERR_SLI_DOWN);
4719 if (unlikely(pci_channel_offline(phba->pcidev)))
4720 lpfc_sli4_io_xri_aborted(phba, NULL, 0);
4721 }
4722 } else {
4723 pring = &psli->sli3_ring[LPFC_FCP_RING];
4724
4725 spin_lock_irq(&phba->hbalock);
4726 /* Retrieve everything on txq */
4727 list_splice_init(&pring->txq, &txq);
4728 list_for_each_entry_safe(piocb, next_iocb,
4729 &pring->txcmplq, list)
4730 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
4731 /* Retrieve everything on the txcmplq */
4732 list_splice_init(&pring->txcmplq, &txcmplq);
4733 pring->txq_cnt = 0;
4734 pring->txcmplq_cnt = 0;
4735 spin_unlock_irq(&phba->hbalock);
4736
4737 /* Flush the txq */
4738 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT,
4739 IOERR_SLI_DOWN);
4740 /* Flush the txcmpq */
4741 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT,
4742 IOERR_SLI_DOWN);
4743 }
4744 }
4745
4746 /**
4747 * lpfc_sli_brdready_s3 - Check for sli3 host ready status
4748 * @phba: Pointer to HBA context object.
4749 * @mask: Bit mask to be checked.
4750 *
4751 * This function reads the host status register and compares
4752 * with the provided bit mask to check if HBA completed
4753 * the restart. This function will wait in a loop for the
4754 * HBA to complete restart. If the HBA does not restart within
4755 * 15 iterations, the function will reset the HBA again. The
4756 * function returns 1 when HBA fail to restart otherwise returns
4757 * zero.
4758 **/
4759 static int
lpfc_sli_brdready_s3(struct lpfc_hba * phba,uint32_t mask)4760 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask)
4761 {
4762 uint32_t status;
4763 int i = 0;
4764 int retval = 0;
4765
4766 /* Read the HBA Host Status Register */
4767 if (lpfc_readl(phba->HSregaddr, &status))
4768 return 1;
4769
4770 set_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag);
4771
4772 /*
4773 * Check status register every 100ms for 5 retries, then every
4774 * 500ms for 5, then every 2.5 sec for 5, then reset board and
4775 * every 2.5 sec for 4.
4776 * Break our of the loop if errors occurred during init.
4777 */
4778 while (((status & mask) != mask) &&
4779 !(status & HS_FFERM) &&
4780 i++ < 20) {
4781
4782 if (i <= 5)
4783 msleep(10);
4784 else if (i <= 10)
4785 msleep(500);
4786 else
4787 msleep(2500);
4788
4789 if (i == 15) {
4790 /* Do post */
4791 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4792 lpfc_sli_brdrestart(phba);
4793 }
4794 /* Read the HBA Host Status Register */
4795 if (lpfc_readl(phba->HSregaddr, &status)) {
4796 retval = 1;
4797 break;
4798 }
4799 }
4800
4801 /* Check to see if any errors occurred during init */
4802 if ((status & HS_FFERM) || (i >= 20)) {
4803 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4804 "2751 Adapter failed to restart, "
4805 "status reg x%x, FW Data: A8 x%x AC x%x\n",
4806 status,
4807 readl(phba->MBslimaddr + 0xa8),
4808 readl(phba->MBslimaddr + 0xac));
4809 phba->link_state = LPFC_HBA_ERROR;
4810 retval = 1;
4811 }
4812
4813 return retval;
4814 }
4815
4816 /**
4817 * lpfc_sli_brdready_s4 - Check for sli4 host ready status
4818 * @phba: Pointer to HBA context object.
4819 * @mask: Bit mask to be checked.
4820 *
4821 * This function checks the host status register to check if HBA is
4822 * ready. This function will wait in a loop for the HBA to be ready
4823 * If the HBA is not ready , the function will will reset the HBA PCI
4824 * function again. The function returns 1 when HBA fail to be ready
4825 * otherwise returns zero.
4826 **/
4827 static int
lpfc_sli_brdready_s4(struct lpfc_hba * phba,uint32_t mask)4828 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask)
4829 {
4830 uint32_t status;
4831 int retval = 0;
4832
4833 /* Read the HBA Host Status Register */
4834 status = lpfc_sli4_post_status_check(phba);
4835
4836 if (status) {
4837 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4838 lpfc_sli_brdrestart(phba);
4839 status = lpfc_sli4_post_status_check(phba);
4840 }
4841
4842 /* Check to see if any errors occurred during init */
4843 if (status) {
4844 phba->link_state = LPFC_HBA_ERROR;
4845 retval = 1;
4846 } else
4847 phba->sli4_hba.intr_enable = 0;
4848
4849 clear_bit(HBA_SETUP, &phba->hba_flag);
4850 return retval;
4851 }
4852
4853 /**
4854 * lpfc_sli_brdready - Wrapper func for checking the hba readyness
4855 * @phba: Pointer to HBA context object.
4856 * @mask: Bit mask to be checked.
4857 *
4858 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine
4859 * from the API jump table function pointer from the lpfc_hba struct.
4860 **/
4861 int
lpfc_sli_brdready(struct lpfc_hba * phba,uint32_t mask)4862 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask)
4863 {
4864 return phba->lpfc_sli_brdready(phba, mask);
4865 }
4866
4867 #define BARRIER_TEST_PATTERN (0xdeadbeef)
4868
4869 /**
4870 * lpfc_reset_barrier - Make HBA ready for HBA reset
4871 * @phba: Pointer to HBA context object.
4872 *
4873 * This function is called before resetting an HBA. This function is called
4874 * with hbalock held and requests HBA to quiesce DMAs before a reset.
4875 **/
lpfc_reset_barrier(struct lpfc_hba * phba)4876 void lpfc_reset_barrier(struct lpfc_hba *phba)
4877 {
4878 uint32_t __iomem *resp_buf;
4879 uint32_t __iomem *mbox_buf;
4880 volatile struct MAILBOX_word0 mbox;
4881 uint32_t hc_copy, ha_copy, resp_data;
4882 int i;
4883 uint8_t hdrtype;
4884
4885 lockdep_assert_held(&phba->hbalock);
4886
4887 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype);
4888 if (hdrtype != PCI_HEADER_TYPE_MFD ||
4889 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID &&
4890 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID))
4891 return;
4892
4893 /*
4894 * Tell the other part of the chip to suspend temporarily all
4895 * its DMA activity.
4896 */
4897 resp_buf = phba->MBslimaddr;
4898
4899 /* Disable the error attention */
4900 if (lpfc_readl(phba->HCregaddr, &hc_copy))
4901 return;
4902 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr);
4903 readl(phba->HCregaddr); /* flush */
4904 phba->link_flag |= LS_IGNORE_ERATT;
4905
4906 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4907 return;
4908 if (ha_copy & HA_ERATT) {
4909 /* Clear Chip error bit */
4910 writel(HA_ERATT, phba->HAregaddr);
4911 phba->pport->stopped = 1;
4912 }
4913
4914 mbox.word0 = 0;
4915 mbox.mbxCommand = MBX_KILL_BOARD;
4916 mbox.mbxOwner = OWN_CHIP;
4917
4918 writel(BARRIER_TEST_PATTERN, (resp_buf + 1));
4919 mbox_buf = phba->MBslimaddr;
4920 writel(mbox.word0, mbox_buf);
4921
4922 for (i = 0; i < 50; i++) {
4923 if (lpfc_readl((resp_buf + 1), &resp_data))
4924 return;
4925 if (resp_data != ~(BARRIER_TEST_PATTERN))
4926 mdelay(1);
4927 else
4928 break;
4929 }
4930 resp_data = 0;
4931 if (lpfc_readl((resp_buf + 1), &resp_data))
4932 return;
4933 if (resp_data != ~(BARRIER_TEST_PATTERN)) {
4934 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE ||
4935 phba->pport->stopped)
4936 goto restore_hc;
4937 else
4938 goto clear_errat;
4939 }
4940
4941 mbox.mbxOwner = OWN_HOST;
4942 resp_data = 0;
4943 for (i = 0; i < 500; i++) {
4944 if (lpfc_readl(resp_buf, &resp_data))
4945 return;
4946 if (resp_data != mbox.word0)
4947 mdelay(1);
4948 else
4949 break;
4950 }
4951
4952 clear_errat:
4953
4954 while (++i < 500) {
4955 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4956 return;
4957 if (!(ha_copy & HA_ERATT))
4958 mdelay(1);
4959 else
4960 break;
4961 }
4962
4963 if (readl(phba->HAregaddr) & HA_ERATT) {
4964 writel(HA_ERATT, phba->HAregaddr);
4965 phba->pport->stopped = 1;
4966 }
4967
4968 restore_hc:
4969 phba->link_flag &= ~LS_IGNORE_ERATT;
4970 writel(hc_copy, phba->HCregaddr);
4971 readl(phba->HCregaddr); /* flush */
4972 }
4973
4974 /**
4975 * lpfc_sli_brdkill - Issue a kill_board mailbox command
4976 * @phba: Pointer to HBA context object.
4977 *
4978 * This function issues a kill_board mailbox command and waits for
4979 * the error attention interrupt. This function is called for stopping
4980 * the firmware processing. The caller is not required to hold any
4981 * locks. This function calls lpfc_hba_down_post function to free
4982 * any pending commands after the kill. The function will return 1 when it
4983 * fails to kill the board else will return 0.
4984 **/
4985 int
lpfc_sli_brdkill(struct lpfc_hba * phba)4986 lpfc_sli_brdkill(struct lpfc_hba *phba)
4987 {
4988 struct lpfc_sli *psli;
4989 LPFC_MBOXQ_t *pmb;
4990 uint32_t status;
4991 uint32_t ha_copy;
4992 int retval;
4993 int i = 0;
4994
4995 psli = &phba->sli;
4996
4997 /* Kill HBA */
4998 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4999 "0329 Kill HBA Data: x%x x%x\n",
5000 phba->pport->port_state, psli->sli_flag);
5001
5002 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5003 if (!pmb)
5004 return 1;
5005
5006 /* Disable the error attention */
5007 spin_lock_irq(&phba->hbalock);
5008 if (lpfc_readl(phba->HCregaddr, &status)) {
5009 spin_unlock_irq(&phba->hbalock);
5010 mempool_free(pmb, phba->mbox_mem_pool);
5011 return 1;
5012 }
5013 status &= ~HC_ERINT_ENA;
5014 writel(status, phba->HCregaddr);
5015 readl(phba->HCregaddr); /* flush */
5016 phba->link_flag |= LS_IGNORE_ERATT;
5017 spin_unlock_irq(&phba->hbalock);
5018
5019 lpfc_kill_board(phba, pmb);
5020 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
5021 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
5022
5023 if (retval != MBX_SUCCESS) {
5024 if (retval != MBX_BUSY)
5025 mempool_free(pmb, phba->mbox_mem_pool);
5026 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5027 "2752 KILL_BOARD command failed retval %d\n",
5028 retval);
5029 spin_lock_irq(&phba->hbalock);
5030 phba->link_flag &= ~LS_IGNORE_ERATT;
5031 spin_unlock_irq(&phba->hbalock);
5032 return 1;
5033 }
5034
5035 spin_lock_irq(&phba->hbalock);
5036 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
5037 spin_unlock_irq(&phba->hbalock);
5038
5039 mempool_free(pmb, phba->mbox_mem_pool);
5040
5041 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error
5042 * attention every 100ms for 3 seconds. If we don't get ERATT after
5043 * 3 seconds we still set HBA_ERROR state because the status of the
5044 * board is now undefined.
5045 */
5046 if (lpfc_readl(phba->HAregaddr, &ha_copy))
5047 return 1;
5048 while ((i++ < 30) && !(ha_copy & HA_ERATT)) {
5049 mdelay(100);
5050 if (lpfc_readl(phba->HAregaddr, &ha_copy))
5051 return 1;
5052 }
5053
5054 timer_delete_sync(&psli->mbox_tmo);
5055 if (ha_copy & HA_ERATT) {
5056 writel(HA_ERATT, phba->HAregaddr);
5057 phba->pport->stopped = 1;
5058 }
5059 spin_lock_irq(&phba->hbalock);
5060 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
5061 psli->mbox_active = NULL;
5062 phba->link_flag &= ~LS_IGNORE_ERATT;
5063 spin_unlock_irq(&phba->hbalock);
5064
5065 lpfc_hba_down_post(phba);
5066 phba->link_state = LPFC_HBA_ERROR;
5067
5068 return ha_copy & HA_ERATT ? 0 : 1;
5069 }
5070
5071 /**
5072 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA
5073 * @phba: Pointer to HBA context object.
5074 *
5075 * This function resets the HBA by writing HC_INITFF to the control
5076 * register. After the HBA resets, this function resets all the iocb ring
5077 * indices. This function disables PCI layer parity checking during
5078 * the reset.
5079 * This function returns 0 always.
5080 * The caller is not required to hold any locks.
5081 **/
5082 int
lpfc_sli_brdreset(struct lpfc_hba * phba)5083 lpfc_sli_brdreset(struct lpfc_hba *phba)
5084 {
5085 struct lpfc_sli *psli;
5086 struct lpfc_sli_ring *pring;
5087 uint16_t cfg_value;
5088 int i;
5089
5090 psli = &phba->sli;
5091
5092 /* Reset HBA */
5093 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5094 "0325 Reset HBA Data: x%x x%x\n",
5095 (phba->pport) ? phba->pport->port_state : 0,
5096 psli->sli_flag);
5097
5098 /* perform board reset */
5099 phba->fc_eventTag = 0;
5100 phba->link_events = 0;
5101 set_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag);
5102 if (phba->pport) {
5103 phba->pport->fc_myDID = 0;
5104 phba->pport->fc_prevDID = 0;
5105 }
5106
5107 /* Turn off parity checking and serr during the physical reset */
5108 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value))
5109 return -EIO;
5110
5111 pci_write_config_word(phba->pcidev, PCI_COMMAND,
5112 (cfg_value &
5113 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
5114
5115 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA);
5116
5117 /* Now toggle INITFF bit in the Host Control Register */
5118 writel(HC_INITFF, phba->HCregaddr);
5119 mdelay(1);
5120 readl(phba->HCregaddr); /* flush */
5121 writel(0, phba->HCregaddr);
5122 readl(phba->HCregaddr); /* flush */
5123
5124 /* Restore PCI cmd register */
5125 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
5126
5127 /* Initialize relevant SLI info */
5128 for (i = 0; i < psli->num_rings; i++) {
5129 pring = &psli->sli3_ring[i];
5130 pring->flag = 0;
5131 pring->sli.sli3.rspidx = 0;
5132 pring->sli.sli3.next_cmdidx = 0;
5133 pring->sli.sli3.local_getidx = 0;
5134 pring->sli.sli3.cmdidx = 0;
5135 pring->missbufcnt = 0;
5136 }
5137
5138 phba->link_state = LPFC_WARM_START;
5139 return 0;
5140 }
5141
5142 /**
5143 * lpfc_sli4_brdreset - Reset a sli-4 HBA
5144 * @phba: Pointer to HBA context object.
5145 *
5146 * This function resets a SLI4 HBA. This function disables PCI layer parity
5147 * checking during resets the device. The caller is not required to hold
5148 * any locks.
5149 *
5150 * This function returns 0 on success else returns negative error code.
5151 **/
5152 int
lpfc_sli4_brdreset(struct lpfc_hba * phba)5153 lpfc_sli4_brdreset(struct lpfc_hba *phba)
5154 {
5155 struct lpfc_sli *psli = &phba->sli;
5156 uint16_t cfg_value;
5157 int rc = 0;
5158
5159 /* Reset HBA */
5160 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5161 "0295 Reset HBA Data: x%x x%x x%lx\n",
5162 phba->pport->port_state, psli->sli_flag,
5163 phba->hba_flag);
5164
5165 /* perform board reset */
5166 phba->fc_eventTag = 0;
5167 phba->link_events = 0;
5168 phba->pport->fc_myDID = 0;
5169 phba->pport->fc_prevDID = 0;
5170
5171 spin_lock_irq(&phba->hbalock);
5172 psli->sli_flag &= ~(LPFC_PROCESS_LA);
5173 phba->fcf.fcf_flag = 0;
5174 spin_unlock_irq(&phba->hbalock);
5175
5176 /* Now physically reset the device */
5177 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5178 "0389 Performing PCI function reset!\n");
5179
5180 /* Turn off parity checking and serr during the physical reset */
5181 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) {
5182 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5183 "3205 PCI read Config failed\n");
5184 return -EIO;
5185 }
5186
5187 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value &
5188 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
5189
5190 /* Perform FCoE PCI function reset before freeing queue memory */
5191 rc = lpfc_pci_function_reset(phba);
5192
5193 /* Restore PCI cmd register */
5194 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
5195
5196 return rc;
5197 }
5198
5199 /**
5200 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba
5201 * @phba: Pointer to HBA context object.
5202 *
5203 * This function is called in the SLI initialization code path to
5204 * restart the HBA. The caller is not required to hold any lock.
5205 * This function writes MBX_RESTART mailbox command to the SLIM and
5206 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post
5207 * function to free any pending commands. The function enables
5208 * POST only during the first initialization. The function returns zero.
5209 * The function does not guarantee completion of MBX_RESTART mailbox
5210 * command before the return of this function.
5211 **/
5212 static int
lpfc_sli_brdrestart_s3(struct lpfc_hba * phba)5213 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba)
5214 {
5215 volatile struct MAILBOX_word0 mb;
5216 struct lpfc_sli *psli;
5217 void __iomem *to_slim;
5218
5219 spin_lock_irq(&phba->hbalock);
5220
5221 psli = &phba->sli;
5222
5223 /* Restart HBA */
5224 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5225 "0337 Restart HBA Data: x%x x%x\n",
5226 (phba->pport) ? phba->pport->port_state : 0,
5227 psli->sli_flag);
5228
5229 mb.word0 = 0;
5230 mb.mbxCommand = MBX_RESTART;
5231 mb.mbxHc = 1;
5232
5233 lpfc_reset_barrier(phba);
5234
5235 to_slim = phba->MBslimaddr;
5236 writel(mb.word0, to_slim);
5237 readl(to_slim); /* flush */
5238
5239 /* Only skip post after fc_ffinit is completed */
5240 if (phba->pport && phba->pport->port_state)
5241 mb.word0 = 1; /* This is really setting up word1 */
5242 else
5243 mb.word0 = 0; /* This is really setting up word1 */
5244 to_slim = phba->MBslimaddr + sizeof (uint32_t);
5245 writel(mb.word0, to_slim);
5246 readl(to_slim); /* flush */
5247
5248 lpfc_sli_brdreset(phba);
5249 if (phba->pport)
5250 phba->pport->stopped = 0;
5251 phba->link_state = LPFC_INIT_START;
5252 phba->hba_flag = 0;
5253 spin_unlock_irq(&phba->hbalock);
5254
5255 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
5256 psli->stats_start = ktime_get_seconds();
5257
5258 /* Give the INITFF and Post time to settle. */
5259 mdelay(100);
5260
5261 lpfc_hba_down_post(phba);
5262
5263 return 0;
5264 }
5265
5266 /**
5267 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba
5268 * @phba: Pointer to HBA context object.
5269 *
5270 * This function is called in the SLI initialization code path to restart
5271 * a SLI4 HBA. The caller is not required to hold any lock.
5272 * At the end of the function, it calls lpfc_hba_down_post function to
5273 * free any pending commands.
5274 **/
5275 static int
lpfc_sli_brdrestart_s4(struct lpfc_hba * phba)5276 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba)
5277 {
5278 struct lpfc_sli *psli = &phba->sli;
5279 int rc;
5280
5281 /* Restart HBA */
5282 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5283 "0296 Restart HBA Data: x%x x%x\n",
5284 phba->pport->port_state, psli->sli_flag);
5285
5286 clear_bit(HBA_SETUP, &phba->hba_flag);
5287 lpfc_sli4_queue_unset(phba);
5288
5289 rc = lpfc_sli4_brdreset(phba);
5290 if (rc) {
5291 phba->link_state = LPFC_HBA_ERROR;
5292 goto hba_down_queue;
5293 }
5294
5295 spin_lock_irq(&phba->hbalock);
5296 phba->pport->stopped = 0;
5297 phba->link_state = LPFC_INIT_START;
5298 phba->hba_flag = 0;
5299 /* Preserve FA-PWWN expectation */
5300 phba->sli4_hba.fawwpn_flag &= LPFC_FAWWPN_FABRIC;
5301 spin_unlock_irq(&phba->hbalock);
5302
5303 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
5304 psli->stats_start = ktime_get_seconds();
5305
5306 hba_down_queue:
5307 lpfc_hba_down_post(phba);
5308 lpfc_sli4_queue_destroy(phba);
5309
5310 return rc;
5311 }
5312
5313 /**
5314 * lpfc_sli_brdrestart - Wrapper func for restarting hba
5315 * @phba: Pointer to HBA context object.
5316 *
5317 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the
5318 * API jump table function pointer from the lpfc_hba struct.
5319 **/
5320 int
lpfc_sli_brdrestart(struct lpfc_hba * phba)5321 lpfc_sli_brdrestart(struct lpfc_hba *phba)
5322 {
5323 return phba->lpfc_sli_brdrestart(phba);
5324 }
5325
5326 /**
5327 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart
5328 * @phba: Pointer to HBA context object.
5329 *
5330 * This function is called after a HBA restart to wait for successful
5331 * restart of the HBA. Successful restart of the HBA is indicated by
5332 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15
5333 * iteration, the function will restart the HBA again. The function returns
5334 * zero if HBA successfully restarted else returns negative error code.
5335 **/
5336 int
lpfc_sli_chipset_init(struct lpfc_hba * phba)5337 lpfc_sli_chipset_init(struct lpfc_hba *phba)
5338 {
5339 uint32_t status, i = 0;
5340
5341 /* Read the HBA Host Status Register */
5342 if (lpfc_readl(phba->HSregaddr, &status))
5343 return -EIO;
5344
5345 /* Check status register to see what current state is */
5346 i = 0;
5347 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) {
5348
5349 /* Check every 10ms for 10 retries, then every 100ms for 90
5350 * retries, then every 1 sec for 50 retires for a total of
5351 * ~60 seconds before reset the board again and check every
5352 * 1 sec for 50 retries. The up to 60 seconds before the
5353 * board ready is required by the Falcon FIPS zeroization
5354 * complete, and any reset the board in between shall cause
5355 * restart of zeroization, further delay the board ready.
5356 */
5357 if (i++ >= 200) {
5358 /* Adapter failed to init, timeout, status reg
5359 <status> */
5360 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5361 "0436 Adapter failed to init, "
5362 "timeout, status reg x%x, "
5363 "FW Data: A8 x%x AC x%x\n", status,
5364 readl(phba->MBslimaddr + 0xa8),
5365 readl(phba->MBslimaddr + 0xac));
5366 phba->link_state = LPFC_HBA_ERROR;
5367 return -ETIMEDOUT;
5368 }
5369
5370 /* Check to see if any errors occurred during init */
5371 if (status & HS_FFERM) {
5372 /* ERROR: During chipset initialization */
5373 /* Adapter failed to init, chipset, status reg
5374 <status> */
5375 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5376 "0437 Adapter failed to init, "
5377 "chipset, status reg x%x, "
5378 "FW Data: A8 x%x AC x%x\n", status,
5379 readl(phba->MBslimaddr + 0xa8),
5380 readl(phba->MBslimaddr + 0xac));
5381 phba->link_state = LPFC_HBA_ERROR;
5382 return -EIO;
5383 }
5384
5385 if (i <= 10)
5386 msleep(10);
5387 else if (i <= 100)
5388 msleep(100);
5389 else
5390 msleep(1000);
5391
5392 if (i == 150) {
5393 /* Do post */
5394 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
5395 lpfc_sli_brdrestart(phba);
5396 }
5397 /* Read the HBA Host Status Register */
5398 if (lpfc_readl(phba->HSregaddr, &status))
5399 return -EIO;
5400 }
5401
5402 /* Check to see if any errors occurred during init */
5403 if (status & HS_FFERM) {
5404 /* ERROR: During chipset initialization */
5405 /* Adapter failed to init, chipset, status reg <status> */
5406 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5407 "0438 Adapter failed to init, chipset, "
5408 "status reg x%x, "
5409 "FW Data: A8 x%x AC x%x\n", status,
5410 readl(phba->MBslimaddr + 0xa8),
5411 readl(phba->MBslimaddr + 0xac));
5412 phba->link_state = LPFC_HBA_ERROR;
5413 return -EIO;
5414 }
5415
5416 set_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag);
5417
5418 /* Clear all interrupt enable conditions */
5419 writel(0, phba->HCregaddr);
5420 readl(phba->HCregaddr); /* flush */
5421
5422 /* setup host attn register */
5423 writel(0xffffffff, phba->HAregaddr);
5424 readl(phba->HAregaddr); /* flush */
5425 return 0;
5426 }
5427
5428 /**
5429 * lpfc_sli_hbq_count - Get the number of HBQs to be configured
5430 *
5431 * This function calculates and returns the number of HBQs required to be
5432 * configured.
5433 **/
5434 int
lpfc_sli_hbq_count(void)5435 lpfc_sli_hbq_count(void)
5436 {
5437 return ARRAY_SIZE(lpfc_hbq_defs);
5438 }
5439
5440 /**
5441 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries
5442 *
5443 * This function adds the number of hbq entries in every HBQ to get
5444 * the total number of hbq entries required for the HBA and returns
5445 * the total count.
5446 **/
5447 static int
lpfc_sli_hbq_entry_count(void)5448 lpfc_sli_hbq_entry_count(void)
5449 {
5450 int hbq_count = lpfc_sli_hbq_count();
5451 int count = 0;
5452 int i;
5453
5454 for (i = 0; i < hbq_count; ++i)
5455 count += lpfc_hbq_defs[i]->entry_count;
5456 return count;
5457 }
5458
5459 /**
5460 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries
5461 *
5462 * This function calculates amount of memory required for all hbq entries
5463 * to be configured and returns the total memory required.
5464 **/
5465 int
lpfc_sli_hbq_size(void)5466 lpfc_sli_hbq_size(void)
5467 {
5468 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry);
5469 }
5470
5471 /**
5472 * lpfc_sli_hbq_setup - configure and initialize HBQs
5473 * @phba: Pointer to HBA context object.
5474 *
5475 * This function is called during the SLI initialization to configure
5476 * all the HBQs and post buffers to the HBQ. The caller is not
5477 * required to hold any locks. This function will return zero if successful
5478 * else it will return negative error code.
5479 **/
5480 static int
lpfc_sli_hbq_setup(struct lpfc_hba * phba)5481 lpfc_sli_hbq_setup(struct lpfc_hba *phba)
5482 {
5483 int hbq_count = lpfc_sli_hbq_count();
5484 LPFC_MBOXQ_t *pmb;
5485 MAILBOX_t *pmbox;
5486 uint32_t hbqno;
5487 uint32_t hbq_entry_index;
5488
5489 /* Get a Mailbox buffer to setup mailbox
5490 * commands for HBA initialization
5491 */
5492 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5493
5494 if (!pmb)
5495 return -ENOMEM;
5496
5497 pmbox = &pmb->u.mb;
5498
5499 /* Initialize the struct lpfc_sli_hbq structure for each hbq */
5500 phba->link_state = LPFC_INIT_MBX_CMDS;
5501 phba->hbq_in_use = 1;
5502
5503 hbq_entry_index = 0;
5504 for (hbqno = 0; hbqno < hbq_count; ++hbqno) {
5505 phba->hbqs[hbqno].next_hbqPutIdx = 0;
5506 phba->hbqs[hbqno].hbqPutIdx = 0;
5507 phba->hbqs[hbqno].local_hbqGetIdx = 0;
5508 phba->hbqs[hbqno].entry_count =
5509 lpfc_hbq_defs[hbqno]->entry_count;
5510 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno],
5511 hbq_entry_index, pmb);
5512 hbq_entry_index += phba->hbqs[hbqno].entry_count;
5513
5514 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
5515 /* Adapter failed to init, mbxCmd <cmd> CFG_RING,
5516 mbxStatus <status>, ring <num> */
5517
5518 lpfc_printf_log(phba, KERN_ERR,
5519 LOG_SLI | LOG_VPORT,
5520 "1805 Adapter failed to init. "
5521 "Data: x%x x%x x%x\n",
5522 pmbox->mbxCommand,
5523 pmbox->mbxStatus, hbqno);
5524
5525 phba->link_state = LPFC_HBA_ERROR;
5526 mempool_free(pmb, phba->mbox_mem_pool);
5527 return -ENXIO;
5528 }
5529 }
5530 phba->hbq_count = hbq_count;
5531
5532 mempool_free(pmb, phba->mbox_mem_pool);
5533
5534 /* Initially populate or replenish the HBQs */
5535 for (hbqno = 0; hbqno < hbq_count; ++hbqno)
5536 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno);
5537 return 0;
5538 }
5539
5540 /**
5541 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA
5542 * @phba: Pointer to HBA context object.
5543 *
5544 * This function is called during the SLI initialization to configure
5545 * all the HBQs and post buffers to the HBQ. The caller is not
5546 * required to hold any locks. This function will return zero if successful
5547 * else it will return negative error code.
5548 **/
5549 static int
lpfc_sli4_rb_setup(struct lpfc_hba * phba)5550 lpfc_sli4_rb_setup(struct lpfc_hba *phba)
5551 {
5552 phba->hbq_in_use = 1;
5553 /**
5554 * Specific case when the MDS diagnostics is enabled and supported.
5555 * The receive buffer count is truncated to manage the incoming
5556 * traffic.
5557 **/
5558 if (phba->cfg_enable_mds_diags && phba->mds_diags_support)
5559 phba->hbqs[LPFC_ELS_HBQ].entry_count =
5560 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1;
5561 else
5562 phba->hbqs[LPFC_ELS_HBQ].entry_count =
5563 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count;
5564 phba->hbq_count = 1;
5565 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ);
5566 /* Initially populate or replenish the HBQs */
5567 return 0;
5568 }
5569
5570 /**
5571 * lpfc_sli_config_port - Issue config port mailbox command
5572 * @phba: Pointer to HBA context object.
5573 * @sli_mode: sli mode - 2/3
5574 *
5575 * This function is called by the sli initialization code path
5576 * to issue config_port mailbox command. This function restarts the
5577 * HBA firmware and issues a config_port mailbox command to configure
5578 * the SLI interface in the sli mode specified by sli_mode
5579 * variable. The caller is not required to hold any locks.
5580 * The function returns 0 if successful, else returns negative error
5581 * code.
5582 **/
5583 int
lpfc_sli_config_port(struct lpfc_hba * phba,int sli_mode)5584 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode)
5585 {
5586 LPFC_MBOXQ_t *pmb;
5587 uint32_t resetcount = 0, rc = 0, done = 0;
5588
5589 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5590 if (!pmb) {
5591 phba->link_state = LPFC_HBA_ERROR;
5592 return -ENOMEM;
5593 }
5594
5595 phba->sli_rev = sli_mode;
5596 while (resetcount < 2 && !done) {
5597 spin_lock_irq(&phba->hbalock);
5598 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE;
5599 spin_unlock_irq(&phba->hbalock);
5600 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
5601 lpfc_sli_brdrestart(phba);
5602 rc = lpfc_sli_chipset_init(phba);
5603 if (rc)
5604 break;
5605
5606 spin_lock_irq(&phba->hbalock);
5607 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
5608 spin_unlock_irq(&phba->hbalock);
5609 resetcount++;
5610
5611 /* Call pre CONFIG_PORT mailbox command initialization. A
5612 * value of 0 means the call was successful. Any other
5613 * nonzero value is a failure, but if ERESTART is returned,
5614 * the driver may reset the HBA and try again.
5615 */
5616 rc = lpfc_config_port_prep(phba);
5617 if (rc == -ERESTART) {
5618 phba->link_state = LPFC_LINK_UNKNOWN;
5619 continue;
5620 } else if (rc)
5621 break;
5622
5623 phba->link_state = LPFC_INIT_MBX_CMDS;
5624 lpfc_config_port(phba, pmb);
5625 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
5626 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED |
5627 LPFC_SLI3_HBQ_ENABLED |
5628 LPFC_SLI3_CRP_ENABLED |
5629 LPFC_SLI3_DSS_ENABLED);
5630 if (rc != MBX_SUCCESS) {
5631 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5632 "0442 Adapter failed to init, mbxCmd x%x "
5633 "CONFIG_PORT, mbxStatus x%x Data: x%x\n",
5634 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0);
5635 spin_lock_irq(&phba->hbalock);
5636 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
5637 spin_unlock_irq(&phba->hbalock);
5638 rc = -ENXIO;
5639 } else {
5640 /* Allow asynchronous mailbox command to go through */
5641 spin_lock_irq(&phba->hbalock);
5642 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
5643 spin_unlock_irq(&phba->hbalock);
5644 done = 1;
5645
5646 if ((pmb->u.mb.un.varCfgPort.casabt == 1) &&
5647 (pmb->u.mb.un.varCfgPort.gasabt == 0))
5648 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
5649 "3110 Port did not grant ASABT\n");
5650 }
5651 }
5652 if (!done) {
5653 rc = -EINVAL;
5654 goto do_prep_failed;
5655 }
5656 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) {
5657 if (!pmb->u.mb.un.varCfgPort.cMA) {
5658 rc = -ENXIO;
5659 goto do_prep_failed;
5660 }
5661 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) {
5662 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED;
5663 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi;
5664 phba->max_vports = (phba->max_vpi > phba->max_vports) ?
5665 phba->max_vpi : phba->max_vports;
5666
5667 } else
5668 phba->max_vpi = 0;
5669 if (pmb->u.mb.un.varCfgPort.gerbm)
5670 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED;
5671 if (pmb->u.mb.un.varCfgPort.gcrp)
5672 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED;
5673
5674 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get;
5675 phba->port_gp = phba->mbox->us.s3_pgp.port;
5676
5677 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
5678 if (pmb->u.mb.un.varCfgPort.gbg == 0) {
5679 phba->cfg_enable_bg = 0;
5680 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
5681 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5682 "0443 Adapter did not grant "
5683 "BlockGuard\n");
5684 }
5685 }
5686 } else {
5687 phba->hbq_get = NULL;
5688 phba->port_gp = phba->mbox->us.s2.port;
5689 phba->max_vpi = 0;
5690 }
5691 do_prep_failed:
5692 mempool_free(pmb, phba->mbox_mem_pool);
5693 return rc;
5694 }
5695
5696
5697 /**
5698 * lpfc_sli_hba_setup - SLI initialization function
5699 * @phba: Pointer to HBA context object.
5700 *
5701 * This function is the main SLI initialization function. This function
5702 * is called by the HBA initialization code, HBA reset code and HBA
5703 * error attention handler code. Caller is not required to hold any
5704 * locks. This function issues config_port mailbox command to configure
5705 * the SLI, setup iocb rings and HBQ rings. In the end the function
5706 * calls the config_port_post function to issue init_link mailbox
5707 * command and to start the discovery. The function will return zero
5708 * if successful, else it will return negative error code.
5709 **/
5710 int
lpfc_sli_hba_setup(struct lpfc_hba * phba)5711 lpfc_sli_hba_setup(struct lpfc_hba *phba)
5712 {
5713 uint32_t rc;
5714 int i;
5715 int longs;
5716
5717 /* Enable ISR already does config_port because of config_msi mbx */
5718 if (test_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag)) {
5719 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3);
5720 if (rc)
5721 return -EIO;
5722 clear_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag);
5723 }
5724 phba->fcp_embed_io = 0; /* SLI4 FC support only */
5725
5726 if (phba->sli_rev == 3) {
5727 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE;
5728 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE;
5729 } else {
5730 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE;
5731 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE;
5732 phba->sli3_options = 0;
5733 }
5734
5735 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5736 "0444 Firmware in SLI %x mode. Max_vpi %d\n",
5737 phba->sli_rev, phba->max_vpi);
5738 rc = lpfc_sli_ring_map(phba);
5739
5740 if (rc)
5741 goto lpfc_sli_hba_setup_error;
5742
5743 /* Initialize VPIs. */
5744 if (phba->sli_rev == LPFC_SLI_REV3) {
5745 /*
5746 * The VPI bitmask and physical ID array are allocated
5747 * and initialized once only - at driver load. A port
5748 * reset doesn't need to reinitialize this memory.
5749 */
5750 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) {
5751 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG;
5752 phba->vpi_bmask = kcalloc(longs,
5753 sizeof(unsigned long),
5754 GFP_KERNEL);
5755 if (!phba->vpi_bmask) {
5756 rc = -ENOMEM;
5757 goto lpfc_sli_hba_setup_error;
5758 }
5759
5760 phba->vpi_ids = kcalloc(phba->max_vpi + 1,
5761 sizeof(uint16_t),
5762 GFP_KERNEL);
5763 if (!phba->vpi_ids) {
5764 kfree(phba->vpi_bmask);
5765 rc = -ENOMEM;
5766 goto lpfc_sli_hba_setup_error;
5767 }
5768 for (i = 0; i < phba->max_vpi; i++)
5769 phba->vpi_ids[i] = i;
5770 }
5771 }
5772
5773 /* Init HBQs */
5774 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
5775 rc = lpfc_sli_hbq_setup(phba);
5776 if (rc)
5777 goto lpfc_sli_hba_setup_error;
5778 }
5779 spin_lock_irq(&phba->hbalock);
5780 phba->sli.sli_flag |= LPFC_PROCESS_LA;
5781 spin_unlock_irq(&phba->hbalock);
5782
5783 rc = lpfc_config_port_post(phba);
5784 if (rc)
5785 goto lpfc_sli_hba_setup_error;
5786
5787 return rc;
5788
5789 lpfc_sli_hba_setup_error:
5790 phba->link_state = LPFC_HBA_ERROR;
5791 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5792 "0445 Firmware initialization failed\n");
5793 return rc;
5794 }
5795
5796 /**
5797 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region
5798 * @phba: Pointer to HBA context object.
5799 *
5800 * This function issue a dump mailbox command to read config region
5801 * 23 and parse the records in the region and populate driver
5802 * data structure.
5803 **/
5804 static int
lpfc_sli4_read_fcoe_params(struct lpfc_hba * phba)5805 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba)
5806 {
5807 LPFC_MBOXQ_t *mboxq;
5808 struct lpfc_dmabuf *mp;
5809 struct lpfc_mqe *mqe;
5810 uint32_t data_length;
5811 int rc;
5812
5813 /* Program the default value of vlan_id and fc_map */
5814 phba->valid_vlan = 0;
5815 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
5816 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
5817 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
5818
5819 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5820 if (!mboxq)
5821 return -ENOMEM;
5822
5823 mqe = &mboxq->u.mqe;
5824 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) {
5825 rc = -ENOMEM;
5826 goto out_free_mboxq;
5827 }
5828
5829 mp = mboxq->ctx_buf;
5830 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5831
5832 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
5833 "(%d):2571 Mailbox cmd x%x Status x%x "
5834 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5835 "x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5836 "CQ: x%x x%x x%x x%x\n",
5837 mboxq->vport ? mboxq->vport->vpi : 0,
5838 bf_get(lpfc_mqe_command, mqe),
5839 bf_get(lpfc_mqe_status, mqe),
5840 mqe->un.mb_words[0], mqe->un.mb_words[1],
5841 mqe->un.mb_words[2], mqe->un.mb_words[3],
5842 mqe->un.mb_words[4], mqe->un.mb_words[5],
5843 mqe->un.mb_words[6], mqe->un.mb_words[7],
5844 mqe->un.mb_words[8], mqe->un.mb_words[9],
5845 mqe->un.mb_words[10], mqe->un.mb_words[11],
5846 mqe->un.mb_words[12], mqe->un.mb_words[13],
5847 mqe->un.mb_words[14], mqe->un.mb_words[15],
5848 mqe->un.mb_words[16], mqe->un.mb_words[50],
5849 mboxq->mcqe.word0,
5850 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1,
5851 mboxq->mcqe.trailer);
5852
5853 if (rc) {
5854 rc = -EIO;
5855 goto out_free_mboxq;
5856 }
5857 data_length = mqe->un.mb_words[5];
5858 if (data_length > DMP_RGN23_SIZE) {
5859 rc = -EIO;
5860 goto out_free_mboxq;
5861 }
5862
5863 lpfc_parse_fcoe_conf(phba, mp->virt, data_length);
5864 rc = 0;
5865
5866 out_free_mboxq:
5867 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED);
5868 return rc;
5869 }
5870
5871 /**
5872 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data
5873 * @phba: pointer to lpfc hba data structure.
5874 * @mboxq: pointer to the LPFC_MBOXQ_t structure.
5875 * @vpd: pointer to the memory to hold resulting port vpd data.
5876 * @vpd_size: On input, the number of bytes allocated to @vpd.
5877 * On output, the number of data bytes in @vpd.
5878 *
5879 * This routine executes a READ_REV SLI4 mailbox command. In
5880 * addition, this routine gets the port vpd data.
5881 *
5882 * Return codes
5883 * 0 - successful
5884 * -ENOMEM - could not allocated memory.
5885 **/
5886 static int
lpfc_sli4_read_rev(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq,uint8_t * vpd,uint32_t * vpd_size)5887 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
5888 uint8_t *vpd, uint32_t *vpd_size)
5889 {
5890 int rc = 0;
5891 uint32_t dma_size;
5892 struct lpfc_dmabuf *dmabuf;
5893 struct lpfc_mqe *mqe;
5894
5895 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5896 if (!dmabuf)
5897 return -ENOMEM;
5898
5899 /*
5900 * Get a DMA buffer for the vpd data resulting from the READ_REV
5901 * mailbox command.
5902 */
5903 dma_size = *vpd_size;
5904 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size,
5905 &dmabuf->phys, GFP_KERNEL);
5906 if (!dmabuf->virt) {
5907 kfree(dmabuf);
5908 return -ENOMEM;
5909 }
5910
5911 /*
5912 * The SLI4 implementation of READ_REV conflicts at word1,
5913 * bits 31:16 and SLI4 adds vpd functionality not present
5914 * in SLI3. This code corrects the conflicts.
5915 */
5916 lpfc_read_rev(phba, mboxq);
5917 mqe = &mboxq->u.mqe;
5918 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys);
5919 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys);
5920 mqe->un.read_rev.word1 &= 0x0000FFFF;
5921 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1);
5922 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size);
5923
5924 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5925 if (rc) {
5926 dma_free_coherent(&phba->pcidev->dev, dma_size,
5927 dmabuf->virt, dmabuf->phys);
5928 kfree(dmabuf);
5929 return -EIO;
5930 }
5931
5932 /*
5933 * The available vpd length cannot be bigger than the
5934 * DMA buffer passed to the port. Catch the less than
5935 * case and update the caller's size.
5936 */
5937 if (mqe->un.read_rev.avail_vpd_len < *vpd_size)
5938 *vpd_size = mqe->un.read_rev.avail_vpd_len;
5939
5940 memcpy(vpd, dmabuf->virt, *vpd_size);
5941
5942 dma_free_coherent(&phba->pcidev->dev, dma_size,
5943 dmabuf->virt, dmabuf->phys);
5944 kfree(dmabuf);
5945 return 0;
5946 }
5947
5948 /**
5949 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes
5950 * @phba: pointer to lpfc hba data structure.
5951 *
5952 * This routine retrieves SLI4 device physical port name this PCI function
5953 * is attached to.
5954 *
5955 * Return codes
5956 * 0 - successful
5957 * otherwise - failed to retrieve controller attributes
5958 **/
5959 static int
lpfc_sli4_get_ctl_attr(struct lpfc_hba * phba)5960 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba)
5961 {
5962 LPFC_MBOXQ_t *mboxq;
5963 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr;
5964 struct lpfc_controller_attribute *cntl_attr;
5965 void *virtaddr = NULL;
5966 uint32_t alloclen, reqlen;
5967 uint32_t shdr_status, shdr_add_status;
5968 union lpfc_sli4_cfg_shdr *shdr;
5969 int rc;
5970
5971 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5972 if (!mboxq)
5973 return -ENOMEM;
5974
5975 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */
5976 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes);
5977 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5978 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen,
5979 LPFC_SLI4_MBX_NEMBED);
5980
5981 if (alloclen < reqlen) {
5982 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5983 "3084 Allocated DMA memory size (%d) is "
5984 "less than the requested DMA memory size "
5985 "(%d)\n", alloclen, reqlen);
5986 rc = -ENOMEM;
5987 goto out_free_mboxq;
5988 }
5989 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5990 virtaddr = mboxq->sge_array->addr[0];
5991 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr;
5992 shdr = &mbx_cntl_attr->cfg_shdr;
5993 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5994 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5995 if (shdr_status || shdr_add_status || rc) {
5996 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5997 "3085 Mailbox x%x (x%x/x%x) failed, "
5998 "rc:x%x, status:x%x, add_status:x%x\n",
5999 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
6000 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
6001 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
6002 rc, shdr_status, shdr_add_status);
6003 rc = -ENXIO;
6004 goto out_free_mboxq;
6005 }
6006
6007 cntl_attr = &mbx_cntl_attr->cntl_attr;
6008 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
6009 phba->sli4_hba.lnk_info.lnk_tp =
6010 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr);
6011 phba->sli4_hba.lnk_info.lnk_no =
6012 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr);
6013 phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr);
6014 phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr);
6015
6016 memcpy(phba->BIOSVersion, cntl_attr->bios_ver_str,
6017 sizeof(phba->BIOSVersion));
6018 phba->BIOSVersion[sizeof(phba->BIOSVersion) - 1] = '\0';
6019
6020 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6021 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, "
6022 "flash_id: x%02x, asic_rev: x%02x\n",
6023 phba->sli4_hba.lnk_info.lnk_tp,
6024 phba->sli4_hba.lnk_info.lnk_no,
6025 phba->BIOSVersion, phba->sli4_hba.flash_id,
6026 phba->sli4_hba.asic_rev);
6027 out_free_mboxq:
6028 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
6029 lpfc_sli4_mbox_cmd_free(phba, mboxq);
6030 else
6031 mempool_free(mboxq, phba->mbox_mem_pool);
6032 return rc;
6033 }
6034
6035 /**
6036 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name
6037 * @phba: pointer to lpfc hba data structure.
6038 *
6039 * This routine retrieves SLI4 device physical port name this PCI function
6040 * is attached to.
6041 *
6042 * Return codes
6043 * 0 - successful
6044 * otherwise - failed to retrieve physical port name
6045 **/
6046 static int
lpfc_sli4_retrieve_pport_name(struct lpfc_hba * phba)6047 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba)
6048 {
6049 LPFC_MBOXQ_t *mboxq;
6050 struct lpfc_mbx_get_port_name *get_port_name;
6051 uint32_t shdr_status, shdr_add_status;
6052 union lpfc_sli4_cfg_shdr *shdr;
6053 char cport_name = 0;
6054 int rc;
6055
6056 /* We assume nothing at this point */
6057 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
6058 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON;
6059
6060 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6061 if (!mboxq)
6062 return -ENOMEM;
6063 /* obtain link type and link number via READ_CONFIG */
6064 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
6065 lpfc_sli4_read_config(phba);
6066
6067 if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG)
6068 phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC;
6069
6070 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL)
6071 goto retrieve_ppname;
6072
6073 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */
6074 rc = lpfc_sli4_get_ctl_attr(phba);
6075 if (rc)
6076 goto out_free_mboxq;
6077
6078 retrieve_ppname:
6079 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
6080 LPFC_MBOX_OPCODE_GET_PORT_NAME,
6081 sizeof(struct lpfc_mbx_get_port_name) -
6082 sizeof(struct lpfc_sli4_cfg_mhdr),
6083 LPFC_SLI4_MBX_EMBED);
6084 get_port_name = &mboxq->u.mqe.un.get_port_name;
6085 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr;
6086 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1);
6087 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request,
6088 phba->sli4_hba.lnk_info.lnk_tp);
6089 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6090 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
6091 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
6092 if (shdr_status || shdr_add_status || rc) {
6093 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6094 "3087 Mailbox x%x (x%x/x%x) failed: "
6095 "rc:x%x, status:x%x, add_status:x%x\n",
6096 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
6097 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
6098 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
6099 rc, shdr_status, shdr_add_status);
6100 rc = -ENXIO;
6101 goto out_free_mboxq;
6102 }
6103 switch (phba->sli4_hba.lnk_info.lnk_no) {
6104 case LPFC_LINK_NUMBER_0:
6105 cport_name = bf_get(lpfc_mbx_get_port_name_name0,
6106 &get_port_name->u.response);
6107 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
6108 break;
6109 case LPFC_LINK_NUMBER_1:
6110 cport_name = bf_get(lpfc_mbx_get_port_name_name1,
6111 &get_port_name->u.response);
6112 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
6113 break;
6114 case LPFC_LINK_NUMBER_2:
6115 cport_name = bf_get(lpfc_mbx_get_port_name_name2,
6116 &get_port_name->u.response);
6117 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
6118 break;
6119 case LPFC_LINK_NUMBER_3:
6120 cport_name = bf_get(lpfc_mbx_get_port_name_name3,
6121 &get_port_name->u.response);
6122 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
6123 break;
6124 default:
6125 break;
6126 }
6127
6128 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) {
6129 phba->Port[0] = cport_name;
6130 phba->Port[1] = '\0';
6131 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6132 "3091 SLI get port name: %s\n", phba->Port);
6133 }
6134
6135 out_free_mboxq:
6136 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
6137 lpfc_sli4_mbox_cmd_free(phba, mboxq);
6138 else
6139 mempool_free(mboxq, phba->mbox_mem_pool);
6140 return rc;
6141 }
6142
6143 /**
6144 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues
6145 * @phba: pointer to lpfc hba data structure.
6146 *
6147 * This routine is called to explicitly arm the SLI4 device's completion and
6148 * event queues
6149 **/
6150 static void
lpfc_sli4_arm_cqeq_intr(struct lpfc_hba * phba)6151 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba)
6152 {
6153 int qidx;
6154 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
6155 struct lpfc_sli4_hdw_queue *qp;
6156 struct lpfc_queue *eq;
6157
6158 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM);
6159 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM);
6160 if (sli4_hba->nvmels_cq)
6161 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0,
6162 LPFC_QUEUE_REARM);
6163
6164 if (sli4_hba->hdwq) {
6165 /* Loop thru all Hardware Queues */
6166 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
6167 qp = &sli4_hba->hdwq[qidx];
6168 /* ARM the corresponding CQ */
6169 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0,
6170 LPFC_QUEUE_REARM);
6171 }
6172
6173 /* Loop thru all IRQ vectors */
6174 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
6175 eq = sli4_hba->hba_eq_hdl[qidx].eq;
6176 /* ARM the corresponding EQ */
6177 sli4_hba->sli4_write_eq_db(phba, eq,
6178 0, LPFC_QUEUE_REARM);
6179 }
6180 }
6181
6182 if (phba->nvmet_support) {
6183 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) {
6184 sli4_hba->sli4_write_cq_db(phba,
6185 sli4_hba->nvmet_cqset[qidx], 0,
6186 LPFC_QUEUE_REARM);
6187 }
6188 }
6189 }
6190
6191 /**
6192 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count.
6193 * @phba: Pointer to HBA context object.
6194 * @type: The resource extent type.
6195 * @extnt_count: buffer to hold port available extent count.
6196 * @extnt_size: buffer to hold element count per extent.
6197 *
6198 * This function calls the port and retrievs the number of available
6199 * extents and their size for a particular extent type.
6200 *
6201 * Returns: 0 if successful. Nonzero otherwise.
6202 **/
6203 int
lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba * phba,uint16_t type,uint16_t * extnt_count,uint16_t * extnt_size)6204 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type,
6205 uint16_t *extnt_count, uint16_t *extnt_size)
6206 {
6207 int rc = 0;
6208 uint32_t length;
6209 uint32_t mbox_tmo;
6210 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info;
6211 LPFC_MBOXQ_t *mbox;
6212
6213 *extnt_count = 0;
6214 *extnt_size = 0;
6215
6216 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6217 if (!mbox)
6218 return -ENOMEM;
6219
6220 /* Find out how many extents are available for this resource type */
6221 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) -
6222 sizeof(struct lpfc_sli4_cfg_mhdr));
6223 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6224 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO,
6225 length, LPFC_SLI4_MBX_EMBED);
6226
6227 /* Send an extents count of 0 - the GET doesn't use it. */
6228 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
6229 LPFC_SLI4_MBX_EMBED);
6230 if (unlikely(rc)) {
6231 rc = -EIO;
6232 goto err_exit;
6233 }
6234
6235 if (!phba->sli4_hba.intr_enable)
6236 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6237 else {
6238 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6239 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6240 }
6241 if (unlikely(rc)) {
6242 rc = -EIO;
6243 goto err_exit;
6244 }
6245
6246 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info;
6247 if (bf_get(lpfc_mbox_hdr_status,
6248 &rsrc_info->header.cfg_shdr.response)) {
6249 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6250 "2930 Failed to get resource extents "
6251 "Status 0x%x Add'l Status 0x%x\n",
6252 bf_get(lpfc_mbox_hdr_status,
6253 &rsrc_info->header.cfg_shdr.response),
6254 bf_get(lpfc_mbox_hdr_add_status,
6255 &rsrc_info->header.cfg_shdr.response));
6256 rc = -EIO;
6257 goto err_exit;
6258 }
6259
6260 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt,
6261 &rsrc_info->u.rsp);
6262 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size,
6263 &rsrc_info->u.rsp);
6264
6265 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6266 "3162 Retrieved extents type-%d from port: count:%d, "
6267 "size:%d\n", type, *extnt_count, *extnt_size);
6268
6269 err_exit:
6270 mempool_free(mbox, phba->mbox_mem_pool);
6271 return rc;
6272 }
6273
6274 /**
6275 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents.
6276 * @phba: Pointer to HBA context object.
6277 * @type: The extent type to check.
6278 *
6279 * This function reads the current available extents from the port and checks
6280 * if the extent count or extent size has changed since the last access.
6281 * Callers use this routine post port reset to understand if there is a
6282 * extent reprovisioning requirement.
6283 *
6284 * Returns:
6285 * -Error: error indicates problem.
6286 * 1: Extent count or size has changed.
6287 * 0: No changes.
6288 **/
6289 static int
lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba * phba,uint16_t type)6290 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type)
6291 {
6292 uint16_t curr_ext_cnt, rsrc_ext_cnt;
6293 uint16_t size_diff, rsrc_ext_size;
6294 int rc = 0;
6295 struct lpfc_rsrc_blks *rsrc_entry;
6296 struct list_head *rsrc_blk_list = NULL;
6297
6298 size_diff = 0;
6299 curr_ext_cnt = 0;
6300 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
6301 &rsrc_ext_cnt,
6302 &rsrc_ext_size);
6303 if (unlikely(rc))
6304 return -EIO;
6305
6306 switch (type) {
6307 case LPFC_RSC_TYPE_FCOE_RPI:
6308 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
6309 break;
6310 case LPFC_RSC_TYPE_FCOE_VPI:
6311 rsrc_blk_list = &phba->lpfc_vpi_blk_list;
6312 break;
6313 case LPFC_RSC_TYPE_FCOE_XRI:
6314 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
6315 break;
6316 case LPFC_RSC_TYPE_FCOE_VFI:
6317 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
6318 break;
6319 default:
6320 break;
6321 }
6322
6323 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) {
6324 curr_ext_cnt++;
6325 if (rsrc_entry->rsrc_size != rsrc_ext_size)
6326 size_diff++;
6327 }
6328
6329 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0)
6330 rc = 1;
6331
6332 return rc;
6333 }
6334
6335 /**
6336 * lpfc_sli4_cfg_post_extnts -
6337 * @phba: Pointer to HBA context object.
6338 * @extnt_cnt: number of available extents.
6339 * @type: the extent type (rpi, xri, vfi, vpi).
6340 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation.
6341 * @mbox: pointer to the caller's allocated mailbox structure.
6342 *
6343 * This function executes the extents allocation request. It also
6344 * takes care of the amount of memory needed to allocate or get the
6345 * allocated extents. It is the caller's responsibility to evaluate
6346 * the response.
6347 *
6348 * Returns:
6349 * -Error: Error value describes the condition found.
6350 * 0: if successful
6351 **/
6352 static int
lpfc_sli4_cfg_post_extnts(struct lpfc_hba * phba,uint16_t extnt_cnt,uint16_t type,bool * emb,LPFC_MBOXQ_t * mbox)6353 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt,
6354 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox)
6355 {
6356 int rc = 0;
6357 uint32_t req_len;
6358 uint32_t emb_len;
6359 uint32_t alloc_len, mbox_tmo;
6360
6361 /* Calculate the total requested length of the dma memory */
6362 req_len = extnt_cnt * sizeof(uint16_t);
6363
6364 /*
6365 * Calculate the size of an embedded mailbox. The uint32_t
6366 * accounts for extents-specific word.
6367 */
6368 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
6369 sizeof(uint32_t);
6370
6371 /*
6372 * Presume the allocation and response will fit into an embedded
6373 * mailbox. If not true, reconfigure to a non-embedded mailbox.
6374 */
6375 *emb = LPFC_SLI4_MBX_EMBED;
6376 if (req_len > emb_len) {
6377 req_len = extnt_cnt * sizeof(uint16_t) +
6378 sizeof(union lpfc_sli4_cfg_shdr) +
6379 sizeof(uint32_t);
6380 *emb = LPFC_SLI4_MBX_NEMBED;
6381 }
6382
6383 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6384 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT,
6385 req_len, *emb);
6386 if (alloc_len < req_len) {
6387 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6388 "2982 Allocated DMA memory size (x%x) is "
6389 "less than the requested DMA memory "
6390 "size (x%x)\n", alloc_len, req_len);
6391 return -ENOMEM;
6392 }
6393 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb);
6394 if (unlikely(rc))
6395 return -EIO;
6396
6397 if (!phba->sli4_hba.intr_enable)
6398 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6399 else {
6400 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6401 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6402 }
6403
6404 if (unlikely(rc))
6405 rc = -EIO;
6406 return rc;
6407 }
6408
6409 /**
6410 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent.
6411 * @phba: Pointer to HBA context object.
6412 * @type: The resource extent type to allocate.
6413 *
6414 * This function allocates the number of elements for the specified
6415 * resource type.
6416 **/
6417 static int
lpfc_sli4_alloc_extent(struct lpfc_hba * phba,uint16_t type)6418 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type)
6419 {
6420 bool emb = false;
6421 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size;
6422 uint16_t rsrc_id, rsrc_start, j, k;
6423 uint16_t *ids;
6424 int i, rc;
6425 unsigned long longs;
6426 unsigned long *bmask;
6427 struct lpfc_rsrc_blks *rsrc_blks;
6428 LPFC_MBOXQ_t *mbox;
6429 uint32_t length;
6430 struct lpfc_id_range *id_array = NULL;
6431 void *virtaddr = NULL;
6432 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
6433 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
6434 struct list_head *ext_blk_list;
6435
6436 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
6437 &rsrc_cnt,
6438 &rsrc_size);
6439 if (unlikely(rc))
6440 return -EIO;
6441
6442 if ((rsrc_cnt == 0) || (rsrc_size == 0)) {
6443 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6444 "3009 No available Resource Extents "
6445 "for resource type 0x%x: Count: 0x%x, "
6446 "Size 0x%x\n", type, rsrc_cnt,
6447 rsrc_size);
6448 return -ENOMEM;
6449 }
6450
6451 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI,
6452 "2903 Post resource extents type-0x%x: "
6453 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size);
6454
6455 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6456 if (!mbox)
6457 return -ENOMEM;
6458
6459 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox);
6460 if (unlikely(rc)) {
6461 rc = -EIO;
6462 goto err_exit;
6463 }
6464
6465 /*
6466 * Figure out where the response is located. Then get local pointers
6467 * to the response data. The port does not guarantee to respond to
6468 * all extents counts request so update the local variable with the
6469 * allocated count from the port.
6470 */
6471 if (emb == LPFC_SLI4_MBX_EMBED) {
6472 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
6473 id_array = &rsrc_ext->u.rsp.id[0];
6474 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
6475 } else {
6476 virtaddr = mbox->sge_array->addr[0];
6477 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
6478 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
6479 id_array = &n_rsrc->id;
6480 }
6481
6482 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG;
6483 rsrc_id_cnt = rsrc_cnt * rsrc_size;
6484
6485 /*
6486 * Based on the resource size and count, correct the base and max
6487 * resource values.
6488 */
6489 length = sizeof(struct lpfc_rsrc_blks);
6490 switch (type) {
6491 case LPFC_RSC_TYPE_FCOE_RPI:
6492 phba->sli4_hba.rpi_bmask = kcalloc(longs,
6493 sizeof(unsigned long),
6494 GFP_KERNEL);
6495 if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6496 rc = -ENOMEM;
6497 goto err_exit;
6498 }
6499 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt,
6500 sizeof(uint16_t),
6501 GFP_KERNEL);
6502 if (unlikely(!phba->sli4_hba.rpi_ids)) {
6503 kfree(phba->sli4_hba.rpi_bmask);
6504 rc = -ENOMEM;
6505 goto err_exit;
6506 }
6507
6508 /*
6509 * The next_rpi was initialized with the maximum available
6510 * count but the port may allocate a smaller number. Catch
6511 * that case and update the next_rpi.
6512 */
6513 phba->sli4_hba.next_rpi = rsrc_id_cnt;
6514
6515 /* Initialize local ptrs for common extent processing later. */
6516 bmask = phba->sli4_hba.rpi_bmask;
6517 ids = phba->sli4_hba.rpi_ids;
6518 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
6519 break;
6520 case LPFC_RSC_TYPE_FCOE_VPI:
6521 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
6522 GFP_KERNEL);
6523 if (unlikely(!phba->vpi_bmask)) {
6524 rc = -ENOMEM;
6525 goto err_exit;
6526 }
6527 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t),
6528 GFP_KERNEL);
6529 if (unlikely(!phba->vpi_ids)) {
6530 kfree(phba->vpi_bmask);
6531 rc = -ENOMEM;
6532 goto err_exit;
6533 }
6534
6535 /* Initialize local ptrs for common extent processing later. */
6536 bmask = phba->vpi_bmask;
6537 ids = phba->vpi_ids;
6538 ext_blk_list = &phba->lpfc_vpi_blk_list;
6539 break;
6540 case LPFC_RSC_TYPE_FCOE_XRI:
6541 phba->sli4_hba.xri_bmask = kcalloc(longs,
6542 sizeof(unsigned long),
6543 GFP_KERNEL);
6544 if (unlikely(!phba->sli4_hba.xri_bmask)) {
6545 rc = -ENOMEM;
6546 goto err_exit;
6547 }
6548 phba->sli4_hba.max_cfg_param.xri_used = 0;
6549 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt,
6550 sizeof(uint16_t),
6551 GFP_KERNEL);
6552 if (unlikely(!phba->sli4_hba.xri_ids)) {
6553 kfree(phba->sli4_hba.xri_bmask);
6554 rc = -ENOMEM;
6555 goto err_exit;
6556 }
6557
6558 /* Initialize local ptrs for common extent processing later. */
6559 bmask = phba->sli4_hba.xri_bmask;
6560 ids = phba->sli4_hba.xri_ids;
6561 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
6562 break;
6563 case LPFC_RSC_TYPE_FCOE_VFI:
6564 phba->sli4_hba.vfi_bmask = kcalloc(longs,
6565 sizeof(unsigned long),
6566 GFP_KERNEL);
6567 if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6568 rc = -ENOMEM;
6569 goto err_exit;
6570 }
6571 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt,
6572 sizeof(uint16_t),
6573 GFP_KERNEL);
6574 if (unlikely(!phba->sli4_hba.vfi_ids)) {
6575 kfree(phba->sli4_hba.vfi_bmask);
6576 rc = -ENOMEM;
6577 goto err_exit;
6578 }
6579
6580 /* Initialize local ptrs for common extent processing later. */
6581 bmask = phba->sli4_hba.vfi_bmask;
6582 ids = phba->sli4_hba.vfi_ids;
6583 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
6584 break;
6585 default:
6586 /* Unsupported Opcode. Fail call. */
6587 id_array = NULL;
6588 bmask = NULL;
6589 ids = NULL;
6590 ext_blk_list = NULL;
6591 goto err_exit;
6592 }
6593
6594 /*
6595 * Complete initializing the extent configuration with the
6596 * allocated ids assigned to this function. The bitmask serves
6597 * as an index into the array and manages the available ids. The
6598 * array just stores the ids communicated to the port via the wqes.
6599 */
6600 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) {
6601 if ((i % 2) == 0)
6602 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0,
6603 &id_array[k]);
6604 else
6605 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1,
6606 &id_array[k]);
6607
6608 rsrc_blks = kzalloc(length, GFP_KERNEL);
6609 if (unlikely(!rsrc_blks)) {
6610 rc = -ENOMEM;
6611 kfree(bmask);
6612 kfree(ids);
6613 goto err_exit;
6614 }
6615 rsrc_blks->rsrc_start = rsrc_id;
6616 rsrc_blks->rsrc_size = rsrc_size;
6617 list_add_tail(&rsrc_blks->list, ext_blk_list);
6618 rsrc_start = rsrc_id;
6619 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) {
6620 phba->sli4_hba.io_xri_start = rsrc_start +
6621 lpfc_sli4_get_iocb_cnt(phba);
6622 }
6623
6624 while (rsrc_id < (rsrc_start + rsrc_size)) {
6625 ids[j] = rsrc_id;
6626 rsrc_id++;
6627 j++;
6628 }
6629 /* Entire word processed. Get next word.*/
6630 if ((i % 2) == 1)
6631 k++;
6632 }
6633 err_exit:
6634 lpfc_sli4_mbox_cmd_free(phba, mbox);
6635 return rc;
6636 }
6637
6638
6639
6640 /**
6641 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent.
6642 * @phba: Pointer to HBA context object.
6643 * @type: the extent's type.
6644 *
6645 * This function deallocates all extents of a particular resource type.
6646 * SLI4 does not allow for deallocating a particular extent range. It
6647 * is the caller's responsibility to release all kernel memory resources.
6648 **/
6649 static int
lpfc_sli4_dealloc_extent(struct lpfc_hba * phba,uint16_t type)6650 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type)
6651 {
6652 int rc;
6653 uint32_t length, mbox_tmo = 0;
6654 LPFC_MBOXQ_t *mbox;
6655 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc;
6656 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next;
6657
6658 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6659 if (!mbox)
6660 return -ENOMEM;
6661
6662 /*
6663 * This function sends an embedded mailbox because it only sends the
6664 * the resource type. All extents of this type are released by the
6665 * port.
6666 */
6667 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) -
6668 sizeof(struct lpfc_sli4_cfg_mhdr));
6669 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6670 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT,
6671 length, LPFC_SLI4_MBX_EMBED);
6672
6673 /* Send an extents count of 0 - the dealloc doesn't use it. */
6674 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
6675 LPFC_SLI4_MBX_EMBED);
6676 if (unlikely(rc)) {
6677 rc = -EIO;
6678 goto out_free_mbox;
6679 }
6680 if (!phba->sli4_hba.intr_enable)
6681 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6682 else {
6683 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6684 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6685 }
6686 if (unlikely(rc)) {
6687 rc = -EIO;
6688 goto out_free_mbox;
6689 }
6690
6691 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents;
6692 if (bf_get(lpfc_mbox_hdr_status,
6693 &dealloc_rsrc->header.cfg_shdr.response)) {
6694 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6695 "2919 Failed to release resource extents "
6696 "for type %d - Status 0x%x Add'l Status 0x%x. "
6697 "Resource memory not released.\n",
6698 type,
6699 bf_get(lpfc_mbox_hdr_status,
6700 &dealloc_rsrc->header.cfg_shdr.response),
6701 bf_get(lpfc_mbox_hdr_add_status,
6702 &dealloc_rsrc->header.cfg_shdr.response));
6703 rc = -EIO;
6704 goto out_free_mbox;
6705 }
6706
6707 /* Release kernel memory resources for the specific type. */
6708 switch (type) {
6709 case LPFC_RSC_TYPE_FCOE_VPI:
6710 kfree(phba->vpi_bmask);
6711 kfree(phba->vpi_ids);
6712 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6713 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6714 &phba->lpfc_vpi_blk_list, list) {
6715 list_del_init(&rsrc_blk->list);
6716 kfree(rsrc_blk);
6717 }
6718 phba->sli4_hba.max_cfg_param.vpi_used = 0;
6719 break;
6720 case LPFC_RSC_TYPE_FCOE_XRI:
6721 kfree(phba->sli4_hba.xri_bmask);
6722 kfree(phba->sli4_hba.xri_ids);
6723 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6724 &phba->sli4_hba.lpfc_xri_blk_list, list) {
6725 list_del_init(&rsrc_blk->list);
6726 kfree(rsrc_blk);
6727 }
6728 break;
6729 case LPFC_RSC_TYPE_FCOE_VFI:
6730 kfree(phba->sli4_hba.vfi_bmask);
6731 kfree(phba->sli4_hba.vfi_ids);
6732 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6733 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6734 &phba->sli4_hba.lpfc_vfi_blk_list, list) {
6735 list_del_init(&rsrc_blk->list);
6736 kfree(rsrc_blk);
6737 }
6738 break;
6739 case LPFC_RSC_TYPE_FCOE_RPI:
6740 /* RPI bitmask and physical id array are cleaned up earlier. */
6741 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6742 &phba->sli4_hba.lpfc_rpi_blk_list, list) {
6743 list_del_init(&rsrc_blk->list);
6744 kfree(rsrc_blk);
6745 }
6746 break;
6747 default:
6748 break;
6749 }
6750
6751 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6752
6753 out_free_mbox:
6754 mempool_free(mbox, phba->mbox_mem_pool);
6755 return rc;
6756 }
6757
6758 static void
lpfc_set_features(struct lpfc_hba * phba,LPFC_MBOXQ_t * mbox,uint32_t feature)6759 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox,
6760 uint32_t feature)
6761 {
6762 uint32_t len;
6763 u32 sig_freq = 0;
6764
6765 len = sizeof(struct lpfc_mbx_set_feature) -
6766 sizeof(struct lpfc_sli4_cfg_mhdr);
6767 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6768 LPFC_MBOX_OPCODE_SET_FEATURES, len,
6769 LPFC_SLI4_MBX_EMBED);
6770
6771 switch (feature) {
6772 case LPFC_SET_UE_RECOVERY:
6773 bf_set(lpfc_mbx_set_feature_UER,
6774 &mbox->u.mqe.un.set_feature, 1);
6775 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY;
6776 mbox->u.mqe.un.set_feature.param_len = 8;
6777 break;
6778 case LPFC_SET_MDS_DIAGS:
6779 bf_set(lpfc_mbx_set_feature_mds,
6780 &mbox->u.mqe.un.set_feature, 1);
6781 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk,
6782 &mbox->u.mqe.un.set_feature, 1);
6783 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS;
6784 mbox->u.mqe.un.set_feature.param_len = 8;
6785 break;
6786 case LPFC_SET_CGN_SIGNAL:
6787 if (phba->cmf_active_mode == LPFC_CFG_OFF)
6788 sig_freq = 0;
6789 else
6790 sig_freq = phba->cgn_sig_freq;
6791
6792 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6793 bf_set(lpfc_mbx_set_feature_CGN_alarm_freq,
6794 &mbox->u.mqe.un.set_feature, sig_freq);
6795 bf_set(lpfc_mbx_set_feature_CGN_warn_freq,
6796 &mbox->u.mqe.un.set_feature, sig_freq);
6797 }
6798
6799 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY)
6800 bf_set(lpfc_mbx_set_feature_CGN_warn_freq,
6801 &mbox->u.mqe.un.set_feature, sig_freq);
6802
6803 if (phba->cmf_active_mode == LPFC_CFG_OFF ||
6804 phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED)
6805 sig_freq = 0;
6806 else
6807 sig_freq = lpfc_acqe_cgn_frequency;
6808
6809 bf_set(lpfc_mbx_set_feature_CGN_acqe_freq,
6810 &mbox->u.mqe.un.set_feature, sig_freq);
6811
6812 mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL;
6813 mbox->u.mqe.un.set_feature.param_len = 12;
6814 break;
6815 case LPFC_SET_DUAL_DUMP:
6816 bf_set(lpfc_mbx_set_feature_dd,
6817 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP);
6818 bf_set(lpfc_mbx_set_feature_ddquery,
6819 &mbox->u.mqe.un.set_feature, 0);
6820 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP;
6821 mbox->u.mqe.un.set_feature.param_len = 4;
6822 break;
6823 case LPFC_SET_ENABLE_MI:
6824 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI;
6825 mbox->u.mqe.un.set_feature.param_len = 4;
6826 bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature,
6827 phba->pport->cfg_lun_queue_depth);
6828 bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature,
6829 phba->sli4_hba.pc_sli4_params.mi_ver);
6830 break;
6831 case LPFC_SET_LD_SIGNAL:
6832 mbox->u.mqe.un.set_feature.feature = LPFC_SET_LD_SIGNAL;
6833 mbox->u.mqe.un.set_feature.param_len = 16;
6834 bf_set(lpfc_mbx_set_feature_lds_qry,
6835 &mbox->u.mqe.un.set_feature, LPFC_QUERY_LDS_OP);
6836 break;
6837 case LPFC_SET_ENABLE_CMF:
6838 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF;
6839 mbox->u.mqe.un.set_feature.param_len = 4;
6840 bf_set(lpfc_mbx_set_feature_cmf,
6841 &mbox->u.mqe.un.set_feature, 1);
6842 break;
6843 }
6844 return;
6845 }
6846
6847 /**
6848 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter
6849 * @phba: Pointer to HBA context object.
6850 *
6851 * Disable FW logging into host memory on the adapter. To
6852 * be done before reading logs from the host memory.
6853 **/
6854 void
lpfc_ras_stop_fwlog(struct lpfc_hba * phba)6855 lpfc_ras_stop_fwlog(struct lpfc_hba *phba)
6856 {
6857 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6858
6859 spin_lock_irq(&phba->ras_fwlog_lock);
6860 ras_fwlog->state = INACTIVE;
6861 spin_unlock_irq(&phba->ras_fwlog_lock);
6862
6863 /* Disable FW logging to host memory */
6864 writel(LPFC_CTL_PDEV_CTL_DDL_RAS,
6865 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET);
6866
6867 /* Wait 10ms for firmware to stop using DMA buffer */
6868 usleep_range(10 * 1000, 20 * 1000);
6869 }
6870
6871 /**
6872 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging.
6873 * @phba: Pointer to HBA context object.
6874 *
6875 * This function is called to free memory allocated for RAS FW logging
6876 * support in the driver.
6877 **/
6878 void
lpfc_sli4_ras_dma_free(struct lpfc_hba * phba)6879 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba)
6880 {
6881 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6882 struct lpfc_dmabuf *dmabuf, *next;
6883
6884 if (!list_empty(&ras_fwlog->fwlog_buff_list)) {
6885 list_for_each_entry_safe(dmabuf, next,
6886 &ras_fwlog->fwlog_buff_list,
6887 list) {
6888 list_del(&dmabuf->list);
6889 dma_free_coherent(&phba->pcidev->dev,
6890 LPFC_RAS_MAX_ENTRY_SIZE,
6891 dmabuf->virt, dmabuf->phys);
6892 kfree(dmabuf);
6893 }
6894 }
6895
6896 if (ras_fwlog->lwpd.virt) {
6897 dma_free_coherent(&phba->pcidev->dev,
6898 sizeof(uint32_t) * 2,
6899 ras_fwlog->lwpd.virt,
6900 ras_fwlog->lwpd.phys);
6901 ras_fwlog->lwpd.virt = NULL;
6902 }
6903
6904 spin_lock_irq(&phba->ras_fwlog_lock);
6905 ras_fwlog->state = INACTIVE;
6906 spin_unlock_irq(&phba->ras_fwlog_lock);
6907 }
6908
6909 /**
6910 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support
6911 * @phba: Pointer to HBA context object.
6912 * @fwlog_buff_count: Count of buffers to be created.
6913 *
6914 * This routine DMA memory for Log Write Position Data[LPWD] and buffer
6915 * to update FW log is posted to the adapter.
6916 * Buffer count is calculated based on module param ras_fwlog_buffsize
6917 * Size of each buffer posted to FW is 64K.
6918 **/
6919
6920 static int
lpfc_sli4_ras_dma_alloc(struct lpfc_hba * phba,uint32_t fwlog_buff_count)6921 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba,
6922 uint32_t fwlog_buff_count)
6923 {
6924 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6925 struct lpfc_dmabuf *dmabuf;
6926 int rc = 0, i = 0;
6927
6928 /* Initialize List */
6929 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list);
6930
6931 /* Allocate memory for the LWPD */
6932 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev,
6933 sizeof(uint32_t) * 2,
6934 &ras_fwlog->lwpd.phys,
6935 GFP_KERNEL);
6936 if (!ras_fwlog->lwpd.virt) {
6937 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6938 "6185 LWPD Memory Alloc Failed\n");
6939
6940 return -ENOMEM;
6941 }
6942
6943 ras_fwlog->fw_buffcount = fwlog_buff_count;
6944 for (i = 0; i < ras_fwlog->fw_buffcount; i++) {
6945 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
6946 GFP_KERNEL);
6947 if (!dmabuf) {
6948 rc = -ENOMEM;
6949 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6950 "6186 Memory Alloc failed FW logging");
6951 goto free_mem;
6952 }
6953
6954 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
6955 LPFC_RAS_MAX_ENTRY_SIZE,
6956 &dmabuf->phys, GFP_KERNEL);
6957 if (!dmabuf->virt) {
6958 kfree(dmabuf);
6959 rc = -ENOMEM;
6960 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6961 "6187 DMA Alloc Failed FW logging");
6962 goto free_mem;
6963 }
6964 dmabuf->buffer_tag = i;
6965 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list);
6966 }
6967
6968 free_mem:
6969 if (rc)
6970 lpfc_sli4_ras_dma_free(phba);
6971
6972 return rc;
6973 }
6974
6975 /**
6976 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command
6977 * @phba: pointer to lpfc hba data structure.
6978 * @pmb: pointer to the driver internal queue element for mailbox command.
6979 *
6980 * Completion handler for driver's RAS MBX command to the device.
6981 **/
6982 static void
lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmb)6983 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
6984 {
6985 MAILBOX_t *mb;
6986 union lpfc_sli4_cfg_shdr *shdr;
6987 uint32_t shdr_status, shdr_add_status;
6988 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6989
6990 mb = &pmb->u.mb;
6991
6992 shdr = (union lpfc_sli4_cfg_shdr *)
6993 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr;
6994 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
6995 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
6996
6997 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) {
6998 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6999 "6188 FW LOG mailbox "
7000 "completed with status x%x add_status x%x,"
7001 " mbx status x%x\n",
7002 shdr_status, shdr_add_status, mb->mbxStatus);
7003
7004 ras_fwlog->ras_hwsupport = false;
7005 goto disable_ras;
7006 }
7007
7008 spin_lock_irq(&phba->ras_fwlog_lock);
7009 ras_fwlog->state = ACTIVE;
7010 spin_unlock_irq(&phba->ras_fwlog_lock);
7011 mempool_free(pmb, phba->mbox_mem_pool);
7012
7013 return;
7014
7015 disable_ras:
7016 /* Free RAS DMA memory */
7017 lpfc_sli4_ras_dma_free(phba);
7018 mempool_free(pmb, phba->mbox_mem_pool);
7019 }
7020
7021 /**
7022 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command
7023 * @phba: pointer to lpfc hba data structure.
7024 * @fwlog_level: Logging verbosity level.
7025 * @fwlog_enable: Enable/Disable logging.
7026 *
7027 * Initialize memory and post mailbox command to enable FW logging in host
7028 * memory.
7029 **/
7030 int
lpfc_sli4_ras_fwlog_init(struct lpfc_hba * phba,uint32_t fwlog_level,uint32_t fwlog_enable)7031 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba,
7032 uint32_t fwlog_level,
7033 uint32_t fwlog_enable)
7034 {
7035 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
7036 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL;
7037 struct lpfc_dmabuf *dmabuf;
7038 LPFC_MBOXQ_t *mbox;
7039 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count;
7040 int rc = 0;
7041
7042 spin_lock_irq(&phba->ras_fwlog_lock);
7043 ras_fwlog->state = INACTIVE;
7044 spin_unlock_irq(&phba->ras_fwlog_lock);
7045
7046 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE *
7047 phba->cfg_ras_fwlog_buffsize);
7048 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE);
7049
7050 /*
7051 * If re-enabling FW logging support use earlier allocated
7052 * DMA buffers while posting MBX command.
7053 **/
7054 if (!ras_fwlog->lwpd.virt) {
7055 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count);
7056 if (rc) {
7057 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7058 "6189 FW Log Memory Allocation Failed");
7059 return rc;
7060 }
7061 }
7062
7063 /* Setup Mailbox command */
7064 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7065 if (!mbox) {
7066 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7067 "6190 RAS MBX Alloc Failed");
7068 rc = -ENOMEM;
7069 goto mem_free;
7070 }
7071
7072 ras_fwlog->fw_loglevel = fwlog_level;
7073 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) -
7074 sizeof(struct lpfc_sli4_cfg_mhdr));
7075
7076 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL,
7077 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION,
7078 len, LPFC_SLI4_MBX_EMBED);
7079
7080 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog;
7081 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request,
7082 fwlog_enable);
7083 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request,
7084 ras_fwlog->fw_loglevel);
7085 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request,
7086 ras_fwlog->fw_buffcount);
7087 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request,
7088 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE);
7089
7090 /* Update DMA buffer address */
7091 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) {
7092 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE);
7093
7094 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo =
7095 putPaddrLow(dmabuf->phys);
7096
7097 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi =
7098 putPaddrHigh(dmabuf->phys);
7099 }
7100
7101 /* Update LPWD address */
7102 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys);
7103 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys);
7104
7105 spin_lock_irq(&phba->ras_fwlog_lock);
7106 ras_fwlog->state = REG_INPROGRESS;
7107 spin_unlock_irq(&phba->ras_fwlog_lock);
7108 mbox->vport = phba->pport;
7109 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl;
7110
7111 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
7112
7113 if (rc == MBX_NOT_FINISHED) {
7114 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7115 "6191 FW-Log Mailbox failed. "
7116 "status %d mbxStatus : x%x", rc,
7117 bf_get(lpfc_mqe_status, &mbox->u.mqe));
7118 mempool_free(mbox, phba->mbox_mem_pool);
7119 rc = -EIO;
7120 goto mem_free;
7121 } else
7122 rc = 0;
7123 mem_free:
7124 if (rc)
7125 lpfc_sli4_ras_dma_free(phba);
7126
7127 return rc;
7128 }
7129
7130 /**
7131 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter
7132 * @phba: Pointer to HBA context object.
7133 *
7134 * Check if RAS is supported on the adapter and initialize it.
7135 **/
7136 void
lpfc_sli4_ras_setup(struct lpfc_hba * phba)7137 lpfc_sli4_ras_setup(struct lpfc_hba *phba)
7138 {
7139 /* Check RAS FW Log needs to be enabled or not */
7140 if (lpfc_check_fwlog_support(phba))
7141 return;
7142
7143 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level,
7144 LPFC_RAS_ENABLE_LOGGING);
7145 }
7146
7147 /**
7148 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents.
7149 * @phba: Pointer to HBA context object.
7150 *
7151 * This function allocates all SLI4 resource identifiers.
7152 **/
7153 int
lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba * phba)7154 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba)
7155 {
7156 int i, rc, error = 0;
7157 uint16_t count, base;
7158 unsigned long longs;
7159
7160 if (!phba->sli4_hba.rpi_hdrs_in_use)
7161 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
7162 if (phba->sli4_hba.extents_in_use) {
7163 /*
7164 * The port supports resource extents. The XRI, VPI, VFI, RPI
7165 * resource extent count must be read and allocated before
7166 * provisioning the resource id arrays.
7167 */
7168 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
7169 LPFC_IDX_RSRC_RDY) {
7170 /*
7171 * Extent-based resources are set - the driver could
7172 * be in a port reset. Figure out if any corrective
7173 * actions need to be taken.
7174 */
7175 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
7176 LPFC_RSC_TYPE_FCOE_VFI);
7177 if (rc != 0)
7178 error++;
7179 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
7180 LPFC_RSC_TYPE_FCOE_VPI);
7181 if (rc != 0)
7182 error++;
7183 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
7184 LPFC_RSC_TYPE_FCOE_XRI);
7185 if (rc != 0)
7186 error++;
7187 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
7188 LPFC_RSC_TYPE_FCOE_RPI);
7189 if (rc != 0)
7190 error++;
7191
7192 /*
7193 * It's possible that the number of resources
7194 * provided to this port instance changed between
7195 * resets. Detect this condition and reallocate
7196 * resources. Otherwise, there is no action.
7197 */
7198 if (error) {
7199 lpfc_printf_log(phba, KERN_INFO,
7200 LOG_MBOX | LOG_INIT,
7201 "2931 Detected extent resource "
7202 "change. Reallocating all "
7203 "extents.\n");
7204 rc = lpfc_sli4_dealloc_extent(phba,
7205 LPFC_RSC_TYPE_FCOE_VFI);
7206 rc = lpfc_sli4_dealloc_extent(phba,
7207 LPFC_RSC_TYPE_FCOE_VPI);
7208 rc = lpfc_sli4_dealloc_extent(phba,
7209 LPFC_RSC_TYPE_FCOE_XRI);
7210 rc = lpfc_sli4_dealloc_extent(phba,
7211 LPFC_RSC_TYPE_FCOE_RPI);
7212 } else
7213 return 0;
7214 }
7215
7216 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
7217 if (unlikely(rc))
7218 goto err_exit;
7219
7220 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
7221 if (unlikely(rc))
7222 goto err_exit;
7223
7224 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
7225 if (unlikely(rc))
7226 goto err_exit;
7227
7228 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
7229 if (unlikely(rc))
7230 goto err_exit;
7231 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
7232 LPFC_IDX_RSRC_RDY);
7233 return rc;
7234 } else {
7235 /*
7236 * The port does not support resource extents. The XRI, VPI,
7237 * VFI, RPI resource ids were determined from READ_CONFIG.
7238 * Just allocate the bitmasks and provision the resource id
7239 * arrays. If a port reset is active, the resources don't
7240 * need any action - just exit.
7241 */
7242 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
7243 LPFC_IDX_RSRC_RDY) {
7244 lpfc_sli4_dealloc_resource_identifiers(phba);
7245 lpfc_sli4_remove_rpis(phba);
7246 }
7247 /* RPIs. */
7248 count = phba->sli4_hba.max_cfg_param.max_rpi;
7249 if (count <= 0) {
7250 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7251 "3279 Invalid provisioning of "
7252 "rpi:%d\n", count);
7253 rc = -EINVAL;
7254 goto err_exit;
7255 }
7256 base = phba->sli4_hba.max_cfg_param.rpi_base;
7257 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
7258 phba->sli4_hba.rpi_bmask = kcalloc(longs,
7259 sizeof(unsigned long),
7260 GFP_KERNEL);
7261 if (unlikely(!phba->sli4_hba.rpi_bmask)) {
7262 rc = -ENOMEM;
7263 goto err_exit;
7264 }
7265 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t),
7266 GFP_KERNEL);
7267 if (unlikely(!phba->sli4_hba.rpi_ids)) {
7268 rc = -ENOMEM;
7269 goto free_rpi_bmask;
7270 }
7271
7272 for (i = 0; i < count; i++)
7273 phba->sli4_hba.rpi_ids[i] = base + i;
7274
7275 /* VPIs. */
7276 count = phba->sli4_hba.max_cfg_param.max_vpi;
7277 if (count <= 0) {
7278 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7279 "3280 Invalid provisioning of "
7280 "vpi:%d\n", count);
7281 rc = -EINVAL;
7282 goto free_rpi_ids;
7283 }
7284 base = phba->sli4_hba.max_cfg_param.vpi_base;
7285 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
7286 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
7287 GFP_KERNEL);
7288 if (unlikely(!phba->vpi_bmask)) {
7289 rc = -ENOMEM;
7290 goto free_rpi_ids;
7291 }
7292 phba->vpi_ids = kcalloc(count, sizeof(uint16_t),
7293 GFP_KERNEL);
7294 if (unlikely(!phba->vpi_ids)) {
7295 rc = -ENOMEM;
7296 goto free_vpi_bmask;
7297 }
7298
7299 for (i = 0; i < count; i++)
7300 phba->vpi_ids[i] = base + i;
7301
7302 /* XRIs. */
7303 count = phba->sli4_hba.max_cfg_param.max_xri;
7304 if (count <= 0) {
7305 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7306 "3281 Invalid provisioning of "
7307 "xri:%d\n", count);
7308 rc = -EINVAL;
7309 goto free_vpi_ids;
7310 }
7311 base = phba->sli4_hba.max_cfg_param.xri_base;
7312 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
7313 phba->sli4_hba.xri_bmask = kcalloc(longs,
7314 sizeof(unsigned long),
7315 GFP_KERNEL);
7316 if (unlikely(!phba->sli4_hba.xri_bmask)) {
7317 rc = -ENOMEM;
7318 goto free_vpi_ids;
7319 }
7320 phba->sli4_hba.max_cfg_param.xri_used = 0;
7321 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t),
7322 GFP_KERNEL);
7323 if (unlikely(!phba->sli4_hba.xri_ids)) {
7324 rc = -ENOMEM;
7325 goto free_xri_bmask;
7326 }
7327
7328 for (i = 0; i < count; i++)
7329 phba->sli4_hba.xri_ids[i] = base + i;
7330
7331 /* VFIs. */
7332 count = phba->sli4_hba.max_cfg_param.max_vfi;
7333 if (count <= 0) {
7334 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7335 "3282 Invalid provisioning of "
7336 "vfi:%d\n", count);
7337 rc = -EINVAL;
7338 goto free_xri_ids;
7339 }
7340 base = phba->sli4_hba.max_cfg_param.vfi_base;
7341 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
7342 phba->sli4_hba.vfi_bmask = kcalloc(longs,
7343 sizeof(unsigned long),
7344 GFP_KERNEL);
7345 if (unlikely(!phba->sli4_hba.vfi_bmask)) {
7346 rc = -ENOMEM;
7347 goto free_xri_ids;
7348 }
7349 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t),
7350 GFP_KERNEL);
7351 if (unlikely(!phba->sli4_hba.vfi_ids)) {
7352 rc = -ENOMEM;
7353 goto free_vfi_bmask;
7354 }
7355
7356 for (i = 0; i < count; i++)
7357 phba->sli4_hba.vfi_ids[i] = base + i;
7358
7359 /*
7360 * Mark all resources ready. An HBA reset doesn't need
7361 * to reset the initialization.
7362 */
7363 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
7364 LPFC_IDX_RSRC_RDY);
7365 return 0;
7366 }
7367
7368 free_vfi_bmask:
7369 kfree(phba->sli4_hba.vfi_bmask);
7370 phba->sli4_hba.vfi_bmask = NULL;
7371 free_xri_ids:
7372 kfree(phba->sli4_hba.xri_ids);
7373 phba->sli4_hba.xri_ids = NULL;
7374 free_xri_bmask:
7375 kfree(phba->sli4_hba.xri_bmask);
7376 phba->sli4_hba.xri_bmask = NULL;
7377 free_vpi_ids:
7378 kfree(phba->vpi_ids);
7379 phba->vpi_ids = NULL;
7380 free_vpi_bmask:
7381 kfree(phba->vpi_bmask);
7382 phba->vpi_bmask = NULL;
7383 free_rpi_ids:
7384 kfree(phba->sli4_hba.rpi_ids);
7385 phba->sli4_hba.rpi_ids = NULL;
7386 free_rpi_bmask:
7387 kfree(phba->sli4_hba.rpi_bmask);
7388 phba->sli4_hba.rpi_bmask = NULL;
7389 err_exit:
7390 return rc;
7391 }
7392
7393 /**
7394 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents.
7395 * @phba: Pointer to HBA context object.
7396 *
7397 * This function allocates the number of elements for the specified
7398 * resource type.
7399 **/
7400 int
lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba * phba)7401 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba)
7402 {
7403 if (phba->sli4_hba.extents_in_use) {
7404 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
7405 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
7406 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
7407 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
7408 } else {
7409 kfree(phba->vpi_bmask);
7410 phba->sli4_hba.max_cfg_param.vpi_used = 0;
7411 kfree(phba->vpi_ids);
7412 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
7413 kfree(phba->sli4_hba.xri_bmask);
7414 kfree(phba->sli4_hba.xri_ids);
7415 kfree(phba->sli4_hba.vfi_bmask);
7416 kfree(phba->sli4_hba.vfi_ids);
7417 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
7418 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
7419 }
7420
7421 return 0;
7422 }
7423
7424 /**
7425 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents.
7426 * @phba: Pointer to HBA context object.
7427 * @type: The resource extent type.
7428 * @extnt_cnt: buffer to hold port extent count response
7429 * @extnt_size: buffer to hold port extent size response.
7430 *
7431 * This function calls the port to read the host allocated extents
7432 * for a particular type.
7433 **/
7434 int
lpfc_sli4_get_allocated_extnts(struct lpfc_hba * phba,uint16_t type,uint16_t * extnt_cnt,uint16_t * extnt_size)7435 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type,
7436 uint16_t *extnt_cnt, uint16_t *extnt_size)
7437 {
7438 bool emb;
7439 int rc = 0;
7440 uint16_t curr_blks = 0;
7441 uint32_t req_len, emb_len;
7442 uint32_t alloc_len, mbox_tmo;
7443 struct list_head *blk_list_head;
7444 struct lpfc_rsrc_blks *rsrc_blk;
7445 LPFC_MBOXQ_t *mbox;
7446 void *virtaddr = NULL;
7447 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
7448 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
7449 union lpfc_sli4_cfg_shdr *shdr;
7450
7451 switch (type) {
7452 case LPFC_RSC_TYPE_FCOE_VPI:
7453 blk_list_head = &phba->lpfc_vpi_blk_list;
7454 break;
7455 case LPFC_RSC_TYPE_FCOE_XRI:
7456 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list;
7457 break;
7458 case LPFC_RSC_TYPE_FCOE_VFI:
7459 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list;
7460 break;
7461 case LPFC_RSC_TYPE_FCOE_RPI:
7462 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list;
7463 break;
7464 default:
7465 return -EIO;
7466 }
7467
7468 /* Count the number of extents currently allocatd for this type. */
7469 list_for_each_entry(rsrc_blk, blk_list_head, list) {
7470 if (curr_blks == 0) {
7471 /*
7472 * The GET_ALLOCATED mailbox does not return the size,
7473 * just the count. The size should be just the size
7474 * stored in the current allocated block and all sizes
7475 * for an extent type are the same so set the return
7476 * value now.
7477 */
7478 *extnt_size = rsrc_blk->rsrc_size;
7479 }
7480 curr_blks++;
7481 }
7482
7483 /*
7484 * Calculate the size of an embedded mailbox. The uint32_t
7485 * accounts for extents-specific word.
7486 */
7487 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
7488 sizeof(uint32_t);
7489
7490 /*
7491 * Presume the allocation and response will fit into an embedded
7492 * mailbox. If not true, reconfigure to a non-embedded mailbox.
7493 */
7494 emb = LPFC_SLI4_MBX_EMBED;
7495 req_len = emb_len;
7496 if (req_len > emb_len) {
7497 req_len = curr_blks * sizeof(uint16_t) +
7498 sizeof(union lpfc_sli4_cfg_shdr) +
7499 sizeof(uint32_t);
7500 emb = LPFC_SLI4_MBX_NEMBED;
7501 }
7502
7503 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7504 if (!mbox)
7505 return -ENOMEM;
7506 memset(mbox, 0, sizeof(LPFC_MBOXQ_t));
7507
7508 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7509 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT,
7510 req_len, emb);
7511 if (alloc_len < req_len) {
7512 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7513 "2983 Allocated DMA memory size (x%x) is "
7514 "less than the requested DMA memory "
7515 "size (x%x)\n", alloc_len, req_len);
7516 rc = -ENOMEM;
7517 goto err_exit;
7518 }
7519 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb);
7520 if (unlikely(rc)) {
7521 rc = -EIO;
7522 goto err_exit;
7523 }
7524
7525 if (!phba->sli4_hba.intr_enable)
7526 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
7527 else {
7528 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
7529 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
7530 }
7531
7532 if (unlikely(rc)) {
7533 rc = -EIO;
7534 goto err_exit;
7535 }
7536
7537 /*
7538 * Figure out where the response is located. Then get local pointers
7539 * to the response data. The port does not guarantee to respond to
7540 * all extents counts request so update the local variable with the
7541 * allocated count from the port.
7542 */
7543 if (emb == LPFC_SLI4_MBX_EMBED) {
7544 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
7545 shdr = &rsrc_ext->header.cfg_shdr;
7546 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
7547 } else {
7548 virtaddr = mbox->sge_array->addr[0];
7549 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
7550 shdr = &n_rsrc->cfg_shdr;
7551 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
7552 }
7553
7554 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) {
7555 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7556 "2984 Failed to read allocated resources "
7557 "for type %d - Status 0x%x Add'l Status 0x%x.\n",
7558 type,
7559 bf_get(lpfc_mbox_hdr_status, &shdr->response),
7560 bf_get(lpfc_mbox_hdr_add_status, &shdr->response));
7561 rc = -EIO;
7562 goto err_exit;
7563 }
7564 err_exit:
7565 lpfc_sli4_mbox_cmd_free(phba, mbox);
7566 return rc;
7567 }
7568
7569 /**
7570 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block
7571 * @phba: pointer to lpfc hba data structure.
7572 * @sgl_list: linked link of sgl buffers to post
7573 * @cnt: number of linked list buffers
7574 *
7575 * This routine walks the list of buffers that have been allocated and
7576 * repost them to the port by using SGL block post. This is needed after a
7577 * pci_function_reset/warm_start or start. It attempts to construct blocks
7578 * of buffer sgls which contains contiguous xris and uses the non-embedded
7579 * SGL block post mailbox commands to post them to the port. For single
7580 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post
7581 * mailbox command for posting.
7582 *
7583 * Returns: 0 = success, non-zero failure.
7584 **/
7585 static int
lpfc_sli4_repost_sgl_list(struct lpfc_hba * phba,struct list_head * sgl_list,int cnt)7586 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba,
7587 struct list_head *sgl_list, int cnt)
7588 {
7589 struct lpfc_sglq *sglq_entry = NULL;
7590 struct lpfc_sglq *sglq_entry_next = NULL;
7591 struct lpfc_sglq *sglq_entry_first = NULL;
7592 int status = 0, total_cnt;
7593 int post_cnt = 0, num_posted = 0, block_cnt = 0;
7594 int last_xritag = NO_XRI;
7595 LIST_HEAD(prep_sgl_list);
7596 LIST_HEAD(blck_sgl_list);
7597 LIST_HEAD(allc_sgl_list);
7598 LIST_HEAD(post_sgl_list);
7599 LIST_HEAD(free_sgl_list);
7600
7601 spin_lock_irq(&phba->hbalock);
7602 spin_lock(&phba->sli4_hba.sgl_list_lock);
7603 list_splice_init(sgl_list, &allc_sgl_list);
7604 spin_unlock(&phba->sli4_hba.sgl_list_lock);
7605 spin_unlock_irq(&phba->hbalock);
7606
7607 total_cnt = cnt;
7608 list_for_each_entry_safe(sglq_entry, sglq_entry_next,
7609 &allc_sgl_list, list) {
7610 list_del_init(&sglq_entry->list);
7611 block_cnt++;
7612 if ((last_xritag != NO_XRI) &&
7613 (sglq_entry->sli4_xritag != last_xritag + 1)) {
7614 /* a hole in xri block, form a sgl posting block */
7615 list_splice_init(&prep_sgl_list, &blck_sgl_list);
7616 post_cnt = block_cnt - 1;
7617 /* prepare list for next posting block */
7618 list_add_tail(&sglq_entry->list, &prep_sgl_list);
7619 block_cnt = 1;
7620 } else {
7621 /* prepare list for next posting block */
7622 list_add_tail(&sglq_entry->list, &prep_sgl_list);
7623 /* enough sgls for non-embed sgl mbox command */
7624 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
7625 list_splice_init(&prep_sgl_list,
7626 &blck_sgl_list);
7627 post_cnt = block_cnt;
7628 block_cnt = 0;
7629 }
7630 }
7631 num_posted++;
7632
7633 /* keep track of last sgl's xritag */
7634 last_xritag = sglq_entry->sli4_xritag;
7635
7636 /* end of repost sgl list condition for buffers */
7637 if (num_posted == total_cnt) {
7638 if (post_cnt == 0) {
7639 list_splice_init(&prep_sgl_list,
7640 &blck_sgl_list);
7641 post_cnt = block_cnt;
7642 } else if (block_cnt == 1) {
7643 status = lpfc_sli4_post_sgl(phba,
7644 sglq_entry->phys, 0,
7645 sglq_entry->sli4_xritag);
7646 if (!status) {
7647 /* successful, put sgl to posted list */
7648 list_add_tail(&sglq_entry->list,
7649 &post_sgl_list);
7650 } else {
7651 /* Failure, put sgl to free list */
7652 lpfc_printf_log(phba, KERN_WARNING,
7653 LOG_SLI,
7654 "3159 Failed to post "
7655 "sgl, xritag:x%x\n",
7656 sglq_entry->sli4_xritag);
7657 list_add_tail(&sglq_entry->list,
7658 &free_sgl_list);
7659 total_cnt--;
7660 }
7661 }
7662 }
7663
7664 /* continue until a nembed page worth of sgls */
7665 if (post_cnt == 0)
7666 continue;
7667
7668 /* post the buffer list sgls as a block */
7669 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list,
7670 post_cnt);
7671
7672 if (!status) {
7673 /* success, put sgl list to posted sgl list */
7674 list_splice_init(&blck_sgl_list, &post_sgl_list);
7675 } else {
7676 /* Failure, put sgl list to free sgl list */
7677 sglq_entry_first = list_first_entry(&blck_sgl_list,
7678 struct lpfc_sglq,
7679 list);
7680 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
7681 "3160 Failed to post sgl-list, "
7682 "xritag:x%x-x%x\n",
7683 sglq_entry_first->sli4_xritag,
7684 (sglq_entry_first->sli4_xritag +
7685 post_cnt - 1));
7686 list_splice_init(&blck_sgl_list, &free_sgl_list);
7687 total_cnt -= post_cnt;
7688 }
7689
7690 /* don't reset xirtag due to hole in xri block */
7691 if (block_cnt == 0)
7692 last_xritag = NO_XRI;
7693
7694 /* reset sgl post count for next round of posting */
7695 post_cnt = 0;
7696 }
7697
7698 /* free the sgls failed to post */
7699 lpfc_free_sgl_list(phba, &free_sgl_list);
7700
7701 /* push sgls posted to the available list */
7702 if (!list_empty(&post_sgl_list)) {
7703 spin_lock_irq(&phba->hbalock);
7704 spin_lock(&phba->sli4_hba.sgl_list_lock);
7705 list_splice_init(&post_sgl_list, sgl_list);
7706 spin_unlock(&phba->sli4_hba.sgl_list_lock);
7707 spin_unlock_irq(&phba->hbalock);
7708 } else {
7709 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7710 "3161 Failure to post sgl to port,status %x "
7711 "blkcnt %d totalcnt %d postcnt %d\n",
7712 status, block_cnt, total_cnt, post_cnt);
7713 return -EIO;
7714 }
7715
7716 /* return the number of XRIs actually posted */
7717 return total_cnt;
7718 }
7719
7720 /**
7721 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls
7722 * @phba: pointer to lpfc hba data structure.
7723 *
7724 * This routine walks the list of nvme buffers that have been allocated and
7725 * repost them to the port by using SGL block post. This is needed after a
7726 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine
7727 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list
7728 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers.
7729 *
7730 * Returns: 0 = success, non-zero failure.
7731 **/
7732 static int
lpfc_sli4_repost_io_sgl_list(struct lpfc_hba * phba)7733 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba)
7734 {
7735 LIST_HEAD(post_nblist);
7736 int num_posted, rc = 0;
7737
7738 /* get all NVME buffers need to repost to a local list */
7739 lpfc_io_buf_flush(phba, &post_nblist);
7740
7741 /* post the list of nvme buffer sgls to port if available */
7742 if (!list_empty(&post_nblist)) {
7743 num_posted = lpfc_sli4_post_io_sgl_list(
7744 phba, &post_nblist, phba->sli4_hba.io_xri_cnt);
7745 /* failed to post any nvme buffer, return error */
7746 if (num_posted == 0)
7747 rc = -EIO;
7748 }
7749 return rc;
7750 }
7751
7752 static void
lpfc_set_host_data(struct lpfc_hba * phba,LPFC_MBOXQ_t * mbox)7753 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
7754 {
7755 uint32_t len;
7756
7757 len = sizeof(struct lpfc_mbx_set_host_data) -
7758 sizeof(struct lpfc_sli4_cfg_mhdr);
7759 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7760 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
7761 LPFC_SLI4_MBX_EMBED);
7762
7763 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION;
7764 mbox->u.mqe.un.set_host_data.param_len =
7765 LPFC_HOST_OS_DRIVER_VERSION_SIZE;
7766 snprintf(mbox->u.mqe.un.set_host_data.un.data,
7767 LPFC_HOST_OS_DRIVER_VERSION_SIZE,
7768 "Linux %s v"LPFC_DRIVER_VERSION,
7769 test_bit(HBA_FCOE_MODE, &phba->hba_flag) ? "FCoE" : "FC");
7770 }
7771
7772 int
lpfc_post_rq_buffer(struct lpfc_hba * phba,struct lpfc_queue * hrq,struct lpfc_queue * drq,int count,int idx)7773 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq,
7774 struct lpfc_queue *drq, int count, int idx)
7775 {
7776 int rc, i;
7777 struct lpfc_rqe hrqe;
7778 struct lpfc_rqe drqe;
7779 struct lpfc_rqb *rqbp;
7780 unsigned long flags;
7781 struct rqb_dmabuf *rqb_buffer;
7782 LIST_HEAD(rqb_buf_list);
7783
7784 rqbp = hrq->rqbp;
7785 for (i = 0; i < count; i++) {
7786 spin_lock_irqsave(&phba->hbalock, flags);
7787 /* IF RQ is already full, don't bother */
7788 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) {
7789 spin_unlock_irqrestore(&phba->hbalock, flags);
7790 break;
7791 }
7792 spin_unlock_irqrestore(&phba->hbalock, flags);
7793
7794 rqb_buffer = rqbp->rqb_alloc_buffer(phba);
7795 if (!rqb_buffer)
7796 break;
7797 rqb_buffer->hrq = hrq;
7798 rqb_buffer->drq = drq;
7799 rqb_buffer->idx = idx;
7800 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list);
7801 }
7802
7803 spin_lock_irqsave(&phba->hbalock, flags);
7804 while (!list_empty(&rqb_buf_list)) {
7805 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf,
7806 hbuf.list);
7807
7808 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys);
7809 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys);
7810 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys);
7811 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys);
7812 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
7813 if (rc < 0) {
7814 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7815 "6421 Cannot post to HRQ %d: %x %x %x "
7816 "DRQ %x %x\n",
7817 hrq->queue_id,
7818 hrq->host_index,
7819 hrq->hba_index,
7820 hrq->entry_count,
7821 drq->host_index,
7822 drq->hba_index);
7823 rqbp->rqb_free_buffer(phba, rqb_buffer);
7824 } else {
7825 list_add_tail(&rqb_buffer->hbuf.list,
7826 &rqbp->rqb_buffer_list);
7827 rqbp->buffer_count++;
7828 }
7829 }
7830 spin_unlock_irqrestore(&phba->hbalock, flags);
7831 return 1;
7832 }
7833
7834 static void
lpfc_mbx_cmpl_read_lds_params(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmb)7835 lpfc_mbx_cmpl_read_lds_params(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
7836 {
7837 union lpfc_sli4_cfg_shdr *shdr;
7838 u32 shdr_status, shdr_add_status;
7839
7840 shdr = (union lpfc_sli4_cfg_shdr *)
7841 &pmb->u.mqe.un.sli4_config.header.cfg_shdr;
7842 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
7843 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
7844 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) {
7845 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT | LOG_MBOX,
7846 "4622 SET_FEATURE (x%x) mbox failed, "
7847 "status x%x add_status x%x, mbx status x%x\n",
7848 LPFC_SET_LD_SIGNAL, shdr_status,
7849 shdr_add_status, pmb->u.mb.mbxStatus);
7850 phba->degrade_activate_threshold = 0;
7851 phba->degrade_deactivate_threshold = 0;
7852 phba->fec_degrade_interval = 0;
7853 goto out;
7854 }
7855
7856 phba->degrade_activate_threshold = pmb->u.mqe.un.set_feature.word7;
7857 phba->degrade_deactivate_threshold = pmb->u.mqe.un.set_feature.word8;
7858 phba->fec_degrade_interval = pmb->u.mqe.un.set_feature.word10;
7859
7860 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT,
7861 "4624 Success: da x%x dd x%x interval x%x\n",
7862 phba->degrade_activate_threshold,
7863 phba->degrade_deactivate_threshold,
7864 phba->fec_degrade_interval);
7865 out:
7866 mempool_free(pmb, phba->mbox_mem_pool);
7867 }
7868
7869 int
lpfc_read_lds_params(struct lpfc_hba * phba)7870 lpfc_read_lds_params(struct lpfc_hba *phba)
7871 {
7872 LPFC_MBOXQ_t *mboxq;
7873 int rc;
7874
7875 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7876 if (!mboxq)
7877 return -ENOMEM;
7878
7879 lpfc_set_features(phba, mboxq, LPFC_SET_LD_SIGNAL);
7880 mboxq->vport = phba->pport;
7881 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_lds_params;
7882 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
7883 if (rc == MBX_NOT_FINISHED) {
7884 mempool_free(mboxq, phba->mbox_mem_pool);
7885 return -EIO;
7886 }
7887 return 0;
7888 }
7889
7890 static void
lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmb)7891 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
7892 {
7893 struct lpfc_vport *vport = pmb->vport;
7894 union lpfc_sli4_cfg_shdr *shdr;
7895 u32 shdr_status, shdr_add_status;
7896 u32 sig, acqe;
7897
7898 /* Two outcomes. (1) Set featurs was successul and EDC negotiation
7899 * is done. (2) Mailbox failed and send FPIN support only.
7900 */
7901 shdr = (union lpfc_sli4_cfg_shdr *)
7902 &pmb->u.mqe.un.sli4_config.header.cfg_shdr;
7903 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
7904 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
7905 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) {
7906 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT,
7907 "2516 CGN SET_FEATURE mbox failed with "
7908 "status x%x add_status x%x, mbx status x%x "
7909 "Reset Congestion to FPINs only\n",
7910 shdr_status, shdr_add_status,
7911 pmb->u.mb.mbxStatus);
7912 /* If there is a mbox error, move on to RDF */
7913 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
7914 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM;
7915 goto out;
7916 }
7917
7918 /* Zero out Congestion Signal ACQE counter */
7919 phba->cgn_acqe_cnt = 0;
7920
7921 acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq,
7922 &pmb->u.mqe.un.set_feature);
7923 sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq,
7924 &pmb->u.mqe.un.set_feature);
7925 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
7926 "4620 SET_FEATURES Success: Freq: %ds %dms "
7927 " Reg: x%x x%x\n", acqe, sig,
7928 phba->cgn_reg_signal, phba->cgn_reg_fpin);
7929 out:
7930 mempool_free(pmb, phba->mbox_mem_pool);
7931
7932 /* Register for FPIN events from the fabric now that the
7933 * EDC common_set_features has completed.
7934 */
7935 lpfc_issue_els_rdf(vport, 0);
7936 }
7937
7938 int
lpfc_config_cgn_signal(struct lpfc_hba * phba)7939 lpfc_config_cgn_signal(struct lpfc_hba *phba)
7940 {
7941 LPFC_MBOXQ_t *mboxq;
7942 u32 rc;
7943
7944 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7945 if (!mboxq)
7946 goto out_rdf;
7947
7948 lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL);
7949 mboxq->vport = phba->pport;
7950 mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs;
7951
7952 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
7953 "4621 SET_FEATURES: FREQ sig x%x acqe x%x: "
7954 "Reg: x%x x%x\n",
7955 phba->cgn_sig_freq, lpfc_acqe_cgn_frequency,
7956 phba->cgn_reg_signal, phba->cgn_reg_fpin);
7957
7958 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
7959 if (rc == MBX_NOT_FINISHED)
7960 goto out;
7961 return 0;
7962
7963 out:
7964 mempool_free(mboxq, phba->mbox_mem_pool);
7965 out_rdf:
7966 /* If there is a mbox error, move on to RDF */
7967 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM;
7968 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
7969 lpfc_issue_els_rdf(phba->pport, 0);
7970 return -EIO;
7971 }
7972
7973 /**
7974 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking
7975 * @phba: pointer to lpfc hba data structure.
7976 *
7977 * This routine initializes the per-eq idle_stat to dynamically dictate
7978 * polling decisions.
7979 *
7980 * Return codes:
7981 * None
7982 **/
lpfc_init_idle_stat_hb(struct lpfc_hba * phba)7983 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba)
7984 {
7985 int i;
7986 struct lpfc_sli4_hdw_queue *hdwq;
7987 struct lpfc_queue *eq;
7988 struct lpfc_idle_stat *idle_stat;
7989 u64 wall;
7990
7991 for_each_present_cpu(i) {
7992 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq];
7993 eq = hdwq->hba_eq;
7994
7995 /* Skip if we've already handled this eq's primary CPU */
7996 if (eq->chann != i)
7997 continue;
7998
7999 idle_stat = &phba->sli4_hba.idle_stat[i];
8000
8001 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1);
8002 idle_stat->prev_wall = wall;
8003
8004 if (phba->nvmet_support ||
8005 phba->cmf_active_mode != LPFC_CFG_OFF ||
8006 phba->intr_type != MSIX)
8007 eq->poll_mode = LPFC_QUEUE_WORK;
8008 else
8009 eq->poll_mode = LPFC_THREADED_IRQ;
8010 }
8011
8012 if (!phba->nvmet_support && phba->intr_type == MSIX)
8013 schedule_delayed_work(&phba->idle_stat_delay_work,
8014 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY));
8015 }
8016
lpfc_sli4_dip(struct lpfc_hba * phba)8017 static void lpfc_sli4_dip(struct lpfc_hba *phba)
8018 {
8019 uint32_t if_type;
8020
8021 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
8022 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 ||
8023 if_type == LPFC_SLI_INTF_IF_TYPE_6) {
8024 struct lpfc_register reg_data;
8025
8026 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
8027 ®_data.word0))
8028 return;
8029
8030 if (bf_get(lpfc_sliport_status_dip, ®_data))
8031 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
8032 "2904 Firmware Dump Image Present"
8033 " on Adapter");
8034 }
8035 }
8036
8037 /**
8038 * lpfc_rx_monitor_create_ring - Initialize ring buffer for rx_monitor
8039 * @rx_monitor: Pointer to lpfc_rx_info_monitor object
8040 * @entries: Number of rx_info_entry objects to allocate in ring
8041 *
8042 * Return:
8043 * 0 - Success
8044 * ENOMEM - Failure to kmalloc
8045 **/
lpfc_rx_monitor_create_ring(struct lpfc_rx_info_monitor * rx_monitor,u32 entries)8046 int lpfc_rx_monitor_create_ring(struct lpfc_rx_info_monitor *rx_monitor,
8047 u32 entries)
8048 {
8049 rx_monitor->ring = kmalloc_array(entries, sizeof(struct rx_info_entry),
8050 GFP_KERNEL);
8051 if (!rx_monitor->ring)
8052 return -ENOMEM;
8053
8054 rx_monitor->head_idx = 0;
8055 rx_monitor->tail_idx = 0;
8056 spin_lock_init(&rx_monitor->lock);
8057 rx_monitor->entries = entries;
8058
8059 return 0;
8060 }
8061
8062 /**
8063 * lpfc_rx_monitor_destroy_ring - Free ring buffer for rx_monitor
8064 * @rx_monitor: Pointer to lpfc_rx_info_monitor object
8065 *
8066 * Called after cancellation of cmf_timer.
8067 **/
lpfc_rx_monitor_destroy_ring(struct lpfc_rx_info_monitor * rx_monitor)8068 void lpfc_rx_monitor_destroy_ring(struct lpfc_rx_info_monitor *rx_monitor)
8069 {
8070 kfree(rx_monitor->ring);
8071 rx_monitor->ring = NULL;
8072 rx_monitor->entries = 0;
8073 rx_monitor->head_idx = 0;
8074 rx_monitor->tail_idx = 0;
8075 }
8076
8077 /**
8078 * lpfc_rx_monitor_record - Insert an entry into rx_monitor's ring
8079 * @rx_monitor: Pointer to lpfc_rx_info_monitor object
8080 * @entry: Pointer to rx_info_entry
8081 *
8082 * Used to insert an rx_info_entry into rx_monitor's ring. Note that this is a
8083 * deep copy of rx_info_entry not a shallow copy of the rx_info_entry ptr.
8084 *
8085 * This is called from lpfc_cmf_timer, which is in timer/softirq context.
8086 *
8087 * In cases of old data overflow, we do a best effort of FIFO order.
8088 **/
lpfc_rx_monitor_record(struct lpfc_rx_info_monitor * rx_monitor,struct rx_info_entry * entry)8089 void lpfc_rx_monitor_record(struct lpfc_rx_info_monitor *rx_monitor,
8090 struct rx_info_entry *entry)
8091 {
8092 struct rx_info_entry *ring = rx_monitor->ring;
8093 u32 *head_idx = &rx_monitor->head_idx;
8094 u32 *tail_idx = &rx_monitor->tail_idx;
8095 spinlock_t *ring_lock = &rx_monitor->lock;
8096 u32 ring_size = rx_monitor->entries;
8097
8098 spin_lock(ring_lock);
8099 memcpy(&ring[*tail_idx], entry, sizeof(*entry));
8100 *tail_idx = (*tail_idx + 1) % ring_size;
8101
8102 /* Best effort of FIFO saved data */
8103 if (*tail_idx == *head_idx)
8104 *head_idx = (*head_idx + 1) % ring_size;
8105
8106 spin_unlock(ring_lock);
8107 }
8108
8109 /**
8110 * lpfc_rx_monitor_report - Read out rx_monitor's ring
8111 * @phba: Pointer to lpfc_hba object
8112 * @rx_monitor: Pointer to lpfc_rx_info_monitor object
8113 * @buf: Pointer to char buffer that will contain rx monitor info data
8114 * @buf_len: Length buf including null char
8115 * @max_read_entries: Maximum number of entries to read out of ring
8116 *
8117 * Used to dump/read what's in rx_monitor's ring buffer.
8118 *
8119 * If buf is NULL || buf_len == 0, then it is implied that we want to log the
8120 * information to kmsg instead of filling out buf.
8121 *
8122 * Return:
8123 * Number of entries read out of the ring
8124 **/
lpfc_rx_monitor_report(struct lpfc_hba * phba,struct lpfc_rx_info_monitor * rx_monitor,char * buf,u32 buf_len,u32 max_read_entries)8125 u32 lpfc_rx_monitor_report(struct lpfc_hba *phba,
8126 struct lpfc_rx_info_monitor *rx_monitor, char *buf,
8127 u32 buf_len, u32 max_read_entries)
8128 {
8129 struct rx_info_entry *ring = rx_monitor->ring;
8130 struct rx_info_entry *entry;
8131 u32 *head_idx = &rx_monitor->head_idx;
8132 u32 *tail_idx = &rx_monitor->tail_idx;
8133 spinlock_t *ring_lock = &rx_monitor->lock;
8134 u32 ring_size = rx_monitor->entries;
8135 u32 cnt = 0;
8136 char tmp[DBG_LOG_STR_SZ] = {0};
8137 bool log_to_kmsg = (!buf || !buf_len) ? true : false;
8138
8139 if (!log_to_kmsg) {
8140 /* clear the buffer to be sure */
8141 memset(buf, 0, buf_len);
8142
8143 scnprintf(buf, buf_len, "\t%-16s%-16s%-16s%-16s%-8s%-8s%-8s"
8144 "%-8s%-8s%-8s%-16s\n",
8145 "MaxBPI", "Tot_Data_CMF",
8146 "Tot_Data_Cmd", "Tot_Data_Cmpl",
8147 "Lat(us)", "Avg_IO", "Max_IO", "Bsy",
8148 "IO_cnt", "Info", "BWutil(ms)");
8149 }
8150
8151 /* Needs to be _irq because record is called from timer interrupt
8152 * context
8153 */
8154 spin_lock_irq(ring_lock);
8155 while (*head_idx != *tail_idx) {
8156 entry = &ring[*head_idx];
8157
8158 /* Read out this entry's data. */
8159 if (!log_to_kmsg) {
8160 /* If !log_to_kmsg, then store to buf. */
8161 scnprintf(tmp, sizeof(tmp),
8162 "%03d:\t%-16llu%-16llu%-16llu%-16llu%-8llu"
8163 "%-8llu%-8llu%-8u%-8u%-8u%u(%u)\n",
8164 *head_idx, entry->max_bytes_per_interval,
8165 entry->cmf_bytes, entry->total_bytes,
8166 entry->rcv_bytes, entry->avg_io_latency,
8167 entry->avg_io_size, entry->max_read_cnt,
8168 entry->cmf_busy, entry->io_cnt,
8169 entry->cmf_info, entry->timer_utilization,
8170 entry->timer_interval);
8171
8172 /* Check for buffer overflow */
8173 if ((strlen(buf) + strlen(tmp)) >= buf_len)
8174 break;
8175
8176 /* Append entry's data to buffer */
8177 strlcat(buf, tmp, buf_len);
8178 } else {
8179 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
8180 "4410 %02u: MBPI %llu Xmit %llu "
8181 "Cmpl %llu Lat %llu ASz %llu Info %02u "
8182 "BWUtil %u Int %u slot %u\n",
8183 cnt, entry->max_bytes_per_interval,
8184 entry->total_bytes, entry->rcv_bytes,
8185 entry->avg_io_latency,
8186 entry->avg_io_size, entry->cmf_info,
8187 entry->timer_utilization,
8188 entry->timer_interval, *head_idx);
8189 }
8190
8191 *head_idx = (*head_idx + 1) % ring_size;
8192
8193 /* Don't feed more than max_read_entries */
8194 cnt++;
8195 if (cnt >= max_read_entries)
8196 break;
8197 }
8198 spin_unlock_irq(ring_lock);
8199
8200 return cnt;
8201 }
8202
8203 /**
8204 * lpfc_cmf_setup - Initialize idle_stat tracking
8205 * @phba: Pointer to HBA context object.
8206 *
8207 * This is called from HBA setup during driver load or when the HBA
8208 * comes online. this does all the initialization to support CMF and MI.
8209 **/
8210 static int
lpfc_cmf_setup(struct lpfc_hba * phba)8211 lpfc_cmf_setup(struct lpfc_hba *phba)
8212 {
8213 LPFC_MBOXQ_t *mboxq;
8214 struct lpfc_dmabuf *mp;
8215 struct lpfc_pc_sli4_params *sli4_params;
8216 int rc, cmf, mi_ver;
8217
8218 rc = lpfc_sli4_refresh_params(phba);
8219 if (unlikely(rc))
8220 return rc;
8221
8222 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
8223 if (!mboxq)
8224 return -ENOMEM;
8225
8226 sli4_params = &phba->sli4_hba.pc_sli4_params;
8227
8228 /* Always try to enable MI feature if we can */
8229 if (sli4_params->mi_ver) {
8230 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI);
8231 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8232 mi_ver = bf_get(lpfc_mbx_set_feature_mi,
8233 &mboxq->u.mqe.un.set_feature);
8234
8235 if (rc == MBX_SUCCESS) {
8236 if (mi_ver) {
8237 lpfc_printf_log(phba,
8238 KERN_WARNING, LOG_CGN_MGMT,
8239 "6215 MI is enabled\n");
8240 sli4_params->mi_ver = mi_ver;
8241 } else {
8242 lpfc_printf_log(phba,
8243 KERN_WARNING, LOG_CGN_MGMT,
8244 "6338 MI is disabled\n");
8245 sli4_params->mi_ver = 0;
8246 }
8247 } else {
8248 /* mi_ver is already set from GET_SLI4_PARAMETERS */
8249 lpfc_printf_log(phba, KERN_INFO,
8250 LOG_CGN_MGMT | LOG_INIT,
8251 "6245 Enable MI Mailbox x%x (x%x/x%x) "
8252 "failed, rc:x%x mi:x%x\n",
8253 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8254 lpfc_sli_config_mbox_subsys_get
8255 (phba, mboxq),
8256 lpfc_sli_config_mbox_opcode_get
8257 (phba, mboxq),
8258 rc, sli4_params->mi_ver);
8259 }
8260 } else {
8261 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT,
8262 "6217 MI is disabled\n");
8263 }
8264
8265 /* Ensure FDMI is enabled for MI if enable_mi is set */
8266 if (sli4_params->mi_ver)
8267 phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT;
8268
8269 /* Always try to enable CMF feature if we can */
8270 if (sli4_params->cmf) {
8271 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF);
8272 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8273 cmf = bf_get(lpfc_mbx_set_feature_cmf,
8274 &mboxq->u.mqe.un.set_feature);
8275 if (rc == MBX_SUCCESS && cmf) {
8276 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT,
8277 "6218 CMF is enabled: mode %d\n",
8278 phba->cmf_active_mode);
8279 } else {
8280 lpfc_printf_log(phba, KERN_WARNING,
8281 LOG_CGN_MGMT | LOG_INIT,
8282 "6219 Enable CMF Mailbox x%x (x%x/x%x) "
8283 "failed, rc:x%x dd:x%x\n",
8284 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8285 lpfc_sli_config_mbox_subsys_get
8286 (phba, mboxq),
8287 lpfc_sli_config_mbox_opcode_get
8288 (phba, mboxq),
8289 rc, cmf);
8290 sli4_params->cmf = 0;
8291 phba->cmf_active_mode = LPFC_CFG_OFF;
8292 goto no_cmf;
8293 }
8294
8295 /* Allocate Congestion Information Buffer */
8296 if (!phba->cgn_i) {
8297 mp = kmalloc(sizeof(*mp), GFP_KERNEL);
8298 if (mp)
8299 mp->virt = dma_alloc_coherent
8300 (&phba->pcidev->dev,
8301 sizeof(struct lpfc_cgn_info),
8302 &mp->phys, GFP_KERNEL);
8303 if (!mp || !mp->virt) {
8304 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8305 "2640 Failed to alloc memory "
8306 "for Congestion Info\n");
8307 kfree(mp);
8308 sli4_params->cmf = 0;
8309 phba->cmf_active_mode = LPFC_CFG_OFF;
8310 goto no_cmf;
8311 }
8312 phba->cgn_i = mp;
8313
8314 /* initialize congestion buffer info */
8315 lpfc_init_congestion_buf(phba);
8316 lpfc_init_congestion_stat(phba);
8317
8318 /* Zero out Congestion Signal counters */
8319 atomic64_set(&phba->cgn_acqe_stat.alarm, 0);
8320 atomic64_set(&phba->cgn_acqe_stat.warn, 0);
8321 }
8322
8323 rc = lpfc_sli4_cgn_params_read(phba);
8324 if (rc < 0) {
8325 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
8326 "6242 Error reading Cgn Params (%d)\n",
8327 rc);
8328 /* Ensure CGN Mode is off */
8329 sli4_params->cmf = 0;
8330 } else if (!rc) {
8331 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
8332 "6243 CGN Event empty object.\n");
8333 /* Ensure CGN Mode is off */
8334 sli4_params->cmf = 0;
8335 }
8336 } else {
8337 no_cmf:
8338 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT,
8339 "6220 CMF is disabled\n");
8340 }
8341
8342 /* Only register congestion buffer with firmware if BOTH
8343 * CMF and E2E are enabled.
8344 */
8345 if (sli4_params->cmf && sli4_params->mi_ver) {
8346 rc = lpfc_reg_congestion_buf(phba);
8347 if (rc) {
8348 dma_free_coherent(&phba->pcidev->dev,
8349 sizeof(struct lpfc_cgn_info),
8350 phba->cgn_i->virt, phba->cgn_i->phys);
8351 kfree(phba->cgn_i);
8352 phba->cgn_i = NULL;
8353 /* Ensure CGN Mode is off */
8354 phba->cmf_active_mode = LPFC_CFG_OFF;
8355 sli4_params->cmf = 0;
8356 return 0;
8357 }
8358 }
8359 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
8360 "6470 Setup MI version %d CMF %d mode %d\n",
8361 sli4_params->mi_ver, sli4_params->cmf,
8362 phba->cmf_active_mode);
8363
8364 mempool_free(mboxq, phba->mbox_mem_pool);
8365
8366 /* Initialize atomic counters */
8367 atomic_set(&phba->cgn_fabric_warn_cnt, 0);
8368 atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
8369 atomic_set(&phba->cgn_sync_alarm_cnt, 0);
8370 atomic_set(&phba->cgn_sync_warn_cnt, 0);
8371 atomic_set(&phba->cgn_driver_evt_cnt, 0);
8372 atomic_set(&phba->cgn_latency_evt_cnt, 0);
8373 atomic64_set(&phba->cgn_latency_evt, 0);
8374
8375 phba->cmf_interval_rate = LPFC_CMF_INTERVAL;
8376
8377 /* Allocate RX Monitor Buffer */
8378 if (!phba->rx_monitor) {
8379 phba->rx_monitor = kzalloc(sizeof(*phba->rx_monitor),
8380 GFP_KERNEL);
8381
8382 if (!phba->rx_monitor) {
8383 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8384 "2644 Failed to alloc memory "
8385 "for RX Monitor Buffer\n");
8386 return -ENOMEM;
8387 }
8388
8389 /* Instruct the rx_monitor object to instantiate its ring */
8390 if (lpfc_rx_monitor_create_ring(phba->rx_monitor,
8391 LPFC_MAX_RXMONITOR_ENTRY)) {
8392 kfree(phba->rx_monitor);
8393 phba->rx_monitor = NULL;
8394 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8395 "2645 Failed to alloc memory "
8396 "for RX Monitor's Ring\n");
8397 return -ENOMEM;
8398 }
8399 }
8400
8401 return 0;
8402 }
8403
8404 static int
lpfc_set_host_tm(struct lpfc_hba * phba)8405 lpfc_set_host_tm(struct lpfc_hba *phba)
8406 {
8407 LPFC_MBOXQ_t *mboxq;
8408 uint32_t len, rc;
8409 struct timespec64 cur_time;
8410 struct tm broken;
8411 uint32_t month, day, year;
8412 uint32_t hour, minute, second;
8413 struct lpfc_mbx_set_host_date_time *tm;
8414
8415 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
8416 if (!mboxq)
8417 return -ENOMEM;
8418
8419 len = sizeof(struct lpfc_mbx_set_host_data) -
8420 sizeof(struct lpfc_sli4_cfg_mhdr);
8421 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
8422 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
8423 LPFC_SLI4_MBX_EMBED);
8424
8425 mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME;
8426 mboxq->u.mqe.un.set_host_data.param_len =
8427 sizeof(struct lpfc_mbx_set_host_date_time);
8428 tm = &mboxq->u.mqe.un.set_host_data.un.tm;
8429 ktime_get_real_ts64(&cur_time);
8430 time64_to_tm(cur_time.tv_sec, 0, &broken);
8431 month = broken.tm_mon + 1;
8432 day = broken.tm_mday;
8433 year = broken.tm_year - 100;
8434 hour = broken.tm_hour;
8435 minute = broken.tm_min;
8436 second = broken.tm_sec;
8437 bf_set(lpfc_mbx_set_host_month, tm, month);
8438 bf_set(lpfc_mbx_set_host_day, tm, day);
8439 bf_set(lpfc_mbx_set_host_year, tm, year);
8440 bf_set(lpfc_mbx_set_host_hour, tm, hour);
8441 bf_set(lpfc_mbx_set_host_min, tm, minute);
8442 bf_set(lpfc_mbx_set_host_sec, tm, second);
8443
8444 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8445 mempool_free(mboxq, phba->mbox_mem_pool);
8446 return rc;
8447 }
8448
8449 /**
8450 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function
8451 * @phba: Pointer to HBA context object.
8452 *
8453 * This function is the main SLI4 device initialization PCI function. This
8454 * function is called by the HBA initialization code, HBA reset code and
8455 * HBA error attention handler code. Caller is not required to hold any
8456 * locks.
8457 **/
8458 int
lpfc_sli4_hba_setup(struct lpfc_hba * phba)8459 lpfc_sli4_hba_setup(struct lpfc_hba *phba)
8460 {
8461 int rc, i, cnt, len, dd;
8462 LPFC_MBOXQ_t *mboxq;
8463 struct lpfc_mqe *mqe;
8464 uint8_t *vpd;
8465 uint32_t vpd_size;
8466 uint32_t ftr_rsp = 0;
8467 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport);
8468 struct lpfc_vport *vport = phba->pport;
8469 struct lpfc_dmabuf *mp;
8470 struct lpfc_rqb *rqbp;
8471 u32 flg;
8472
8473 /* Perform a PCI function reset to start from clean */
8474 rc = lpfc_pci_function_reset(phba);
8475 if (unlikely(rc))
8476 return -ENODEV;
8477
8478 /* Check the HBA Host Status Register for readyness */
8479 rc = lpfc_sli4_post_status_check(phba);
8480 if (unlikely(rc))
8481 return -ENODEV;
8482 else {
8483 spin_lock_irq(&phba->hbalock);
8484 phba->sli.sli_flag |= LPFC_SLI_ACTIVE;
8485 flg = phba->sli.sli_flag;
8486 spin_unlock_irq(&phba->hbalock);
8487 /* Allow a little time after setting SLI_ACTIVE for any polled
8488 * MBX commands to complete via BSG.
8489 */
8490 for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) {
8491 msleep(20);
8492 spin_lock_irq(&phba->hbalock);
8493 flg = phba->sli.sli_flag;
8494 spin_unlock_irq(&phba->hbalock);
8495 }
8496 }
8497 clear_bit(HBA_SETUP, &phba->hba_flag);
8498
8499 lpfc_sli4_dip(phba);
8500
8501 /*
8502 * Allocate a single mailbox container for initializing the
8503 * port.
8504 */
8505 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
8506 if (!mboxq)
8507 return -ENOMEM;
8508
8509 /* Issue READ_REV to collect vpd and FW information. */
8510 vpd_size = SLI4_PAGE_SIZE;
8511 vpd = kzalloc(vpd_size, GFP_KERNEL);
8512 if (!vpd) {
8513 rc = -ENOMEM;
8514 goto out_free_mbox;
8515 }
8516
8517 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size);
8518 if (unlikely(rc)) {
8519 kfree(vpd);
8520 goto out_free_mbox;
8521 }
8522
8523 mqe = &mboxq->u.mqe;
8524 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev);
8525 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) {
8526 set_bit(HBA_FCOE_MODE, &phba->hba_flag);
8527 phba->fcp_embed_io = 0; /* SLI4 FC support only */
8528 } else {
8529 clear_bit(HBA_FCOE_MODE, &phba->hba_flag);
8530 }
8531
8532 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) ==
8533 LPFC_DCBX_CEE_MODE)
8534 set_bit(HBA_FIP_SUPPORT, &phba->hba_flag);
8535 else
8536 clear_bit(HBA_FIP_SUPPORT, &phba->hba_flag);
8537
8538 clear_bit(HBA_IOQ_FLUSH, &phba->hba_flag);
8539
8540 if (phba->sli_rev != LPFC_SLI_REV4) {
8541 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8542 "0376 READ_REV Error. SLI Level %d "
8543 "FCoE enabled %d\n",
8544 phba->sli_rev,
8545 test_bit(HBA_FCOE_MODE, &phba->hba_flag) ? 1 : 0);
8546 rc = -EIO;
8547 kfree(vpd);
8548 goto out_free_mbox;
8549 }
8550
8551 rc = lpfc_set_host_tm(phba);
8552 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
8553 "6468 Set host date / time: Status x%x:\n", rc);
8554
8555 /*
8556 * Continue initialization with default values even if driver failed
8557 * to read FCoE param config regions, only read parameters if the
8558 * board is FCoE
8559 */
8560 if (test_bit(HBA_FCOE_MODE, &phba->hba_flag) &&
8561 lpfc_sli4_read_fcoe_params(phba))
8562 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT,
8563 "2570 Failed to read FCoE parameters\n");
8564
8565 /*
8566 * Retrieve sli4 device physical port name, failure of doing it
8567 * is considered as non-fatal.
8568 */
8569 rc = lpfc_sli4_retrieve_pport_name(phba);
8570 if (!rc)
8571 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8572 "3080 Successful retrieving SLI4 device "
8573 "physical port name: %s.\n", phba->Port);
8574
8575 rc = lpfc_sli4_get_ctl_attr(phba);
8576 if (!rc)
8577 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8578 "8351 Successful retrieving SLI4 device "
8579 "CTL ATTR\n");
8580
8581 /*
8582 * Evaluate the read rev and vpd data. Populate the driver
8583 * state with the results. If this routine fails, the failure
8584 * is not fatal as the driver will use generic values.
8585 */
8586 rc = lpfc_parse_vpd(phba, vpd, vpd_size);
8587 if (unlikely(!rc))
8588 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8589 "0377 Error %d parsing vpd. "
8590 "Using defaults.\n", rc);
8591 kfree(vpd);
8592
8593 /* Save information as VPD data */
8594 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev;
8595 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev;
8596
8597 /*
8598 * This is because first G7 ASIC doesn't support the standard
8599 * 0x5a NVME cmd descriptor type/subtype
8600 */
8601 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
8602 LPFC_SLI_INTF_IF_TYPE_6) &&
8603 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) &&
8604 (phba->vpd.rev.smRev == 0) &&
8605 (phba->cfg_nvme_embed_cmd == 1))
8606 phba->cfg_nvme_embed_cmd = 0;
8607
8608 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev;
8609 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high,
8610 &mqe->un.read_rev);
8611 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low,
8612 &mqe->un.read_rev);
8613 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high,
8614 &mqe->un.read_rev);
8615 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low,
8616 &mqe->un.read_rev);
8617 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev;
8618 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16);
8619 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev;
8620 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16);
8621 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev;
8622 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16);
8623 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8624 "(%d):0380 READ_REV Status x%x "
8625 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n",
8626 mboxq->vport ? mboxq->vport->vpi : 0,
8627 bf_get(lpfc_mqe_status, mqe),
8628 phba->vpd.rev.opFwName,
8629 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow,
8630 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow);
8631
8632 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
8633 LPFC_SLI_INTF_IF_TYPE_0) {
8634 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY);
8635 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8636 if (rc == MBX_SUCCESS) {
8637 set_bit(HBA_RECOVERABLE_UE, &phba->hba_flag);
8638 /* Set 1Sec interval to detect UE */
8639 phba->eratt_poll_interval = 1;
8640 phba->sli4_hba.ue_to_sr = bf_get(
8641 lpfc_mbx_set_feature_UESR,
8642 &mboxq->u.mqe.un.set_feature);
8643 phba->sli4_hba.ue_to_rp = bf_get(
8644 lpfc_mbx_set_feature_UERP,
8645 &mboxq->u.mqe.un.set_feature);
8646 }
8647 }
8648
8649 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) {
8650 /* Enable MDS Diagnostics only if the SLI Port supports it */
8651 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS);
8652 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8653 if (rc != MBX_SUCCESS)
8654 phba->mds_diags_support = 0;
8655 }
8656
8657 /*
8658 * Discover the port's supported feature set and match it against the
8659 * hosts requests.
8660 */
8661 lpfc_request_features(phba, mboxq);
8662 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8663 if (unlikely(rc)) {
8664 rc = -EIO;
8665 goto out_free_mbox;
8666 }
8667
8668 /* Disable VMID if app header is not supported */
8669 if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr,
8670 &mqe->un.req_ftrs))) {
8671 bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0);
8672 phba->cfg_vmid_app_header = 0;
8673 lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI,
8674 "1242 vmid feature not supported\n");
8675 }
8676
8677 /*
8678 * The port must support FCP initiator mode as this is the
8679 * only mode running in the host.
8680 */
8681 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) {
8682 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8683 "0378 No support for fcpi mode.\n");
8684 ftr_rsp++;
8685 }
8686
8687 /* Performance Hints are ONLY for FCoE */
8688 if (test_bit(HBA_FCOE_MODE, &phba->hba_flag)) {
8689 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs))
8690 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED;
8691 else
8692 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED;
8693 }
8694
8695 /*
8696 * If the port cannot support the host's requested features
8697 * then turn off the global config parameters to disable the
8698 * feature in the driver. This is not a fatal error.
8699 */
8700 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
8701 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) {
8702 phba->cfg_enable_bg = 0;
8703 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
8704 ftr_rsp++;
8705 }
8706 }
8707
8708 if (phba->max_vpi && phba->cfg_enable_npiv &&
8709 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
8710 ftr_rsp++;
8711
8712 if (ftr_rsp) {
8713 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8714 "0379 Feature Mismatch Data: x%08x %08x "
8715 "x%x x%x x%x\n", mqe->un.req_ftrs.word2,
8716 mqe->un.req_ftrs.word3, phba->cfg_enable_bg,
8717 phba->cfg_enable_npiv, phba->max_vpi);
8718 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
8719 phba->cfg_enable_bg = 0;
8720 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
8721 phba->cfg_enable_npiv = 0;
8722 }
8723
8724 /* These SLI3 features are assumed in SLI4 */
8725 spin_lock_irq(&phba->hbalock);
8726 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED);
8727 spin_unlock_irq(&phba->hbalock);
8728
8729 /* Always try to enable dual dump feature if we can */
8730 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP);
8731 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8732 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature);
8733 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP))
8734 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
8735 "6448 Dual Dump is enabled\n");
8736 else
8737 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT,
8738 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, "
8739 "rc:x%x dd:x%x\n",
8740 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8741 lpfc_sli_config_mbox_subsys_get(
8742 phba, mboxq),
8743 lpfc_sli_config_mbox_opcode_get(
8744 phba, mboxq),
8745 rc, dd);
8746
8747 /*
8748 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent
8749 * calls depends on these resources to complete port setup.
8750 */
8751 rc = lpfc_sli4_alloc_resource_identifiers(phba);
8752 if (rc) {
8753 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8754 "2920 Failed to alloc Resource IDs "
8755 "rc = x%x\n", rc);
8756 goto out_free_mbox;
8757 }
8758
8759 lpfc_sli4_node_rpi_restore(phba);
8760
8761 lpfc_set_host_data(phba, mboxq);
8762
8763 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8764 if (rc) {
8765 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8766 "2134 Failed to set host os driver version %x",
8767 rc);
8768 }
8769
8770 /* Read the port's service parameters. */
8771 rc = lpfc_read_sparam(phba, mboxq, vport->vpi);
8772 if (rc) {
8773 phba->link_state = LPFC_HBA_ERROR;
8774 rc = -ENOMEM;
8775 goto out_free_mbox;
8776 }
8777
8778 mboxq->vport = vport;
8779 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8780 mp = mboxq->ctx_buf;
8781 if (rc == MBX_SUCCESS) {
8782 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm));
8783 rc = 0;
8784 }
8785
8786 /*
8787 * This memory was allocated by the lpfc_read_sparam routine but is
8788 * no longer needed. It is released and ctx_buf NULLed to prevent
8789 * unintended pointer access as the mbox is reused.
8790 */
8791 lpfc_mbuf_free(phba, mp->virt, mp->phys);
8792 kfree(mp);
8793 mboxq->ctx_buf = NULL;
8794 if (unlikely(rc)) {
8795 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8796 "0382 READ_SPARAM command failed "
8797 "status %d, mbxStatus x%x\n",
8798 rc, bf_get(lpfc_mqe_status, mqe));
8799 phba->link_state = LPFC_HBA_ERROR;
8800 rc = -EIO;
8801 goto out_free_mbox;
8802 }
8803
8804 lpfc_update_vport_wwn(vport);
8805
8806 /* Update the fc_host data structures with new wwn. */
8807 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
8808 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
8809
8810 /* Create all the SLI4 queues */
8811 rc = lpfc_sli4_queue_create(phba);
8812 if (rc) {
8813 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8814 "3089 Failed to allocate queues\n");
8815 rc = -ENODEV;
8816 goto out_free_mbox;
8817 }
8818 /* Set up all the queues to the device */
8819 rc = lpfc_sli4_queue_setup(phba);
8820 if (unlikely(rc)) {
8821 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8822 "0381 Error %d during queue setup.\n", rc);
8823 goto out_stop_timers;
8824 }
8825 /* Initialize the driver internal SLI layer lists. */
8826 lpfc_sli4_setup(phba);
8827 lpfc_sli4_queue_init(phba);
8828
8829 /* update host els xri-sgl sizes and mappings */
8830 rc = lpfc_sli4_els_sgl_update(phba);
8831 if (unlikely(rc)) {
8832 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8833 "1400 Failed to update xri-sgl size and "
8834 "mapping: %d\n", rc);
8835 goto out_destroy_queue;
8836 }
8837
8838 /* register the els sgl pool to the port */
8839 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list,
8840 phba->sli4_hba.els_xri_cnt);
8841 if (unlikely(rc < 0)) {
8842 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8843 "0582 Error %d during els sgl post "
8844 "operation\n", rc);
8845 rc = -ENODEV;
8846 goto out_destroy_queue;
8847 }
8848 phba->sli4_hba.els_xri_cnt = rc;
8849
8850 if (phba->nvmet_support) {
8851 /* update host nvmet xri-sgl sizes and mappings */
8852 rc = lpfc_sli4_nvmet_sgl_update(phba);
8853 if (unlikely(rc)) {
8854 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8855 "6308 Failed to update nvmet-sgl size "
8856 "and mapping: %d\n", rc);
8857 goto out_destroy_queue;
8858 }
8859
8860 /* register the nvmet sgl pool to the port */
8861 rc = lpfc_sli4_repost_sgl_list(
8862 phba,
8863 &phba->sli4_hba.lpfc_nvmet_sgl_list,
8864 phba->sli4_hba.nvmet_xri_cnt);
8865 if (unlikely(rc < 0)) {
8866 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8867 "3117 Error %d during nvmet "
8868 "sgl post\n", rc);
8869 rc = -ENODEV;
8870 goto out_destroy_queue;
8871 }
8872 phba->sli4_hba.nvmet_xri_cnt = rc;
8873
8874 /* We allocate an iocbq for every receive context SGL.
8875 * The additional allocation is for abort and ls handling.
8876 */
8877 cnt = phba->sli4_hba.nvmet_xri_cnt +
8878 phba->sli4_hba.max_cfg_param.max_xri;
8879 } else {
8880 /* update host common xri-sgl sizes and mappings */
8881 rc = lpfc_sli4_io_sgl_update(phba);
8882 if (unlikely(rc)) {
8883 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8884 "6082 Failed to update nvme-sgl size "
8885 "and mapping: %d\n", rc);
8886 goto out_destroy_queue;
8887 }
8888
8889 /* register the allocated common sgl pool to the port */
8890 rc = lpfc_sli4_repost_io_sgl_list(phba);
8891 if (unlikely(rc)) {
8892 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8893 "6116 Error %d during nvme sgl post "
8894 "operation\n", rc);
8895 /* Some NVME buffers were moved to abort nvme list */
8896 /* A pci function reset will repost them */
8897 rc = -ENODEV;
8898 goto out_destroy_queue;
8899 }
8900 /* Each lpfc_io_buf job structure has an iocbq element.
8901 * This cnt provides for abort, els, ct and ls requests.
8902 */
8903 cnt = phba->sli4_hba.max_cfg_param.max_xri;
8904 }
8905
8906 if (!phba->sli.iocbq_lookup) {
8907 /* Initialize and populate the iocb list per host */
8908 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
8909 "2821 initialize iocb list with %d entries\n",
8910 cnt);
8911 rc = lpfc_init_iocb_list(phba, cnt);
8912 if (rc) {
8913 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8914 "1413 Failed to init iocb list.\n");
8915 goto out_destroy_queue;
8916 }
8917 }
8918
8919 if (phba->nvmet_support)
8920 lpfc_nvmet_create_targetport(phba);
8921
8922 if (phba->nvmet_support && phba->cfg_nvmet_mrq) {
8923 /* Post initial buffers to all RQs created */
8924 for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
8925 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp;
8926 INIT_LIST_HEAD(&rqbp->rqb_buffer_list);
8927 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc;
8928 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free;
8929 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT;
8930 rqbp->buffer_count = 0;
8931
8932 lpfc_post_rq_buffer(
8933 phba, phba->sli4_hba.nvmet_mrq_hdr[i],
8934 phba->sli4_hba.nvmet_mrq_data[i],
8935 phba->cfg_nvmet_mrq_post, i);
8936 }
8937 }
8938
8939 /* Post the rpi header region to the device. */
8940 rc = lpfc_sli4_post_all_rpi_hdrs(phba);
8941 if (unlikely(rc)) {
8942 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8943 "0393 Error %d during rpi post operation\n",
8944 rc);
8945 rc = -ENODEV;
8946 goto out_free_iocblist;
8947 }
8948
8949 if (!test_bit(HBA_FCOE_MODE, &phba->hba_flag)) {
8950 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) {
8951 /*
8952 * The FC Port needs to register FCFI (index 0)
8953 */
8954 lpfc_reg_fcfi(phba, mboxq);
8955 mboxq->vport = phba->pport;
8956 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8957 if (rc != MBX_SUCCESS)
8958 goto out_unset_queue;
8959 rc = 0;
8960 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi,
8961 &mboxq->u.mqe.un.reg_fcfi);
8962 } else {
8963 /* We are a NVME Target mode with MRQ > 1 */
8964
8965 /* First register the FCFI */
8966 lpfc_reg_fcfi_mrq(phba, mboxq, 0);
8967 mboxq->vport = phba->pport;
8968 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8969 if (rc != MBX_SUCCESS)
8970 goto out_unset_queue;
8971 rc = 0;
8972 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi,
8973 &mboxq->u.mqe.un.reg_fcfi_mrq);
8974
8975 /* Next register the MRQs */
8976 lpfc_reg_fcfi_mrq(phba, mboxq, 1);
8977 mboxq->vport = phba->pport;
8978 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8979 if (rc != MBX_SUCCESS)
8980 goto out_unset_queue;
8981 rc = 0;
8982 }
8983 /* Check if the port is configured to be disabled */
8984 lpfc_sli_read_link_ste(phba);
8985 }
8986
8987 /* Don't post more new bufs if repost already recovered
8988 * the nvme sgls.
8989 */
8990 if (phba->nvmet_support == 0) {
8991 if (phba->sli4_hba.io_xri_cnt == 0) {
8992 len = lpfc_new_io_buf(
8993 phba, phba->sli4_hba.io_xri_max);
8994 if (len == 0) {
8995 rc = -ENOMEM;
8996 goto out_unset_queue;
8997 }
8998
8999 if (phba->cfg_xri_rebalancing)
9000 lpfc_create_multixri_pools(phba);
9001 }
9002 } else {
9003 phba->cfg_xri_rebalancing = 0;
9004 }
9005
9006 /* Allow asynchronous mailbox command to go through */
9007 spin_lock_irq(&phba->hbalock);
9008 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
9009 spin_unlock_irq(&phba->hbalock);
9010
9011 /* Post receive buffers to the device */
9012 lpfc_sli4_rb_setup(phba);
9013
9014 /* Reset HBA FCF states after HBA reset */
9015 phba->fcf.fcf_flag = 0;
9016 phba->fcf.current_rec.flag = 0;
9017
9018 /* Start the ELS watchdog timer */
9019 mod_timer(&vport->els_tmofunc,
9020 jiffies + secs_to_jiffies(phba->fc_ratov * 2));
9021
9022 /* Start heart beat timer */
9023 mod_timer(&phba->hb_tmofunc,
9024 jiffies + secs_to_jiffies(LPFC_HB_MBOX_INTERVAL));
9025 clear_bit(HBA_HBEAT_INP, &phba->hba_flag);
9026 clear_bit(HBA_HBEAT_TMO, &phba->hba_flag);
9027 phba->last_completion_time = jiffies;
9028
9029 /* start eq_delay heartbeat */
9030 if (phba->cfg_auto_imax)
9031 queue_delayed_work(phba->wq, &phba->eq_delay_work,
9032 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
9033
9034 /* start per phba idle_stat_delay heartbeat */
9035 lpfc_init_idle_stat_hb(phba);
9036
9037 /* Start error attention (ERATT) polling timer */
9038 mod_timer(&phba->eratt_poll,
9039 jiffies + secs_to_jiffies(phba->eratt_poll_interval));
9040
9041 /*
9042 * The port is ready, set the host's link state to LINK_DOWN
9043 * in preparation for link interrupts.
9044 */
9045 spin_lock_irq(&phba->hbalock);
9046 phba->link_state = LPFC_LINK_DOWN;
9047
9048 /* Check if physical ports are trunked */
9049 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba))
9050 phba->trunk_link.link0.state = LPFC_LINK_DOWN;
9051 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba))
9052 phba->trunk_link.link1.state = LPFC_LINK_DOWN;
9053 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba))
9054 phba->trunk_link.link2.state = LPFC_LINK_DOWN;
9055 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba))
9056 phba->trunk_link.link3.state = LPFC_LINK_DOWN;
9057 spin_unlock_irq(&phba->hbalock);
9058
9059 /* Arm the CQs and then EQs on device */
9060 lpfc_sli4_arm_cqeq_intr(phba);
9061
9062 /* Indicate device interrupt mode */
9063 phba->sli4_hba.intr_enable = 1;
9064
9065 /* Setup CMF after HBA is initialized */
9066 lpfc_cmf_setup(phba);
9067
9068 if (!test_bit(HBA_FCOE_MODE, &phba->hba_flag) &&
9069 test_bit(LINK_DISABLED, &phba->hba_flag)) {
9070 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9071 "3103 Adapter Link is disabled.\n");
9072 lpfc_down_link(phba, mboxq);
9073 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
9074 if (rc != MBX_SUCCESS) {
9075 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9076 "3104 Adapter failed to issue "
9077 "DOWN_LINK mbox cmd, rc:x%x\n", rc);
9078 goto out_io_buff_free;
9079 }
9080 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
9081 /* don't perform init_link on SLI4 FC port loopback test */
9082 if (!(phba->link_flag & LS_LOOPBACK_MODE)) {
9083 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
9084 if (rc)
9085 goto out_io_buff_free;
9086 }
9087 }
9088 mempool_free(mboxq, phba->mbox_mem_pool);
9089
9090 /* Enable RAS FW log support */
9091 lpfc_sli4_ras_setup(phba);
9092
9093 set_bit(HBA_SETUP, &phba->hba_flag);
9094 return rc;
9095
9096 out_io_buff_free:
9097 /* Free allocated IO Buffers */
9098 lpfc_io_free(phba);
9099 out_unset_queue:
9100 /* Unset all the queues set up in this routine when error out */
9101 lpfc_sli4_queue_unset(phba);
9102 out_free_iocblist:
9103 lpfc_free_iocb_list(phba);
9104 out_destroy_queue:
9105 lpfc_sli4_queue_destroy(phba);
9106 out_stop_timers:
9107 lpfc_stop_hba_timers(phba);
9108 out_free_mbox:
9109 mempool_free(mboxq, phba->mbox_mem_pool);
9110 return rc;
9111 }
9112
9113 /**
9114 * lpfc_mbox_timeout - Timeout call back function for mbox timer
9115 * @t: Context to fetch pointer to hba structure from.
9116 *
9117 * This is the callback function for mailbox timer. The mailbox
9118 * timer is armed when a new mailbox command is issued and the timer
9119 * is deleted when the mailbox complete. The function is called by
9120 * the kernel timer code when a mailbox does not complete within
9121 * expected time. This function wakes up the worker thread to
9122 * process the mailbox timeout and returns. All the processing is
9123 * done by the worker thread function lpfc_mbox_timeout_handler.
9124 **/
9125 void
lpfc_mbox_timeout(struct timer_list * t)9126 lpfc_mbox_timeout(struct timer_list *t)
9127 {
9128 struct lpfc_hba *phba = timer_container_of(phba, t, sli.mbox_tmo);
9129 unsigned long iflag;
9130 uint32_t tmo_posted;
9131
9132 spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
9133 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO;
9134 if (!tmo_posted)
9135 phba->pport->work_port_events |= WORKER_MBOX_TMO;
9136 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
9137
9138 if (!tmo_posted)
9139 lpfc_worker_wake_up(phba);
9140 return;
9141 }
9142
9143 /**
9144 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions
9145 * are pending
9146 * @phba: Pointer to HBA context object.
9147 *
9148 * This function checks if any mailbox completions are present on the mailbox
9149 * completion queue.
9150 **/
9151 static bool
lpfc_sli4_mbox_completions_pending(struct lpfc_hba * phba)9152 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba)
9153 {
9154
9155 uint32_t idx;
9156 struct lpfc_queue *mcq;
9157 struct lpfc_mcqe *mcqe;
9158 bool pending_completions = false;
9159 uint8_t qe_valid;
9160
9161 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
9162 return false;
9163
9164 /* Check for completions on mailbox completion queue */
9165
9166 mcq = phba->sli4_hba.mbx_cq;
9167 idx = mcq->hba_index;
9168 qe_valid = mcq->qe_valid;
9169 while (bf_get_le32(lpfc_cqe_valid,
9170 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) {
9171 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx));
9172 if (bf_get_le32(lpfc_trailer_completed, mcqe) &&
9173 (!bf_get_le32(lpfc_trailer_async, mcqe))) {
9174 pending_completions = true;
9175 break;
9176 }
9177 idx = (idx + 1) % mcq->entry_count;
9178 if (mcq->hba_index == idx)
9179 break;
9180
9181 /* if the index wrapped around, toggle the valid bit */
9182 if (phba->sli4_hba.pc_sli4_params.cqav && !idx)
9183 qe_valid = (qe_valid) ? 0 : 1;
9184 }
9185 return pending_completions;
9186
9187 }
9188
9189 /**
9190 * lpfc_sli4_process_missed_mbox_completions - process mbox completions
9191 * that were missed.
9192 * @phba: Pointer to HBA context object.
9193 *
9194 * For sli4, it is possible to miss an interrupt. As such mbox completions
9195 * maybe missed causing erroneous mailbox timeouts to occur. This function
9196 * checks to see if mbox completions are on the mailbox completion queue
9197 * and will process all the completions associated with the eq for the
9198 * mailbox completion queue.
9199 **/
9200 static bool
lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba * phba)9201 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba)
9202 {
9203 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
9204 uint32_t eqidx;
9205 struct lpfc_queue *fpeq = NULL;
9206 struct lpfc_queue *eq;
9207 bool mbox_pending;
9208
9209 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
9210 return false;
9211
9212 /* Find the EQ associated with the mbox CQ */
9213 if (sli4_hba->hdwq) {
9214 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) {
9215 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq;
9216 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) {
9217 fpeq = eq;
9218 break;
9219 }
9220 }
9221 }
9222 if (!fpeq)
9223 return false;
9224
9225 /* Turn off interrupts from this EQ */
9226
9227 sli4_hba->sli4_eq_clr_intr(fpeq);
9228
9229 /* Check to see if a mbox completion is pending */
9230
9231 mbox_pending = lpfc_sli4_mbox_completions_pending(phba);
9232
9233 /*
9234 * If a mbox completion is pending, process all the events on EQ
9235 * associated with the mbox completion queue (this could include
9236 * mailbox commands, async events, els commands, receive queue data
9237 * and fcp commands)
9238 */
9239
9240 if (mbox_pending)
9241 /* process and rearm the EQ */
9242 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM,
9243 LPFC_QUEUE_WORK);
9244 else
9245 /* Always clear and re-arm the EQ */
9246 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM);
9247
9248 return mbox_pending;
9249
9250 }
9251
9252 /**
9253 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout
9254 * @phba: Pointer to HBA context object.
9255 *
9256 * This function is called from worker thread when a mailbox command times out.
9257 * The caller is not required to hold any locks. This function will reset the
9258 * HBA and recover all the pending commands.
9259 **/
9260 void
lpfc_mbox_timeout_handler(struct lpfc_hba * phba)9261 lpfc_mbox_timeout_handler(struct lpfc_hba *phba)
9262 {
9263 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active;
9264 MAILBOX_t *mb = NULL;
9265
9266 struct lpfc_sli *psli = &phba->sli;
9267
9268 /* If the mailbox completed, process the completion */
9269 lpfc_sli4_process_missed_mbox_completions(phba);
9270
9271 if (!(psli->sli_flag & LPFC_SLI_ACTIVE))
9272 return;
9273
9274 if (pmbox != NULL)
9275 mb = &pmbox->u.mb;
9276 /* Check the pmbox pointer first. There is a race condition
9277 * between the mbox timeout handler getting executed in the
9278 * worklist and the mailbox actually completing. When this
9279 * race condition occurs, the mbox_active will be NULL.
9280 */
9281 spin_lock_irq(&phba->hbalock);
9282 if (pmbox == NULL) {
9283 lpfc_printf_log(phba, KERN_WARNING,
9284 LOG_MBOX | LOG_SLI,
9285 "0353 Active Mailbox cleared - mailbox timeout "
9286 "exiting\n");
9287 spin_unlock_irq(&phba->hbalock);
9288 return;
9289 }
9290
9291 /* Mbox cmd <mbxCommand> timeout */
9292 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9293 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n",
9294 mb->mbxCommand,
9295 phba->pport->port_state,
9296 phba->sli.sli_flag,
9297 phba->sli.mbox_active);
9298 spin_unlock_irq(&phba->hbalock);
9299
9300 /* Setting state unknown so lpfc_sli_abort_iocb_ring
9301 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing
9302 * it to fail all outstanding SCSI IO.
9303 */
9304 set_bit(MBX_TMO_ERR, &phba->bit_flags);
9305 spin_lock_irq(&phba->pport->work_port_lock);
9306 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
9307 spin_unlock_irq(&phba->pport->work_port_lock);
9308 spin_lock_irq(&phba->hbalock);
9309 phba->link_state = LPFC_LINK_UNKNOWN;
9310 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
9311 spin_unlock_irq(&phba->hbalock);
9312
9313 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9314 "0345 Resetting board due to mailbox timeout\n");
9315
9316 /* Reset the HBA device */
9317 lpfc_reset_hba(phba);
9318 }
9319
9320 /**
9321 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware
9322 * @phba: Pointer to HBA context object.
9323 * @pmbox: Pointer to mailbox object.
9324 * @flag: Flag indicating how the mailbox need to be processed.
9325 *
9326 * This function is called by discovery code and HBA management code
9327 * to submit a mailbox command to firmware with SLI-3 interface spec. This
9328 * function gets the hbalock to protect the data structures.
9329 * The mailbox command can be submitted in polling mode, in which case
9330 * this function will wait in a polling loop for the completion of the
9331 * mailbox.
9332 * If the mailbox is submitted in no_wait mode (not polling) the
9333 * function will submit the command and returns immediately without waiting
9334 * for the mailbox completion. The no_wait is supported only when HBA
9335 * is in SLI2/SLI3 mode - interrupts are enabled.
9336 * The SLI interface allows only one mailbox pending at a time. If the
9337 * mailbox is issued in polling mode and there is already a mailbox
9338 * pending, then the function will return an error. If the mailbox is issued
9339 * in NO_WAIT mode and there is a mailbox pending already, the function
9340 * will return MBX_BUSY after queuing the mailbox into mailbox queue.
9341 * The sli layer owns the mailbox object until the completion of mailbox
9342 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other
9343 * return codes the caller owns the mailbox command after the return of
9344 * the function.
9345 **/
9346 static int
lpfc_sli_issue_mbox_s3(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmbox,uint32_t flag)9347 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox,
9348 uint32_t flag)
9349 {
9350 MAILBOX_t *mbx;
9351 struct lpfc_sli *psli = &phba->sli;
9352 uint32_t status, evtctr;
9353 uint32_t ha_copy, hc_copy;
9354 int i;
9355 unsigned long timeout;
9356 unsigned long drvr_flag = 0;
9357 uint32_t word0, ldata;
9358 void __iomem *to_slim;
9359 int processing_queue = 0;
9360
9361 spin_lock_irqsave(&phba->hbalock, drvr_flag);
9362 if (!pmbox) {
9363 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9364 /* processing mbox queue from intr_handler */
9365 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
9366 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9367 return MBX_SUCCESS;
9368 }
9369 processing_queue = 1;
9370 pmbox = lpfc_mbox_get(phba);
9371 if (!pmbox) {
9372 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9373 return MBX_SUCCESS;
9374 }
9375 }
9376
9377 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl &&
9378 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) {
9379 if(!pmbox->vport) {
9380 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9381 lpfc_printf_log(phba, KERN_ERR,
9382 LOG_MBOX | LOG_VPORT,
9383 "1806 Mbox x%x failed. No vport\n",
9384 pmbox->u.mb.mbxCommand);
9385 dump_stack();
9386 goto out_not_finished;
9387 }
9388 }
9389
9390 /* If the PCI channel is in offline state, do not post mbox. */
9391 if (unlikely(pci_channel_offline(phba->pcidev))) {
9392 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9393 goto out_not_finished;
9394 }
9395
9396 /* If HBA has a deferred error attention, fail the iocb. */
9397 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) {
9398 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9399 goto out_not_finished;
9400 }
9401
9402 psli = &phba->sli;
9403
9404 mbx = &pmbox->u.mb;
9405 status = MBX_SUCCESS;
9406
9407 if (phba->link_state == LPFC_HBA_ERROR) {
9408 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9409
9410 /* Mbox command <mbxCommand> cannot issue */
9411 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9412 "(%d):0311 Mailbox command x%x cannot "
9413 "issue Data: x%x x%x\n",
9414 pmbox->vport ? pmbox->vport->vpi : 0,
9415 pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
9416 goto out_not_finished;
9417 }
9418
9419 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) {
9420 if (lpfc_readl(phba->HCregaddr, &hc_copy) ||
9421 !(hc_copy & HC_MBINT_ENA)) {
9422 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9423 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9424 "(%d):2528 Mailbox command x%x cannot "
9425 "issue Data: x%x x%x\n",
9426 pmbox->vport ? pmbox->vport->vpi : 0,
9427 pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
9428 goto out_not_finished;
9429 }
9430 }
9431
9432 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
9433 /* Polling for a mbox command when another one is already active
9434 * is not allowed in SLI. Also, the driver must have established
9435 * SLI2 mode to queue and process multiple mbox commands.
9436 */
9437
9438 if (flag & MBX_POLL) {
9439 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9440
9441 /* Mbox command <mbxCommand> cannot issue */
9442 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9443 "(%d):2529 Mailbox command x%x "
9444 "cannot issue Data: x%x x%x\n",
9445 pmbox->vport ? pmbox->vport->vpi : 0,
9446 pmbox->u.mb.mbxCommand,
9447 psli->sli_flag, flag);
9448 goto out_not_finished;
9449 }
9450
9451 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) {
9452 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9453 /* Mbox command <mbxCommand> cannot issue */
9454 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9455 "(%d):2530 Mailbox command x%x "
9456 "cannot issue Data: x%x x%x\n",
9457 pmbox->vport ? pmbox->vport->vpi : 0,
9458 pmbox->u.mb.mbxCommand,
9459 psli->sli_flag, flag);
9460 goto out_not_finished;
9461 }
9462
9463 /* Another mailbox command is still being processed, queue this
9464 * command to be processed later.
9465 */
9466 lpfc_mbox_put(phba, pmbox);
9467
9468 /* Mbox cmd issue - BUSY */
9469 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9470 "(%d):0308 Mbox cmd issue - BUSY Data: "
9471 "x%x x%x x%x x%x\n",
9472 pmbox->vport ? pmbox->vport->vpi : 0xffffff,
9473 mbx->mbxCommand,
9474 phba->pport ? phba->pport->port_state : 0xff,
9475 psli->sli_flag, flag);
9476
9477 psli->slistat.mbox_busy++;
9478 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9479
9480 if (pmbox->vport) {
9481 lpfc_debugfs_disc_trc(pmbox->vport,
9482 LPFC_DISC_TRC_MBOX_VPORT,
9483 "MBOX Bsy vport: cmd:x%x mb:x%x x%x",
9484 (uint32_t)mbx->mbxCommand,
9485 mbx->un.varWords[0], mbx->un.varWords[1]);
9486 }
9487 else {
9488 lpfc_debugfs_disc_trc(phba->pport,
9489 LPFC_DISC_TRC_MBOX,
9490 "MBOX Bsy: cmd:x%x mb:x%x x%x",
9491 (uint32_t)mbx->mbxCommand,
9492 mbx->un.varWords[0], mbx->un.varWords[1]);
9493 }
9494
9495 return MBX_BUSY;
9496 }
9497
9498 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
9499
9500 /* If we are not polling, we MUST be in SLI2 mode */
9501 if (flag != MBX_POLL) {
9502 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) &&
9503 (mbx->mbxCommand != MBX_KILL_BOARD)) {
9504 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9505 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9506 /* Mbox command <mbxCommand> cannot issue */
9507 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9508 "(%d):2531 Mailbox command x%x "
9509 "cannot issue Data: x%x x%x\n",
9510 pmbox->vport ? pmbox->vport->vpi : 0,
9511 pmbox->u.mb.mbxCommand,
9512 psli->sli_flag, flag);
9513 goto out_not_finished;
9514 }
9515 /* timeout active mbox command */
9516 timeout = secs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox));
9517 mod_timer(&psli->mbox_tmo, jiffies + timeout);
9518 }
9519
9520 /* Mailbox cmd <cmd> issue */
9521 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9522 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x "
9523 "x%x\n",
9524 pmbox->vport ? pmbox->vport->vpi : 0,
9525 mbx->mbxCommand,
9526 phba->pport ? phba->pport->port_state : 0xff,
9527 psli->sli_flag, flag);
9528
9529 if (mbx->mbxCommand != MBX_HEARTBEAT) {
9530 if (pmbox->vport) {
9531 lpfc_debugfs_disc_trc(pmbox->vport,
9532 LPFC_DISC_TRC_MBOX_VPORT,
9533 "MBOX Send vport: cmd:x%x mb:x%x x%x",
9534 (uint32_t)mbx->mbxCommand,
9535 mbx->un.varWords[0], mbx->un.varWords[1]);
9536 }
9537 else {
9538 lpfc_debugfs_disc_trc(phba->pport,
9539 LPFC_DISC_TRC_MBOX,
9540 "MBOX Send: cmd:x%x mb:x%x x%x",
9541 (uint32_t)mbx->mbxCommand,
9542 mbx->un.varWords[0], mbx->un.varWords[1]);
9543 }
9544 }
9545
9546 psli->slistat.mbox_cmd++;
9547 evtctr = psli->slistat.mbox_event;
9548
9549 /* next set own bit for the adapter and copy over command word */
9550 mbx->mbxOwner = OWN_CHIP;
9551
9552 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
9553 /* Populate mbox extension offset word. */
9554 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) {
9555 *(((uint32_t *)mbx) + pmbox->mbox_offset_word)
9556 = (uint8_t *)phba->mbox_ext
9557 - (uint8_t *)phba->mbox;
9558 }
9559
9560 /* Copy the mailbox extension data */
9561 if (pmbox->in_ext_byte_len && pmbox->ext_buf) {
9562 lpfc_sli_pcimem_bcopy(pmbox->ext_buf,
9563 (uint8_t *)phba->mbox_ext,
9564 pmbox->in_ext_byte_len);
9565 }
9566 /* Copy command data to host SLIM area */
9567 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE);
9568 } else {
9569 /* Populate mbox extension offset word. */
9570 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len)
9571 *(((uint32_t *)mbx) + pmbox->mbox_offset_word)
9572 = MAILBOX_HBA_EXT_OFFSET;
9573
9574 /* Copy the mailbox extension data */
9575 if (pmbox->in_ext_byte_len && pmbox->ext_buf)
9576 lpfc_memcpy_to_slim(phba->MBslimaddr +
9577 MAILBOX_HBA_EXT_OFFSET,
9578 pmbox->ext_buf, pmbox->in_ext_byte_len);
9579
9580 if (mbx->mbxCommand == MBX_CONFIG_PORT)
9581 /* copy command data into host mbox for cmpl */
9582 lpfc_sli_pcimem_bcopy(mbx, phba->mbox,
9583 MAILBOX_CMD_SIZE);
9584
9585 /* First copy mbox command data to HBA SLIM, skip past first
9586 word */
9587 to_slim = phba->MBslimaddr + sizeof (uint32_t);
9588 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0],
9589 MAILBOX_CMD_SIZE - sizeof (uint32_t));
9590
9591 /* Next copy over first word, with mbxOwner set */
9592 ldata = *((uint32_t *)mbx);
9593 to_slim = phba->MBslimaddr;
9594 writel(ldata, to_slim);
9595 readl(to_slim); /* flush */
9596
9597 if (mbx->mbxCommand == MBX_CONFIG_PORT)
9598 /* switch over to host mailbox */
9599 psli->sli_flag |= LPFC_SLI_ACTIVE;
9600 }
9601
9602 wmb();
9603
9604 switch (flag) {
9605 case MBX_NOWAIT:
9606 /* Set up reference to mailbox command */
9607 psli->mbox_active = pmbox;
9608 /* Interrupt board to do it */
9609 writel(CA_MBATT, phba->CAregaddr);
9610 readl(phba->CAregaddr); /* flush */
9611 /* Don't wait for it to finish, just return */
9612 break;
9613
9614 case MBX_POLL:
9615 /* Set up null reference to mailbox command */
9616 psli->mbox_active = NULL;
9617 /* Interrupt board to do it */
9618 writel(CA_MBATT, phba->CAregaddr);
9619 readl(phba->CAregaddr); /* flush */
9620
9621 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
9622 /* First read mbox status word */
9623 word0 = *((uint32_t *)phba->mbox);
9624 word0 = le32_to_cpu(word0);
9625 } else {
9626 /* First read mbox status word */
9627 if (lpfc_readl(phba->MBslimaddr, &word0)) {
9628 spin_unlock_irqrestore(&phba->hbalock,
9629 drvr_flag);
9630 goto out_not_finished;
9631 }
9632 }
9633
9634 /* Read the HBA Host Attention Register */
9635 if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
9636 spin_unlock_irqrestore(&phba->hbalock,
9637 drvr_flag);
9638 goto out_not_finished;
9639 }
9640 timeout = secs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox)) + jiffies;
9641 i = 0;
9642 /* Wait for command to complete */
9643 while (((word0 & OWN_CHIP) == OWN_CHIP) ||
9644 (!(ha_copy & HA_MBATT) &&
9645 (phba->link_state > LPFC_WARM_START))) {
9646 if (time_after(jiffies, timeout)) {
9647 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9648 spin_unlock_irqrestore(&phba->hbalock,
9649 drvr_flag);
9650 goto out_not_finished;
9651 }
9652
9653 /* Check if we took a mbox interrupt while we were
9654 polling */
9655 if (((word0 & OWN_CHIP) != OWN_CHIP)
9656 && (evtctr != psli->slistat.mbox_event))
9657 break;
9658
9659 if (i++ > 10) {
9660 spin_unlock_irqrestore(&phba->hbalock,
9661 drvr_flag);
9662 msleep(1);
9663 spin_lock_irqsave(&phba->hbalock, drvr_flag);
9664 }
9665
9666 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
9667 /* First copy command data */
9668 word0 = *((uint32_t *)phba->mbox);
9669 word0 = le32_to_cpu(word0);
9670 if (mbx->mbxCommand == MBX_CONFIG_PORT) {
9671 MAILBOX_t *slimmb;
9672 uint32_t slimword0;
9673 /* Check real SLIM for any errors */
9674 slimword0 = readl(phba->MBslimaddr);
9675 slimmb = (MAILBOX_t *) & slimword0;
9676 if (((slimword0 & OWN_CHIP) != OWN_CHIP)
9677 && slimmb->mbxStatus) {
9678 psli->sli_flag &=
9679 ~LPFC_SLI_ACTIVE;
9680 word0 = slimword0;
9681 }
9682 }
9683 } else {
9684 /* First copy command data */
9685 word0 = readl(phba->MBslimaddr);
9686 }
9687 /* Read the HBA Host Attention Register */
9688 if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
9689 spin_unlock_irqrestore(&phba->hbalock,
9690 drvr_flag);
9691 goto out_not_finished;
9692 }
9693 }
9694
9695 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
9696 /* copy results back to user */
9697 lpfc_sli_pcimem_bcopy(phba->mbox, mbx,
9698 MAILBOX_CMD_SIZE);
9699 /* Copy the mailbox extension data */
9700 if (pmbox->out_ext_byte_len && pmbox->ext_buf) {
9701 lpfc_sli_pcimem_bcopy(phba->mbox_ext,
9702 pmbox->ext_buf,
9703 pmbox->out_ext_byte_len);
9704 }
9705 } else {
9706 /* First copy command data */
9707 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr,
9708 MAILBOX_CMD_SIZE);
9709 /* Copy the mailbox extension data */
9710 if (pmbox->out_ext_byte_len && pmbox->ext_buf) {
9711 lpfc_memcpy_from_slim(
9712 pmbox->ext_buf,
9713 phba->MBslimaddr +
9714 MAILBOX_HBA_EXT_OFFSET,
9715 pmbox->out_ext_byte_len);
9716 }
9717 }
9718
9719 writel(HA_MBATT, phba->HAregaddr);
9720 readl(phba->HAregaddr); /* flush */
9721
9722 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9723 status = mbx->mbxStatus;
9724 }
9725
9726 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9727 return status;
9728
9729 out_not_finished:
9730 if (processing_queue) {
9731 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED;
9732 lpfc_mbox_cmpl_put(phba, pmbox);
9733 }
9734 return MBX_NOT_FINISHED;
9735 }
9736
9737 /**
9738 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command
9739 * @phba: Pointer to HBA context object.
9740 *
9741 * The function blocks the posting of SLI4 asynchronous mailbox commands from
9742 * the driver internal pending mailbox queue. It will then try to wait out the
9743 * possible outstanding mailbox command before return.
9744 *
9745 * Returns:
9746 * 0 - the outstanding mailbox command completed; otherwise, the wait for
9747 * the outstanding mailbox command timed out.
9748 **/
9749 static int
lpfc_sli4_async_mbox_block(struct lpfc_hba * phba)9750 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba)
9751 {
9752 struct lpfc_sli *psli = &phba->sli;
9753 LPFC_MBOXQ_t *mboxq;
9754 int rc = 0;
9755 unsigned long timeout = 0;
9756 u32 sli_flag;
9757 u8 cmd, subsys, opcode;
9758
9759 /* Mark the asynchronous mailbox command posting as blocked */
9760 spin_lock_irq(&phba->hbalock);
9761 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
9762 /* Determine how long we might wait for the active mailbox
9763 * command to be gracefully completed by firmware.
9764 */
9765 if (phba->sli.mbox_active)
9766 timeout = secs_to_jiffies(lpfc_mbox_tmo_val(phba,
9767 phba->sli.mbox_active)) + jiffies;
9768 spin_unlock_irq(&phba->hbalock);
9769
9770 /* Make sure the mailbox is really active */
9771 if (timeout)
9772 lpfc_sli4_process_missed_mbox_completions(phba);
9773
9774 /* Wait for the outstanding mailbox command to complete */
9775 while (phba->sli.mbox_active) {
9776 /* Check active mailbox complete status every 2ms */
9777 msleep(2);
9778 if (time_after(jiffies, timeout)) {
9779 /* Timeout, mark the outstanding cmd not complete */
9780
9781 /* Sanity check sli.mbox_active has not completed or
9782 * cancelled from another context during last 2ms sleep,
9783 * so take hbalock to be sure before logging.
9784 */
9785 spin_lock_irq(&phba->hbalock);
9786 if (phba->sli.mbox_active) {
9787 mboxq = phba->sli.mbox_active;
9788 cmd = mboxq->u.mb.mbxCommand;
9789 subsys = lpfc_sli_config_mbox_subsys_get(phba,
9790 mboxq);
9791 opcode = lpfc_sli_config_mbox_opcode_get(phba,
9792 mboxq);
9793 sli_flag = psli->sli_flag;
9794 spin_unlock_irq(&phba->hbalock);
9795 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9796 "2352 Mailbox command x%x "
9797 "(x%x/x%x) sli_flag x%x could "
9798 "not complete\n",
9799 cmd, subsys, opcode,
9800 sli_flag);
9801 } else {
9802 spin_unlock_irq(&phba->hbalock);
9803 }
9804
9805 rc = 1;
9806 break;
9807 }
9808 }
9809
9810 /* Can not cleanly block async mailbox command, fails it */
9811 if (rc) {
9812 spin_lock_irq(&phba->hbalock);
9813 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
9814 spin_unlock_irq(&phba->hbalock);
9815 }
9816 return rc;
9817 }
9818
9819 /**
9820 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command
9821 * @phba: Pointer to HBA context object.
9822 *
9823 * The function unblocks and resume posting of SLI4 asynchronous mailbox
9824 * commands from the driver internal pending mailbox queue. It makes sure
9825 * that there is no outstanding mailbox command before resuming posting
9826 * asynchronous mailbox commands. If, for any reason, there is outstanding
9827 * mailbox command, it will try to wait it out before resuming asynchronous
9828 * mailbox command posting.
9829 **/
9830 static void
lpfc_sli4_async_mbox_unblock(struct lpfc_hba * phba)9831 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba)
9832 {
9833 struct lpfc_sli *psli = &phba->sli;
9834
9835 spin_lock_irq(&phba->hbalock);
9836 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
9837 /* Asynchronous mailbox posting is not blocked, do nothing */
9838 spin_unlock_irq(&phba->hbalock);
9839 return;
9840 }
9841
9842 /* Outstanding synchronous mailbox command is guaranteed to be done,
9843 * successful or timeout, after timing-out the outstanding mailbox
9844 * command shall always be removed, so just unblock posting async
9845 * mailbox command and resume
9846 */
9847 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
9848 spin_unlock_irq(&phba->hbalock);
9849
9850 /* wake up worker thread to post asynchronous mailbox command */
9851 lpfc_worker_wake_up(phba);
9852 }
9853
9854 /**
9855 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready
9856 * @phba: Pointer to HBA context object.
9857 * @mboxq: Pointer to mailbox object.
9858 *
9859 * The function waits for the bootstrap mailbox register ready bit from
9860 * port for twice the regular mailbox command timeout value.
9861 *
9862 * 0 - no timeout on waiting for bootstrap mailbox register ready.
9863 * MBXERR_ERROR - wait for bootstrap mailbox register timed out or port
9864 * is in an unrecoverable state.
9865 **/
9866 static int
lpfc_sli4_wait_bmbx_ready(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq)9867 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
9868 {
9869 uint32_t db_ready;
9870 unsigned long timeout;
9871 struct lpfc_register bmbx_reg;
9872 struct lpfc_register portstat_reg = {-1};
9873
9874 /* Sanity check - there is no point to wait if the port is in an
9875 * unrecoverable state.
9876 */
9877 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
9878 LPFC_SLI_INTF_IF_TYPE_2) {
9879 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
9880 &portstat_reg.word0) ||
9881 lpfc_sli4_unrecoverable_port(&portstat_reg)) {
9882 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
9883 "3858 Skipping bmbx ready because "
9884 "Port Status x%x\n",
9885 portstat_reg.word0);
9886 return MBXERR_ERROR;
9887 }
9888 }
9889
9890 timeout = secs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)) + jiffies;
9891
9892 do {
9893 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
9894 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
9895 if (!db_ready)
9896 mdelay(2);
9897
9898 if (time_after(jiffies, timeout))
9899 return MBXERR_ERROR;
9900 } while (!db_ready);
9901
9902 return 0;
9903 }
9904
9905 /**
9906 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox
9907 * @phba: Pointer to HBA context object.
9908 * @mboxq: Pointer to mailbox object.
9909 *
9910 * The function posts a mailbox to the port. The mailbox is expected
9911 * to be comletely filled in and ready for the port to operate on it.
9912 * This routine executes a synchronous completion operation on the
9913 * mailbox by polling for its completion.
9914 *
9915 * The caller must not be holding any locks when calling this routine.
9916 *
9917 * Returns:
9918 * MBX_SUCCESS - mailbox posted successfully
9919 * Any of the MBX error values.
9920 **/
9921 static int
lpfc_sli4_post_sync_mbox(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq)9922 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
9923 {
9924 int rc = MBX_SUCCESS;
9925 unsigned long iflag;
9926 uint32_t mcqe_status;
9927 uint32_t mbx_cmnd;
9928 struct lpfc_sli *psli = &phba->sli;
9929 struct lpfc_mqe *mb = &mboxq->u.mqe;
9930 struct lpfc_bmbx_create *mbox_rgn;
9931 struct dma_address *dma_address;
9932
9933 /*
9934 * Only one mailbox can be active to the bootstrap mailbox region
9935 * at a time and there is no queueing provided.
9936 */
9937 spin_lock_irqsave(&phba->hbalock, iflag);
9938 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
9939 spin_unlock_irqrestore(&phba->hbalock, iflag);
9940 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9941 "(%d):2532 Mailbox command x%x (x%x/x%x) "
9942 "cannot issue Data: x%x x%x\n",
9943 mboxq->vport ? mboxq->vport->vpi : 0,
9944 mboxq->u.mb.mbxCommand,
9945 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9946 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9947 psli->sli_flag, MBX_POLL);
9948 return MBXERR_ERROR;
9949 }
9950 /* The server grabs the token and owns it until release */
9951 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
9952 phba->sli.mbox_active = mboxq;
9953 spin_unlock_irqrestore(&phba->hbalock, iflag);
9954
9955 /* wait for bootstrap mbox register for readyness */
9956 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
9957 if (rc)
9958 goto exit;
9959 /*
9960 * Initialize the bootstrap memory region to avoid stale data areas
9961 * in the mailbox post. Then copy the caller's mailbox contents to
9962 * the bmbx mailbox region.
9963 */
9964 mbx_cmnd = bf_get(lpfc_mqe_command, mb);
9965 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create));
9966 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt,
9967 sizeof(struct lpfc_mqe));
9968
9969 /* Post the high mailbox dma address to the port and wait for ready. */
9970 dma_address = &phba->sli4_hba.bmbx.dma_address;
9971 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr);
9972
9973 /* wait for bootstrap mbox register for hi-address write done */
9974 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
9975 if (rc)
9976 goto exit;
9977
9978 /* Post the low mailbox dma address to the port. */
9979 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr);
9980
9981 /* wait for bootstrap mbox register for low address write done */
9982 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
9983 if (rc)
9984 goto exit;
9985
9986 /*
9987 * Read the CQ to ensure the mailbox has completed.
9988 * If so, update the mailbox status so that the upper layers
9989 * can complete the request normally.
9990 */
9991 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb,
9992 sizeof(struct lpfc_mqe));
9993 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt;
9994 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe,
9995 sizeof(struct lpfc_mcqe));
9996 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe);
9997 /*
9998 * When the CQE status indicates a failure and the mailbox status
9999 * indicates success then copy the CQE status into the mailbox status
10000 * (and prefix it with x4000).
10001 */
10002 if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
10003 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS)
10004 bf_set(lpfc_mqe_status, mb,
10005 (LPFC_MBX_ERROR_RANGE | mcqe_status));
10006 rc = MBXERR_ERROR;
10007 } else
10008 lpfc_sli4_swap_str(phba, mboxq);
10009
10010 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
10011 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x "
10012 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x"
10013 " x%x x%x CQ: x%x x%x x%x x%x\n",
10014 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
10015 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10016 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10017 bf_get(lpfc_mqe_status, mb),
10018 mb->un.mb_words[0], mb->un.mb_words[1],
10019 mb->un.mb_words[2], mb->un.mb_words[3],
10020 mb->un.mb_words[4], mb->un.mb_words[5],
10021 mb->un.mb_words[6], mb->un.mb_words[7],
10022 mb->un.mb_words[8], mb->un.mb_words[9],
10023 mb->un.mb_words[10], mb->un.mb_words[11],
10024 mb->un.mb_words[12], mboxq->mcqe.word0,
10025 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1,
10026 mboxq->mcqe.trailer);
10027 exit:
10028 /* We are holding the token, no needed for lock when release */
10029 spin_lock_irqsave(&phba->hbalock, iflag);
10030 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10031 phba->sli.mbox_active = NULL;
10032 spin_unlock_irqrestore(&phba->hbalock, iflag);
10033 return rc;
10034 }
10035
10036 /**
10037 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware
10038 * @phba: Pointer to HBA context object.
10039 * @mboxq: Pointer to mailbox object.
10040 * @flag: Flag indicating how the mailbox need to be processed.
10041 *
10042 * This function is called by discovery code and HBA management code to submit
10043 * a mailbox command to firmware with SLI-4 interface spec.
10044 *
10045 * Return codes the caller owns the mailbox command after the return of the
10046 * function.
10047 **/
10048 static int
lpfc_sli_issue_mbox_s4(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq,uint32_t flag)10049 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
10050 uint32_t flag)
10051 {
10052 struct lpfc_sli *psli = &phba->sli;
10053 unsigned long iflags;
10054 int rc;
10055
10056 /* dump from issue mailbox command if setup */
10057 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb);
10058
10059 rc = lpfc_mbox_dev_check(phba);
10060 if (unlikely(rc)) {
10061 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10062 "(%d):2544 Mailbox command x%x (x%x/x%x) "
10063 "cannot issue Data: x%x x%x\n",
10064 mboxq->vport ? mboxq->vport->vpi : 0,
10065 mboxq->u.mb.mbxCommand,
10066 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10067 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10068 psli->sli_flag, flag);
10069 goto out_not_finished;
10070 }
10071
10072 /* Detect polling mode and jump to a handler */
10073 if (!phba->sli4_hba.intr_enable) {
10074 if (flag == MBX_POLL)
10075 rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
10076 else
10077 rc = -EIO;
10078 if (rc != MBX_SUCCESS)
10079 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
10080 "(%d):2541 Mailbox command x%x "
10081 "(x%x/x%x) failure: "
10082 "mqe_sta: x%x mcqe_sta: x%x/x%x "
10083 "Data: x%x x%x\n",
10084 mboxq->vport ? mboxq->vport->vpi : 0,
10085 mboxq->u.mb.mbxCommand,
10086 lpfc_sli_config_mbox_subsys_get(phba,
10087 mboxq),
10088 lpfc_sli_config_mbox_opcode_get(phba,
10089 mboxq),
10090 bf_get(lpfc_mqe_status, &mboxq->u.mqe),
10091 bf_get(lpfc_mcqe_status, &mboxq->mcqe),
10092 bf_get(lpfc_mcqe_ext_status,
10093 &mboxq->mcqe),
10094 psli->sli_flag, flag);
10095 return rc;
10096 } else if (flag == MBX_POLL) {
10097 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
10098 "(%d):2542 Try to issue mailbox command "
10099 "x%x (x%x/x%x) synchronously ahead of async "
10100 "mailbox command queue: x%x x%x\n",
10101 mboxq->vport ? mboxq->vport->vpi : 0,
10102 mboxq->u.mb.mbxCommand,
10103 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10104 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10105 psli->sli_flag, flag);
10106 /* Try to block the asynchronous mailbox posting */
10107 rc = lpfc_sli4_async_mbox_block(phba);
10108 if (!rc) {
10109 /* Successfully blocked, now issue sync mbox cmd */
10110 rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
10111 if (rc != MBX_SUCCESS)
10112 lpfc_printf_log(phba, KERN_WARNING,
10113 LOG_MBOX | LOG_SLI,
10114 "(%d):2597 Sync Mailbox command "
10115 "x%x (x%x/x%x) failure: "
10116 "mqe_sta: x%x mcqe_sta: x%x/x%x "
10117 "Data: x%x x%x\n",
10118 mboxq->vport ? mboxq->vport->vpi : 0,
10119 mboxq->u.mb.mbxCommand,
10120 lpfc_sli_config_mbox_subsys_get(phba,
10121 mboxq),
10122 lpfc_sli_config_mbox_opcode_get(phba,
10123 mboxq),
10124 bf_get(lpfc_mqe_status, &mboxq->u.mqe),
10125 bf_get(lpfc_mcqe_status, &mboxq->mcqe),
10126 bf_get(lpfc_mcqe_ext_status,
10127 &mboxq->mcqe),
10128 psli->sli_flag, flag);
10129 /* Unblock the async mailbox posting afterward */
10130 lpfc_sli4_async_mbox_unblock(phba);
10131 }
10132 return rc;
10133 }
10134
10135 /* Now, interrupt mode asynchronous mailbox command */
10136 rc = lpfc_mbox_cmd_check(phba, mboxq);
10137 if (rc) {
10138 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10139 "(%d):2543 Mailbox command x%x (x%x/x%x) "
10140 "cannot issue Data: x%x x%x\n",
10141 mboxq->vport ? mboxq->vport->vpi : 0,
10142 mboxq->u.mb.mbxCommand,
10143 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10144 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10145 psli->sli_flag, flag);
10146 goto out_not_finished;
10147 }
10148
10149 /* Put the mailbox command to the driver internal FIFO */
10150 psli->slistat.mbox_busy++;
10151 spin_lock_irqsave(&phba->hbalock, iflags);
10152 lpfc_mbox_put(phba, mboxq);
10153 spin_unlock_irqrestore(&phba->hbalock, iflags);
10154 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
10155 "(%d):0354 Mbox cmd issue - Enqueue Data: "
10156 "x%x (x%x/x%x) x%x x%x x%x x%x\n",
10157 mboxq->vport ? mboxq->vport->vpi : 0xffffff,
10158 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
10159 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10160 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10161 mboxq->u.mb.un.varUnregLogin.rpi,
10162 phba->pport->port_state,
10163 psli->sli_flag, MBX_NOWAIT);
10164 /* Wake up worker thread to transport mailbox command from head */
10165 lpfc_worker_wake_up(phba);
10166
10167 return MBX_BUSY;
10168
10169 out_not_finished:
10170 return MBX_NOT_FINISHED;
10171 }
10172
10173 /**
10174 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device
10175 * @phba: Pointer to HBA context object.
10176 *
10177 * This function is called by worker thread to send a mailbox command to
10178 * SLI4 HBA firmware.
10179 *
10180 **/
10181 int
lpfc_sli4_post_async_mbox(struct lpfc_hba * phba)10182 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba)
10183 {
10184 struct lpfc_sli *psli = &phba->sli;
10185 LPFC_MBOXQ_t *mboxq;
10186 int rc = MBX_SUCCESS;
10187 unsigned long iflags;
10188 struct lpfc_mqe *mqe;
10189 uint32_t mbx_cmnd;
10190
10191 /* Check interrupt mode before post async mailbox command */
10192 if (unlikely(!phba->sli4_hba.intr_enable))
10193 return MBX_NOT_FINISHED;
10194
10195 /* Check for mailbox command service token */
10196 spin_lock_irqsave(&phba->hbalock, iflags);
10197 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
10198 spin_unlock_irqrestore(&phba->hbalock, iflags);
10199 return MBX_NOT_FINISHED;
10200 }
10201 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
10202 spin_unlock_irqrestore(&phba->hbalock, iflags);
10203 return MBX_NOT_FINISHED;
10204 }
10205 if (unlikely(phba->sli.mbox_active)) {
10206 spin_unlock_irqrestore(&phba->hbalock, iflags);
10207 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10208 "0384 There is pending active mailbox cmd\n");
10209 return MBX_NOT_FINISHED;
10210 }
10211 /* Take the mailbox command service token */
10212 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
10213
10214 /* Get the next mailbox command from head of queue */
10215 mboxq = lpfc_mbox_get(phba);
10216
10217 /* If no more mailbox command waiting for post, we're done */
10218 if (!mboxq) {
10219 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10220 spin_unlock_irqrestore(&phba->hbalock, iflags);
10221 return MBX_SUCCESS;
10222 }
10223 phba->sli.mbox_active = mboxq;
10224 spin_unlock_irqrestore(&phba->hbalock, iflags);
10225
10226 /* Check device readiness for posting mailbox command */
10227 rc = lpfc_mbox_dev_check(phba);
10228 if (unlikely(rc))
10229 /* Driver clean routine will clean up pending mailbox */
10230 goto out_not_finished;
10231
10232 /* Prepare the mbox command to be posted */
10233 mqe = &mboxq->u.mqe;
10234 mbx_cmnd = bf_get(lpfc_mqe_command, mqe);
10235
10236 /* Start timer for the mbox_tmo and log some mailbox post messages */
10237 mod_timer(&psli->mbox_tmo, (jiffies +
10238 secs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq))));
10239
10240 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
10241 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: "
10242 "x%x x%x\n",
10243 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
10244 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10245 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10246 phba->pport->port_state, psli->sli_flag);
10247
10248 if (mbx_cmnd != MBX_HEARTBEAT) {
10249 if (mboxq->vport) {
10250 lpfc_debugfs_disc_trc(mboxq->vport,
10251 LPFC_DISC_TRC_MBOX_VPORT,
10252 "MBOX Send vport: cmd:x%x mb:x%x x%x",
10253 mbx_cmnd, mqe->un.mb_words[0],
10254 mqe->un.mb_words[1]);
10255 } else {
10256 lpfc_debugfs_disc_trc(phba->pport,
10257 LPFC_DISC_TRC_MBOX,
10258 "MBOX Send: cmd:x%x mb:x%x x%x",
10259 mbx_cmnd, mqe->un.mb_words[0],
10260 mqe->un.mb_words[1]);
10261 }
10262 }
10263 psli->slistat.mbox_cmd++;
10264
10265 /* Post the mailbox command to the port */
10266 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe);
10267 if (rc != MBX_SUCCESS) {
10268 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10269 "(%d):2533 Mailbox command x%x (x%x/x%x) "
10270 "cannot issue Data: x%x x%x\n",
10271 mboxq->vport ? mboxq->vport->vpi : 0,
10272 mboxq->u.mb.mbxCommand,
10273 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10274 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10275 psli->sli_flag, MBX_NOWAIT);
10276 goto out_not_finished;
10277 }
10278
10279 return rc;
10280
10281 out_not_finished:
10282 spin_lock_irqsave(&phba->hbalock, iflags);
10283 if (phba->sli.mbox_active) {
10284 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
10285 __lpfc_mbox_cmpl_put(phba, mboxq);
10286 /* Release the token */
10287 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10288 phba->sli.mbox_active = NULL;
10289 }
10290 spin_unlock_irqrestore(&phba->hbalock, iflags);
10291
10292 return MBX_NOT_FINISHED;
10293 }
10294
10295 /**
10296 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command
10297 * @phba: Pointer to HBA context object.
10298 * @pmbox: Pointer to mailbox object.
10299 * @flag: Flag indicating how the mailbox need to be processed.
10300 *
10301 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from
10302 * the API jump table function pointer from the lpfc_hba struct.
10303 *
10304 * Return codes the caller owns the mailbox command after the return of the
10305 * function.
10306 **/
10307 int
lpfc_sli_issue_mbox(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmbox,uint32_t flag)10308 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag)
10309 {
10310 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag);
10311 }
10312
10313 /**
10314 * lpfc_mbox_api_table_setup - Set up mbox api function jump table
10315 * @phba: The hba struct for which this call is being executed.
10316 * @dev_grp: The HBA PCI-Device group number.
10317 *
10318 * This routine sets up the mbox interface API function jump table in @phba
10319 * struct.
10320 * Returns: 0 - success, -ENODEV - failure.
10321 **/
10322 int
lpfc_mbox_api_table_setup(struct lpfc_hba * phba,uint8_t dev_grp)10323 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
10324 {
10325
10326 switch (dev_grp) {
10327 case LPFC_PCI_DEV_LP:
10328 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3;
10329 phba->lpfc_sli_handle_slow_ring_event =
10330 lpfc_sli_handle_slow_ring_event_s3;
10331 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3;
10332 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3;
10333 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3;
10334 break;
10335 case LPFC_PCI_DEV_OC:
10336 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4;
10337 phba->lpfc_sli_handle_slow_ring_event =
10338 lpfc_sli_handle_slow_ring_event_s4;
10339 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4;
10340 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4;
10341 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4;
10342 break;
10343 default:
10344 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10345 "1420 Invalid HBA PCI-device group: 0x%x\n",
10346 dev_grp);
10347 return -ENODEV;
10348 }
10349 return 0;
10350 }
10351
10352 /**
10353 * __lpfc_sli_ringtx_put - Add an iocb to the txq
10354 * @phba: Pointer to HBA context object.
10355 * @pring: Pointer to driver SLI ring object.
10356 * @piocb: Pointer to address of newly added command iocb.
10357 *
10358 * This function is called with hbalock held for SLI3 ports or
10359 * the ring lock held for SLI4 ports to add a command
10360 * iocb to the txq when SLI layer cannot submit the command iocb
10361 * to the ring.
10362 **/
10363 void
__lpfc_sli_ringtx_put(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * piocb)10364 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10365 struct lpfc_iocbq *piocb)
10366 {
10367 if (phba->sli_rev == LPFC_SLI_REV4)
10368 lockdep_assert_held(&pring->ring_lock);
10369 else
10370 lockdep_assert_held(&phba->hbalock);
10371 /* Insert the caller's iocb in the txq tail for later processing. */
10372 list_add_tail(&piocb->list, &pring->txq);
10373 }
10374
10375 /**
10376 * lpfc_sli_next_iocb - Get the next iocb in the txq
10377 * @phba: Pointer to HBA context object.
10378 * @pring: Pointer to driver SLI ring object.
10379 * @piocb: Pointer to address of newly added command iocb.
10380 *
10381 * This function is called with hbalock held before a new
10382 * iocb is submitted to the firmware. This function checks
10383 * txq to flush the iocbs in txq to Firmware before
10384 * submitting new iocbs to the Firmware.
10385 * If there are iocbs in the txq which need to be submitted
10386 * to firmware, lpfc_sli_next_iocb returns the first element
10387 * of the txq after dequeuing it from txq.
10388 * If there is no iocb in the txq then the function will return
10389 * *piocb and *piocb is set to NULL. Caller needs to check
10390 * *piocb to find if there are more commands in the txq.
10391 **/
10392 static struct lpfc_iocbq *
lpfc_sli_next_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq ** piocb)10393 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10394 struct lpfc_iocbq **piocb)
10395 {
10396 struct lpfc_iocbq * nextiocb;
10397
10398 lockdep_assert_held(&phba->hbalock);
10399
10400 nextiocb = lpfc_sli_ringtx_get(phba, pring);
10401 if (!nextiocb) {
10402 nextiocb = *piocb;
10403 *piocb = NULL;
10404 }
10405
10406 return nextiocb;
10407 }
10408
10409 /**
10410 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb
10411 * @phba: Pointer to HBA context object.
10412 * @ring_number: SLI ring number to issue iocb on.
10413 * @piocb: Pointer to command iocb.
10414 * @flag: Flag indicating if this command can be put into txq.
10415 *
10416 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue
10417 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is
10418 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT
10419 * flag is turned on, the function returns IOCB_ERROR. When the link is down,
10420 * this function allows only iocbs for posting buffers. This function finds
10421 * next available slot in the command ring and posts the command to the
10422 * available slot and writes the port attention register to request HBA start
10423 * processing new iocb. If there is no slot available in the ring and
10424 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise
10425 * the function returns IOCB_BUSY.
10426 *
10427 * This function is called with hbalock held. The function will return success
10428 * after it successfully submit the iocb to firmware or after adding to the
10429 * txq.
10430 **/
10431 static int
__lpfc_sli_issue_iocb_s3(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)10432 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number,
10433 struct lpfc_iocbq *piocb, uint32_t flag)
10434 {
10435 struct lpfc_iocbq *nextiocb;
10436 IOCB_t *iocb;
10437 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number];
10438
10439 lockdep_assert_held(&phba->hbalock);
10440
10441 if (piocb->cmd_cmpl && (!piocb->vport) &&
10442 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
10443 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
10444 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10445 "1807 IOCB x%x failed. No vport\n",
10446 piocb->iocb.ulpCommand);
10447 dump_stack();
10448 return IOCB_ERROR;
10449 }
10450
10451
10452 /* If the PCI channel is in offline state, do not post iocbs. */
10453 if (unlikely(pci_channel_offline(phba->pcidev)))
10454 return IOCB_ERROR;
10455
10456 /* If HBA has a deferred error attention, fail the iocb. */
10457 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag)))
10458 return IOCB_ERROR;
10459
10460 /*
10461 * We should never get an IOCB if we are in a < LINK_DOWN state
10462 */
10463 if (unlikely(phba->link_state < LPFC_LINK_DOWN))
10464 return IOCB_ERROR;
10465
10466 /*
10467 * Check to see if we are blocking IOCB processing because of a
10468 * outstanding event.
10469 */
10470 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT))
10471 goto iocb_busy;
10472
10473 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) {
10474 /*
10475 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF
10476 * can be issued if the link is not up.
10477 */
10478 switch (piocb->iocb.ulpCommand) {
10479 case CMD_QUE_RING_BUF_CN:
10480 case CMD_QUE_RING_BUF64_CN:
10481 /*
10482 * For IOCBs, like QUE_RING_BUF, that have no rsp ring
10483 * completion, cmd_cmpl MUST be 0.
10484 */
10485 if (piocb->cmd_cmpl)
10486 piocb->cmd_cmpl = NULL;
10487 fallthrough;
10488 case CMD_CREATE_XRI_CR:
10489 case CMD_CLOSE_XRI_CN:
10490 case CMD_CLOSE_XRI_CX:
10491 break;
10492 default:
10493 goto iocb_busy;
10494 }
10495
10496 /*
10497 * For FCP commands, we must be in a state where we can process link
10498 * attention events.
10499 */
10500 } else if (unlikely(pring->ringno == LPFC_FCP_RING &&
10501 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) {
10502 goto iocb_busy;
10503 }
10504
10505 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
10506 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb)))
10507 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
10508
10509 if (iocb)
10510 lpfc_sli_update_ring(phba, pring);
10511 else
10512 lpfc_sli_update_full_ring(phba, pring);
10513
10514 if (!piocb)
10515 return IOCB_SUCCESS;
10516
10517 goto out_busy;
10518
10519 iocb_busy:
10520 pring->stats.iocb_cmd_delay++;
10521
10522 out_busy:
10523
10524 if (!(flag & SLI_IOCB_RET_IOCB)) {
10525 __lpfc_sli_ringtx_put(phba, pring, piocb);
10526 return IOCB_SUCCESS;
10527 }
10528
10529 return IOCB_BUSY;
10530 }
10531
10532 /**
10533 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb
10534 * @phba: Pointer to HBA context object.
10535 * @ring_number: SLI ring number to issue wqe on.
10536 * @piocb: Pointer to command iocb.
10537 * @flag: Flag indicating if this command can be put into txq.
10538 *
10539 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to
10540 * send an iocb command to an HBA with SLI-3 interface spec.
10541 *
10542 * This function takes the hbalock before invoking the lockless version.
10543 * The function will return success after it successfully submit the wqe to
10544 * firmware or after adding to the txq.
10545 **/
10546 static int
__lpfc_sli_issue_fcp_io_s3(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)10547 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number,
10548 struct lpfc_iocbq *piocb, uint32_t flag)
10549 {
10550 unsigned long iflags;
10551 int rc;
10552
10553 spin_lock_irqsave(&phba->hbalock, iflags);
10554 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag);
10555 spin_unlock_irqrestore(&phba->hbalock, iflags);
10556
10557 return rc;
10558 }
10559
10560 /**
10561 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe
10562 * @phba: Pointer to HBA context object.
10563 * @ring_number: SLI ring number to issue wqe on.
10564 * @piocb: Pointer to command iocb.
10565 * @flag: Flag indicating if this command can be put into txq.
10566 *
10567 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue
10568 * an wqe command to an HBA with SLI-4 interface spec.
10569 *
10570 * This function is a lockless version. The function will return success
10571 * after it successfully submit the wqe to firmware or after adding to the
10572 * txq.
10573 **/
10574 static int
__lpfc_sli_issue_fcp_io_s4(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)10575 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number,
10576 struct lpfc_iocbq *piocb, uint32_t flag)
10577 {
10578 struct lpfc_io_buf *lpfc_cmd = piocb->io_buf;
10579
10580 lpfc_prep_embed_io(phba, lpfc_cmd);
10581 return lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb);
10582 }
10583
10584 void
lpfc_prep_embed_io(struct lpfc_hba * phba,struct lpfc_io_buf * lpfc_cmd)10585 lpfc_prep_embed_io(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd)
10586 {
10587 struct lpfc_iocbq *piocb = &lpfc_cmd->cur_iocbq;
10588 union lpfc_wqe128 *wqe = &lpfc_cmd->cur_iocbq.wqe;
10589 struct sli4_sge_le *sgl;
10590 u32 type_size;
10591
10592 /* 128 byte wqe support here */
10593 sgl = (struct sli4_sge_le *)lpfc_cmd->dma_sgl;
10594
10595 if (phba->fcp_embed_io) {
10596 struct fcp_cmnd *fcp_cmnd;
10597 u32 *ptr;
10598
10599 fcp_cmnd = lpfc_cmd->fcp_cmnd;
10600
10601 /* Word 0-2 - FCP_CMND */
10602 type_size = le32_to_cpu(sgl->sge_len);
10603 type_size |= ULP_BDE64_TYPE_BDE_IMMED;
10604 wqe->generic.bde.tus.w = type_size;
10605 wqe->generic.bde.addrHigh = 0;
10606 wqe->generic.bde.addrLow = 72; /* Word 18 */
10607
10608 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
10609 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
10610
10611 /* Word 18-29 FCP CMND Payload */
10612 ptr = &wqe->words[18];
10613 lpfc_sli_pcimem_bcopy(fcp_cmnd, ptr, le32_to_cpu(sgl->sge_len));
10614 } else {
10615 /* Word 0-2 - Inline BDE */
10616 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
10617 wqe->generic.bde.tus.f.bdeSize = le32_to_cpu(sgl->sge_len);
10618 wqe->generic.bde.addrHigh = le32_to_cpu(sgl->addr_hi);
10619 wqe->generic.bde.addrLow = le32_to_cpu(sgl->addr_lo);
10620
10621 /* Word 10 */
10622 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1);
10623 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0);
10624 }
10625
10626 /* add the VMID tags as per switch response */
10627 if (unlikely(piocb->cmd_flag & LPFC_IO_VMID)) {
10628 if (phba->pport->vmid_flag & LPFC_VMID_TYPE_PRIO) {
10629 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1);
10630 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
10631 (piocb->vmid_tag.cs_ctl_vmid));
10632 } else if (phba->cfg_vmid_app_header) {
10633 bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1);
10634 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
10635 wqe->words[31] = piocb->vmid_tag.app_id;
10636 }
10637 }
10638 }
10639
10640 /**
10641 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb
10642 * @phba: Pointer to HBA context object.
10643 * @ring_number: SLI ring number to issue iocb on.
10644 * @piocb: Pointer to command iocb.
10645 * @flag: Flag indicating if this command can be put into txq.
10646 *
10647 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue
10648 * an iocb command to an HBA with SLI-4 interface spec.
10649 *
10650 * This function is called with ringlock held. The function will return success
10651 * after it successfully submit the iocb to firmware or after adding to the
10652 * txq.
10653 **/
10654 static int
__lpfc_sli_issue_iocb_s4(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)10655 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number,
10656 struct lpfc_iocbq *piocb, uint32_t flag)
10657 {
10658 struct lpfc_sglq *sglq;
10659 union lpfc_wqe128 *wqe;
10660 struct lpfc_queue *wq;
10661 struct lpfc_sli_ring *pring;
10662 u32 ulp_command = get_job_cmnd(phba, piocb);
10663
10664 /* Get the WQ */
10665 if ((piocb->cmd_flag & LPFC_IO_FCP) ||
10666 (piocb->cmd_flag & LPFC_USE_FCPWQIDX)) {
10667 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq;
10668 } else {
10669 wq = phba->sli4_hba.els_wq;
10670 }
10671
10672 /* Get corresponding ring */
10673 pring = wq->pring;
10674
10675 /*
10676 * The WQE can be either 64 or 128 bytes,
10677 */
10678
10679 lockdep_assert_held(&pring->ring_lock);
10680 wqe = &piocb->wqe;
10681 if (piocb->sli4_xritag == NO_XRI) {
10682 if (ulp_command == CMD_ABORT_XRI_CX)
10683 sglq = NULL;
10684 else {
10685 sglq = __lpfc_sli_get_els_sglq(phba, piocb);
10686 if (!sglq) {
10687 if (!(flag & SLI_IOCB_RET_IOCB)) {
10688 __lpfc_sli_ringtx_put(phba,
10689 pring,
10690 piocb);
10691 return IOCB_SUCCESS;
10692 } else {
10693 return IOCB_BUSY;
10694 }
10695 }
10696 }
10697 } else if (piocb->cmd_flag & LPFC_IO_FCP) {
10698 /* These IO's already have an XRI and a mapped sgl. */
10699 sglq = NULL;
10700 }
10701 else {
10702 /*
10703 * This is a continuation of a commandi,(CX) so this
10704 * sglq is on the active list
10705 */
10706 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag);
10707 if (!sglq)
10708 return IOCB_ERROR;
10709 }
10710
10711 if (sglq) {
10712 piocb->sli4_lxritag = sglq->sli4_lxritag;
10713 piocb->sli4_xritag = sglq->sli4_xritag;
10714
10715 /* ABTS sent by initiator to CT exchange, the
10716 * RX_ID field will be filled with the newly
10717 * allocated responder XRI.
10718 */
10719 if (ulp_command == CMD_XMIT_BLS_RSP64_CX &&
10720 piocb->abort_bls == LPFC_ABTS_UNSOL_INT)
10721 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
10722 piocb->sli4_xritag);
10723
10724 bf_set(wqe_xri_tag, &wqe->generic.wqe_com,
10725 piocb->sli4_xritag);
10726
10727 if (lpfc_wqe_bpl2sgl(phba, piocb, sglq) == NO_XRI)
10728 return IOCB_ERROR;
10729 }
10730
10731 if (lpfc_sli4_wq_put(wq, wqe))
10732 return IOCB_ERROR;
10733
10734 lpfc_sli_ringtxcmpl_put(phba, pring, piocb);
10735
10736 return 0;
10737 }
10738
10739 /*
10740 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o
10741 *
10742 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4
10743 * or IOCB for sli-3 function.
10744 * pointer from the lpfc_hba struct.
10745 *
10746 * Return codes:
10747 * IOCB_ERROR - Error
10748 * IOCB_SUCCESS - Success
10749 * IOCB_BUSY - Busy
10750 **/
10751 int
lpfc_sli_issue_fcp_io(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)10752 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number,
10753 struct lpfc_iocbq *piocb, uint32_t flag)
10754 {
10755 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag);
10756 }
10757
10758 /*
10759 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb
10760 *
10761 * This routine wraps the actual lockless version for issusing IOCB function
10762 * pointer from the lpfc_hba struct.
10763 *
10764 * Return codes:
10765 * IOCB_ERROR - Error
10766 * IOCB_SUCCESS - Success
10767 * IOCB_BUSY - Busy
10768 **/
10769 int
__lpfc_sli_issue_iocb(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)10770 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
10771 struct lpfc_iocbq *piocb, uint32_t flag)
10772 {
10773 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10774 }
10775
10776 static void
__lpfc_sli_prep_els_req_rsp_s3(struct lpfc_iocbq * cmdiocbq,struct lpfc_vport * vport,struct lpfc_dmabuf * bmp,u16 cmd_size,u32 did,u32 elscmd,u8 tmo,u8 expect_rsp)10777 __lpfc_sli_prep_els_req_rsp_s3(struct lpfc_iocbq *cmdiocbq,
10778 struct lpfc_vport *vport,
10779 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did,
10780 u32 elscmd, u8 tmo, u8 expect_rsp)
10781 {
10782 struct lpfc_hba *phba = vport->phba;
10783 IOCB_t *cmd;
10784
10785 cmd = &cmdiocbq->iocb;
10786 memset(cmd, 0, sizeof(*cmd));
10787
10788 cmd->un.elsreq64.bdl.addrHigh = putPaddrHigh(bmp->phys);
10789 cmd->un.elsreq64.bdl.addrLow = putPaddrLow(bmp->phys);
10790 cmd->un.elsreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64;
10791
10792 if (expect_rsp) {
10793 cmd->un.elsreq64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64));
10794 cmd->un.elsreq64.remoteID = did; /* DID */
10795 cmd->ulpCommand = CMD_ELS_REQUEST64_CR;
10796 cmd->ulpTimeout = tmo;
10797 } else {
10798 cmd->un.elsreq64.bdl.bdeSize = sizeof(struct ulp_bde64);
10799 cmd->un.genreq64.xmit_els_remoteID = did; /* DID */
10800 cmd->ulpCommand = CMD_XMIT_ELS_RSP64_CX;
10801 cmd->ulpPU = PARM_NPIV_DID;
10802 }
10803 cmd->ulpBdeCount = 1;
10804 cmd->ulpLe = 1;
10805 cmd->ulpClass = CLASS3;
10806
10807 /* If we have NPIV enabled, we want to send ELS traffic by VPI. */
10808 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) {
10809 if (expect_rsp) {
10810 cmd->un.elsreq64.myID = vport->fc_myDID;
10811
10812 /* For ELS_REQUEST64_CR, use the VPI by default */
10813 cmd->ulpContext = phba->vpi_ids[vport->vpi];
10814 }
10815
10816 cmd->ulpCt_h = 0;
10817 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */
10818 if (elscmd == ELS_CMD_ECHO)
10819 cmd->ulpCt_l = 0; /* context = invalid RPI */
10820 else
10821 cmd->ulpCt_l = 1; /* context = VPI */
10822 }
10823 }
10824
10825 static void
__lpfc_sli_prep_els_req_rsp_s4(struct lpfc_iocbq * cmdiocbq,struct lpfc_vport * vport,struct lpfc_dmabuf * bmp,u16 cmd_size,u32 did,u32 elscmd,u8 tmo,u8 expect_rsp)10826 __lpfc_sli_prep_els_req_rsp_s4(struct lpfc_iocbq *cmdiocbq,
10827 struct lpfc_vport *vport,
10828 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did,
10829 u32 elscmd, u8 tmo, u8 expect_rsp)
10830 {
10831 struct lpfc_hba *phba = vport->phba;
10832 union lpfc_wqe128 *wqe;
10833 struct ulp_bde64_le *bde;
10834 u8 els_id;
10835
10836 wqe = &cmdiocbq->wqe;
10837 memset(wqe, 0, sizeof(*wqe));
10838
10839 /* Word 0 - 2 BDE */
10840 bde = (struct ulp_bde64_le *)&wqe->generic.bde;
10841 bde->addr_low = cpu_to_le32(putPaddrLow(bmp->phys));
10842 bde->addr_high = cpu_to_le32(putPaddrHigh(bmp->phys));
10843 bde->type_size = cpu_to_le32(cmd_size);
10844 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64);
10845
10846 if (expect_rsp) {
10847 bf_set(wqe_cmnd, &wqe->els_req.wqe_com, CMD_ELS_REQUEST64_WQE);
10848
10849 /* Transfer length */
10850 wqe->els_req.payload_len = cmd_size;
10851 wqe->els_req.max_response_payload_len = FCELSSIZE;
10852
10853 /* DID */
10854 bf_set(wqe_els_did, &wqe->els_req.wqe_dest, did);
10855
10856 /* Word 11 - ELS_ID */
10857 switch (elscmd) {
10858 case ELS_CMD_PLOGI:
10859 els_id = LPFC_ELS_ID_PLOGI;
10860 break;
10861 case ELS_CMD_FLOGI:
10862 els_id = LPFC_ELS_ID_FLOGI;
10863 break;
10864 case ELS_CMD_LOGO:
10865 els_id = LPFC_ELS_ID_LOGO;
10866 break;
10867 case ELS_CMD_FDISC:
10868 if (!vport->fc_myDID) {
10869 els_id = LPFC_ELS_ID_FDISC;
10870 break;
10871 }
10872 fallthrough;
10873 default:
10874 els_id = LPFC_ELS_ID_DEFAULT;
10875 break;
10876 }
10877
10878 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id);
10879 } else {
10880 /* DID */
10881 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, did);
10882
10883 /* Transfer length */
10884 wqe->xmit_els_rsp.response_payload_len = cmd_size;
10885
10886 bf_set(wqe_cmnd, &wqe->xmit_els_rsp.wqe_com,
10887 CMD_XMIT_ELS_RSP64_WQE);
10888 }
10889
10890 bf_set(wqe_tmo, &wqe->generic.wqe_com, tmo);
10891 bf_set(wqe_reqtag, &wqe->generic.wqe_com, cmdiocbq->iotag);
10892 bf_set(wqe_class, &wqe->generic.wqe_com, CLASS3);
10893
10894 /* If we have NPIV enabled, we want to send ELS traffic by VPI.
10895 * For SLI4, since the driver controls VPIs we also want to include
10896 * all ELS pt2pt protocol traffic as well.
10897 */
10898 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) ||
10899 test_bit(FC_PT2PT, &vport->fc_flag)) {
10900 if (expect_rsp) {
10901 bf_set(els_req64_sid, &wqe->els_req, vport->fc_myDID);
10902
10903 /* For ELS_REQUEST64_WQE, use the VPI by default */
10904 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
10905 phba->vpi_ids[vport->vpi]);
10906 }
10907
10908 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */
10909 if (elscmd == ELS_CMD_ECHO)
10910 bf_set(wqe_ct, &wqe->generic.wqe_com, 0);
10911 else
10912 bf_set(wqe_ct, &wqe->generic.wqe_com, 1);
10913 }
10914 }
10915
10916 void
lpfc_sli_prep_els_req_rsp(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocbq,struct lpfc_vport * vport,struct lpfc_dmabuf * bmp,u16 cmd_size,u32 did,u32 elscmd,u8 tmo,u8 expect_rsp)10917 lpfc_sli_prep_els_req_rsp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq,
10918 struct lpfc_vport *vport, struct lpfc_dmabuf *bmp,
10919 u16 cmd_size, u32 did, u32 elscmd, u8 tmo,
10920 u8 expect_rsp)
10921 {
10922 phba->__lpfc_sli_prep_els_req_rsp(cmdiocbq, vport, bmp, cmd_size, did,
10923 elscmd, tmo, expect_rsp);
10924 }
10925
10926 static void
__lpfc_sli_prep_gen_req_s3(struct lpfc_iocbq * cmdiocbq,struct lpfc_dmabuf * bmp,u16 rpi,u32 num_entry,u8 tmo)10927 __lpfc_sli_prep_gen_req_s3(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp,
10928 u16 rpi, u32 num_entry, u8 tmo)
10929 {
10930 IOCB_t *cmd;
10931
10932 cmd = &cmdiocbq->iocb;
10933 memset(cmd, 0, sizeof(*cmd));
10934
10935 cmd->un.genreq64.bdl.addrHigh = putPaddrHigh(bmp->phys);
10936 cmd->un.genreq64.bdl.addrLow = putPaddrLow(bmp->phys);
10937 cmd->un.genreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64;
10938 cmd->un.genreq64.bdl.bdeSize = num_entry * sizeof(struct ulp_bde64);
10939
10940 cmd->un.genreq64.w5.hcsw.Rctl = FC_RCTL_DD_UNSOL_CTL;
10941 cmd->un.genreq64.w5.hcsw.Type = FC_TYPE_CT;
10942 cmd->un.genreq64.w5.hcsw.Fctl = (SI | LA);
10943
10944 cmd->ulpContext = rpi;
10945 cmd->ulpClass = CLASS3;
10946 cmd->ulpCommand = CMD_GEN_REQUEST64_CR;
10947 cmd->ulpBdeCount = 1;
10948 cmd->ulpLe = 1;
10949 cmd->ulpOwner = OWN_CHIP;
10950 cmd->ulpTimeout = tmo;
10951 }
10952
10953 static void
__lpfc_sli_prep_gen_req_s4(struct lpfc_iocbq * cmdiocbq,struct lpfc_dmabuf * bmp,u16 rpi,u32 num_entry,u8 tmo)10954 __lpfc_sli_prep_gen_req_s4(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp,
10955 u16 rpi, u32 num_entry, u8 tmo)
10956 {
10957 union lpfc_wqe128 *cmdwqe;
10958 struct ulp_bde64_le *bde, *bpl;
10959 u32 xmit_len = 0, total_len = 0, size, type, i;
10960
10961 cmdwqe = &cmdiocbq->wqe;
10962 memset(cmdwqe, 0, sizeof(*cmdwqe));
10963
10964 /* Calculate total_len and xmit_len */
10965 bpl = (struct ulp_bde64_le *)bmp->virt;
10966 for (i = 0; i < num_entry; i++) {
10967 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK;
10968 total_len += size;
10969 }
10970 for (i = 0; i < num_entry; i++) {
10971 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK;
10972 type = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_TYPE_MASK;
10973 if (type != ULP_BDE64_TYPE_BDE_64)
10974 break;
10975 xmit_len += size;
10976 }
10977
10978 /* Words 0 - 2 */
10979 bde = (struct ulp_bde64_le *)&cmdwqe->generic.bde;
10980 bde->addr_low = bpl->addr_low;
10981 bde->addr_high = bpl->addr_high;
10982 bde->type_size = cpu_to_le32(xmit_len);
10983 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64);
10984
10985 /* Word 3 */
10986 cmdwqe->gen_req.request_payload_len = xmit_len;
10987
10988 /* Word 5 */
10989 bf_set(wqe_type, &cmdwqe->gen_req.wge_ctl, FC_TYPE_CT);
10990 bf_set(wqe_rctl, &cmdwqe->gen_req.wge_ctl, FC_RCTL_DD_UNSOL_CTL);
10991 bf_set(wqe_si, &cmdwqe->gen_req.wge_ctl, 1);
10992 bf_set(wqe_la, &cmdwqe->gen_req.wge_ctl, 1);
10993
10994 /* Word 6 */
10995 bf_set(wqe_ctxt_tag, &cmdwqe->gen_req.wqe_com, rpi);
10996
10997 /* Word 7 */
10998 bf_set(wqe_tmo, &cmdwqe->gen_req.wqe_com, tmo);
10999 bf_set(wqe_class, &cmdwqe->gen_req.wqe_com, CLASS3);
11000 bf_set(wqe_cmnd, &cmdwqe->gen_req.wqe_com, CMD_GEN_REQUEST64_CR);
11001 bf_set(wqe_ct, &cmdwqe->gen_req.wqe_com, SLI4_CT_RPI);
11002
11003 /* Word 12 */
11004 cmdwqe->gen_req.max_response_payload_len = total_len - xmit_len;
11005 }
11006
11007 void
lpfc_sli_prep_gen_req(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocbq,struct lpfc_dmabuf * bmp,u16 rpi,u32 num_entry,u8 tmo)11008 lpfc_sli_prep_gen_req(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq,
11009 struct lpfc_dmabuf *bmp, u16 rpi, u32 num_entry, u8 tmo)
11010 {
11011 phba->__lpfc_sli_prep_gen_req(cmdiocbq, bmp, rpi, num_entry, tmo);
11012 }
11013
11014 static void
__lpfc_sli_prep_xmit_seq64_s3(struct lpfc_iocbq * cmdiocbq,struct lpfc_dmabuf * bmp,u16 rpi,u16 ox_id,u32 num_entry,u8 rctl,u8 last_seq,u8 cr_cx_cmd)11015 __lpfc_sli_prep_xmit_seq64_s3(struct lpfc_iocbq *cmdiocbq,
11016 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id,
11017 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd)
11018 {
11019 IOCB_t *icmd;
11020
11021 icmd = &cmdiocbq->iocb;
11022 memset(icmd, 0, sizeof(*icmd));
11023
11024 icmd->un.xseq64.bdl.addrHigh = putPaddrHigh(bmp->phys);
11025 icmd->un.xseq64.bdl.addrLow = putPaddrLow(bmp->phys);
11026 icmd->un.xseq64.bdl.bdeFlags = BUFF_TYPE_BLP_64;
11027 icmd->un.xseq64.bdl.bdeSize = (num_entry * sizeof(struct ulp_bde64));
11028 icmd->un.xseq64.w5.hcsw.Fctl = LA;
11029 if (last_seq)
11030 icmd->un.xseq64.w5.hcsw.Fctl |= LS;
11031 icmd->un.xseq64.w5.hcsw.Dfctl = 0;
11032 icmd->un.xseq64.w5.hcsw.Rctl = rctl;
11033 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_CT;
11034
11035 icmd->ulpBdeCount = 1;
11036 icmd->ulpLe = 1;
11037 icmd->ulpClass = CLASS3;
11038
11039 switch (cr_cx_cmd) {
11040 case CMD_XMIT_SEQUENCE64_CR:
11041 icmd->ulpContext = rpi;
11042 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CR;
11043 break;
11044 case CMD_XMIT_SEQUENCE64_CX:
11045 icmd->ulpContext = ox_id;
11046 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CX;
11047 break;
11048 default:
11049 break;
11050 }
11051 }
11052
11053 static void
__lpfc_sli_prep_xmit_seq64_s4(struct lpfc_iocbq * cmdiocbq,struct lpfc_dmabuf * bmp,u16 rpi,u16 ox_id,u32 full_size,u8 rctl,u8 last_seq,u8 cr_cx_cmd)11054 __lpfc_sli_prep_xmit_seq64_s4(struct lpfc_iocbq *cmdiocbq,
11055 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id,
11056 u32 full_size, u8 rctl, u8 last_seq, u8 cr_cx_cmd)
11057 {
11058 union lpfc_wqe128 *wqe;
11059 struct ulp_bde64 *bpl;
11060
11061 wqe = &cmdiocbq->wqe;
11062 memset(wqe, 0, sizeof(*wqe));
11063
11064 /* Words 0 - 2 */
11065 bpl = (struct ulp_bde64 *)bmp->virt;
11066 wqe->xmit_sequence.bde.addrHigh = bpl->addrHigh;
11067 wqe->xmit_sequence.bde.addrLow = bpl->addrLow;
11068 wqe->xmit_sequence.bde.tus.w = bpl->tus.w;
11069
11070 /* Word 5 */
11071 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, last_seq);
11072 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 1);
11073 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0);
11074 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, rctl);
11075 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_CT);
11076
11077 /* Word 6 */
11078 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, rpi);
11079
11080 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com,
11081 CMD_XMIT_SEQUENCE64_WQE);
11082
11083 /* Word 7 */
11084 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3);
11085
11086 /* Word 9 */
11087 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ox_id);
11088
11089 if (cmdiocbq->cmd_flag & (LPFC_IO_LIBDFC | LPFC_IO_LOOPBACK)) {
11090 /* Word 10 */
11091 if (cmdiocbq->cmd_flag & LPFC_IO_VMID) {
11092 bf_set(wqe_appid, &wqe->xmit_sequence.wqe_com, 1);
11093 bf_set(wqe_wqes, &wqe->xmit_sequence.wqe_com, 1);
11094 wqe->words[31] = LOOPBACK_SRC_APPID;
11095 }
11096
11097 /* Word 12 */
11098 wqe->xmit_sequence.xmit_len = full_size;
11099 }
11100 else
11101 wqe->xmit_sequence.xmit_len =
11102 wqe->xmit_sequence.bde.tus.f.bdeSize;
11103 }
11104
11105 void
lpfc_sli_prep_xmit_seq64(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocbq,struct lpfc_dmabuf * bmp,u16 rpi,u16 ox_id,u32 num_entry,u8 rctl,u8 last_seq,u8 cr_cx_cmd)11106 lpfc_sli_prep_xmit_seq64(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq,
11107 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id,
11108 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd)
11109 {
11110 phba->__lpfc_sli_prep_xmit_seq64(cmdiocbq, bmp, rpi, ox_id, num_entry,
11111 rctl, last_seq, cr_cx_cmd);
11112 }
11113
11114 static void
__lpfc_sli_prep_abort_xri_s3(struct lpfc_iocbq * cmdiocbq,u16 ulp_context,u16 iotag,u8 ulp_class,u16 cqid,bool ia,bool wqec)11115 __lpfc_sli_prep_abort_xri_s3(struct lpfc_iocbq *cmdiocbq, u16 ulp_context,
11116 u16 iotag, u8 ulp_class, u16 cqid, bool ia,
11117 bool wqec)
11118 {
11119 IOCB_t *icmd = NULL;
11120
11121 icmd = &cmdiocbq->iocb;
11122 memset(icmd, 0, sizeof(*icmd));
11123
11124 /* Word 5 */
11125 icmd->un.acxri.abortContextTag = ulp_context;
11126 icmd->un.acxri.abortIoTag = iotag;
11127
11128 if (ia) {
11129 /* Word 7 */
11130 icmd->ulpCommand = CMD_CLOSE_XRI_CN;
11131 } else {
11132 /* Word 3 */
11133 icmd->un.acxri.abortType = ABORT_TYPE_ABTS;
11134
11135 /* Word 7 */
11136 icmd->ulpClass = ulp_class;
11137 icmd->ulpCommand = CMD_ABORT_XRI_CN;
11138 }
11139
11140 /* Word 7 */
11141 icmd->ulpLe = 1;
11142 }
11143
11144 static void
__lpfc_sli_prep_abort_xri_s4(struct lpfc_iocbq * cmdiocbq,u16 ulp_context,u16 iotag,u8 ulp_class,u16 cqid,bool ia,bool wqec)11145 __lpfc_sli_prep_abort_xri_s4(struct lpfc_iocbq *cmdiocbq, u16 ulp_context,
11146 u16 iotag, u8 ulp_class, u16 cqid, bool ia,
11147 bool wqec)
11148 {
11149 union lpfc_wqe128 *wqe;
11150
11151 wqe = &cmdiocbq->wqe;
11152 memset(wqe, 0, sizeof(*wqe));
11153
11154 /* Word 3 */
11155 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
11156 if (ia)
11157 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
11158 else
11159 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0);
11160
11161 /* Word 7 */
11162 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_WQE);
11163
11164 /* Word 8 */
11165 wqe->abort_cmd.wqe_com.abort_tag = ulp_context;
11166
11167 /* Word 9 */
11168 bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, iotag);
11169
11170 /* Word 10 */
11171 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
11172
11173 /* Word 11 */
11174 if (wqec)
11175 bf_set(wqe_wqec, &wqe->abort_cmd.wqe_com, 1);
11176 bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, cqid);
11177 bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND);
11178 }
11179
11180 void
lpfc_sli_prep_abort_xri(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocbq,u16 ulp_context,u16 iotag,u8 ulp_class,u16 cqid,bool ia,bool wqec)11181 lpfc_sli_prep_abort_xri(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq,
11182 u16 ulp_context, u16 iotag, u8 ulp_class, u16 cqid,
11183 bool ia, bool wqec)
11184 {
11185 phba->__lpfc_sli_prep_abort_xri(cmdiocbq, ulp_context, iotag, ulp_class,
11186 cqid, ia, wqec);
11187 }
11188
11189 /**
11190 * lpfc_sli_api_table_setup - Set up sli api function jump table
11191 * @phba: The hba struct for which this call is being executed.
11192 * @dev_grp: The HBA PCI-Device group number.
11193 *
11194 * This routine sets up the SLI interface API function jump table in @phba
11195 * struct.
11196 * Returns: 0 - success, -ENODEV - failure.
11197 **/
11198 int
lpfc_sli_api_table_setup(struct lpfc_hba * phba,uint8_t dev_grp)11199 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
11200 {
11201
11202 switch (dev_grp) {
11203 case LPFC_PCI_DEV_LP:
11204 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3;
11205 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3;
11206 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3;
11207 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s3;
11208 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s3;
11209 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s3;
11210 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s3;
11211 break;
11212 case LPFC_PCI_DEV_OC:
11213 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4;
11214 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4;
11215 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4;
11216 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s4;
11217 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s4;
11218 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s4;
11219 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s4;
11220 break;
11221 default:
11222 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11223 "1419 Invalid HBA PCI-device group: 0x%x\n",
11224 dev_grp);
11225 return -ENODEV;
11226 }
11227 return 0;
11228 }
11229
11230 /**
11231 * lpfc_sli4_calc_ring - Calculates which ring to use
11232 * @phba: Pointer to HBA context object.
11233 * @piocb: Pointer to command iocb.
11234 *
11235 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on
11236 * hba_wqidx, thus we need to calculate the corresponding ring.
11237 * Since ABORTS must go on the same WQ of the command they are
11238 * aborting, we use command's hba_wqidx.
11239 */
11240 struct lpfc_sli_ring *
lpfc_sli4_calc_ring(struct lpfc_hba * phba,struct lpfc_iocbq * piocb)11241 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
11242 {
11243 struct lpfc_io_buf *lpfc_cmd;
11244
11245 if (piocb->cmd_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) {
11246 if (unlikely(!phba->sli4_hba.hdwq))
11247 return NULL;
11248 /*
11249 * for abort iocb hba_wqidx should already
11250 * be setup based on what work queue we used.
11251 */
11252 if (!(piocb->cmd_flag & LPFC_USE_FCPWQIDX)) {
11253 lpfc_cmd = piocb->io_buf;
11254 piocb->hba_wqidx = lpfc_cmd->hdwq_no;
11255 }
11256 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring;
11257 } else {
11258 if (unlikely(!phba->sli4_hba.els_wq))
11259 return NULL;
11260 piocb->hba_wqidx = 0;
11261 return phba->sli4_hba.els_wq->pring;
11262 }
11263 }
11264
lpfc_sli4_poll_eq(struct lpfc_queue * eq)11265 inline void lpfc_sli4_poll_eq(struct lpfc_queue *eq)
11266 {
11267 struct lpfc_hba *phba = eq->phba;
11268
11269 /*
11270 * Unlocking an irq is one of the entry point to check
11271 * for re-schedule, but we are good for io submission
11272 * path as midlayer does a get_cpu to glue us in. Flush
11273 * out the invalidate queue so we can see the updated
11274 * value for flag.
11275 */
11276 smp_rmb();
11277
11278 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL)
11279 /* We will not likely get the completion for the caller
11280 * during this iteration but i guess that's fine.
11281 * Future io's coming on this eq should be able to
11282 * pick it up. As for the case of single io's, they
11283 * will be handled through a sched from polling timer
11284 * function which is currently triggered every 1msec.
11285 */
11286 lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM,
11287 LPFC_QUEUE_WORK);
11288 }
11289
11290 /**
11291 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb
11292 * @phba: Pointer to HBA context object.
11293 * @ring_number: Ring number
11294 * @piocb: Pointer to command iocb.
11295 * @flag: Flag indicating if this command can be put into txq.
11296 *
11297 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb
11298 * function. This function gets the hbalock and calls
11299 * __lpfc_sli_issue_iocb function and will return the error returned
11300 * by __lpfc_sli_issue_iocb function. This wrapper is used by
11301 * functions which do not hold hbalock.
11302 **/
11303 int
lpfc_sli_issue_iocb(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)11304 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
11305 struct lpfc_iocbq *piocb, uint32_t flag)
11306 {
11307 struct lpfc_sli_ring *pring;
11308 struct lpfc_queue *eq;
11309 unsigned long iflags;
11310 int rc;
11311
11312 /* If the PCI channel is in offline state, do not post iocbs. */
11313 if (unlikely(pci_channel_offline(phba->pcidev)))
11314 return IOCB_ERROR;
11315
11316 if (phba->sli_rev == LPFC_SLI_REV4) {
11317 lpfc_sli_prep_wqe(phba, piocb);
11318
11319 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq;
11320
11321 pring = lpfc_sli4_calc_ring(phba, piocb);
11322 if (unlikely(pring == NULL))
11323 return IOCB_ERROR;
11324
11325 spin_lock_irqsave(&pring->ring_lock, iflags);
11326 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
11327 spin_unlock_irqrestore(&pring->ring_lock, iflags);
11328
11329 lpfc_sli4_poll_eq(eq);
11330 } else {
11331 /* For now, SLI2/3 will still use hbalock */
11332 spin_lock_irqsave(&phba->hbalock, iflags);
11333 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
11334 spin_unlock_irqrestore(&phba->hbalock, iflags);
11335 }
11336 return rc;
11337 }
11338
11339 /**
11340 * lpfc_extra_ring_setup - Extra ring setup function
11341 * @phba: Pointer to HBA context object.
11342 *
11343 * This function is called while driver attaches with the
11344 * HBA to setup the extra ring. The extra ring is used
11345 * only when driver needs to support target mode functionality
11346 * or IP over FC functionalities.
11347 *
11348 * This function is called with no lock held. SLI3 only.
11349 **/
11350 static int
lpfc_extra_ring_setup(struct lpfc_hba * phba)11351 lpfc_extra_ring_setup( struct lpfc_hba *phba)
11352 {
11353 struct lpfc_sli *psli;
11354 struct lpfc_sli_ring *pring;
11355
11356 psli = &phba->sli;
11357
11358 /* Adjust cmd/rsp ring iocb entries more evenly */
11359
11360 /* Take some away from the FCP ring */
11361 pring = &psli->sli3_ring[LPFC_FCP_RING];
11362 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES;
11363 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES;
11364 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES;
11365 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES;
11366
11367 /* and give them to the extra ring */
11368 pring = &psli->sli3_ring[LPFC_EXTRA_RING];
11369
11370 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
11371 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
11372 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
11373 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
11374
11375 /* Setup default profile for this ring */
11376 pring->iotag_max = 4096;
11377 pring->num_mask = 1;
11378 pring->prt[0].profile = 0; /* Mask 0 */
11379 pring->prt[0].rctl = phba->cfg_multi_ring_rctl;
11380 pring->prt[0].type = phba->cfg_multi_ring_type;
11381 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL;
11382 return 0;
11383 }
11384
11385 static void
lpfc_sli_post_recovery_event(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp)11386 lpfc_sli_post_recovery_event(struct lpfc_hba *phba,
11387 struct lpfc_nodelist *ndlp)
11388 {
11389 unsigned long iflags;
11390 struct lpfc_work_evt *evtp = &ndlp->recovery_evt;
11391
11392 /* Hold a node reference for outstanding queued work */
11393 if (!lpfc_nlp_get(ndlp))
11394 return;
11395
11396 spin_lock_irqsave(&phba->hbalock, iflags);
11397 if (!list_empty(&evtp->evt_listp)) {
11398 spin_unlock_irqrestore(&phba->hbalock, iflags);
11399 lpfc_nlp_put(ndlp);
11400 return;
11401 }
11402
11403 evtp->evt_arg1 = ndlp;
11404 evtp->evt = LPFC_EVT_RECOVER_PORT;
11405 list_add_tail(&evtp->evt_listp, &phba->work_list);
11406 spin_unlock_irqrestore(&phba->hbalock, iflags);
11407
11408 lpfc_worker_wake_up(phba);
11409 }
11410
11411 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port.
11412 * @phba: Pointer to HBA context object.
11413 * @iocbq: Pointer to iocb object.
11414 *
11415 * The async_event handler calls this routine when it receives
11416 * an ASYNC_STATUS_CN event from the port. The port generates
11417 * this event when an Abort Sequence request to an rport fails
11418 * twice in succession. The abort could be originated by the
11419 * driver or by the port. The ABTS could have been for an ELS
11420 * or FCP IO. The port only generates this event when an ABTS
11421 * fails to complete after one retry.
11422 */
11423 static void
lpfc_sli_abts_err_handler(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)11424 lpfc_sli_abts_err_handler(struct lpfc_hba *phba,
11425 struct lpfc_iocbq *iocbq)
11426 {
11427 struct lpfc_nodelist *ndlp = NULL;
11428 uint16_t rpi = 0, vpi = 0;
11429 struct lpfc_vport *vport = NULL;
11430
11431 /* The rpi in the ulpContext is vport-sensitive. */
11432 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag;
11433 rpi = iocbq->iocb.ulpContext;
11434
11435 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
11436 "3092 Port generated ABTS async event "
11437 "on vpi %d rpi %d status 0x%x\n",
11438 vpi, rpi, iocbq->iocb.ulpStatus);
11439
11440 vport = lpfc_find_vport_by_vpid(phba, vpi);
11441 if (!vport)
11442 goto err_exit;
11443 ndlp = lpfc_findnode_rpi(vport, rpi);
11444 if (!ndlp)
11445 goto err_exit;
11446
11447 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT)
11448 lpfc_sli_abts_recover_port(vport, ndlp);
11449 return;
11450
11451 err_exit:
11452 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11453 "3095 Event Context not found, no "
11454 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n",
11455 vpi, rpi, iocbq->iocb.ulpStatus,
11456 iocbq->iocb.ulpContext);
11457 }
11458
11459 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port.
11460 * @phba: pointer to HBA context object.
11461 * @ndlp: nodelist pointer for the impacted rport.
11462 * @axri: pointer to the wcqe containing the failed exchange.
11463 *
11464 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the
11465 * port. The port generates this event when an abort exchange request to an
11466 * rport fails twice in succession with no reply. The abort could be originated
11467 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO.
11468 */
11469 void
lpfc_sli4_abts_err_handler(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,struct sli4_wcqe_xri_aborted * axri)11470 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba,
11471 struct lpfc_nodelist *ndlp,
11472 struct sli4_wcqe_xri_aborted *axri)
11473 {
11474 uint32_t ext_status = 0;
11475
11476 if (!ndlp) {
11477 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11478 "3115 Node Context not found, driver "
11479 "ignoring abts err event\n");
11480 return;
11481 }
11482
11483 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
11484 "3116 Port generated FCP XRI ABORT event on "
11485 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n",
11486 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi],
11487 bf_get(lpfc_wcqe_xa_xri, axri),
11488 bf_get(lpfc_wcqe_xa_status, axri),
11489 axri->parameter);
11490
11491 /*
11492 * Catch the ABTS protocol failure case. Older OCe FW releases returned
11493 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and
11494 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT.
11495 */
11496 ext_status = axri->parameter & IOERR_PARAM_MASK;
11497 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) &&
11498 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0)))
11499 lpfc_sli_post_recovery_event(phba, ndlp);
11500 }
11501
11502 /**
11503 * lpfc_sli_async_event_handler - ASYNC iocb handler function
11504 * @phba: Pointer to HBA context object.
11505 * @pring: Pointer to driver SLI ring object.
11506 * @iocbq: Pointer to iocb object.
11507 *
11508 * This function is called by the slow ring event handler
11509 * function when there is an ASYNC event iocb in the ring.
11510 * This function is called with no lock held.
11511 * Currently this function handles only temperature related
11512 * ASYNC events. The function decodes the temperature sensor
11513 * event message and posts events for the management applications.
11514 **/
11515 static void
lpfc_sli_async_event_handler(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * iocbq)11516 lpfc_sli_async_event_handler(struct lpfc_hba * phba,
11517 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq)
11518 {
11519 IOCB_t *icmd;
11520 uint16_t evt_code;
11521 struct temp_event temp_event_data;
11522 struct Scsi_Host *shost;
11523 uint32_t *iocb_w;
11524
11525 icmd = &iocbq->iocb;
11526 evt_code = icmd->un.asyncstat.evt_code;
11527
11528 switch (evt_code) {
11529 case ASYNC_TEMP_WARN:
11530 case ASYNC_TEMP_SAFE:
11531 temp_event_data.data = (uint32_t) icmd->ulpContext;
11532 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
11533 if (evt_code == ASYNC_TEMP_WARN) {
11534 temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
11535 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11536 "0347 Adapter is very hot, please take "
11537 "corrective action. temperature : %d Celsius\n",
11538 (uint32_t) icmd->ulpContext);
11539 } else {
11540 temp_event_data.event_code = LPFC_NORMAL_TEMP;
11541 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11542 "0340 Adapter temperature is OK now. "
11543 "temperature : %d Celsius\n",
11544 (uint32_t) icmd->ulpContext);
11545 }
11546
11547 /* Send temperature change event to applications */
11548 shost = lpfc_shost_from_vport(phba->pport);
11549 fc_host_post_vendor_event(shost, fc_get_event_number(),
11550 sizeof(temp_event_data), (char *) &temp_event_data,
11551 LPFC_NL_VENDOR_ID);
11552 break;
11553 case ASYNC_STATUS_CN:
11554 lpfc_sli_abts_err_handler(phba, iocbq);
11555 break;
11556 default:
11557 iocb_w = (uint32_t *) icmd;
11558 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11559 "0346 Ring %d handler: unexpected ASYNC_STATUS"
11560 " evt_code 0x%x\n"
11561 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n"
11562 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n"
11563 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n"
11564 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n",
11565 pring->ringno, icmd->un.asyncstat.evt_code,
11566 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3],
11567 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7],
11568 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11],
11569 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]);
11570
11571 break;
11572 }
11573 }
11574
11575
11576 /**
11577 * lpfc_sli4_setup - SLI ring setup function
11578 * @phba: Pointer to HBA context object.
11579 *
11580 * lpfc_sli_setup sets up rings of the SLI interface with
11581 * number of iocbs per ring and iotags. This function is
11582 * called while driver attach to the HBA and before the
11583 * interrupts are enabled. So there is no need for locking.
11584 *
11585 * This function always returns 0.
11586 **/
11587 int
lpfc_sli4_setup(struct lpfc_hba * phba)11588 lpfc_sli4_setup(struct lpfc_hba *phba)
11589 {
11590 struct lpfc_sli_ring *pring;
11591
11592 pring = phba->sli4_hba.els_wq->pring;
11593 pring->num_mask = LPFC_MAX_RING_MASK;
11594 pring->prt[0].profile = 0; /* Mask 0 */
11595 pring->prt[0].rctl = FC_RCTL_ELS_REQ;
11596 pring->prt[0].type = FC_TYPE_ELS;
11597 pring->prt[0].lpfc_sli_rcv_unsol_event =
11598 lpfc_els_unsol_event;
11599 pring->prt[1].profile = 0; /* Mask 1 */
11600 pring->prt[1].rctl = FC_RCTL_ELS_REP;
11601 pring->prt[1].type = FC_TYPE_ELS;
11602 pring->prt[1].lpfc_sli_rcv_unsol_event =
11603 lpfc_els_unsol_event;
11604 pring->prt[2].profile = 0; /* Mask 2 */
11605 /* NameServer Inquiry */
11606 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
11607 /* NameServer */
11608 pring->prt[2].type = FC_TYPE_CT;
11609 pring->prt[2].lpfc_sli_rcv_unsol_event =
11610 lpfc_ct_unsol_event;
11611 pring->prt[3].profile = 0; /* Mask 3 */
11612 /* NameServer response */
11613 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
11614 /* NameServer */
11615 pring->prt[3].type = FC_TYPE_CT;
11616 pring->prt[3].lpfc_sli_rcv_unsol_event =
11617 lpfc_ct_unsol_event;
11618 return 0;
11619 }
11620
11621 /**
11622 * lpfc_sli_setup - SLI ring setup function
11623 * @phba: Pointer to HBA context object.
11624 *
11625 * lpfc_sli_setup sets up rings of the SLI interface with
11626 * number of iocbs per ring and iotags. This function is
11627 * called while driver attach to the HBA and before the
11628 * interrupts are enabled. So there is no need for locking.
11629 *
11630 * This function always returns 0. SLI3 only.
11631 **/
11632 int
lpfc_sli_setup(struct lpfc_hba * phba)11633 lpfc_sli_setup(struct lpfc_hba *phba)
11634 {
11635 int i, totiocbsize = 0;
11636 struct lpfc_sli *psli = &phba->sli;
11637 struct lpfc_sli_ring *pring;
11638
11639 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS;
11640 psli->sli_flag = 0;
11641
11642 psli->iocbq_lookup = NULL;
11643 psli->iocbq_lookup_len = 0;
11644 psli->last_iotag = 0;
11645
11646 for (i = 0; i < psli->num_rings; i++) {
11647 pring = &psli->sli3_ring[i];
11648 switch (i) {
11649 case LPFC_FCP_RING: /* ring 0 - FCP */
11650 /* numCiocb and numRiocb are used in config_port */
11651 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES;
11652 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES;
11653 pring->sli.sli3.numCiocb +=
11654 SLI2_IOCB_CMD_R1XTRA_ENTRIES;
11655 pring->sli.sli3.numRiocb +=
11656 SLI2_IOCB_RSP_R1XTRA_ENTRIES;
11657 pring->sli.sli3.numCiocb +=
11658 SLI2_IOCB_CMD_R3XTRA_ENTRIES;
11659 pring->sli.sli3.numRiocb +=
11660 SLI2_IOCB_RSP_R3XTRA_ENTRIES;
11661 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
11662 SLI3_IOCB_CMD_SIZE :
11663 SLI2_IOCB_CMD_SIZE;
11664 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
11665 SLI3_IOCB_RSP_SIZE :
11666 SLI2_IOCB_RSP_SIZE;
11667 pring->iotag_ctr = 0;
11668 pring->iotag_max =
11669 (phba->cfg_hba_queue_depth * 2);
11670 pring->fast_iotag = pring->iotag_max;
11671 pring->num_mask = 0;
11672 break;
11673 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */
11674 /* numCiocb and numRiocb are used in config_port */
11675 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES;
11676 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES;
11677 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
11678 SLI3_IOCB_CMD_SIZE :
11679 SLI2_IOCB_CMD_SIZE;
11680 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
11681 SLI3_IOCB_RSP_SIZE :
11682 SLI2_IOCB_RSP_SIZE;
11683 pring->iotag_max = phba->cfg_hba_queue_depth;
11684 pring->num_mask = 0;
11685 break;
11686 case LPFC_ELS_RING: /* ring 2 - ELS / CT */
11687 /* numCiocb and numRiocb are used in config_port */
11688 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES;
11689 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES;
11690 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
11691 SLI3_IOCB_CMD_SIZE :
11692 SLI2_IOCB_CMD_SIZE;
11693 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
11694 SLI3_IOCB_RSP_SIZE :
11695 SLI2_IOCB_RSP_SIZE;
11696 pring->fast_iotag = 0;
11697 pring->iotag_ctr = 0;
11698 pring->iotag_max = 4096;
11699 pring->lpfc_sli_rcv_async_status =
11700 lpfc_sli_async_event_handler;
11701 pring->num_mask = LPFC_MAX_RING_MASK;
11702 pring->prt[0].profile = 0; /* Mask 0 */
11703 pring->prt[0].rctl = FC_RCTL_ELS_REQ;
11704 pring->prt[0].type = FC_TYPE_ELS;
11705 pring->prt[0].lpfc_sli_rcv_unsol_event =
11706 lpfc_els_unsol_event;
11707 pring->prt[1].profile = 0; /* Mask 1 */
11708 pring->prt[1].rctl = FC_RCTL_ELS_REP;
11709 pring->prt[1].type = FC_TYPE_ELS;
11710 pring->prt[1].lpfc_sli_rcv_unsol_event =
11711 lpfc_els_unsol_event;
11712 pring->prt[2].profile = 0; /* Mask 2 */
11713 /* NameServer Inquiry */
11714 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
11715 /* NameServer */
11716 pring->prt[2].type = FC_TYPE_CT;
11717 pring->prt[2].lpfc_sli_rcv_unsol_event =
11718 lpfc_ct_unsol_event;
11719 pring->prt[3].profile = 0; /* Mask 3 */
11720 /* NameServer response */
11721 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
11722 /* NameServer */
11723 pring->prt[3].type = FC_TYPE_CT;
11724 pring->prt[3].lpfc_sli_rcv_unsol_event =
11725 lpfc_ct_unsol_event;
11726 break;
11727 }
11728 totiocbsize += (pring->sli.sli3.numCiocb *
11729 pring->sli.sli3.sizeCiocb) +
11730 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb);
11731 }
11732 if (totiocbsize > MAX_SLIM_IOCB_SIZE) {
11733 /* Too many cmd / rsp ring entries in SLI2 SLIM */
11734 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in "
11735 "SLI2 SLIM Data: x%x x%lx\n",
11736 phba->brd_no, totiocbsize,
11737 (unsigned long) MAX_SLIM_IOCB_SIZE);
11738 }
11739 if (phba->cfg_multi_ring_support == 2)
11740 lpfc_extra_ring_setup(phba);
11741
11742 return 0;
11743 }
11744
11745 /**
11746 * lpfc_sli4_queue_init - Queue initialization function
11747 * @phba: Pointer to HBA context object.
11748 *
11749 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each
11750 * ring. This function also initializes ring indices of each ring.
11751 * This function is called during the initialization of the SLI
11752 * interface of an HBA.
11753 * This function is called with no lock held and always returns
11754 * 1.
11755 **/
11756 void
lpfc_sli4_queue_init(struct lpfc_hba * phba)11757 lpfc_sli4_queue_init(struct lpfc_hba *phba)
11758 {
11759 struct lpfc_sli *psli;
11760 struct lpfc_sli_ring *pring;
11761 int i;
11762
11763 psli = &phba->sli;
11764 spin_lock_irq(&phba->hbalock);
11765 INIT_LIST_HEAD(&psli->mboxq);
11766 INIT_LIST_HEAD(&psli->mboxq_cmpl);
11767 /* Initialize list headers for txq and txcmplq as double linked lists */
11768 for (i = 0; i < phba->cfg_hdw_queue; i++) {
11769 pring = phba->sli4_hba.hdwq[i].io_wq->pring;
11770 pring->flag = 0;
11771 pring->ringno = LPFC_FCP_RING;
11772 pring->txcmplq_cnt = 0;
11773 INIT_LIST_HEAD(&pring->txq);
11774 INIT_LIST_HEAD(&pring->txcmplq);
11775 INIT_LIST_HEAD(&pring->iocb_continueq);
11776 spin_lock_init(&pring->ring_lock);
11777 }
11778 pring = phba->sli4_hba.els_wq->pring;
11779 pring->flag = 0;
11780 pring->ringno = LPFC_ELS_RING;
11781 pring->txcmplq_cnt = 0;
11782 INIT_LIST_HEAD(&pring->txq);
11783 INIT_LIST_HEAD(&pring->txcmplq);
11784 INIT_LIST_HEAD(&pring->iocb_continueq);
11785 spin_lock_init(&pring->ring_lock);
11786
11787 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
11788 pring = phba->sli4_hba.nvmels_wq->pring;
11789 pring->flag = 0;
11790 pring->ringno = LPFC_ELS_RING;
11791 pring->txcmplq_cnt = 0;
11792 INIT_LIST_HEAD(&pring->txq);
11793 INIT_LIST_HEAD(&pring->txcmplq);
11794 INIT_LIST_HEAD(&pring->iocb_continueq);
11795 spin_lock_init(&pring->ring_lock);
11796 }
11797
11798 spin_unlock_irq(&phba->hbalock);
11799 }
11800
11801 /**
11802 * lpfc_sli_queue_init - Queue initialization function
11803 * @phba: Pointer to HBA context object.
11804 *
11805 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each
11806 * ring. This function also initializes ring indices of each ring.
11807 * This function is called during the initialization of the SLI
11808 * interface of an HBA.
11809 * This function is called with no lock held and always returns
11810 * 1.
11811 **/
11812 void
lpfc_sli_queue_init(struct lpfc_hba * phba)11813 lpfc_sli_queue_init(struct lpfc_hba *phba)
11814 {
11815 struct lpfc_sli *psli;
11816 struct lpfc_sli_ring *pring;
11817 int i;
11818
11819 psli = &phba->sli;
11820 spin_lock_irq(&phba->hbalock);
11821 INIT_LIST_HEAD(&psli->mboxq);
11822 INIT_LIST_HEAD(&psli->mboxq_cmpl);
11823 /* Initialize list headers for txq and txcmplq as double linked lists */
11824 for (i = 0; i < psli->num_rings; i++) {
11825 pring = &psli->sli3_ring[i];
11826 pring->ringno = i;
11827 pring->sli.sli3.next_cmdidx = 0;
11828 pring->sli.sli3.local_getidx = 0;
11829 pring->sli.sli3.cmdidx = 0;
11830 INIT_LIST_HEAD(&pring->iocb_continueq);
11831 INIT_LIST_HEAD(&pring->iocb_continue_saveq);
11832 INIT_LIST_HEAD(&pring->postbufq);
11833 pring->flag = 0;
11834 INIT_LIST_HEAD(&pring->txq);
11835 INIT_LIST_HEAD(&pring->txcmplq);
11836 spin_lock_init(&pring->ring_lock);
11837 }
11838 spin_unlock_irq(&phba->hbalock);
11839 }
11840
11841 /**
11842 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system
11843 * @phba: Pointer to HBA context object.
11844 *
11845 * This routine flushes the mailbox command subsystem. It will unconditionally
11846 * flush all the mailbox commands in the three possible stages in the mailbox
11847 * command sub-system: pending mailbox command queue; the outstanding mailbox
11848 * command; and completed mailbox command queue. It is caller's responsibility
11849 * to make sure that the driver is in the proper state to flush the mailbox
11850 * command sub-system. Namely, the posting of mailbox commands into the
11851 * pending mailbox command queue from the various clients must be stopped;
11852 * either the HBA is in a state that it will never works on the outstanding
11853 * mailbox command (such as in EEH or ERATT conditions) or the outstanding
11854 * mailbox command has been completed.
11855 **/
11856 static void
lpfc_sli_mbox_sys_flush(struct lpfc_hba * phba)11857 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba)
11858 {
11859 LIST_HEAD(completions);
11860 struct lpfc_sli *psli = &phba->sli;
11861 LPFC_MBOXQ_t *pmb;
11862 unsigned long iflag;
11863
11864 /* Disable softirqs, including timers from obtaining phba->hbalock */
11865 local_bh_disable();
11866
11867 /* Flush all the mailbox commands in the mbox system */
11868 spin_lock_irqsave(&phba->hbalock, iflag);
11869
11870 /* The pending mailbox command queue */
11871 list_splice_init(&phba->sli.mboxq, &completions);
11872 /* The outstanding active mailbox command */
11873 if (psli->mbox_active) {
11874 list_add_tail(&psli->mbox_active->list, &completions);
11875 psli->mbox_active = NULL;
11876 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
11877 }
11878 /* The completed mailbox command queue */
11879 list_splice_init(&phba->sli.mboxq_cmpl, &completions);
11880 spin_unlock_irqrestore(&phba->hbalock, iflag);
11881
11882 /* Enable softirqs again, done with phba->hbalock */
11883 local_bh_enable();
11884
11885 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */
11886 while (!list_empty(&completions)) {
11887 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list);
11888 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED;
11889 if (pmb->mbox_cmpl)
11890 pmb->mbox_cmpl(phba, pmb);
11891 }
11892 }
11893
11894 /**
11895 * lpfc_sli_host_down - Vport cleanup function
11896 * @vport: Pointer to virtual port object.
11897 *
11898 * lpfc_sli_host_down is called to clean up the resources
11899 * associated with a vport before destroying virtual
11900 * port data structures.
11901 * This function does following operations:
11902 * - Free discovery resources associated with this virtual
11903 * port.
11904 * - Free iocbs associated with this virtual port in
11905 * the txq.
11906 * - Send abort for all iocb commands associated with this
11907 * vport in txcmplq.
11908 *
11909 * This function is called with no lock held and always returns 1.
11910 **/
11911 int
lpfc_sli_host_down(struct lpfc_vport * vport)11912 lpfc_sli_host_down(struct lpfc_vport *vport)
11913 {
11914 LIST_HEAD(completions);
11915 struct lpfc_hba *phba = vport->phba;
11916 struct lpfc_sli *psli = &phba->sli;
11917 struct lpfc_queue *qp = NULL;
11918 struct lpfc_sli_ring *pring;
11919 struct lpfc_iocbq *iocb, *next_iocb;
11920 int i;
11921 unsigned long flags = 0;
11922 uint16_t prev_pring_flag;
11923
11924 lpfc_cleanup_discovery_resources(vport);
11925
11926 spin_lock_irqsave(&phba->hbalock, flags);
11927
11928 /*
11929 * Error everything on the txq since these iocbs
11930 * have not been given to the FW yet.
11931 * Also issue ABTS for everything on the txcmplq
11932 */
11933 if (phba->sli_rev != LPFC_SLI_REV4) {
11934 for (i = 0; i < psli->num_rings; i++) {
11935 pring = &psli->sli3_ring[i];
11936 prev_pring_flag = pring->flag;
11937 /* Only slow rings */
11938 if (pring->ringno == LPFC_ELS_RING) {
11939 pring->flag |= LPFC_DEFERRED_RING_EVENT;
11940 /* Set the lpfc data pending flag */
11941 set_bit(LPFC_DATA_READY, &phba->data_flags);
11942 }
11943 list_for_each_entry_safe(iocb, next_iocb,
11944 &pring->txq, list) {
11945 if (iocb->vport != vport)
11946 continue;
11947 list_move_tail(&iocb->list, &completions);
11948 }
11949 list_for_each_entry_safe(iocb, next_iocb,
11950 &pring->txcmplq, list) {
11951 if (iocb->vport != vport)
11952 continue;
11953 lpfc_sli_issue_abort_iotag(phba, pring, iocb,
11954 NULL);
11955 }
11956 pring->flag = prev_pring_flag;
11957 }
11958 } else {
11959 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11960 pring = qp->pring;
11961 if (!pring)
11962 continue;
11963 if (pring == phba->sli4_hba.els_wq->pring) {
11964 pring->flag |= LPFC_DEFERRED_RING_EVENT;
11965 /* Set the lpfc data pending flag */
11966 set_bit(LPFC_DATA_READY, &phba->data_flags);
11967 }
11968 prev_pring_flag = pring->flag;
11969 spin_lock(&pring->ring_lock);
11970 list_for_each_entry_safe(iocb, next_iocb,
11971 &pring->txq, list) {
11972 if (iocb->vport != vport)
11973 continue;
11974 list_move_tail(&iocb->list, &completions);
11975 }
11976 spin_unlock(&pring->ring_lock);
11977 list_for_each_entry_safe(iocb, next_iocb,
11978 &pring->txcmplq, list) {
11979 if (iocb->vport != vport)
11980 continue;
11981 lpfc_sli_issue_abort_iotag(phba, pring, iocb,
11982 NULL);
11983 }
11984 pring->flag = prev_pring_flag;
11985 }
11986 }
11987 spin_unlock_irqrestore(&phba->hbalock, flags);
11988
11989 /* Make sure HBA is alive */
11990 lpfc_issue_hb_tmo(phba);
11991
11992 /* Cancel all the IOCBs from the completions list */
11993 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
11994 IOERR_SLI_DOWN);
11995 return 1;
11996 }
11997
11998 /**
11999 * lpfc_sli_hba_down - Resource cleanup function for the HBA
12000 * @phba: Pointer to HBA context object.
12001 *
12002 * This function cleans up all iocb, buffers, mailbox commands
12003 * while shutting down the HBA. This function is called with no
12004 * lock held and always returns 1.
12005 * This function does the following to cleanup driver resources:
12006 * - Free discovery resources for each virtual port
12007 * - Cleanup any pending fabric iocbs
12008 * - Iterate through the iocb txq and free each entry
12009 * in the list.
12010 * - Free up any buffer posted to the HBA
12011 * - Free mailbox commands in the mailbox queue.
12012 **/
12013 int
lpfc_sli_hba_down(struct lpfc_hba * phba)12014 lpfc_sli_hba_down(struct lpfc_hba *phba)
12015 {
12016 LIST_HEAD(completions);
12017 struct lpfc_sli *psli = &phba->sli;
12018 struct lpfc_queue *qp = NULL;
12019 struct lpfc_sli_ring *pring;
12020 struct lpfc_dmabuf *buf_ptr;
12021 unsigned long flags = 0;
12022 int i;
12023
12024 /* Shutdown the mailbox command sub-system */
12025 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT);
12026
12027 lpfc_hba_down_prep(phba);
12028
12029 /* Disable softirqs, including timers from obtaining phba->hbalock */
12030 local_bh_disable();
12031
12032 lpfc_fabric_abort_hba(phba);
12033
12034 spin_lock_irqsave(&phba->hbalock, flags);
12035
12036 /*
12037 * Error everything on the txq since these iocbs
12038 * have not been given to the FW yet.
12039 */
12040 if (phba->sli_rev != LPFC_SLI_REV4) {
12041 for (i = 0; i < psli->num_rings; i++) {
12042 pring = &psli->sli3_ring[i];
12043 /* Only slow rings */
12044 if (pring->ringno == LPFC_ELS_RING) {
12045 pring->flag |= LPFC_DEFERRED_RING_EVENT;
12046 /* Set the lpfc data pending flag */
12047 set_bit(LPFC_DATA_READY, &phba->data_flags);
12048 }
12049 list_splice_init(&pring->txq, &completions);
12050 }
12051 } else {
12052 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
12053 pring = qp->pring;
12054 if (!pring)
12055 continue;
12056 spin_lock(&pring->ring_lock);
12057 list_splice_init(&pring->txq, &completions);
12058 spin_unlock(&pring->ring_lock);
12059 if (pring == phba->sli4_hba.els_wq->pring) {
12060 pring->flag |= LPFC_DEFERRED_RING_EVENT;
12061 /* Set the lpfc data pending flag */
12062 set_bit(LPFC_DATA_READY, &phba->data_flags);
12063 }
12064 }
12065 }
12066 spin_unlock_irqrestore(&phba->hbalock, flags);
12067
12068 /* Cancel all the IOCBs from the completions list */
12069 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
12070 IOERR_SLI_DOWN);
12071
12072 spin_lock_irqsave(&phba->hbalock, flags);
12073 list_splice_init(&phba->elsbuf, &completions);
12074 phba->elsbuf_cnt = 0;
12075 phba->elsbuf_prev_cnt = 0;
12076 spin_unlock_irqrestore(&phba->hbalock, flags);
12077
12078 while (!list_empty(&completions)) {
12079 list_remove_head(&completions, buf_ptr,
12080 struct lpfc_dmabuf, list);
12081 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
12082 kfree(buf_ptr);
12083 }
12084
12085 /* Enable softirqs again, done with phba->hbalock */
12086 local_bh_enable();
12087
12088 /* Return any active mbox cmds */
12089 timer_delete_sync(&psli->mbox_tmo);
12090
12091 spin_lock_irqsave(&phba->pport->work_port_lock, flags);
12092 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
12093 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
12094
12095 return 1;
12096 }
12097
12098 /**
12099 * lpfc_sli_pcimem_bcopy - SLI memory copy function
12100 * @srcp: Source memory pointer.
12101 * @destp: Destination memory pointer.
12102 * @cnt: Number of words required to be copied.
12103 *
12104 * This function is used for copying data between driver memory
12105 * and the SLI memory. This function also changes the endianness
12106 * of each word if native endianness is different from SLI
12107 * endianness. This function can be called with or without
12108 * lock.
12109 **/
12110 void
lpfc_sli_pcimem_bcopy(void * srcp,void * destp,uint32_t cnt)12111 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
12112 {
12113 uint32_t *src = srcp;
12114 uint32_t *dest = destp;
12115 uint32_t ldata;
12116 int i;
12117
12118 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) {
12119 ldata = *src;
12120 ldata = le32_to_cpu(ldata);
12121 *dest = ldata;
12122 src++;
12123 dest++;
12124 }
12125 }
12126
12127
12128 /**
12129 * lpfc_sli_bemem_bcopy - SLI memory copy function
12130 * @srcp: Source memory pointer.
12131 * @destp: Destination memory pointer.
12132 * @cnt: Number of words required to be copied.
12133 *
12134 * This function is used for copying data between a data structure
12135 * with big endian representation to local endianness.
12136 * This function can be called with or without lock.
12137 **/
12138 void
lpfc_sli_bemem_bcopy(void * srcp,void * destp,uint32_t cnt)12139 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt)
12140 {
12141 uint32_t *src = srcp;
12142 uint32_t *dest = destp;
12143 uint32_t ldata;
12144 int i;
12145
12146 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) {
12147 ldata = *src;
12148 ldata = be32_to_cpu(ldata);
12149 *dest = ldata;
12150 src++;
12151 dest++;
12152 }
12153 }
12154
12155 /**
12156 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq
12157 * @phba: Pointer to HBA context object.
12158 * @pring: Pointer to driver SLI ring object.
12159 * @mp: Pointer to driver buffer object.
12160 *
12161 * This function is called with no lock held.
12162 * It always return zero after adding the buffer to the postbufq
12163 * buffer list.
12164 **/
12165 int
lpfc_sli_ringpostbuf_put(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_dmabuf * mp)12166 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
12167 struct lpfc_dmabuf *mp)
12168 {
12169 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up
12170 later */
12171 spin_lock_irq(&phba->hbalock);
12172 list_add_tail(&mp->list, &pring->postbufq);
12173 pring->postbufq_cnt++;
12174 spin_unlock_irq(&phba->hbalock);
12175 return 0;
12176 }
12177
12178 /**
12179 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer
12180 * @phba: Pointer to HBA context object.
12181 *
12182 * When HBQ is enabled, buffers are searched based on tags. This function
12183 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The
12184 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag
12185 * does not conflict with tags of buffer posted for unsolicited events.
12186 * The function returns the allocated tag. The function is called with
12187 * no locks held.
12188 **/
12189 uint32_t
lpfc_sli_get_buffer_tag(struct lpfc_hba * phba)12190 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba)
12191 {
12192 spin_lock_irq(&phba->hbalock);
12193 phba->buffer_tag_count++;
12194 /*
12195 * Always set the QUE_BUFTAG_BIT to distiguish between
12196 * a tag assigned by HBQ.
12197 */
12198 phba->buffer_tag_count |= QUE_BUFTAG_BIT;
12199 spin_unlock_irq(&phba->hbalock);
12200 return phba->buffer_tag_count;
12201 }
12202
12203 /**
12204 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag
12205 * @phba: Pointer to HBA context object.
12206 * @pring: Pointer to driver SLI ring object.
12207 * @tag: Buffer tag.
12208 *
12209 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq
12210 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX
12211 * iocb is posted to the response ring with the tag of the buffer.
12212 * This function searches the pring->postbufq list using the tag
12213 * to find buffer associated with CMD_IOCB_RET_XRI64_CX
12214 * iocb. If the buffer is found then lpfc_dmabuf object of the
12215 * buffer is returned to the caller else NULL is returned.
12216 * This function is called with no lock held.
12217 **/
12218 struct lpfc_dmabuf *
lpfc_sli_ring_taggedbuf_get(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t tag)12219 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
12220 uint32_t tag)
12221 {
12222 struct lpfc_dmabuf *mp, *next_mp;
12223 struct list_head *slp = &pring->postbufq;
12224
12225 /* Search postbufq, from the beginning, looking for a match on tag */
12226 spin_lock_irq(&phba->hbalock);
12227 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
12228 if (mp->buffer_tag == tag) {
12229 list_del_init(&mp->list);
12230 pring->postbufq_cnt--;
12231 spin_unlock_irq(&phba->hbalock);
12232 return mp;
12233 }
12234 }
12235
12236 spin_unlock_irq(&phba->hbalock);
12237 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12238 "0402 Cannot find virtual addr for buffer tag on "
12239 "ring %d Data x%lx x%px x%px x%x\n",
12240 pring->ringno, (unsigned long) tag,
12241 slp->next, slp->prev, pring->postbufq_cnt);
12242
12243 return NULL;
12244 }
12245
12246 /**
12247 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events
12248 * @phba: Pointer to HBA context object.
12249 * @pring: Pointer to driver SLI ring object.
12250 * @phys: DMA address of the buffer.
12251 *
12252 * This function searches the buffer list using the dma_address
12253 * of unsolicited event to find the driver's lpfc_dmabuf object
12254 * corresponding to the dma_address. The function returns the
12255 * lpfc_dmabuf object if a buffer is found else it returns NULL.
12256 * This function is called by the ct and els unsolicited event
12257 * handlers to get the buffer associated with the unsolicited
12258 * event.
12259 *
12260 * This function is called with no lock held.
12261 **/
12262 struct lpfc_dmabuf *
lpfc_sli_ringpostbuf_get(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,dma_addr_t phys)12263 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
12264 dma_addr_t phys)
12265 {
12266 struct lpfc_dmabuf *mp, *next_mp;
12267 struct list_head *slp = &pring->postbufq;
12268
12269 /* Search postbufq, from the beginning, looking for a match on phys */
12270 spin_lock_irq(&phba->hbalock);
12271 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
12272 if (mp->phys == phys) {
12273 list_del_init(&mp->list);
12274 pring->postbufq_cnt--;
12275 spin_unlock_irq(&phba->hbalock);
12276 return mp;
12277 }
12278 }
12279
12280 spin_unlock_irq(&phba->hbalock);
12281 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12282 "0410 Cannot find virtual addr for mapped buf on "
12283 "ring %d Data x%llx x%px x%px x%x\n",
12284 pring->ringno, (unsigned long long)phys,
12285 slp->next, slp->prev, pring->postbufq_cnt);
12286 return NULL;
12287 }
12288
12289 /**
12290 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs
12291 * @phba: Pointer to HBA context object.
12292 * @cmdiocb: Pointer to driver command iocb object.
12293 * @rspiocb: Pointer to driver response iocb object.
12294 *
12295 * This function is the completion handler for the abort iocbs for
12296 * ELS commands. This function is called from the ELS ring event
12297 * handler with no lock held. This function frees memory resources
12298 * associated with the abort iocb.
12299 **/
12300 static void
lpfc_sli_abort_els_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,struct lpfc_iocbq * rspiocb)12301 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
12302 struct lpfc_iocbq *rspiocb)
12303 {
12304 u32 ulp_status = get_job_ulpstatus(phba, rspiocb);
12305 u32 ulp_word4 = get_job_word4(phba, rspiocb);
12306 u8 cmnd = get_job_cmnd(phba, cmdiocb);
12307
12308 if (ulp_status) {
12309 /*
12310 * Assume that the port already completed and returned, or
12311 * will return the iocb. Just Log the message.
12312 */
12313 if (phba->sli_rev < LPFC_SLI_REV4) {
12314 if (cmnd == CMD_ABORT_XRI_CX &&
12315 ulp_status == IOSTAT_LOCAL_REJECT &&
12316 ulp_word4 == IOERR_ABORT_REQUESTED) {
12317 goto release_iocb;
12318 }
12319 }
12320 }
12321
12322 lpfc_printf_log(phba, KERN_INFO, LOG_ELS | LOG_SLI,
12323 "0327 Abort els iocb complete x%px with io cmd xri %x "
12324 "abort tag x%x abort status %x abort code %x\n",
12325 cmdiocb, get_job_abtsiotag(phba, cmdiocb),
12326 (phba->sli_rev == LPFC_SLI_REV4) ?
12327 get_wqe_reqtag(cmdiocb) :
12328 cmdiocb->iocb.ulpIoTag,
12329 ulp_status, ulp_word4);
12330 release_iocb:
12331 lpfc_sli_release_iocbq(phba, cmdiocb);
12332 return;
12333 }
12334
12335 /**
12336 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command
12337 * @phba: Pointer to HBA context object.
12338 * @cmdiocb: Pointer to driver command iocb object.
12339 * @rspiocb: Pointer to driver response iocb object.
12340 *
12341 * The function is called from SLI ring event handler with no
12342 * lock held. This function is the completion handler for ELS commands
12343 * which are aborted. The function frees memory resources used for
12344 * the aborted ELS commands.
12345 **/
12346 void
lpfc_ignore_els_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,struct lpfc_iocbq * rspiocb)12347 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
12348 struct lpfc_iocbq *rspiocb)
12349 {
12350 struct lpfc_nodelist *ndlp = cmdiocb->ndlp;
12351 IOCB_t *irsp;
12352 LPFC_MBOXQ_t *mbox;
12353 u32 ulp_command, ulp_status, ulp_word4, iotag;
12354
12355 ulp_command = get_job_cmnd(phba, cmdiocb);
12356 ulp_status = get_job_ulpstatus(phba, rspiocb);
12357 ulp_word4 = get_job_word4(phba, rspiocb);
12358
12359 if (phba->sli_rev == LPFC_SLI_REV4) {
12360 iotag = get_wqe_reqtag(cmdiocb);
12361 } else {
12362 irsp = &rspiocb->iocb;
12363 iotag = irsp->ulpIoTag;
12364
12365 /* It is possible a PLOGI_RJT for NPIV ports to get aborted.
12366 * The MBX_REG_LOGIN64 mbox command is freed back to the
12367 * mbox_mem_pool here.
12368 */
12369 if (cmdiocb->context_un.mbox) {
12370 mbox = cmdiocb->context_un.mbox;
12371 lpfc_mbox_rsrc_cleanup(phba, mbox, MBOX_THD_UNLOCKED);
12372 cmdiocb->context_un.mbox = NULL;
12373 }
12374 }
12375
12376 /* ELS cmd tag <ulpIoTag> completes */
12377 lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
12378 "0139 Ignoring ELS cmd code x%x ref cnt x%x Data: "
12379 "x%x x%x x%x x%px\n",
12380 ulp_command, kref_read(&cmdiocb->ndlp->kref),
12381 ulp_status, ulp_word4, iotag, cmdiocb->ndlp);
12382 /*
12383 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp
12384 * if exchange is busy.
12385 */
12386 if (ulp_command == CMD_GEN_REQUEST64_CR)
12387 lpfc_ct_free_iocb(phba, cmdiocb);
12388 else
12389 lpfc_els_free_iocb(phba, cmdiocb);
12390
12391 lpfc_nlp_put(ndlp);
12392 }
12393
12394 /**
12395 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb
12396 * @phba: Pointer to HBA context object.
12397 * @pring: Pointer to driver SLI ring object.
12398 * @cmdiocb: Pointer to driver command iocb object.
12399 * @cmpl: completion function.
12400 *
12401 * This function issues an abort iocb for the provided command iocb. In case
12402 * of unloading, the abort iocb will not be issued to commands on the ELS
12403 * ring. Instead, the callback function shall be changed to those commands
12404 * so that nothing happens when them finishes. This function is called with
12405 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS
12406 * when the command iocb is an abort request.
12407 *
12408 **/
12409 int
lpfc_sli_issue_abort_iotag(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * cmdiocb,void * cmpl)12410 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
12411 struct lpfc_iocbq *cmdiocb, void *cmpl)
12412 {
12413 struct lpfc_vport *vport = cmdiocb->vport;
12414 struct lpfc_iocbq *abtsiocbp;
12415 int retval = IOCB_ERROR;
12416 unsigned long iflags;
12417 struct lpfc_nodelist *ndlp = NULL;
12418 u32 ulp_command = get_job_cmnd(phba, cmdiocb);
12419 u16 ulp_context, iotag;
12420 bool ia;
12421
12422 /*
12423 * There are certain command types we don't want to abort. And we
12424 * don't want to abort commands that are already in the process of
12425 * being aborted.
12426 */
12427 if (ulp_command == CMD_ABORT_XRI_WQE ||
12428 ulp_command == CMD_ABORT_XRI_CN ||
12429 ulp_command == CMD_CLOSE_XRI_CN ||
12430 cmdiocb->cmd_flag & LPFC_DRIVER_ABORTED)
12431 return IOCB_ABORTING;
12432
12433 if (!pring) {
12434 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC)
12435 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl;
12436 else
12437 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl;
12438 return retval;
12439 }
12440
12441 /*
12442 * If we're unloading, don't abort iocb on the ELS ring, but change
12443 * the callback so that nothing happens when it finishes.
12444 */
12445 if (test_bit(FC_UNLOADING, &vport->load_flag) &&
12446 pring->ringno == LPFC_ELS_RING) {
12447 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC)
12448 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl;
12449 else
12450 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl;
12451 return retval;
12452 }
12453
12454 /* issue ABTS for this IOCB based on iotag */
12455 abtsiocbp = __lpfc_sli_get_iocbq(phba);
12456 if (abtsiocbp == NULL)
12457 return IOCB_NORESOURCE;
12458
12459 /* This signals the response to set the correct status
12460 * before calling the completion handler
12461 */
12462 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED;
12463
12464 if (phba->sli_rev == LPFC_SLI_REV4) {
12465 ulp_context = cmdiocb->sli4_xritag;
12466 iotag = abtsiocbp->iotag;
12467 } else {
12468 iotag = cmdiocb->iocb.ulpIoTag;
12469 if (pring->ringno == LPFC_ELS_RING) {
12470 ndlp = cmdiocb->ndlp;
12471 ulp_context = ndlp->nlp_rpi;
12472 } else {
12473 ulp_context = cmdiocb->iocb.ulpContext;
12474 }
12475 }
12476
12477 /* Just close the exchange under certain conditions. */
12478 if (test_bit(FC_UNLOADING, &vport->load_flag) ||
12479 phba->link_state < LPFC_LINK_UP ||
12480 (phba->sli_rev == LPFC_SLI_REV4 &&
12481 phba->sli4_hba.link_state.status == LPFC_FC_LA_TYPE_LINK_DOWN) ||
12482 (phba->link_flag & LS_EXTERNAL_LOOPBACK))
12483 ia = true;
12484 else
12485 ia = false;
12486
12487 lpfc_sli_prep_abort_xri(phba, abtsiocbp, ulp_context, iotag,
12488 cmdiocb->iocb.ulpClass,
12489 LPFC_WQE_CQ_ID_DEFAULT, ia, false);
12490
12491 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
12492 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx;
12493 if (cmdiocb->cmd_flag & LPFC_IO_FCP)
12494 abtsiocbp->cmd_flag |= (LPFC_IO_FCP | LPFC_USE_FCPWQIDX);
12495
12496 if (cmdiocb->cmd_flag & LPFC_IO_FOF)
12497 abtsiocbp->cmd_flag |= LPFC_IO_FOF;
12498
12499 if (cmpl)
12500 abtsiocbp->cmd_cmpl = cmpl;
12501 else
12502 abtsiocbp->cmd_cmpl = lpfc_sli_abort_els_cmpl;
12503 abtsiocbp->vport = vport;
12504
12505 if (phba->sli_rev == LPFC_SLI_REV4) {
12506 pring = lpfc_sli4_calc_ring(phba, abtsiocbp);
12507 if (unlikely(pring == NULL))
12508 goto abort_iotag_exit;
12509 /* Note: both hbalock and ring_lock need to be set here */
12510 spin_lock_irqsave(&pring->ring_lock, iflags);
12511 retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
12512 abtsiocbp, 0);
12513 spin_unlock_irqrestore(&pring->ring_lock, iflags);
12514 } else {
12515 retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
12516 abtsiocbp, 0);
12517 }
12518
12519 abort_iotag_exit:
12520
12521 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
12522 "0339 Abort IO XRI x%x, Original iotag x%x, "
12523 "abort tag x%x Cmdjob : x%px Abortjob : x%px "
12524 "retval x%x : IA %d cmd_cmpl %ps\n",
12525 ulp_context, (phba->sli_rev == LPFC_SLI_REV4) ?
12526 cmdiocb->iotag : iotag, iotag, cmdiocb, abtsiocbp,
12527 retval, ia, abtsiocbp->cmd_cmpl);
12528 if (retval) {
12529 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED;
12530 __lpfc_sli_release_iocbq(phba, abtsiocbp);
12531 }
12532
12533 /*
12534 * Caller to this routine should check for IOCB_ERROR
12535 * and handle it properly. This routine no longer removes
12536 * iocb off txcmplq and call compl in case of IOCB_ERROR.
12537 */
12538 return retval;
12539 }
12540
12541 /**
12542 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba.
12543 * @phba: pointer to lpfc HBA data structure.
12544 *
12545 * This routine will abort all pending and outstanding iocbs to an HBA.
12546 **/
12547 void
lpfc_sli_hba_iocb_abort(struct lpfc_hba * phba)12548 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba)
12549 {
12550 struct lpfc_sli *psli = &phba->sli;
12551 struct lpfc_sli_ring *pring;
12552 struct lpfc_queue *qp = NULL;
12553 int i;
12554
12555 if (phba->sli_rev != LPFC_SLI_REV4) {
12556 for (i = 0; i < psli->num_rings; i++) {
12557 pring = &psli->sli3_ring[i];
12558 lpfc_sli_abort_iocb_ring(phba, pring);
12559 }
12560 return;
12561 }
12562 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
12563 pring = qp->pring;
12564 if (!pring)
12565 continue;
12566 lpfc_sli_abort_iocb_ring(phba, pring);
12567 }
12568 }
12569
12570 /**
12571 * lpfc_sli_validate_fcp_iocb_for_abort - filter iocbs appropriate for FCP aborts
12572 * @iocbq: Pointer to iocb object.
12573 * @vport: Pointer to driver virtual port object.
12574 *
12575 * This function acts as an iocb filter for functions which abort FCP iocbs.
12576 *
12577 * Return values
12578 * -ENODEV, if a null iocb or vport ptr is encountered
12579 * -EINVAL, if the iocb is not an FCP I/O, not on the TX cmpl queue, premarked as
12580 * driver already started the abort process, or is an abort iocb itself
12581 * 0, passes criteria for aborting the FCP I/O iocb
12582 **/
12583 static int
lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq * iocbq,struct lpfc_vport * vport)12584 lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq *iocbq,
12585 struct lpfc_vport *vport)
12586 {
12587 u8 ulp_command;
12588
12589 /* No null ptr vports */
12590 if (!iocbq || iocbq->vport != vport)
12591 return -ENODEV;
12592
12593 /* iocb must be for FCP IO, already exists on the TX cmpl queue,
12594 * can't be premarked as driver aborted, nor be an ABORT iocb itself
12595 */
12596 ulp_command = get_job_cmnd(vport->phba, iocbq);
12597 if (!(iocbq->cmd_flag & LPFC_IO_FCP) ||
12598 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ) ||
12599 (iocbq->cmd_flag & LPFC_DRIVER_ABORTED) ||
12600 (ulp_command == CMD_ABORT_XRI_CN ||
12601 ulp_command == CMD_CLOSE_XRI_CN ||
12602 ulp_command == CMD_ABORT_XRI_WQE))
12603 return -EINVAL;
12604
12605 return 0;
12606 }
12607
12608 /**
12609 * lpfc_sli_validate_fcp_iocb - validate commands associated with a SCSI target
12610 * @iocbq: Pointer to driver iocb object.
12611 * @vport: Pointer to driver virtual port object.
12612 * @tgt_id: SCSI ID of the target.
12613 * @lun_id: LUN ID of the scsi device.
12614 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST
12615 *
12616 * This function acts as an iocb filter for validating a lun/SCSI target/SCSI
12617 * host.
12618 *
12619 * It will return
12620 * 0 if the filtering criteria is met for the given iocb and will return
12621 * 1 if the filtering criteria is not met.
12622 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the
12623 * given iocb is for the SCSI device specified by vport, tgt_id and
12624 * lun_id parameter.
12625 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the
12626 * given iocb is for the SCSI target specified by vport and tgt_id
12627 * parameters.
12628 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the
12629 * given iocb is for the SCSI host associated with the given vport.
12630 * This function is called with no locks held.
12631 **/
12632 static int
lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq * iocbq,struct lpfc_vport * vport,uint16_t tgt_id,uint64_t lun_id,lpfc_ctx_cmd ctx_cmd)12633 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport,
12634 uint16_t tgt_id, uint64_t lun_id,
12635 lpfc_ctx_cmd ctx_cmd)
12636 {
12637 struct lpfc_io_buf *lpfc_cmd;
12638 int rc = 1;
12639
12640 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
12641
12642 if (lpfc_cmd->pCmd == NULL)
12643 return rc;
12644
12645 switch (ctx_cmd) {
12646 case LPFC_CTX_LUN:
12647 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
12648 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) &&
12649 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id))
12650 rc = 0;
12651 break;
12652 case LPFC_CTX_TGT:
12653 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
12654 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id))
12655 rc = 0;
12656 break;
12657 case LPFC_CTX_HOST:
12658 rc = 0;
12659 break;
12660 default:
12661 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n",
12662 __func__, ctx_cmd);
12663 break;
12664 }
12665
12666 return rc;
12667 }
12668
12669 /**
12670 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending
12671 * @vport: Pointer to virtual port.
12672 * @tgt_id: SCSI ID of the target.
12673 * @lun_id: LUN ID of the scsi device.
12674 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
12675 *
12676 * This function returns number of FCP commands pending for the vport.
12677 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP
12678 * commands pending on the vport associated with SCSI device specified
12679 * by tgt_id and lun_id parameters.
12680 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP
12681 * commands pending on the vport associated with SCSI target specified
12682 * by tgt_id parameter.
12683 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP
12684 * commands pending on the vport.
12685 * This function returns the number of iocbs which satisfy the filter.
12686 * This function is called without any lock held.
12687 **/
12688 int
lpfc_sli_sum_iocb(struct lpfc_vport * vport,uint16_t tgt_id,uint64_t lun_id,lpfc_ctx_cmd ctx_cmd)12689 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id,
12690 lpfc_ctx_cmd ctx_cmd)
12691 {
12692 struct lpfc_hba *phba = vport->phba;
12693 struct lpfc_iocbq *iocbq;
12694 int sum, i;
12695 unsigned long iflags;
12696 u8 ulp_command;
12697
12698 spin_lock_irqsave(&phba->hbalock, iflags);
12699 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) {
12700 iocbq = phba->sli.iocbq_lookup[i];
12701
12702 if (!iocbq || iocbq->vport != vport)
12703 continue;
12704 if (!(iocbq->cmd_flag & LPFC_IO_FCP) ||
12705 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ))
12706 continue;
12707
12708 /* Include counting outstanding aborts */
12709 ulp_command = get_job_cmnd(phba, iocbq);
12710 if (ulp_command == CMD_ABORT_XRI_CN ||
12711 ulp_command == CMD_CLOSE_XRI_CN ||
12712 ulp_command == CMD_ABORT_XRI_WQE) {
12713 sum++;
12714 continue;
12715 }
12716
12717 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
12718 ctx_cmd) == 0)
12719 sum++;
12720 }
12721 spin_unlock_irqrestore(&phba->hbalock, iflags);
12722
12723 return sum;
12724 }
12725
12726 /**
12727 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
12728 * @phba: Pointer to HBA context object
12729 * @cmdiocb: Pointer to command iocb object.
12730 * @rspiocb: Pointer to response iocb object.
12731 *
12732 * This function is called when an aborted FCP iocb completes. This
12733 * function is called by the ring event handler with no lock held.
12734 * This function frees the iocb.
12735 **/
12736 void
lpfc_sli_abort_fcp_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,struct lpfc_iocbq * rspiocb)12737 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
12738 struct lpfc_iocbq *rspiocb)
12739 {
12740 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12741 "3096 ABORT_XRI_CX completing on rpi x%x "
12742 "original iotag x%x, abort cmd iotag x%x "
12743 "status 0x%x, reason 0x%x\n",
12744 (phba->sli_rev == LPFC_SLI_REV4) ?
12745 cmdiocb->sli4_xritag :
12746 cmdiocb->iocb.un.acxri.abortContextTag,
12747 get_job_abtsiotag(phba, cmdiocb),
12748 cmdiocb->iotag, get_job_ulpstatus(phba, rspiocb),
12749 get_job_word4(phba, rspiocb));
12750 lpfc_sli_release_iocbq(phba, cmdiocb);
12751 return;
12752 }
12753
12754 /**
12755 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN
12756 * @vport: Pointer to virtual port.
12757 * @tgt_id: SCSI ID of the target.
12758 * @lun_id: LUN ID of the scsi device.
12759 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
12760 *
12761 * This function sends an abort command for every SCSI command
12762 * associated with the given virtual port pending on the ring
12763 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then
12764 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before
12765 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort
12766 * followed by lpfc_sli_validate_fcp_iocb.
12767 *
12768 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the
12769 * FCP iocbs associated with lun specified by tgt_id and lun_id
12770 * parameters
12771 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the
12772 * FCP iocbs associated with SCSI target specified by tgt_id parameter.
12773 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all
12774 * FCP iocbs associated with virtual port.
12775 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4
12776 * lpfc_sli4_calc_ring is used.
12777 * This function returns number of iocbs it failed to abort.
12778 * This function is called with no locks held.
12779 **/
12780 int
lpfc_sli_abort_iocb(struct lpfc_vport * vport,u16 tgt_id,u64 lun_id,lpfc_ctx_cmd abort_cmd)12781 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id,
12782 lpfc_ctx_cmd abort_cmd)
12783 {
12784 struct lpfc_hba *phba = vport->phba;
12785 struct lpfc_sli_ring *pring = NULL;
12786 struct lpfc_iocbq *iocbq;
12787 int errcnt = 0, ret_val = 0;
12788 unsigned long iflags;
12789 int i;
12790
12791 /* all I/Os are in process of being flushed */
12792 if (test_bit(HBA_IOQ_FLUSH, &phba->hba_flag))
12793 return errcnt;
12794
12795 for (i = 1; i <= phba->sli.last_iotag; i++) {
12796 iocbq = phba->sli.iocbq_lookup[i];
12797
12798 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport))
12799 continue;
12800
12801 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
12802 abort_cmd) != 0)
12803 continue;
12804
12805 spin_lock_irqsave(&phba->hbalock, iflags);
12806 if (phba->sli_rev == LPFC_SLI_REV3) {
12807 pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
12808 } else if (phba->sli_rev == LPFC_SLI_REV4) {
12809 pring = lpfc_sli4_calc_ring(phba, iocbq);
12810 }
12811 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq,
12812 lpfc_sli_abort_fcp_cmpl);
12813 spin_unlock_irqrestore(&phba->hbalock, iflags);
12814 if (ret_val != IOCB_SUCCESS)
12815 errcnt++;
12816 }
12817
12818 return errcnt;
12819 }
12820
12821 /**
12822 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN
12823 * @vport: Pointer to virtual port.
12824 * @pring: Pointer to driver SLI ring object.
12825 * @tgt_id: SCSI ID of the target.
12826 * @lun_id: LUN ID of the scsi device.
12827 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
12828 *
12829 * This function sends an abort command for every SCSI command
12830 * associated with the given virtual port pending on the ring
12831 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then
12832 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before
12833 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort
12834 * followed by lpfc_sli_validate_fcp_iocb.
12835 *
12836 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the
12837 * FCP iocbs associated with lun specified by tgt_id and lun_id
12838 * parameters
12839 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the
12840 * FCP iocbs associated with SCSI target specified by tgt_id parameter.
12841 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all
12842 * FCP iocbs associated with virtual port.
12843 * This function returns number of iocbs it aborted .
12844 * This function is called with no locks held right after a taskmgmt
12845 * command is sent.
12846 **/
12847 int
lpfc_sli_abort_taskmgmt(struct lpfc_vport * vport,struct lpfc_sli_ring * pring,uint16_t tgt_id,uint64_t lun_id,lpfc_ctx_cmd cmd)12848 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
12849 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd)
12850 {
12851 struct lpfc_hba *phba = vport->phba;
12852 struct lpfc_io_buf *lpfc_cmd;
12853 struct lpfc_iocbq *abtsiocbq;
12854 struct lpfc_nodelist *ndlp = NULL;
12855 struct lpfc_iocbq *iocbq;
12856 int sum, i, ret_val;
12857 unsigned long iflags;
12858 struct lpfc_sli_ring *pring_s4 = NULL;
12859 u16 ulp_context, iotag, cqid = LPFC_WQE_CQ_ID_DEFAULT;
12860 bool ia;
12861
12862 /* all I/Os are in process of being flushed */
12863 if (test_bit(HBA_IOQ_FLUSH, &phba->hba_flag))
12864 return 0;
12865
12866 sum = 0;
12867
12868 spin_lock_irqsave(&phba->hbalock, iflags);
12869 for (i = 1; i <= phba->sli.last_iotag; i++) {
12870 iocbq = phba->sli.iocbq_lookup[i];
12871
12872 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport))
12873 continue;
12874
12875 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
12876 cmd) != 0)
12877 continue;
12878
12879 /* Guard against IO completion being called at same time */
12880 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
12881 spin_lock(&lpfc_cmd->buf_lock);
12882
12883 if (!lpfc_cmd->pCmd) {
12884 spin_unlock(&lpfc_cmd->buf_lock);
12885 continue;
12886 }
12887
12888 if (phba->sli_rev == LPFC_SLI_REV4) {
12889 pring_s4 =
12890 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring;
12891 if (!pring_s4) {
12892 spin_unlock(&lpfc_cmd->buf_lock);
12893 continue;
12894 }
12895 /* Note: both hbalock and ring_lock must be set here */
12896 spin_lock(&pring_s4->ring_lock);
12897 }
12898
12899 /*
12900 * If the iocbq is already being aborted, don't take a second
12901 * action, but do count it.
12902 */
12903 if ((iocbq->cmd_flag & LPFC_DRIVER_ABORTED) ||
12904 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) {
12905 if (phba->sli_rev == LPFC_SLI_REV4)
12906 spin_unlock(&pring_s4->ring_lock);
12907 spin_unlock(&lpfc_cmd->buf_lock);
12908 continue;
12909 }
12910
12911 /* issue ABTS for this IOCB based on iotag */
12912 abtsiocbq = __lpfc_sli_get_iocbq(phba);
12913 if (!abtsiocbq) {
12914 if (phba->sli_rev == LPFC_SLI_REV4)
12915 spin_unlock(&pring_s4->ring_lock);
12916 spin_unlock(&lpfc_cmd->buf_lock);
12917 continue;
12918 }
12919
12920 if (phba->sli_rev == LPFC_SLI_REV4) {
12921 iotag = abtsiocbq->iotag;
12922 ulp_context = iocbq->sli4_xritag;
12923 cqid = lpfc_cmd->hdwq->io_cq_map;
12924 } else {
12925 iotag = iocbq->iocb.ulpIoTag;
12926 if (pring->ringno == LPFC_ELS_RING) {
12927 ndlp = iocbq->ndlp;
12928 ulp_context = ndlp->nlp_rpi;
12929 } else {
12930 ulp_context = iocbq->iocb.ulpContext;
12931 }
12932 }
12933
12934 ndlp = lpfc_cmd->rdata->pnode;
12935
12936 if (lpfc_is_link_up(phba) &&
12937 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE) &&
12938 !(phba->link_flag & LS_EXTERNAL_LOOPBACK))
12939 ia = false;
12940 else
12941 ia = true;
12942
12943 lpfc_sli_prep_abort_xri(phba, abtsiocbq, ulp_context, iotag,
12944 iocbq->iocb.ulpClass, cqid,
12945 ia, false);
12946
12947 abtsiocbq->vport = vport;
12948
12949 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
12950 abtsiocbq->hba_wqidx = iocbq->hba_wqidx;
12951 if (iocbq->cmd_flag & LPFC_IO_FCP)
12952 abtsiocbq->cmd_flag |= LPFC_USE_FCPWQIDX;
12953 if (iocbq->cmd_flag & LPFC_IO_FOF)
12954 abtsiocbq->cmd_flag |= LPFC_IO_FOF;
12955
12956 /* Setup callback routine and issue the command. */
12957 abtsiocbq->cmd_cmpl = lpfc_sli_abort_fcp_cmpl;
12958
12959 /*
12960 * Indicate the IO is being aborted by the driver and set
12961 * the caller's flag into the aborted IO.
12962 */
12963 iocbq->cmd_flag |= LPFC_DRIVER_ABORTED;
12964
12965 if (phba->sli_rev == LPFC_SLI_REV4) {
12966 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno,
12967 abtsiocbq, 0);
12968 spin_unlock(&pring_s4->ring_lock);
12969 } else {
12970 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno,
12971 abtsiocbq, 0);
12972 }
12973
12974 spin_unlock(&lpfc_cmd->buf_lock);
12975
12976 if (ret_val == IOCB_ERROR)
12977 __lpfc_sli_release_iocbq(phba, abtsiocbq);
12978 else
12979 sum++;
12980 }
12981 spin_unlock_irqrestore(&phba->hbalock, iflags);
12982 return sum;
12983 }
12984
12985 /**
12986 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler
12987 * @phba: Pointer to HBA context object.
12988 * @cmdiocbq: Pointer to command iocb.
12989 * @rspiocbq: Pointer to response iocb.
12990 *
12991 * This function is the completion handler for iocbs issued using
12992 * lpfc_sli_issue_iocb_wait function. This function is called by the
12993 * ring event handler function without any lock held. This function
12994 * can be called from both worker thread context and interrupt
12995 * context. This function also can be called from other thread which
12996 * cleans up the SLI layer objects.
12997 * This function copy the contents of the response iocb to the
12998 * response iocb memory object provided by the caller of
12999 * lpfc_sli_issue_iocb_wait and then wakes up the thread which
13000 * sleeps for the iocb completion.
13001 **/
13002 static void
lpfc_sli_wake_iocb_wait(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocbq,struct lpfc_iocbq * rspiocbq)13003 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba,
13004 struct lpfc_iocbq *cmdiocbq,
13005 struct lpfc_iocbq *rspiocbq)
13006 {
13007 wait_queue_head_t *pdone_q;
13008 unsigned long iflags;
13009 struct lpfc_io_buf *lpfc_cmd;
13010 size_t offset = offsetof(struct lpfc_iocbq, wqe);
13011
13012 spin_lock_irqsave(&phba->hbalock, iflags);
13013 if (cmdiocbq->cmd_flag & LPFC_IO_WAKE_TMO) {
13014
13015 /*
13016 * A time out has occurred for the iocb. If a time out
13017 * completion handler has been supplied, call it. Otherwise,
13018 * just free the iocbq.
13019 */
13020
13021 spin_unlock_irqrestore(&phba->hbalock, iflags);
13022 cmdiocbq->cmd_cmpl = cmdiocbq->wait_cmd_cmpl;
13023 cmdiocbq->wait_cmd_cmpl = NULL;
13024 if (cmdiocbq->cmd_cmpl)
13025 cmdiocbq->cmd_cmpl(phba, cmdiocbq, NULL);
13026 else
13027 lpfc_sli_release_iocbq(phba, cmdiocbq);
13028 return;
13029 }
13030
13031 /* Copy the contents of the local rspiocb into the caller's buffer. */
13032 cmdiocbq->cmd_flag |= LPFC_IO_WAKE;
13033 if (cmdiocbq->rsp_iocb && rspiocbq)
13034 memcpy((char *)cmdiocbq->rsp_iocb + offset,
13035 (char *)rspiocbq + offset, sizeof(*rspiocbq) - offset);
13036
13037 /* Set the exchange busy flag for task management commands */
13038 if ((cmdiocbq->cmd_flag & LPFC_IO_FCP) &&
13039 !(cmdiocbq->cmd_flag & LPFC_IO_LIBDFC)) {
13040 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf,
13041 cur_iocbq);
13042 if (rspiocbq && (rspiocbq->cmd_flag & LPFC_EXCHANGE_BUSY))
13043 lpfc_cmd->flags |= LPFC_SBUF_XBUSY;
13044 else
13045 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY;
13046 }
13047
13048 pdone_q = cmdiocbq->context_un.wait_queue;
13049 if (pdone_q)
13050 wake_up(pdone_q);
13051 spin_unlock_irqrestore(&phba->hbalock, iflags);
13052 return;
13053 }
13054
13055 /**
13056 * lpfc_chk_iocb_flg - Test IOCB flag with lock held.
13057 * @phba: Pointer to HBA context object..
13058 * @piocbq: Pointer to command iocb.
13059 * @flag: Flag to test.
13060 *
13061 * This routine grabs the hbalock and then test the cmd_flag to
13062 * see if the passed in flag is set.
13063 * Returns:
13064 * 1 if flag is set.
13065 * 0 if flag is not set.
13066 **/
13067 static int
lpfc_chk_iocb_flg(struct lpfc_hba * phba,struct lpfc_iocbq * piocbq,uint32_t flag)13068 lpfc_chk_iocb_flg(struct lpfc_hba *phba,
13069 struct lpfc_iocbq *piocbq, uint32_t flag)
13070 {
13071 unsigned long iflags;
13072 int ret;
13073
13074 spin_lock_irqsave(&phba->hbalock, iflags);
13075 ret = piocbq->cmd_flag & flag;
13076 spin_unlock_irqrestore(&phba->hbalock, iflags);
13077 return ret;
13078
13079 }
13080
13081 /**
13082 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands
13083 * @phba: Pointer to HBA context object..
13084 * @ring_number: Ring number
13085 * @piocb: Pointer to command iocb.
13086 * @prspiocbq: Pointer to response iocb.
13087 * @timeout: Timeout in number of seconds.
13088 *
13089 * This function issues the iocb to firmware and waits for the
13090 * iocb to complete. The cmd_cmpl field of the shall be used
13091 * to handle iocbs which time out. If the field is NULL, the
13092 * function shall free the iocbq structure. If more clean up is
13093 * needed, the caller is expected to provide a completion function
13094 * that will provide the needed clean up. If the iocb command is
13095 * not completed within timeout seconds, the function will either
13096 * free the iocbq structure (if cmd_cmpl == NULL) or execute the
13097 * completion function set in the cmd_cmpl field and then return
13098 * a status of IOCB_TIMEDOUT. The caller should not free the iocb
13099 * resources if this function returns IOCB_TIMEDOUT.
13100 * The function waits for the iocb completion using an
13101 * non-interruptible wait.
13102 * This function will sleep while waiting for iocb completion.
13103 * So, this function should not be called from any context which
13104 * does not allow sleeping. Due to the same reason, this function
13105 * cannot be called with interrupt disabled.
13106 * This function assumes that the iocb completions occur while
13107 * this function sleep. So, this function cannot be called from
13108 * the thread which process iocb completion for this ring.
13109 * This function clears the cmd_flag of the iocb object before
13110 * issuing the iocb and the iocb completion handler sets this
13111 * flag and wakes this thread when the iocb completes.
13112 * The contents of the response iocb will be copied to prspiocbq
13113 * by the completion handler when the command completes.
13114 * This function returns IOCB_SUCCESS when success.
13115 * This function is called with no lock held.
13116 **/
13117 int
lpfc_sli_issue_iocb_wait(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,struct lpfc_iocbq * prspiocbq,uint32_t timeout)13118 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba,
13119 uint32_t ring_number,
13120 struct lpfc_iocbq *piocb,
13121 struct lpfc_iocbq *prspiocbq,
13122 uint32_t timeout)
13123 {
13124 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
13125 long timeleft, timeout_req = 0;
13126 int retval = IOCB_SUCCESS;
13127 uint32_t creg_val;
13128 struct lpfc_iocbq *iocb;
13129 int txq_cnt = 0;
13130 int txcmplq_cnt = 0;
13131 struct lpfc_sli_ring *pring;
13132 unsigned long iflags;
13133 bool iocb_completed = true;
13134
13135 if (phba->sli_rev >= LPFC_SLI_REV4) {
13136 lpfc_sli_prep_wqe(phba, piocb);
13137
13138 pring = lpfc_sli4_calc_ring(phba, piocb);
13139 } else
13140 pring = &phba->sli.sli3_ring[ring_number];
13141 /*
13142 * If the caller has provided a response iocbq buffer, then rsp_iocb
13143 * is NULL or its an error.
13144 */
13145 if (prspiocbq) {
13146 if (piocb->rsp_iocb)
13147 return IOCB_ERROR;
13148 piocb->rsp_iocb = prspiocbq;
13149 }
13150
13151 piocb->wait_cmd_cmpl = piocb->cmd_cmpl;
13152 piocb->cmd_cmpl = lpfc_sli_wake_iocb_wait;
13153 piocb->context_un.wait_queue = &done_q;
13154 piocb->cmd_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO);
13155
13156 if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
13157 if (lpfc_readl(phba->HCregaddr, &creg_val))
13158 return IOCB_ERROR;
13159 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING);
13160 writel(creg_val, phba->HCregaddr);
13161 readl(phba->HCregaddr); /* flush */
13162 }
13163
13164 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb,
13165 SLI_IOCB_RET_IOCB);
13166 if (retval == IOCB_SUCCESS) {
13167 timeout_req = secs_to_jiffies(timeout);
13168 timeleft = wait_event_timeout(done_q,
13169 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE),
13170 timeout_req);
13171 spin_lock_irqsave(&phba->hbalock, iflags);
13172 if (!(piocb->cmd_flag & LPFC_IO_WAKE)) {
13173
13174 /*
13175 * IOCB timed out. Inform the wake iocb wait
13176 * completion function and set local status
13177 */
13178
13179 iocb_completed = false;
13180 piocb->cmd_flag |= LPFC_IO_WAKE_TMO;
13181 }
13182 spin_unlock_irqrestore(&phba->hbalock, iflags);
13183 if (iocb_completed) {
13184 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13185 "0331 IOCB wake signaled\n");
13186 /* Note: we are not indicating if the IOCB has a success
13187 * status or not - that's for the caller to check.
13188 * IOCB_SUCCESS means just that the command was sent and
13189 * completed. Not that it completed successfully.
13190 * */
13191 } else if (timeleft == 0) {
13192 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13193 "0338 IOCB wait timeout error - no "
13194 "wake response Data x%x\n", timeout);
13195 retval = IOCB_TIMEDOUT;
13196 } else {
13197 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13198 "0330 IOCB wake NOT set, "
13199 "Data x%x x%lx\n",
13200 timeout, (timeleft / jiffies));
13201 retval = IOCB_TIMEDOUT;
13202 }
13203 } else if (retval == IOCB_BUSY) {
13204 if (phba->cfg_log_verbose & LOG_SLI) {
13205 list_for_each_entry(iocb, &pring->txq, list) {
13206 txq_cnt++;
13207 }
13208 list_for_each_entry(iocb, &pring->txcmplq, list) {
13209 txcmplq_cnt++;
13210 }
13211 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13212 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n",
13213 phba->iocb_cnt, txq_cnt, txcmplq_cnt);
13214 }
13215 return retval;
13216 } else {
13217 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13218 "0332 IOCB wait issue failed, Data x%x\n",
13219 retval);
13220 retval = IOCB_ERROR;
13221 }
13222
13223 if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
13224 if (lpfc_readl(phba->HCregaddr, &creg_val))
13225 return IOCB_ERROR;
13226 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING);
13227 writel(creg_val, phba->HCregaddr);
13228 readl(phba->HCregaddr); /* flush */
13229 }
13230
13231 if (prspiocbq)
13232 piocb->rsp_iocb = NULL;
13233
13234 piocb->context_un.wait_queue = NULL;
13235 piocb->cmd_cmpl = NULL;
13236 return retval;
13237 }
13238
13239 /**
13240 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox
13241 * @phba: Pointer to HBA context object.
13242 * @pmboxq: Pointer to driver mailbox object.
13243 * @timeout: Timeout in number of seconds.
13244 *
13245 * This function issues the mailbox to firmware and waits for the
13246 * mailbox command to complete. If the mailbox command is not
13247 * completed within timeout seconds, it returns MBX_TIMEOUT.
13248 * The function waits for the mailbox completion using an
13249 * interruptible wait. If the thread is woken up due to a
13250 * signal, MBX_TIMEOUT error is returned to the caller. Caller
13251 * should not free the mailbox resources, if this function returns
13252 * MBX_TIMEOUT.
13253 * This function will sleep while waiting for mailbox completion.
13254 * So, this function should not be called from any context which
13255 * does not allow sleeping. Due to the same reason, this function
13256 * cannot be called with interrupt disabled.
13257 * This function assumes that the mailbox completion occurs while
13258 * this function sleep. So, this function cannot be called from
13259 * the worker thread which processes mailbox completion.
13260 * This function is called in the context of HBA management
13261 * applications.
13262 * This function returns MBX_SUCCESS when successful.
13263 * This function is called with no lock held.
13264 **/
13265 int
lpfc_sli_issue_mbox_wait(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmboxq,uint32_t timeout)13266 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq,
13267 uint32_t timeout)
13268 {
13269 struct completion mbox_done;
13270 int retval;
13271 unsigned long flag;
13272
13273 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE;
13274 /* setup wake call as IOCB callback */
13275 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait;
13276
13277 /* setup ctx_u field to pass wait_queue pointer to wake function */
13278 init_completion(&mbox_done);
13279 pmboxq->ctx_u.mbox_wait = &mbox_done;
13280 /* now issue the command */
13281 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
13282 if (retval == MBX_BUSY || retval == MBX_SUCCESS) {
13283 wait_for_completion_timeout(&mbox_done, secs_to_jiffies(timeout));
13284
13285 spin_lock_irqsave(&phba->hbalock, flag);
13286 pmboxq->ctx_u.mbox_wait = NULL;
13287 /*
13288 * if LPFC_MBX_WAKE flag is set the mailbox is completed
13289 * else do not free the resources.
13290 */
13291 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) {
13292 retval = MBX_SUCCESS;
13293 } else {
13294 retval = MBX_TIMEOUT;
13295 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
13296 }
13297 spin_unlock_irqrestore(&phba->hbalock, flag);
13298 }
13299 return retval;
13300 }
13301
13302 /**
13303 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system
13304 * @phba: Pointer to HBA context.
13305 * @mbx_action: Mailbox shutdown options.
13306 *
13307 * This function is called to shutdown the driver's mailbox sub-system.
13308 * It first marks the mailbox sub-system is in a block state to prevent
13309 * the asynchronous mailbox command from issued off the pending mailbox
13310 * command queue. If the mailbox command sub-system shutdown is due to
13311 * HBA error conditions such as EEH or ERATT, this routine shall invoke
13312 * the mailbox sub-system flush routine to forcefully bring down the
13313 * mailbox sub-system. Otherwise, if it is due to normal condition (such
13314 * as with offline or HBA function reset), this routine will wait for the
13315 * outstanding mailbox command to complete before invoking the mailbox
13316 * sub-system flush routine to gracefully bring down mailbox sub-system.
13317 **/
13318 void
lpfc_sli_mbox_sys_shutdown(struct lpfc_hba * phba,int mbx_action)13319 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action)
13320 {
13321 struct lpfc_sli *psli = &phba->sli;
13322 unsigned long timeout;
13323
13324 if (mbx_action == LPFC_MBX_NO_WAIT) {
13325 /* delay 100ms for port state */
13326 msleep(100);
13327 lpfc_sli_mbox_sys_flush(phba);
13328 return;
13329 }
13330 timeout = secs_to_jiffies(LPFC_MBOX_TMO) + jiffies;
13331
13332 /* Disable softirqs, including timers from obtaining phba->hbalock */
13333 local_bh_disable();
13334
13335 spin_lock_irq(&phba->hbalock);
13336 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
13337
13338 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
13339 /* Determine how long we might wait for the active mailbox
13340 * command to be gracefully completed by firmware.
13341 */
13342 if (phba->sli.mbox_active)
13343 timeout = secs_to_jiffies(lpfc_mbox_tmo_val(phba,
13344 phba->sli.mbox_active)) + jiffies;
13345 spin_unlock_irq(&phba->hbalock);
13346
13347 /* Enable softirqs again, done with phba->hbalock */
13348 local_bh_enable();
13349
13350 while (phba->sli.mbox_active) {
13351 /* Check active mailbox complete status every 2ms */
13352 msleep(2);
13353 if (time_after(jiffies, timeout))
13354 /* Timeout, let the mailbox flush routine to
13355 * forcefully release active mailbox command
13356 */
13357 break;
13358 }
13359 } else {
13360 spin_unlock_irq(&phba->hbalock);
13361
13362 /* Enable softirqs again, done with phba->hbalock */
13363 local_bh_enable();
13364 }
13365
13366 lpfc_sli_mbox_sys_flush(phba);
13367 }
13368
13369 /**
13370 * lpfc_sli_eratt_read - read sli-3 error attention events
13371 * @phba: Pointer to HBA context.
13372 *
13373 * This function is called to read the SLI3 device error attention registers
13374 * for possible error attention events. The caller must hold the hostlock
13375 * with spin_lock_irq().
13376 *
13377 * This function returns 1 when there is Error Attention in the Host Attention
13378 * Register and returns 0 otherwise.
13379 **/
13380 static int
lpfc_sli_eratt_read(struct lpfc_hba * phba)13381 lpfc_sli_eratt_read(struct lpfc_hba *phba)
13382 {
13383 uint32_t ha_copy;
13384
13385 /* Read chip Host Attention (HA) register */
13386 if (lpfc_readl(phba->HAregaddr, &ha_copy))
13387 goto unplug_err;
13388
13389 if (ha_copy & HA_ERATT) {
13390 /* Read host status register to retrieve error event */
13391 if (lpfc_sli_read_hs(phba))
13392 goto unplug_err;
13393
13394 /* Check if there is a deferred error condition is active */
13395 if ((HS_FFER1 & phba->work_hs) &&
13396 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
13397 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) {
13398 set_bit(DEFER_ERATT, &phba->hba_flag);
13399 /* Clear all interrupt enable conditions */
13400 writel(0, phba->HCregaddr);
13401 readl(phba->HCregaddr);
13402 }
13403
13404 /* Set the driver HA work bitmap */
13405 phba->work_ha |= HA_ERATT;
13406 /* Indicate polling handles this ERATT */
13407 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag);
13408 return 1;
13409 }
13410 return 0;
13411
13412 unplug_err:
13413 /* Set the driver HS work bitmap */
13414 phba->work_hs |= UNPLUG_ERR;
13415 /* Set the driver HA work bitmap */
13416 phba->work_ha |= HA_ERATT;
13417 /* Indicate polling handles this ERATT */
13418 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag);
13419 return 1;
13420 }
13421
13422 /**
13423 * lpfc_sli4_eratt_read - read sli-4 error attention events
13424 * @phba: Pointer to HBA context.
13425 *
13426 * This function is called to read the SLI4 device error attention registers
13427 * for possible error attention events. The caller must hold the hostlock
13428 * with spin_lock_irq().
13429 *
13430 * This function returns 1 when there is Error Attention in the Host Attention
13431 * Register and returns 0 otherwise.
13432 **/
13433 static int
lpfc_sli4_eratt_read(struct lpfc_hba * phba)13434 lpfc_sli4_eratt_read(struct lpfc_hba *phba)
13435 {
13436 uint32_t uerr_sta_hi, uerr_sta_lo;
13437 uint32_t if_type, portsmphr;
13438 struct lpfc_register portstat_reg;
13439 u32 logmask;
13440
13441 /*
13442 * For now, use the SLI4 device internal unrecoverable error
13443 * registers for error attention. This can be changed later.
13444 */
13445 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
13446 switch (if_type) {
13447 case LPFC_SLI_INTF_IF_TYPE_0:
13448 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr,
13449 &uerr_sta_lo) ||
13450 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr,
13451 &uerr_sta_hi)) {
13452 phba->work_hs |= UNPLUG_ERR;
13453 phba->work_ha |= HA_ERATT;
13454 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag);
13455 return 1;
13456 }
13457 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) ||
13458 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) {
13459 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13460 "1423 HBA Unrecoverable error: "
13461 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, "
13462 "ue_mask_lo_reg=0x%x, "
13463 "ue_mask_hi_reg=0x%x\n",
13464 uerr_sta_lo, uerr_sta_hi,
13465 phba->sli4_hba.ue_mask_lo,
13466 phba->sli4_hba.ue_mask_hi);
13467 phba->work_status[0] = uerr_sta_lo;
13468 phba->work_status[1] = uerr_sta_hi;
13469 phba->work_ha |= HA_ERATT;
13470 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag);
13471 return 1;
13472 }
13473 break;
13474 case LPFC_SLI_INTF_IF_TYPE_2:
13475 case LPFC_SLI_INTF_IF_TYPE_6:
13476 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
13477 &portstat_reg.word0) ||
13478 lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
13479 &portsmphr)){
13480 phba->work_hs |= UNPLUG_ERR;
13481 phba->work_ha |= HA_ERATT;
13482 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag);
13483 return 1;
13484 }
13485 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) {
13486 phba->work_status[0] =
13487 readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
13488 phba->work_status[1] =
13489 readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
13490 logmask = LOG_TRACE_EVENT;
13491 if (phba->work_status[0] ==
13492 SLIPORT_ERR1_REG_ERR_CODE_2 &&
13493 phba->work_status[1] == SLIPORT_ERR2_REG_FW_RESTART)
13494 logmask = LOG_SLI;
13495 lpfc_printf_log(phba, KERN_ERR, logmask,
13496 "2885 Port Status Event: "
13497 "port status reg 0x%x, "
13498 "port smphr reg 0x%x, "
13499 "error 1=0x%x, error 2=0x%x\n",
13500 portstat_reg.word0,
13501 portsmphr,
13502 phba->work_status[0],
13503 phba->work_status[1]);
13504 phba->work_ha |= HA_ERATT;
13505 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag);
13506 return 1;
13507 }
13508 break;
13509 case LPFC_SLI_INTF_IF_TYPE_1:
13510 default:
13511 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13512 "2886 HBA Error Attention on unsupported "
13513 "if type %d.", if_type);
13514 return 1;
13515 }
13516
13517 return 0;
13518 }
13519
13520 /**
13521 * lpfc_sli_check_eratt - check error attention events
13522 * @phba: Pointer to HBA context.
13523 *
13524 * This function is called from timer soft interrupt context to check HBA's
13525 * error attention register bit for error attention events.
13526 *
13527 * This function returns 1 when there is Error Attention in the Host Attention
13528 * Register and returns 0 otherwise.
13529 **/
13530 int
lpfc_sli_check_eratt(struct lpfc_hba * phba)13531 lpfc_sli_check_eratt(struct lpfc_hba *phba)
13532 {
13533 uint32_t ha_copy;
13534
13535 /* If somebody is waiting to handle an eratt, don't process it
13536 * here. The brdkill function will do this.
13537 */
13538 if (phba->link_flag & LS_IGNORE_ERATT)
13539 return 0;
13540
13541 /* Check if interrupt handler handles this ERATT */
13542 if (test_bit(HBA_ERATT_HANDLED, &phba->hba_flag))
13543 /* Interrupt handler has handled ERATT */
13544 return 0;
13545
13546 /*
13547 * If there is deferred error attention, do not check for error
13548 * attention
13549 */
13550 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag)))
13551 return 0;
13552
13553 spin_lock_irq(&phba->hbalock);
13554 /* If PCI channel is offline, don't process it */
13555 if (unlikely(pci_channel_offline(phba->pcidev))) {
13556 spin_unlock_irq(&phba->hbalock);
13557 return 0;
13558 }
13559
13560 switch (phba->sli_rev) {
13561 case LPFC_SLI_REV2:
13562 case LPFC_SLI_REV3:
13563 /* Read chip Host Attention (HA) register */
13564 ha_copy = lpfc_sli_eratt_read(phba);
13565 break;
13566 case LPFC_SLI_REV4:
13567 /* Read device Uncoverable Error (UERR) registers */
13568 ha_copy = lpfc_sli4_eratt_read(phba);
13569 break;
13570 default:
13571 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13572 "0299 Invalid SLI revision (%d)\n",
13573 phba->sli_rev);
13574 ha_copy = 0;
13575 break;
13576 }
13577 spin_unlock_irq(&phba->hbalock);
13578
13579 return ha_copy;
13580 }
13581
13582 /**
13583 * lpfc_intr_state_check - Check device state for interrupt handling
13584 * @phba: Pointer to HBA context.
13585 *
13586 * This inline routine checks whether a device or its PCI slot is in a state
13587 * that the interrupt should be handled.
13588 *
13589 * This function returns 0 if the device or the PCI slot is in a state that
13590 * interrupt should be handled, otherwise -EIO.
13591 */
13592 static inline int
lpfc_intr_state_check(struct lpfc_hba * phba)13593 lpfc_intr_state_check(struct lpfc_hba *phba)
13594 {
13595 /* If the pci channel is offline, ignore all the interrupts */
13596 if (unlikely(pci_channel_offline(phba->pcidev)))
13597 return -EIO;
13598
13599 /* Update device level interrupt statistics */
13600 phba->sli.slistat.sli_intr++;
13601
13602 /* Ignore all interrupts during initialization. */
13603 if (unlikely(phba->link_state < LPFC_LINK_DOWN))
13604 return -EIO;
13605
13606 return 0;
13607 }
13608
13609 /**
13610 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device
13611 * @irq: Interrupt number.
13612 * @dev_id: The device context pointer.
13613 *
13614 * This function is directly called from the PCI layer as an interrupt
13615 * service routine when device with SLI-3 interface spec is enabled with
13616 * MSI-X multi-message interrupt mode and there are slow-path events in
13617 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
13618 * interrupt mode, this function is called as part of the device-level
13619 * interrupt handler. When the PCI slot is in error recovery or the HBA
13620 * is undergoing initialization, the interrupt handler will not process
13621 * the interrupt. The link attention and ELS ring attention events are
13622 * handled by the worker thread. The interrupt handler signals the worker
13623 * thread and returns for these events. This function is called without
13624 * any lock held. It gets the hbalock to access and update SLI data
13625 * structures.
13626 *
13627 * This function returns IRQ_HANDLED when interrupt is handled else it
13628 * returns IRQ_NONE.
13629 **/
13630 irqreturn_t
lpfc_sli_sp_intr_handler(int irq,void * dev_id)13631 lpfc_sli_sp_intr_handler(int irq, void *dev_id)
13632 {
13633 struct lpfc_hba *phba;
13634 uint32_t ha_copy, hc_copy;
13635 uint32_t work_ha_copy;
13636 unsigned long status;
13637 unsigned long iflag;
13638 uint32_t control;
13639
13640 MAILBOX_t *mbox, *pmbox;
13641 struct lpfc_vport *vport;
13642 struct lpfc_nodelist *ndlp;
13643 struct lpfc_dmabuf *mp;
13644 LPFC_MBOXQ_t *pmb;
13645 int rc;
13646
13647 /*
13648 * Get the driver's phba structure from the dev_id and
13649 * assume the HBA is not interrupting.
13650 */
13651 phba = (struct lpfc_hba *)dev_id;
13652
13653 if (unlikely(!phba))
13654 return IRQ_NONE;
13655
13656 /*
13657 * Stuff needs to be attented to when this function is invoked as an
13658 * individual interrupt handler in MSI-X multi-message interrupt mode
13659 */
13660 if (phba->intr_type == MSIX) {
13661 /* Check device state for handling interrupt */
13662 if (lpfc_intr_state_check(phba))
13663 return IRQ_NONE;
13664 /* Need to read HA REG for slow-path events */
13665 spin_lock_irqsave(&phba->hbalock, iflag);
13666 if (lpfc_readl(phba->HAregaddr, &ha_copy))
13667 goto unplug_error;
13668 /* If somebody is waiting to handle an eratt don't process it
13669 * here. The brdkill function will do this.
13670 */
13671 if (phba->link_flag & LS_IGNORE_ERATT)
13672 ha_copy &= ~HA_ERATT;
13673 /* Check the need for handling ERATT in interrupt handler */
13674 if (ha_copy & HA_ERATT) {
13675 if (test_and_set_bit(HBA_ERATT_HANDLED,
13676 &phba->hba_flag))
13677 /* ERATT polling has handled ERATT */
13678 ha_copy &= ~HA_ERATT;
13679 }
13680
13681 /*
13682 * If there is deferred error attention, do not check for any
13683 * interrupt.
13684 */
13685 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) {
13686 spin_unlock_irqrestore(&phba->hbalock, iflag);
13687 return IRQ_NONE;
13688 }
13689
13690 /* Clear up only attention source related to slow-path */
13691 if (lpfc_readl(phba->HCregaddr, &hc_copy))
13692 goto unplug_error;
13693
13694 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA |
13695 HC_LAINT_ENA | HC_ERINT_ENA),
13696 phba->HCregaddr);
13697 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)),
13698 phba->HAregaddr);
13699 writel(hc_copy, phba->HCregaddr);
13700 readl(phba->HAregaddr); /* flush */
13701 spin_unlock_irqrestore(&phba->hbalock, iflag);
13702 } else
13703 ha_copy = phba->ha_copy;
13704
13705 work_ha_copy = ha_copy & phba->work_ha_mask;
13706
13707 if (work_ha_copy) {
13708 if (work_ha_copy & HA_LATT) {
13709 if (phba->sli.sli_flag & LPFC_PROCESS_LA) {
13710 /*
13711 * Turn off Link Attention interrupts
13712 * until CLEAR_LA done
13713 */
13714 spin_lock_irqsave(&phba->hbalock, iflag);
13715 phba->sli.sli_flag &= ~LPFC_PROCESS_LA;
13716 if (lpfc_readl(phba->HCregaddr, &control))
13717 goto unplug_error;
13718 control &= ~HC_LAINT_ENA;
13719 writel(control, phba->HCregaddr);
13720 readl(phba->HCregaddr); /* flush */
13721 spin_unlock_irqrestore(&phba->hbalock, iflag);
13722 }
13723 else
13724 work_ha_copy &= ~HA_LATT;
13725 }
13726
13727 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) {
13728 /*
13729 * Turn off Slow Rings interrupts, LPFC_ELS_RING is
13730 * the only slow ring.
13731 */
13732 status = (work_ha_copy &
13733 (HA_RXMASK << (4*LPFC_ELS_RING)));
13734 status >>= (4*LPFC_ELS_RING);
13735 if (status & HA_RXMASK) {
13736 spin_lock_irqsave(&phba->hbalock, iflag);
13737 if (lpfc_readl(phba->HCregaddr, &control))
13738 goto unplug_error;
13739
13740 lpfc_debugfs_slow_ring_trc(phba,
13741 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x",
13742 control, status,
13743 (uint32_t)phba->sli.slistat.sli_intr);
13744
13745 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) {
13746 lpfc_debugfs_slow_ring_trc(phba,
13747 "ISR Disable ring:"
13748 "pwork:x%x hawork:x%x wait:x%x",
13749 phba->work_ha, work_ha_copy,
13750 (uint32_t)((unsigned long)
13751 &phba->work_waitq));
13752
13753 control &=
13754 ~(HC_R0INT_ENA << LPFC_ELS_RING);
13755 writel(control, phba->HCregaddr);
13756 readl(phba->HCregaddr); /* flush */
13757 }
13758 else {
13759 lpfc_debugfs_slow_ring_trc(phba,
13760 "ISR slow ring: pwork:"
13761 "x%x hawork:x%x wait:x%x",
13762 phba->work_ha, work_ha_copy,
13763 (uint32_t)((unsigned long)
13764 &phba->work_waitq));
13765 }
13766 spin_unlock_irqrestore(&phba->hbalock, iflag);
13767 }
13768 }
13769 spin_lock_irqsave(&phba->hbalock, iflag);
13770 if (work_ha_copy & HA_ERATT) {
13771 if (lpfc_sli_read_hs(phba))
13772 goto unplug_error;
13773 /*
13774 * Check if there is a deferred error condition
13775 * is active
13776 */
13777 if ((HS_FFER1 & phba->work_hs) &&
13778 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
13779 HS_FFER6 | HS_FFER7 | HS_FFER8) &
13780 phba->work_hs)) {
13781 set_bit(DEFER_ERATT, &phba->hba_flag);
13782 /* Clear all interrupt enable conditions */
13783 writel(0, phba->HCregaddr);
13784 readl(phba->HCregaddr);
13785 }
13786 }
13787
13788 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) {
13789 pmb = phba->sli.mbox_active;
13790 pmbox = &pmb->u.mb;
13791 mbox = phba->mbox;
13792 vport = pmb->vport;
13793
13794 /* First check out the status word */
13795 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t));
13796 if (pmbox->mbxOwner != OWN_HOST) {
13797 spin_unlock_irqrestore(&phba->hbalock, iflag);
13798 /*
13799 * Stray Mailbox Interrupt, mbxCommand <cmd>
13800 * mbxStatus <status>
13801 */
13802 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13803 "(%d):0304 Stray Mailbox "
13804 "Interrupt mbxCommand x%x "
13805 "mbxStatus x%x\n",
13806 (vport ? vport->vpi : 0),
13807 pmbox->mbxCommand,
13808 pmbox->mbxStatus);
13809 /* clear mailbox attention bit */
13810 work_ha_copy &= ~HA_MBATT;
13811 } else {
13812 phba->sli.mbox_active = NULL;
13813 spin_unlock_irqrestore(&phba->hbalock, iflag);
13814 phba->last_completion_time = jiffies;
13815 timer_delete(&phba->sli.mbox_tmo);
13816 if (pmb->mbox_cmpl) {
13817 lpfc_sli_pcimem_bcopy(mbox, pmbox,
13818 MAILBOX_CMD_SIZE);
13819 if (pmb->out_ext_byte_len &&
13820 pmb->ext_buf)
13821 lpfc_sli_pcimem_bcopy(
13822 phba->mbox_ext,
13823 pmb->ext_buf,
13824 pmb->out_ext_byte_len);
13825 }
13826 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
13827 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
13828
13829 lpfc_debugfs_disc_trc(vport,
13830 LPFC_DISC_TRC_MBOX_VPORT,
13831 "MBOX dflt rpi: : "
13832 "status:x%x rpi:x%x",
13833 (uint32_t)pmbox->mbxStatus,
13834 pmbox->un.varWords[0], 0);
13835
13836 if (!pmbox->mbxStatus) {
13837 mp = pmb->ctx_buf;
13838 ndlp = pmb->ctx_ndlp;
13839
13840 /* Reg_LOGIN of dflt RPI was
13841 * successful. new lets get
13842 * rid of the RPI using the
13843 * same mbox buffer.
13844 */
13845 lpfc_unreg_login(phba,
13846 vport->vpi,
13847 pmbox->un.varWords[0],
13848 pmb);
13849 pmb->mbox_cmpl =
13850 lpfc_mbx_cmpl_dflt_rpi;
13851 pmb->ctx_buf = mp;
13852 pmb->ctx_ndlp = ndlp;
13853 pmb->vport = vport;
13854 rc = lpfc_sli_issue_mbox(phba,
13855 pmb,
13856 MBX_NOWAIT);
13857 if (rc != MBX_BUSY)
13858 lpfc_printf_log(phba,
13859 KERN_ERR,
13860 LOG_TRACE_EVENT,
13861 "0350 rc should have"
13862 "been MBX_BUSY\n");
13863 if (rc != MBX_NOT_FINISHED)
13864 goto send_current_mbox;
13865 }
13866 }
13867 spin_lock_irqsave(
13868 &phba->pport->work_port_lock,
13869 iflag);
13870 phba->pport->work_port_events &=
13871 ~WORKER_MBOX_TMO;
13872 spin_unlock_irqrestore(
13873 &phba->pport->work_port_lock,
13874 iflag);
13875
13876 /* Do NOT queue MBX_HEARTBEAT to the worker
13877 * thread for processing.
13878 */
13879 if (pmbox->mbxCommand == MBX_HEARTBEAT) {
13880 /* Process mbox now */
13881 phba->sli.mbox_active = NULL;
13882 phba->sli.sli_flag &=
13883 ~LPFC_SLI_MBOX_ACTIVE;
13884 if (pmb->mbox_cmpl)
13885 pmb->mbox_cmpl(phba, pmb);
13886 } else {
13887 /* Queue to worker thread to process */
13888 lpfc_mbox_cmpl_put(phba, pmb);
13889 }
13890 }
13891 } else
13892 spin_unlock_irqrestore(&phba->hbalock, iflag);
13893
13894 if ((work_ha_copy & HA_MBATT) &&
13895 (phba->sli.mbox_active == NULL)) {
13896 send_current_mbox:
13897 /* Process next mailbox command if there is one */
13898 do {
13899 rc = lpfc_sli_issue_mbox(phba, NULL,
13900 MBX_NOWAIT);
13901 } while (rc == MBX_NOT_FINISHED);
13902 if (rc != MBX_SUCCESS)
13903 lpfc_printf_log(phba, KERN_ERR,
13904 LOG_TRACE_EVENT,
13905 "0349 rc should be "
13906 "MBX_SUCCESS\n");
13907 }
13908
13909 spin_lock_irqsave(&phba->hbalock, iflag);
13910 phba->work_ha |= work_ha_copy;
13911 spin_unlock_irqrestore(&phba->hbalock, iflag);
13912 lpfc_worker_wake_up(phba);
13913 }
13914 return IRQ_HANDLED;
13915 unplug_error:
13916 spin_unlock_irqrestore(&phba->hbalock, iflag);
13917 return IRQ_HANDLED;
13918
13919 } /* lpfc_sli_sp_intr_handler */
13920
13921 /**
13922 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device.
13923 * @irq: Interrupt number.
13924 * @dev_id: The device context pointer.
13925 *
13926 * This function is directly called from the PCI layer as an interrupt
13927 * service routine when device with SLI-3 interface spec is enabled with
13928 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
13929 * ring event in the HBA. However, when the device is enabled with either
13930 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
13931 * device-level interrupt handler. When the PCI slot is in error recovery
13932 * or the HBA is undergoing initialization, the interrupt handler will not
13933 * process the interrupt. The SCSI FCP fast-path ring event are handled in
13934 * the intrrupt context. This function is called without any lock held.
13935 * It gets the hbalock to access and update SLI data structures.
13936 *
13937 * This function returns IRQ_HANDLED when interrupt is handled else it
13938 * returns IRQ_NONE.
13939 **/
13940 irqreturn_t
lpfc_sli_fp_intr_handler(int irq,void * dev_id)13941 lpfc_sli_fp_intr_handler(int irq, void *dev_id)
13942 {
13943 struct lpfc_hba *phba;
13944 uint32_t ha_copy;
13945 unsigned long status;
13946 unsigned long iflag;
13947 struct lpfc_sli_ring *pring;
13948
13949 /* Get the driver's phba structure from the dev_id and
13950 * assume the HBA is not interrupting.
13951 */
13952 phba = (struct lpfc_hba *) dev_id;
13953
13954 if (unlikely(!phba))
13955 return IRQ_NONE;
13956
13957 /*
13958 * Stuff needs to be attented to when this function is invoked as an
13959 * individual interrupt handler in MSI-X multi-message interrupt mode
13960 */
13961 if (phba->intr_type == MSIX) {
13962 /* Check device state for handling interrupt */
13963 if (lpfc_intr_state_check(phba))
13964 return IRQ_NONE;
13965 /* Need to read HA REG for FCP ring and other ring events */
13966 if (lpfc_readl(phba->HAregaddr, &ha_copy))
13967 return IRQ_HANDLED;
13968
13969 /*
13970 * If there is deferred error attention, do not check for
13971 * any interrupt.
13972 */
13973 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag)))
13974 return IRQ_NONE;
13975
13976 /* Clear up only attention source related to fast-path */
13977 spin_lock_irqsave(&phba->hbalock, iflag);
13978 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)),
13979 phba->HAregaddr);
13980 readl(phba->HAregaddr); /* flush */
13981 spin_unlock_irqrestore(&phba->hbalock, iflag);
13982 } else
13983 ha_copy = phba->ha_copy;
13984
13985 /*
13986 * Process all events on FCP ring. Take the optimized path for FCP IO.
13987 */
13988 ha_copy &= ~(phba->work_ha_mask);
13989
13990 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
13991 status >>= (4*LPFC_FCP_RING);
13992 pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
13993 if (status & HA_RXMASK)
13994 lpfc_sli_handle_fast_ring_event(phba, pring, status);
13995
13996 if (phba->cfg_multi_ring_support == 2) {
13997 /*
13998 * Process all events on extra ring. Take the optimized path
13999 * for extra ring IO.
14000 */
14001 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
14002 status >>= (4*LPFC_EXTRA_RING);
14003 if (status & HA_RXMASK) {
14004 lpfc_sli_handle_fast_ring_event(phba,
14005 &phba->sli.sli3_ring[LPFC_EXTRA_RING],
14006 status);
14007 }
14008 }
14009 return IRQ_HANDLED;
14010 } /* lpfc_sli_fp_intr_handler */
14011
14012 /**
14013 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device
14014 * @irq: Interrupt number.
14015 * @dev_id: The device context pointer.
14016 *
14017 * This function is the HBA device-level interrupt handler to device with
14018 * SLI-3 interface spec, called from the PCI layer when either MSI or
14019 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which
14020 * requires driver attention. This function invokes the slow-path interrupt
14021 * attention handling function and fast-path interrupt attention handling
14022 * function in turn to process the relevant HBA attention events. This
14023 * function is called without any lock held. It gets the hbalock to access
14024 * and update SLI data structures.
14025 *
14026 * This function returns IRQ_HANDLED when interrupt is handled, else it
14027 * returns IRQ_NONE.
14028 **/
14029 irqreturn_t
lpfc_sli_intr_handler(int irq,void * dev_id)14030 lpfc_sli_intr_handler(int irq, void *dev_id)
14031 {
14032 struct lpfc_hba *phba;
14033 irqreturn_t sp_irq_rc, fp_irq_rc;
14034 unsigned long status1, status2;
14035 uint32_t hc_copy;
14036
14037 /*
14038 * Get the driver's phba structure from the dev_id and
14039 * assume the HBA is not interrupting.
14040 */
14041 phba = (struct lpfc_hba *) dev_id;
14042
14043 if (unlikely(!phba))
14044 return IRQ_NONE;
14045
14046 /* Check device state for handling interrupt */
14047 if (lpfc_intr_state_check(phba))
14048 return IRQ_NONE;
14049
14050 spin_lock(&phba->hbalock);
14051 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) {
14052 spin_unlock(&phba->hbalock);
14053 return IRQ_HANDLED;
14054 }
14055
14056 if (unlikely(!phba->ha_copy)) {
14057 spin_unlock(&phba->hbalock);
14058 return IRQ_NONE;
14059 } else if (phba->ha_copy & HA_ERATT) {
14060 if (test_and_set_bit(HBA_ERATT_HANDLED, &phba->hba_flag))
14061 /* ERATT polling has handled ERATT */
14062 phba->ha_copy &= ~HA_ERATT;
14063 }
14064
14065 /*
14066 * If there is deferred error attention, do not check for any interrupt.
14067 */
14068 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) {
14069 spin_unlock(&phba->hbalock);
14070 return IRQ_NONE;
14071 }
14072
14073 /* Clear attention sources except link and error attentions */
14074 if (lpfc_readl(phba->HCregaddr, &hc_copy)) {
14075 spin_unlock(&phba->hbalock);
14076 return IRQ_HANDLED;
14077 }
14078 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA
14079 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA),
14080 phba->HCregaddr);
14081 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr);
14082 writel(hc_copy, phba->HCregaddr);
14083 readl(phba->HAregaddr); /* flush */
14084 spin_unlock(&phba->hbalock);
14085
14086 /*
14087 * Invokes slow-path host attention interrupt handling as appropriate.
14088 */
14089
14090 /* status of events with mailbox and link attention */
14091 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT);
14092
14093 /* status of events with ELS ring */
14094 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING)));
14095 status2 >>= (4*LPFC_ELS_RING);
14096
14097 if (status1 || (status2 & HA_RXMASK))
14098 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id);
14099 else
14100 sp_irq_rc = IRQ_NONE;
14101
14102 /*
14103 * Invoke fast-path host attention interrupt handling as appropriate.
14104 */
14105
14106 /* status of events with FCP ring */
14107 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
14108 status1 >>= (4*LPFC_FCP_RING);
14109
14110 /* status of events with extra ring */
14111 if (phba->cfg_multi_ring_support == 2) {
14112 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
14113 status2 >>= (4*LPFC_EXTRA_RING);
14114 } else
14115 status2 = 0;
14116
14117 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK))
14118 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id);
14119 else
14120 fp_irq_rc = IRQ_NONE;
14121
14122 /* Return device-level interrupt handling status */
14123 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc;
14124 } /* lpfc_sli_intr_handler */
14125
14126 /**
14127 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event
14128 * @phba: pointer to lpfc hba data structure.
14129 *
14130 * This routine is invoked by the worker thread to process all the pending
14131 * SLI4 els abort xri events.
14132 **/
lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba * phba)14133 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba)
14134 {
14135 struct lpfc_cq_event *cq_event;
14136 unsigned long iflags;
14137
14138 /* First, declare the els xri abort event has been handled */
14139 clear_bit(ELS_XRI_ABORT_EVENT, &phba->hba_flag);
14140
14141 /* Now, handle all the els xri abort events */
14142 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
14143 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) {
14144 /* Get the first event from the head of the event queue */
14145 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
14146 cq_event, struct lpfc_cq_event, list);
14147 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock,
14148 iflags);
14149 /* Notify aborted XRI for ELS work queue */
14150 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
14151
14152 /* Free the event processed back to the free pool */
14153 lpfc_sli4_cq_event_release(phba, cq_event);
14154 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock,
14155 iflags);
14156 }
14157 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
14158 }
14159
14160 /**
14161 * lpfc_sli4_els_preprocess_rspiocbq - Get response iocbq from els wcqe
14162 * @phba: Pointer to HBA context object.
14163 * @irspiocbq: Pointer to work-queue completion queue entry.
14164 *
14165 * This routine handles an ELS work-queue completion event and construct
14166 * a pseudo response ELS IOCBQ from the SLI4 ELS WCQE for the common
14167 * discovery engine to handle.
14168 *
14169 * Return: Pointer to the receive IOCBQ, NULL otherwise.
14170 **/
14171 static struct lpfc_iocbq *
lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba * phba,struct lpfc_iocbq * irspiocbq)14172 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba,
14173 struct lpfc_iocbq *irspiocbq)
14174 {
14175 struct lpfc_sli_ring *pring;
14176 struct lpfc_iocbq *cmdiocbq;
14177 struct lpfc_wcqe_complete *wcqe;
14178 unsigned long iflags;
14179
14180 pring = lpfc_phba_elsring(phba);
14181 if (unlikely(!pring))
14182 return NULL;
14183
14184 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl;
14185 spin_lock_irqsave(&pring->ring_lock, iflags);
14186 pring->stats.iocb_event++;
14187 /* Look up the ELS command IOCB and create pseudo response IOCB */
14188 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
14189 bf_get(lpfc_wcqe_c_request_tag, wcqe));
14190 if (unlikely(!cmdiocbq)) {
14191 spin_unlock_irqrestore(&pring->ring_lock, iflags);
14192 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14193 "0386 ELS complete with no corresponding "
14194 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n",
14195 wcqe->word0, wcqe->total_data_placed,
14196 wcqe->parameter, wcqe->word3);
14197 lpfc_sli_release_iocbq(phba, irspiocbq);
14198 return NULL;
14199 }
14200
14201 memcpy(&irspiocbq->wqe, &cmdiocbq->wqe, sizeof(union lpfc_wqe128));
14202 memcpy(&irspiocbq->wcqe_cmpl, wcqe, sizeof(*wcqe));
14203
14204 /* Put the iocb back on the txcmplq */
14205 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq);
14206 spin_unlock_irqrestore(&pring->ring_lock, iflags);
14207
14208 if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
14209 spin_lock_irqsave(&phba->hbalock, iflags);
14210 irspiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY;
14211 spin_unlock_irqrestore(&phba->hbalock, iflags);
14212 }
14213
14214 return irspiocbq;
14215 }
14216
14217 inline struct lpfc_cq_event *
lpfc_cq_event_setup(struct lpfc_hba * phba,void * entry,int size)14218 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size)
14219 {
14220 struct lpfc_cq_event *cq_event;
14221
14222 /* Allocate a new internal CQ_EVENT entry */
14223 cq_event = lpfc_sli4_cq_event_alloc(phba);
14224 if (!cq_event) {
14225 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14226 "0602 Failed to alloc CQ_EVENT entry\n");
14227 return NULL;
14228 }
14229
14230 /* Move the CQE into the event */
14231 memcpy(&cq_event->cqe, entry, size);
14232 return cq_event;
14233 }
14234
14235 /**
14236 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event
14237 * @phba: Pointer to HBA context object.
14238 * @mcqe: Pointer to mailbox completion queue entry.
14239 *
14240 * This routine process a mailbox completion queue entry with asynchronous
14241 * event.
14242 *
14243 * Return: true if work posted to worker thread, otherwise false.
14244 **/
14245 static bool
lpfc_sli4_sp_handle_async_event(struct lpfc_hba * phba,struct lpfc_mcqe * mcqe)14246 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
14247 {
14248 struct lpfc_cq_event *cq_event;
14249 unsigned long iflags;
14250
14251 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
14252 "0392 Async Event: word0:x%x, word1:x%x, "
14253 "word2:x%x, word3:x%x\n", mcqe->word0,
14254 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer);
14255
14256 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe));
14257 if (!cq_event)
14258 return false;
14259
14260 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
14261 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue);
14262 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
14263
14264 /* Set the async event flag */
14265 set_bit(ASYNC_EVENT, &phba->hba_flag);
14266
14267 return true;
14268 }
14269
14270 /**
14271 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event
14272 * @phba: Pointer to HBA context object.
14273 * @mcqe: Pointer to mailbox completion queue entry.
14274 *
14275 * This routine process a mailbox completion queue entry with mailbox
14276 * completion event.
14277 *
14278 * Return: true if work posted to worker thread, otherwise false.
14279 **/
14280 static bool
lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba * phba,struct lpfc_mcqe * mcqe)14281 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
14282 {
14283 uint32_t mcqe_status;
14284 MAILBOX_t *mbox, *pmbox;
14285 struct lpfc_mqe *mqe;
14286 struct lpfc_vport *vport;
14287 struct lpfc_nodelist *ndlp;
14288 struct lpfc_dmabuf *mp;
14289 unsigned long iflags;
14290 LPFC_MBOXQ_t *pmb;
14291 bool workposted = false;
14292 int rc;
14293
14294 /* If not a mailbox complete MCQE, out by checking mailbox consume */
14295 if (!bf_get(lpfc_trailer_completed, mcqe))
14296 goto out_no_mqe_complete;
14297
14298 /* Get the reference to the active mbox command */
14299 spin_lock_irqsave(&phba->hbalock, iflags);
14300 pmb = phba->sli.mbox_active;
14301 if (unlikely(!pmb)) {
14302 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14303 "1832 No pending MBOX command to handle\n");
14304 spin_unlock_irqrestore(&phba->hbalock, iflags);
14305 goto out_no_mqe_complete;
14306 }
14307 spin_unlock_irqrestore(&phba->hbalock, iflags);
14308 mqe = &pmb->u.mqe;
14309 pmbox = (MAILBOX_t *)&pmb->u.mqe;
14310 mbox = phba->mbox;
14311 vport = pmb->vport;
14312
14313 /* Reset heartbeat timer */
14314 phba->last_completion_time = jiffies;
14315 timer_delete(&phba->sli.mbox_tmo);
14316
14317 /* Move mbox data to caller's mailbox region, do endian swapping */
14318 if (pmb->mbox_cmpl && mbox)
14319 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe));
14320
14321 /*
14322 * For mcqe errors, conditionally move a modified error code to
14323 * the mbox so that the error will not be missed.
14324 */
14325 mcqe_status = bf_get(lpfc_mcqe_status, mcqe);
14326 if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
14327 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS)
14328 bf_set(lpfc_mqe_status, mqe,
14329 (LPFC_MBX_ERROR_RANGE | mcqe_status));
14330 }
14331 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
14332 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
14333 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT,
14334 "MBOX dflt rpi: status:x%x rpi:x%x",
14335 mcqe_status,
14336 pmbox->un.varWords[0], 0);
14337 if (mcqe_status == MB_CQE_STATUS_SUCCESS) {
14338 mp = pmb->ctx_buf;
14339 ndlp = pmb->ctx_ndlp;
14340
14341 /* Reg_LOGIN of dflt RPI was successful. Mark the
14342 * node as having an UNREG_LOGIN in progress to stop
14343 * an unsolicited PLOGI from the same NPortId from
14344 * starting another mailbox transaction.
14345 */
14346 set_bit(NLP_UNREG_INP, &ndlp->nlp_flag);
14347 lpfc_unreg_login(phba, vport->vpi,
14348 pmbox->un.varWords[0], pmb);
14349 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi;
14350 pmb->ctx_buf = mp;
14351
14352 /* No reference taken here. This is a default
14353 * RPI reg/immediate unreg cycle. The reference was
14354 * taken in the reg rpi path and is released when
14355 * this mailbox completes.
14356 */
14357 pmb->ctx_ndlp = ndlp;
14358 pmb->vport = vport;
14359 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
14360 if (rc != MBX_BUSY)
14361 lpfc_printf_log(phba, KERN_ERR,
14362 LOG_TRACE_EVENT,
14363 "0385 rc should "
14364 "have been MBX_BUSY\n");
14365 if (rc != MBX_NOT_FINISHED)
14366 goto send_current_mbox;
14367 }
14368 }
14369 spin_lock_irqsave(&phba->pport->work_port_lock, iflags);
14370 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
14371 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags);
14372
14373 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */
14374 if (pmbox->mbxCommand == MBX_HEARTBEAT) {
14375 spin_lock_irqsave(&phba->hbalock, iflags);
14376 /* Release the mailbox command posting token */
14377 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
14378 phba->sli.mbox_active = NULL;
14379 if (bf_get(lpfc_trailer_consumed, mcqe))
14380 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
14381 spin_unlock_irqrestore(&phba->hbalock, iflags);
14382
14383 /* Post the next mbox command, if there is one */
14384 lpfc_sli4_post_async_mbox(phba);
14385
14386 /* Process cmpl now */
14387 if (pmb->mbox_cmpl)
14388 pmb->mbox_cmpl(phba, pmb);
14389 return false;
14390 }
14391
14392 /* There is mailbox completion work to queue to the worker thread */
14393 spin_lock_irqsave(&phba->hbalock, iflags);
14394 __lpfc_mbox_cmpl_put(phba, pmb);
14395 phba->work_ha |= HA_MBATT;
14396 spin_unlock_irqrestore(&phba->hbalock, iflags);
14397 workposted = true;
14398
14399 send_current_mbox:
14400 spin_lock_irqsave(&phba->hbalock, iflags);
14401 /* Release the mailbox command posting token */
14402 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
14403 /* Setting active mailbox pointer need to be in sync to flag clear */
14404 phba->sli.mbox_active = NULL;
14405 if (bf_get(lpfc_trailer_consumed, mcqe))
14406 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
14407 spin_unlock_irqrestore(&phba->hbalock, iflags);
14408 /* Wake up worker thread to post the next pending mailbox command */
14409 lpfc_worker_wake_up(phba);
14410 return workposted;
14411
14412 out_no_mqe_complete:
14413 spin_lock_irqsave(&phba->hbalock, iflags);
14414 if (bf_get(lpfc_trailer_consumed, mcqe))
14415 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
14416 spin_unlock_irqrestore(&phba->hbalock, iflags);
14417 return false;
14418 }
14419
14420 /**
14421 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry
14422 * @phba: Pointer to HBA context object.
14423 * @cq: Pointer to associated CQ
14424 * @cqe: Pointer to mailbox completion queue entry.
14425 *
14426 * This routine process a mailbox completion queue entry, it invokes the
14427 * proper mailbox complete handling or asynchronous event handling routine
14428 * according to the MCQE's async bit.
14429 *
14430 * Return: true if work posted to worker thread, otherwise false.
14431 **/
14432 static bool
lpfc_sli4_sp_handle_mcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_cqe * cqe)14433 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14434 struct lpfc_cqe *cqe)
14435 {
14436 struct lpfc_mcqe mcqe;
14437 bool workposted;
14438
14439 cq->CQ_mbox++;
14440
14441 /* Copy the mailbox MCQE and convert endian order as needed */
14442 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe));
14443
14444 /* Invoke the proper event handling routine */
14445 if (!bf_get(lpfc_trailer_async, &mcqe))
14446 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe);
14447 else
14448 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe);
14449 return workposted;
14450 }
14451
14452 /**
14453 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event
14454 * @phba: Pointer to HBA context object.
14455 * @cq: Pointer to associated CQ
14456 * @wcqe: Pointer to work-queue completion queue entry.
14457 *
14458 * This routine handles an ELS work-queue completion event.
14459 *
14460 * Return: true if work posted to worker thread, otherwise false.
14461 **/
14462 static bool
lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_wcqe_complete * wcqe)14463 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14464 struct lpfc_wcqe_complete *wcqe)
14465 {
14466 struct lpfc_iocbq *irspiocbq;
14467 unsigned long iflags;
14468 struct lpfc_sli_ring *pring = cq->pring;
14469 int txq_cnt = 0;
14470 int txcmplq_cnt = 0;
14471
14472 /* Check for response status */
14473 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
14474 /* Log the error status */
14475 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
14476 "0357 ELS CQE error: status=x%x: "
14477 "CQE: %08x %08x %08x %08x\n",
14478 bf_get(lpfc_wcqe_c_status, wcqe),
14479 wcqe->word0, wcqe->total_data_placed,
14480 wcqe->parameter, wcqe->word3);
14481 }
14482
14483 /* Get an irspiocbq for later ELS response processing use */
14484 irspiocbq = lpfc_sli_get_iocbq(phba);
14485 if (!irspiocbq) {
14486 if (!list_empty(&pring->txq))
14487 txq_cnt++;
14488 if (!list_empty(&pring->txcmplq))
14489 txcmplq_cnt++;
14490 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14491 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d "
14492 "els_txcmplq_cnt=%d\n",
14493 txq_cnt, phba->iocb_cnt,
14494 txcmplq_cnt);
14495 return false;
14496 }
14497
14498 /* Save off the slow-path queue event for work thread to process */
14499 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe));
14500 spin_lock_irqsave(&phba->hbalock, iflags);
14501 list_add_tail(&irspiocbq->cq_event.list,
14502 &phba->sli4_hba.sp_queue_event);
14503 spin_unlock_irqrestore(&phba->hbalock, iflags);
14504 set_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag);
14505
14506 return true;
14507 }
14508
14509 /**
14510 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event
14511 * @phba: Pointer to HBA context object.
14512 * @wcqe: Pointer to work-queue completion queue entry.
14513 *
14514 * This routine handles slow-path WQ entry consumed event by invoking the
14515 * proper WQ release routine to the slow-path WQ.
14516 **/
14517 static void
lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba * phba,struct lpfc_wcqe_release * wcqe)14518 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba,
14519 struct lpfc_wcqe_release *wcqe)
14520 {
14521 /* sanity check on queue memory */
14522 if (unlikely(!phba->sli4_hba.els_wq))
14523 return;
14524 /* Check for the slow-path ELS work queue */
14525 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id)
14526 lpfc_sli4_wq_release(phba->sli4_hba.els_wq,
14527 bf_get(lpfc_wcqe_r_wqe_index, wcqe));
14528 else
14529 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14530 "2579 Slow-path wqe consume event carries "
14531 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n",
14532 bf_get(lpfc_wcqe_r_wqe_index, wcqe),
14533 phba->sli4_hba.els_wq->queue_id);
14534 }
14535
14536 /**
14537 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event
14538 * @phba: Pointer to HBA context object.
14539 * @cq: Pointer to a WQ completion queue.
14540 * @wcqe: Pointer to work-queue completion queue entry.
14541 *
14542 * This routine handles an XRI abort event.
14543 *
14544 * Return: true if work posted to worker thread, otherwise false.
14545 **/
14546 static bool
lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct sli4_wcqe_xri_aborted * wcqe)14547 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba,
14548 struct lpfc_queue *cq,
14549 struct sli4_wcqe_xri_aborted *wcqe)
14550 {
14551 bool workposted = false;
14552 struct lpfc_cq_event *cq_event;
14553 unsigned long iflags;
14554
14555 switch (cq->subtype) {
14556 case LPFC_IO:
14557 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq);
14558 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14559 /* Notify aborted XRI for NVME work queue */
14560 if (phba->nvmet_support)
14561 lpfc_sli4_nvmet_xri_aborted(phba, wcqe);
14562 }
14563 workposted = false;
14564 break;
14565 case LPFC_NVME_LS: /* NVME LS uses ELS resources */
14566 case LPFC_ELS:
14567 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe));
14568 if (!cq_event) {
14569 workposted = false;
14570 break;
14571 }
14572 cq_event->hdwq = cq->hdwq;
14573 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock,
14574 iflags);
14575 list_add_tail(&cq_event->list,
14576 &phba->sli4_hba.sp_els_xri_aborted_work_queue);
14577 /* Set the els xri abort event flag */
14578 set_bit(ELS_XRI_ABORT_EVENT, &phba->hba_flag);
14579 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock,
14580 iflags);
14581 workposted = true;
14582 break;
14583 default:
14584 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14585 "0603 Invalid CQ subtype %d: "
14586 "%08x %08x %08x %08x\n",
14587 cq->subtype, wcqe->word0, wcqe->parameter,
14588 wcqe->word2, wcqe->word3);
14589 workposted = false;
14590 break;
14591 }
14592 return workposted;
14593 }
14594
14595 #define FC_RCTL_MDS_DIAGS 0xF4
14596
14597 /**
14598 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry
14599 * @phba: Pointer to HBA context object.
14600 * @rcqe: Pointer to receive-queue completion queue entry.
14601 *
14602 * This routine process a receive-queue completion queue entry.
14603 *
14604 * Return: true if work posted to worker thread, otherwise false.
14605 **/
14606 static bool
lpfc_sli4_sp_handle_rcqe(struct lpfc_hba * phba,struct lpfc_rcqe * rcqe)14607 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe)
14608 {
14609 bool workposted = false;
14610 struct fc_frame_header *fc_hdr;
14611 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq;
14612 struct lpfc_queue *drq = phba->sli4_hba.dat_rq;
14613 struct lpfc_nvmet_tgtport *tgtp;
14614 struct hbq_dmabuf *dma_buf;
14615 uint32_t status, rq_id;
14616 unsigned long iflags;
14617
14618 /* sanity check on queue memory */
14619 if (unlikely(!hrq) || unlikely(!drq))
14620 return workposted;
14621
14622 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
14623 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
14624 else
14625 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
14626 if (rq_id != hrq->queue_id)
14627 goto out;
14628
14629 status = bf_get(lpfc_rcqe_status, rcqe);
14630 switch (status) {
14631 case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
14632 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14633 "2537 Receive Frame Truncated!!\n");
14634 fallthrough;
14635 case FC_STATUS_RQ_SUCCESS:
14636 spin_lock_irqsave(&phba->hbalock, iflags);
14637 lpfc_sli4_rq_release(hrq, drq);
14638 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
14639 if (!dma_buf) {
14640 hrq->RQ_no_buf_found++;
14641 spin_unlock_irqrestore(&phba->hbalock, iflags);
14642 goto out;
14643 }
14644 hrq->RQ_rcv_buf++;
14645 hrq->RQ_buf_posted--;
14646 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe));
14647
14648 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
14649
14650 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
14651 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
14652 spin_unlock_irqrestore(&phba->hbalock, iflags);
14653 /* Handle MDS Loopback frames */
14654 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag))
14655 lpfc_sli4_handle_mds_loopback(phba->pport,
14656 dma_buf);
14657 else
14658 lpfc_in_buf_free(phba, &dma_buf->dbuf);
14659 break;
14660 }
14661
14662 /* save off the frame for the work thread to process */
14663 list_add_tail(&dma_buf->cq_event.list,
14664 &phba->sli4_hba.sp_queue_event);
14665 spin_unlock_irqrestore(&phba->hbalock, iflags);
14666 /* Frame received */
14667 set_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag);
14668 workposted = true;
14669 break;
14670 case FC_STATUS_INSUFF_BUF_FRM_DISC:
14671 if (phba->nvmet_support) {
14672 tgtp = phba->targetport->private;
14673 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14674 "6402 RQE Error x%x, posted %d err_cnt "
14675 "%d: %x %x %x\n",
14676 status, hrq->RQ_buf_posted,
14677 hrq->RQ_no_posted_buf,
14678 atomic_read(&tgtp->rcv_fcp_cmd_in),
14679 atomic_read(&tgtp->rcv_fcp_cmd_out),
14680 atomic_read(&tgtp->xmt_fcp_release));
14681 }
14682 fallthrough;
14683
14684 case FC_STATUS_INSUFF_BUF_NEED_BUF:
14685 hrq->RQ_no_posted_buf++;
14686 /* Post more buffers if possible */
14687 set_bit(HBA_POST_RECEIVE_BUFFER, &phba->hba_flag);
14688 workposted = true;
14689 break;
14690 case FC_STATUS_RQ_DMA_FAILURE:
14691 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14692 "2564 RQE DMA Error x%x, x%08x x%08x x%08x "
14693 "x%08x\n",
14694 status, rcqe->word0, rcqe->word1,
14695 rcqe->word2, rcqe->word3);
14696
14697 /* If IV set, no further recovery */
14698 if (bf_get(lpfc_rcqe_iv, rcqe))
14699 break;
14700
14701 /* recycle consumed resource */
14702 spin_lock_irqsave(&phba->hbalock, iflags);
14703 lpfc_sli4_rq_release(hrq, drq);
14704 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
14705 if (!dma_buf) {
14706 hrq->RQ_no_buf_found++;
14707 spin_unlock_irqrestore(&phba->hbalock, iflags);
14708 break;
14709 }
14710 hrq->RQ_rcv_buf++;
14711 hrq->RQ_buf_posted--;
14712 spin_unlock_irqrestore(&phba->hbalock, iflags);
14713 lpfc_in_buf_free(phba, &dma_buf->dbuf);
14714 break;
14715 default:
14716 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14717 "2565 Unexpected RQE Status x%x, w0-3 x%08x "
14718 "x%08x x%08x x%08x\n",
14719 status, rcqe->word0, rcqe->word1,
14720 rcqe->word2, rcqe->word3);
14721 break;
14722 }
14723 out:
14724 return workposted;
14725 }
14726
14727 /**
14728 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry
14729 * @phba: Pointer to HBA context object.
14730 * @cq: Pointer to the completion queue.
14731 * @cqe: Pointer to a completion queue entry.
14732 *
14733 * This routine process a slow-path work-queue or receive queue completion queue
14734 * entry.
14735 *
14736 * Return: true if work posted to worker thread, otherwise false.
14737 **/
14738 static bool
lpfc_sli4_sp_handle_cqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_cqe * cqe)14739 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14740 struct lpfc_cqe *cqe)
14741 {
14742 struct lpfc_cqe cqevt;
14743 bool workposted = false;
14744
14745 /* Copy the work queue CQE and convert endian order if needed */
14746 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe));
14747
14748 /* Check and process for different type of WCQE and dispatch */
14749 switch (bf_get(lpfc_cqe_code, &cqevt)) {
14750 case CQE_CODE_COMPL_WQE:
14751 /* Process the WQ/RQ complete event */
14752 phba->last_completion_time = jiffies;
14753 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq,
14754 (struct lpfc_wcqe_complete *)&cqevt);
14755 break;
14756 case CQE_CODE_RELEASE_WQE:
14757 /* Process the WQ release event */
14758 lpfc_sli4_sp_handle_rel_wcqe(phba,
14759 (struct lpfc_wcqe_release *)&cqevt);
14760 break;
14761 case CQE_CODE_XRI_ABORTED:
14762 /* Process the WQ XRI abort event */
14763 phba->last_completion_time = jiffies;
14764 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
14765 (struct sli4_wcqe_xri_aborted *)&cqevt);
14766 break;
14767 case CQE_CODE_RECEIVE:
14768 case CQE_CODE_RECEIVE_V1:
14769 /* Process the RQ event */
14770 phba->last_completion_time = jiffies;
14771 workposted = lpfc_sli4_sp_handle_rcqe(phba,
14772 (struct lpfc_rcqe *)&cqevt);
14773 break;
14774 default:
14775 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14776 "0388 Not a valid WCQE code: x%x\n",
14777 bf_get(lpfc_cqe_code, &cqevt));
14778 break;
14779 }
14780 return workposted;
14781 }
14782
14783 /**
14784 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry
14785 * @phba: Pointer to HBA context object.
14786 * @eqe: Pointer to fast-path event queue entry.
14787 * @speq: Pointer to slow-path event queue.
14788 *
14789 * This routine process a event queue entry from the slow-path event queue.
14790 * It will check the MajorCode and MinorCode to determine this is for a
14791 * completion event on a completion queue, if not, an error shall be logged
14792 * and just return. Otherwise, it will get to the corresponding completion
14793 * queue and process all the entries on that completion queue, rearm the
14794 * completion queue, and then return.
14795 *
14796 **/
14797 static void
lpfc_sli4_sp_handle_eqe(struct lpfc_hba * phba,struct lpfc_eqe * eqe,struct lpfc_queue * speq)14798 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
14799 struct lpfc_queue *speq)
14800 {
14801 struct lpfc_queue *cq = NULL, *childq;
14802 uint16_t cqid;
14803 int ret = 0;
14804
14805 /* Get the reference to the corresponding CQ */
14806 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
14807
14808 list_for_each_entry(childq, &speq->child_list, list) {
14809 if (childq->queue_id == cqid) {
14810 cq = childq;
14811 break;
14812 }
14813 }
14814 if (unlikely(!cq)) {
14815 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
14816 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14817 "0365 Slow-path CQ identifier "
14818 "(%d) does not exist\n", cqid);
14819 return;
14820 }
14821
14822 /* Save EQ associated with this CQ */
14823 cq->assoc_qp = speq;
14824
14825 if (is_kdump_kernel())
14826 ret = queue_work(phba->wq, &cq->spwork);
14827 else
14828 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork);
14829
14830 if (!ret)
14831 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14832 "0390 Cannot schedule queue work "
14833 "for CQ eqcqid=%d, cqid=%d on CPU %d\n",
14834 cqid, cq->queue_id, raw_smp_processor_id());
14835 }
14836
14837 /**
14838 * __lpfc_sli4_process_cq - Process elements of a CQ
14839 * @phba: Pointer to HBA context object.
14840 * @cq: Pointer to CQ to be processed
14841 * @handler: Routine to process each cqe
14842 * @delay: Pointer to usdelay to set in case of rescheduling of the handler
14843 *
14844 * This routine processes completion queue entries in a CQ. While a valid
14845 * queue element is found, the handler is called. During processing checks
14846 * are made for periodic doorbell writes to let the hardware know of
14847 * element consumption.
14848 *
14849 * If the max limit on cqes to process is hit, or there are no more valid
14850 * entries, the loop stops. If we processed a sufficient number of elements,
14851 * meaning there is sufficient load, rather than rearming and generating
14852 * another interrupt, a cq rescheduling delay will be set. A delay of 0
14853 * indicates no rescheduling.
14854 *
14855 * Returns True if work scheduled, False otherwise.
14856 **/
14857 static bool
__lpfc_sli4_process_cq(struct lpfc_hba * phba,struct lpfc_queue * cq,bool (* handler)(struct lpfc_hba *,struct lpfc_queue *,struct lpfc_cqe *),unsigned long * delay)14858 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq,
14859 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *,
14860 struct lpfc_cqe *), unsigned long *delay)
14861 {
14862 struct lpfc_cqe *cqe;
14863 bool workposted = false;
14864 int count = 0, consumed = 0;
14865 bool arm = true;
14866
14867 /* default - no reschedule */
14868 *delay = 0;
14869
14870 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0)
14871 goto rearm_and_exit;
14872
14873 /* Process all the entries to the CQ */
14874 cq->q_flag = 0;
14875 cqe = lpfc_sli4_cq_get(cq);
14876 while (cqe) {
14877 workposted |= handler(phba, cq, cqe);
14878 __lpfc_sli4_consume_cqe(phba, cq, cqe);
14879
14880 consumed++;
14881 if (!(++count % cq->max_proc_limit))
14882 break;
14883
14884 if (!(count % cq->notify_interval)) {
14885 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
14886 LPFC_QUEUE_NOARM);
14887 consumed = 0;
14888 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK;
14889 }
14890
14891 if (count == LPFC_NVMET_CQ_NOTIFY)
14892 cq->q_flag |= HBA_NVMET_CQ_NOTIFY;
14893
14894 cqe = lpfc_sli4_cq_get(cq);
14895 }
14896 if (count >= phba->cfg_cq_poll_threshold) {
14897 *delay = 1;
14898 arm = false;
14899 }
14900
14901 /* Track the max number of CQEs processed in 1 EQ */
14902 if (count > cq->CQ_max_cqe)
14903 cq->CQ_max_cqe = count;
14904
14905 cq->assoc_qp->EQ_cqe_cnt += count;
14906
14907 /* Catch the no cq entry condition */
14908 if (unlikely(count == 0))
14909 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
14910 "0369 No entry from completion queue "
14911 "qid=%d\n", cq->queue_id);
14912
14913 xchg(&cq->queue_claimed, 0);
14914
14915 rearm_and_exit:
14916 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
14917 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM);
14918
14919 return workposted;
14920 }
14921
14922 /**
14923 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry
14924 * @cq: pointer to CQ to process
14925 *
14926 * This routine calls the cq processing routine with a handler specific
14927 * to the type of queue bound to it.
14928 *
14929 * The CQ routine returns two values: the first is the calling status,
14930 * which indicates whether work was queued to the background discovery
14931 * thread. If true, the routine should wakeup the discovery thread;
14932 * the second is the delay parameter. If non-zero, rather than rearming
14933 * the CQ and yet another interrupt, the CQ handler should be queued so
14934 * that it is processed in a subsequent polling action. The value of
14935 * the delay indicates when to reschedule it.
14936 **/
14937 static void
__lpfc_sli4_sp_process_cq(struct lpfc_queue * cq)14938 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq)
14939 {
14940 struct lpfc_hba *phba = cq->phba;
14941 unsigned long delay;
14942 bool workposted = false;
14943 int ret = 0;
14944
14945 /* Process and rearm the CQ */
14946 switch (cq->type) {
14947 case LPFC_MCQ:
14948 workposted |= __lpfc_sli4_process_cq(phba, cq,
14949 lpfc_sli4_sp_handle_mcqe,
14950 &delay);
14951 break;
14952 case LPFC_WCQ:
14953 if (cq->subtype == LPFC_IO)
14954 workposted |= __lpfc_sli4_process_cq(phba, cq,
14955 lpfc_sli4_fp_handle_cqe,
14956 &delay);
14957 else
14958 workposted |= __lpfc_sli4_process_cq(phba, cq,
14959 lpfc_sli4_sp_handle_cqe,
14960 &delay);
14961 break;
14962 default:
14963 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14964 "0370 Invalid completion queue type (%d)\n",
14965 cq->type);
14966 return;
14967 }
14968
14969 if (delay) {
14970 if (is_kdump_kernel())
14971 ret = queue_delayed_work(phba->wq, &cq->sched_spwork,
14972 delay);
14973 else
14974 ret = queue_delayed_work_on(cq->chann, phba->wq,
14975 &cq->sched_spwork, delay);
14976 if (!ret)
14977 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14978 "0394 Cannot schedule queue work "
14979 "for cqid=%d on CPU %d\n",
14980 cq->queue_id, cq->chann);
14981 }
14982
14983 /* wake up worker thread if there are works to be done */
14984 if (workposted)
14985 lpfc_worker_wake_up(phba);
14986 }
14987
14988 /**
14989 * lpfc_sli4_sp_process_cq - slow-path work handler when started by
14990 * interrupt
14991 * @work: pointer to work element
14992 *
14993 * translates from the work handler and calls the slow-path handler.
14994 **/
14995 static void
lpfc_sli4_sp_process_cq(struct work_struct * work)14996 lpfc_sli4_sp_process_cq(struct work_struct *work)
14997 {
14998 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork);
14999
15000 __lpfc_sli4_sp_process_cq(cq);
15001 }
15002
15003 /**
15004 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer
15005 * @work: pointer to work element
15006 *
15007 * translates from the work handler and calls the slow-path handler.
15008 **/
15009 static void
lpfc_sli4_dly_sp_process_cq(struct work_struct * work)15010 lpfc_sli4_dly_sp_process_cq(struct work_struct *work)
15011 {
15012 struct lpfc_queue *cq = container_of(to_delayed_work(work),
15013 struct lpfc_queue, sched_spwork);
15014
15015 __lpfc_sli4_sp_process_cq(cq);
15016 }
15017
15018 /**
15019 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry
15020 * @phba: Pointer to HBA context object.
15021 * @cq: Pointer to associated CQ
15022 * @wcqe: Pointer to work-queue completion queue entry.
15023 *
15024 * This routine process a fast-path work queue completion entry from fast-path
15025 * event queue for FCP command response completion.
15026 **/
15027 static void
lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_wcqe_complete * wcqe)15028 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
15029 struct lpfc_wcqe_complete *wcqe)
15030 {
15031 struct lpfc_sli_ring *pring = cq->pring;
15032 struct lpfc_iocbq *cmdiocbq;
15033 unsigned long iflags;
15034
15035 /* Check for response status */
15036 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
15037 /* If resource errors reported from HBA, reduce queue
15038 * depth of the SCSI device.
15039 */
15040 if (((bf_get(lpfc_wcqe_c_status, wcqe) ==
15041 IOSTAT_LOCAL_REJECT)) &&
15042 ((wcqe->parameter & IOERR_PARAM_MASK) ==
15043 IOERR_NO_RESOURCES))
15044 phba->lpfc_rampdown_queue_depth(phba);
15045
15046 /* Log the cmpl status */
15047 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
15048 "0373 FCP CQE cmpl: status=x%x: "
15049 "CQE: %08x %08x %08x %08x\n",
15050 bf_get(lpfc_wcqe_c_status, wcqe),
15051 wcqe->word0, wcqe->total_data_placed,
15052 wcqe->parameter, wcqe->word3);
15053 }
15054
15055 /* Look up the FCP command IOCB and create pseudo response IOCB */
15056 spin_lock_irqsave(&pring->ring_lock, iflags);
15057 pring->stats.iocb_event++;
15058 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
15059 bf_get(lpfc_wcqe_c_request_tag, wcqe));
15060 spin_unlock_irqrestore(&pring->ring_lock, iflags);
15061 if (unlikely(!cmdiocbq)) {
15062 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
15063 "0374 FCP complete with no corresponding "
15064 "cmdiocb: iotag (%d)\n",
15065 bf_get(lpfc_wcqe_c_request_tag, wcqe));
15066 return;
15067 }
15068 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
15069 cmdiocbq->isr_timestamp = cq->isr_timestamp;
15070 #endif
15071 if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
15072 spin_lock_irqsave(&phba->hbalock, iflags);
15073 cmdiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY;
15074 spin_unlock_irqrestore(&phba->hbalock, iflags);
15075 }
15076
15077 if (cmdiocbq->cmd_cmpl) {
15078 /* For FCP the flag is cleared in cmd_cmpl */
15079 if (!(cmdiocbq->cmd_flag & LPFC_IO_FCP) &&
15080 cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) {
15081 spin_lock_irqsave(&phba->hbalock, iflags);
15082 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED;
15083 spin_unlock_irqrestore(&phba->hbalock, iflags);
15084 }
15085
15086 /* Pass the cmd_iocb and the wcqe to the upper layer */
15087 memcpy(&cmdiocbq->wcqe_cmpl, wcqe,
15088 sizeof(struct lpfc_wcqe_complete));
15089 cmdiocbq->cmd_cmpl(phba, cmdiocbq, cmdiocbq);
15090 } else {
15091 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
15092 "0375 FCP cmdiocb not callback function "
15093 "iotag: (%d)\n",
15094 bf_get(lpfc_wcqe_c_request_tag, wcqe));
15095 }
15096 }
15097
15098 /**
15099 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event
15100 * @phba: Pointer to HBA context object.
15101 * @cq: Pointer to completion queue.
15102 * @wcqe: Pointer to work-queue completion queue entry.
15103 *
15104 * This routine handles an fast-path WQ entry consumed event by invoking the
15105 * proper WQ release routine to the slow-path WQ.
15106 **/
15107 static void
lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_wcqe_release * wcqe)15108 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
15109 struct lpfc_wcqe_release *wcqe)
15110 {
15111 struct lpfc_queue *childwq;
15112 bool wqid_matched = false;
15113 uint16_t hba_wqid;
15114
15115 /* Check for fast-path FCP work queue release */
15116 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe);
15117 list_for_each_entry(childwq, &cq->child_list, list) {
15118 if (childwq->queue_id == hba_wqid) {
15119 lpfc_sli4_wq_release(childwq,
15120 bf_get(lpfc_wcqe_r_wqe_index, wcqe));
15121 if (childwq->q_flag & HBA_NVMET_WQFULL)
15122 lpfc_nvmet_wqfull_process(phba, childwq);
15123 wqid_matched = true;
15124 break;
15125 }
15126 }
15127 /* Report warning log message if no match found */
15128 if (wqid_matched != true)
15129 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
15130 "2580 Fast-path wqe consume event carries "
15131 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid);
15132 }
15133
15134 /**
15135 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry
15136 * @phba: Pointer to HBA context object.
15137 * @cq: Pointer to completion queue.
15138 * @rcqe: Pointer to receive-queue completion queue entry.
15139 *
15140 * This routine process a receive-queue completion queue entry.
15141 *
15142 * Return: true if work posted to worker thread, otherwise false.
15143 **/
15144 static bool
lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_rcqe * rcqe)15145 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
15146 struct lpfc_rcqe *rcqe)
15147 {
15148 bool workposted = false;
15149 struct lpfc_queue *hrq;
15150 struct lpfc_queue *drq;
15151 struct rqb_dmabuf *dma_buf;
15152 struct fc_frame_header *fc_hdr;
15153 struct lpfc_nvmet_tgtport *tgtp;
15154 uint32_t status, rq_id;
15155 unsigned long iflags;
15156 uint32_t fctl, idx;
15157
15158 if ((phba->nvmet_support == 0) ||
15159 (phba->sli4_hba.nvmet_cqset == NULL))
15160 return workposted;
15161
15162 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id;
15163 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx];
15164 drq = phba->sli4_hba.nvmet_mrq_data[idx];
15165
15166 /* sanity check on queue memory */
15167 if (unlikely(!hrq) || unlikely(!drq))
15168 return workposted;
15169
15170 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
15171 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
15172 else
15173 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
15174
15175 if ((phba->nvmet_support == 0) ||
15176 (rq_id != hrq->queue_id))
15177 return workposted;
15178
15179 status = bf_get(lpfc_rcqe_status, rcqe);
15180 switch (status) {
15181 case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
15182 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15183 "6126 Receive Frame Truncated!!\n");
15184 fallthrough;
15185 case FC_STATUS_RQ_SUCCESS:
15186 spin_lock_irqsave(&phba->hbalock, iflags);
15187 lpfc_sli4_rq_release(hrq, drq);
15188 dma_buf = lpfc_sli_rqbuf_get(phba, hrq);
15189 if (!dma_buf) {
15190 hrq->RQ_no_buf_found++;
15191 spin_unlock_irqrestore(&phba->hbalock, iflags);
15192 goto out;
15193 }
15194 spin_unlock_irqrestore(&phba->hbalock, iflags);
15195 hrq->RQ_rcv_buf++;
15196 hrq->RQ_buf_posted--;
15197 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
15198
15199 /* Just some basic sanity checks on FCP Command frame */
15200 fctl = (fc_hdr->fh_f_ctl[0] << 16 |
15201 fc_hdr->fh_f_ctl[1] << 8 |
15202 fc_hdr->fh_f_ctl[2]);
15203 if (((fctl &
15204 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) !=
15205 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) ||
15206 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */
15207 goto drop;
15208
15209 if (fc_hdr->fh_type == FC_TYPE_FCP) {
15210 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe);
15211 lpfc_nvmet_unsol_fcp_event(
15212 phba, idx, dma_buf, cq->isr_timestamp,
15213 cq->q_flag & HBA_NVMET_CQ_NOTIFY);
15214 return false;
15215 }
15216 drop:
15217 lpfc_rq_buf_free(phba, &dma_buf->hbuf);
15218 break;
15219 case FC_STATUS_INSUFF_BUF_FRM_DISC:
15220 if (phba->nvmet_support) {
15221 tgtp = phba->targetport->private;
15222 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15223 "6401 RQE Error x%x, posted %d err_cnt "
15224 "%d: %x %x %x\n",
15225 status, hrq->RQ_buf_posted,
15226 hrq->RQ_no_posted_buf,
15227 atomic_read(&tgtp->rcv_fcp_cmd_in),
15228 atomic_read(&tgtp->rcv_fcp_cmd_out),
15229 atomic_read(&tgtp->xmt_fcp_release));
15230 }
15231 fallthrough;
15232
15233 case FC_STATUS_INSUFF_BUF_NEED_BUF:
15234 hrq->RQ_no_posted_buf++;
15235 /* Post more buffers if possible */
15236 break;
15237 case FC_STATUS_RQ_DMA_FAILURE:
15238 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15239 "2575 RQE DMA Error x%x, x%08x x%08x x%08x "
15240 "x%08x\n",
15241 status, rcqe->word0, rcqe->word1,
15242 rcqe->word2, rcqe->word3);
15243
15244 /* If IV set, no further recovery */
15245 if (bf_get(lpfc_rcqe_iv, rcqe))
15246 break;
15247
15248 /* recycle consumed resource */
15249 spin_lock_irqsave(&phba->hbalock, iflags);
15250 lpfc_sli4_rq_release(hrq, drq);
15251 dma_buf = lpfc_sli_rqbuf_get(phba, hrq);
15252 if (!dma_buf) {
15253 hrq->RQ_no_buf_found++;
15254 spin_unlock_irqrestore(&phba->hbalock, iflags);
15255 break;
15256 }
15257 hrq->RQ_rcv_buf++;
15258 hrq->RQ_buf_posted--;
15259 spin_unlock_irqrestore(&phba->hbalock, iflags);
15260 lpfc_rq_buf_free(phba, &dma_buf->hbuf);
15261 break;
15262 default:
15263 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15264 "2576 Unexpected RQE Status x%x, w0-3 x%08x "
15265 "x%08x x%08x x%08x\n",
15266 status, rcqe->word0, rcqe->word1,
15267 rcqe->word2, rcqe->word3);
15268 break;
15269 }
15270 out:
15271 return workposted;
15272 }
15273
15274 /**
15275 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry
15276 * @phba: adapter with cq
15277 * @cq: Pointer to the completion queue.
15278 * @cqe: Pointer to fast-path completion queue entry.
15279 *
15280 * This routine process a fast-path work queue completion entry from fast-path
15281 * event queue for FCP command response completion.
15282 *
15283 * Return: true if work posted to worker thread, otherwise false.
15284 **/
15285 static bool
lpfc_sli4_fp_handle_cqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_cqe * cqe)15286 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
15287 struct lpfc_cqe *cqe)
15288 {
15289 struct lpfc_wcqe_release wcqe;
15290 bool workposted = false;
15291
15292 /* Copy the work queue CQE and convert endian order if needed */
15293 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe));
15294
15295 /* Check and process for different type of WCQE and dispatch */
15296 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) {
15297 case CQE_CODE_COMPL_WQE:
15298 case CQE_CODE_NVME_ERSP:
15299 cq->CQ_wq++;
15300 /* Process the WQ complete event */
15301 phba->last_completion_time = jiffies;
15302 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS)
15303 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
15304 (struct lpfc_wcqe_complete *)&wcqe);
15305 break;
15306 case CQE_CODE_RELEASE_WQE:
15307 cq->CQ_release_wqe++;
15308 /* Process the WQ release event */
15309 lpfc_sli4_fp_handle_rel_wcqe(phba, cq,
15310 (struct lpfc_wcqe_release *)&wcqe);
15311 break;
15312 case CQE_CODE_XRI_ABORTED:
15313 cq->CQ_xri_aborted++;
15314 /* Process the WQ XRI abort event */
15315 phba->last_completion_time = jiffies;
15316 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
15317 (struct sli4_wcqe_xri_aborted *)&wcqe);
15318 break;
15319 case CQE_CODE_RECEIVE_V1:
15320 case CQE_CODE_RECEIVE:
15321 phba->last_completion_time = jiffies;
15322 if (cq->subtype == LPFC_NVMET) {
15323 workposted = lpfc_sli4_nvmet_handle_rcqe(
15324 phba, cq, (struct lpfc_rcqe *)&wcqe);
15325 }
15326 break;
15327 default:
15328 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15329 "0144 Not a valid CQE code: x%x\n",
15330 bf_get(lpfc_wcqe_c_code, &wcqe));
15331 break;
15332 }
15333 return workposted;
15334 }
15335
15336 /**
15337 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry
15338 * @cq: Pointer to CQ to be processed
15339 *
15340 * This routine calls the cq processing routine with the handler for
15341 * fast path CQEs.
15342 *
15343 * The CQ routine returns two values: the first is the calling status,
15344 * which indicates whether work was queued to the background discovery
15345 * thread. If true, the routine should wakeup the discovery thread;
15346 * the second is the delay parameter. If non-zero, rather than rearming
15347 * the CQ and yet another interrupt, the CQ handler should be queued so
15348 * that it is processed in a subsequent polling action. The value of
15349 * the delay indicates when to reschedule it.
15350 **/
15351 static void
__lpfc_sli4_hba_process_cq(struct lpfc_queue * cq)15352 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq)
15353 {
15354 struct lpfc_hba *phba = cq->phba;
15355 unsigned long delay;
15356 bool workposted = false;
15357 int ret;
15358
15359 /* process and rearm the CQ */
15360 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe,
15361 &delay);
15362
15363 if (delay) {
15364 if (is_kdump_kernel())
15365 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork,
15366 delay);
15367 else
15368 ret = queue_delayed_work_on(cq->chann, phba->wq,
15369 &cq->sched_irqwork, delay);
15370 if (!ret)
15371 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15372 "0367 Cannot schedule queue work "
15373 "for cqid=%d on CPU %d\n",
15374 cq->queue_id, cq->chann);
15375 }
15376
15377 /* wake up worker thread if there are works to be done */
15378 if (workposted)
15379 lpfc_worker_wake_up(phba);
15380 }
15381
15382 /**
15383 * lpfc_sli4_hba_process_cq - fast-path work handler when started by
15384 * interrupt
15385 * @work: pointer to work element
15386 *
15387 * translates from the work handler and calls the fast-path handler.
15388 **/
15389 static void
lpfc_sli4_hba_process_cq(struct work_struct * work)15390 lpfc_sli4_hba_process_cq(struct work_struct *work)
15391 {
15392 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork);
15393
15394 __lpfc_sli4_hba_process_cq(cq);
15395 }
15396
15397 /**
15398 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry
15399 * @phba: Pointer to HBA context object.
15400 * @eq: Pointer to the queue structure.
15401 * @eqe: Pointer to fast-path event queue entry.
15402 * @poll_mode: poll_mode to execute processing the cq.
15403 *
15404 * This routine process a event queue entry from the fast-path event queue.
15405 * It will check the MajorCode and MinorCode to determine this is for a
15406 * completion event on a completion queue, if not, an error shall be logged
15407 * and just return. Otherwise, it will get to the corresponding completion
15408 * queue and process all the entries on the completion queue, rearm the
15409 * completion queue, and then return.
15410 **/
15411 static void
lpfc_sli4_hba_handle_eqe(struct lpfc_hba * phba,struct lpfc_queue * eq,struct lpfc_eqe * eqe,enum lpfc_poll_mode poll_mode)15412 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
15413 struct lpfc_eqe *eqe, enum lpfc_poll_mode poll_mode)
15414 {
15415 struct lpfc_queue *cq = NULL;
15416 uint32_t qidx = eq->hdwq;
15417 uint16_t cqid, id;
15418 int ret;
15419
15420 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
15421 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15422 "0366 Not a valid completion "
15423 "event: majorcode=x%x, minorcode=x%x\n",
15424 bf_get_le32(lpfc_eqe_major_code, eqe),
15425 bf_get_le32(lpfc_eqe_minor_code, eqe));
15426 return;
15427 }
15428
15429 /* Get the reference to the corresponding CQ */
15430 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
15431
15432 /* Use the fast lookup method first */
15433 if (cqid <= phba->sli4_hba.cq_max) {
15434 cq = phba->sli4_hba.cq_lookup[cqid];
15435 if (cq)
15436 goto work_cq;
15437 }
15438
15439 /* Next check for NVMET completion */
15440 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) {
15441 id = phba->sli4_hba.nvmet_cqset[0]->queue_id;
15442 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) {
15443 /* Process NVMET unsol rcv */
15444 cq = phba->sli4_hba.nvmet_cqset[cqid - id];
15445 goto process_cq;
15446 }
15447 }
15448
15449 if (phba->sli4_hba.nvmels_cq &&
15450 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) {
15451 /* Process NVME unsol rcv */
15452 cq = phba->sli4_hba.nvmels_cq;
15453 }
15454
15455 /* Otherwise this is a Slow path event */
15456 if (cq == NULL) {
15457 lpfc_sli4_sp_handle_eqe(phba, eqe,
15458 phba->sli4_hba.hdwq[qidx].hba_eq);
15459 return;
15460 }
15461
15462 process_cq:
15463 if (unlikely(cqid != cq->queue_id)) {
15464 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15465 "0368 Miss-matched fast-path completion "
15466 "queue identifier: eqcqid=%d, fcpcqid=%d\n",
15467 cqid, cq->queue_id);
15468 return;
15469 }
15470
15471 work_cq:
15472 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS)
15473 if (phba->ktime_on)
15474 cq->isr_timestamp = ktime_get_ns();
15475 else
15476 cq->isr_timestamp = 0;
15477 #endif
15478
15479 switch (poll_mode) {
15480 case LPFC_THREADED_IRQ:
15481 __lpfc_sli4_hba_process_cq(cq);
15482 break;
15483 case LPFC_QUEUE_WORK:
15484 default:
15485 if (is_kdump_kernel())
15486 ret = queue_work(phba->wq, &cq->irqwork);
15487 else
15488 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork);
15489 if (!ret)
15490 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15491 "0383 Cannot schedule queue work "
15492 "for CQ eqcqid=%d, cqid=%d on CPU %d\n",
15493 cqid, cq->queue_id,
15494 raw_smp_processor_id());
15495 break;
15496 }
15497 }
15498
15499 /**
15500 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer
15501 * @work: pointer to work element
15502 *
15503 * translates from the work handler and calls the fast-path handler.
15504 **/
15505 static void
lpfc_sli4_dly_hba_process_cq(struct work_struct * work)15506 lpfc_sli4_dly_hba_process_cq(struct work_struct *work)
15507 {
15508 struct lpfc_queue *cq = container_of(to_delayed_work(work),
15509 struct lpfc_queue, sched_irqwork);
15510
15511 __lpfc_sli4_hba_process_cq(cq);
15512 }
15513
15514 /**
15515 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device
15516 * @irq: Interrupt number.
15517 * @dev_id: The device context pointer.
15518 *
15519 * This function is directly called from the PCI layer as an interrupt
15520 * service routine when device with SLI-4 interface spec is enabled with
15521 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
15522 * ring event in the HBA. However, when the device is enabled with either
15523 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
15524 * device-level interrupt handler. When the PCI slot is in error recovery
15525 * or the HBA is undergoing initialization, the interrupt handler will not
15526 * process the interrupt. The SCSI FCP fast-path ring event are handled in
15527 * the intrrupt context. This function is called without any lock held.
15528 * It gets the hbalock to access and update SLI data structures. Note that,
15529 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is
15530 * equal to that of FCP CQ index.
15531 *
15532 * The link attention and ELS ring attention events are handled
15533 * by the worker thread. The interrupt handler signals the worker thread
15534 * and returns for these events. This function is called without any lock
15535 * held. It gets the hbalock to access and update SLI data structures.
15536 *
15537 * This function returns IRQ_HANDLED when interrupt is handled, IRQ_WAKE_THREAD
15538 * when interrupt is scheduled to be handled from a threaded irq context, or
15539 * else returns IRQ_NONE.
15540 **/
15541 irqreturn_t
lpfc_sli4_hba_intr_handler(int irq,void * dev_id)15542 lpfc_sli4_hba_intr_handler(int irq, void *dev_id)
15543 {
15544 struct lpfc_hba *phba;
15545 struct lpfc_hba_eq_hdl *hba_eq_hdl;
15546 struct lpfc_queue *fpeq;
15547 unsigned long iflag;
15548 int hba_eqidx;
15549 int ecount = 0;
15550 struct lpfc_eq_intr_info *eqi;
15551
15552 /* Get the driver's phba structure from the dev_id */
15553 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
15554 phba = hba_eq_hdl->phba;
15555 hba_eqidx = hba_eq_hdl->idx;
15556
15557 if (unlikely(!phba))
15558 return IRQ_NONE;
15559 if (unlikely(!phba->sli4_hba.hdwq))
15560 return IRQ_NONE;
15561
15562 /* Get to the EQ struct associated with this vector */
15563 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq;
15564 if (unlikely(!fpeq))
15565 return IRQ_NONE;
15566
15567 /* Check device state for handling interrupt */
15568 if (unlikely(lpfc_intr_state_check(phba))) {
15569 /* Check again for link_state with lock held */
15570 spin_lock_irqsave(&phba->hbalock, iflag);
15571 if (phba->link_state < LPFC_LINK_DOWN)
15572 /* Flush, clear interrupt, and rearm the EQ */
15573 lpfc_sli4_eqcq_flush(phba, fpeq);
15574 spin_unlock_irqrestore(&phba->hbalock, iflag);
15575 return IRQ_NONE;
15576 }
15577
15578 switch (fpeq->poll_mode) {
15579 case LPFC_THREADED_IRQ:
15580 /* CGN mgmt is mutually exclusive from irq processing */
15581 if (phba->cmf_active_mode == LPFC_CFG_OFF)
15582 return IRQ_WAKE_THREAD;
15583 fallthrough;
15584 case LPFC_QUEUE_WORK:
15585 default:
15586 eqi = this_cpu_ptr(phba->sli4_hba.eq_info);
15587 eqi->icnt++;
15588
15589 fpeq->last_cpu = raw_smp_processor_id();
15590
15591 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER &&
15592 fpeq->q_flag & HBA_EQ_DELAY_CHK &&
15593 phba->cfg_auto_imax &&
15594 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY &&
15595 phba->sli.sli_flag & LPFC_SLI_USE_EQDR)
15596 lpfc_sli4_mod_hba_eq_delay(phba, fpeq,
15597 LPFC_MAX_AUTO_EQ_DELAY);
15598
15599 /* process and rearm the EQ */
15600 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM,
15601 LPFC_QUEUE_WORK);
15602
15603 if (unlikely(ecount == 0)) {
15604 fpeq->EQ_no_entry++;
15605 if (phba->intr_type == MSIX)
15606 /* MSI-X treated interrupt served as no EQ share INT */
15607 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
15608 "0358 MSI-X interrupt with no EQE\n");
15609 else
15610 /* Non MSI-X treated on interrupt as EQ share INT */
15611 return IRQ_NONE;
15612 }
15613 }
15614
15615 return IRQ_HANDLED;
15616 } /* lpfc_sli4_hba_intr_handler */
15617
15618 /**
15619 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device
15620 * @irq: Interrupt number.
15621 * @dev_id: The device context pointer.
15622 *
15623 * This function is the device-level interrupt handler to device with SLI-4
15624 * interface spec, called from the PCI layer when either MSI or Pin-IRQ
15625 * interrupt mode is enabled and there is an event in the HBA which requires
15626 * driver attention. This function invokes the slow-path interrupt attention
15627 * handling function and fast-path interrupt attention handling function in
15628 * turn to process the relevant HBA attention events. This function is called
15629 * without any lock held. It gets the hbalock to access and update SLI data
15630 * structures.
15631 *
15632 * This function returns IRQ_HANDLED when interrupt is handled, else it
15633 * returns IRQ_NONE.
15634 **/
15635 irqreturn_t
lpfc_sli4_intr_handler(int irq,void * dev_id)15636 lpfc_sli4_intr_handler(int irq, void *dev_id)
15637 {
15638 struct lpfc_hba *phba;
15639 irqreturn_t hba_irq_rc;
15640 bool hba_handled = false;
15641 int qidx;
15642
15643 /* Get the driver's phba structure from the dev_id */
15644 phba = (struct lpfc_hba *)dev_id;
15645
15646 if (unlikely(!phba))
15647 return IRQ_NONE;
15648
15649 /*
15650 * Invoke fast-path host attention interrupt handling as appropriate.
15651 */
15652 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
15653 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq,
15654 &phba->sli4_hba.hba_eq_hdl[qidx]);
15655 if (hba_irq_rc == IRQ_HANDLED)
15656 hba_handled |= true;
15657 }
15658
15659 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE;
15660 } /* lpfc_sli4_intr_handler */
15661
lpfc_sli4_poll_hbtimer(struct timer_list * t)15662 void lpfc_sli4_poll_hbtimer(struct timer_list *t)
15663 {
15664 struct lpfc_hba *phba = timer_container_of(phba, t, cpuhp_poll_timer);
15665 struct lpfc_queue *eq;
15666
15667 rcu_read_lock();
15668
15669 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list)
15670 lpfc_sli4_poll_eq(eq);
15671 if (!list_empty(&phba->poll_list))
15672 mod_timer(&phba->cpuhp_poll_timer,
15673 jiffies + msecs_to_jiffies(LPFC_POLL_HB));
15674
15675 rcu_read_unlock();
15676 }
15677
lpfc_sli4_add_to_poll_list(struct lpfc_queue * eq)15678 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq)
15679 {
15680 struct lpfc_hba *phba = eq->phba;
15681
15682 /* kickstart slowpath processing if needed */
15683 if (list_empty(&phba->poll_list))
15684 mod_timer(&phba->cpuhp_poll_timer,
15685 jiffies + msecs_to_jiffies(LPFC_POLL_HB));
15686
15687 list_add_rcu(&eq->_poll_list, &phba->poll_list);
15688 synchronize_rcu();
15689 }
15690
lpfc_sli4_remove_from_poll_list(struct lpfc_queue * eq)15691 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq)
15692 {
15693 struct lpfc_hba *phba = eq->phba;
15694
15695 /* Disable slowpath processing for this eq. Kick start the eq
15696 * by RE-ARMING the eq's ASAP
15697 */
15698 list_del_rcu(&eq->_poll_list);
15699 synchronize_rcu();
15700
15701 if (list_empty(&phba->poll_list))
15702 timer_delete_sync(&phba->cpuhp_poll_timer);
15703 }
15704
lpfc_sli4_cleanup_poll_list(struct lpfc_hba * phba)15705 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba)
15706 {
15707 struct lpfc_queue *eq, *next;
15708
15709 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list)
15710 list_del(&eq->_poll_list);
15711
15712 INIT_LIST_HEAD(&phba->poll_list);
15713 synchronize_rcu();
15714 }
15715
15716 static inline void
__lpfc_sli4_switch_eqmode(struct lpfc_queue * eq,uint8_t mode)15717 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode)
15718 {
15719 if (mode == eq->mode)
15720 return;
15721 /*
15722 * currently this function is only called during a hotplug
15723 * event and the cpu on which this function is executing
15724 * is going offline. By now the hotplug has instructed
15725 * the scheduler to remove this cpu from cpu active mask.
15726 * So we don't need to work about being put aside by the
15727 * scheduler for a high priority process. Yes, the inte-
15728 * rrupts could come but they are known to retire ASAP.
15729 */
15730
15731 /* Disable polling in the fastpath */
15732 WRITE_ONCE(eq->mode, mode);
15733 /* flush out the store buffer */
15734 smp_wmb();
15735
15736 /*
15737 * Add this eq to the polling list and start polling. For
15738 * a grace period both interrupt handler and poller will
15739 * try to process the eq _but_ that's fine. We have a
15740 * synchronization mechanism in place (queue_claimed) to
15741 * deal with it. This is just a draining phase for int-
15742 * errupt handler (not eq's) as we have guranteed through
15743 * barrier that all the CPUs have seen the new CQ_POLLED
15744 * state. which will effectively disable the REARMING of
15745 * the EQ. The whole idea is eq's die off eventually as
15746 * we are not rearming EQ's anymore.
15747 */
15748 mode ? lpfc_sli4_add_to_poll_list(eq) :
15749 lpfc_sli4_remove_from_poll_list(eq);
15750 }
15751
lpfc_sli4_start_polling(struct lpfc_queue * eq)15752 void lpfc_sli4_start_polling(struct lpfc_queue *eq)
15753 {
15754 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL);
15755 }
15756
lpfc_sli4_stop_polling(struct lpfc_queue * eq)15757 void lpfc_sli4_stop_polling(struct lpfc_queue *eq)
15758 {
15759 struct lpfc_hba *phba = eq->phba;
15760
15761 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT);
15762
15763 /* Kick start for the pending io's in h/w.
15764 * Once we switch back to interrupt processing on a eq
15765 * the io path completion will only arm eq's when it
15766 * receives a completion. But since eq's are in disa-
15767 * rmed state it doesn't receive a completion. This
15768 * creates a deadlock scenaro.
15769 */
15770 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM);
15771 }
15772
15773 /**
15774 * lpfc_sli4_queue_free - free a queue structure and associated memory
15775 * @queue: The queue structure to free.
15776 *
15777 * This function frees a queue structure and the DMAable memory used for
15778 * the host resident queue. This function must be called after destroying the
15779 * queue on the HBA.
15780 **/
15781 void
lpfc_sli4_queue_free(struct lpfc_queue * queue)15782 lpfc_sli4_queue_free(struct lpfc_queue *queue)
15783 {
15784 struct lpfc_dmabuf *dmabuf;
15785
15786 if (!queue)
15787 return;
15788
15789 if (!list_empty(&queue->wq_list))
15790 list_del(&queue->wq_list);
15791
15792 while (!list_empty(&queue->page_list)) {
15793 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf,
15794 list);
15795 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size,
15796 dmabuf->virt, dmabuf->phys);
15797 kfree(dmabuf);
15798 }
15799 if (queue->rqbp) {
15800 lpfc_free_rq_buffer(queue->phba, queue);
15801 kfree(queue->rqbp);
15802 }
15803
15804 if (!list_empty(&queue->cpu_list))
15805 list_del(&queue->cpu_list);
15806
15807 kfree(queue);
15808 return;
15809 }
15810
15811 /**
15812 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure
15813 * @phba: The HBA that this queue is being created on.
15814 * @page_size: The size of a queue page
15815 * @entry_size: The size of each queue entry for this queue.
15816 * @entry_count: The number of entries that this queue will handle.
15817 * @cpu: The cpu that will primarily utilize this queue.
15818 *
15819 * This function allocates a queue structure and the DMAable memory used for
15820 * the host resident queue. This function must be called before creating the
15821 * queue on the HBA.
15822 **/
15823 struct lpfc_queue *
lpfc_sli4_queue_alloc(struct lpfc_hba * phba,uint32_t page_size,uint32_t entry_size,uint32_t entry_count,int cpu)15824 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size,
15825 uint32_t entry_size, uint32_t entry_count, int cpu)
15826 {
15827 struct lpfc_queue *queue;
15828 struct lpfc_dmabuf *dmabuf;
15829 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15830 uint16_t x, pgcnt;
15831
15832 if (!phba->sli4_hba.pc_sli4_params.supported)
15833 hw_page_size = page_size;
15834
15835 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size;
15836
15837 /* If needed, Adjust page count to match the max the adapter supports */
15838 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt)
15839 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt;
15840
15841 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt),
15842 GFP_KERNEL, cpu_to_node(cpu));
15843 if (!queue)
15844 return NULL;
15845
15846 INIT_LIST_HEAD(&queue->list);
15847 INIT_LIST_HEAD(&queue->_poll_list);
15848 INIT_LIST_HEAD(&queue->wq_list);
15849 INIT_LIST_HEAD(&queue->wqfull_list);
15850 INIT_LIST_HEAD(&queue->page_list);
15851 INIT_LIST_HEAD(&queue->child_list);
15852 INIT_LIST_HEAD(&queue->cpu_list);
15853
15854 /* Set queue parameters now. If the system cannot provide memory
15855 * resources, the free routine needs to know what was allocated.
15856 */
15857 queue->page_count = pgcnt;
15858 queue->q_pgs = (void **)&queue[1];
15859 queue->entry_cnt_per_pg = hw_page_size / entry_size;
15860 queue->entry_size = entry_size;
15861 queue->entry_count = entry_count;
15862 queue->page_size = hw_page_size;
15863 queue->phba = phba;
15864
15865 for (x = 0; x < queue->page_count; x++) {
15866 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL,
15867 dev_to_node(&phba->pcidev->dev));
15868 if (!dmabuf)
15869 goto out_fail;
15870 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
15871 hw_page_size, &dmabuf->phys,
15872 GFP_KERNEL);
15873 if (!dmabuf->virt) {
15874 kfree(dmabuf);
15875 goto out_fail;
15876 }
15877 dmabuf->buffer_tag = x;
15878 list_add_tail(&dmabuf->list, &queue->page_list);
15879 /* use lpfc_sli4_qe to index a paritcular entry in this page */
15880 queue->q_pgs[x] = dmabuf->virt;
15881 }
15882 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq);
15883 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq);
15884 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq);
15885 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq);
15886
15887 /* notify_interval will be set during q creation */
15888
15889 return queue;
15890 out_fail:
15891 lpfc_sli4_queue_free(queue);
15892 return NULL;
15893 }
15894
15895 /**
15896 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory
15897 * @phba: HBA structure that indicates port to create a queue on.
15898 * @pci_barset: PCI BAR set flag.
15899 *
15900 * This function shall perform iomap of the specified PCI BAR address to host
15901 * memory address if not already done so and return it. The returned host
15902 * memory address can be NULL.
15903 */
15904 static void __iomem *
lpfc_dual_chute_pci_bar_map(struct lpfc_hba * phba,uint16_t pci_barset)15905 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset)
15906 {
15907 if (!phba->pcidev)
15908 return NULL;
15909
15910 switch (pci_barset) {
15911 case WQ_PCI_BAR_0_AND_1:
15912 return phba->pci_bar0_memmap_p;
15913 case WQ_PCI_BAR_2_AND_3:
15914 return phba->pci_bar2_memmap_p;
15915 case WQ_PCI_BAR_4_AND_5:
15916 return phba->pci_bar4_memmap_p;
15917 default:
15918 break;
15919 }
15920 return NULL;
15921 }
15922
15923 /**
15924 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs
15925 * @phba: HBA structure that EQs are on.
15926 * @startq: The starting EQ index to modify
15927 * @numq: The number of EQs (consecutive indexes) to modify
15928 * @usdelay: amount of delay
15929 *
15930 * This function revises the EQ delay on 1 or more EQs. The EQ delay
15931 * is set either by writing to a register (if supported by the SLI Port)
15932 * or by mailbox command. The mailbox command allows several EQs to be
15933 * updated at once.
15934 *
15935 * The @phba struct is used to send a mailbox command to HBA. The @startq
15936 * is used to get the starting EQ index to change. The @numq value is
15937 * used to specify how many consecutive EQ indexes, starting at EQ index,
15938 * are to be changed. This function is asynchronous and will wait for any
15939 * mailbox commands to finish before returning.
15940 *
15941 * On success this function will return a zero. If unable to allocate
15942 * enough memory this function will return -ENOMEM. If a mailbox command
15943 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may
15944 * have had their delay multipler changed.
15945 **/
15946 void
lpfc_modify_hba_eq_delay(struct lpfc_hba * phba,uint32_t startq,uint32_t numq,uint32_t usdelay)15947 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq,
15948 uint32_t numq, uint32_t usdelay)
15949 {
15950 struct lpfc_mbx_modify_eq_delay *eq_delay;
15951 LPFC_MBOXQ_t *mbox;
15952 struct lpfc_queue *eq;
15953 int cnt = 0, rc, length;
15954 uint32_t shdr_status, shdr_add_status;
15955 uint32_t dmult;
15956 int qidx;
15957 union lpfc_sli4_cfg_shdr *shdr;
15958
15959 if (startq >= phba->cfg_irq_chann)
15960 return;
15961
15962 if (usdelay > 0xFFFF) {
15963 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME,
15964 "6429 usdelay %d too large. Scaled down to "
15965 "0xFFFF.\n", usdelay);
15966 usdelay = 0xFFFF;
15967 }
15968
15969 /* set values by EQ_DELAY register if supported */
15970 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) {
15971 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
15972 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
15973 if (!eq)
15974 continue;
15975
15976 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay);
15977
15978 if (++cnt >= numq)
15979 break;
15980 }
15981 return;
15982 }
15983
15984 /* Otherwise, set values by mailbox cmd */
15985
15986 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15987 if (!mbox) {
15988 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15989 "6428 Failed allocating mailbox cmd buffer."
15990 " EQ delay was not set.\n");
15991 return;
15992 }
15993 length = (sizeof(struct lpfc_mbx_modify_eq_delay) -
15994 sizeof(struct lpfc_sli4_cfg_mhdr));
15995 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15996 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY,
15997 length, LPFC_SLI4_MBX_EMBED);
15998 eq_delay = &mbox->u.mqe.un.eq_delay;
15999
16000 /* Calculate delay multiper from maximum interrupt per second */
16001 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC;
16002 if (dmult)
16003 dmult--;
16004 if (dmult > LPFC_DMULT_MAX)
16005 dmult = LPFC_DMULT_MAX;
16006
16007 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
16008 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
16009 if (!eq)
16010 continue;
16011 eq->q_mode = usdelay;
16012 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id;
16013 eq_delay->u.request.eq[cnt].phase = 0;
16014 eq_delay->u.request.eq[cnt].delay_multi = dmult;
16015
16016 if (++cnt >= numq)
16017 break;
16018 }
16019 eq_delay->u.request.num_eq = cnt;
16020
16021 mbox->vport = phba->pport;
16022 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16023 mbox->ctx_ndlp = NULL;
16024 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16025 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr;
16026 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16027 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16028 if (shdr_status || shdr_add_status || rc) {
16029 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16030 "2512 MODIFY_EQ_DELAY mailbox failed with "
16031 "status x%x add_status x%x, mbx status x%x\n",
16032 shdr_status, shdr_add_status, rc);
16033 }
16034 mempool_free(mbox, phba->mbox_mem_pool);
16035 return;
16036 }
16037
16038 /**
16039 * lpfc_eq_create - Create an Event Queue on the HBA
16040 * @phba: HBA structure that indicates port to create a queue on.
16041 * @eq: The queue structure to use to create the event queue.
16042 * @imax: The maximum interrupt per second limit.
16043 *
16044 * This function creates an event queue, as detailed in @eq, on a port,
16045 * described by @phba by sending an EQ_CREATE mailbox command to the HBA.
16046 *
16047 * The @phba struct is used to send mailbox command to HBA. The @eq struct
16048 * is used to get the entry count and entry size that are necessary to
16049 * determine the number of pages to allocate and use for this queue. This
16050 * function will send the EQ_CREATE mailbox command to the HBA to setup the
16051 * event queue. This function is asynchronous and will wait for the mailbox
16052 * command to finish before continuing.
16053 *
16054 * On success this function will return a zero. If unable to allocate enough
16055 * memory this function will return -ENOMEM. If the queue create mailbox command
16056 * fails this function will return -ENXIO.
16057 **/
16058 int
lpfc_eq_create(struct lpfc_hba * phba,struct lpfc_queue * eq,uint32_t imax)16059 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax)
16060 {
16061 struct lpfc_mbx_eq_create *eq_create;
16062 LPFC_MBOXQ_t *mbox;
16063 int rc, length, status = 0;
16064 struct lpfc_dmabuf *dmabuf;
16065 uint32_t shdr_status, shdr_add_status;
16066 union lpfc_sli4_cfg_shdr *shdr;
16067 uint16_t dmult;
16068 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16069
16070 /* sanity check on queue memory */
16071 if (!eq)
16072 return -ENODEV;
16073 if (!phba->sli4_hba.pc_sli4_params.supported)
16074 hw_page_size = SLI4_PAGE_SIZE;
16075
16076 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16077 if (!mbox)
16078 return -ENOMEM;
16079 length = (sizeof(struct lpfc_mbx_eq_create) -
16080 sizeof(struct lpfc_sli4_cfg_mhdr));
16081 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16082 LPFC_MBOX_OPCODE_EQ_CREATE,
16083 length, LPFC_SLI4_MBX_EMBED);
16084 eq_create = &mbox->u.mqe.un.eq_create;
16085 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr;
16086 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request,
16087 eq->page_count);
16088 bf_set(lpfc_eq_context_size, &eq_create->u.request.context,
16089 LPFC_EQE_SIZE);
16090 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1);
16091
16092 /* Use version 2 of CREATE_EQ if eqav is set */
16093 if (phba->sli4_hba.pc_sli4_params.eqav) {
16094 bf_set(lpfc_mbox_hdr_version, &shdr->request,
16095 LPFC_Q_CREATE_VERSION_2);
16096 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context,
16097 phba->sli4_hba.pc_sli4_params.eqav);
16098 }
16099
16100 /* don't setup delay multiplier using EQ_CREATE */
16101 dmult = 0;
16102 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context,
16103 dmult);
16104 switch (eq->entry_count) {
16105 default:
16106 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16107 "0360 Unsupported EQ count. (%d)\n",
16108 eq->entry_count);
16109 if (eq->entry_count < 256) {
16110 status = -EINVAL;
16111 goto out;
16112 }
16113 fallthrough; /* otherwise default to smallest count */
16114 case 256:
16115 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16116 LPFC_EQ_CNT_256);
16117 break;
16118 case 512:
16119 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16120 LPFC_EQ_CNT_512);
16121 break;
16122 case 1024:
16123 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16124 LPFC_EQ_CNT_1024);
16125 break;
16126 case 2048:
16127 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16128 LPFC_EQ_CNT_2048);
16129 break;
16130 case 4096:
16131 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16132 LPFC_EQ_CNT_4096);
16133 break;
16134 }
16135 list_for_each_entry(dmabuf, &eq->page_list, list) {
16136 memset(dmabuf->virt, 0, hw_page_size);
16137 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16138 putPaddrLow(dmabuf->phys);
16139 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16140 putPaddrHigh(dmabuf->phys);
16141 }
16142 mbox->vport = phba->pport;
16143 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16144 mbox->ctx_buf = NULL;
16145 mbox->ctx_ndlp = NULL;
16146 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16147 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16148 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16149 if (shdr_status || shdr_add_status || rc) {
16150 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16151 "2500 EQ_CREATE mailbox failed with "
16152 "status x%x add_status x%x, mbx status x%x\n",
16153 shdr_status, shdr_add_status, rc);
16154 status = -ENXIO;
16155 }
16156 eq->type = LPFC_EQ;
16157 eq->subtype = LPFC_NONE;
16158 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response);
16159 if (eq->queue_id == 0xFFFF)
16160 status = -ENXIO;
16161 eq->host_index = 0;
16162 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL;
16163 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT;
16164 out:
16165 mempool_free(mbox, phba->mbox_mem_pool);
16166 return status;
16167 }
16168
16169 /**
16170 * lpfc_sli4_hba_intr_handler_th - SLI4 HBA threaded interrupt handler
16171 * @irq: Interrupt number.
16172 * @dev_id: The device context pointer.
16173 *
16174 * This routine is a mirror of lpfc_sli4_hba_intr_handler, but executed within
16175 * threaded irq context.
16176 *
16177 * Returns
16178 * IRQ_HANDLED - interrupt is handled
16179 * IRQ_NONE - otherwise
16180 **/
lpfc_sli4_hba_intr_handler_th(int irq,void * dev_id)16181 irqreturn_t lpfc_sli4_hba_intr_handler_th(int irq, void *dev_id)
16182 {
16183 struct lpfc_hba *phba;
16184 struct lpfc_hba_eq_hdl *hba_eq_hdl;
16185 struct lpfc_queue *fpeq;
16186 int ecount = 0;
16187 int hba_eqidx;
16188 struct lpfc_eq_intr_info *eqi;
16189
16190 /* Get the driver's phba structure from the dev_id */
16191 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
16192 phba = hba_eq_hdl->phba;
16193 hba_eqidx = hba_eq_hdl->idx;
16194
16195 if (unlikely(!phba))
16196 return IRQ_NONE;
16197 if (unlikely(!phba->sli4_hba.hdwq))
16198 return IRQ_NONE;
16199
16200 /* Get to the EQ struct associated with this vector */
16201 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq;
16202 if (unlikely(!fpeq))
16203 return IRQ_NONE;
16204
16205 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, raw_smp_processor_id());
16206 eqi->icnt++;
16207
16208 fpeq->last_cpu = raw_smp_processor_id();
16209
16210 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER &&
16211 fpeq->q_flag & HBA_EQ_DELAY_CHK &&
16212 phba->cfg_auto_imax &&
16213 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY &&
16214 phba->sli.sli_flag & LPFC_SLI_USE_EQDR)
16215 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY);
16216
16217 /* process and rearm the EQ */
16218 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM,
16219 LPFC_THREADED_IRQ);
16220
16221 if (unlikely(ecount == 0)) {
16222 fpeq->EQ_no_entry++;
16223 if (phba->intr_type == MSIX)
16224 /* MSI-X treated interrupt served as no EQ share INT */
16225 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
16226 "3358 MSI-X interrupt with no EQE\n");
16227 else
16228 /* Non MSI-X treated on interrupt as EQ share INT */
16229 return IRQ_NONE;
16230 }
16231 return IRQ_HANDLED;
16232 }
16233
16234 /**
16235 * lpfc_cq_create - Create a Completion Queue on the HBA
16236 * @phba: HBA structure that indicates port to create a queue on.
16237 * @cq: The queue structure to use to create the completion queue.
16238 * @eq: The event queue to bind this completion queue to.
16239 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc).
16240 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
16241 *
16242 * This function creates a completion queue, as detailed in @wq, on a port,
16243 * described by @phba by sending a CQ_CREATE mailbox command to the HBA.
16244 *
16245 * The @phba struct is used to send mailbox command to HBA. The @cq struct
16246 * is used to get the entry count and entry size that are necessary to
16247 * determine the number of pages to allocate and use for this queue. The @eq
16248 * is used to indicate which event queue to bind this completion queue to. This
16249 * function will send the CQ_CREATE mailbox command to the HBA to setup the
16250 * completion queue. This function is asynchronous and will wait for the mailbox
16251 * command to finish before continuing.
16252 *
16253 * On success this function will return a zero. If unable to allocate enough
16254 * memory this function will return -ENOMEM. If the queue create mailbox command
16255 * fails this function will return -ENXIO.
16256 **/
16257 int
lpfc_cq_create(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_queue * eq,uint32_t type,uint32_t subtype)16258 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq,
16259 struct lpfc_queue *eq, uint32_t type, uint32_t subtype)
16260 {
16261 struct lpfc_mbx_cq_create *cq_create;
16262 struct lpfc_dmabuf *dmabuf;
16263 LPFC_MBOXQ_t *mbox;
16264 int rc, length, status = 0;
16265 uint32_t shdr_status, shdr_add_status;
16266 union lpfc_sli4_cfg_shdr *shdr;
16267
16268 /* sanity check on queue memory */
16269 if (!cq || !eq)
16270 return -ENODEV;
16271
16272 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16273 if (!mbox)
16274 return -ENOMEM;
16275 length = (sizeof(struct lpfc_mbx_cq_create) -
16276 sizeof(struct lpfc_sli4_cfg_mhdr));
16277 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16278 LPFC_MBOX_OPCODE_CQ_CREATE,
16279 length, LPFC_SLI4_MBX_EMBED);
16280 cq_create = &mbox->u.mqe.un.cq_create;
16281 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr;
16282 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request,
16283 cq->page_count);
16284 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1);
16285 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1);
16286 bf_set(lpfc_mbox_hdr_version, &shdr->request,
16287 phba->sli4_hba.pc_sli4_params.cqv);
16288 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) {
16289 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request,
16290 (cq->page_size / SLI4_PAGE_SIZE));
16291 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context,
16292 eq->queue_id);
16293 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context,
16294 phba->sli4_hba.pc_sli4_params.cqav);
16295 } else {
16296 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context,
16297 eq->queue_id);
16298 }
16299 switch (cq->entry_count) {
16300 case 2048:
16301 case 4096:
16302 if (phba->sli4_hba.pc_sli4_params.cqv ==
16303 LPFC_Q_CREATE_VERSION_2) {
16304 cq_create->u.request.context.lpfc_cq_context_count =
16305 cq->entry_count;
16306 bf_set(lpfc_cq_context_count,
16307 &cq_create->u.request.context,
16308 LPFC_CQ_CNT_WORD7);
16309 break;
16310 }
16311 fallthrough;
16312 default:
16313 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16314 "0361 Unsupported CQ count: "
16315 "entry cnt %d sz %d pg cnt %d\n",
16316 cq->entry_count, cq->entry_size,
16317 cq->page_count);
16318 if (cq->entry_count < 256) {
16319 status = -EINVAL;
16320 goto out;
16321 }
16322 fallthrough; /* otherwise default to smallest count */
16323 case 256:
16324 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
16325 LPFC_CQ_CNT_256);
16326 break;
16327 case 512:
16328 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
16329 LPFC_CQ_CNT_512);
16330 break;
16331 case 1024:
16332 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
16333 LPFC_CQ_CNT_1024);
16334 break;
16335 }
16336 list_for_each_entry(dmabuf, &cq->page_list, list) {
16337 memset(dmabuf->virt, 0, cq->page_size);
16338 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16339 putPaddrLow(dmabuf->phys);
16340 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16341 putPaddrHigh(dmabuf->phys);
16342 }
16343 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16344
16345 /* The IOCTL status is embedded in the mailbox subheader. */
16346 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16347 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16348 if (shdr_status || shdr_add_status || rc) {
16349 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16350 "2501 CQ_CREATE mailbox failed with "
16351 "status x%x add_status x%x, mbx status x%x\n",
16352 shdr_status, shdr_add_status, rc);
16353 status = -ENXIO;
16354 goto out;
16355 }
16356 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
16357 if (cq->queue_id == 0xFFFF) {
16358 status = -ENXIO;
16359 goto out;
16360 }
16361 /* link the cq onto the parent eq child list */
16362 list_add_tail(&cq->list, &eq->child_list);
16363 /* Set up completion queue's type and subtype */
16364 cq->type = type;
16365 cq->subtype = subtype;
16366 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
16367 cq->assoc_qid = eq->queue_id;
16368 cq->assoc_qp = eq;
16369 cq->host_index = 0;
16370 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
16371 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count);
16372
16373 if (cq->queue_id > phba->sli4_hba.cq_max)
16374 phba->sli4_hba.cq_max = cq->queue_id;
16375 out:
16376 mempool_free(mbox, phba->mbox_mem_pool);
16377 return status;
16378 }
16379
16380 /**
16381 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ
16382 * @phba: HBA structure that indicates port to create a queue on.
16383 * @cqp: The queue structure array to use to create the completion queues.
16384 * @hdwq: The hardware queue array with the EQ to bind completion queues to.
16385 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc).
16386 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
16387 *
16388 * This function creates a set of completion queue, s to support MRQ
16389 * as detailed in @cqp, on a port,
16390 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA.
16391 *
16392 * The @phba struct is used to send mailbox command to HBA. The @cq struct
16393 * is used to get the entry count and entry size that are necessary to
16394 * determine the number of pages to allocate and use for this queue. The @eq
16395 * is used to indicate which event queue to bind this completion queue to. This
16396 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the
16397 * completion queue. This function is asynchronous and will wait for the mailbox
16398 * command to finish before continuing.
16399 *
16400 * On success this function will return a zero. If unable to allocate enough
16401 * memory this function will return -ENOMEM. If the queue create mailbox command
16402 * fails this function will return -ENXIO.
16403 **/
16404 int
lpfc_cq_create_set(struct lpfc_hba * phba,struct lpfc_queue ** cqp,struct lpfc_sli4_hdw_queue * hdwq,uint32_t type,uint32_t subtype)16405 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp,
16406 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type,
16407 uint32_t subtype)
16408 {
16409 struct lpfc_queue *cq;
16410 struct lpfc_queue *eq;
16411 struct lpfc_mbx_cq_create_set *cq_set;
16412 struct lpfc_dmabuf *dmabuf;
16413 LPFC_MBOXQ_t *mbox;
16414 int rc, length, alloclen, status = 0;
16415 int cnt, idx, numcq, page_idx = 0;
16416 uint32_t shdr_status, shdr_add_status;
16417 union lpfc_sli4_cfg_shdr *shdr;
16418 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16419
16420 /* sanity check on queue memory */
16421 numcq = phba->cfg_nvmet_mrq;
16422 if (!cqp || !hdwq || !numcq)
16423 return -ENODEV;
16424
16425 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16426 if (!mbox)
16427 return -ENOMEM;
16428
16429 length = sizeof(struct lpfc_mbx_cq_create_set);
16430 length += ((numcq * cqp[0]->page_count) *
16431 sizeof(struct dma_address));
16432 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16433 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length,
16434 LPFC_SLI4_MBX_NEMBED);
16435 if (alloclen < length) {
16436 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16437 "3098 Allocated DMA memory size (%d) is "
16438 "less than the requested DMA memory size "
16439 "(%d)\n", alloclen, length);
16440 status = -ENOMEM;
16441 goto out;
16442 }
16443 cq_set = mbox->sge_array->addr[0];
16444 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr;
16445 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0);
16446
16447 for (idx = 0; idx < numcq; idx++) {
16448 cq = cqp[idx];
16449 eq = hdwq[idx].hba_eq;
16450 if (!cq || !eq) {
16451 status = -ENOMEM;
16452 goto out;
16453 }
16454 if (!phba->sli4_hba.pc_sli4_params.supported)
16455 hw_page_size = cq->page_size;
16456
16457 switch (idx) {
16458 case 0:
16459 bf_set(lpfc_mbx_cq_create_set_page_size,
16460 &cq_set->u.request,
16461 (hw_page_size / SLI4_PAGE_SIZE));
16462 bf_set(lpfc_mbx_cq_create_set_num_pages,
16463 &cq_set->u.request, cq->page_count);
16464 bf_set(lpfc_mbx_cq_create_set_evt,
16465 &cq_set->u.request, 1);
16466 bf_set(lpfc_mbx_cq_create_set_valid,
16467 &cq_set->u.request, 1);
16468 bf_set(lpfc_mbx_cq_create_set_cqe_size,
16469 &cq_set->u.request, 0);
16470 bf_set(lpfc_mbx_cq_create_set_num_cq,
16471 &cq_set->u.request, numcq);
16472 bf_set(lpfc_mbx_cq_create_set_autovalid,
16473 &cq_set->u.request,
16474 phba->sli4_hba.pc_sli4_params.cqav);
16475 switch (cq->entry_count) {
16476 case 2048:
16477 case 4096:
16478 if (phba->sli4_hba.pc_sli4_params.cqv ==
16479 LPFC_Q_CREATE_VERSION_2) {
16480 bf_set(lpfc_mbx_cq_create_set_cqe_cnt_lo,
16481 &cq_set->u.request,
16482 cq->entry_count);
16483 bf_set(lpfc_mbx_cq_create_set_cqecnt,
16484 &cq_set->u.request,
16485 LPFC_CQ_CNT_WORD7);
16486 break;
16487 }
16488 fallthrough;
16489 default:
16490 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16491 "3118 Bad CQ count. (%d)\n",
16492 cq->entry_count);
16493 if (cq->entry_count < 256) {
16494 status = -EINVAL;
16495 goto out;
16496 }
16497 fallthrough; /* otherwise default to smallest */
16498 case 256:
16499 bf_set(lpfc_mbx_cq_create_set_cqecnt,
16500 &cq_set->u.request, LPFC_CQ_CNT_256);
16501 break;
16502 case 512:
16503 bf_set(lpfc_mbx_cq_create_set_cqecnt,
16504 &cq_set->u.request, LPFC_CQ_CNT_512);
16505 break;
16506 case 1024:
16507 bf_set(lpfc_mbx_cq_create_set_cqecnt,
16508 &cq_set->u.request, LPFC_CQ_CNT_1024);
16509 break;
16510 }
16511 bf_set(lpfc_mbx_cq_create_set_eq_id0,
16512 &cq_set->u.request, eq->queue_id);
16513 break;
16514 case 1:
16515 bf_set(lpfc_mbx_cq_create_set_eq_id1,
16516 &cq_set->u.request, eq->queue_id);
16517 break;
16518 case 2:
16519 bf_set(lpfc_mbx_cq_create_set_eq_id2,
16520 &cq_set->u.request, eq->queue_id);
16521 break;
16522 case 3:
16523 bf_set(lpfc_mbx_cq_create_set_eq_id3,
16524 &cq_set->u.request, eq->queue_id);
16525 break;
16526 case 4:
16527 bf_set(lpfc_mbx_cq_create_set_eq_id4,
16528 &cq_set->u.request, eq->queue_id);
16529 break;
16530 case 5:
16531 bf_set(lpfc_mbx_cq_create_set_eq_id5,
16532 &cq_set->u.request, eq->queue_id);
16533 break;
16534 case 6:
16535 bf_set(lpfc_mbx_cq_create_set_eq_id6,
16536 &cq_set->u.request, eq->queue_id);
16537 break;
16538 case 7:
16539 bf_set(lpfc_mbx_cq_create_set_eq_id7,
16540 &cq_set->u.request, eq->queue_id);
16541 break;
16542 case 8:
16543 bf_set(lpfc_mbx_cq_create_set_eq_id8,
16544 &cq_set->u.request, eq->queue_id);
16545 break;
16546 case 9:
16547 bf_set(lpfc_mbx_cq_create_set_eq_id9,
16548 &cq_set->u.request, eq->queue_id);
16549 break;
16550 case 10:
16551 bf_set(lpfc_mbx_cq_create_set_eq_id10,
16552 &cq_set->u.request, eq->queue_id);
16553 break;
16554 case 11:
16555 bf_set(lpfc_mbx_cq_create_set_eq_id11,
16556 &cq_set->u.request, eq->queue_id);
16557 break;
16558 case 12:
16559 bf_set(lpfc_mbx_cq_create_set_eq_id12,
16560 &cq_set->u.request, eq->queue_id);
16561 break;
16562 case 13:
16563 bf_set(lpfc_mbx_cq_create_set_eq_id13,
16564 &cq_set->u.request, eq->queue_id);
16565 break;
16566 case 14:
16567 bf_set(lpfc_mbx_cq_create_set_eq_id14,
16568 &cq_set->u.request, eq->queue_id);
16569 break;
16570 case 15:
16571 bf_set(lpfc_mbx_cq_create_set_eq_id15,
16572 &cq_set->u.request, eq->queue_id);
16573 break;
16574 }
16575
16576 /* link the cq onto the parent eq child list */
16577 list_add_tail(&cq->list, &eq->child_list);
16578 /* Set up completion queue's type and subtype */
16579 cq->type = type;
16580 cq->subtype = subtype;
16581 cq->assoc_qid = eq->queue_id;
16582 cq->assoc_qp = eq;
16583 cq->host_index = 0;
16584 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
16585 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit,
16586 cq->entry_count);
16587 cq->chann = idx;
16588
16589 rc = 0;
16590 list_for_each_entry(dmabuf, &cq->page_list, list) {
16591 memset(dmabuf->virt, 0, hw_page_size);
16592 cnt = page_idx + dmabuf->buffer_tag;
16593 cq_set->u.request.page[cnt].addr_lo =
16594 putPaddrLow(dmabuf->phys);
16595 cq_set->u.request.page[cnt].addr_hi =
16596 putPaddrHigh(dmabuf->phys);
16597 rc++;
16598 }
16599 page_idx += rc;
16600 }
16601
16602 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16603
16604 /* The IOCTL status is embedded in the mailbox subheader. */
16605 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16606 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16607 if (shdr_status || shdr_add_status || rc) {
16608 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16609 "3119 CQ_CREATE_SET mailbox failed with "
16610 "status x%x add_status x%x, mbx status x%x\n",
16611 shdr_status, shdr_add_status, rc);
16612 status = -ENXIO;
16613 goto out;
16614 }
16615 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response);
16616 if (rc == 0xFFFF) {
16617 status = -ENXIO;
16618 goto out;
16619 }
16620
16621 for (idx = 0; idx < numcq; idx++) {
16622 cq = cqp[idx];
16623 cq->queue_id = rc + idx;
16624 if (cq->queue_id > phba->sli4_hba.cq_max)
16625 phba->sli4_hba.cq_max = cq->queue_id;
16626 }
16627
16628 out:
16629 lpfc_sli4_mbox_cmd_free(phba, mbox);
16630 return status;
16631 }
16632
16633 /**
16634 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration
16635 * @phba: HBA structure that indicates port to create a queue on.
16636 * @mq: The queue structure to use to create the mailbox queue.
16637 * @mbox: An allocated pointer to type LPFC_MBOXQ_t
16638 * @cq: The completion queue to associate with this cq.
16639 *
16640 * This function provides failback (fb) functionality when the
16641 * mq_create_ext fails on older FW generations. It's purpose is identical
16642 * to mq_create_ext otherwise.
16643 *
16644 * This routine cannot fail as all attributes were previously accessed and
16645 * initialized in mq_create_ext.
16646 **/
16647 static void
lpfc_mq_create_fb_init(struct lpfc_hba * phba,struct lpfc_queue * mq,LPFC_MBOXQ_t * mbox,struct lpfc_queue * cq)16648 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq,
16649 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq)
16650 {
16651 struct lpfc_mbx_mq_create *mq_create;
16652 struct lpfc_dmabuf *dmabuf;
16653 int length;
16654
16655 length = (sizeof(struct lpfc_mbx_mq_create) -
16656 sizeof(struct lpfc_sli4_cfg_mhdr));
16657 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16658 LPFC_MBOX_OPCODE_MQ_CREATE,
16659 length, LPFC_SLI4_MBX_EMBED);
16660 mq_create = &mbox->u.mqe.un.mq_create;
16661 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request,
16662 mq->page_count);
16663 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context,
16664 cq->queue_id);
16665 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1);
16666 switch (mq->entry_count) {
16667 case 16:
16668 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
16669 LPFC_MQ_RING_SIZE_16);
16670 break;
16671 case 32:
16672 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
16673 LPFC_MQ_RING_SIZE_32);
16674 break;
16675 case 64:
16676 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
16677 LPFC_MQ_RING_SIZE_64);
16678 break;
16679 case 128:
16680 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
16681 LPFC_MQ_RING_SIZE_128);
16682 break;
16683 }
16684 list_for_each_entry(dmabuf, &mq->page_list, list) {
16685 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16686 putPaddrLow(dmabuf->phys);
16687 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16688 putPaddrHigh(dmabuf->phys);
16689 }
16690 }
16691
16692 /**
16693 * lpfc_mq_create - Create a mailbox Queue on the HBA
16694 * @phba: HBA structure that indicates port to create a queue on.
16695 * @mq: The queue structure to use to create the mailbox queue.
16696 * @cq: The completion queue to associate with this cq.
16697 * @subtype: The queue's subtype.
16698 *
16699 * This function creates a mailbox queue, as detailed in @mq, on a port,
16700 * described by @phba by sending a MQ_CREATE mailbox command to the HBA.
16701 *
16702 * The @phba struct is used to send mailbox command to HBA. The @cq struct
16703 * is used to get the entry count and entry size that are necessary to
16704 * determine the number of pages to allocate and use for this queue. This
16705 * function will send the MQ_CREATE mailbox command to the HBA to setup the
16706 * mailbox queue. This function is asynchronous and will wait for the mailbox
16707 * command to finish before continuing.
16708 *
16709 * On success this function will return a zero. If unable to allocate enough
16710 * memory this function will return -ENOMEM. If the queue create mailbox command
16711 * fails this function will return -ENXIO.
16712 **/
16713 int32_t
lpfc_mq_create(struct lpfc_hba * phba,struct lpfc_queue * mq,struct lpfc_queue * cq,uint32_t subtype)16714 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq,
16715 struct lpfc_queue *cq, uint32_t subtype)
16716 {
16717 struct lpfc_mbx_mq_create *mq_create;
16718 struct lpfc_mbx_mq_create_ext *mq_create_ext;
16719 struct lpfc_dmabuf *dmabuf;
16720 LPFC_MBOXQ_t *mbox;
16721 int rc, length, status = 0;
16722 uint32_t shdr_status, shdr_add_status;
16723 union lpfc_sli4_cfg_shdr *shdr;
16724 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16725
16726 /* sanity check on queue memory */
16727 if (!mq || !cq)
16728 return -ENODEV;
16729 if (!phba->sli4_hba.pc_sli4_params.supported)
16730 hw_page_size = SLI4_PAGE_SIZE;
16731
16732 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16733 if (!mbox)
16734 return -ENOMEM;
16735 length = (sizeof(struct lpfc_mbx_mq_create_ext) -
16736 sizeof(struct lpfc_sli4_cfg_mhdr));
16737 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16738 LPFC_MBOX_OPCODE_MQ_CREATE_EXT,
16739 length, LPFC_SLI4_MBX_EMBED);
16740
16741 mq_create_ext = &mbox->u.mqe.un.mq_create_ext;
16742 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr;
16743 bf_set(lpfc_mbx_mq_create_ext_num_pages,
16744 &mq_create_ext->u.request, mq->page_count);
16745 bf_set(lpfc_mbx_mq_create_ext_async_evt_link,
16746 &mq_create_ext->u.request, 1);
16747 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip,
16748 &mq_create_ext->u.request, 1);
16749 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5,
16750 &mq_create_ext->u.request, 1);
16751 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc,
16752 &mq_create_ext->u.request, 1);
16753 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli,
16754 &mq_create_ext->u.request, 1);
16755 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1);
16756 bf_set(lpfc_mbox_hdr_version, &shdr->request,
16757 phba->sli4_hba.pc_sli4_params.mqv);
16758 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1)
16759 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request,
16760 cq->queue_id);
16761 else
16762 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context,
16763 cq->queue_id);
16764 switch (mq->entry_count) {
16765 default:
16766 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16767 "0362 Unsupported MQ count. (%d)\n",
16768 mq->entry_count);
16769 if (mq->entry_count < 16) {
16770 status = -EINVAL;
16771 goto out;
16772 }
16773 fallthrough; /* otherwise default to smallest count */
16774 case 16:
16775 bf_set(lpfc_mq_context_ring_size,
16776 &mq_create_ext->u.request.context,
16777 LPFC_MQ_RING_SIZE_16);
16778 break;
16779 case 32:
16780 bf_set(lpfc_mq_context_ring_size,
16781 &mq_create_ext->u.request.context,
16782 LPFC_MQ_RING_SIZE_32);
16783 break;
16784 case 64:
16785 bf_set(lpfc_mq_context_ring_size,
16786 &mq_create_ext->u.request.context,
16787 LPFC_MQ_RING_SIZE_64);
16788 break;
16789 case 128:
16790 bf_set(lpfc_mq_context_ring_size,
16791 &mq_create_ext->u.request.context,
16792 LPFC_MQ_RING_SIZE_128);
16793 break;
16794 }
16795 list_for_each_entry(dmabuf, &mq->page_list, list) {
16796 memset(dmabuf->virt, 0, hw_page_size);
16797 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo =
16798 putPaddrLow(dmabuf->phys);
16799 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi =
16800 putPaddrHigh(dmabuf->phys);
16801 }
16802 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16803 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
16804 &mq_create_ext->u.response);
16805 if (rc != MBX_SUCCESS) {
16806 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
16807 "2795 MQ_CREATE_EXT failed with "
16808 "status x%x. Failback to MQ_CREATE.\n",
16809 rc);
16810 lpfc_mq_create_fb_init(phba, mq, mbox, cq);
16811 mq_create = &mbox->u.mqe.un.mq_create;
16812 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16813 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr;
16814 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
16815 &mq_create->u.response);
16816 }
16817
16818 /* The IOCTL status is embedded in the mailbox subheader. */
16819 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16820 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16821 if (shdr_status || shdr_add_status || rc) {
16822 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16823 "2502 MQ_CREATE mailbox failed with "
16824 "status x%x add_status x%x, mbx status x%x\n",
16825 shdr_status, shdr_add_status, rc);
16826 status = -ENXIO;
16827 goto out;
16828 }
16829 if (mq->queue_id == 0xFFFF) {
16830 status = -ENXIO;
16831 goto out;
16832 }
16833 mq->type = LPFC_MQ;
16834 mq->assoc_qid = cq->queue_id;
16835 mq->subtype = subtype;
16836 mq->host_index = 0;
16837 mq->hba_index = 0;
16838
16839 /* link the mq onto the parent cq child list */
16840 list_add_tail(&mq->list, &cq->child_list);
16841 out:
16842 mempool_free(mbox, phba->mbox_mem_pool);
16843 return status;
16844 }
16845
16846 /**
16847 * lpfc_wq_create - Create a Work Queue on the HBA
16848 * @phba: HBA structure that indicates port to create a queue on.
16849 * @wq: The queue structure to use to create the work queue.
16850 * @cq: The completion queue to bind this work queue to.
16851 * @subtype: The subtype of the work queue indicating its functionality.
16852 *
16853 * This function creates a work queue, as detailed in @wq, on a port, described
16854 * by @phba by sending a WQ_CREATE mailbox command to the HBA.
16855 *
16856 * The @phba struct is used to send mailbox command to HBA. The @wq struct
16857 * is used to get the entry count and entry size that are necessary to
16858 * determine the number of pages to allocate and use for this queue. The @cq
16859 * is used to indicate which completion queue to bind this work queue to. This
16860 * function will send the WQ_CREATE mailbox command to the HBA to setup the
16861 * work queue. This function is asynchronous and will wait for the mailbox
16862 * command to finish before continuing.
16863 *
16864 * On success this function will return a zero. If unable to allocate enough
16865 * memory this function will return -ENOMEM. If the queue create mailbox command
16866 * fails this function will return -ENXIO.
16867 **/
16868 int
lpfc_wq_create(struct lpfc_hba * phba,struct lpfc_queue * wq,struct lpfc_queue * cq,uint32_t subtype)16869 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq,
16870 struct lpfc_queue *cq, uint32_t subtype)
16871 {
16872 struct lpfc_mbx_wq_create *wq_create;
16873 struct lpfc_dmabuf *dmabuf;
16874 LPFC_MBOXQ_t *mbox;
16875 int rc, length, status = 0;
16876 uint32_t shdr_status, shdr_add_status;
16877 union lpfc_sli4_cfg_shdr *shdr;
16878 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16879 struct dma_address *page;
16880 void __iomem *bar_memmap_p;
16881 uint32_t db_offset;
16882 uint16_t pci_barset;
16883 uint8_t dpp_barset;
16884 uint32_t dpp_offset;
16885 uint8_t wq_create_version;
16886 #ifdef CONFIG_X86
16887 unsigned long pg_addr;
16888 #endif
16889
16890 /* sanity check on queue memory */
16891 if (!wq || !cq)
16892 return -ENODEV;
16893 if (!phba->sli4_hba.pc_sli4_params.supported)
16894 hw_page_size = wq->page_size;
16895
16896 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16897 if (!mbox)
16898 return -ENOMEM;
16899 length = (sizeof(struct lpfc_mbx_wq_create) -
16900 sizeof(struct lpfc_sli4_cfg_mhdr));
16901 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16902 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE,
16903 length, LPFC_SLI4_MBX_EMBED);
16904 wq_create = &mbox->u.mqe.un.wq_create;
16905 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr;
16906 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request,
16907 wq->page_count);
16908 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request,
16909 cq->queue_id);
16910
16911 /* wqv is the earliest version supported, NOT the latest */
16912 bf_set(lpfc_mbox_hdr_version, &shdr->request,
16913 phba->sli4_hba.pc_sli4_params.wqv);
16914
16915 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) ||
16916 (wq->page_size > SLI4_PAGE_SIZE))
16917 wq_create_version = LPFC_Q_CREATE_VERSION_1;
16918 else
16919 wq_create_version = LPFC_Q_CREATE_VERSION_0;
16920
16921 switch (wq_create_version) {
16922 case LPFC_Q_CREATE_VERSION_1:
16923 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1,
16924 wq->entry_count);
16925 bf_set(lpfc_mbox_hdr_version, &shdr->request,
16926 LPFC_Q_CREATE_VERSION_1);
16927
16928 switch (wq->entry_size) {
16929 default:
16930 case 64:
16931 bf_set(lpfc_mbx_wq_create_wqe_size,
16932 &wq_create->u.request_1,
16933 LPFC_WQ_WQE_SIZE_64);
16934 break;
16935 case 128:
16936 bf_set(lpfc_mbx_wq_create_wqe_size,
16937 &wq_create->u.request_1,
16938 LPFC_WQ_WQE_SIZE_128);
16939 break;
16940 }
16941 /* Request DPP by default */
16942 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1);
16943 bf_set(lpfc_mbx_wq_create_page_size,
16944 &wq_create->u.request_1,
16945 (wq->page_size / SLI4_PAGE_SIZE));
16946 page = wq_create->u.request_1.page;
16947 break;
16948 default:
16949 page = wq_create->u.request.page;
16950 break;
16951 }
16952
16953 list_for_each_entry(dmabuf, &wq->page_list, list) {
16954 memset(dmabuf->virt, 0, hw_page_size);
16955 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys);
16956 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys);
16957 }
16958
16959 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
16960 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1);
16961
16962 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16963 /* The IOCTL status is embedded in the mailbox subheader. */
16964 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16965 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16966 if (shdr_status || shdr_add_status || rc) {
16967 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16968 "2503 WQ_CREATE mailbox failed with "
16969 "status x%x add_status x%x, mbx status x%x\n",
16970 shdr_status, shdr_add_status, rc);
16971 status = -ENXIO;
16972 goto out;
16973 }
16974
16975 if (wq_create_version == LPFC_Q_CREATE_VERSION_0)
16976 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id,
16977 &wq_create->u.response);
16978 else
16979 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id,
16980 &wq_create->u.response_1);
16981
16982 if (wq->queue_id == 0xFFFF) {
16983 status = -ENXIO;
16984 goto out;
16985 }
16986
16987 wq->db_format = LPFC_DB_LIST_FORMAT;
16988 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) {
16989 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
16990 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format,
16991 &wq_create->u.response);
16992 if ((wq->db_format != LPFC_DB_LIST_FORMAT) &&
16993 (wq->db_format != LPFC_DB_RING_FORMAT)) {
16994 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16995 "3265 WQ[%d] doorbell format "
16996 "not supported: x%x\n",
16997 wq->queue_id, wq->db_format);
16998 status = -EINVAL;
16999 goto out;
17000 }
17001 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set,
17002 &wq_create->u.response);
17003 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
17004 pci_barset);
17005 if (!bar_memmap_p) {
17006 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17007 "3263 WQ[%d] failed to memmap "
17008 "pci barset:x%x\n",
17009 wq->queue_id, pci_barset);
17010 status = -ENOMEM;
17011 goto out;
17012 }
17013 db_offset = wq_create->u.response.doorbell_offset;
17014 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) &&
17015 (db_offset != LPFC_ULP1_WQ_DOORBELL)) {
17016 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17017 "3252 WQ[%d] doorbell offset "
17018 "not supported: x%x\n",
17019 wq->queue_id, db_offset);
17020 status = -EINVAL;
17021 goto out;
17022 }
17023 wq->db_regaddr = bar_memmap_p + db_offset;
17024 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
17025 "3264 WQ[%d]: barset:x%x, offset:x%x, "
17026 "format:x%x\n", wq->queue_id,
17027 pci_barset, db_offset, wq->db_format);
17028 } else
17029 wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
17030 } else {
17031 /* Check if DPP was honored by the firmware */
17032 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp,
17033 &wq_create->u.response_1);
17034 if (wq->dpp_enable) {
17035 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set,
17036 &wq_create->u.response_1);
17037 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
17038 pci_barset);
17039 if (!bar_memmap_p) {
17040 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17041 "3267 WQ[%d] failed to memmap "
17042 "pci barset:x%x\n",
17043 wq->queue_id, pci_barset);
17044 status = -ENOMEM;
17045 goto out;
17046 }
17047 db_offset = wq_create->u.response_1.doorbell_offset;
17048 wq->db_regaddr = bar_memmap_p + db_offset;
17049 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id,
17050 &wq_create->u.response_1);
17051 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar,
17052 &wq_create->u.response_1);
17053 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
17054 dpp_barset);
17055 if (!bar_memmap_p) {
17056 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17057 "3268 WQ[%d] failed to memmap "
17058 "pci barset:x%x\n",
17059 wq->queue_id, dpp_barset);
17060 status = -ENOMEM;
17061 goto out;
17062 }
17063 dpp_offset = wq_create->u.response_1.dpp_offset;
17064 wq->dpp_regaddr = bar_memmap_p + dpp_offset;
17065 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
17066 "3271 WQ[%d]: barset:x%x, offset:x%x, "
17067 "dpp_id:x%x dpp_barset:x%x "
17068 "dpp_offset:x%x\n",
17069 wq->queue_id, pci_barset, db_offset,
17070 wq->dpp_id, dpp_barset, dpp_offset);
17071
17072 #ifdef CONFIG_X86
17073 /* Enable combined writes for DPP aperture */
17074 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK;
17075 rc = set_memory_wc(pg_addr, 1);
17076 if (rc) {
17077 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
17078 "3272 Cannot setup Combined "
17079 "Write on WQ[%d] - disable DPP\n",
17080 wq->queue_id);
17081 phba->cfg_enable_dpp = 0;
17082 }
17083 #else
17084 phba->cfg_enable_dpp = 0;
17085 #endif
17086 } else
17087 wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
17088 }
17089 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL);
17090 if (wq->pring == NULL) {
17091 status = -ENOMEM;
17092 goto out;
17093 }
17094 wq->type = LPFC_WQ;
17095 wq->assoc_qid = cq->queue_id;
17096 wq->subtype = subtype;
17097 wq->host_index = 0;
17098 wq->hba_index = 0;
17099 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL;
17100
17101 /* link the wq onto the parent cq child list */
17102 list_add_tail(&wq->list, &cq->child_list);
17103 out:
17104 mempool_free(mbox, phba->mbox_mem_pool);
17105 return status;
17106 }
17107
17108 /**
17109 * lpfc_rq_create - Create a Receive Queue on the HBA
17110 * @phba: HBA structure that indicates port to create a queue on.
17111 * @hrq: The queue structure to use to create the header receive queue.
17112 * @drq: The queue structure to use to create the data receive queue.
17113 * @cq: The completion queue to bind this work queue to.
17114 * @subtype: The subtype of the work queue indicating its functionality.
17115 *
17116 * This function creates a receive buffer queue pair , as detailed in @hrq and
17117 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
17118 * to the HBA.
17119 *
17120 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
17121 * struct is used to get the entry count that is necessary to determine the
17122 * number of pages to use for this queue. The @cq is used to indicate which
17123 * completion queue to bind received buffers that are posted to these queues to.
17124 * This function will send the RQ_CREATE mailbox command to the HBA to setup the
17125 * receive queue pair. This function is asynchronous and will wait for the
17126 * mailbox command to finish before continuing.
17127 *
17128 * On success this function will return a zero. If unable to allocate enough
17129 * memory this function will return -ENOMEM. If the queue create mailbox command
17130 * fails this function will return -ENXIO.
17131 **/
17132 int
lpfc_rq_create(struct lpfc_hba * phba,struct lpfc_queue * hrq,struct lpfc_queue * drq,struct lpfc_queue * cq,uint32_t subtype)17133 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq,
17134 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype)
17135 {
17136 struct lpfc_mbx_rq_create *rq_create;
17137 struct lpfc_dmabuf *dmabuf;
17138 LPFC_MBOXQ_t *mbox;
17139 int rc, length, status = 0;
17140 uint32_t shdr_status, shdr_add_status;
17141 union lpfc_sli4_cfg_shdr *shdr;
17142 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
17143 void __iomem *bar_memmap_p;
17144 uint32_t db_offset;
17145 uint16_t pci_barset;
17146
17147 /* sanity check on queue memory */
17148 if (!hrq || !drq || !cq)
17149 return -ENODEV;
17150 if (!phba->sli4_hba.pc_sli4_params.supported)
17151 hw_page_size = SLI4_PAGE_SIZE;
17152
17153 if (hrq->entry_count != drq->entry_count)
17154 return -EINVAL;
17155 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17156 if (!mbox)
17157 return -ENOMEM;
17158 length = (sizeof(struct lpfc_mbx_rq_create) -
17159 sizeof(struct lpfc_sli4_cfg_mhdr));
17160 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17161 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
17162 length, LPFC_SLI4_MBX_EMBED);
17163 rq_create = &mbox->u.mqe.un.rq_create;
17164 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
17165 bf_set(lpfc_mbox_hdr_version, &shdr->request,
17166 phba->sli4_hba.pc_sli4_params.rqv);
17167 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
17168 bf_set(lpfc_rq_context_rqe_count_1,
17169 &rq_create->u.request.context,
17170 hrq->entry_count);
17171 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE;
17172 bf_set(lpfc_rq_context_rqe_size,
17173 &rq_create->u.request.context,
17174 LPFC_RQE_SIZE_8);
17175 bf_set(lpfc_rq_context_page_size,
17176 &rq_create->u.request.context,
17177 LPFC_RQ_PAGE_SIZE_4096);
17178 } else {
17179 switch (hrq->entry_count) {
17180 default:
17181 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17182 "2535 Unsupported RQ count. (%d)\n",
17183 hrq->entry_count);
17184 if (hrq->entry_count < 512) {
17185 status = -EINVAL;
17186 goto out;
17187 }
17188 fallthrough; /* otherwise default to smallest count */
17189 case 512:
17190 bf_set(lpfc_rq_context_rqe_count,
17191 &rq_create->u.request.context,
17192 LPFC_RQ_RING_SIZE_512);
17193 break;
17194 case 1024:
17195 bf_set(lpfc_rq_context_rqe_count,
17196 &rq_create->u.request.context,
17197 LPFC_RQ_RING_SIZE_1024);
17198 break;
17199 case 2048:
17200 bf_set(lpfc_rq_context_rqe_count,
17201 &rq_create->u.request.context,
17202 LPFC_RQ_RING_SIZE_2048);
17203 break;
17204 case 4096:
17205 bf_set(lpfc_rq_context_rqe_count,
17206 &rq_create->u.request.context,
17207 LPFC_RQ_RING_SIZE_4096);
17208 break;
17209 }
17210 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
17211 LPFC_HDR_BUF_SIZE);
17212 }
17213 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
17214 cq->queue_id);
17215 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
17216 hrq->page_count);
17217 list_for_each_entry(dmabuf, &hrq->page_list, list) {
17218 memset(dmabuf->virt, 0, hw_page_size);
17219 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
17220 putPaddrLow(dmabuf->phys);
17221 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
17222 putPaddrHigh(dmabuf->phys);
17223 }
17224 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
17225 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
17226
17227 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17228 /* The IOCTL status is embedded in the mailbox subheader. */
17229 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17230 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17231 if (shdr_status || shdr_add_status || rc) {
17232 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17233 "2504 RQ_CREATE mailbox failed with "
17234 "status x%x add_status x%x, mbx status x%x\n",
17235 shdr_status, shdr_add_status, rc);
17236 status = -ENXIO;
17237 goto out;
17238 }
17239 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
17240 if (hrq->queue_id == 0xFFFF) {
17241 status = -ENXIO;
17242 goto out;
17243 }
17244
17245 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
17246 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format,
17247 &rq_create->u.response);
17248 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) &&
17249 (hrq->db_format != LPFC_DB_RING_FORMAT)) {
17250 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17251 "3262 RQ [%d] doorbell format not "
17252 "supported: x%x\n", hrq->queue_id,
17253 hrq->db_format);
17254 status = -EINVAL;
17255 goto out;
17256 }
17257
17258 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set,
17259 &rq_create->u.response);
17260 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
17261 if (!bar_memmap_p) {
17262 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17263 "3269 RQ[%d] failed to memmap pci "
17264 "barset:x%x\n", hrq->queue_id,
17265 pci_barset);
17266 status = -ENOMEM;
17267 goto out;
17268 }
17269
17270 db_offset = rq_create->u.response.doorbell_offset;
17271 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) &&
17272 (db_offset != LPFC_ULP1_RQ_DOORBELL)) {
17273 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17274 "3270 RQ[%d] doorbell offset not "
17275 "supported: x%x\n", hrq->queue_id,
17276 db_offset);
17277 status = -EINVAL;
17278 goto out;
17279 }
17280 hrq->db_regaddr = bar_memmap_p + db_offset;
17281 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
17282 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, "
17283 "format:x%x\n", hrq->queue_id, pci_barset,
17284 db_offset, hrq->db_format);
17285 } else {
17286 hrq->db_format = LPFC_DB_RING_FORMAT;
17287 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
17288 }
17289 hrq->type = LPFC_HRQ;
17290 hrq->assoc_qid = cq->queue_id;
17291 hrq->subtype = subtype;
17292 hrq->host_index = 0;
17293 hrq->hba_index = 0;
17294 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
17295
17296 /* now create the data queue */
17297 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17298 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
17299 length, LPFC_SLI4_MBX_EMBED);
17300 bf_set(lpfc_mbox_hdr_version, &shdr->request,
17301 phba->sli4_hba.pc_sli4_params.rqv);
17302 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
17303 bf_set(lpfc_rq_context_rqe_count_1,
17304 &rq_create->u.request.context, hrq->entry_count);
17305 if (subtype == LPFC_NVMET)
17306 rq_create->u.request.context.buffer_size =
17307 LPFC_NVMET_DATA_BUF_SIZE;
17308 else
17309 rq_create->u.request.context.buffer_size =
17310 LPFC_DATA_BUF_SIZE;
17311 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context,
17312 LPFC_RQE_SIZE_8);
17313 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context,
17314 (PAGE_SIZE/SLI4_PAGE_SIZE));
17315 } else {
17316 switch (drq->entry_count) {
17317 default:
17318 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17319 "2536 Unsupported RQ count. (%d)\n",
17320 drq->entry_count);
17321 if (drq->entry_count < 512) {
17322 status = -EINVAL;
17323 goto out;
17324 }
17325 fallthrough; /* otherwise default to smallest count */
17326 case 512:
17327 bf_set(lpfc_rq_context_rqe_count,
17328 &rq_create->u.request.context,
17329 LPFC_RQ_RING_SIZE_512);
17330 break;
17331 case 1024:
17332 bf_set(lpfc_rq_context_rqe_count,
17333 &rq_create->u.request.context,
17334 LPFC_RQ_RING_SIZE_1024);
17335 break;
17336 case 2048:
17337 bf_set(lpfc_rq_context_rqe_count,
17338 &rq_create->u.request.context,
17339 LPFC_RQ_RING_SIZE_2048);
17340 break;
17341 case 4096:
17342 bf_set(lpfc_rq_context_rqe_count,
17343 &rq_create->u.request.context,
17344 LPFC_RQ_RING_SIZE_4096);
17345 break;
17346 }
17347 if (subtype == LPFC_NVMET)
17348 bf_set(lpfc_rq_context_buf_size,
17349 &rq_create->u.request.context,
17350 LPFC_NVMET_DATA_BUF_SIZE);
17351 else
17352 bf_set(lpfc_rq_context_buf_size,
17353 &rq_create->u.request.context,
17354 LPFC_DATA_BUF_SIZE);
17355 }
17356 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
17357 cq->queue_id);
17358 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
17359 drq->page_count);
17360 list_for_each_entry(dmabuf, &drq->page_list, list) {
17361 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
17362 putPaddrLow(dmabuf->phys);
17363 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
17364 putPaddrHigh(dmabuf->phys);
17365 }
17366 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
17367 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
17368 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17369 /* The IOCTL status is embedded in the mailbox subheader. */
17370 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
17371 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17372 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17373 if (shdr_status || shdr_add_status || rc) {
17374 status = -ENXIO;
17375 goto out;
17376 }
17377 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
17378 if (drq->queue_id == 0xFFFF) {
17379 status = -ENXIO;
17380 goto out;
17381 }
17382 drq->type = LPFC_DRQ;
17383 drq->assoc_qid = cq->queue_id;
17384 drq->subtype = subtype;
17385 drq->host_index = 0;
17386 drq->hba_index = 0;
17387 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
17388
17389 /* link the header and data RQs onto the parent cq child list */
17390 list_add_tail(&hrq->list, &cq->child_list);
17391 list_add_tail(&drq->list, &cq->child_list);
17392
17393 out:
17394 mempool_free(mbox, phba->mbox_mem_pool);
17395 return status;
17396 }
17397
17398 /**
17399 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA
17400 * @phba: HBA structure that indicates port to create a queue on.
17401 * @hrqp: The queue structure array to use to create the header receive queues.
17402 * @drqp: The queue structure array to use to create the data receive queues.
17403 * @cqp: The completion queue array to bind these receive queues to.
17404 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
17405 *
17406 * This function creates a receive buffer queue pair , as detailed in @hrq and
17407 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
17408 * to the HBA.
17409 *
17410 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
17411 * struct is used to get the entry count that is necessary to determine the
17412 * number of pages to use for this queue. The @cq is used to indicate which
17413 * completion queue to bind received buffers that are posted to these queues to.
17414 * This function will send the RQ_CREATE mailbox command to the HBA to setup the
17415 * receive queue pair. This function is asynchronous and will wait for the
17416 * mailbox command to finish before continuing.
17417 *
17418 * On success this function will return a zero. If unable to allocate enough
17419 * memory this function will return -ENOMEM. If the queue create mailbox command
17420 * fails this function will return -ENXIO.
17421 **/
17422 int
lpfc_mrq_create(struct lpfc_hba * phba,struct lpfc_queue ** hrqp,struct lpfc_queue ** drqp,struct lpfc_queue ** cqp,uint32_t subtype)17423 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp,
17424 struct lpfc_queue **drqp, struct lpfc_queue **cqp,
17425 uint32_t subtype)
17426 {
17427 struct lpfc_queue *hrq, *drq, *cq;
17428 struct lpfc_mbx_rq_create_v2 *rq_create;
17429 struct lpfc_dmabuf *dmabuf;
17430 LPFC_MBOXQ_t *mbox;
17431 int rc, length, alloclen, status = 0;
17432 int cnt, idx, numrq, page_idx = 0;
17433 uint32_t shdr_status, shdr_add_status;
17434 union lpfc_sli4_cfg_shdr *shdr;
17435 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
17436
17437 numrq = phba->cfg_nvmet_mrq;
17438 /* sanity check on array memory */
17439 if (!hrqp || !drqp || !cqp || !numrq)
17440 return -ENODEV;
17441 if (!phba->sli4_hba.pc_sli4_params.supported)
17442 hw_page_size = SLI4_PAGE_SIZE;
17443
17444 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17445 if (!mbox)
17446 return -ENOMEM;
17447
17448 length = sizeof(struct lpfc_mbx_rq_create_v2);
17449 length += ((2 * numrq * hrqp[0]->page_count) *
17450 sizeof(struct dma_address));
17451
17452 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17453 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length,
17454 LPFC_SLI4_MBX_NEMBED);
17455 if (alloclen < length) {
17456 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17457 "3099 Allocated DMA memory size (%d) is "
17458 "less than the requested DMA memory size "
17459 "(%d)\n", alloclen, length);
17460 status = -ENOMEM;
17461 goto out;
17462 }
17463
17464
17465
17466 rq_create = mbox->sge_array->addr[0];
17467 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr;
17468
17469 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2);
17470 cnt = 0;
17471
17472 for (idx = 0; idx < numrq; idx++) {
17473 hrq = hrqp[idx];
17474 drq = drqp[idx];
17475 cq = cqp[idx];
17476
17477 /* sanity check on queue memory */
17478 if (!hrq || !drq || !cq) {
17479 status = -ENODEV;
17480 goto out;
17481 }
17482
17483 if (hrq->entry_count != drq->entry_count) {
17484 status = -EINVAL;
17485 goto out;
17486 }
17487
17488 if (idx == 0) {
17489 bf_set(lpfc_mbx_rq_create_num_pages,
17490 &rq_create->u.request,
17491 hrq->page_count);
17492 bf_set(lpfc_mbx_rq_create_rq_cnt,
17493 &rq_create->u.request, (numrq * 2));
17494 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request,
17495 1);
17496 bf_set(lpfc_rq_context_base_cq,
17497 &rq_create->u.request.context,
17498 cq->queue_id);
17499 bf_set(lpfc_rq_context_data_size,
17500 &rq_create->u.request.context,
17501 LPFC_NVMET_DATA_BUF_SIZE);
17502 bf_set(lpfc_rq_context_hdr_size,
17503 &rq_create->u.request.context,
17504 LPFC_HDR_BUF_SIZE);
17505 bf_set(lpfc_rq_context_rqe_count_1,
17506 &rq_create->u.request.context,
17507 hrq->entry_count);
17508 bf_set(lpfc_rq_context_rqe_size,
17509 &rq_create->u.request.context,
17510 LPFC_RQE_SIZE_8);
17511 bf_set(lpfc_rq_context_page_size,
17512 &rq_create->u.request.context,
17513 (PAGE_SIZE/SLI4_PAGE_SIZE));
17514 }
17515 rc = 0;
17516 list_for_each_entry(dmabuf, &hrq->page_list, list) {
17517 memset(dmabuf->virt, 0, hw_page_size);
17518 cnt = page_idx + dmabuf->buffer_tag;
17519 rq_create->u.request.page[cnt].addr_lo =
17520 putPaddrLow(dmabuf->phys);
17521 rq_create->u.request.page[cnt].addr_hi =
17522 putPaddrHigh(dmabuf->phys);
17523 rc++;
17524 }
17525 page_idx += rc;
17526
17527 rc = 0;
17528 list_for_each_entry(dmabuf, &drq->page_list, list) {
17529 memset(dmabuf->virt, 0, hw_page_size);
17530 cnt = page_idx + dmabuf->buffer_tag;
17531 rq_create->u.request.page[cnt].addr_lo =
17532 putPaddrLow(dmabuf->phys);
17533 rq_create->u.request.page[cnt].addr_hi =
17534 putPaddrHigh(dmabuf->phys);
17535 rc++;
17536 }
17537 page_idx += rc;
17538
17539 hrq->db_format = LPFC_DB_RING_FORMAT;
17540 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
17541 hrq->type = LPFC_HRQ;
17542 hrq->assoc_qid = cq->queue_id;
17543 hrq->subtype = subtype;
17544 hrq->host_index = 0;
17545 hrq->hba_index = 0;
17546 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
17547
17548 drq->db_format = LPFC_DB_RING_FORMAT;
17549 drq->db_regaddr = phba->sli4_hba.RQDBregaddr;
17550 drq->type = LPFC_DRQ;
17551 drq->assoc_qid = cq->queue_id;
17552 drq->subtype = subtype;
17553 drq->host_index = 0;
17554 drq->hba_index = 0;
17555 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
17556
17557 list_add_tail(&hrq->list, &cq->child_list);
17558 list_add_tail(&drq->list, &cq->child_list);
17559 }
17560
17561 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17562 /* The IOCTL status is embedded in the mailbox subheader. */
17563 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17564 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17565 if (shdr_status || shdr_add_status || rc) {
17566 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17567 "3120 RQ_CREATE mailbox failed with "
17568 "status x%x add_status x%x, mbx status x%x\n",
17569 shdr_status, shdr_add_status, rc);
17570 status = -ENXIO;
17571 goto out;
17572 }
17573 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
17574 if (rc == 0xFFFF) {
17575 status = -ENXIO;
17576 goto out;
17577 }
17578
17579 /* Initialize all RQs with associated queue id */
17580 for (idx = 0; idx < numrq; idx++) {
17581 hrq = hrqp[idx];
17582 hrq->queue_id = rc + (2 * idx);
17583 drq = drqp[idx];
17584 drq->queue_id = rc + (2 * idx) + 1;
17585 }
17586
17587 out:
17588 lpfc_sli4_mbox_cmd_free(phba, mbox);
17589 return status;
17590 }
17591
17592 /**
17593 * lpfc_eq_destroy - Destroy an event Queue on the HBA
17594 * @phba: HBA structure that indicates port to destroy a queue on.
17595 * @eq: The queue structure associated with the queue to destroy.
17596 *
17597 * This function destroys a queue, as detailed in @eq by sending an mailbox
17598 * command, specific to the type of queue, to the HBA.
17599 *
17600 * The @eq struct is used to get the queue ID of the queue to destroy.
17601 *
17602 * On success this function will return a zero. If the queue destroy mailbox
17603 * command fails this function will return -ENXIO.
17604 **/
17605 int
lpfc_eq_destroy(struct lpfc_hba * phba,struct lpfc_queue * eq)17606 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq)
17607 {
17608 LPFC_MBOXQ_t *mbox;
17609 int rc, length, status = 0;
17610 uint32_t shdr_status, shdr_add_status;
17611 union lpfc_sli4_cfg_shdr *shdr;
17612
17613 /* sanity check on queue memory */
17614 if (!eq)
17615 return -ENODEV;
17616
17617 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE))
17618 goto list_remove;
17619
17620 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL);
17621 if (!mbox)
17622 return -ENOMEM;
17623 length = (sizeof(struct lpfc_mbx_eq_destroy) -
17624 sizeof(struct lpfc_sli4_cfg_mhdr));
17625 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
17626 LPFC_MBOX_OPCODE_EQ_DESTROY,
17627 length, LPFC_SLI4_MBX_EMBED);
17628 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request,
17629 eq->queue_id);
17630 mbox->vport = eq->phba->pport;
17631 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17632
17633 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL);
17634 /* The IOCTL status is embedded in the mailbox subheader. */
17635 shdr = (union lpfc_sli4_cfg_shdr *)
17636 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr;
17637 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17638 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17639 if (shdr_status || shdr_add_status || rc) {
17640 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17641 "2505 EQ_DESTROY mailbox failed with "
17642 "status x%x add_status x%x, mbx status x%x\n",
17643 shdr_status, shdr_add_status, rc);
17644 status = -ENXIO;
17645 }
17646 mempool_free(mbox, eq->phba->mbox_mem_pool);
17647
17648 list_remove:
17649 /* Remove eq from any list */
17650 list_del_init(&eq->list);
17651
17652 return status;
17653 }
17654
17655 /**
17656 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA
17657 * @phba: HBA structure that indicates port to destroy a queue on.
17658 * @cq: The queue structure associated with the queue to destroy.
17659 *
17660 * This function destroys a queue, as detailed in @cq by sending an mailbox
17661 * command, specific to the type of queue, to the HBA.
17662 *
17663 * The @cq struct is used to get the queue ID of the queue to destroy.
17664 *
17665 * On success this function will return a zero. If the queue destroy mailbox
17666 * command fails this function will return -ENXIO.
17667 **/
17668 int
lpfc_cq_destroy(struct lpfc_hba * phba,struct lpfc_queue * cq)17669 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq)
17670 {
17671 LPFC_MBOXQ_t *mbox;
17672 int rc, length, status = 0;
17673 uint32_t shdr_status, shdr_add_status;
17674 union lpfc_sli4_cfg_shdr *shdr;
17675
17676 /* sanity check on queue memory */
17677 if (!cq)
17678 return -ENODEV;
17679
17680 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE))
17681 goto list_remove;
17682
17683 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL);
17684 if (!mbox)
17685 return -ENOMEM;
17686 length = (sizeof(struct lpfc_mbx_cq_destroy) -
17687 sizeof(struct lpfc_sli4_cfg_mhdr));
17688 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
17689 LPFC_MBOX_OPCODE_CQ_DESTROY,
17690 length, LPFC_SLI4_MBX_EMBED);
17691 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request,
17692 cq->queue_id);
17693 mbox->vport = cq->phba->pport;
17694 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17695 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL);
17696 /* The IOCTL status is embedded in the mailbox subheader. */
17697 shdr = (union lpfc_sli4_cfg_shdr *)
17698 &mbox->u.mqe.un.wq_create.header.cfg_shdr;
17699 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17700 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17701 if (shdr_status || shdr_add_status || rc) {
17702 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17703 "2506 CQ_DESTROY mailbox failed with "
17704 "status x%x add_status x%x, mbx status x%x\n",
17705 shdr_status, shdr_add_status, rc);
17706 status = -ENXIO;
17707 }
17708 mempool_free(mbox, cq->phba->mbox_mem_pool);
17709
17710 list_remove:
17711 /* Remove cq from any list */
17712 list_del_init(&cq->list);
17713 return status;
17714 }
17715
17716 /**
17717 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA
17718 * @phba: HBA structure that indicates port to destroy a queue on.
17719 * @mq: The queue structure associated with the queue to destroy.
17720 *
17721 * This function destroys a queue, as detailed in @mq by sending an mailbox
17722 * command, specific to the type of queue, to the HBA.
17723 *
17724 * The @mq struct is used to get the queue ID of the queue to destroy.
17725 *
17726 * On success this function will return a zero. If the queue destroy mailbox
17727 * command fails this function will return -ENXIO.
17728 **/
17729 int
lpfc_mq_destroy(struct lpfc_hba * phba,struct lpfc_queue * mq)17730 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq)
17731 {
17732 LPFC_MBOXQ_t *mbox;
17733 int rc, length, status = 0;
17734 uint32_t shdr_status, shdr_add_status;
17735 union lpfc_sli4_cfg_shdr *shdr;
17736
17737 /* sanity check on queue memory */
17738 if (!mq)
17739 return -ENODEV;
17740
17741 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE))
17742 goto list_remove;
17743
17744 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL);
17745 if (!mbox)
17746 return -ENOMEM;
17747 length = (sizeof(struct lpfc_mbx_mq_destroy) -
17748 sizeof(struct lpfc_sli4_cfg_mhdr));
17749 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
17750 LPFC_MBOX_OPCODE_MQ_DESTROY,
17751 length, LPFC_SLI4_MBX_EMBED);
17752 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request,
17753 mq->queue_id);
17754 mbox->vport = mq->phba->pport;
17755 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17756 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL);
17757 /* The IOCTL status is embedded in the mailbox subheader. */
17758 shdr = (union lpfc_sli4_cfg_shdr *)
17759 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr;
17760 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17761 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17762 if (shdr_status || shdr_add_status || rc) {
17763 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17764 "2507 MQ_DESTROY mailbox failed with "
17765 "status x%x add_status x%x, mbx status x%x\n",
17766 shdr_status, shdr_add_status, rc);
17767 status = -ENXIO;
17768 }
17769 mempool_free(mbox, mq->phba->mbox_mem_pool);
17770
17771 list_remove:
17772 /* Remove mq from any list */
17773 list_del_init(&mq->list);
17774 return status;
17775 }
17776
17777 /**
17778 * lpfc_wq_destroy - Destroy a Work Queue on the HBA
17779 * @phba: HBA structure that indicates port to destroy a queue on.
17780 * @wq: The queue structure associated with the queue to destroy.
17781 *
17782 * This function destroys a queue, as detailed in @wq by sending an mailbox
17783 * command, specific to the type of queue, to the HBA.
17784 *
17785 * The @wq struct is used to get the queue ID of the queue to destroy.
17786 *
17787 * On success this function will return a zero. If the queue destroy mailbox
17788 * command fails this function will return -ENXIO.
17789 **/
17790 int
lpfc_wq_destroy(struct lpfc_hba * phba,struct lpfc_queue * wq)17791 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq)
17792 {
17793 LPFC_MBOXQ_t *mbox;
17794 int rc, length, status = 0;
17795 uint32_t shdr_status, shdr_add_status;
17796 union lpfc_sli4_cfg_shdr *shdr;
17797
17798 /* sanity check on queue memory */
17799 if (!wq)
17800 return -ENODEV;
17801
17802 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE))
17803 goto list_remove;
17804
17805 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL);
17806 if (!mbox)
17807 return -ENOMEM;
17808 length = (sizeof(struct lpfc_mbx_wq_destroy) -
17809 sizeof(struct lpfc_sli4_cfg_mhdr));
17810 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17811 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY,
17812 length, LPFC_SLI4_MBX_EMBED);
17813 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request,
17814 wq->queue_id);
17815 mbox->vport = wq->phba->pport;
17816 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17817 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL);
17818 shdr = (union lpfc_sli4_cfg_shdr *)
17819 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr;
17820 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17821 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17822 if (shdr_status || shdr_add_status || rc) {
17823 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17824 "2508 WQ_DESTROY mailbox failed with "
17825 "status x%x add_status x%x, mbx status x%x\n",
17826 shdr_status, shdr_add_status, rc);
17827 status = -ENXIO;
17828 }
17829 mempool_free(mbox, wq->phba->mbox_mem_pool);
17830
17831 list_remove:
17832 /* Remove wq from any list */
17833 list_del_init(&wq->list);
17834 kfree(wq->pring);
17835 wq->pring = NULL;
17836 return status;
17837 }
17838
17839 /**
17840 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA
17841 * @phba: HBA structure that indicates port to destroy a queue on.
17842 * @hrq: The queue structure associated with the queue to destroy.
17843 * @drq: The queue structure associated with the queue to destroy.
17844 *
17845 * This function destroys a queue, as detailed in @rq by sending an mailbox
17846 * command, specific to the type of queue, to the HBA.
17847 *
17848 * The @rq struct is used to get the queue ID of the queue to destroy.
17849 *
17850 * On success this function will return a zero. If the queue destroy mailbox
17851 * command fails this function will return -ENXIO.
17852 **/
17853 int
lpfc_rq_destroy(struct lpfc_hba * phba,struct lpfc_queue * hrq,struct lpfc_queue * drq)17854 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq,
17855 struct lpfc_queue *drq)
17856 {
17857 LPFC_MBOXQ_t *mbox;
17858 int rc, length, status = 0;
17859 uint32_t shdr_status, shdr_add_status;
17860 union lpfc_sli4_cfg_shdr *shdr;
17861
17862 /* sanity check on queue memory */
17863 if (!hrq || !drq)
17864 return -ENODEV;
17865
17866 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE))
17867 goto list_remove;
17868
17869 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL);
17870 if (!mbox)
17871 return -ENOMEM;
17872 length = (sizeof(struct lpfc_mbx_rq_destroy) -
17873 sizeof(struct lpfc_sli4_cfg_mhdr));
17874 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17875 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY,
17876 length, LPFC_SLI4_MBX_EMBED);
17877 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
17878 hrq->queue_id);
17879 mbox->vport = hrq->phba->pport;
17880 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17881 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL);
17882 /* The IOCTL status is embedded in the mailbox subheader. */
17883 shdr = (union lpfc_sli4_cfg_shdr *)
17884 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
17885 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17886 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17887 if (shdr_status || shdr_add_status || rc) {
17888 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17889 "2509 RQ_DESTROY mailbox failed with "
17890 "status x%x add_status x%x, mbx status x%x\n",
17891 shdr_status, shdr_add_status, rc);
17892 mempool_free(mbox, hrq->phba->mbox_mem_pool);
17893 return -ENXIO;
17894 }
17895 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
17896 drq->queue_id);
17897 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL);
17898 shdr = (union lpfc_sli4_cfg_shdr *)
17899 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
17900 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17901 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17902 if (shdr_status || shdr_add_status || rc) {
17903 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17904 "2510 RQ_DESTROY mailbox failed with "
17905 "status x%x add_status x%x, mbx status x%x\n",
17906 shdr_status, shdr_add_status, rc);
17907 status = -ENXIO;
17908 }
17909 mempool_free(mbox, hrq->phba->mbox_mem_pool);
17910
17911 list_remove:
17912 list_del_init(&hrq->list);
17913 list_del_init(&drq->list);
17914 return status;
17915 }
17916
17917 /**
17918 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA
17919 * @phba: The virtual port for which this call being executed.
17920 * @pdma_phys_addr0: Physical address of the 1st SGL page.
17921 * @pdma_phys_addr1: Physical address of the 2nd SGL page.
17922 * @xritag: the xritag that ties this io to the SGL pages.
17923 *
17924 * This routine will post the sgl pages for the IO that has the xritag
17925 * that is in the iocbq structure. The xritag is assigned during iocbq
17926 * creation and persists for as long as the driver is loaded.
17927 * if the caller has fewer than 256 scatter gather segments to map then
17928 * pdma_phys_addr1 should be 0.
17929 * If the caller needs to map more than 256 scatter gather segment then
17930 * pdma_phys_addr1 should be a valid physical address.
17931 * physical address for SGLs must be 64 byte aligned.
17932 * If you are going to map 2 SGL's then the first one must have 256 entries
17933 * the second sgl can have between 1 and 256 entries.
17934 *
17935 * Return codes:
17936 * 0 - Success
17937 * -ENXIO, -ENOMEM - Failure
17938 **/
17939 int
lpfc_sli4_post_sgl(struct lpfc_hba * phba,dma_addr_t pdma_phys_addr0,dma_addr_t pdma_phys_addr1,uint16_t xritag)17940 lpfc_sli4_post_sgl(struct lpfc_hba *phba,
17941 dma_addr_t pdma_phys_addr0,
17942 dma_addr_t pdma_phys_addr1,
17943 uint16_t xritag)
17944 {
17945 struct lpfc_mbx_post_sgl_pages *post_sgl_pages;
17946 LPFC_MBOXQ_t *mbox;
17947 int rc;
17948 uint32_t shdr_status, shdr_add_status;
17949 uint32_t mbox_tmo;
17950 union lpfc_sli4_cfg_shdr *shdr;
17951
17952 if (xritag == NO_XRI) {
17953 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17954 "0364 Invalid param:\n");
17955 return -EINVAL;
17956 }
17957
17958 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17959 if (!mbox)
17960 return -ENOMEM;
17961
17962 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17963 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
17964 sizeof(struct lpfc_mbx_post_sgl_pages) -
17965 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
17966
17967 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *)
17968 &mbox->u.mqe.un.post_sgl_pages;
17969 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag);
17970 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1);
17971
17972 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo =
17973 cpu_to_le32(putPaddrLow(pdma_phys_addr0));
17974 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi =
17975 cpu_to_le32(putPaddrHigh(pdma_phys_addr0));
17976
17977 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo =
17978 cpu_to_le32(putPaddrLow(pdma_phys_addr1));
17979 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi =
17980 cpu_to_le32(putPaddrHigh(pdma_phys_addr1));
17981 if (!phba->sli4_hba.intr_enable)
17982 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17983 else {
17984 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
17985 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
17986 }
17987 /* The IOCTL status is embedded in the mailbox subheader. */
17988 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr;
17989 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17990 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17991 if (!phba->sli4_hba.intr_enable)
17992 mempool_free(mbox, phba->mbox_mem_pool);
17993 else if (rc != MBX_TIMEOUT)
17994 mempool_free(mbox, phba->mbox_mem_pool);
17995 if (shdr_status || shdr_add_status || rc) {
17996 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17997 "2511 POST_SGL mailbox failed with "
17998 "status x%x add_status x%x, mbx status x%x\n",
17999 shdr_status, shdr_add_status, rc);
18000 }
18001 return 0;
18002 }
18003
18004 /**
18005 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range
18006 * @phba: pointer to lpfc hba data structure.
18007 *
18008 * This routine is invoked to post rpi header templates to the
18009 * HBA consistent with the SLI-4 interface spec. This routine
18010 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
18011 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
18012 *
18013 * Returns
18014 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
18015 * LPFC_RPI_ALLOC_ERROR if no rpis are available.
18016 **/
18017 static uint16_t
lpfc_sli4_alloc_xri(struct lpfc_hba * phba)18018 lpfc_sli4_alloc_xri(struct lpfc_hba *phba)
18019 {
18020 unsigned long xri;
18021
18022 /*
18023 * Fetch the next logical xri. Because this index is logical,
18024 * the driver starts at 0 each time.
18025 */
18026 spin_lock_irq(&phba->hbalock);
18027 xri = find_first_zero_bit(phba->sli4_hba.xri_bmask,
18028 phba->sli4_hba.max_cfg_param.max_xri);
18029 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) {
18030 spin_unlock_irq(&phba->hbalock);
18031 return NO_XRI;
18032 } else {
18033 set_bit(xri, phba->sli4_hba.xri_bmask);
18034 phba->sli4_hba.max_cfg_param.xri_used++;
18035 }
18036 spin_unlock_irq(&phba->hbalock);
18037 return xri;
18038 }
18039
18040 /**
18041 * __lpfc_sli4_free_xri - Release an xri for reuse.
18042 * @phba: pointer to lpfc hba data structure.
18043 * @xri: xri to release.
18044 *
18045 * This routine is invoked to release an xri to the pool of
18046 * available rpis maintained by the driver.
18047 **/
18048 static void
__lpfc_sli4_free_xri(struct lpfc_hba * phba,int xri)18049 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
18050 {
18051 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) {
18052 phba->sli4_hba.max_cfg_param.xri_used--;
18053 }
18054 }
18055
18056 /**
18057 * lpfc_sli4_free_xri - Release an xri for reuse.
18058 * @phba: pointer to lpfc hba data structure.
18059 * @xri: xri to release.
18060 *
18061 * This routine is invoked to release an xri to the pool of
18062 * available rpis maintained by the driver.
18063 **/
18064 void
lpfc_sli4_free_xri(struct lpfc_hba * phba,int xri)18065 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
18066 {
18067 spin_lock_irq(&phba->hbalock);
18068 __lpfc_sli4_free_xri(phba, xri);
18069 spin_unlock_irq(&phba->hbalock);
18070 }
18071
18072 /**
18073 * lpfc_sli4_next_xritag - Get an xritag for the io
18074 * @phba: Pointer to HBA context object.
18075 *
18076 * This function gets an xritag for the iocb. If there is no unused xritag
18077 * it will return 0xffff.
18078 * The function returns the allocated xritag if successful, else returns zero.
18079 * Zero is not a valid xritag.
18080 * The caller is not required to hold any lock.
18081 **/
18082 uint16_t
lpfc_sli4_next_xritag(struct lpfc_hba * phba)18083 lpfc_sli4_next_xritag(struct lpfc_hba *phba)
18084 {
18085 uint16_t xri_index;
18086
18087 xri_index = lpfc_sli4_alloc_xri(phba);
18088 if (xri_index == NO_XRI)
18089 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
18090 "2004 Failed to allocate XRI.last XRITAG is %d"
18091 " Max XRI is %d, Used XRI is %d\n",
18092 xri_index,
18093 phba->sli4_hba.max_cfg_param.max_xri,
18094 phba->sli4_hba.max_cfg_param.xri_used);
18095 return xri_index;
18096 }
18097
18098 /**
18099 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port.
18100 * @phba: pointer to lpfc hba data structure.
18101 * @post_sgl_list: pointer to els sgl entry list.
18102 * @post_cnt: number of els sgl entries on the list.
18103 *
18104 * This routine is invoked to post a block of driver's sgl pages to the
18105 * HBA using non-embedded mailbox command. No Lock is held. This routine
18106 * is only called when the driver is loading and after all IO has been
18107 * stopped.
18108 **/
18109 static int
lpfc_sli4_post_sgl_list(struct lpfc_hba * phba,struct list_head * post_sgl_list,int post_cnt)18110 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba,
18111 struct list_head *post_sgl_list,
18112 int post_cnt)
18113 {
18114 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
18115 struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
18116 struct sgl_page_pairs *sgl_pg_pairs;
18117 void *viraddr;
18118 LPFC_MBOXQ_t *mbox;
18119 uint32_t reqlen, alloclen, pg_pairs;
18120 uint32_t mbox_tmo;
18121 uint16_t xritag_start = 0;
18122 int rc = 0;
18123 uint32_t shdr_status, shdr_add_status;
18124 union lpfc_sli4_cfg_shdr *shdr;
18125
18126 reqlen = post_cnt * sizeof(struct sgl_page_pairs) +
18127 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
18128 if (reqlen > SLI4_PAGE_SIZE) {
18129 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18130 "2559 Block sgl registration required DMA "
18131 "size (%d) great than a page\n", reqlen);
18132 return -ENOMEM;
18133 }
18134
18135 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18136 if (!mbox)
18137 return -ENOMEM;
18138
18139 /* Allocate DMA memory and set up the non-embedded mailbox command */
18140 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
18141 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
18142 LPFC_SLI4_MBX_NEMBED);
18143
18144 if (alloclen < reqlen) {
18145 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18146 "0285 Allocated DMA memory size (%d) is "
18147 "less than the requested DMA memory "
18148 "size (%d)\n", alloclen, reqlen);
18149 lpfc_sli4_mbox_cmd_free(phba, mbox);
18150 return -ENOMEM;
18151 }
18152 /* Set up the SGL pages in the non-embedded DMA pages */
18153 viraddr = mbox->sge_array->addr[0];
18154 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
18155 sgl_pg_pairs = &sgl->sgl_pg_pairs;
18156
18157 pg_pairs = 0;
18158 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) {
18159 /* Set up the sge entry */
18160 sgl_pg_pairs->sgl_pg0_addr_lo =
18161 cpu_to_le32(putPaddrLow(sglq_entry->phys));
18162 sgl_pg_pairs->sgl_pg0_addr_hi =
18163 cpu_to_le32(putPaddrHigh(sglq_entry->phys));
18164 sgl_pg_pairs->sgl_pg1_addr_lo =
18165 cpu_to_le32(putPaddrLow(0));
18166 sgl_pg_pairs->sgl_pg1_addr_hi =
18167 cpu_to_le32(putPaddrHigh(0));
18168
18169 /* Keep the first xritag on the list */
18170 if (pg_pairs == 0)
18171 xritag_start = sglq_entry->sli4_xritag;
18172 sgl_pg_pairs++;
18173 pg_pairs++;
18174 }
18175
18176 /* Complete initialization and perform endian conversion. */
18177 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
18178 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt);
18179 sgl->word0 = cpu_to_le32(sgl->word0);
18180
18181 if (!phba->sli4_hba.intr_enable)
18182 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
18183 else {
18184 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
18185 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
18186 }
18187 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
18188 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18189 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18190 if (!phba->sli4_hba.intr_enable)
18191 lpfc_sli4_mbox_cmd_free(phba, mbox);
18192 else if (rc != MBX_TIMEOUT)
18193 lpfc_sli4_mbox_cmd_free(phba, mbox);
18194 if (shdr_status || shdr_add_status || rc) {
18195 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18196 "2513 POST_SGL_BLOCK mailbox command failed "
18197 "status x%x add_status x%x mbx status x%x\n",
18198 shdr_status, shdr_add_status, rc);
18199 rc = -ENXIO;
18200 }
18201 return rc;
18202 }
18203
18204 /**
18205 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware
18206 * @phba: pointer to lpfc hba data structure.
18207 * @nblist: pointer to nvme buffer list.
18208 * @count: number of scsi buffers on the list.
18209 *
18210 * This routine is invoked to post a block of @count scsi sgl pages from a
18211 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command.
18212 * No Lock is held.
18213 *
18214 **/
18215 static int
lpfc_sli4_post_io_sgl_block(struct lpfc_hba * phba,struct list_head * nblist,int count)18216 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist,
18217 int count)
18218 {
18219 struct lpfc_io_buf *lpfc_ncmd;
18220 struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
18221 struct sgl_page_pairs *sgl_pg_pairs;
18222 void *viraddr;
18223 LPFC_MBOXQ_t *mbox;
18224 uint32_t reqlen, alloclen, pg_pairs;
18225 uint32_t mbox_tmo;
18226 uint16_t xritag_start = 0;
18227 int rc = 0;
18228 uint32_t shdr_status, shdr_add_status;
18229 dma_addr_t pdma_phys_bpl1;
18230 union lpfc_sli4_cfg_shdr *shdr;
18231
18232 /* Calculate the requested length of the dma memory */
18233 reqlen = count * sizeof(struct sgl_page_pairs) +
18234 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
18235 if (reqlen > SLI4_PAGE_SIZE) {
18236 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
18237 "6118 Block sgl registration required DMA "
18238 "size (%d) great than a page\n", reqlen);
18239 return -ENOMEM;
18240 }
18241 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18242 if (!mbox) {
18243 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18244 "6119 Failed to allocate mbox cmd memory\n");
18245 return -ENOMEM;
18246 }
18247
18248 /* Allocate DMA memory and set up the non-embedded mailbox command */
18249 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
18250 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
18251 reqlen, LPFC_SLI4_MBX_NEMBED);
18252
18253 if (alloclen < reqlen) {
18254 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18255 "6120 Allocated DMA memory size (%d) is "
18256 "less than the requested DMA memory "
18257 "size (%d)\n", alloclen, reqlen);
18258 lpfc_sli4_mbox_cmd_free(phba, mbox);
18259 return -ENOMEM;
18260 }
18261
18262 /* Get the first SGE entry from the non-embedded DMA memory */
18263 viraddr = mbox->sge_array->addr[0];
18264
18265 /* Set up the SGL pages in the non-embedded DMA pages */
18266 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
18267 sgl_pg_pairs = &sgl->sgl_pg_pairs;
18268
18269 pg_pairs = 0;
18270 list_for_each_entry(lpfc_ncmd, nblist, list) {
18271 /* Set up the sge entry */
18272 sgl_pg_pairs->sgl_pg0_addr_lo =
18273 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl));
18274 sgl_pg_pairs->sgl_pg0_addr_hi =
18275 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl));
18276 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
18277 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl +
18278 SGL_PAGE_SIZE;
18279 else
18280 pdma_phys_bpl1 = 0;
18281 sgl_pg_pairs->sgl_pg1_addr_lo =
18282 cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
18283 sgl_pg_pairs->sgl_pg1_addr_hi =
18284 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
18285 /* Keep the first xritag on the list */
18286 if (pg_pairs == 0)
18287 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag;
18288 sgl_pg_pairs++;
18289 pg_pairs++;
18290 }
18291 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
18292 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
18293 /* Perform endian conversion if necessary */
18294 sgl->word0 = cpu_to_le32(sgl->word0);
18295
18296 if (!phba->sli4_hba.intr_enable) {
18297 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
18298 } else {
18299 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
18300 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
18301 }
18302 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr;
18303 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18304 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18305 if (!phba->sli4_hba.intr_enable)
18306 lpfc_sli4_mbox_cmd_free(phba, mbox);
18307 else if (rc != MBX_TIMEOUT)
18308 lpfc_sli4_mbox_cmd_free(phba, mbox);
18309 if (shdr_status || shdr_add_status || rc) {
18310 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18311 "6125 POST_SGL_BLOCK mailbox command failed "
18312 "status x%x add_status x%x mbx status x%x\n",
18313 shdr_status, shdr_add_status, rc);
18314 rc = -ENXIO;
18315 }
18316 return rc;
18317 }
18318
18319 /**
18320 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list
18321 * @phba: pointer to lpfc hba data structure.
18322 * @post_nblist: pointer to the nvme buffer list.
18323 * @sb_count: number of nvme buffers.
18324 *
18325 * This routine walks a list of nvme buffers that was passed in. It attempts
18326 * to construct blocks of nvme buffer sgls which contains contiguous xris and
18327 * uses the non-embedded SGL block post mailbox commands to post to the port.
18328 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use
18329 * embedded SGL post mailbox command for posting. The @post_nblist passed in
18330 * must be local list, thus no lock is needed when manipulate the list.
18331 *
18332 * Returns: 0 = failure, non-zero number of successfully posted buffers.
18333 **/
18334 int
lpfc_sli4_post_io_sgl_list(struct lpfc_hba * phba,struct list_head * post_nblist,int sb_count)18335 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba,
18336 struct list_head *post_nblist, int sb_count)
18337 {
18338 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
18339 int status, sgl_size;
18340 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0;
18341 dma_addr_t pdma_phys_sgl1;
18342 int last_xritag = NO_XRI;
18343 int cur_xritag;
18344 LIST_HEAD(prep_nblist);
18345 LIST_HEAD(blck_nblist);
18346 LIST_HEAD(nvme_nblist);
18347
18348 /* sanity check */
18349 if (sb_count <= 0)
18350 return -EINVAL;
18351
18352 sgl_size = phba->cfg_sg_dma_buf_size;
18353 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) {
18354 list_del_init(&lpfc_ncmd->list);
18355 block_cnt++;
18356 if ((last_xritag != NO_XRI) &&
18357 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) {
18358 /* a hole in xri block, form a sgl posting block */
18359 list_splice_init(&prep_nblist, &blck_nblist);
18360 post_cnt = block_cnt - 1;
18361 /* prepare list for next posting block */
18362 list_add_tail(&lpfc_ncmd->list, &prep_nblist);
18363 block_cnt = 1;
18364 } else {
18365 /* prepare list for next posting block */
18366 list_add_tail(&lpfc_ncmd->list, &prep_nblist);
18367 /* enough sgls for non-embed sgl mbox command */
18368 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
18369 list_splice_init(&prep_nblist, &blck_nblist);
18370 post_cnt = block_cnt;
18371 block_cnt = 0;
18372 }
18373 }
18374 num_posting++;
18375 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
18376
18377 /* end of repost sgl list condition for NVME buffers */
18378 if (num_posting == sb_count) {
18379 if (post_cnt == 0) {
18380 /* last sgl posting block */
18381 list_splice_init(&prep_nblist, &blck_nblist);
18382 post_cnt = block_cnt;
18383 } else if (block_cnt == 1) {
18384 /* last single sgl with non-contiguous xri */
18385 if (sgl_size > SGL_PAGE_SIZE)
18386 pdma_phys_sgl1 =
18387 lpfc_ncmd->dma_phys_sgl +
18388 SGL_PAGE_SIZE;
18389 else
18390 pdma_phys_sgl1 = 0;
18391 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
18392 status = lpfc_sli4_post_sgl(
18393 phba, lpfc_ncmd->dma_phys_sgl,
18394 pdma_phys_sgl1, cur_xritag);
18395 if (status) {
18396 /* Post error. Buffer unavailable. */
18397 lpfc_ncmd->flags |=
18398 LPFC_SBUF_NOT_POSTED;
18399 } else {
18400 /* Post success. Bffer available. */
18401 lpfc_ncmd->flags &=
18402 ~LPFC_SBUF_NOT_POSTED;
18403 lpfc_ncmd->status = IOSTAT_SUCCESS;
18404 num_posted++;
18405 }
18406 /* success, put on NVME buffer sgl list */
18407 list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
18408 }
18409 }
18410
18411 /* continue until a nembed page worth of sgls */
18412 if (post_cnt == 0)
18413 continue;
18414
18415 /* post block of NVME buffer list sgls */
18416 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist,
18417 post_cnt);
18418
18419 /* don't reset xirtag due to hole in xri block */
18420 if (block_cnt == 0)
18421 last_xritag = NO_XRI;
18422
18423 /* reset NVME buffer post count for next round of posting */
18424 post_cnt = 0;
18425
18426 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */
18427 while (!list_empty(&blck_nblist)) {
18428 list_remove_head(&blck_nblist, lpfc_ncmd,
18429 struct lpfc_io_buf, list);
18430 if (status) {
18431 /* Post error. Mark buffer unavailable. */
18432 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED;
18433 } else {
18434 /* Post success, Mark buffer available. */
18435 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED;
18436 lpfc_ncmd->status = IOSTAT_SUCCESS;
18437 num_posted++;
18438 }
18439 list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
18440 }
18441 }
18442 /* Push NVME buffers with sgl posted to the available list */
18443 lpfc_io_buf_replenish(phba, &nvme_nblist);
18444
18445 return num_posted;
18446 }
18447
18448 /**
18449 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle
18450 * @phba: pointer to lpfc_hba struct that the frame was received on
18451 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
18452 *
18453 * This function checks the fields in the @fc_hdr to see if the FC frame is a
18454 * valid type of frame that the LPFC driver will handle. This function will
18455 * return a zero if the frame is a valid frame or a non zero value when the
18456 * frame does not pass the check.
18457 **/
18458 static int
lpfc_fc_frame_check(struct lpfc_hba * phba,struct fc_frame_header * fc_hdr)18459 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr)
18460 {
18461 /* make rctl_names static to save stack space */
18462 struct fc_vft_header *fc_vft_hdr;
18463 struct fc_app_header *fc_app_hdr;
18464 uint32_t *header = (uint32_t *) fc_hdr;
18465
18466 #define FC_RCTL_MDS_DIAGS 0xF4
18467
18468 switch (fc_hdr->fh_r_ctl) {
18469 case FC_RCTL_DD_UNCAT: /* uncategorized information */
18470 case FC_RCTL_DD_SOL_DATA: /* solicited data */
18471 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */
18472 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */
18473 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */
18474 case FC_RCTL_DD_DATA_DESC: /* data descriptor */
18475 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */
18476 case FC_RCTL_DD_CMD_STATUS: /* command status */
18477 case FC_RCTL_ELS_REQ: /* extended link services request */
18478 case FC_RCTL_ELS_REP: /* extended link services reply */
18479 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */
18480 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */
18481 case FC_RCTL_BA_ABTS: /* basic link service abort */
18482 case FC_RCTL_BA_RMC: /* remove connection */
18483 case FC_RCTL_BA_ACC: /* basic accept */
18484 case FC_RCTL_BA_RJT: /* basic reject */
18485 case FC_RCTL_BA_PRMT:
18486 case FC_RCTL_ACK_1: /* acknowledge_1 */
18487 case FC_RCTL_ACK_0: /* acknowledge_0 */
18488 case FC_RCTL_P_RJT: /* port reject */
18489 case FC_RCTL_F_RJT: /* fabric reject */
18490 case FC_RCTL_P_BSY: /* port busy */
18491 case FC_RCTL_F_BSY: /* fabric busy to data frame */
18492 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */
18493 case FC_RCTL_LCR: /* link credit reset */
18494 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */
18495 case FC_RCTL_END: /* end */
18496 break;
18497 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */
18498 fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
18499 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1];
18500 return lpfc_fc_frame_check(phba, fc_hdr);
18501 case FC_RCTL_BA_NOP: /* basic link service NOP */
18502 default:
18503 goto drop;
18504 }
18505
18506 switch (fc_hdr->fh_type) {
18507 case FC_TYPE_BLS:
18508 case FC_TYPE_ELS:
18509 case FC_TYPE_FCP:
18510 case FC_TYPE_CT:
18511 case FC_TYPE_NVME:
18512 break;
18513 case FC_TYPE_IP:
18514 case FC_TYPE_ILS:
18515 default:
18516 goto drop;
18517 }
18518
18519 if (unlikely(phba->link_flag == LS_LOOPBACK_MODE &&
18520 phba->cfg_vmid_app_header)) {
18521 /* Application header is 16B device header */
18522 if (fc_hdr->fh_df_ctl & LPFC_FC_16B_DEVICE_HEADER) {
18523 fc_app_hdr = (struct fc_app_header *) (fc_hdr + 1);
18524 if (be32_to_cpu(fc_app_hdr->src_app_id) !=
18525 LOOPBACK_SRC_APPID) {
18526 lpfc_printf_log(phba, KERN_WARNING,
18527 LOG_ELS | LOG_LIBDFC,
18528 "1932 Loopback src app id "
18529 "not matched, app_id:x%x\n",
18530 be32_to_cpu(fc_app_hdr->src_app_id));
18531
18532 goto drop;
18533 }
18534 } else {
18535 lpfc_printf_log(phba, KERN_WARNING,
18536 LOG_ELS | LOG_LIBDFC,
18537 "1933 Loopback df_ctl bit not set, "
18538 "df_ctl:x%x\n",
18539 fc_hdr->fh_df_ctl);
18540
18541 goto drop;
18542 }
18543 }
18544
18545 lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
18546 "2538 Received frame rctl:x%x, type:x%x, "
18547 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n",
18548 fc_hdr->fh_r_ctl, fc_hdr->fh_type,
18549 be32_to_cpu(header[0]), be32_to_cpu(header[1]),
18550 be32_to_cpu(header[2]), be32_to_cpu(header[3]),
18551 be32_to_cpu(header[4]), be32_to_cpu(header[5]),
18552 be32_to_cpu(header[6]));
18553 return 0;
18554 drop:
18555 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
18556 "2539 Dropped frame rctl:x%x type:x%x\n",
18557 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
18558 return 1;
18559 }
18560
18561 /**
18562 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame
18563 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
18564 *
18565 * This function processes the FC header to retrieve the VFI from the VF
18566 * header, if one exists. This function will return the VFI if one exists
18567 * or 0 if no VSAN Header exists.
18568 **/
18569 static uint32_t
lpfc_fc_hdr_get_vfi(struct fc_frame_header * fc_hdr)18570 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr)
18571 {
18572 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
18573
18574 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH)
18575 return 0;
18576 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr);
18577 }
18578
18579 /**
18580 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to
18581 * @phba: Pointer to the HBA structure to search for the vport on
18582 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
18583 * @fcfi: The FC Fabric ID that the frame came from
18584 * @did: Destination ID to match against
18585 *
18586 * This function searches the @phba for a vport that matches the content of the
18587 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the
18588 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function
18589 * returns the matching vport pointer or NULL if unable to match frame to a
18590 * vport.
18591 **/
18592 static struct lpfc_vport *
lpfc_fc_frame_to_vport(struct lpfc_hba * phba,struct fc_frame_header * fc_hdr,uint16_t fcfi,uint32_t did)18593 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr,
18594 uint16_t fcfi, uint32_t did)
18595 {
18596 struct lpfc_vport **vports;
18597 struct lpfc_vport *vport = NULL;
18598 int i;
18599
18600 if (did == Fabric_DID)
18601 return phba->pport;
18602 if (test_bit(FC_PT2PT, &phba->pport->fc_flag) &&
18603 phba->link_state != LPFC_HBA_READY)
18604 return phba->pport;
18605
18606 vports = lpfc_create_vport_work_array(phba);
18607 if (vports != NULL) {
18608 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
18609 if (phba->fcf.fcfi == fcfi &&
18610 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) &&
18611 vports[i]->fc_myDID == did) {
18612 vport = vports[i];
18613 break;
18614 }
18615 }
18616 }
18617 lpfc_destroy_vport_work_array(phba, vports);
18618 return vport;
18619 }
18620
18621 /**
18622 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp
18623 * @vport: The vport to work on.
18624 *
18625 * This function updates the receive sequence time stamp for this vport. The
18626 * receive sequence time stamp indicates the time that the last frame of the
18627 * the sequence that has been idle for the longest amount of time was received.
18628 * the driver uses this time stamp to indicate if any received sequences have
18629 * timed out.
18630 **/
18631 static void
lpfc_update_rcv_time_stamp(struct lpfc_vport * vport)18632 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport)
18633 {
18634 struct lpfc_dmabuf *h_buf;
18635 struct hbq_dmabuf *dmabuf = NULL;
18636
18637 /* get the oldest sequence on the rcv list */
18638 h_buf = list_get_first(&vport->rcv_buffer_list,
18639 struct lpfc_dmabuf, list);
18640 if (!h_buf)
18641 return;
18642 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18643 vport->rcv_buffer_time_stamp = dmabuf->time_stamp;
18644 }
18645
18646 /**
18647 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences.
18648 * @vport: The vport that the received sequences were sent to.
18649 *
18650 * This function cleans up all outstanding received sequences. This is called
18651 * by the driver when a link event or user action invalidates all the received
18652 * sequences.
18653 **/
18654 void
lpfc_cleanup_rcv_buffers(struct lpfc_vport * vport)18655 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport)
18656 {
18657 struct lpfc_dmabuf *h_buf, *hnext;
18658 struct lpfc_dmabuf *d_buf, *dnext;
18659 struct hbq_dmabuf *dmabuf = NULL;
18660
18661 /* start with the oldest sequence on the rcv list */
18662 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
18663 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18664 list_del_init(&dmabuf->hbuf.list);
18665 list_for_each_entry_safe(d_buf, dnext,
18666 &dmabuf->dbuf.list, list) {
18667 list_del_init(&d_buf->list);
18668 lpfc_in_buf_free(vport->phba, d_buf);
18669 }
18670 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
18671 }
18672 }
18673
18674 /**
18675 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences.
18676 * @vport: The vport that the received sequences were sent to.
18677 *
18678 * This function determines whether any received sequences have timed out by
18679 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp
18680 * indicates that there is at least one timed out sequence this routine will
18681 * go through the received sequences one at a time from most inactive to most
18682 * active to determine which ones need to be cleaned up. Once it has determined
18683 * that a sequence needs to be cleaned up it will simply free up the resources
18684 * without sending an abort.
18685 **/
18686 void
lpfc_rcv_seq_check_edtov(struct lpfc_vport * vport)18687 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport)
18688 {
18689 struct lpfc_dmabuf *h_buf, *hnext;
18690 struct lpfc_dmabuf *d_buf, *dnext;
18691 struct hbq_dmabuf *dmabuf = NULL;
18692 unsigned long timeout;
18693 int abort_count = 0;
18694
18695 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
18696 vport->rcv_buffer_time_stamp);
18697 if (list_empty(&vport->rcv_buffer_list) ||
18698 time_before(jiffies, timeout))
18699 return;
18700 /* start with the oldest sequence on the rcv list */
18701 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
18702 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18703 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
18704 dmabuf->time_stamp);
18705 if (time_before(jiffies, timeout))
18706 break;
18707 abort_count++;
18708 list_del_init(&dmabuf->hbuf.list);
18709 list_for_each_entry_safe(d_buf, dnext,
18710 &dmabuf->dbuf.list, list) {
18711 list_del_init(&d_buf->list);
18712 lpfc_in_buf_free(vport->phba, d_buf);
18713 }
18714 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
18715 }
18716 if (abort_count)
18717 lpfc_update_rcv_time_stamp(vport);
18718 }
18719
18720 /**
18721 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences
18722 * @vport: pointer to a vitural port
18723 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame
18724 *
18725 * This function searches through the existing incomplete sequences that have
18726 * been sent to this @vport. If the frame matches one of the incomplete
18727 * sequences then the dbuf in the @dmabuf is added to the list of frames that
18728 * make up that sequence. If no sequence is found that matches this frame then
18729 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list
18730 * This function returns a pointer to the first dmabuf in the sequence list that
18731 * the frame was linked to.
18732 **/
18733 static struct hbq_dmabuf *
lpfc_fc_frame_add(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)18734 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
18735 {
18736 struct fc_frame_header *new_hdr;
18737 struct fc_frame_header *temp_hdr;
18738 struct lpfc_dmabuf *d_buf;
18739 struct lpfc_dmabuf *h_buf;
18740 struct hbq_dmabuf *seq_dmabuf = NULL;
18741 struct hbq_dmabuf *temp_dmabuf = NULL;
18742 uint8_t found = 0;
18743
18744 INIT_LIST_HEAD(&dmabuf->dbuf.list);
18745 dmabuf->time_stamp = jiffies;
18746 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18747
18748 /* Use the hdr_buf to find the sequence that this frame belongs to */
18749 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
18750 temp_hdr = (struct fc_frame_header *)h_buf->virt;
18751 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
18752 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
18753 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
18754 continue;
18755 /* found a pending sequence that matches this frame */
18756 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18757 break;
18758 }
18759 if (!seq_dmabuf) {
18760 /*
18761 * This indicates first frame received for this sequence.
18762 * Queue the buffer on the vport's rcv_buffer_list.
18763 */
18764 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
18765 lpfc_update_rcv_time_stamp(vport);
18766 return dmabuf;
18767 }
18768 temp_hdr = seq_dmabuf->hbuf.virt;
18769 if (be16_to_cpu(new_hdr->fh_seq_cnt) <
18770 be16_to_cpu(temp_hdr->fh_seq_cnt)) {
18771 list_del_init(&seq_dmabuf->hbuf.list);
18772 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
18773 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
18774 lpfc_update_rcv_time_stamp(vport);
18775 return dmabuf;
18776 }
18777 /* move this sequence to the tail to indicate a young sequence */
18778 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list);
18779 seq_dmabuf->time_stamp = jiffies;
18780 lpfc_update_rcv_time_stamp(vport);
18781 if (list_empty(&seq_dmabuf->dbuf.list)) {
18782 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
18783 return seq_dmabuf;
18784 }
18785 /* find the correct place in the sequence to insert this frame */
18786 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list);
18787 while (!found) {
18788 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
18789 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt;
18790 /*
18791 * If the frame's sequence count is greater than the frame on
18792 * the list then insert the frame right after this frame
18793 */
18794 if (be16_to_cpu(new_hdr->fh_seq_cnt) >
18795 be16_to_cpu(temp_hdr->fh_seq_cnt)) {
18796 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list);
18797 found = 1;
18798 break;
18799 }
18800
18801 if (&d_buf->list == &seq_dmabuf->dbuf.list)
18802 break;
18803 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list);
18804 }
18805
18806 if (found)
18807 return seq_dmabuf;
18808 return NULL;
18809 }
18810
18811 /**
18812 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence
18813 * @vport: pointer to a vitural port
18814 * @dmabuf: pointer to a dmabuf that describes the FC sequence
18815 *
18816 * This function tries to abort from the partially assembed sequence, described
18817 * by the information from basic abbort @dmabuf. It checks to see whether such
18818 * partially assembled sequence held by the driver. If so, it shall free up all
18819 * the frames from the partially assembled sequence.
18820 *
18821 * Return
18822 * true -- if there is matching partially assembled sequence present and all
18823 * the frames freed with the sequence;
18824 * false -- if there is no matching partially assembled sequence present so
18825 * nothing got aborted in the lower layer driver
18826 **/
18827 static bool
lpfc_sli4_abort_partial_seq(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)18828 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport,
18829 struct hbq_dmabuf *dmabuf)
18830 {
18831 struct fc_frame_header *new_hdr;
18832 struct fc_frame_header *temp_hdr;
18833 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf;
18834 struct hbq_dmabuf *seq_dmabuf = NULL;
18835
18836 /* Use the hdr_buf to find the sequence that matches this frame */
18837 INIT_LIST_HEAD(&dmabuf->dbuf.list);
18838 INIT_LIST_HEAD(&dmabuf->hbuf.list);
18839 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18840 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
18841 temp_hdr = (struct fc_frame_header *)h_buf->virt;
18842 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
18843 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
18844 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
18845 continue;
18846 /* found a pending sequence that matches this frame */
18847 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18848 break;
18849 }
18850
18851 /* Free up all the frames from the partially assembled sequence */
18852 if (seq_dmabuf) {
18853 list_for_each_entry_safe(d_buf, n_buf,
18854 &seq_dmabuf->dbuf.list, list) {
18855 list_del_init(&d_buf->list);
18856 lpfc_in_buf_free(vport->phba, d_buf);
18857 }
18858 return true;
18859 }
18860 return false;
18861 }
18862
18863 /**
18864 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp
18865 * @vport: pointer to a vitural port
18866 * @dmabuf: pointer to a dmabuf that describes the FC sequence
18867 *
18868 * This function tries to abort from the assembed sequence from upper level
18869 * protocol, described by the information from basic abbort @dmabuf. It
18870 * checks to see whether such pending context exists at upper level protocol.
18871 * If so, it shall clean up the pending context.
18872 *
18873 * Return
18874 * true -- if there is matching pending context of the sequence cleaned
18875 * at ulp;
18876 * false -- if there is no matching pending context of the sequence present
18877 * at ulp.
18878 **/
18879 static bool
lpfc_sli4_abort_ulp_seq(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)18880 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
18881 {
18882 struct lpfc_hba *phba = vport->phba;
18883 int handled;
18884
18885 /* Accepting abort at ulp with SLI4 only */
18886 if (phba->sli_rev < LPFC_SLI_REV4)
18887 return false;
18888
18889 /* Register all caring upper level protocols to attend abort */
18890 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf);
18891 if (handled)
18892 return true;
18893
18894 return false;
18895 }
18896
18897 /**
18898 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler
18899 * @phba: Pointer to HBA context object.
18900 * @cmd_iocbq: pointer to the command iocbq structure.
18901 * @rsp_iocbq: pointer to the response iocbq structure.
18902 *
18903 * This function handles the sequence abort response iocb command complete
18904 * event. It properly releases the memory allocated to the sequence abort
18905 * accept iocb.
18906 **/
18907 static void
lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmd_iocbq,struct lpfc_iocbq * rsp_iocbq)18908 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba,
18909 struct lpfc_iocbq *cmd_iocbq,
18910 struct lpfc_iocbq *rsp_iocbq)
18911 {
18912 if (cmd_iocbq) {
18913 lpfc_nlp_put(cmd_iocbq->ndlp);
18914 lpfc_sli_release_iocbq(phba, cmd_iocbq);
18915 }
18916
18917 /* Failure means BLS ABORT RSP did not get delivered to remote node*/
18918 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus)
18919 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18920 "3154 BLS ABORT RSP failed, data: x%x/x%x\n",
18921 get_job_ulpstatus(phba, rsp_iocbq),
18922 get_job_word4(phba, rsp_iocbq));
18923 }
18924
18925 /**
18926 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver.
18927 * @phba: Pointer to HBA context object.
18928 * @xri: xri id in transaction.
18929 *
18930 * This function validates the xri maps to the known range of XRIs allocated an
18931 * used by the driver.
18932 **/
18933 uint16_t
lpfc_sli4_xri_inrange(struct lpfc_hba * phba,uint16_t xri)18934 lpfc_sli4_xri_inrange(struct lpfc_hba *phba,
18935 uint16_t xri)
18936 {
18937 uint16_t i;
18938
18939 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) {
18940 if (xri == phba->sli4_hba.xri_ids[i])
18941 return i;
18942 }
18943 return NO_XRI;
18944 }
18945
18946 /**
18947 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort
18948 * @vport: pointer to a virtual port.
18949 * @fc_hdr: pointer to a FC frame header.
18950 * @aborted: was the partially assembled receive sequence successfully aborted
18951 *
18952 * This function sends a basic response to a previous unsol sequence abort
18953 * event after aborting the sequence handling.
18954 **/
18955 void
lpfc_sli4_seq_abort_rsp(struct lpfc_vport * vport,struct fc_frame_header * fc_hdr,bool aborted)18956 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport,
18957 struct fc_frame_header *fc_hdr, bool aborted)
18958 {
18959 struct lpfc_hba *phba = vport->phba;
18960 struct lpfc_iocbq *ctiocb = NULL;
18961 struct lpfc_nodelist *ndlp;
18962 uint16_t oxid, rxid, xri, lxri;
18963 uint32_t sid, fctl;
18964 union lpfc_wqe128 *icmd;
18965 int rc;
18966
18967 if (!lpfc_is_link_up(phba))
18968 return;
18969
18970 sid = sli4_sid_from_fc_hdr(fc_hdr);
18971 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
18972 rxid = be16_to_cpu(fc_hdr->fh_rx_id);
18973
18974 ndlp = lpfc_findnode_did(vport, sid);
18975 if (!ndlp) {
18976 ndlp = lpfc_nlp_init(vport, sid);
18977 if (!ndlp) {
18978 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
18979 "1268 Failed to allocate ndlp for "
18980 "oxid:x%x SID:x%x\n", oxid, sid);
18981 return;
18982 }
18983 /* Put ndlp onto vport node list */
18984 lpfc_enqueue_node(vport, ndlp);
18985 }
18986
18987 /* Allocate buffer for rsp iocb */
18988 ctiocb = lpfc_sli_get_iocbq(phba);
18989 if (!ctiocb)
18990 return;
18991
18992 icmd = &ctiocb->wqe;
18993
18994 /* Extract the F_CTL field from FC_HDR */
18995 fctl = sli4_fctl_from_fc_hdr(fc_hdr);
18996
18997 ctiocb->ndlp = lpfc_nlp_get(ndlp);
18998 if (!ctiocb->ndlp) {
18999 lpfc_sli_release_iocbq(phba, ctiocb);
19000 return;
19001 }
19002
19003 ctiocb->vport = vport;
19004 ctiocb->cmd_cmpl = lpfc_sli4_seq_abort_rsp_cmpl;
19005 ctiocb->sli4_lxritag = NO_XRI;
19006 ctiocb->sli4_xritag = NO_XRI;
19007 ctiocb->abort_rctl = FC_RCTL_BA_ACC;
19008
19009 if (fctl & FC_FC_EX_CTX)
19010 /* Exchange responder sent the abort so we
19011 * own the oxid.
19012 */
19013 xri = oxid;
19014 else
19015 xri = rxid;
19016 lxri = lpfc_sli4_xri_inrange(phba, xri);
19017 if (lxri != NO_XRI)
19018 lpfc_set_rrq_active(phba, ndlp, lxri,
19019 (xri == oxid) ? rxid : oxid, 0);
19020 /* For BA_ABTS from exchange responder, if the logical xri with
19021 * the oxid maps to the FCP XRI range, the port no longer has
19022 * that exchange context, send a BLS_RJT. Override the IOCB for
19023 * a BA_RJT.
19024 */
19025 if ((fctl & FC_FC_EX_CTX) &&
19026 (lxri > lpfc_sli4_get_iocb_cnt(phba))) {
19027 ctiocb->abort_rctl = FC_RCTL_BA_RJT;
19028 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0);
19029 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp,
19030 FC_BA_RJT_INV_XID);
19031 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp,
19032 FC_BA_RJT_UNABLE);
19033 }
19034
19035 /* If BA_ABTS failed to abort a partially assembled receive sequence,
19036 * the driver no longer has that exchange, send a BLS_RJT. Override
19037 * the IOCB for a BA_RJT.
19038 */
19039 if (aborted == false) {
19040 ctiocb->abort_rctl = FC_RCTL_BA_RJT;
19041 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0);
19042 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp,
19043 FC_BA_RJT_INV_XID);
19044 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp,
19045 FC_BA_RJT_UNABLE);
19046 }
19047
19048 if (fctl & FC_FC_EX_CTX) {
19049 /* ABTS sent by responder to CT exchange, construction
19050 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG
19051 * field and RX_ID from ABTS for RX_ID field.
19052 */
19053 ctiocb->abort_bls = LPFC_ABTS_UNSOL_RSP;
19054 bf_set(xmit_bls_rsp64_rxid, &icmd->xmit_bls_rsp, rxid);
19055 } else {
19056 /* ABTS sent by initiator to CT exchange, construction
19057 * of BA_ACC will need to allocate a new XRI as for the
19058 * XRI_TAG field.
19059 */
19060 ctiocb->abort_bls = LPFC_ABTS_UNSOL_INT;
19061 }
19062
19063 /* OX_ID is invariable to who sent ABTS to CT exchange */
19064 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, oxid);
19065 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, rxid);
19066
19067 /* Use CT=VPI */
19068 bf_set(wqe_els_did, &icmd->xmit_bls_rsp.wqe_dest,
19069 ndlp->nlp_DID);
19070 bf_set(xmit_bls_rsp64_temprpi, &icmd->xmit_bls_rsp,
19071 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
19072 bf_set(wqe_cmnd, &icmd->generic.wqe_com, CMD_XMIT_BLS_RSP64_CX);
19073
19074 /* Xmit CT abts response on exchange <xid> */
19075 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
19076 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n",
19077 ctiocb->abort_rctl, oxid, phba->link_state);
19078
19079 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0);
19080 if (rc == IOCB_ERROR) {
19081 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
19082 "2925 Failed to issue CT ABTS RSP x%x on "
19083 "xri x%x, Data x%x\n",
19084 ctiocb->abort_rctl, oxid,
19085 phba->link_state);
19086 lpfc_nlp_put(ndlp);
19087 ctiocb->ndlp = NULL;
19088 lpfc_sli_release_iocbq(phba, ctiocb);
19089 }
19090
19091 /* if only usage of this nodelist is BLS response, release initial ref
19092 * to free ndlp when transmit completes
19093 */
19094 if (ndlp->nlp_state == NLP_STE_UNUSED_NODE &&
19095 !test_bit(NLP_DROPPED, &ndlp->nlp_flag) &&
19096 !(ndlp->fc4_xpt_flags & (NVME_XPT_REGD | SCSI_XPT_REGD))) {
19097 set_bit(NLP_DROPPED, &ndlp->nlp_flag);
19098 lpfc_nlp_put(ndlp);
19099 }
19100 }
19101
19102 /**
19103 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event
19104 * @vport: Pointer to the vport on which this sequence was received
19105 * @dmabuf: pointer to a dmabuf that describes the FC sequence
19106 *
19107 * This function handles an SLI-4 unsolicited abort event. If the unsolicited
19108 * receive sequence is only partially assembed by the driver, it shall abort
19109 * the partially assembled frames for the sequence. Otherwise, if the
19110 * unsolicited receive sequence has been completely assembled and passed to
19111 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the
19112 * unsolicited sequence has been aborted. After that, it will issue a basic
19113 * accept to accept the abort.
19114 **/
19115 static void
lpfc_sli4_handle_unsol_abort(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)19116 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport,
19117 struct hbq_dmabuf *dmabuf)
19118 {
19119 struct lpfc_hba *phba = vport->phba;
19120 struct fc_frame_header fc_hdr;
19121 uint32_t fctl;
19122 bool aborted;
19123
19124 /* Make a copy of fc_hdr before the dmabuf being released */
19125 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header));
19126 fctl = sli4_fctl_from_fc_hdr(&fc_hdr);
19127
19128 if (fctl & FC_FC_EX_CTX) {
19129 /* ABTS by responder to exchange, no cleanup needed */
19130 aborted = true;
19131 } else {
19132 /* ABTS by initiator to exchange, need to do cleanup */
19133 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf);
19134 if (aborted == false)
19135 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf);
19136 }
19137 lpfc_in_buf_free(phba, &dmabuf->dbuf);
19138
19139 if (phba->nvmet_support) {
19140 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr);
19141 return;
19142 }
19143
19144 /* Respond with BA_ACC or BA_RJT accordingly */
19145 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted);
19146 }
19147
19148 /**
19149 * lpfc_seq_complete - Indicates if a sequence is complete
19150 * @dmabuf: pointer to a dmabuf that describes the FC sequence
19151 *
19152 * This function checks the sequence, starting with the frame described by
19153 * @dmabuf, to see if all the frames associated with this sequence are present.
19154 * the frames associated with this sequence are linked to the @dmabuf using the
19155 * dbuf list. This function looks for two major things. 1) That the first frame
19156 * has a sequence count of zero. 2) There is a frame with last frame of sequence
19157 * set. 3) That there are no holes in the sequence count. The function will
19158 * return 1 when the sequence is complete, otherwise it will return 0.
19159 **/
19160 static int
lpfc_seq_complete(struct hbq_dmabuf * dmabuf)19161 lpfc_seq_complete(struct hbq_dmabuf *dmabuf)
19162 {
19163 struct fc_frame_header *hdr;
19164 struct lpfc_dmabuf *d_buf;
19165 struct hbq_dmabuf *seq_dmabuf;
19166 uint32_t fctl;
19167 int seq_count = 0;
19168
19169 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
19170 /* make sure first fame of sequence has a sequence count of zero */
19171 if (hdr->fh_seq_cnt != seq_count)
19172 return 0;
19173 fctl = (hdr->fh_f_ctl[0] << 16 |
19174 hdr->fh_f_ctl[1] << 8 |
19175 hdr->fh_f_ctl[2]);
19176 /* If last frame of sequence we can return success. */
19177 if (fctl & FC_FC_END_SEQ)
19178 return 1;
19179 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) {
19180 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
19181 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
19182 /* If there is a hole in the sequence count then fail. */
19183 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt))
19184 return 0;
19185 fctl = (hdr->fh_f_ctl[0] << 16 |
19186 hdr->fh_f_ctl[1] << 8 |
19187 hdr->fh_f_ctl[2]);
19188 /* If last frame of sequence we can return success. */
19189 if (fctl & FC_FC_END_SEQ)
19190 return 1;
19191 }
19192 return 0;
19193 }
19194
19195 /**
19196 * lpfc_prep_seq - Prep sequence for ULP processing
19197 * @vport: Pointer to the vport on which this sequence was received
19198 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence
19199 *
19200 * This function takes a sequence, described by a list of frames, and creates
19201 * a list of iocbq structures to describe the sequence. This iocbq list will be
19202 * used to issue to the generic unsolicited sequence handler. This routine
19203 * returns a pointer to the first iocbq in the list. If the function is unable
19204 * to allocate an iocbq then it throw out the received frames that were not
19205 * able to be described and return a pointer to the first iocbq. If unable to
19206 * allocate any iocbqs (including the first) this function will return NULL.
19207 **/
19208 static struct lpfc_iocbq *
lpfc_prep_seq(struct lpfc_vport * vport,struct hbq_dmabuf * seq_dmabuf)19209 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf)
19210 {
19211 struct hbq_dmabuf *hbq_buf;
19212 struct lpfc_dmabuf *d_buf, *n_buf;
19213 struct lpfc_iocbq *first_iocbq, *iocbq;
19214 struct fc_frame_header *fc_hdr;
19215 uint32_t sid;
19216 uint32_t len, tot_len;
19217
19218 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
19219 /* remove from receive buffer list */
19220 list_del_init(&seq_dmabuf->hbuf.list);
19221 lpfc_update_rcv_time_stamp(vport);
19222 /* get the Remote Port's SID */
19223 sid = sli4_sid_from_fc_hdr(fc_hdr);
19224 tot_len = 0;
19225 /* Get an iocbq struct to fill in. */
19226 first_iocbq = lpfc_sli_get_iocbq(vport->phba);
19227 if (first_iocbq) {
19228 /* Initialize the first IOCB. */
19229 first_iocbq->wcqe_cmpl.total_data_placed = 0;
19230 bf_set(lpfc_wcqe_c_status, &first_iocbq->wcqe_cmpl,
19231 IOSTAT_SUCCESS);
19232 first_iocbq->vport = vport;
19233
19234 /* Check FC Header to see what TYPE of frame we are rcv'ing */
19235 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) {
19236 bf_set(els_rsp64_sid, &first_iocbq->wqe.xmit_els_rsp,
19237 sli4_did_from_fc_hdr(fc_hdr));
19238 }
19239
19240 bf_set(wqe_ctxt_tag, &first_iocbq->wqe.xmit_els_rsp.wqe_com,
19241 NO_XRI);
19242 bf_set(wqe_rcvoxid, &first_iocbq->wqe.xmit_els_rsp.wqe_com,
19243 be16_to_cpu(fc_hdr->fh_ox_id));
19244
19245 /* put the first buffer into the first iocb */
19246 tot_len = bf_get(lpfc_rcqe_length,
19247 &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
19248
19249 first_iocbq->cmd_dmabuf = &seq_dmabuf->dbuf;
19250 first_iocbq->bpl_dmabuf = NULL;
19251 /* Keep track of the BDE count */
19252 first_iocbq->wcqe_cmpl.word3 = 1;
19253
19254 if (tot_len > LPFC_DATA_BUF_SIZE)
19255 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize =
19256 LPFC_DATA_BUF_SIZE;
19257 else
19258 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = tot_len;
19259
19260 first_iocbq->wcqe_cmpl.total_data_placed = tot_len;
19261 bf_set(wqe_els_did, &first_iocbq->wqe.xmit_els_rsp.wqe_dest,
19262 sid);
19263 }
19264 iocbq = first_iocbq;
19265 /*
19266 * Each IOCBq can have two Buffers assigned, so go through the list
19267 * of buffers for this sequence and save two buffers in each IOCBq
19268 */
19269 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) {
19270 if (!iocbq) {
19271 lpfc_in_buf_free(vport->phba, d_buf);
19272 continue;
19273 }
19274 if (!iocbq->bpl_dmabuf) {
19275 iocbq->bpl_dmabuf = d_buf;
19276 iocbq->wcqe_cmpl.word3++;
19277 /* We need to get the size out of the right CQE */
19278 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
19279 len = bf_get(lpfc_rcqe_length,
19280 &hbq_buf->cq_event.cqe.rcqe_cmpl);
19281 iocbq->unsol_rcv_len = len;
19282 iocbq->wcqe_cmpl.total_data_placed += len;
19283 tot_len += len;
19284 } else {
19285 iocbq = lpfc_sli_get_iocbq(vport->phba);
19286 if (!iocbq) {
19287 if (first_iocbq) {
19288 bf_set(lpfc_wcqe_c_status,
19289 &first_iocbq->wcqe_cmpl,
19290 IOSTAT_SUCCESS);
19291 first_iocbq->wcqe_cmpl.parameter =
19292 IOERR_NO_RESOURCES;
19293 }
19294 lpfc_in_buf_free(vport->phba, d_buf);
19295 continue;
19296 }
19297 /* We need to get the size out of the right CQE */
19298 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
19299 len = bf_get(lpfc_rcqe_length,
19300 &hbq_buf->cq_event.cqe.rcqe_cmpl);
19301 iocbq->cmd_dmabuf = d_buf;
19302 iocbq->bpl_dmabuf = NULL;
19303 iocbq->wcqe_cmpl.word3 = 1;
19304
19305 if (len > LPFC_DATA_BUF_SIZE)
19306 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize =
19307 LPFC_DATA_BUF_SIZE;
19308 else
19309 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize =
19310 len;
19311
19312 tot_len += len;
19313 iocbq->wcqe_cmpl.total_data_placed = tot_len;
19314 bf_set(wqe_els_did, &iocbq->wqe.xmit_els_rsp.wqe_dest,
19315 sid);
19316 list_add_tail(&iocbq->list, &first_iocbq->list);
19317 }
19318 }
19319 /* Free the sequence's header buffer */
19320 if (!first_iocbq)
19321 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf);
19322
19323 return first_iocbq;
19324 }
19325
19326 static void
lpfc_sli4_send_seq_to_ulp(struct lpfc_vport * vport,struct hbq_dmabuf * seq_dmabuf)19327 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport,
19328 struct hbq_dmabuf *seq_dmabuf)
19329 {
19330 struct fc_frame_header *fc_hdr;
19331 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb;
19332 struct lpfc_hba *phba = vport->phba;
19333
19334 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
19335 iocbq = lpfc_prep_seq(vport, seq_dmabuf);
19336 if (!iocbq) {
19337 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19338 "2707 Ring %d handler: Failed to allocate "
19339 "iocb Rctl x%x Type x%x received\n",
19340 LPFC_ELS_RING,
19341 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
19342 return;
19343 }
19344 if (!lpfc_complete_unsol_iocb(phba,
19345 phba->sli4_hba.els_wq->pring,
19346 iocbq, fc_hdr->fh_r_ctl,
19347 fc_hdr->fh_type)) {
19348 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19349 "2540 Ring %d handler: unexpected Rctl "
19350 "x%x Type x%x received\n",
19351 LPFC_ELS_RING,
19352 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
19353 lpfc_in_buf_free(phba, &seq_dmabuf->dbuf);
19354 }
19355
19356 /* Free iocb created in lpfc_prep_seq */
19357 list_for_each_entry_safe(curr_iocb, next_iocb,
19358 &iocbq->list, list) {
19359 list_del_init(&curr_iocb->list);
19360 lpfc_sli_release_iocbq(phba, curr_iocb);
19361 }
19362 lpfc_sli_release_iocbq(phba, iocbq);
19363 }
19364
19365 static void
lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,struct lpfc_iocbq * rspiocb)19366 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
19367 struct lpfc_iocbq *rspiocb)
19368 {
19369 struct lpfc_dmabuf *pcmd = cmdiocb->cmd_dmabuf;
19370
19371 if (pcmd && pcmd->virt)
19372 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
19373 kfree(pcmd);
19374 lpfc_sli_release_iocbq(phba, cmdiocb);
19375 lpfc_drain_txq(phba);
19376 }
19377
19378 static void
lpfc_sli4_handle_mds_loopback(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)19379 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
19380 struct hbq_dmabuf *dmabuf)
19381 {
19382 struct fc_frame_header *fc_hdr;
19383 struct lpfc_hba *phba = vport->phba;
19384 struct lpfc_iocbq *iocbq = NULL;
19385 union lpfc_wqe128 *pwqe;
19386 struct lpfc_dmabuf *pcmd = NULL;
19387 uint32_t frame_len;
19388 int rc;
19389 unsigned long iflags;
19390
19391 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
19392 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl);
19393
19394 /* Send the received frame back */
19395 iocbq = lpfc_sli_get_iocbq(phba);
19396 if (!iocbq) {
19397 /* Queue cq event and wakeup worker thread to process it */
19398 spin_lock_irqsave(&phba->hbalock, iflags);
19399 list_add_tail(&dmabuf->cq_event.list,
19400 &phba->sli4_hba.sp_queue_event);
19401 spin_unlock_irqrestore(&phba->hbalock, iflags);
19402 set_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag);
19403 lpfc_worker_wake_up(phba);
19404 return;
19405 }
19406
19407 /* Allocate buffer for command payload */
19408 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
19409 if (pcmd)
19410 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL,
19411 &pcmd->phys);
19412 if (!pcmd || !pcmd->virt)
19413 goto exit;
19414
19415 INIT_LIST_HEAD(&pcmd->list);
19416
19417 /* copyin the payload */
19418 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len);
19419
19420 iocbq->cmd_dmabuf = pcmd;
19421 iocbq->vport = vport;
19422 iocbq->cmd_flag &= ~LPFC_FIP_ELS_ID_MASK;
19423 iocbq->cmd_flag |= LPFC_USE_FCPWQIDX;
19424 iocbq->num_bdes = 0;
19425
19426 pwqe = &iocbq->wqe;
19427 /* fill in BDE's for command */
19428 pwqe->gen_req.bde.addrHigh = putPaddrHigh(pcmd->phys);
19429 pwqe->gen_req.bde.addrLow = putPaddrLow(pcmd->phys);
19430 pwqe->gen_req.bde.tus.f.bdeSize = frame_len;
19431 pwqe->gen_req.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
19432
19433 pwqe->send_frame.frame_len = frame_len;
19434 pwqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((__be32 *)fc_hdr));
19435 pwqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((__be32 *)fc_hdr + 1));
19436 pwqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((__be32 *)fc_hdr + 2));
19437 pwqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((__be32 *)fc_hdr + 3));
19438 pwqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((__be32 *)fc_hdr + 4));
19439 pwqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((__be32 *)fc_hdr + 5));
19440
19441 pwqe->generic.wqe_com.word7 = 0;
19442 pwqe->generic.wqe_com.word10 = 0;
19443
19444 bf_set(wqe_cmnd, &pwqe->generic.wqe_com, CMD_SEND_FRAME);
19445 bf_set(wqe_sof, &pwqe->generic.wqe_com, 0x2E); /* SOF byte */
19446 bf_set(wqe_eof, &pwqe->generic.wqe_com, 0x41); /* EOF byte */
19447 bf_set(wqe_lenloc, &pwqe->generic.wqe_com, 1);
19448 bf_set(wqe_xbl, &pwqe->generic.wqe_com, 1);
19449 bf_set(wqe_dbde, &pwqe->generic.wqe_com, 1);
19450 bf_set(wqe_xc, &pwqe->generic.wqe_com, 1);
19451 bf_set(wqe_cmd_type, &pwqe->generic.wqe_com, 0xA);
19452 bf_set(wqe_cqid, &pwqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
19453 bf_set(wqe_xri_tag, &pwqe->generic.wqe_com, iocbq->sli4_xritag);
19454 bf_set(wqe_reqtag, &pwqe->generic.wqe_com, iocbq->iotag);
19455 bf_set(wqe_class, &pwqe->generic.wqe_com, CLASS3);
19456 pwqe->generic.wqe_com.abort_tag = iocbq->iotag;
19457
19458 iocbq->cmd_cmpl = lpfc_sli4_mds_loopback_cmpl;
19459
19460 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0);
19461 if (rc == IOCB_ERROR)
19462 goto exit;
19463
19464 lpfc_in_buf_free(phba, &dmabuf->dbuf);
19465 return;
19466
19467 exit:
19468 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
19469 "2023 Unable to process MDS loopback frame\n");
19470 if (pcmd && pcmd->virt)
19471 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
19472 kfree(pcmd);
19473 if (iocbq)
19474 lpfc_sli_release_iocbq(phba, iocbq);
19475 lpfc_in_buf_free(phba, &dmabuf->dbuf);
19476 }
19477
19478 /**
19479 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware
19480 * @phba: Pointer to HBA context object.
19481 * @dmabuf: Pointer to a dmabuf that describes the FC sequence.
19482 *
19483 * This function is called with no lock held. This function processes all
19484 * the received buffers and gives it to upper layers when a received buffer
19485 * indicates that it is the final frame in the sequence. The interrupt
19486 * service routine processes received buffers at interrupt contexts.
19487 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the
19488 * appropriate receive function when the final frame in a sequence is received.
19489 **/
19490 void
lpfc_sli4_handle_received_buffer(struct lpfc_hba * phba,struct hbq_dmabuf * dmabuf)19491 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba,
19492 struct hbq_dmabuf *dmabuf)
19493 {
19494 struct hbq_dmabuf *seq_dmabuf;
19495 struct fc_frame_header *fc_hdr;
19496 struct lpfc_vport *vport;
19497 uint32_t fcfi;
19498 uint32_t did;
19499
19500 /* Process each received buffer */
19501 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
19502
19503 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
19504 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
19505 vport = phba->pport;
19506 /* Handle MDS Loopback frames */
19507 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag))
19508 lpfc_sli4_handle_mds_loopback(vport, dmabuf);
19509 else
19510 lpfc_in_buf_free(phba, &dmabuf->dbuf);
19511 return;
19512 }
19513
19514 /* check to see if this a valid type of frame */
19515 if (lpfc_fc_frame_check(phba, fc_hdr)) {
19516 lpfc_in_buf_free(phba, &dmabuf->dbuf);
19517 return;
19518 }
19519
19520 if ((bf_get(lpfc_cqe_code,
19521 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1))
19522 fcfi = bf_get(lpfc_rcqe_fcf_id_v1,
19523 &dmabuf->cq_event.cqe.rcqe_cmpl);
19524 else
19525 fcfi = bf_get(lpfc_rcqe_fcf_id,
19526 &dmabuf->cq_event.cqe.rcqe_cmpl);
19527
19528 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) {
19529 vport = phba->pport;
19530 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
19531 "2023 MDS Loopback %d bytes\n",
19532 bf_get(lpfc_rcqe_length,
19533 &dmabuf->cq_event.cqe.rcqe_cmpl));
19534 /* Handle MDS Loopback frames */
19535 lpfc_sli4_handle_mds_loopback(vport, dmabuf);
19536 return;
19537 }
19538
19539 /* d_id this frame is directed to */
19540 did = sli4_did_from_fc_hdr(fc_hdr);
19541
19542 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did);
19543 if (!vport) {
19544 /* throw out the frame */
19545 lpfc_in_buf_free(phba, &dmabuf->dbuf);
19546 return;
19547 }
19548
19549 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */
19550 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) &&
19551 (did != Fabric_DID)) {
19552 /*
19553 * Throw out the frame if we are not pt2pt.
19554 * The pt2pt protocol allows for discovery frames
19555 * to be received without a registered VPI.
19556 */
19557 if (!test_bit(FC_PT2PT, &vport->fc_flag) ||
19558 phba->link_state == LPFC_HBA_READY) {
19559 lpfc_in_buf_free(phba, &dmabuf->dbuf);
19560 return;
19561 }
19562 }
19563
19564 /* Handle the basic abort sequence (BA_ABTS) event */
19565 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) {
19566 lpfc_sli4_handle_unsol_abort(vport, dmabuf);
19567 return;
19568 }
19569
19570 /* Link this frame */
19571 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf);
19572 if (!seq_dmabuf) {
19573 /* unable to add frame to vport - throw it out */
19574 lpfc_in_buf_free(phba, &dmabuf->dbuf);
19575 return;
19576 }
19577 /* If not last frame in sequence continue processing frames. */
19578 if (!lpfc_seq_complete(seq_dmabuf))
19579 return;
19580
19581 /* Send the complete sequence to the upper layer protocol */
19582 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf);
19583 }
19584
19585 /**
19586 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port
19587 * @phba: pointer to lpfc hba data structure.
19588 *
19589 * This routine is invoked to post rpi header templates to the
19590 * HBA consistent with the SLI-4 interface spec. This routine
19591 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
19592 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
19593 *
19594 * This routine does not require any locks. It's usage is expected
19595 * to be driver load or reset recovery when the driver is
19596 * sequential.
19597 *
19598 * Return codes
19599 * 0 - successful
19600 * -EIO - The mailbox failed to complete successfully.
19601 * When this error occurs, the driver is not guaranteed
19602 * to have any rpi regions posted to the device and
19603 * must either attempt to repost the regions or take a
19604 * fatal error.
19605 **/
19606 int
lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba * phba)19607 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba)
19608 {
19609 struct lpfc_rpi_hdr *rpi_page;
19610 uint32_t rc = 0;
19611 uint16_t lrpi = 0;
19612
19613 /* SLI4 ports that support extents do not require RPI headers. */
19614 if (!phba->sli4_hba.rpi_hdrs_in_use)
19615 goto exit;
19616 if (phba->sli4_hba.extents_in_use)
19617 return -EIO;
19618
19619 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
19620 /*
19621 * Assign the rpi headers a physical rpi only if the driver
19622 * has not initialized those resources. A port reset only
19623 * needs the headers posted.
19624 */
19625 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) !=
19626 LPFC_RPI_RSRC_RDY)
19627 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
19628
19629 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page);
19630 if (rc != MBX_SUCCESS) {
19631 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19632 "2008 Error %d posting all rpi "
19633 "headers\n", rc);
19634 rc = -EIO;
19635 break;
19636 }
19637 }
19638
19639 exit:
19640 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags,
19641 LPFC_RPI_RSRC_RDY);
19642 return rc;
19643 }
19644
19645 /**
19646 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port
19647 * @phba: pointer to lpfc hba data structure.
19648 * @rpi_page: pointer to the rpi memory region.
19649 *
19650 * This routine is invoked to post a single rpi header to the
19651 * HBA consistent with the SLI-4 interface spec. This memory region
19652 * maps up to 64 rpi context regions.
19653 *
19654 * Return codes
19655 * 0 - successful
19656 * -ENOMEM - No available memory
19657 * -EIO - The mailbox failed to complete successfully.
19658 **/
19659 int
lpfc_sli4_post_rpi_hdr(struct lpfc_hba * phba,struct lpfc_rpi_hdr * rpi_page)19660 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page)
19661 {
19662 LPFC_MBOXQ_t *mboxq;
19663 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl;
19664 uint32_t rc = 0;
19665 uint32_t shdr_status, shdr_add_status;
19666 union lpfc_sli4_cfg_shdr *shdr;
19667
19668 /* SLI4 ports that support extents do not require RPI headers. */
19669 if (!phba->sli4_hba.rpi_hdrs_in_use)
19670 return rc;
19671 if (phba->sli4_hba.extents_in_use)
19672 return -EIO;
19673
19674 /* The port is notified of the header region via a mailbox command. */
19675 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19676 if (!mboxq) {
19677 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19678 "2001 Unable to allocate memory for issuing "
19679 "SLI_CONFIG_SPECIAL mailbox command\n");
19680 return -ENOMEM;
19681 }
19682
19683 /* Post all rpi memory regions to the port. */
19684 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl;
19685 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
19686 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE,
19687 sizeof(struct lpfc_mbx_post_hdr_tmpl) -
19688 sizeof(struct lpfc_sli4_cfg_mhdr),
19689 LPFC_SLI4_MBX_EMBED);
19690
19691
19692 /* Post the physical rpi to the port for this rpi header. */
19693 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl,
19694 rpi_page->start_rpi);
19695 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt,
19696 hdr_tmpl, rpi_page->page_count);
19697
19698 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys);
19699 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys);
19700 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
19701 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr;
19702 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
19703 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
19704 mempool_free(mboxq, phba->mbox_mem_pool);
19705 if (shdr_status || shdr_add_status || rc) {
19706 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19707 "2514 POST_RPI_HDR mailbox failed with "
19708 "status x%x add_status x%x, mbx status x%x\n",
19709 shdr_status, shdr_add_status, rc);
19710 rc = -ENXIO;
19711 } else {
19712 /*
19713 * The next_rpi stores the next logical module-64 rpi value used
19714 * to post physical rpis in subsequent rpi postings.
19715 */
19716 spin_lock_irq(&phba->hbalock);
19717 phba->sli4_hba.next_rpi = rpi_page->next_rpi;
19718 spin_unlock_irq(&phba->hbalock);
19719 }
19720 return rc;
19721 }
19722
19723 /**
19724 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range
19725 * @phba: pointer to lpfc hba data structure.
19726 *
19727 * This routine is invoked to post rpi header templates to the
19728 * HBA consistent with the SLI-4 interface spec. This routine
19729 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
19730 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
19731 *
19732 * Returns
19733 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
19734 * LPFC_RPI_ALLOC_ERROR if no rpis are available.
19735 **/
19736 int
lpfc_sli4_alloc_rpi(struct lpfc_hba * phba)19737 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba)
19738 {
19739 unsigned long rpi;
19740 uint16_t max_rpi, rpi_limit;
19741 uint16_t rpi_remaining, lrpi = 0;
19742 struct lpfc_rpi_hdr *rpi_hdr;
19743 unsigned long iflag;
19744
19745 /*
19746 * Fetch the next logical rpi. Because this index is logical,
19747 * the driver starts at 0 each time.
19748 */
19749 spin_lock_irqsave(&phba->hbalock, iflag);
19750 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
19751 rpi_limit = phba->sli4_hba.next_rpi;
19752
19753 rpi = find_first_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit);
19754 if (rpi >= rpi_limit)
19755 rpi = LPFC_RPI_ALLOC_ERROR;
19756 else {
19757 set_bit(rpi, phba->sli4_hba.rpi_bmask);
19758 phba->sli4_hba.max_cfg_param.rpi_used++;
19759 phba->sli4_hba.rpi_count++;
19760 }
19761 lpfc_printf_log(phba, KERN_INFO,
19762 LOG_NODE | LOG_DISCOVERY,
19763 "0001 Allocated rpi:x%x max:x%x lim:x%x\n",
19764 (int) rpi, max_rpi, rpi_limit);
19765
19766 /*
19767 * Don't try to allocate more rpi header regions if the device limit
19768 * has been exhausted.
19769 */
19770 if ((rpi == LPFC_RPI_ALLOC_ERROR) &&
19771 (phba->sli4_hba.rpi_count >= max_rpi)) {
19772 spin_unlock_irqrestore(&phba->hbalock, iflag);
19773 return rpi;
19774 }
19775
19776 /*
19777 * RPI header postings are not required for SLI4 ports capable of
19778 * extents.
19779 */
19780 if (!phba->sli4_hba.rpi_hdrs_in_use) {
19781 spin_unlock_irqrestore(&phba->hbalock, iflag);
19782 return rpi;
19783 }
19784
19785 /*
19786 * If the driver is running low on rpi resources, allocate another
19787 * page now. Note that the next_rpi value is used because
19788 * it represents how many are actually in use whereas max_rpi notes
19789 * how many are supported max by the device.
19790 */
19791 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count;
19792 spin_unlock_irqrestore(&phba->hbalock, iflag);
19793 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) {
19794 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
19795 if (!rpi_hdr) {
19796 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19797 "2002 Error Could not grow rpi "
19798 "count\n");
19799 } else {
19800 lrpi = rpi_hdr->start_rpi;
19801 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
19802 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr);
19803 }
19804 }
19805
19806 return rpi;
19807 }
19808
19809 /**
19810 * __lpfc_sli4_free_rpi - Release an rpi for reuse.
19811 * @phba: pointer to lpfc hba data structure.
19812 * @rpi: rpi to free
19813 *
19814 * This routine is invoked to release an rpi to the pool of
19815 * available rpis maintained by the driver.
19816 **/
19817 static void
__lpfc_sli4_free_rpi(struct lpfc_hba * phba,int rpi)19818 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
19819 {
19820 /*
19821 * if the rpi value indicates a prior unreg has already
19822 * been done, skip the unreg.
19823 */
19824 if (rpi == LPFC_RPI_ALLOC_ERROR)
19825 return;
19826
19827 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) {
19828 phba->sli4_hba.rpi_count--;
19829 phba->sli4_hba.max_cfg_param.rpi_used--;
19830 } else {
19831 lpfc_printf_log(phba, KERN_INFO,
19832 LOG_NODE | LOG_DISCOVERY,
19833 "2016 rpi %x not inuse\n",
19834 rpi);
19835 }
19836 }
19837
19838 /**
19839 * lpfc_sli4_free_rpi - Release an rpi for reuse.
19840 * @phba: pointer to lpfc hba data structure.
19841 * @rpi: rpi to free
19842 *
19843 * This routine is invoked to release an rpi to the pool of
19844 * available rpis maintained by the driver.
19845 **/
19846 void
lpfc_sli4_free_rpi(struct lpfc_hba * phba,int rpi)19847 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
19848 {
19849 spin_lock_irq(&phba->hbalock);
19850 __lpfc_sli4_free_rpi(phba, rpi);
19851 spin_unlock_irq(&phba->hbalock);
19852 }
19853
19854 /**
19855 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region
19856 * @phba: pointer to lpfc hba data structure.
19857 *
19858 * This routine is invoked to remove the memory region that
19859 * provided rpi via a bitmask.
19860 **/
19861 void
lpfc_sli4_remove_rpis(struct lpfc_hba * phba)19862 lpfc_sli4_remove_rpis(struct lpfc_hba *phba)
19863 {
19864 kfree(phba->sli4_hba.rpi_bmask);
19865 kfree(phba->sli4_hba.rpi_ids);
19866 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
19867 }
19868
19869 /**
19870 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region
19871 * @ndlp: pointer to lpfc nodelist data structure.
19872 * @cmpl: completion call-back.
19873 * @iocbq: data to load as mbox ctx_u information
19874 *
19875 * This routine is invoked to remove the memory region that
19876 * provided rpi via a bitmask.
19877 **/
19878 int
lpfc_sli4_resume_rpi(struct lpfc_nodelist * ndlp,void (* cmpl)(struct lpfc_hba *,LPFC_MBOXQ_t *),struct lpfc_iocbq * iocbq)19879 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp,
19880 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *),
19881 struct lpfc_iocbq *iocbq)
19882 {
19883 LPFC_MBOXQ_t *mboxq;
19884 struct lpfc_hba *phba = ndlp->phba;
19885 int rc;
19886
19887 /* The port is notified of the header region via a mailbox command. */
19888 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19889 if (!mboxq)
19890 return -ENOMEM;
19891
19892 /* If cmpl assigned, then this nlp_get pairs with
19893 * lpfc_mbx_cmpl_resume_rpi.
19894 *
19895 * Else cmpl is NULL, then this nlp_get pairs with
19896 * lpfc_sli_def_mbox_cmpl.
19897 */
19898 if (!lpfc_nlp_get(ndlp)) {
19899 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19900 "2122 %s: Failed to get nlp ref\n",
19901 __func__);
19902 mempool_free(mboxq, phba->mbox_mem_pool);
19903 return -EIO;
19904 }
19905
19906 /* Post all rpi memory regions to the port. */
19907 lpfc_resume_rpi(mboxq, ndlp);
19908 if (cmpl) {
19909 mboxq->mbox_cmpl = cmpl;
19910 mboxq->ctx_u.save_iocb = iocbq;
19911 } else
19912 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19913 mboxq->ctx_ndlp = ndlp;
19914 mboxq->vport = ndlp->vport;
19915 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19916 if (rc == MBX_NOT_FINISHED) {
19917 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19918 "2010 Resume RPI Mailbox failed "
19919 "status %d, mbxStatus x%x\n", rc,
19920 bf_get(lpfc_mqe_status, &mboxq->u.mqe));
19921 lpfc_nlp_put(ndlp);
19922 mempool_free(mboxq, phba->mbox_mem_pool);
19923 return -EIO;
19924 }
19925 return 0;
19926 }
19927
19928 /**
19929 * lpfc_sli4_init_vpi - Initialize a vpi with the port
19930 * @vport: Pointer to the vport for which the vpi is being initialized
19931 *
19932 * This routine is invoked to activate a vpi with the port.
19933 *
19934 * Returns:
19935 * 0 success
19936 * -Evalue otherwise
19937 **/
19938 int
lpfc_sli4_init_vpi(struct lpfc_vport * vport)19939 lpfc_sli4_init_vpi(struct lpfc_vport *vport)
19940 {
19941 LPFC_MBOXQ_t *mboxq;
19942 int rc = 0;
19943 int retval = MBX_SUCCESS;
19944 uint32_t mbox_tmo;
19945 struct lpfc_hba *phba = vport->phba;
19946 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19947 if (!mboxq)
19948 return -ENOMEM;
19949 lpfc_init_vpi(phba, mboxq, vport->vpi);
19950 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
19951 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
19952 if (rc != MBX_SUCCESS) {
19953 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
19954 "2022 INIT VPI Mailbox failed "
19955 "status %d, mbxStatus x%x\n", rc,
19956 bf_get(lpfc_mqe_status, &mboxq->u.mqe));
19957 retval = -EIO;
19958 }
19959 if (rc != MBX_TIMEOUT)
19960 mempool_free(mboxq, vport->phba->mbox_mem_pool);
19961
19962 return retval;
19963 }
19964
19965 /**
19966 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler.
19967 * @phba: pointer to lpfc hba data structure.
19968 * @mboxq: Pointer to mailbox object.
19969 *
19970 * This routine is invoked to manually add a single FCF record. The caller
19971 * must pass a completely initialized FCF_Record. This routine takes
19972 * care of the nonembedded mailbox operations.
19973 **/
19974 static void
lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq)19975 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
19976 {
19977 void *virt_addr;
19978 union lpfc_sli4_cfg_shdr *shdr;
19979 uint32_t shdr_status, shdr_add_status;
19980
19981 virt_addr = mboxq->sge_array->addr[0];
19982 /* The IOCTL status is embedded in the mailbox subheader. */
19983 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr;
19984 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
19985 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
19986
19987 if ((shdr_status || shdr_add_status) &&
19988 (shdr_status != STATUS_FCF_IN_USE))
19989 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19990 "2558 ADD_FCF_RECORD mailbox failed with "
19991 "status x%x add_status x%x\n",
19992 shdr_status, shdr_add_status);
19993
19994 lpfc_sli4_mbox_cmd_free(phba, mboxq);
19995 }
19996
19997 /**
19998 * lpfc_sli4_add_fcf_record - Manually add an FCF Record.
19999 * @phba: pointer to lpfc hba data structure.
20000 * @fcf_record: pointer to the initialized fcf record to add.
20001 *
20002 * This routine is invoked to manually add a single FCF record. The caller
20003 * must pass a completely initialized FCF_Record. This routine takes
20004 * care of the nonembedded mailbox operations.
20005 **/
20006 int
lpfc_sli4_add_fcf_record(struct lpfc_hba * phba,struct fcf_record * fcf_record)20007 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record)
20008 {
20009 int rc = 0;
20010 LPFC_MBOXQ_t *mboxq;
20011 uint8_t *bytep;
20012 void *virt_addr;
20013 struct lpfc_mbx_sge sge;
20014 uint32_t alloc_len, req_len;
20015 uint32_t fcfindex;
20016
20017 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20018 if (!mboxq) {
20019 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20020 "2009 Failed to allocate mbox for ADD_FCF cmd\n");
20021 return -ENOMEM;
20022 }
20023
20024 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) +
20025 sizeof(uint32_t);
20026
20027 /* Allocate DMA memory and set up the non-embedded mailbox command */
20028 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
20029 LPFC_MBOX_OPCODE_FCOE_ADD_FCF,
20030 req_len, LPFC_SLI4_MBX_NEMBED);
20031 if (alloc_len < req_len) {
20032 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20033 "2523 Allocated DMA memory size (x%x) is "
20034 "less than the requested DMA memory "
20035 "size (x%x)\n", alloc_len, req_len);
20036 lpfc_sli4_mbox_cmd_free(phba, mboxq);
20037 return -ENOMEM;
20038 }
20039
20040 /*
20041 * Get the first SGE entry from the non-embedded DMA memory. This
20042 * routine only uses a single SGE.
20043 */
20044 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge);
20045 virt_addr = mboxq->sge_array->addr[0];
20046 /*
20047 * Configure the FCF record for FCFI 0. This is the driver's
20048 * hardcoded default and gets used in nonFIP mode.
20049 */
20050 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record);
20051 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr);
20052 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t));
20053
20054 /*
20055 * Copy the fcf_index and the FCF Record Data. The data starts after
20056 * the FCoE header plus word10. The data copy needs to be endian
20057 * correct.
20058 */
20059 bytep += sizeof(uint32_t);
20060 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record));
20061 mboxq->vport = phba->pport;
20062 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record;
20063 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
20064 if (rc == MBX_NOT_FINISHED) {
20065 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20066 "2515 ADD_FCF_RECORD mailbox failed with "
20067 "status 0x%x\n", rc);
20068 lpfc_sli4_mbox_cmd_free(phba, mboxq);
20069 rc = -EIO;
20070 } else
20071 rc = 0;
20072
20073 return rc;
20074 }
20075
20076 /**
20077 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record.
20078 * @phba: pointer to lpfc hba data structure.
20079 * @fcf_record: pointer to the fcf record to write the default data.
20080 * @fcf_index: FCF table entry index.
20081 *
20082 * This routine is invoked to build the driver's default FCF record. The
20083 * values used are hardcoded. This routine handles memory initialization.
20084 *
20085 **/
20086 void
lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba * phba,struct fcf_record * fcf_record,uint16_t fcf_index)20087 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba,
20088 struct fcf_record *fcf_record,
20089 uint16_t fcf_index)
20090 {
20091 memset(fcf_record, 0, sizeof(struct fcf_record));
20092 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE;
20093 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER;
20094 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY;
20095 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]);
20096 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]);
20097 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]);
20098 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3);
20099 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4);
20100 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5);
20101 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]);
20102 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]);
20103 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]);
20104 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1);
20105 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1);
20106 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index);
20107 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record,
20108 LPFC_FCF_FPMA | LPFC_FCF_SPMA);
20109 /* Set the VLAN bit map */
20110 if (phba->valid_vlan) {
20111 fcf_record->vlan_bitmap[phba->vlan_id / 8]
20112 = 1 << (phba->vlan_id % 8);
20113 }
20114 }
20115
20116 /**
20117 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan.
20118 * @phba: pointer to lpfc hba data structure.
20119 * @fcf_index: FCF table entry offset.
20120 *
20121 * This routine is invoked to scan the entire FCF table by reading FCF
20122 * record and processing it one at a time starting from the @fcf_index
20123 * for initial FCF discovery or fast FCF failover rediscovery.
20124 *
20125 * Return 0 if the mailbox command is submitted successfully, none 0
20126 * otherwise.
20127 **/
20128 int
lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba * phba,uint16_t fcf_index)20129 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
20130 {
20131 int rc = 0, error;
20132 LPFC_MBOXQ_t *mboxq;
20133
20134 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag;
20135 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag;
20136 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20137 if (!mboxq) {
20138 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20139 "2000 Failed to allocate mbox for "
20140 "READ_FCF cmd\n");
20141 error = -ENOMEM;
20142 goto fail_fcf_scan;
20143 }
20144 /* Construct the read FCF record mailbox command */
20145 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
20146 if (rc) {
20147 error = -EINVAL;
20148 goto fail_fcf_scan;
20149 }
20150 /* Issue the mailbox command asynchronously */
20151 mboxq->vport = phba->pport;
20152 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec;
20153
20154 set_bit(FCF_TS_INPROG, &phba->hba_flag);
20155
20156 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
20157 if (rc == MBX_NOT_FINISHED)
20158 error = -EIO;
20159 else {
20160 /* Reset eligible FCF count for new scan */
20161 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST)
20162 phba->fcf.eligible_fcf_cnt = 0;
20163 error = 0;
20164 }
20165 fail_fcf_scan:
20166 if (error) {
20167 if (mboxq)
20168 lpfc_sli4_mbox_cmd_free(phba, mboxq);
20169 /* FCF scan failed, clear FCF_TS_INPROG flag */
20170 clear_bit(FCF_TS_INPROG, &phba->hba_flag);
20171 }
20172 return error;
20173 }
20174
20175 /**
20176 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf.
20177 * @phba: pointer to lpfc hba data structure.
20178 * @fcf_index: FCF table entry offset.
20179 *
20180 * This routine is invoked to read an FCF record indicated by @fcf_index
20181 * and to use it for FLOGI roundrobin FCF failover.
20182 *
20183 * Return 0 if the mailbox command is submitted successfully, none 0
20184 * otherwise.
20185 **/
20186 int
lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba * phba,uint16_t fcf_index)20187 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
20188 {
20189 int rc = 0, error;
20190 LPFC_MBOXQ_t *mboxq;
20191
20192 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20193 if (!mboxq) {
20194 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
20195 "2763 Failed to allocate mbox for "
20196 "READ_FCF cmd\n");
20197 error = -ENOMEM;
20198 goto fail_fcf_read;
20199 }
20200 /* Construct the read FCF record mailbox command */
20201 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
20202 if (rc) {
20203 error = -EINVAL;
20204 goto fail_fcf_read;
20205 }
20206 /* Issue the mailbox command asynchronously */
20207 mboxq->vport = phba->pport;
20208 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec;
20209 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
20210 if (rc == MBX_NOT_FINISHED)
20211 error = -EIO;
20212 else
20213 error = 0;
20214
20215 fail_fcf_read:
20216 if (error && mboxq)
20217 lpfc_sli4_mbox_cmd_free(phba, mboxq);
20218 return error;
20219 }
20220
20221 /**
20222 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask.
20223 * @phba: pointer to lpfc hba data structure.
20224 * @fcf_index: FCF table entry offset.
20225 *
20226 * This routine is invoked to read an FCF record indicated by @fcf_index to
20227 * determine whether it's eligible for FLOGI roundrobin failover list.
20228 *
20229 * Return 0 if the mailbox command is submitted successfully, none 0
20230 * otherwise.
20231 **/
20232 int
lpfc_sli4_read_fcf_rec(struct lpfc_hba * phba,uint16_t fcf_index)20233 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
20234 {
20235 int rc = 0, error;
20236 LPFC_MBOXQ_t *mboxq;
20237
20238 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20239 if (!mboxq) {
20240 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
20241 "2758 Failed to allocate mbox for "
20242 "READ_FCF cmd\n");
20243 error = -ENOMEM;
20244 goto fail_fcf_read;
20245 }
20246 /* Construct the read FCF record mailbox command */
20247 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
20248 if (rc) {
20249 error = -EINVAL;
20250 goto fail_fcf_read;
20251 }
20252 /* Issue the mailbox command asynchronously */
20253 mboxq->vport = phba->pport;
20254 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec;
20255 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
20256 if (rc == MBX_NOT_FINISHED)
20257 error = -EIO;
20258 else
20259 error = 0;
20260
20261 fail_fcf_read:
20262 if (error && mboxq)
20263 lpfc_sli4_mbox_cmd_free(phba, mboxq);
20264 return error;
20265 }
20266
20267 /**
20268 * lpfc_check_next_fcf_pri_level
20269 * @phba: pointer to the lpfc_hba struct for this port.
20270 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get
20271 * routine when the rr_bmask is empty. The FCF indecies are put into the
20272 * rr_bmask based on their priority level. Starting from the highest priority
20273 * to the lowest. The most likely FCF candidate will be in the highest
20274 * priority group. When this routine is called it searches the fcf_pri list for
20275 * next lowest priority group and repopulates the rr_bmask with only those
20276 * fcf_indexes.
20277 * returns:
20278 * 1=success 0=failure
20279 **/
20280 static int
lpfc_check_next_fcf_pri_level(struct lpfc_hba * phba)20281 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba)
20282 {
20283 uint16_t next_fcf_pri;
20284 uint16_t last_index;
20285 struct lpfc_fcf_pri *fcf_pri;
20286 int rc;
20287 int ret = 0;
20288
20289 last_index = find_first_bit(phba->fcf.fcf_rr_bmask,
20290 LPFC_SLI4_FCF_TBL_INDX_MAX);
20291 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20292 "3060 Last IDX %d\n", last_index);
20293
20294 /* Verify the priority list has 2 or more entries */
20295 spin_lock_irq(&phba->hbalock);
20296 if (list_empty(&phba->fcf.fcf_pri_list) ||
20297 list_is_singular(&phba->fcf.fcf_pri_list)) {
20298 spin_unlock_irq(&phba->hbalock);
20299 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
20300 "3061 Last IDX %d\n", last_index);
20301 return 0; /* Empty rr list */
20302 }
20303 spin_unlock_irq(&phba->hbalock);
20304
20305 next_fcf_pri = 0;
20306 /*
20307 * Clear the rr_bmask and set all of the bits that are at this
20308 * priority.
20309 */
20310 memset(phba->fcf.fcf_rr_bmask, 0,
20311 sizeof(*phba->fcf.fcf_rr_bmask));
20312 spin_lock_irq(&phba->hbalock);
20313 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
20314 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED)
20315 continue;
20316 /*
20317 * the 1st priority that has not FLOGI failed
20318 * will be the highest.
20319 */
20320 if (!next_fcf_pri)
20321 next_fcf_pri = fcf_pri->fcf_rec.priority;
20322 spin_unlock_irq(&phba->hbalock);
20323 if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
20324 rc = lpfc_sli4_fcf_rr_index_set(phba,
20325 fcf_pri->fcf_rec.fcf_index);
20326 if (rc)
20327 return 0;
20328 }
20329 spin_lock_irq(&phba->hbalock);
20330 }
20331 /*
20332 * if next_fcf_pri was not set above and the list is not empty then
20333 * we have failed flogis on all of them. So reset flogi failed
20334 * and start at the beginning.
20335 */
20336 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) {
20337 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
20338 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED;
20339 /*
20340 * the 1st priority that has not FLOGI failed
20341 * will be the highest.
20342 */
20343 if (!next_fcf_pri)
20344 next_fcf_pri = fcf_pri->fcf_rec.priority;
20345 spin_unlock_irq(&phba->hbalock);
20346 if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
20347 rc = lpfc_sli4_fcf_rr_index_set(phba,
20348 fcf_pri->fcf_rec.fcf_index);
20349 if (rc)
20350 return 0;
20351 }
20352 spin_lock_irq(&phba->hbalock);
20353 }
20354 } else
20355 ret = 1;
20356 spin_unlock_irq(&phba->hbalock);
20357
20358 return ret;
20359 }
20360 /**
20361 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index
20362 * @phba: pointer to lpfc hba data structure.
20363 *
20364 * This routine is to get the next eligible FCF record index in a round
20365 * robin fashion. If the next eligible FCF record index equals to the
20366 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF)
20367 * shall be returned, otherwise, the next eligible FCF record's index
20368 * shall be returned.
20369 **/
20370 uint16_t
lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba * phba)20371 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba)
20372 {
20373 uint16_t next_fcf_index;
20374
20375 initial_priority:
20376 /* Search start from next bit of currently registered FCF index */
20377 next_fcf_index = phba->fcf.current_rec.fcf_indx;
20378
20379 next_priority:
20380 /* Determine the next fcf index to check */
20381 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX;
20382 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
20383 LPFC_SLI4_FCF_TBL_INDX_MAX,
20384 next_fcf_index);
20385
20386 /* Wrap around condition on phba->fcf.fcf_rr_bmask */
20387 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
20388 /*
20389 * If we have wrapped then we need to clear the bits that
20390 * have been tested so that we can detect when we should
20391 * change the priority level.
20392 */
20393 next_fcf_index = find_first_bit(phba->fcf.fcf_rr_bmask,
20394 LPFC_SLI4_FCF_TBL_INDX_MAX);
20395 }
20396
20397
20398 /* Check roundrobin failover list empty condition */
20399 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX ||
20400 next_fcf_index == phba->fcf.current_rec.fcf_indx) {
20401 /*
20402 * If next fcf index is not found check if there are lower
20403 * Priority level fcf's in the fcf_priority list.
20404 * Set up the rr_bmask with all of the avaiable fcf bits
20405 * at that level and continue the selection process.
20406 */
20407 if (lpfc_check_next_fcf_pri_level(phba))
20408 goto initial_priority;
20409 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
20410 "2844 No roundrobin failover FCF available\n");
20411
20412 return LPFC_FCOE_FCF_NEXT_NONE;
20413 }
20414
20415 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX &&
20416 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag &
20417 LPFC_FCF_FLOGI_FAILED) {
20418 if (list_is_singular(&phba->fcf.fcf_pri_list))
20419 return LPFC_FCOE_FCF_NEXT_NONE;
20420
20421 goto next_priority;
20422 }
20423
20424 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20425 "2845 Get next roundrobin failover FCF (x%x)\n",
20426 next_fcf_index);
20427
20428 return next_fcf_index;
20429 }
20430
20431 /**
20432 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index
20433 * @phba: pointer to lpfc hba data structure.
20434 * @fcf_index: index into the FCF table to 'set'
20435 *
20436 * This routine sets the FCF record index in to the eligible bmask for
20437 * roundrobin failover search. It checks to make sure that the index
20438 * does not go beyond the range of the driver allocated bmask dimension
20439 * before setting the bit.
20440 *
20441 * Returns 0 if the index bit successfully set, otherwise, it returns
20442 * -EINVAL.
20443 **/
20444 int
lpfc_sli4_fcf_rr_index_set(struct lpfc_hba * phba,uint16_t fcf_index)20445 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index)
20446 {
20447 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
20448 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
20449 "2610 FCF (x%x) reached driver's book "
20450 "keeping dimension:x%x\n",
20451 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
20452 return -EINVAL;
20453 }
20454 /* Set the eligible FCF record index bmask */
20455 set_bit(fcf_index, phba->fcf.fcf_rr_bmask);
20456
20457 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20458 "2790 Set FCF (x%x) to roundrobin FCF failover "
20459 "bmask\n", fcf_index);
20460
20461 return 0;
20462 }
20463
20464 /**
20465 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index
20466 * @phba: pointer to lpfc hba data structure.
20467 * @fcf_index: index into the FCF table to 'clear'
20468 *
20469 * This routine clears the FCF record index from the eligible bmask for
20470 * roundrobin failover search. It checks to make sure that the index
20471 * does not go beyond the range of the driver allocated bmask dimension
20472 * before clearing the bit.
20473 **/
20474 void
lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba * phba,uint16_t fcf_index)20475 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index)
20476 {
20477 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next;
20478 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
20479 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
20480 "2762 FCF (x%x) reached driver's book "
20481 "keeping dimension:x%x\n",
20482 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
20483 return;
20484 }
20485 /* Clear the eligible FCF record index bmask */
20486 spin_lock_irq(&phba->hbalock);
20487 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list,
20488 list) {
20489 if (fcf_pri->fcf_rec.fcf_index == fcf_index) {
20490 list_del_init(&fcf_pri->list);
20491 break;
20492 }
20493 }
20494 spin_unlock_irq(&phba->hbalock);
20495 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask);
20496
20497 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20498 "2791 Clear FCF (x%x) from roundrobin failover "
20499 "bmask\n", fcf_index);
20500 }
20501
20502 /**
20503 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table
20504 * @phba: pointer to lpfc hba data structure.
20505 * @mbox: An allocated pointer to type LPFC_MBOXQ_t
20506 *
20507 * This routine is the completion routine for the rediscover FCF table mailbox
20508 * command. If the mailbox command returned failure, it will try to stop the
20509 * FCF rediscover wait timer.
20510 **/
20511 static void
lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba * phba,LPFC_MBOXQ_t * mbox)20512 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
20513 {
20514 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
20515 uint32_t shdr_status, shdr_add_status;
20516
20517 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
20518
20519 shdr_status = bf_get(lpfc_mbox_hdr_status,
20520 &redisc_fcf->header.cfg_shdr.response);
20521 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
20522 &redisc_fcf->header.cfg_shdr.response);
20523 if (shdr_status || shdr_add_status) {
20524 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
20525 "2746 Requesting for FCF rediscovery failed "
20526 "status x%x add_status x%x\n",
20527 shdr_status, shdr_add_status);
20528 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) {
20529 spin_lock_irq(&phba->hbalock);
20530 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
20531 spin_unlock_irq(&phba->hbalock);
20532 /*
20533 * CVL event triggered FCF rediscover request failed,
20534 * last resort to re-try current registered FCF entry.
20535 */
20536 lpfc_retry_pport_discovery(phba);
20537 } else {
20538 spin_lock_irq(&phba->hbalock);
20539 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
20540 spin_unlock_irq(&phba->hbalock);
20541 /*
20542 * DEAD FCF event triggered FCF rediscover request
20543 * failed, last resort to fail over as a link down
20544 * to FCF registration.
20545 */
20546 lpfc_sli4_fcf_dead_failthrough(phba);
20547 }
20548 } else {
20549 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20550 "2775 Start FCF rediscover quiescent timer\n");
20551 /*
20552 * Start FCF rediscovery wait timer for pending FCF
20553 * before rescan FCF record table.
20554 */
20555 lpfc_fcf_redisc_wait_start_timer(phba);
20556 }
20557
20558 mempool_free(mbox, phba->mbox_mem_pool);
20559 }
20560
20561 /**
20562 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port.
20563 * @phba: pointer to lpfc hba data structure.
20564 *
20565 * This routine is invoked to request for rediscovery of the entire FCF table
20566 * by the port.
20567 **/
20568 int
lpfc_sli4_redisc_fcf_table(struct lpfc_hba * phba)20569 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba)
20570 {
20571 LPFC_MBOXQ_t *mbox;
20572 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
20573 int rc, length;
20574
20575 /* Cancel retry delay timers to all vports before FCF rediscover */
20576 lpfc_cancel_all_vport_retry_delay_timer(phba);
20577
20578 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20579 if (!mbox) {
20580 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20581 "2745 Failed to allocate mbox for "
20582 "requesting FCF rediscover.\n");
20583 return -ENOMEM;
20584 }
20585
20586 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) -
20587 sizeof(struct lpfc_sli4_cfg_mhdr));
20588 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
20589 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF,
20590 length, LPFC_SLI4_MBX_EMBED);
20591
20592 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
20593 /* Set count to 0 for invalidating the entire FCF database */
20594 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0);
20595
20596 /* Issue the mailbox command asynchronously */
20597 mbox->vport = phba->pport;
20598 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table;
20599 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
20600
20601 if (rc == MBX_NOT_FINISHED) {
20602 mempool_free(mbox, phba->mbox_mem_pool);
20603 return -EIO;
20604 }
20605 return 0;
20606 }
20607
20608 /**
20609 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event
20610 * @phba: pointer to lpfc hba data structure.
20611 *
20612 * This function is the failover routine as a last resort to the FCF DEAD
20613 * event when driver failed to perform fast FCF failover.
20614 **/
20615 void
lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba * phba)20616 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba)
20617 {
20618 uint32_t link_state;
20619
20620 /*
20621 * Last resort as FCF DEAD event failover will treat this as
20622 * a link down, but save the link state because we don't want
20623 * it to be changed to Link Down unless it is already down.
20624 */
20625 link_state = phba->link_state;
20626 lpfc_linkdown(phba);
20627 phba->link_state = link_state;
20628
20629 /* Unregister FCF if no devices connected to it */
20630 lpfc_unregister_unused_fcf(phba);
20631 }
20632
20633 /**
20634 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data.
20635 * @phba: pointer to lpfc hba data structure.
20636 * @rgn23_data: pointer to configure region 23 data.
20637 *
20638 * This function gets SLI3 port configure region 23 data through memory dump
20639 * mailbox command. When it successfully retrieves data, the size of the data
20640 * will be returned, otherwise, 0 will be returned.
20641 **/
20642 static uint32_t
lpfc_sli_get_config_region23(struct lpfc_hba * phba,char * rgn23_data)20643 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
20644 {
20645 LPFC_MBOXQ_t *pmb = NULL;
20646 MAILBOX_t *mb;
20647 uint32_t offset = 0;
20648 int rc;
20649
20650 if (!rgn23_data)
20651 return 0;
20652
20653 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20654 if (!pmb) {
20655 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20656 "2600 failed to allocate mailbox memory\n");
20657 return 0;
20658 }
20659 mb = &pmb->u.mb;
20660
20661 do {
20662 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23);
20663 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
20664
20665 if (rc != MBX_SUCCESS) {
20666 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
20667 "2601 failed to read config "
20668 "region 23, rc 0x%x Status 0x%x\n",
20669 rc, mb->mbxStatus);
20670 mb->un.varDmp.word_cnt = 0;
20671 }
20672 /*
20673 * dump mem may return a zero when finished or we got a
20674 * mailbox error, either way we are done.
20675 */
20676 if (mb->un.varDmp.word_cnt == 0)
20677 break;
20678
20679 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset)
20680 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset;
20681
20682 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
20683 rgn23_data + offset,
20684 mb->un.varDmp.word_cnt);
20685 offset += mb->un.varDmp.word_cnt;
20686 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE);
20687
20688 mempool_free(pmb, phba->mbox_mem_pool);
20689 return offset;
20690 }
20691
20692 /**
20693 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data.
20694 * @phba: pointer to lpfc hba data structure.
20695 * @rgn23_data: pointer to configure region 23 data.
20696 *
20697 * This function gets SLI4 port configure region 23 data through memory dump
20698 * mailbox command. When it successfully retrieves data, the size of the data
20699 * will be returned, otherwise, 0 will be returned.
20700 **/
20701 static uint32_t
lpfc_sli4_get_config_region23(struct lpfc_hba * phba,char * rgn23_data)20702 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
20703 {
20704 LPFC_MBOXQ_t *mboxq = NULL;
20705 struct lpfc_dmabuf *mp = NULL;
20706 struct lpfc_mqe *mqe;
20707 uint32_t data_length = 0;
20708 int rc;
20709
20710 if (!rgn23_data)
20711 return 0;
20712
20713 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20714 if (!mboxq) {
20715 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20716 "3105 failed to allocate mailbox memory\n");
20717 return 0;
20718 }
20719
20720 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq))
20721 goto out;
20722 mqe = &mboxq->u.mqe;
20723 mp = mboxq->ctx_buf;
20724 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
20725 if (rc)
20726 goto out;
20727 data_length = mqe->un.mb_words[5];
20728 if (data_length == 0)
20729 goto out;
20730 if (data_length > DMP_RGN23_SIZE) {
20731 data_length = 0;
20732 goto out;
20733 }
20734 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length);
20735 out:
20736 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED);
20737 return data_length;
20738 }
20739
20740 /**
20741 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled.
20742 * @phba: pointer to lpfc hba data structure.
20743 *
20744 * This function read region 23 and parse TLV for port status to
20745 * decide if the user disaled the port. If the TLV indicates the
20746 * port is disabled, the hba_flag is set accordingly.
20747 **/
20748 void
lpfc_sli_read_link_ste(struct lpfc_hba * phba)20749 lpfc_sli_read_link_ste(struct lpfc_hba *phba)
20750 {
20751 uint8_t *rgn23_data = NULL;
20752 uint32_t if_type, data_size, sub_tlv_len, tlv_offset;
20753 uint32_t offset = 0;
20754
20755 /* Get adapter Region 23 data */
20756 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL);
20757 if (!rgn23_data)
20758 goto out;
20759
20760 if (phba->sli_rev < LPFC_SLI_REV4)
20761 data_size = lpfc_sli_get_config_region23(phba, rgn23_data);
20762 else {
20763 if_type = bf_get(lpfc_sli_intf_if_type,
20764 &phba->sli4_hba.sli_intf);
20765 if (if_type == LPFC_SLI_INTF_IF_TYPE_0)
20766 goto out;
20767 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data);
20768 }
20769
20770 if (!data_size)
20771 goto out;
20772
20773 /* Check the region signature first */
20774 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) {
20775 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20776 "2619 Config region 23 has bad signature\n");
20777 goto out;
20778 }
20779 offset += 4;
20780
20781 /* Check the data structure version */
20782 if (rgn23_data[offset] != LPFC_REGION23_VERSION) {
20783 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20784 "2620 Config region 23 has bad version\n");
20785 goto out;
20786 }
20787 offset += 4;
20788
20789 /* Parse TLV entries in the region */
20790 while (offset < data_size) {
20791 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC)
20792 break;
20793 /*
20794 * If the TLV is not driver specific TLV or driver id is
20795 * not linux driver id, skip the record.
20796 */
20797 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) ||
20798 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) ||
20799 (rgn23_data[offset + 3] != 0)) {
20800 offset += rgn23_data[offset + 1] * 4 + 4;
20801 continue;
20802 }
20803
20804 /* Driver found a driver specific TLV in the config region */
20805 sub_tlv_len = rgn23_data[offset + 1] * 4;
20806 offset += 4;
20807 tlv_offset = 0;
20808
20809 /*
20810 * Search for configured port state sub-TLV.
20811 */
20812 while ((offset < data_size) &&
20813 (tlv_offset < sub_tlv_len)) {
20814 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) {
20815 offset += 4;
20816 tlv_offset += 4;
20817 break;
20818 }
20819 if (rgn23_data[offset] != PORT_STE_TYPE) {
20820 offset += rgn23_data[offset + 1] * 4 + 4;
20821 tlv_offset += rgn23_data[offset + 1] * 4 + 4;
20822 continue;
20823 }
20824
20825 /* This HBA contains PORT_STE configured */
20826 if (!rgn23_data[offset + 2])
20827 set_bit(LINK_DISABLED, &phba->hba_flag);
20828
20829 goto out;
20830 }
20831 }
20832
20833 out:
20834 kfree(rgn23_data);
20835 return;
20836 }
20837
20838 /**
20839 * lpfc_log_fw_write_cmpl - logs firmware write completion status
20840 * @phba: pointer to lpfc hba data structure
20841 * @shdr_status: wr_object rsp's status field
20842 * @shdr_add_status: wr_object rsp's add_status field
20843 * @shdr_add_status_2: wr_object rsp's add_status_2 field
20844 * @shdr_change_status: wr_object rsp's change_status field
20845 * @shdr_csf: wr_object rsp's csf bit
20846 *
20847 * This routine is intended to be called after a firmware write completes.
20848 * It will log next action items to be performed by the user to instantiate
20849 * the newly downloaded firmware or reason for incompatibility.
20850 **/
20851 static void
lpfc_log_fw_write_cmpl(struct lpfc_hba * phba,u32 shdr_status,u32 shdr_add_status,u32 shdr_add_status_2,u32 shdr_change_status,u32 shdr_csf)20852 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status,
20853 u32 shdr_add_status, u32 shdr_add_status_2,
20854 u32 shdr_change_status, u32 shdr_csf)
20855 {
20856 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
20857 "4198 %s: flash_id x%02x, asic_rev x%02x, "
20858 "status x%02x, add_status x%02x, add_status_2 x%02x, "
20859 "change_status x%02x, csf %01x\n", __func__,
20860 phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev,
20861 shdr_status, shdr_add_status, shdr_add_status_2,
20862 shdr_change_status, shdr_csf);
20863
20864 if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) {
20865 switch (shdr_add_status_2) {
20866 case LPFC_ADD_STATUS_2_INCOMPAT_FLASH:
20867 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
20868 "4199 Firmware write failed: "
20869 "image incompatible with flash x%02x\n",
20870 phba->sli4_hba.flash_id);
20871 break;
20872 case LPFC_ADD_STATUS_2_INCORRECT_ASIC:
20873 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
20874 "4200 Firmware write failed: "
20875 "image incompatible with ASIC "
20876 "architecture x%02x\n",
20877 phba->sli4_hba.asic_rev);
20878 break;
20879 default:
20880 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
20881 "4210 Firmware write failed: "
20882 "add_status_2 x%02x\n",
20883 shdr_add_status_2);
20884 break;
20885 }
20886 } else if (!shdr_status && !shdr_add_status) {
20887 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET ||
20888 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) {
20889 if (shdr_csf)
20890 shdr_change_status =
20891 LPFC_CHANGE_STATUS_PCI_RESET;
20892 }
20893
20894 switch (shdr_change_status) {
20895 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET):
20896 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI,
20897 "3198 Firmware write complete: System "
20898 "reboot required to instantiate\n");
20899 break;
20900 case (LPFC_CHANGE_STATUS_FW_RESET):
20901 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI,
20902 "3199 Firmware write complete: "
20903 "Firmware reset required to "
20904 "instantiate\n");
20905 break;
20906 case (LPFC_CHANGE_STATUS_PORT_MIGRATION):
20907 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI,
20908 "3200 Firmware write complete: Port "
20909 "Migration or PCI Reset required to "
20910 "instantiate\n");
20911 break;
20912 case (LPFC_CHANGE_STATUS_PCI_RESET):
20913 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI,
20914 "3201 Firmware write complete: PCI "
20915 "Reset required to instantiate\n");
20916 break;
20917 default:
20918 break;
20919 }
20920 }
20921 }
20922
20923 /**
20924 * lpfc_wr_object - write an object to the firmware
20925 * @phba: HBA structure that indicates port to create a queue on.
20926 * @dmabuf_list: list of dmabufs to write to the port.
20927 * @size: the total byte value of the objects to write to the port.
20928 * @offset: the current offset to be used to start the transfer.
20929 *
20930 * This routine will create a wr_object mailbox command to send to the port.
20931 * the mailbox command will be constructed using the dma buffers described in
20932 * @dmabuf_list to create a list of BDEs. This routine will fill in as many
20933 * BDEs that the imbedded mailbox can support. The @offset variable will be
20934 * used to indicate the starting offset of the transfer and will also return
20935 * the offset after the write object mailbox has completed. @size is used to
20936 * determine the end of the object and whether the eof bit should be set.
20937 *
20938 * Return 0 is successful and offset will contain the new offset to use
20939 * for the next write.
20940 * Return negative value for error cases.
20941 **/
20942 int
lpfc_wr_object(struct lpfc_hba * phba,struct list_head * dmabuf_list,uint32_t size,uint32_t * offset)20943 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list,
20944 uint32_t size, uint32_t *offset)
20945 {
20946 struct lpfc_mbx_wr_object *wr_object;
20947 LPFC_MBOXQ_t *mbox;
20948 int rc = 0, i = 0;
20949 int mbox_status = 0;
20950 uint32_t shdr_status, shdr_add_status, shdr_add_status_2;
20951 uint32_t shdr_change_status = 0, shdr_csf = 0;
20952 uint32_t mbox_tmo;
20953 struct lpfc_dmabuf *dmabuf;
20954 uint32_t written = 0;
20955 bool check_change_status = false;
20956
20957 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20958 if (!mbox)
20959 return -ENOMEM;
20960
20961 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
20962 LPFC_MBOX_OPCODE_WRITE_OBJECT,
20963 sizeof(struct lpfc_mbx_wr_object) -
20964 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
20965
20966 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object;
20967 wr_object->u.request.write_offset = *offset;
20968 sprintf((uint8_t *)wr_object->u.request.object_name, "/");
20969 wr_object->u.request.object_name[0] =
20970 cpu_to_le32(wr_object->u.request.object_name[0]);
20971 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0);
20972 list_for_each_entry(dmabuf, dmabuf_list, list) {
20973 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size)
20974 break;
20975 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys);
20976 wr_object->u.request.bde[i].addrHigh =
20977 putPaddrHigh(dmabuf->phys);
20978 if (written + SLI4_PAGE_SIZE >= size) {
20979 wr_object->u.request.bde[i].tus.f.bdeSize =
20980 (size - written);
20981 written += (size - written);
20982 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1);
20983 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1);
20984 check_change_status = true;
20985 } else {
20986 wr_object->u.request.bde[i].tus.f.bdeSize =
20987 SLI4_PAGE_SIZE;
20988 written += SLI4_PAGE_SIZE;
20989 }
20990 i++;
20991 }
20992 wr_object->u.request.bde_count = i;
20993 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written);
20994 if (!phba->sli4_hba.intr_enable)
20995 mbox_status = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
20996 else {
20997 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
20998 mbox_status = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
20999 }
21000
21001 /* The mbox status needs to be maintained to detect MBOX_TIMEOUT. */
21002 rc = mbox_status;
21003
21004 /* The IOCTL status is embedded in the mailbox subheader. */
21005 shdr_status = bf_get(lpfc_mbox_hdr_status,
21006 &wr_object->header.cfg_shdr.response);
21007 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
21008 &wr_object->header.cfg_shdr.response);
21009 shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2,
21010 &wr_object->header.cfg_shdr.response);
21011 if (check_change_status) {
21012 shdr_change_status = bf_get(lpfc_wr_object_change_status,
21013 &wr_object->u.response);
21014 shdr_csf = bf_get(lpfc_wr_object_csf,
21015 &wr_object->u.response);
21016 }
21017
21018 if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) {
21019 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
21020 "3025 Write Object mailbox failed with "
21021 "status x%x add_status x%x, add_status_2 x%x, "
21022 "mbx status x%x\n",
21023 shdr_status, shdr_add_status, shdr_add_status_2,
21024 rc);
21025 rc = -ENXIO;
21026 *offset = shdr_add_status;
21027 } else {
21028 *offset += wr_object->u.response.actual_write_length;
21029 }
21030
21031 if (rc || check_change_status)
21032 lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status,
21033 shdr_add_status_2, shdr_change_status,
21034 shdr_csf);
21035
21036 if (!phba->sli4_hba.intr_enable)
21037 mempool_free(mbox, phba->mbox_mem_pool);
21038 else if (mbox_status != MBX_TIMEOUT)
21039 mempool_free(mbox, phba->mbox_mem_pool);
21040
21041 return rc;
21042 }
21043
21044 /**
21045 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands.
21046 * @vport: pointer to vport data structure.
21047 *
21048 * This function iterate through the mailboxq and clean up all REG_LOGIN
21049 * and REG_VPI mailbox commands associated with the vport. This function
21050 * is called when driver want to restart discovery of the vport due to
21051 * a Clear Virtual Link event.
21052 **/
21053 void
lpfc_cleanup_pending_mbox(struct lpfc_vport * vport)21054 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport)
21055 {
21056 struct lpfc_hba *phba = vport->phba;
21057 LPFC_MBOXQ_t *mb, *nextmb;
21058 struct lpfc_nodelist *ndlp;
21059 struct lpfc_nodelist *act_mbx_ndlp = NULL;
21060 LIST_HEAD(mbox_cmd_list);
21061 uint8_t restart_loop;
21062
21063 /* Clean up internally queued mailbox commands with the vport */
21064 spin_lock_irq(&phba->hbalock);
21065 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
21066 if (mb->vport != vport)
21067 continue;
21068
21069 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
21070 (mb->u.mb.mbxCommand != MBX_REG_VPI))
21071 continue;
21072
21073 list_move_tail(&mb->list, &mbox_cmd_list);
21074 }
21075 /* Clean up active mailbox command with the vport */
21076 mb = phba->sli.mbox_active;
21077 if (mb && (mb->vport == vport)) {
21078 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) ||
21079 (mb->u.mb.mbxCommand == MBX_REG_VPI))
21080 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
21081 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
21082 act_mbx_ndlp = mb->ctx_ndlp;
21083
21084 /* This reference is local to this routine. The
21085 * reference is removed at routine exit.
21086 */
21087 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp);
21088
21089 /* Unregister the RPI when mailbox complete */
21090 mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
21091 }
21092 }
21093 /* Cleanup any mailbox completions which are not yet processed */
21094 do {
21095 restart_loop = 0;
21096 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) {
21097 /*
21098 * If this mailox is already processed or it is
21099 * for another vport ignore it.
21100 */
21101 if ((mb->vport != vport) ||
21102 (mb->mbox_flag & LPFC_MBX_IMED_UNREG))
21103 continue;
21104
21105 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
21106 (mb->u.mb.mbxCommand != MBX_REG_VPI))
21107 continue;
21108
21109 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
21110 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
21111 ndlp = mb->ctx_ndlp;
21112 /* Unregister the RPI when mailbox complete */
21113 mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
21114 restart_loop = 1;
21115 clear_bit(NLP_IGNR_REG_CMPL, &ndlp->nlp_flag);
21116 break;
21117 }
21118 }
21119 } while (restart_loop);
21120
21121 spin_unlock_irq(&phba->hbalock);
21122
21123 /* Release the cleaned-up mailbox commands */
21124 while (!list_empty(&mbox_cmd_list)) {
21125 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list);
21126 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
21127 ndlp = mb->ctx_ndlp;
21128 mb->ctx_ndlp = NULL;
21129 if (ndlp) {
21130 clear_bit(NLP_IGNR_REG_CMPL, &ndlp->nlp_flag);
21131 lpfc_nlp_put(ndlp);
21132 }
21133 }
21134 lpfc_mbox_rsrc_cleanup(phba, mb, MBOX_THD_UNLOCKED);
21135 }
21136
21137 /* Release the ndlp with the cleaned-up active mailbox command */
21138 if (act_mbx_ndlp) {
21139 clear_bit(NLP_IGNR_REG_CMPL, &act_mbx_ndlp->nlp_flag);
21140 lpfc_nlp_put(act_mbx_ndlp);
21141 }
21142 }
21143
21144 /**
21145 * lpfc_drain_txq - Drain the txq
21146 * @phba: Pointer to HBA context object.
21147 *
21148 * This function attempt to submit IOCBs on the txq
21149 * to the adapter. For SLI4 adapters, the txq contains
21150 * ELS IOCBs that have been deferred because the there
21151 * are no SGLs. This congestion can occur with large
21152 * vport counts during node discovery.
21153 **/
21154
21155 uint32_t
lpfc_drain_txq(struct lpfc_hba * phba)21156 lpfc_drain_txq(struct lpfc_hba *phba)
21157 {
21158 LIST_HEAD(completions);
21159 struct lpfc_sli_ring *pring;
21160 struct lpfc_iocbq *piocbq = NULL;
21161 unsigned long iflags = 0;
21162 char *fail_msg = NULL;
21163 uint32_t txq_cnt = 0;
21164 struct lpfc_queue *wq;
21165 int ret = 0;
21166
21167 if (phba->link_flag & LS_MDS_LOOPBACK) {
21168 /* MDS WQE are posted only to first WQ*/
21169 wq = phba->sli4_hba.hdwq[0].io_wq;
21170 if (unlikely(!wq))
21171 return 0;
21172 pring = wq->pring;
21173 } else {
21174 wq = phba->sli4_hba.els_wq;
21175 if (unlikely(!wq))
21176 return 0;
21177 pring = lpfc_phba_elsring(phba);
21178 }
21179
21180 if (unlikely(!pring) || list_empty(&pring->txq))
21181 return 0;
21182
21183 spin_lock_irqsave(&pring->ring_lock, iflags);
21184 list_for_each_entry(piocbq, &pring->txq, list) {
21185 txq_cnt++;
21186 }
21187
21188 if (txq_cnt > pring->txq_max)
21189 pring->txq_max = txq_cnt;
21190
21191 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21192
21193 while (!list_empty(&pring->txq)) {
21194 spin_lock_irqsave(&pring->ring_lock, iflags);
21195
21196 piocbq = lpfc_sli_ringtx_get(phba, pring);
21197 if (!piocbq) {
21198 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21199 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
21200 "2823 txq empty and txq_cnt is %d\n",
21201 txq_cnt);
21202 break;
21203 }
21204 txq_cnt--;
21205
21206 ret = __lpfc_sli_issue_iocb(phba, pring->ringno, piocbq, 0);
21207
21208 if (ret && ret != IOCB_BUSY) {
21209 fail_msg = " - Cannot send IO ";
21210 piocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED;
21211 }
21212 if (fail_msg) {
21213 piocbq->cmd_flag |= LPFC_DRIVER_ABORTED;
21214 /* Failed means we can't issue and need to cancel */
21215 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
21216 "2822 IOCB failed %s iotag 0x%x "
21217 "xri 0x%x %d flg x%x\n",
21218 fail_msg, piocbq->iotag,
21219 piocbq->sli4_xritag, ret,
21220 piocbq->cmd_flag);
21221 list_add_tail(&piocbq->list, &completions);
21222 fail_msg = NULL;
21223 }
21224 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21225 if (txq_cnt == 0 || ret == IOCB_BUSY)
21226 break;
21227 }
21228 /* Cancel all the IOCBs that cannot be issued */
21229 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
21230 IOERR_SLI_ABORTED);
21231
21232 return txq_cnt;
21233 }
21234
21235 /**
21236 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl.
21237 * @phba: Pointer to HBA context object.
21238 * @pwqeq: Pointer to command WQE.
21239 * @sglq: Pointer to the scatter gather queue object.
21240 *
21241 * This routine converts the bpl or bde that is in the WQE
21242 * to a sgl list for the sli4 hardware. The physical address
21243 * of the bpl/bde is converted back to a virtual address.
21244 * If the WQE contains a BPL then the list of BDE's is
21245 * converted to sli4_sge's. If the WQE contains a single
21246 * BDE then it is converted to a single sli_sge.
21247 * The WQE is still in cpu endianness so the contents of
21248 * the bpl can be used without byte swapping.
21249 *
21250 * Returns valid XRI = Success, NO_XRI = Failure.
21251 */
21252 static uint16_t
lpfc_wqe_bpl2sgl(struct lpfc_hba * phba,struct lpfc_iocbq * pwqeq,struct lpfc_sglq * sglq)21253 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq,
21254 struct lpfc_sglq *sglq)
21255 {
21256 uint16_t xritag = NO_XRI;
21257 struct ulp_bde64 *bpl = NULL;
21258 struct ulp_bde64 bde;
21259 struct sli4_sge *sgl = NULL;
21260 struct lpfc_dmabuf *dmabuf;
21261 union lpfc_wqe128 *wqe;
21262 int numBdes = 0;
21263 int i = 0;
21264 uint32_t offset = 0; /* accumulated offset in the sg request list */
21265 int inbound = 0; /* number of sg reply entries inbound from firmware */
21266 uint32_t cmd;
21267
21268 if (!pwqeq || !sglq)
21269 return xritag;
21270
21271 sgl = (struct sli4_sge *)sglq->sgl;
21272 wqe = &pwqeq->wqe;
21273 pwqeq->iocb.ulpIoTag = pwqeq->iotag;
21274
21275 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com);
21276 if (cmd == CMD_XMIT_BLS_RSP64_WQE)
21277 return sglq->sli4_xritag;
21278 numBdes = pwqeq->num_bdes;
21279 if (numBdes) {
21280 /* The addrHigh and addrLow fields within the WQE
21281 * have not been byteswapped yet so there is no
21282 * need to swap them back.
21283 */
21284 if (pwqeq->bpl_dmabuf)
21285 dmabuf = pwqeq->bpl_dmabuf;
21286 else
21287 return xritag;
21288
21289 bpl = (struct ulp_bde64 *)dmabuf->virt;
21290 if (!bpl)
21291 return xritag;
21292
21293 for (i = 0; i < numBdes; i++) {
21294 /* Should already be byte swapped. */
21295 sgl->addr_hi = bpl->addrHigh;
21296 sgl->addr_lo = bpl->addrLow;
21297
21298 sgl->word2 = le32_to_cpu(sgl->word2);
21299 if ((i+1) == numBdes)
21300 bf_set(lpfc_sli4_sge_last, sgl, 1);
21301 else
21302 bf_set(lpfc_sli4_sge_last, sgl, 0);
21303 /* swap the size field back to the cpu so we
21304 * can assign it to the sgl.
21305 */
21306 bde.tus.w = le32_to_cpu(bpl->tus.w);
21307 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
21308 /* The offsets in the sgl need to be accumulated
21309 * separately for the request and reply lists.
21310 * The request is always first, the reply follows.
21311 */
21312 switch (cmd) {
21313 case CMD_GEN_REQUEST64_WQE:
21314 /* add up the reply sg entries */
21315 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
21316 inbound++;
21317 /* first inbound? reset the offset */
21318 if (inbound == 1)
21319 offset = 0;
21320 bf_set(lpfc_sli4_sge_offset, sgl, offset);
21321 bf_set(lpfc_sli4_sge_type, sgl,
21322 LPFC_SGE_TYPE_DATA);
21323 offset += bde.tus.f.bdeSize;
21324 break;
21325 case CMD_FCP_TRSP64_WQE:
21326 bf_set(lpfc_sli4_sge_offset, sgl, 0);
21327 bf_set(lpfc_sli4_sge_type, sgl,
21328 LPFC_SGE_TYPE_DATA);
21329 break;
21330 case CMD_FCP_TSEND64_WQE:
21331 case CMD_FCP_TRECEIVE64_WQE:
21332 bf_set(lpfc_sli4_sge_type, sgl,
21333 bpl->tus.f.bdeFlags);
21334 if (i < 3)
21335 offset = 0;
21336 else
21337 offset += bde.tus.f.bdeSize;
21338 bf_set(lpfc_sli4_sge_offset, sgl, offset);
21339 break;
21340 }
21341 sgl->word2 = cpu_to_le32(sgl->word2);
21342 bpl++;
21343 sgl++;
21344 }
21345 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) {
21346 /* The addrHigh and addrLow fields of the BDE have not
21347 * been byteswapped yet so they need to be swapped
21348 * before putting them in the sgl.
21349 */
21350 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh);
21351 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow);
21352 sgl->word2 = le32_to_cpu(sgl->word2);
21353 bf_set(lpfc_sli4_sge_last, sgl, 1);
21354 sgl->word2 = cpu_to_le32(sgl->word2);
21355 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize);
21356 }
21357 return sglq->sli4_xritag;
21358 }
21359
21360 /**
21361 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE)
21362 * @phba: Pointer to HBA context object.
21363 * @qp: Pointer to HDW queue.
21364 * @pwqe: Pointer to command WQE.
21365 **/
21366 int
lpfc_sli4_issue_wqe(struct lpfc_hba * phba,struct lpfc_sli4_hdw_queue * qp,struct lpfc_iocbq * pwqe)21367 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
21368 struct lpfc_iocbq *pwqe)
21369 {
21370 union lpfc_wqe128 *wqe = &pwqe->wqe;
21371 struct lpfc_async_xchg_ctx *ctxp;
21372 struct lpfc_queue *wq;
21373 struct lpfc_sglq *sglq;
21374 struct lpfc_sli_ring *pring;
21375 unsigned long iflags;
21376 uint32_t ret = 0;
21377
21378 /* NVME_LS and NVME_LS ABTS requests. */
21379 if (pwqe->cmd_flag & LPFC_IO_NVME_LS) {
21380 pring = phba->sli4_hba.nvmels_wq->pring;
21381 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
21382 qp, wq_access);
21383 sglq = __lpfc_sli_get_els_sglq(phba, pwqe);
21384 if (!sglq) {
21385 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21386 return WQE_BUSY;
21387 }
21388 pwqe->sli4_lxritag = sglq->sli4_lxritag;
21389 pwqe->sli4_xritag = sglq->sli4_xritag;
21390 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) {
21391 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21392 return WQE_ERROR;
21393 }
21394 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
21395 pwqe->sli4_xritag);
21396 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe);
21397 if (ret) {
21398 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21399 return ret;
21400 }
21401
21402 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
21403 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21404
21405 lpfc_sli4_poll_eq(qp->hba_eq);
21406 return 0;
21407 }
21408
21409 /* NVME_FCREQ and NVME_ABTS requests */
21410 if (pwqe->cmd_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) {
21411 /* Get the IO distribution (hba_wqidx) for WQ assignment. */
21412 wq = qp->io_wq;
21413 pring = wq->pring;
21414
21415 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
21416
21417 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
21418 qp, wq_access);
21419 ret = lpfc_sli4_wq_put(wq, wqe);
21420 if (ret) {
21421 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21422 return ret;
21423 }
21424 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
21425 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21426
21427 lpfc_sli4_poll_eq(qp->hba_eq);
21428 return 0;
21429 }
21430
21431 /* NVMET requests */
21432 if (pwqe->cmd_flag & LPFC_IO_NVMET) {
21433 /* Get the IO distribution (hba_wqidx) for WQ assignment. */
21434 wq = qp->io_wq;
21435 pring = wq->pring;
21436
21437 ctxp = pwqe->context_un.axchg;
21438 sglq = ctxp->ctxbuf->sglq;
21439 if (pwqe->sli4_xritag == NO_XRI) {
21440 pwqe->sli4_lxritag = sglq->sli4_lxritag;
21441 pwqe->sli4_xritag = sglq->sli4_xritag;
21442 }
21443 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
21444 pwqe->sli4_xritag);
21445 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
21446
21447 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
21448 qp, wq_access);
21449 ret = lpfc_sli4_wq_put(wq, wqe);
21450 if (ret) {
21451 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21452 return ret;
21453 }
21454 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
21455 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21456
21457 lpfc_sli4_poll_eq(qp->hba_eq);
21458 return 0;
21459 }
21460 return WQE_ERROR;
21461 }
21462
21463 /**
21464 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort
21465 * @phba: Pointer to HBA context object.
21466 * @cmdiocb: Pointer to driver command iocb object.
21467 * @cmpl: completion function.
21468 *
21469 * Fill the appropriate fields for the abort WQE and call
21470 * internal routine lpfc_sli4_issue_wqe to send the WQE
21471 * This function is called with hbalock held and no ring_lock held.
21472 *
21473 * RETURNS 0 - SUCCESS
21474 **/
21475
21476 int
lpfc_sli4_issue_abort_iotag(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,void * cmpl)21477 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
21478 void *cmpl)
21479 {
21480 struct lpfc_vport *vport = cmdiocb->vport;
21481 struct lpfc_iocbq *abtsiocb = NULL;
21482 union lpfc_wqe128 *abtswqe;
21483 struct lpfc_io_buf *lpfc_cmd;
21484 int retval = IOCB_ERROR;
21485 u16 xritag = cmdiocb->sli4_xritag;
21486
21487 /*
21488 * The scsi command can not be in txq and it is in flight because the
21489 * pCmd is still pointing at the SCSI command we have to abort. There
21490 * is no need to search the txcmplq. Just send an abort to the FW.
21491 */
21492
21493 abtsiocb = __lpfc_sli_get_iocbq(phba);
21494 if (!abtsiocb)
21495 return WQE_NORESOURCE;
21496
21497 /* Indicate the IO is being aborted by the driver. */
21498 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED;
21499
21500 abtswqe = &abtsiocb->wqe;
21501 memset(abtswqe, 0, sizeof(*abtswqe));
21502
21503 if (!lpfc_is_link_up(phba) || (phba->link_flag & LS_EXTERNAL_LOOPBACK))
21504 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1);
21505 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG);
21506 abtswqe->abort_cmd.rsrvd5 = 0;
21507 abtswqe->abort_cmd.wqe_com.abort_tag = xritag;
21508 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag);
21509 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
21510 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0);
21511 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1);
21512 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE);
21513 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND);
21514
21515 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
21516 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx;
21517 abtsiocb->cmd_flag |= LPFC_USE_FCPWQIDX;
21518 if (cmdiocb->cmd_flag & LPFC_IO_FCP)
21519 abtsiocb->cmd_flag |= LPFC_IO_FCP;
21520 if (cmdiocb->cmd_flag & LPFC_IO_NVME)
21521 abtsiocb->cmd_flag |= LPFC_IO_NVME;
21522 if (cmdiocb->cmd_flag & LPFC_IO_FOF)
21523 abtsiocb->cmd_flag |= LPFC_IO_FOF;
21524 abtsiocb->vport = vport;
21525 abtsiocb->cmd_cmpl = cmpl;
21526
21527 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq);
21528 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb);
21529
21530 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
21531 "0359 Abort xri x%x, original iotag x%x, "
21532 "abort cmd iotag x%x retval x%x\n",
21533 xritag, cmdiocb->iotag, abtsiocb->iotag, retval);
21534
21535 if (retval) {
21536 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED;
21537 __lpfc_sli_release_iocbq(phba, abtsiocb);
21538 }
21539
21540 return retval;
21541 }
21542
21543 #ifdef LPFC_MXP_STAT
21544 /**
21545 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count
21546 * @phba: pointer to lpfc hba data structure.
21547 * @hwqid: belong to which HWQ.
21548 *
21549 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count
21550 * 15 seconds after a test case is running.
21551 *
21552 * The user should call lpfc_debugfs_multixripools_write before running a test
21553 * case to clear stat_snapshot_taken. Then the user starts a test case. During
21554 * test case is running, stat_snapshot_taken is incremented by 1 every time when
21555 * this routine is called from heartbeat timer. When stat_snapshot_taken is
21556 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken.
21557 **/
lpfc_snapshot_mxp(struct lpfc_hba * phba,u32 hwqid)21558 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid)
21559 {
21560 struct lpfc_sli4_hdw_queue *qp;
21561 struct lpfc_multixri_pool *multixri_pool;
21562 struct lpfc_pvt_pool *pvt_pool;
21563 struct lpfc_pbl_pool *pbl_pool;
21564 u32 txcmplq_cnt;
21565
21566 qp = &phba->sli4_hba.hdwq[hwqid];
21567 multixri_pool = qp->p_multixri_pool;
21568 if (!multixri_pool)
21569 return;
21570
21571 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) {
21572 pvt_pool = &qp->p_multixri_pool->pvt_pool;
21573 pbl_pool = &qp->p_multixri_pool->pbl_pool;
21574 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
21575
21576 multixri_pool->stat_pbl_count = pbl_pool->count;
21577 multixri_pool->stat_pvt_count = pvt_pool->count;
21578 multixri_pool->stat_busy_count = txcmplq_cnt;
21579 }
21580
21581 multixri_pool->stat_snapshot_taken++;
21582 }
21583 #endif
21584
21585 /**
21586 * lpfc_adjust_pvt_pool_count - Adjust private pool count
21587 * @phba: pointer to lpfc hba data structure.
21588 * @hwqid: belong to which HWQ.
21589 *
21590 * This routine moves some XRIs from private to public pool when private pool
21591 * is not busy.
21592 **/
lpfc_adjust_pvt_pool_count(struct lpfc_hba * phba,u32 hwqid)21593 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid)
21594 {
21595 struct lpfc_multixri_pool *multixri_pool;
21596 u32 io_req_count;
21597 u32 prev_io_req_count;
21598
21599 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
21600 if (!multixri_pool)
21601 return;
21602 io_req_count = multixri_pool->io_req_count;
21603 prev_io_req_count = multixri_pool->prev_io_req_count;
21604
21605 if (prev_io_req_count != io_req_count) {
21606 /* Private pool is busy */
21607 multixri_pool->prev_io_req_count = io_req_count;
21608 } else {
21609 /* Private pool is not busy.
21610 * Move XRIs from private to public pool.
21611 */
21612 lpfc_move_xri_pvt_to_pbl(phba, hwqid);
21613 }
21614 }
21615
21616 /**
21617 * lpfc_adjust_high_watermark - Adjust high watermark
21618 * @phba: pointer to lpfc hba data structure.
21619 * @hwqid: belong to which HWQ.
21620 *
21621 * This routine sets high watermark as number of outstanding XRIs,
21622 * but make sure the new value is between xri_limit/2 and xri_limit.
21623 **/
lpfc_adjust_high_watermark(struct lpfc_hba * phba,u32 hwqid)21624 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid)
21625 {
21626 u32 new_watermark;
21627 u32 watermark_max;
21628 u32 watermark_min;
21629 u32 xri_limit;
21630 u32 txcmplq_cnt;
21631 u32 abts_io_bufs;
21632 struct lpfc_multixri_pool *multixri_pool;
21633 struct lpfc_sli4_hdw_queue *qp;
21634
21635 qp = &phba->sli4_hba.hdwq[hwqid];
21636 multixri_pool = qp->p_multixri_pool;
21637 if (!multixri_pool)
21638 return;
21639 xri_limit = multixri_pool->xri_limit;
21640
21641 watermark_max = xri_limit;
21642 watermark_min = xri_limit / 2;
21643
21644 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
21645 abts_io_bufs = qp->abts_scsi_io_bufs;
21646 abts_io_bufs += qp->abts_nvme_io_bufs;
21647
21648 new_watermark = txcmplq_cnt + abts_io_bufs;
21649 new_watermark = min(watermark_max, new_watermark);
21650 new_watermark = max(watermark_min, new_watermark);
21651 multixri_pool->pvt_pool.high_watermark = new_watermark;
21652
21653 #ifdef LPFC_MXP_STAT
21654 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm,
21655 new_watermark);
21656 #endif
21657 }
21658
21659 /**
21660 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool
21661 * @phba: pointer to lpfc hba data structure.
21662 * @hwqid: belong to which HWQ.
21663 *
21664 * This routine is called from hearbeat timer when pvt_pool is idle.
21665 * All free XRIs are moved from private to public pool on hwqid with 2 steps.
21666 * The first step moves (all - low_watermark) amount of XRIs.
21667 * The second step moves the rest of XRIs.
21668 **/
lpfc_move_xri_pvt_to_pbl(struct lpfc_hba * phba,u32 hwqid)21669 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid)
21670 {
21671 struct lpfc_pbl_pool *pbl_pool;
21672 struct lpfc_pvt_pool *pvt_pool;
21673 struct lpfc_sli4_hdw_queue *qp;
21674 struct lpfc_io_buf *lpfc_ncmd;
21675 struct lpfc_io_buf *lpfc_ncmd_next;
21676 unsigned long iflag;
21677 struct list_head tmp_list;
21678 u32 tmp_count;
21679
21680 qp = &phba->sli4_hba.hdwq[hwqid];
21681 pbl_pool = &qp->p_multixri_pool->pbl_pool;
21682 pvt_pool = &qp->p_multixri_pool->pvt_pool;
21683 tmp_count = 0;
21684
21685 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool);
21686 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool);
21687
21688 if (pvt_pool->count > pvt_pool->low_watermark) {
21689 /* Step 1: move (all - low_watermark) from pvt_pool
21690 * to pbl_pool
21691 */
21692
21693 /* Move low watermark of bufs from pvt_pool to tmp_list */
21694 INIT_LIST_HEAD(&tmp_list);
21695 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
21696 &pvt_pool->list, list) {
21697 list_move_tail(&lpfc_ncmd->list, &tmp_list);
21698 tmp_count++;
21699 if (tmp_count >= pvt_pool->low_watermark)
21700 break;
21701 }
21702
21703 /* Move all bufs from pvt_pool to pbl_pool */
21704 list_splice_init(&pvt_pool->list, &pbl_pool->list);
21705
21706 /* Move all bufs from tmp_list to pvt_pool */
21707 list_splice(&tmp_list, &pvt_pool->list);
21708
21709 pbl_pool->count += (pvt_pool->count - tmp_count);
21710 pvt_pool->count = tmp_count;
21711 } else {
21712 /* Step 2: move the rest from pvt_pool to pbl_pool */
21713 list_splice_init(&pvt_pool->list, &pbl_pool->list);
21714 pbl_pool->count += pvt_pool->count;
21715 pvt_pool->count = 0;
21716 }
21717
21718 spin_unlock(&pvt_pool->lock);
21719 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
21720 }
21721
21722 /**
21723 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
21724 * @phba: pointer to lpfc hba data structure
21725 * @qp: pointer to HDW queue
21726 * @pbl_pool: specified public free XRI pool
21727 * @pvt_pool: specified private free XRI pool
21728 * @count: number of XRIs to move
21729 *
21730 * This routine tries to move some free common bufs from the specified pbl_pool
21731 * to the specified pvt_pool. It might move less than count XRIs if there's not
21732 * enough in public pool.
21733 *
21734 * Return:
21735 * true - if XRIs are successfully moved from the specified pbl_pool to the
21736 * specified pvt_pool
21737 * false - if the specified pbl_pool is empty or locked by someone else
21738 **/
21739 static bool
_lpfc_move_xri_pbl_to_pvt(struct lpfc_hba * phba,struct lpfc_sli4_hdw_queue * qp,struct lpfc_pbl_pool * pbl_pool,struct lpfc_pvt_pool * pvt_pool,u32 count)21740 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
21741 struct lpfc_pbl_pool *pbl_pool,
21742 struct lpfc_pvt_pool *pvt_pool, u32 count)
21743 {
21744 struct lpfc_io_buf *lpfc_ncmd;
21745 struct lpfc_io_buf *lpfc_ncmd_next;
21746 unsigned long iflag;
21747 int ret;
21748
21749 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag);
21750 if (ret) {
21751 if (pbl_pool->count) {
21752 /* Move a batch of XRIs from public to private pool */
21753 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool);
21754 list_for_each_entry_safe(lpfc_ncmd,
21755 lpfc_ncmd_next,
21756 &pbl_pool->list,
21757 list) {
21758 list_move_tail(&lpfc_ncmd->list,
21759 &pvt_pool->list);
21760 pvt_pool->count++;
21761 pbl_pool->count--;
21762 count--;
21763 if (count == 0)
21764 break;
21765 }
21766
21767 spin_unlock(&pvt_pool->lock);
21768 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
21769 return true;
21770 }
21771 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
21772 }
21773
21774 return false;
21775 }
21776
21777 /**
21778 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
21779 * @phba: pointer to lpfc hba data structure.
21780 * @hwqid: belong to which HWQ.
21781 * @count: number of XRIs to move
21782 *
21783 * This routine tries to find some free common bufs in one of public pools with
21784 * Round Robin method. The search always starts from local hwqid, then the next
21785 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found,
21786 * a batch of free common bufs are moved to private pool on hwqid.
21787 * It might move less than count XRIs if there's not enough in public pool.
21788 **/
lpfc_move_xri_pbl_to_pvt(struct lpfc_hba * phba,u32 hwqid,u32 count)21789 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count)
21790 {
21791 struct lpfc_multixri_pool *multixri_pool;
21792 struct lpfc_multixri_pool *next_multixri_pool;
21793 struct lpfc_pvt_pool *pvt_pool;
21794 struct lpfc_pbl_pool *pbl_pool;
21795 struct lpfc_sli4_hdw_queue *qp;
21796 u32 next_hwqid;
21797 u32 hwq_count;
21798 int ret;
21799
21800 qp = &phba->sli4_hba.hdwq[hwqid];
21801 multixri_pool = qp->p_multixri_pool;
21802 pvt_pool = &multixri_pool->pvt_pool;
21803 pbl_pool = &multixri_pool->pbl_pool;
21804
21805 /* Check if local pbl_pool is available */
21806 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count);
21807 if (ret) {
21808 #ifdef LPFC_MXP_STAT
21809 multixri_pool->local_pbl_hit_count++;
21810 #endif
21811 return;
21812 }
21813
21814 hwq_count = phba->cfg_hdw_queue;
21815
21816 /* Get the next hwqid which was found last time */
21817 next_hwqid = multixri_pool->rrb_next_hwqid;
21818
21819 do {
21820 /* Go to next hwq */
21821 next_hwqid = (next_hwqid + 1) % hwq_count;
21822
21823 next_multixri_pool =
21824 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool;
21825 pbl_pool = &next_multixri_pool->pbl_pool;
21826
21827 /* Check if the public free xri pool is available */
21828 ret = _lpfc_move_xri_pbl_to_pvt(
21829 phba, qp, pbl_pool, pvt_pool, count);
21830
21831 /* Exit while-loop if success or all hwqid are checked */
21832 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid);
21833
21834 /* Starting point for the next time */
21835 multixri_pool->rrb_next_hwqid = next_hwqid;
21836
21837 if (!ret) {
21838 /* stats: all public pools are empty*/
21839 multixri_pool->pbl_empty_count++;
21840 }
21841
21842 #ifdef LPFC_MXP_STAT
21843 if (ret) {
21844 if (next_hwqid == hwqid)
21845 multixri_pool->local_pbl_hit_count++;
21846 else
21847 multixri_pool->other_pbl_hit_count++;
21848 }
21849 #endif
21850 }
21851
21852 /**
21853 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark
21854 * @phba: pointer to lpfc hba data structure.
21855 * @hwqid: belong to which HWQ.
21856 *
21857 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than
21858 * low watermark.
21859 **/
lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba * phba,u32 hwqid)21860 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid)
21861 {
21862 struct lpfc_multixri_pool *multixri_pool;
21863 struct lpfc_pvt_pool *pvt_pool;
21864
21865 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
21866 pvt_pool = &multixri_pool->pvt_pool;
21867
21868 if (pvt_pool->count < pvt_pool->low_watermark)
21869 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
21870 }
21871
21872 /**
21873 * lpfc_release_io_buf - Return one IO buf back to free pool
21874 * @phba: pointer to lpfc hba data structure.
21875 * @lpfc_ncmd: IO buf to be returned.
21876 * @qp: belong to which HWQ.
21877 *
21878 * This routine returns one IO buf back to free pool. If this is an urgent IO,
21879 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1,
21880 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and
21881 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to
21882 * lpfc_io_buf_list_put.
21883 **/
lpfc_release_io_buf(struct lpfc_hba * phba,struct lpfc_io_buf * lpfc_ncmd,struct lpfc_sli4_hdw_queue * qp)21884 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd,
21885 struct lpfc_sli4_hdw_queue *qp)
21886 {
21887 unsigned long iflag;
21888 struct lpfc_pbl_pool *pbl_pool;
21889 struct lpfc_pvt_pool *pvt_pool;
21890 struct lpfc_epd_pool *epd_pool;
21891 u32 txcmplq_cnt;
21892 u32 xri_owned;
21893 u32 xri_limit;
21894 u32 abts_io_bufs;
21895
21896 /* MUST zero fields if buffer is reused by another protocol */
21897 lpfc_ncmd->nvmeCmd = NULL;
21898 lpfc_ncmd->cur_iocbq.cmd_cmpl = NULL;
21899
21900 if (phba->cfg_xpsgl && !phba->nvmet_support &&
21901 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list))
21902 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
21903
21904 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list))
21905 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
21906
21907 if (phba->cfg_xri_rebalancing) {
21908 if (lpfc_ncmd->expedite) {
21909 /* Return to expedite pool */
21910 epd_pool = &phba->epd_pool;
21911 spin_lock_irqsave(&epd_pool->lock, iflag);
21912 list_add_tail(&lpfc_ncmd->list, &epd_pool->list);
21913 epd_pool->count++;
21914 spin_unlock_irqrestore(&epd_pool->lock, iflag);
21915 return;
21916 }
21917
21918 /* Avoid invalid access if an IO sneaks in and is being rejected
21919 * just _after_ xri pools are destroyed in lpfc_offline.
21920 * Nothing much can be done at this point.
21921 */
21922 if (!qp->p_multixri_pool)
21923 return;
21924
21925 pbl_pool = &qp->p_multixri_pool->pbl_pool;
21926 pvt_pool = &qp->p_multixri_pool->pvt_pool;
21927
21928 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
21929 abts_io_bufs = qp->abts_scsi_io_bufs;
21930 abts_io_bufs += qp->abts_nvme_io_bufs;
21931
21932 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs;
21933 xri_limit = qp->p_multixri_pool->xri_limit;
21934
21935 #ifdef LPFC_MXP_STAT
21936 if (xri_owned <= xri_limit)
21937 qp->p_multixri_pool->below_limit_count++;
21938 else
21939 qp->p_multixri_pool->above_limit_count++;
21940 #endif
21941
21942 /* XRI goes to either public or private free xri pool
21943 * based on watermark and xri_limit
21944 */
21945 if ((pvt_pool->count < pvt_pool->low_watermark) ||
21946 (xri_owned < xri_limit &&
21947 pvt_pool->count < pvt_pool->high_watermark)) {
21948 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag,
21949 qp, free_pvt_pool);
21950 list_add_tail(&lpfc_ncmd->list,
21951 &pvt_pool->list);
21952 pvt_pool->count++;
21953 spin_unlock_irqrestore(&pvt_pool->lock, iflag);
21954 } else {
21955 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag,
21956 qp, free_pub_pool);
21957 list_add_tail(&lpfc_ncmd->list,
21958 &pbl_pool->list);
21959 pbl_pool->count++;
21960 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
21961 }
21962 } else {
21963 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag,
21964 qp, free_xri);
21965 list_add_tail(&lpfc_ncmd->list,
21966 &qp->lpfc_io_buf_list_put);
21967 qp->put_io_bufs++;
21968 spin_unlock_irqrestore(&qp->io_buf_list_put_lock,
21969 iflag);
21970 }
21971 }
21972
21973 /**
21974 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool
21975 * @phba: pointer to lpfc hba data structure.
21976 * @qp: pointer to HDW queue
21977 * @pvt_pool: pointer to private pool data structure.
21978 * @ndlp: pointer to lpfc nodelist data structure.
21979 *
21980 * This routine tries to get one free IO buf from private pool.
21981 *
21982 * Return:
21983 * pointer to one free IO buf - if private pool is not empty
21984 * NULL - if private pool is empty
21985 **/
21986 static struct lpfc_io_buf *
lpfc_get_io_buf_from_private_pool(struct lpfc_hba * phba,struct lpfc_sli4_hdw_queue * qp,struct lpfc_pvt_pool * pvt_pool,struct lpfc_nodelist * ndlp)21987 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba,
21988 struct lpfc_sli4_hdw_queue *qp,
21989 struct lpfc_pvt_pool *pvt_pool,
21990 struct lpfc_nodelist *ndlp)
21991 {
21992 struct lpfc_io_buf *lpfc_ncmd;
21993 struct lpfc_io_buf *lpfc_ncmd_next;
21994 unsigned long iflag;
21995
21996 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool);
21997 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
21998 &pvt_pool->list, list) {
21999 if (lpfc_test_rrq_active(
22000 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag))
22001 continue;
22002 list_del(&lpfc_ncmd->list);
22003 pvt_pool->count--;
22004 spin_unlock_irqrestore(&pvt_pool->lock, iflag);
22005 return lpfc_ncmd;
22006 }
22007 spin_unlock_irqrestore(&pvt_pool->lock, iflag);
22008
22009 return NULL;
22010 }
22011
22012 /**
22013 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool
22014 * @phba: pointer to lpfc hba data structure.
22015 *
22016 * This routine tries to get one free IO buf from expedite pool.
22017 *
22018 * Return:
22019 * pointer to one free IO buf - if expedite pool is not empty
22020 * NULL - if expedite pool is empty
22021 **/
22022 static struct lpfc_io_buf *
lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba * phba)22023 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba)
22024 {
22025 struct lpfc_io_buf *lpfc_ncmd = NULL, *iter;
22026 struct lpfc_io_buf *lpfc_ncmd_next;
22027 unsigned long iflag;
22028 struct lpfc_epd_pool *epd_pool;
22029
22030 epd_pool = &phba->epd_pool;
22031
22032 spin_lock_irqsave(&epd_pool->lock, iflag);
22033 if (epd_pool->count > 0) {
22034 list_for_each_entry_safe(iter, lpfc_ncmd_next,
22035 &epd_pool->list, list) {
22036 list_del(&iter->list);
22037 epd_pool->count--;
22038 lpfc_ncmd = iter;
22039 break;
22040 }
22041 }
22042 spin_unlock_irqrestore(&epd_pool->lock, iflag);
22043
22044 return lpfc_ncmd;
22045 }
22046
22047 /**
22048 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs
22049 * @phba: pointer to lpfc hba data structure.
22050 * @ndlp: pointer to lpfc nodelist data structure.
22051 * @hwqid: belong to which HWQ
22052 * @expedite: 1 means this request is urgent.
22053 *
22054 * This routine will do the following actions and then return a pointer to
22055 * one free IO buf.
22056 *
22057 * 1. If private free xri count is empty, move some XRIs from public to
22058 * private pool.
22059 * 2. Get one XRI from private free xri pool.
22060 * 3. If we fail to get one from pvt_pool and this is an expedite request,
22061 * get one free xri from expedite pool.
22062 *
22063 * Note: ndlp is only used on SCSI side for RRQ testing.
22064 * The caller should pass NULL for ndlp on NVME side.
22065 *
22066 * Return:
22067 * pointer to one free IO buf - if private pool is not empty
22068 * NULL - if private pool is empty
22069 **/
22070 static struct lpfc_io_buf *
lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,int hwqid,int expedite)22071 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba,
22072 struct lpfc_nodelist *ndlp,
22073 int hwqid, int expedite)
22074 {
22075 struct lpfc_sli4_hdw_queue *qp;
22076 struct lpfc_multixri_pool *multixri_pool;
22077 struct lpfc_pvt_pool *pvt_pool;
22078 struct lpfc_io_buf *lpfc_ncmd;
22079
22080 qp = &phba->sli4_hba.hdwq[hwqid];
22081 lpfc_ncmd = NULL;
22082 if (!qp) {
22083 lpfc_printf_log(phba, KERN_INFO,
22084 LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
22085 "5556 NULL qp for hwqid x%x\n", hwqid);
22086 return lpfc_ncmd;
22087 }
22088 multixri_pool = qp->p_multixri_pool;
22089 if (!multixri_pool) {
22090 lpfc_printf_log(phba, KERN_INFO,
22091 LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
22092 "5557 NULL multixri for hwqid x%x\n", hwqid);
22093 return lpfc_ncmd;
22094 }
22095 pvt_pool = &multixri_pool->pvt_pool;
22096 if (!pvt_pool) {
22097 lpfc_printf_log(phba, KERN_INFO,
22098 LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
22099 "5558 NULL pvt_pool for hwqid x%x\n", hwqid);
22100 return lpfc_ncmd;
22101 }
22102 multixri_pool->io_req_count++;
22103
22104 /* If pvt_pool is empty, move some XRIs from public to private pool */
22105 if (pvt_pool->count == 0)
22106 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
22107
22108 /* Get one XRI from private free xri pool */
22109 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp);
22110
22111 if (lpfc_ncmd) {
22112 lpfc_ncmd->hdwq = qp;
22113 lpfc_ncmd->hdwq_no = hwqid;
22114 } else if (expedite) {
22115 /* If we fail to get one from pvt_pool and this is an expedite
22116 * request, get one free xri from expedite pool.
22117 */
22118 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba);
22119 }
22120
22121 return lpfc_ncmd;
22122 }
22123
22124 static inline struct lpfc_io_buf *
lpfc_io_buf(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,int idx)22125 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx)
22126 {
22127 struct lpfc_sli4_hdw_queue *qp;
22128 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next;
22129
22130 qp = &phba->sli4_hba.hdwq[idx];
22131 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next,
22132 &qp->lpfc_io_buf_list_get, list) {
22133 if (lpfc_test_rrq_active(phba, ndlp,
22134 lpfc_cmd->cur_iocbq.sli4_lxritag))
22135 continue;
22136
22137 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED)
22138 continue;
22139
22140 list_del_init(&lpfc_cmd->list);
22141 qp->get_io_bufs--;
22142 lpfc_cmd->hdwq = qp;
22143 lpfc_cmd->hdwq_no = idx;
22144 return lpfc_cmd;
22145 }
22146 return NULL;
22147 }
22148
22149 /**
22150 * lpfc_get_io_buf - Get one IO buffer from free pool
22151 * @phba: The HBA for which this call is being executed.
22152 * @ndlp: pointer to lpfc nodelist data structure.
22153 * @hwqid: belong to which HWQ
22154 * @expedite: 1 means this request is urgent.
22155 *
22156 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1,
22157 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes
22158 * a IO buffer from head of @hdwq io_buf_list and returns to caller.
22159 *
22160 * Note: ndlp is only used on SCSI side for RRQ testing.
22161 * The caller should pass NULL for ndlp on NVME side.
22162 *
22163 * Return codes:
22164 * NULL - Error
22165 * Pointer to lpfc_io_buf - Success
22166 **/
lpfc_get_io_buf(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,u32 hwqid,int expedite)22167 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba,
22168 struct lpfc_nodelist *ndlp,
22169 u32 hwqid, int expedite)
22170 {
22171 struct lpfc_sli4_hdw_queue *qp;
22172 unsigned long iflag;
22173 struct lpfc_io_buf *lpfc_cmd;
22174
22175 qp = &phba->sli4_hba.hdwq[hwqid];
22176 lpfc_cmd = NULL;
22177 if (!qp) {
22178 lpfc_printf_log(phba, KERN_WARNING,
22179 LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
22180 "5555 NULL qp for hwqid x%x\n", hwqid);
22181 return lpfc_cmd;
22182 }
22183
22184 if (phba->cfg_xri_rebalancing)
22185 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools(
22186 phba, ndlp, hwqid, expedite);
22187 else {
22188 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag,
22189 qp, alloc_xri_get);
22190 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite)
22191 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
22192 if (!lpfc_cmd) {
22193 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock,
22194 qp, alloc_xri_put);
22195 list_splice(&qp->lpfc_io_buf_list_put,
22196 &qp->lpfc_io_buf_list_get);
22197 qp->get_io_bufs += qp->put_io_bufs;
22198 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
22199 qp->put_io_bufs = 0;
22200 spin_unlock(&qp->io_buf_list_put_lock);
22201 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT ||
22202 expedite)
22203 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
22204 }
22205 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag);
22206 }
22207
22208 return lpfc_cmd;
22209 }
22210
22211 /**
22212 * lpfc_read_object - Retrieve object data from HBA
22213 * @phba: The HBA for which this call is being executed.
22214 * @rdobject: Pathname of object data we want to read.
22215 * @datap: Pointer to where data will be copied to.
22216 * @datasz: size of data area
22217 *
22218 * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less.
22219 * The data will be truncated if datasz is not large enough.
22220 * Version 1 is not supported with Embedded mbox cmd, so we must use version 0.
22221 * Returns the actual bytes read from the object.
22222 *
22223 * This routine is hard coded to use a poll completion. Unlike other
22224 * sli4_config mailboxes, it uses lpfc_mbuf memory which is not
22225 * cleaned up in lpfc_sli4_cmd_mbox_free. If this routine is modified
22226 * to use interrupt-based completions, code is needed to fully cleanup
22227 * the memory.
22228 */
22229 int
lpfc_read_object(struct lpfc_hba * phba,char * rdobject,uint32_t * datap,uint32_t datasz)22230 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap,
22231 uint32_t datasz)
22232 {
22233 struct lpfc_mbx_read_object *read_object;
22234 LPFC_MBOXQ_t *mbox;
22235 int rc, length, eof, j, byte_cnt = 0;
22236 uint32_t shdr_status, shdr_add_status;
22237 union lpfc_sli4_cfg_shdr *shdr;
22238 struct lpfc_dmabuf *pcmd;
22239 u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0};
22240
22241 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
22242 if (!mbox)
22243 return -ENOMEM;
22244 length = (sizeof(struct lpfc_mbx_read_object) -
22245 sizeof(struct lpfc_sli4_cfg_mhdr));
22246 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
22247 LPFC_MBOX_OPCODE_READ_OBJECT,
22248 length, LPFC_SLI4_MBX_EMBED);
22249 read_object = &mbox->u.mqe.un.read_object;
22250 shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr;
22251
22252 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0);
22253 bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz);
22254 read_object->u.request.rd_object_offset = 0;
22255 read_object->u.request.rd_object_cnt = 1;
22256
22257 memset((void *)read_object->u.request.rd_object_name, 0,
22258 LPFC_OBJ_NAME_SZ);
22259 scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject);
22260 for (j = 0; j < strlen(rdobject); j++)
22261 read_object->u.request.rd_object_name[j] =
22262 cpu_to_le32(rd_object_name[j]);
22263
22264 pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL);
22265 if (pcmd)
22266 pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys);
22267 if (!pcmd || !pcmd->virt) {
22268 kfree(pcmd);
22269 mempool_free(mbox, phba->mbox_mem_pool);
22270 return -ENOMEM;
22271 }
22272 memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE);
22273 read_object->u.request.rd_object_hbuf[0].pa_lo =
22274 putPaddrLow(pcmd->phys);
22275 read_object->u.request.rd_object_hbuf[0].pa_hi =
22276 putPaddrHigh(pcmd->phys);
22277 read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE;
22278
22279 mbox->vport = phba->pport;
22280 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
22281 mbox->ctx_ndlp = NULL;
22282
22283 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
22284 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
22285 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
22286
22287 if (shdr_status == STATUS_FAILED &&
22288 shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) {
22289 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT,
22290 "4674 No port cfg file in FW.\n");
22291 byte_cnt = -ENOENT;
22292 } else if (shdr_status || shdr_add_status || rc) {
22293 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT,
22294 "2625 READ_OBJECT mailbox failed with "
22295 "status x%x add_status x%x, mbx status x%x\n",
22296 shdr_status, shdr_add_status, rc);
22297 byte_cnt = -ENXIO;
22298 } else {
22299 /* Success */
22300 length = read_object->u.response.rd_object_actual_rlen;
22301 eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response);
22302 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT,
22303 "2626 READ_OBJECT Success len %d:%d, EOF %d\n",
22304 length, datasz, eof);
22305
22306 /* Detect the port config file exists but is empty */
22307 if (!length && eof) {
22308 byte_cnt = 0;
22309 goto exit;
22310 }
22311
22312 byte_cnt = length;
22313 lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt);
22314 }
22315
22316 exit:
22317 /* This is an embedded SLI4 mailbox with an external buffer allocated.
22318 * Free the pcmd and then cleanup with the correct routine.
22319 */
22320 lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys);
22321 kfree(pcmd);
22322 lpfc_sli4_mbox_cmd_free(phba, mbox);
22323 return byte_cnt;
22324 }
22325
22326 /**
22327 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool
22328 * @phba: The HBA for which this call is being executed.
22329 * @lpfc_buf: IO buf structure to append the SGL chunk
22330 *
22331 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool,
22332 * and will allocate an SGL chunk if the pool is empty.
22333 *
22334 * Return codes:
22335 * NULL - Error
22336 * Pointer to sli4_hybrid_sgl - Success
22337 **/
22338 struct sli4_hybrid_sgl *
lpfc_get_sgl_per_hdwq(struct lpfc_hba * phba,struct lpfc_io_buf * lpfc_buf)22339 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
22340 {
22341 struct sli4_hybrid_sgl *list_entry = NULL;
22342 struct sli4_hybrid_sgl *tmp = NULL;
22343 struct sli4_hybrid_sgl *allocated_sgl = NULL;
22344 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
22345 struct list_head *buf_list = &hdwq->sgl_list;
22346 unsigned long iflags;
22347
22348 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22349
22350 if (likely(!list_empty(buf_list))) {
22351 /* break off 1 chunk from the sgl_list */
22352 list_for_each_entry_safe(list_entry, tmp,
22353 buf_list, list_node) {
22354 list_move_tail(&list_entry->list_node,
22355 &lpfc_buf->dma_sgl_xtra_list);
22356 break;
22357 }
22358 } else {
22359 /* allocate more */
22360 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22361 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
22362 cpu_to_node(hdwq->io_wq->chann));
22363 if (!tmp) {
22364 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
22365 "8353 error kmalloc memory for HDWQ "
22366 "%d %s\n",
22367 lpfc_buf->hdwq_no, __func__);
22368 return NULL;
22369 }
22370
22371 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool,
22372 GFP_ATOMIC, &tmp->dma_phys_sgl);
22373 if (!tmp->dma_sgl) {
22374 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
22375 "8354 error pool_alloc memory for HDWQ "
22376 "%d %s\n",
22377 lpfc_buf->hdwq_no, __func__);
22378 kfree(tmp);
22379 return NULL;
22380 }
22381
22382 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22383 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list);
22384 }
22385
22386 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list,
22387 struct sli4_hybrid_sgl,
22388 list_node);
22389
22390 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22391
22392 return allocated_sgl;
22393 }
22394
22395 /**
22396 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool
22397 * @phba: The HBA for which this call is being executed.
22398 * @lpfc_buf: IO buf structure with the SGL chunk
22399 *
22400 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool.
22401 *
22402 * Return codes:
22403 * 0 - Success
22404 * -EINVAL - Error
22405 **/
22406 int
lpfc_put_sgl_per_hdwq(struct lpfc_hba * phba,struct lpfc_io_buf * lpfc_buf)22407 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
22408 {
22409 int rc = 0;
22410 struct sli4_hybrid_sgl *list_entry = NULL;
22411 struct sli4_hybrid_sgl *tmp = NULL;
22412 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
22413 struct list_head *buf_list = &hdwq->sgl_list;
22414 unsigned long iflags;
22415
22416 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22417
22418 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) {
22419 list_for_each_entry_safe(list_entry, tmp,
22420 &lpfc_buf->dma_sgl_xtra_list,
22421 list_node) {
22422 list_move_tail(&list_entry->list_node,
22423 buf_list);
22424 }
22425 } else {
22426 rc = -EINVAL;
22427 }
22428
22429 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22430 return rc;
22431 }
22432
22433 /**
22434 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool
22435 * @phba: phba object
22436 * @hdwq: hdwq to cleanup sgl buff resources on
22437 *
22438 * This routine frees all SGL chunks of hdwq SGL chunk pool.
22439 *
22440 * Return codes:
22441 * None
22442 **/
22443 void
lpfc_free_sgl_per_hdwq(struct lpfc_hba * phba,struct lpfc_sli4_hdw_queue * hdwq)22444 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba,
22445 struct lpfc_sli4_hdw_queue *hdwq)
22446 {
22447 struct list_head *buf_list = &hdwq->sgl_list;
22448 struct sli4_hybrid_sgl *list_entry = NULL;
22449 struct sli4_hybrid_sgl *tmp = NULL;
22450 unsigned long iflags;
22451
22452 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22453
22454 /* Free sgl pool */
22455 list_for_each_entry_safe(list_entry, tmp,
22456 buf_list, list_node) {
22457 list_del(&list_entry->list_node);
22458 dma_pool_free(phba->lpfc_sg_dma_buf_pool,
22459 list_entry->dma_sgl,
22460 list_entry->dma_phys_sgl);
22461 kfree(list_entry);
22462 }
22463
22464 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22465 }
22466
22467 /**
22468 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq
22469 * @phba: The HBA for which this call is being executed.
22470 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer
22471 *
22472 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool,
22473 * and will allocate an CMD/RSP buffer if the pool is empty.
22474 *
22475 * Return codes:
22476 * NULL - Error
22477 * Pointer to fcp_cmd_rsp_buf - Success
22478 **/
22479 struct fcp_cmd_rsp_buf *
lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba * phba,struct lpfc_io_buf * lpfc_buf)22480 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
22481 struct lpfc_io_buf *lpfc_buf)
22482 {
22483 struct fcp_cmd_rsp_buf *list_entry = NULL;
22484 struct fcp_cmd_rsp_buf *tmp = NULL;
22485 struct fcp_cmd_rsp_buf *allocated_buf = NULL;
22486 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
22487 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
22488 unsigned long iflags;
22489
22490 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22491
22492 if (likely(!list_empty(buf_list))) {
22493 /* break off 1 chunk from the list */
22494 list_for_each_entry_safe(list_entry, tmp,
22495 buf_list,
22496 list_node) {
22497 list_move_tail(&list_entry->list_node,
22498 &lpfc_buf->dma_cmd_rsp_list);
22499 break;
22500 }
22501 } else {
22502 /* allocate more */
22503 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22504 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
22505 cpu_to_node(hdwq->io_wq->chann));
22506 if (!tmp) {
22507 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
22508 "8355 error kmalloc memory for HDWQ "
22509 "%d %s\n",
22510 lpfc_buf->hdwq_no, __func__);
22511 return NULL;
22512 }
22513
22514 tmp->fcp_cmnd = dma_pool_zalloc(phba->lpfc_cmd_rsp_buf_pool,
22515 GFP_ATOMIC,
22516 &tmp->fcp_cmd_rsp_dma_handle);
22517
22518 if (!tmp->fcp_cmnd) {
22519 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
22520 "8356 error pool_alloc memory for HDWQ "
22521 "%d %s\n",
22522 lpfc_buf->hdwq_no, __func__);
22523 kfree(tmp);
22524 return NULL;
22525 }
22526
22527 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd +
22528 sizeof(struct fcp_cmnd32));
22529
22530 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22531 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list);
22532 }
22533
22534 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list,
22535 struct fcp_cmd_rsp_buf,
22536 list_node);
22537
22538 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22539
22540 return allocated_buf;
22541 }
22542
22543 /**
22544 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool
22545 * @phba: The HBA for which this call is being executed.
22546 * @lpfc_buf: IO buf structure with the CMD/RSP buf
22547 *
22548 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool.
22549 *
22550 * Return codes:
22551 * 0 - Success
22552 * -EINVAL - Error
22553 **/
22554 int
lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba * phba,struct lpfc_io_buf * lpfc_buf)22555 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
22556 struct lpfc_io_buf *lpfc_buf)
22557 {
22558 int rc = 0;
22559 struct fcp_cmd_rsp_buf *list_entry = NULL;
22560 struct fcp_cmd_rsp_buf *tmp = NULL;
22561 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
22562 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
22563 unsigned long iflags;
22564
22565 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22566
22567 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) {
22568 list_for_each_entry_safe(list_entry, tmp,
22569 &lpfc_buf->dma_cmd_rsp_list,
22570 list_node) {
22571 list_move_tail(&list_entry->list_node,
22572 buf_list);
22573 }
22574 } else {
22575 rc = -EINVAL;
22576 }
22577
22578 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22579 return rc;
22580 }
22581
22582 /**
22583 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool
22584 * @phba: phba object
22585 * @hdwq: hdwq to cleanup cmd rsp buff resources on
22586 *
22587 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool.
22588 *
22589 * Return codes:
22590 * None
22591 **/
22592 void
lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba * phba,struct lpfc_sli4_hdw_queue * hdwq)22593 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
22594 struct lpfc_sli4_hdw_queue *hdwq)
22595 {
22596 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
22597 struct fcp_cmd_rsp_buf *list_entry = NULL;
22598 struct fcp_cmd_rsp_buf *tmp = NULL;
22599 unsigned long iflags;
22600
22601 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22602
22603 /* Free cmd_rsp buf pool */
22604 list_for_each_entry_safe(list_entry, tmp,
22605 buf_list,
22606 list_node) {
22607 list_del(&list_entry->list_node);
22608 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool,
22609 list_entry->fcp_cmnd,
22610 list_entry->fcp_cmd_rsp_dma_handle);
22611 kfree(list_entry);
22612 }
22613
22614 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22615 }
22616
22617 /**
22618 * lpfc_sli_prep_wqe - Prepare WQE for the command to be posted
22619 * @phba: phba object
22620 * @job: job entry of the command to be posted.
22621 *
22622 * Fill the common fields of the wqe for each of the command.
22623 *
22624 * Return codes:
22625 * None
22626 **/
22627 void
lpfc_sli_prep_wqe(struct lpfc_hba * phba,struct lpfc_iocbq * job)22628 lpfc_sli_prep_wqe(struct lpfc_hba *phba, struct lpfc_iocbq *job)
22629 {
22630 u8 cmnd;
22631 u32 *pcmd;
22632 u32 if_type = 0;
22633 u32 abort_tag;
22634 bool fip;
22635 struct lpfc_nodelist *ndlp = NULL;
22636 union lpfc_wqe128 *wqe = &job->wqe;
22637 u8 command_type = ELS_COMMAND_NON_FIP;
22638
22639 fip = test_bit(HBA_FIP_SUPPORT, &phba->hba_flag);
22640 /* The fcp commands will set command type */
22641 if (job->cmd_flag & LPFC_IO_FCP)
22642 command_type = FCP_COMMAND;
22643 else if (fip && (job->cmd_flag & LPFC_FIP_ELS_ID_MASK))
22644 command_type = ELS_COMMAND_FIP;
22645 else
22646 command_type = ELS_COMMAND_NON_FIP;
22647
22648 abort_tag = job->iotag;
22649 cmnd = bf_get(wqe_cmnd, &wqe->els_req.wqe_com);
22650
22651 switch (cmnd) {
22652 case CMD_ELS_REQUEST64_WQE:
22653 ndlp = job->ndlp;
22654
22655 if_type = bf_get(lpfc_sli_intf_if_type,
22656 &phba->sli4_hba.sli_intf);
22657 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
22658 pcmd = (u32 *)job->cmd_dmabuf->virt;
22659 if (pcmd && (*pcmd == ELS_CMD_FLOGI ||
22660 *pcmd == ELS_CMD_SCR ||
22661 *pcmd == ELS_CMD_RDF ||
22662 *pcmd == ELS_CMD_EDC ||
22663 *pcmd == ELS_CMD_RSCN_XMT ||
22664 *pcmd == ELS_CMD_FDISC ||
22665 *pcmd == ELS_CMD_LOGO ||
22666 *pcmd == ELS_CMD_QFPA ||
22667 *pcmd == ELS_CMD_UVEM ||
22668 *pcmd == ELS_CMD_PLOGI)) {
22669 bf_set(els_req64_sp, &wqe->els_req, 1);
22670 bf_set(els_req64_sid, &wqe->els_req,
22671 job->vport->fc_myDID);
22672
22673 if ((*pcmd == ELS_CMD_FLOGI) &&
22674 !(phba->fc_topology ==
22675 LPFC_TOPOLOGY_LOOP))
22676 bf_set(els_req64_sid, &wqe->els_req, 0);
22677
22678 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1);
22679 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
22680 phba->vpi_ids[job->vport->vpi]);
22681 } else if (pcmd) {
22682 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0);
22683 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
22684 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
22685 }
22686 }
22687
22688 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com,
22689 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
22690
22691 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1);
22692 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ);
22693 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1);
22694 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE);
22695 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0);
22696 break;
22697 case CMD_XMIT_ELS_RSP64_WQE:
22698 ndlp = job->ndlp;
22699
22700 /* word4 */
22701 wqe->xmit_els_rsp.word4 = 0;
22702
22703 if_type = bf_get(lpfc_sli_intf_if_type,
22704 &phba->sli4_hba.sli_intf);
22705 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
22706 if (test_bit(FC_PT2PT, &job->vport->fc_flag)) {
22707 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
22708 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
22709 job->vport->fc_myDID);
22710 if (job->vport->fc_myDID == Fabric_DID) {
22711 bf_set(wqe_els_did,
22712 &wqe->xmit_els_rsp.wqe_dest, 0);
22713 }
22714 }
22715 }
22716
22717 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1);
22718 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE);
22719 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1);
22720 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com,
22721 LPFC_WQE_LENLOC_WORD3);
22722 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0);
22723
22724 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
22725 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
22726 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
22727 job->vport->fc_myDID);
22728 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1);
22729 }
22730
22731 if (phba->sli_rev == LPFC_SLI_REV4) {
22732 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp,
22733 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
22734
22735 if (bf_get(wqe_ct, &wqe->xmit_els_rsp.wqe_com))
22736 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
22737 phba->vpi_ids[job->vport->vpi]);
22738 }
22739 command_type = OTHER_COMMAND;
22740 break;
22741 case CMD_GEN_REQUEST64_WQE:
22742 /* Word 10 */
22743 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1);
22744 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ);
22745 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1);
22746 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE);
22747 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0);
22748 command_type = OTHER_COMMAND;
22749 break;
22750 case CMD_XMIT_SEQUENCE64_WQE:
22751 if (phba->link_flag & LS_LOOPBACK_MODE)
22752 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1);
22753
22754 wqe->xmit_sequence.rsvd3 = 0;
22755 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
22756 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
22757 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com,
22758 LPFC_WQE_IOD_WRITE);
22759 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
22760 LPFC_WQE_LENLOC_WORD12);
22761 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
22762 command_type = OTHER_COMMAND;
22763 break;
22764 case CMD_XMIT_BLS_RSP64_WQE:
22765 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff);
22766 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1);
22767 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1);
22768 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com,
22769 phba->vpi_ids[phba->pport->vpi]);
22770 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1);
22771 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com,
22772 LPFC_WQE_LENLOC_NONE);
22773 /* Overwrite the pre-set comnd type with OTHER_COMMAND */
22774 command_type = OTHER_COMMAND;
22775 break;
22776 case CMD_FCP_ICMND64_WQE: /* task mgmt commands */
22777 case CMD_ABORT_XRI_WQE: /* abort iotag */
22778 case CMD_SEND_FRAME: /* mds loopback */
22779 /* cases already formatted for sli4 wqe - no chgs necessary */
22780 return;
22781 default:
22782 dump_stack();
22783 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
22784 "6207 Invalid command 0x%x\n",
22785 cmnd);
22786 break;
22787 }
22788
22789 wqe->generic.wqe_com.abort_tag = abort_tag;
22790 bf_set(wqe_reqtag, &wqe->generic.wqe_com, job->iotag);
22791 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type);
22792 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
22793 }
22794