xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/TargetRegisterInfo.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //==- TargetRegisterInfo.cpp - Target Register Information Implementation --==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the TargetRegisterInfo interface.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetRegisterInfo.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/BinaryFormat/Dwarf.h"
20 #include "llvm/CodeGen/LiveInterval.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/TargetFrameLowering.h"
25 #include "llvm/CodeGen/TargetInstrInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/CodeGen/VirtRegMap.h"
28 #include "llvm/CodeGenTypes/MachineValueType.h"
29 #include "llvm/Config/llvm-config.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/DebugInfoMetadata.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/MC/MCRegisterInfo.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Compiler.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/Printable.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <cassert>
41 #include <utility>
42 
43 #define DEBUG_TYPE "target-reg-info"
44 
45 using namespace llvm;
46 
47 static cl::opt<unsigned>
48     HugeSizeForSplit("huge-size-for-split", cl::Hidden,
49                      cl::desc("A threshold of live range size which may cause "
50                               "high compile time cost in global splitting."),
51                      cl::init(5000));
52 
TargetRegisterInfo(const TargetRegisterInfoDesc * ID,regclass_iterator RCB,regclass_iterator RCE,const char * const * SRINames,const SubRegCoveredBits * SubIdxRanges,const LaneBitmask * SRILaneMasks,LaneBitmask SRICoveringLanes,const RegClassInfo * const RCIs,const MVT::SimpleValueType * const RCVTLists,unsigned Mode)53 TargetRegisterInfo::TargetRegisterInfo(
54     const TargetRegisterInfoDesc *ID, regclass_iterator RCB,
55     regclass_iterator RCE, const char *const *SRINames,
56     const SubRegCoveredBits *SubIdxRanges, const LaneBitmask *SRILaneMasks,
57     LaneBitmask SRICoveringLanes, const RegClassInfo *const RCIs,
58     const MVT::SimpleValueType *const RCVTLists, unsigned Mode)
59     : InfoDesc(ID), SubRegIndexNames(SRINames), SubRegIdxRanges(SubIdxRanges),
60       SubRegIndexLaneMasks(SRILaneMasks), RegClassBegin(RCB), RegClassEnd(RCE),
61       CoveringLanes(SRICoveringLanes), RCInfos(RCIs), RCVTLists(RCVTLists),
62       HwMode(Mode) {}
63 
64 TargetRegisterInfo::~TargetRegisterInfo() = default;
65 
shouldRegionSplitForVirtReg(const MachineFunction & MF,const LiveInterval & VirtReg) const66 bool TargetRegisterInfo::shouldRegionSplitForVirtReg(
67     const MachineFunction &MF, const LiveInterval &VirtReg) const {
68   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
69   const MachineRegisterInfo &MRI = MF.getRegInfo();
70   MachineInstr *MI = MRI.getUniqueVRegDef(VirtReg.reg());
71   if (MI && TII->isTriviallyReMaterializable(*MI) &&
72       VirtReg.size() > HugeSizeForSplit)
73     return false;
74   return true;
75 }
76 
markSuperRegs(BitVector & RegisterSet,MCRegister Reg) const77 void TargetRegisterInfo::markSuperRegs(BitVector &RegisterSet,
78                                        MCRegister Reg) const {
79   for (MCPhysReg SR : superregs_inclusive(Reg))
80     RegisterSet.set(SR);
81 }
82 
checkAllSuperRegsMarked(const BitVector & RegisterSet,ArrayRef<MCPhysReg> Exceptions) const83 bool TargetRegisterInfo::checkAllSuperRegsMarked(const BitVector &RegisterSet,
84     ArrayRef<MCPhysReg> Exceptions) const {
85   // Check that all super registers of reserved regs are reserved as well.
86   BitVector Checked(getNumRegs());
87   for (unsigned Reg : RegisterSet.set_bits()) {
88     if (Checked[Reg])
89       continue;
90     for (MCPhysReg SR : superregs(Reg)) {
91       if (!RegisterSet[SR] && !is_contained(Exceptions, Reg)) {
92         dbgs() << "Error: Super register " << printReg(SR, this)
93                << " of reserved register " << printReg(Reg, this)
94                << " is not reserved.\n";
95         return false;
96       }
97 
98       // We transitively check superregs. So we can remember this for later
99       // to avoid compiletime explosion in deep register hierarchies.
100       Checked.set(SR);
101     }
102   }
103   return true;
104 }
105 
106 namespace llvm {
107 
printReg(Register Reg,const TargetRegisterInfo * TRI,unsigned SubIdx,const MachineRegisterInfo * MRI)108 Printable printReg(Register Reg, const TargetRegisterInfo *TRI,
109                    unsigned SubIdx, const MachineRegisterInfo *MRI) {
110   return Printable([Reg, TRI, SubIdx, MRI](raw_ostream &OS) {
111     if (!Reg)
112       OS << "$noreg";
113     else if (Register::isStackSlot(Reg))
114       OS << "SS#" << Register::stackSlot2Index(Reg);
115     else if (Reg.isVirtual()) {
116       StringRef Name = MRI ? MRI->getVRegName(Reg) : "";
117       if (Name != "") {
118         OS << '%' << Name;
119       } else {
120         OS << '%' << Register::virtReg2Index(Reg);
121       }
122     } else if (!TRI)
123       OS << '$' << "physreg" << Reg;
124     else if (Reg < TRI->getNumRegs()) {
125       OS << '$';
126       printLowerCase(TRI->getName(Reg), OS);
127     } else
128       llvm_unreachable("Register kind is unsupported.");
129 
130     if (SubIdx) {
131       if (TRI)
132         OS << ':' << TRI->getSubRegIndexName(SubIdx);
133       else
134         OS << ":sub(" << SubIdx << ')';
135     }
136   });
137 }
138 
printRegUnit(unsigned Unit,const TargetRegisterInfo * TRI)139 Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
140   return Printable([Unit, TRI](raw_ostream &OS) {
141     // Generic printout when TRI is missing.
142     if (!TRI) {
143       OS << "Unit~" << Unit;
144       return;
145     }
146 
147     // Check for invalid register units.
148     if (Unit >= TRI->getNumRegUnits()) {
149       OS << "BadUnit~" << Unit;
150       return;
151     }
152 
153     // Normal units have at least one root.
154     MCRegUnitRootIterator Roots(Unit, TRI);
155     assert(Roots.isValid() && "Unit has no roots.");
156     OS << TRI->getName(*Roots);
157     for (++Roots; Roots.isValid(); ++Roots)
158       OS << '~' << TRI->getName(*Roots);
159   });
160 }
161 
printVRegOrUnit(unsigned Unit,const TargetRegisterInfo * TRI)162 Printable printVRegOrUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
163   return Printable([Unit, TRI](raw_ostream &OS) {
164     if (Register::isVirtualRegister(Unit)) {
165       OS << '%' << Register::virtReg2Index(Unit);
166     } else {
167       OS << printRegUnit(Unit, TRI);
168     }
169   });
170 }
171 
printRegClassOrBank(Register Reg,const MachineRegisterInfo & RegInfo,const TargetRegisterInfo * TRI)172 Printable printRegClassOrBank(Register Reg, const MachineRegisterInfo &RegInfo,
173                               const TargetRegisterInfo *TRI) {
174   return Printable([Reg, &RegInfo, TRI](raw_ostream &OS) {
175     if (RegInfo.getRegClassOrNull(Reg))
176       OS << StringRef(TRI->getRegClassName(RegInfo.getRegClass(Reg))).lower();
177     else if (RegInfo.getRegBankOrNull(Reg))
178       OS << StringRef(RegInfo.getRegBankOrNull(Reg)->getName()).lower();
179     else {
180       OS << "_";
181       assert((RegInfo.def_empty(Reg) || RegInfo.getType(Reg).isValid()) &&
182              "Generic registers must have a valid type");
183     }
184   });
185 }
186 
187 } // end namespace llvm
188 
189 /// getAllocatableClass - Return the maximal subclass of the given register
190 /// class that is alloctable, or NULL.
191 const TargetRegisterClass *
getAllocatableClass(const TargetRegisterClass * RC) const192 TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const {
193   if (!RC || RC->isAllocatable())
194     return RC;
195 
196   for (BitMaskClassIterator It(RC->getSubClassMask(), *this); It.isValid();
197        ++It) {
198     const TargetRegisterClass *SubRC = getRegClass(It.getID());
199     if (SubRC->isAllocatable())
200       return SubRC;
201   }
202   return nullptr;
203 }
204 
205 /// getMinimalPhysRegClass - Returns the Register Class of a physical
206 /// register of the given type, picking the most sub register class of
207 /// the right type that contains this physreg.
208 const TargetRegisterClass *
getMinimalPhysRegClass(MCRegister reg,MVT VT) const209 TargetRegisterInfo::getMinimalPhysRegClass(MCRegister reg, MVT VT) const {
210   assert(Register::isPhysicalRegister(reg) &&
211          "reg must be a physical register");
212 
213   // Pick the most sub register class of the right type that contains
214   // this physreg.
215   const TargetRegisterClass* BestRC = nullptr;
216   for (const TargetRegisterClass* RC : regclasses()) {
217     if ((VT == MVT::Other || isTypeLegalForClass(*RC, VT)) &&
218         RC->contains(reg) && (!BestRC || BestRC->hasSubClass(RC)))
219       BestRC = RC;
220   }
221 
222   assert(BestRC && "Couldn't find the register class");
223   return BestRC;
224 }
225 
226 const TargetRegisterClass *
getMinimalPhysRegClassLLT(MCRegister reg,LLT Ty) const227 TargetRegisterInfo::getMinimalPhysRegClassLLT(MCRegister reg, LLT Ty) const {
228   assert(Register::isPhysicalRegister(reg) &&
229          "reg must be a physical register");
230 
231   // Pick the most sub register class of the right type that contains
232   // this physreg.
233   const TargetRegisterClass *BestRC = nullptr;
234   for (const TargetRegisterClass *RC : regclasses()) {
235     if ((!Ty.isValid() || isTypeLegalForClass(*RC, Ty)) && RC->contains(reg) &&
236         (!BestRC || BestRC->hasSubClass(RC)))
237       BestRC = RC;
238   }
239 
240   return BestRC;
241 }
242 
243 /// getAllocatableSetForRC - Toggle the bits that represent allocatable
244 /// registers for the specific register class.
getAllocatableSetForRC(const MachineFunction & MF,const TargetRegisterClass * RC,BitVector & R)245 static void getAllocatableSetForRC(const MachineFunction &MF,
246                                    const TargetRegisterClass *RC, BitVector &R){
247   assert(RC->isAllocatable() && "invalid for nonallocatable sets");
248   ArrayRef<MCPhysReg> Order = RC->getRawAllocationOrder(MF);
249   for (MCPhysReg PR : Order)
250     R.set(PR);
251 }
252 
getAllocatableSet(const MachineFunction & MF,const TargetRegisterClass * RC) const253 BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF,
254                                           const TargetRegisterClass *RC) const {
255   BitVector Allocatable(getNumRegs());
256   if (RC) {
257     // A register class with no allocatable subclass returns an empty set.
258     const TargetRegisterClass *SubClass = getAllocatableClass(RC);
259     if (SubClass)
260       getAllocatableSetForRC(MF, SubClass, Allocatable);
261   } else {
262     for (const TargetRegisterClass *C : regclasses())
263       if (C->isAllocatable())
264         getAllocatableSetForRC(MF, C, Allocatable);
265   }
266 
267   // Mask out the reserved registers
268   const MachineRegisterInfo &MRI = MF.getRegInfo();
269   const BitVector &Reserved = MRI.getReservedRegs();
270   Allocatable.reset(Reserved);
271 
272   return Allocatable;
273 }
274 
275 static inline
firstCommonClass(const uint32_t * A,const uint32_t * B,const TargetRegisterInfo * TRI)276 const TargetRegisterClass *firstCommonClass(const uint32_t *A,
277                                             const uint32_t *B,
278                                             const TargetRegisterInfo *TRI) {
279   for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32)
280     if (unsigned Common = *A++ & *B++)
281       return TRI->getRegClass(I + llvm::countr_zero(Common));
282   return nullptr;
283 }
284 
285 const TargetRegisterClass *
getCommonSubClass(const TargetRegisterClass * A,const TargetRegisterClass * B) const286 TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A,
287                                       const TargetRegisterClass *B) const {
288   // First take care of the trivial cases.
289   if (A == B)
290     return A;
291   if (!A || !B)
292     return nullptr;
293 
294   // Register classes are ordered topologically, so the largest common
295   // sub-class it the common sub-class with the smallest ID.
296   return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this);
297 }
298 
299 const TargetRegisterClass *
getMatchingSuperRegClass(const TargetRegisterClass * A,const TargetRegisterClass * B,unsigned Idx) const300 TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
301                                              const TargetRegisterClass *B,
302                                              unsigned Idx) const {
303   assert(A && B && "Missing register class");
304   assert(Idx && "Bad sub-register index");
305 
306   // Find Idx in the list of super-register indices.
307   for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI)
308     if (RCI.getSubReg() == Idx)
309       // The bit mask contains all register classes that are projected into B
310       // by Idx. Find a class that is also a sub-class of A.
311       return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this);
312   return nullptr;
313 }
314 
315 const TargetRegisterClass *TargetRegisterInfo::
getCommonSuperRegClass(const TargetRegisterClass * RCA,unsigned SubA,const TargetRegisterClass * RCB,unsigned SubB,unsigned & PreA,unsigned & PreB) const316 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
317                        const TargetRegisterClass *RCB, unsigned SubB,
318                        unsigned &PreA, unsigned &PreB) const {
319   assert(RCA && SubA && RCB && SubB && "Invalid arguments");
320 
321   // Search all pairs of sub-register indices that project into RCA and RCB
322   // respectively. This is quadratic, but usually the sets are very small. On
323   // most targets like X86, there will only be a single sub-register index
324   // (e.g., sub_16bit projecting into GR16).
325   //
326   // The worst case is a register class like DPR on ARM.
327   // We have indices dsub_0..dsub_7 projecting into that class.
328   //
329   // It is very common that one register class is a sub-register of the other.
330   // Arrange for RCA to be the larger register so the answer will be found in
331   // the first iteration. This makes the search linear for the most common
332   // case.
333   const TargetRegisterClass *BestRC = nullptr;
334   unsigned *BestPreA = &PreA;
335   unsigned *BestPreB = &PreB;
336   if (getRegSizeInBits(*RCA) < getRegSizeInBits(*RCB)) {
337     std::swap(RCA, RCB);
338     std::swap(SubA, SubB);
339     std::swap(BestPreA, BestPreB);
340   }
341 
342   // Also terminate the search one we have found a register class as small as
343   // RCA.
344   unsigned MinSize = getRegSizeInBits(*RCA);
345 
346   for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) {
347     unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA);
348     for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) {
349       // Check if a common super-register class exists for this index pair.
350       const TargetRegisterClass *RC =
351         firstCommonClass(IA.getMask(), IB.getMask(), this);
352       if (!RC || getRegSizeInBits(*RC) < MinSize)
353         continue;
354 
355       // The indexes must compose identically: PreA+SubA == PreB+SubB.
356       unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB);
357       if (FinalA != FinalB)
358         continue;
359 
360       // Is RC a better candidate than BestRC?
361       if (BestRC && getRegSizeInBits(*RC) >= getRegSizeInBits(*BestRC))
362         continue;
363 
364       // Yes, RC is the smallest super-register seen so far.
365       BestRC = RC;
366       *BestPreA = IA.getSubReg();
367       *BestPreB = IB.getSubReg();
368 
369       // Bail early if we reached MinSize. We won't find a better candidate.
370       if (getRegSizeInBits(*BestRC) == MinSize)
371         return BestRC;
372     }
373   }
374   return BestRC;
375 }
376 
377 /// Check if the registers defined by the pair (RegisterClass, SubReg)
378 /// share the same register file.
shareSameRegisterFile(const TargetRegisterInfo & TRI,const TargetRegisterClass * DefRC,unsigned DefSubReg,const TargetRegisterClass * SrcRC,unsigned SrcSubReg)379 static bool shareSameRegisterFile(const TargetRegisterInfo &TRI,
380                                   const TargetRegisterClass *DefRC,
381                                   unsigned DefSubReg,
382                                   const TargetRegisterClass *SrcRC,
383                                   unsigned SrcSubReg) {
384   // Same register class.
385   if (DefRC == SrcRC)
386     return true;
387 
388   // Both operands are sub registers. Check if they share a register class.
389   unsigned SrcIdx, DefIdx;
390   if (SrcSubReg && DefSubReg) {
391     return TRI.getCommonSuperRegClass(SrcRC, SrcSubReg, DefRC, DefSubReg,
392                                       SrcIdx, DefIdx) != nullptr;
393   }
394 
395   // At most one of the register is a sub register, make it Src to avoid
396   // duplicating the test.
397   if (!SrcSubReg) {
398     std::swap(DefSubReg, SrcSubReg);
399     std::swap(DefRC, SrcRC);
400   }
401 
402   // One of the register is a sub register, check if we can get a superclass.
403   if (SrcSubReg)
404     return TRI.getMatchingSuperRegClass(SrcRC, DefRC, SrcSubReg) != nullptr;
405 
406   // Plain copy.
407   return TRI.getCommonSubClass(DefRC, SrcRC) != nullptr;
408 }
409 
shouldRewriteCopySrc(const TargetRegisterClass * DefRC,unsigned DefSubReg,const TargetRegisterClass * SrcRC,unsigned SrcSubReg) const410 bool TargetRegisterInfo::shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
411                                               unsigned DefSubReg,
412                                               const TargetRegisterClass *SrcRC,
413                                               unsigned SrcSubReg) const {
414   // If this source does not incur a cross register bank copy, use it.
415   return shareSameRegisterFile(*this, DefRC, DefSubReg, SrcRC, SrcSubReg);
416 }
417 
418 // Compute target-independent register allocator hints to help eliminate copies.
getRegAllocationHints(Register VirtReg,ArrayRef<MCPhysReg> Order,SmallVectorImpl<MCPhysReg> & Hints,const MachineFunction & MF,const VirtRegMap * VRM,const LiveRegMatrix * Matrix) const419 bool TargetRegisterInfo::getRegAllocationHints(
420     Register VirtReg, ArrayRef<MCPhysReg> Order,
421     SmallVectorImpl<MCPhysReg> &Hints, const MachineFunction &MF,
422     const VirtRegMap *VRM, const LiveRegMatrix *Matrix) const {
423   const MachineRegisterInfo &MRI = MF.getRegInfo();
424   const std::pair<unsigned, SmallVector<Register, 4>> &Hints_MRI =
425       MRI.getRegAllocationHints(VirtReg);
426 
427   SmallSet<Register, 32> HintedRegs;
428   // First hint may be a target hint.
429   bool Skip = (Hints_MRI.first != 0);
430   for (auto Reg : Hints_MRI.second) {
431     if (Skip) {
432       Skip = false;
433       continue;
434     }
435 
436     // Target-independent hints are either a physical or a virtual register.
437     Register Phys = Reg;
438     if (VRM && Phys.isVirtual())
439       Phys = VRM->getPhys(Phys);
440 
441     // Don't add the same reg twice (Hints_MRI may contain multiple virtual
442     // registers allocated to the same physreg).
443     if (!HintedRegs.insert(Phys).second)
444       continue;
445     // Check that Phys is a valid hint in VirtReg's register class.
446     if (!Phys.isPhysical())
447       continue;
448     if (MRI.isReserved(Phys))
449       continue;
450     // Check that Phys is in the allocation order. We shouldn't heed hints
451     // from VirtReg's register class if they aren't in the allocation order. The
452     // target probably has a reason for removing the register.
453     if (!is_contained(Order, Phys))
454       continue;
455 
456     // All clear, tell the register allocator to prefer this register.
457     Hints.push_back(Phys);
458   }
459   return false;
460 }
461 
isCalleeSavedPhysReg(MCRegister PhysReg,const MachineFunction & MF) const462 bool TargetRegisterInfo::isCalleeSavedPhysReg(
463     MCRegister PhysReg, const MachineFunction &MF) const {
464   if (PhysReg == 0)
465     return false;
466   const uint32_t *callerPreservedRegs =
467       getCallPreservedMask(MF, MF.getFunction().getCallingConv());
468   if (callerPreservedRegs) {
469     assert(Register::isPhysicalRegister(PhysReg) &&
470            "Expected physical register");
471     return (callerPreservedRegs[PhysReg / 32] >> PhysReg % 32) & 1;
472   }
473   return false;
474 }
475 
canRealignStack(const MachineFunction & MF) const476 bool TargetRegisterInfo::canRealignStack(const MachineFunction &MF) const {
477   return MF.getFrameInfo().isStackRealignable();
478 }
479 
shouldRealignStack(const MachineFunction & MF) const480 bool TargetRegisterInfo::shouldRealignStack(const MachineFunction &MF) const {
481   return MF.getFrameInfo().shouldRealignStack();
482 }
483 
regmaskSubsetEqual(const uint32_t * mask0,const uint32_t * mask1) const484 bool TargetRegisterInfo::regmaskSubsetEqual(const uint32_t *mask0,
485                                             const uint32_t *mask1) const {
486   unsigned N = (getNumRegs()+31) / 32;
487   for (unsigned I = 0; I < N; ++I)
488     if ((mask0[I] & mask1[I]) != mask0[I])
489       return false;
490   return true;
491 }
492 
493 TypeSize
getRegSizeInBits(Register Reg,const MachineRegisterInfo & MRI) const494 TargetRegisterInfo::getRegSizeInBits(Register Reg,
495                                      const MachineRegisterInfo &MRI) const {
496   const TargetRegisterClass *RC{};
497   if (Reg.isPhysical()) {
498     // The size is not directly available for physical registers.
499     // Instead, we need to access a register class that contains Reg and
500     // get the size of that register class.
501     RC = getMinimalPhysRegClass(Reg);
502     assert(RC && "Unable to deduce the register class");
503     return getRegSizeInBits(*RC);
504   }
505   LLT Ty = MRI.getType(Reg);
506   if (Ty.isValid())
507     return Ty.getSizeInBits();
508 
509   // Since Reg is not a generic register, it may have a register class.
510   RC = MRI.getRegClass(Reg);
511   assert(RC && "Unable to deduce the register class");
512   return getRegSizeInBits(*RC);
513 }
514 
getCoveringSubRegIndexes(const MachineRegisterInfo & MRI,const TargetRegisterClass * RC,LaneBitmask LaneMask,SmallVectorImpl<unsigned> & NeededIndexes) const515 bool TargetRegisterInfo::getCoveringSubRegIndexes(
516     const MachineRegisterInfo &MRI, const TargetRegisterClass *RC,
517     LaneBitmask LaneMask, SmallVectorImpl<unsigned> &NeededIndexes) const {
518   SmallVector<unsigned, 8> PossibleIndexes;
519   unsigned BestIdx = 0;
520   unsigned BestCover = 0;
521 
522   for (unsigned Idx = 1, E = getNumSubRegIndices(); Idx < E; ++Idx) {
523     // Is this index even compatible with the given class?
524     if (getSubClassWithSubReg(RC, Idx) != RC)
525       continue;
526     LaneBitmask SubRegMask = getSubRegIndexLaneMask(Idx);
527     // Early exit if we found a perfect match.
528     if (SubRegMask == LaneMask) {
529       BestIdx = Idx;
530       break;
531     }
532 
533     // The index must not cover any lanes outside \p LaneMask.
534     if ((SubRegMask & ~LaneMask).any())
535       continue;
536 
537     unsigned PopCount = SubRegMask.getNumLanes();
538     PossibleIndexes.push_back(Idx);
539     if (PopCount > BestCover) {
540       BestCover = PopCount;
541       BestIdx = Idx;
542     }
543   }
544 
545   // Abort if we cannot possibly implement the COPY with the given indexes.
546   if (BestIdx == 0)
547     return false;
548 
549   NeededIndexes.push_back(BestIdx);
550 
551   // Greedy heuristic: Keep iterating keeping the best covering subreg index
552   // each time.
553   LaneBitmask LanesLeft = LaneMask & ~getSubRegIndexLaneMask(BestIdx);
554   while (LanesLeft.any()) {
555     unsigned BestIdx = 0;
556     int BestCover = std::numeric_limits<int>::min();
557     for (unsigned Idx : PossibleIndexes) {
558       LaneBitmask SubRegMask = getSubRegIndexLaneMask(Idx);
559       // Early exit if we found a perfect match.
560       if (SubRegMask == LanesLeft) {
561         BestIdx = Idx;
562         break;
563       }
564 
565       // Do not cover already-covered lanes to avoid creating cycles
566       // in copy bundles (= bundle contains copies that write to the
567       // registers).
568       if ((SubRegMask & ~LanesLeft).any())
569         continue;
570 
571       // Try to cover as many of the remaining lanes as possible.
572       const int Cover = (SubRegMask & LanesLeft).getNumLanes();
573       if (Cover > BestCover) {
574         BestCover = Cover;
575         BestIdx = Idx;
576       }
577     }
578 
579     if (BestIdx == 0)
580       return false; // Impossible to handle
581 
582     NeededIndexes.push_back(BestIdx);
583 
584     LanesLeft &= ~getSubRegIndexLaneMask(BestIdx);
585   }
586 
587   return BestIdx;
588 }
589 
getSubRegIdxSize(unsigned Idx) const590 unsigned TargetRegisterInfo::getSubRegIdxSize(unsigned Idx) const {
591   assert(Idx && Idx < getNumSubRegIndices() &&
592          "This is not a subregister index");
593   return SubRegIdxRanges[HwMode * getNumSubRegIndices() + Idx].Size;
594 }
595 
getSubRegIdxOffset(unsigned Idx) const596 unsigned TargetRegisterInfo::getSubRegIdxOffset(unsigned Idx) const {
597   assert(Idx && Idx < getNumSubRegIndices() &&
598          "This is not a subregister index");
599   return SubRegIdxRanges[HwMode * getNumSubRegIndices() + Idx].Offset;
600 }
601 
602 Register
lookThruCopyLike(Register SrcReg,const MachineRegisterInfo * MRI) const603 TargetRegisterInfo::lookThruCopyLike(Register SrcReg,
604                                      const MachineRegisterInfo *MRI) const {
605   while (true) {
606     const MachineInstr *MI = MRI->getVRegDef(SrcReg);
607     if (!MI->isCopyLike())
608       return SrcReg;
609 
610     Register CopySrcReg;
611     if (MI->isCopy())
612       CopySrcReg = MI->getOperand(1).getReg();
613     else {
614       assert(MI->isSubregToReg() && "Bad opcode for lookThruCopyLike");
615       CopySrcReg = MI->getOperand(2).getReg();
616     }
617 
618     if (!CopySrcReg.isVirtual())
619       return CopySrcReg;
620 
621     SrcReg = CopySrcReg;
622   }
623 }
624 
lookThruSingleUseCopyChain(Register SrcReg,const MachineRegisterInfo * MRI) const625 Register TargetRegisterInfo::lookThruSingleUseCopyChain(
626     Register SrcReg, const MachineRegisterInfo *MRI) const {
627   while (true) {
628     const MachineInstr *MI = MRI->getVRegDef(SrcReg);
629     // Found the real definition, return it if it has a single use.
630     if (!MI->isCopyLike())
631       return MRI->hasOneNonDBGUse(SrcReg) ? SrcReg : Register();
632 
633     Register CopySrcReg;
634     if (MI->isCopy())
635       CopySrcReg = MI->getOperand(1).getReg();
636     else {
637       assert(MI->isSubregToReg() && "Bad opcode for lookThruCopyLike");
638       CopySrcReg = MI->getOperand(2).getReg();
639     }
640 
641     // Continue only if the next definition in the chain is for a virtual
642     // register that has a single use.
643     if (!CopySrcReg.isVirtual() || !MRI->hasOneNonDBGUse(CopySrcReg))
644       return Register();
645 
646     SrcReg = CopySrcReg;
647   }
648 }
649 
getOffsetOpcodes(const StackOffset & Offset,SmallVectorImpl<uint64_t> & Ops) const650 void TargetRegisterInfo::getOffsetOpcodes(
651     const StackOffset &Offset, SmallVectorImpl<uint64_t> &Ops) const {
652   assert(!Offset.getScalable() && "Scalable offsets are not handled");
653   DIExpression::appendOffset(Ops, Offset.getFixed());
654 }
655 
656 DIExpression *
prependOffsetExpression(const DIExpression * Expr,unsigned PrependFlags,const StackOffset & Offset) const657 TargetRegisterInfo::prependOffsetExpression(const DIExpression *Expr,
658                                             unsigned PrependFlags,
659                                             const StackOffset &Offset) const {
660   assert((PrependFlags &
661           ~(DIExpression::DerefBefore | DIExpression::DerefAfter |
662             DIExpression::StackValue | DIExpression::EntryValue)) == 0 &&
663          "Unsupported prepend flag");
664   SmallVector<uint64_t, 16> OffsetExpr;
665   if (PrependFlags & DIExpression::DerefBefore)
666     OffsetExpr.push_back(dwarf::DW_OP_deref);
667   getOffsetOpcodes(Offset, OffsetExpr);
668   if (PrependFlags & DIExpression::DerefAfter)
669     OffsetExpr.push_back(dwarf::DW_OP_deref);
670   return DIExpression::prependOpcodes(Expr, OffsetExpr,
671                                       PrependFlags & DIExpression::StackValue,
672                                       PrependFlags & DIExpression::EntryValue);
673 }
674 
675 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
676 LLVM_DUMP_METHOD
dumpReg(Register Reg,unsigned SubRegIndex,const TargetRegisterInfo * TRI)677 void TargetRegisterInfo::dumpReg(Register Reg, unsigned SubRegIndex,
678                                  const TargetRegisterInfo *TRI) {
679   dbgs() << printReg(Reg, TRI, SubRegIndex) << "\n";
680 }
681 #endif
682