xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev_raidz.c (revision 61145dc2b94f12f6a47344fb9aac702321880e43)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 /*
24  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
26  * Copyright (c) 2016 Gvozden Nešković. All rights reserved.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/zap.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/metaslab_impl.h>
35 #include <sys/zio.h>
36 #include <sys/zio_checksum.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/abd.h>
39 #include <sys/zfs_rlock.h>
40 #include <sys/fs/zfs.h>
41 #include <sys/fm/fs/zfs.h>
42 #include <sys/vdev_raidz.h>
43 #include <sys/vdev_raidz_impl.h>
44 #include <sys/vdev_draid.h>
45 #include <sys/uberblock_impl.h>
46 #include <sys/dsl_scan.h>
47 
48 #ifdef ZFS_DEBUG
49 #include <sys/vdev.h>	/* For vdev_xlate() in vdev_raidz_io_verify() */
50 #endif
51 
52 /*
53  * Virtual device vector for RAID-Z.
54  *
55  * This vdev supports single, double, and triple parity. For single parity,
56  * we use a simple XOR of all the data columns. For double or triple parity,
57  * we use a special case of Reed-Solomon coding. This extends the
58  * technique described in "The mathematics of RAID-6" by H. Peter Anvin by
59  * drawing on the system described in "A Tutorial on Reed-Solomon Coding for
60  * Fault-Tolerance in RAID-like Systems" by James S. Plank on which the
61  * former is also based. The latter is designed to provide higher performance
62  * for writes.
63  *
64  * Note that the Plank paper claimed to support arbitrary N+M, but was then
65  * amended six years later identifying a critical flaw that invalidates its
66  * claims. Nevertheless, the technique can be adapted to work for up to
67  * triple parity. For additional parity, the amendment "Note: Correction to
68  * the 1997 Tutorial on Reed-Solomon Coding" by James S. Plank and Ying Ding
69  * is viable, but the additional complexity means that write performance will
70  * suffer.
71  *
72  * All of the methods above operate on a Galois field, defined over the
73  * integers mod 2^N. In our case we choose N=8 for GF(8) so that all elements
74  * can be expressed with a single byte. Briefly, the operations on the
75  * field are defined as follows:
76  *
77  *   o addition (+) is represented by a bitwise XOR
78  *   o subtraction (-) is therefore identical to addition: A + B = A - B
79  *   o multiplication of A by 2 is defined by the following bitwise expression:
80  *
81  *	(A * 2)_7 = A_6
82  *	(A * 2)_6 = A_5
83  *	(A * 2)_5 = A_4
84  *	(A * 2)_4 = A_3 + A_7
85  *	(A * 2)_3 = A_2 + A_7
86  *	(A * 2)_2 = A_1 + A_7
87  *	(A * 2)_1 = A_0
88  *	(A * 2)_0 = A_7
89  *
90  * In C, multiplying by 2 is therefore ((a << 1) ^ ((a & 0x80) ? 0x1d : 0)).
91  * As an aside, this multiplication is derived from the error correcting
92  * primitive polynomial x^8 + x^4 + x^3 + x^2 + 1.
93  *
94  * Observe that any number in the field (except for 0) can be expressed as a
95  * power of 2 -- a generator for the field. We store a table of the powers of
96  * 2 and logs base 2 for quick look ups, and exploit the fact that A * B can
97  * be rewritten as 2^(log_2(A) + log_2(B)) (where '+' is normal addition rather
98  * than field addition). The inverse of a field element A (A^-1) is therefore
99  * A ^ (255 - 1) = A^254.
100  *
101  * The up-to-three parity columns, P, Q, R over several data columns,
102  * D_0, ... D_n-1, can be expressed by field operations:
103  *
104  *	P = D_0 + D_1 + ... + D_n-2 + D_n-1
105  *	Q = 2^n-1 * D_0 + 2^n-2 * D_1 + ... + 2^1 * D_n-2 + 2^0 * D_n-1
106  *	  = ((...((D_0) * 2 + D_1) * 2 + ...) * 2 + D_n-2) * 2 + D_n-1
107  *	R = 4^n-1 * D_0 + 4^n-2 * D_1 + ... + 4^1 * D_n-2 + 4^0 * D_n-1
108  *	  = ((...((D_0) * 4 + D_1) * 4 + ...) * 4 + D_n-2) * 4 + D_n-1
109  *
110  * We chose 1, 2, and 4 as our generators because 1 corresponds to the trivial
111  * XOR operation, and 2 and 4 can be computed quickly and generate linearly-
112  * independent coefficients. (There are no additional coefficients that have
113  * this property which is why the uncorrected Plank method breaks down.)
114  *
115  * See the reconstruction code below for how P, Q and R can used individually
116  * or in concert to recover missing data columns.
117  */
118 
119 #define	VDEV_RAIDZ_P		0
120 #define	VDEV_RAIDZ_Q		1
121 #define	VDEV_RAIDZ_R		2
122 
123 #define	VDEV_RAIDZ_MUL_2(x)	(((x) << 1) ^ (((x) & 0x80) ? 0x1d : 0))
124 #define	VDEV_RAIDZ_MUL_4(x)	(VDEV_RAIDZ_MUL_2(VDEV_RAIDZ_MUL_2(x)))
125 
126 /*
127  * We provide a mechanism to perform the field multiplication operation on a
128  * 64-bit value all at once rather than a byte at a time. This works by
129  * creating a mask from the top bit in each byte and using that to
130  * conditionally apply the XOR of 0x1d.
131  */
132 #define	VDEV_RAIDZ_64MUL_2(x, mask) \
133 { \
134 	(mask) = (x) & 0x8080808080808080ULL; \
135 	(mask) = ((mask) << 1) - ((mask) >> 7); \
136 	(x) = (((x) << 1) & 0xfefefefefefefefeULL) ^ \
137 	    ((mask) & 0x1d1d1d1d1d1d1d1dULL); \
138 }
139 
140 #define	VDEV_RAIDZ_64MUL_4(x, mask) \
141 { \
142 	VDEV_RAIDZ_64MUL_2((x), mask); \
143 	VDEV_RAIDZ_64MUL_2((x), mask); \
144 }
145 
146 
147 /*
148  * Big Theory Statement for how a RAIDZ VDEV is expanded
149  *
150  * An existing RAIDZ VDEV can be expanded by attaching a new disk. Expansion
151  * works with all three RAIDZ parity choices, including RAIDZ1, 2, or 3. VDEVs
152  * that have been previously expanded can be expanded again.
153  *
154  * The RAIDZ VDEV must be healthy (must be able to write to all the drives in
155  * the VDEV) when an expansion starts.  And the expansion will pause if any
156  * disk in the VDEV fails, and resume once the VDEV is healthy again. All other
157  * operations on the pool can continue while an expansion is in progress (e.g.
158  * read/write, snapshot, zpool add, etc). Except zpool checkpoint, zpool trim,
159  * and zpool initialize which can't be run during an expansion.  Following a
160  * reboot or export/import, the expansion resumes where it left off.
161  *
162  * == Reflowing the Data ==
163  *
164  * The expansion involves reflowing (copying) the data from the current set
165  * of disks to spread it across the new set which now has one more disk. This
166  * reflow operation is similar to reflowing text when the column width of a
167  * text editor window is expanded. The text doesn’t change but the location of
168  * the text changes to accommodate the new width. An example reflow result for
169  * a 4-wide RAIDZ1 to a 5-wide is shown below.
170  *
171  *                            Reflow End State
172  *            Each letter indicates a parity group (logical stripe)
173  *
174  *         Before expansion                         After Expansion
175  *     D1     D2     D3     D4               D1     D2     D3     D4     D5
176  *  +------+------+------+------+         +------+------+------+------+------+
177  *  |      |      |      |      |         |      |      |      |      |      |
178  *  |  A   |  A   |  A   |  A   |         |  A   |  A   |  A   |  A   |  B   |
179  *  |     1|     2|     3|     4|         |     1|     2|     3|     4|     5|
180  *  +------+------+------+------+         +------+------+------+------+------+
181  *  |      |      |      |      |         |      |      |      |      |      |
182  *  |  B   |  B   |  C   |  C   |         |  B   |  C   |  C   |  C   |  C   |
183  *  |     5|     6|     7|     8|         |     6|     7|     8|     9|    10|
184  *  +------+------+------+------+         +------+------+------+------+------+
185  *  |      |      |      |      |         |      |      |      |      |      |
186  *  |  C   |  C   |  D   |  D   |         |  D   |  D   |  E   |  E   |  E   |
187  *  |     9|    10|    11|    12|         |    11|    12|    13|    14|    15|
188  *  +------+------+------+------+         +------+------+------+------+------+
189  *  |      |      |      |      |         |      |      |      |      |      |
190  *  |  E   |  E   |  E   |  E   |   -->   |  E   |  F   |  F   |  G   |  G   |
191  *  |    13|    14|    15|    16|         |    16|    17|    18|p   19|    20|
192  *  +------+------+------+------+         +------+------+------+------+------+
193  *  |      |      |      |      |         |      |      |      |      |      |
194  *  |  F   |  F   |  G   |  G   |         |  G   |  G   |  H   |  H   |  H   |
195  *  |    17|    18|    19|    20|         |    21|    22|    23|    24|    25|
196  *  +------+------+------+------+         +------+------+------+------+------+
197  *  |      |      |      |      |         |      |      |      |      |      |
198  *  |  G   |  G   |  H   |  H   |         |  H   |  I   |  I   |  J   |  J   |
199  *  |    21|    22|    23|    24|         |    26|    27|    28|    29|    30|
200  *  +------+------+------+------+         +------+------+------+------+------+
201  *  |      |      |      |      |         |      |      |      |      |      |
202  *  |  H   |  H   |  I   |  I   |         |  J   |  J   |      |      |  K   |
203  *  |    25|    26|    27|    28|         |    31|    32|    33|    34|    35|
204  *  +------+------+------+------+         +------+------+------+------+------+
205  *
206  * This reflow approach has several advantages. There is no need to read or
207  * modify the block pointers or recompute any block checksums.  The reflow
208  * doesn’t need to know where the parity sectors reside. We can read and write
209  * data sequentially and the copy can occur in a background thread in open
210  * context. The design also allows for fast discovery of what data to copy.
211  *
212  * The VDEV metaslabs are processed, one at a time, to copy the block data to
213  * have it flow across all the disks. The metaslab is disabled for allocations
214  * during the copy. As an optimization, we only copy the allocated data which
215  * can be determined by looking at the metaslab range tree. During the copy we
216  * must maintain the redundancy guarantees of the RAIDZ VDEV (i.e., we still
217  * need to be able to survive losing parity count disks).  This means we
218  * cannot overwrite data during the reflow that would be needed if a disk is
219  * lost.
220  *
221  * After the reflow completes, all newly-written blocks will have the new
222  * layout, i.e., they will have the parity to data ratio implied by the new
223  * number of disks in the RAIDZ group.  Even though the reflow copies all of
224  * the allocated space (data and parity), it is only rearranged, not changed.
225  *
226  * This act of reflowing the data has a few implications about blocks
227  * that were written before the reflow completes:
228  *
229  *  - Old blocks will still use the same amount of space (i.e., they will have
230  *    the parity to data ratio implied by the old number of disks in the RAIDZ
231  *    group).
232  *  - Reading old blocks will be slightly slower than before the reflow, for
233  *    two reasons. First, we will have to read from all disks in the RAIDZ
234  *    VDEV, rather than being able to skip the children that contain only
235  *    parity of this block (because the data of a single block is now spread
236  *    out across all the disks).  Second, in most cases there will be an extra
237  *    bcopy, needed to rearrange the data back to its original layout in memory.
238  *
239  * == Scratch Area ==
240  *
241  * As we copy the block data, we can only progress to the point that writes
242  * will not overlap with blocks whose progress has not yet been recorded on
243  * disk.  Since partially-copied rows are always read from the old location,
244  * we need to stop one row before the sector-wise overlap, to prevent any
245  * row-wise overlap. For example, in the diagram above, when we reflow sector
246  * B6 it will overwite the original location for B5.
247  *
248  * To get around this, a scratch space is used so that we can start copying
249  * without risking data loss by overlapping the row. As an added benefit, it
250  * improves performance at the beginning of the reflow, but that small perf
251  * boost wouldn't be worth the complexity on its own.
252  *
253  * Ideally we want to copy at least 2 * (new_width)^2 so that we have a
254  * separation of 2*(new_width+1) and a chunk size of new_width+2. With the max
255  * RAIDZ width of 255 and 4K sectors this would be 2MB per disk. In practice
256  * the widths will likely be single digits so we can get a substantial chuck
257  * size using only a few MB of scratch per disk.
258  *
259  * The scratch area is persisted to disk which holds a large amount of reflowed
260  * state. We can always read the partially written stripes when a disk fails or
261  * the copy is interrupted (crash) during the initial copying phase and also
262  * get past a small chunk size restriction.  At a minimum, the scratch space
263  * must be large enough to get us to the point that one row does not overlap
264  * itself when moved (i.e new_width^2).  But going larger is even better. We
265  * use the 3.5 MiB reserved "boot" space that resides after the ZFS disk labels
266  * as our scratch space to handle overwriting the initial part of the VDEV.
267  *
268  *	0     256K   512K                    4M
269  *	+------+------+-----------------------+-----------------------------
270  *	| VDEV | VDEV |   Boot Block (3.5M)   |  Allocatable space ...
271  *	|  L0  |  L1  |       Reserved        |     (Metaslabs)
272  *	+------+------+-----------------------+-------------------------------
273  *                        Scratch Area
274  *
275  * == Reflow Progress Updates ==
276  * After the initial scratch-based reflow, the expansion process works
277  * similarly to device removal. We create a new open context thread which
278  * reflows the data, and periodically kicks off sync tasks to update logical
279  * state. In this case, state is the committed progress (offset of next data
280  * to copy). We need to persist the completed offset on disk, so that if we
281  * crash we know which format each VDEV offset is in.
282  *
283  * == Time Dependent Geometry ==
284  *
285  * In non-expanded RAIDZ, blocks are read from disk in a column by column
286  * fashion. For a multi-row block, the second sector is in the first column
287  * not in the second column. This allows us to issue full reads for each
288  * column directly into the request buffer. The block data is thus laid out
289  * sequentially in a column-by-column fashion.
290  *
291  * For example, in the before expansion diagram above, one logical block might
292  * be sectors G19-H26. The parity is in G19,H23; and the data is in
293  * G20,H24,G21,H25,G22,H26.
294  *
295  * After a block is reflowed, the sectors that were all in the original column
296  * data can now reside in different columns. When reading from an expanded
297  * VDEV, we need to know the logical stripe width for each block so we can
298  * reconstitute the block’s data after the reads are completed. Likewise,
299  * when we perform the combinatorial reconstruction we need to know the
300  * original width so we can retry combinations from the past layouts.
301  *
302  * Time dependent geometry is what we call having blocks with different layouts
303  * (stripe widths) in the same VDEV. This time-dependent geometry uses the
304  * block’s birth time (+ the time expansion ended) to establish the correct
305  * width for a given block. After an expansion completes, we record the time
306  * for blocks written with a particular width (geometry).
307  *
308  * == On Disk Format Changes ==
309  *
310  * New pool feature flag, 'raidz_expansion' whose reference count is the number
311  * of RAIDZ VDEVs that have been expanded.
312  *
313  * The blocks on expanded RAIDZ VDEV can have different logical stripe widths.
314  *
315  * Since the uberblock can point to arbitrary blocks, which might be on the
316  * expanding RAIDZ, and might or might not have been expanded. We need to know
317  * which way a block is laid out before reading it. This info is the next
318  * offset that needs to be reflowed and we persist that in the uberblock, in
319  * the new ub_raidz_reflow_info field, as opposed to the MOS or the vdev label.
320  * After the expansion is complete, we then use the raidz_expand_txgs array
321  * (see below) to determine how to read a block and the ub_raidz_reflow_info
322  * field no longer required.
323  *
324  * The uberblock's ub_raidz_reflow_info field also holds the scratch space
325  * state (i.e., active or not) which is also required before reading a block
326  * during the initial phase of reflowing the data.
327  *
328  * The top-level RAIDZ VDEV has two new entries in the nvlist:
329  *
330  * 'raidz_expand_txgs' array: logical stripe widths by txg are recorded here
331  *                            and used after the expansion is complete to
332  *                            determine how to read a raidz block
333  * 'raidz_expanding' boolean: present during reflow and removed after completion
334  *                            used during a spa import to resume an unfinished
335  *                            expansion
336  *
337  * And finally the VDEVs top zap adds the following informational entries:
338  *   VDEV_TOP_ZAP_RAIDZ_EXPAND_STATE
339  *   VDEV_TOP_ZAP_RAIDZ_EXPAND_START_TIME
340  *   VDEV_TOP_ZAP_RAIDZ_EXPAND_END_TIME
341  *   VDEV_TOP_ZAP_RAIDZ_EXPAND_BYTES_COPIED
342  */
343 
344 /*
345  * For testing only: pause the raidz expansion after reflowing this amount.
346  * (accessed by ZTS and ztest)
347  */
348 #ifdef	_KERNEL
349 static
350 #endif	/* _KERNEL */
351 unsigned long raidz_expand_max_reflow_bytes = 0;
352 
353 /*
354  * For testing only: pause the raidz expansion at a certain point.
355  */
356 uint_t raidz_expand_pause_point = 0;
357 
358 /*
359  * Maximum amount of copy io's outstanding at once.
360  */
361 #ifdef _ILP32
362 static unsigned long raidz_expand_max_copy_bytes = SPA_MAXBLOCKSIZE;
363 #else
364 static unsigned long raidz_expand_max_copy_bytes = 10 * SPA_MAXBLOCKSIZE;
365 #endif
366 
367 /*
368  * Apply raidz map abds aggregation if the number of rows in the map is equal
369  * or greater than the value below.
370  */
371 static unsigned long raidz_io_aggregate_rows = 4;
372 
373 /*
374  * Automatically start a pool scrub when a RAIDZ expansion completes in
375  * order to verify the checksums of all blocks which have been copied
376  * during the expansion.  Automatic scrubbing is enabled by default and
377  * is strongly recommended.
378  */
379 static int zfs_scrub_after_expand = 1;
380 
381 static void
vdev_raidz_row_free(raidz_row_t * rr)382 vdev_raidz_row_free(raidz_row_t *rr)
383 {
384 	for (int c = 0; c < rr->rr_cols; c++) {
385 		raidz_col_t *rc = &rr->rr_col[c];
386 
387 		if (rc->rc_size != 0)
388 			abd_free(rc->rc_abd);
389 		if (rc->rc_orig_data != NULL)
390 			abd_free(rc->rc_orig_data);
391 	}
392 
393 	if (rr->rr_abd_empty != NULL)
394 		abd_free(rr->rr_abd_empty);
395 
396 	kmem_free(rr, offsetof(raidz_row_t, rr_col[rr->rr_scols]));
397 }
398 
399 void
vdev_raidz_map_free(raidz_map_t * rm)400 vdev_raidz_map_free(raidz_map_t *rm)
401 {
402 	for (int i = 0; i < rm->rm_nrows; i++)
403 		vdev_raidz_row_free(rm->rm_row[i]);
404 
405 	if (rm->rm_nphys_cols) {
406 		for (int i = 0; i < rm->rm_nphys_cols; i++) {
407 			if (rm->rm_phys_col[i].rc_abd != NULL)
408 				abd_free(rm->rm_phys_col[i].rc_abd);
409 		}
410 
411 		kmem_free(rm->rm_phys_col, sizeof (raidz_col_t) *
412 		    rm->rm_nphys_cols);
413 	}
414 
415 	ASSERT3P(rm->rm_lr, ==, NULL);
416 	kmem_free(rm, offsetof(raidz_map_t, rm_row[rm->rm_nrows]));
417 }
418 
419 static void
vdev_raidz_map_free_vsd(zio_t * zio)420 vdev_raidz_map_free_vsd(zio_t *zio)
421 {
422 	raidz_map_t *rm = zio->io_vsd;
423 
424 	vdev_raidz_map_free(rm);
425 }
426 
427 static int
vdev_raidz_reflow_compare(const void * x1,const void * x2)428 vdev_raidz_reflow_compare(const void *x1, const void *x2)
429 {
430 	const reflow_node_t *l = x1;
431 	const reflow_node_t *r = x2;
432 
433 	return (TREE_CMP(l->re_txg, r->re_txg));
434 }
435 
436 const zio_vsd_ops_t vdev_raidz_vsd_ops = {
437 	.vsd_free = vdev_raidz_map_free_vsd,
438 };
439 
440 raidz_row_t *
vdev_raidz_row_alloc(int cols,zio_t * zio)441 vdev_raidz_row_alloc(int cols, zio_t *zio)
442 {
443 	raidz_row_t *rr =
444 	    kmem_zalloc(offsetof(raidz_row_t, rr_col[cols]), KM_SLEEP);
445 
446 	rr->rr_cols = cols;
447 	rr->rr_scols = cols;
448 
449 	for (int c = 0; c < cols; c++) {
450 		raidz_col_t *rc = &rr->rr_col[c];
451 		rc->rc_shadow_devidx = INT_MAX;
452 		rc->rc_shadow_offset = UINT64_MAX;
453 		/*
454 		 * We can not allow self healing to take place for Direct I/O
455 		 * reads. There is nothing that stops the buffer contents from
456 		 * being manipulated while the I/O is in flight. It is possible
457 		 * that the checksum could be verified on the buffer and then
458 		 * the contents of that buffer are manipulated afterwards. This
459 		 * could lead to bad data being written out during self
460 		 * healing.
461 		 */
462 		if (!(zio->io_flags & ZIO_FLAG_DIO_READ))
463 			rc->rc_allow_repair = 1;
464 	}
465 	return (rr);
466 }
467 
468 static void
vdev_raidz_map_alloc_write(zio_t * zio,raidz_map_t * rm,uint64_t ashift)469 vdev_raidz_map_alloc_write(zio_t *zio, raidz_map_t *rm, uint64_t ashift)
470 {
471 	int c;
472 	int nwrapped = 0;
473 	uint64_t off = 0;
474 	raidz_row_t *rr = rm->rm_row[0];
475 
476 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
477 	ASSERT3U(rm->rm_nrows, ==, 1);
478 
479 	/*
480 	 * Pad any parity columns with additional space to account for skip
481 	 * sectors.
482 	 */
483 	if (rm->rm_skipstart < rr->rr_firstdatacol) {
484 		ASSERT0(rm->rm_skipstart);
485 		nwrapped = rm->rm_nskip;
486 	} else if (rr->rr_scols < (rm->rm_skipstart + rm->rm_nskip)) {
487 		nwrapped =
488 		    (rm->rm_skipstart + rm->rm_nskip) % rr->rr_scols;
489 	}
490 
491 	/*
492 	 * Optional single skip sectors (rc_size == 0) will be handled in
493 	 * vdev_raidz_io_start_write().
494 	 */
495 	int skipped = rr->rr_scols - rr->rr_cols;
496 
497 	/* Allocate buffers for the parity columns */
498 	for (c = 0; c < rr->rr_firstdatacol; c++) {
499 		raidz_col_t *rc = &rr->rr_col[c];
500 
501 		/*
502 		 * Parity columns will pad out a linear ABD to account for
503 		 * the skip sector. A linear ABD is used here because
504 		 * parity calculations use the ABD buffer directly to calculate
505 		 * parity. This avoids doing a memcpy back to the ABD after the
506 		 * parity has been calculated. By issuing the parity column
507 		 * with the skip sector we can reduce contention on the child
508 		 * VDEV queue locks (vq_lock).
509 		 */
510 		if (c < nwrapped) {
511 			rc->rc_abd = abd_alloc_linear(
512 			    rc->rc_size + (1ULL << ashift), B_FALSE);
513 			abd_zero_off(rc->rc_abd, rc->rc_size, 1ULL << ashift);
514 			skipped++;
515 		} else {
516 			rc->rc_abd = abd_alloc_linear(rc->rc_size, B_FALSE);
517 		}
518 	}
519 
520 	for (off = 0; c < rr->rr_cols; c++) {
521 		raidz_col_t *rc = &rr->rr_col[c];
522 		abd_t *abd = abd_get_offset_struct(&rc->rc_abdstruct,
523 		    zio->io_abd, off, rc->rc_size);
524 
525 		/*
526 		 * Generate I/O for skip sectors to improve aggregation
527 		 * continuity. We will use gang ABD's to reduce contention
528 		 * on the child VDEV queue locks (vq_lock) by issuing
529 		 * a single I/O that contains the data and skip sector.
530 		 *
531 		 * It is important to make sure that rc_size is not updated
532 		 * even though we are adding a skip sector to the ABD. When
533 		 * calculating the parity in vdev_raidz_generate_parity_row()
534 		 * the rc_size is used to iterate through the ABD's. We can
535 		 * not have zero'd out skip sectors used for calculating
536 		 * parity for raidz, because those same sectors are not used
537 		 * during reconstruction.
538 		 */
539 		if (c >= rm->rm_skipstart && skipped < rm->rm_nskip) {
540 			rc->rc_abd = abd_alloc_gang();
541 			abd_gang_add(rc->rc_abd, abd, B_TRUE);
542 			abd_gang_add(rc->rc_abd,
543 			    abd_get_zeros(1ULL << ashift), B_TRUE);
544 			skipped++;
545 		} else {
546 			rc->rc_abd = abd;
547 		}
548 		off += rc->rc_size;
549 	}
550 
551 	ASSERT3U(off, ==, zio->io_size);
552 	ASSERT3S(skipped, ==, rm->rm_nskip);
553 }
554 
555 static void
vdev_raidz_map_alloc_read(zio_t * zio,raidz_map_t * rm)556 vdev_raidz_map_alloc_read(zio_t *zio, raidz_map_t *rm)
557 {
558 	int c;
559 	raidz_row_t *rr = rm->rm_row[0];
560 
561 	ASSERT3U(rm->rm_nrows, ==, 1);
562 
563 	/* Allocate buffers for the parity columns */
564 	for (c = 0; c < rr->rr_firstdatacol; c++)
565 		rr->rr_col[c].rc_abd =
566 		    abd_alloc_linear(rr->rr_col[c].rc_size, B_FALSE);
567 
568 	for (uint64_t off = 0; c < rr->rr_cols; c++) {
569 		raidz_col_t *rc = &rr->rr_col[c];
570 		rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct,
571 		    zio->io_abd, off, rc->rc_size);
572 		off += rc->rc_size;
573 	}
574 }
575 
576 /*
577  * Divides the IO evenly across all child vdevs; usually, dcols is
578  * the number of children in the target vdev.
579  *
580  * Avoid inlining the function to keep vdev_raidz_io_start(), which
581  * is this functions only caller, as small as possible on the stack.
582  */
583 noinline raidz_map_t *
vdev_raidz_map_alloc(zio_t * zio,uint64_t ashift,uint64_t dcols,uint64_t nparity)584 vdev_raidz_map_alloc(zio_t *zio, uint64_t ashift, uint64_t dcols,
585     uint64_t nparity)
586 {
587 	raidz_row_t *rr;
588 	/* The starting RAIDZ (parent) vdev sector of the block. */
589 	uint64_t b = zio->io_offset >> ashift;
590 	/* The zio's size in units of the vdev's minimum sector size. */
591 	uint64_t s = zio->io_size >> ashift;
592 	/* The first column for this stripe. */
593 	uint64_t f = b % dcols;
594 	/* The starting byte offset on each child vdev. */
595 	uint64_t o = (b / dcols) << ashift;
596 	uint64_t acols, scols;
597 
598 	raidz_map_t *rm =
599 	    kmem_zalloc(offsetof(raidz_map_t, rm_row[1]), KM_SLEEP);
600 	rm->rm_nrows = 1;
601 
602 	/*
603 	 * "Quotient": The number of data sectors for this stripe on all but
604 	 * the "big column" child vdevs that also contain "remainder" data.
605 	 */
606 	uint64_t q = s / (dcols - nparity);
607 
608 	/*
609 	 * "Remainder": The number of partial stripe data sectors in this I/O.
610 	 * This will add a sector to some, but not all, child vdevs.
611 	 */
612 	uint64_t r = s - q * (dcols - nparity);
613 
614 	/* The number of "big columns" - those which contain remainder data. */
615 	uint64_t bc = (r == 0 ? 0 : r + nparity);
616 
617 	/*
618 	 * The total number of data and parity sectors associated with
619 	 * this I/O.
620 	 */
621 	uint64_t tot = s + nparity * (q + (r == 0 ? 0 : 1));
622 
623 	/*
624 	 * acols: The columns that will be accessed.
625 	 * scols: The columns that will be accessed or skipped.
626 	 */
627 	if (q == 0) {
628 		/* Our I/O request doesn't span all child vdevs. */
629 		acols = bc;
630 		scols = MIN(dcols, roundup(bc, nparity + 1));
631 	} else {
632 		acols = dcols;
633 		scols = dcols;
634 	}
635 
636 	ASSERT3U(acols, <=, scols);
637 	rr = vdev_raidz_row_alloc(scols, zio);
638 	rm->rm_row[0] = rr;
639 	rr->rr_cols = acols;
640 	rr->rr_bigcols = bc;
641 	rr->rr_firstdatacol = nparity;
642 #ifdef ZFS_DEBUG
643 	rr->rr_offset = zio->io_offset;
644 	rr->rr_size = zio->io_size;
645 #endif
646 
647 	uint64_t asize = 0;
648 
649 	for (uint64_t c = 0; c < scols; c++) {
650 		raidz_col_t *rc = &rr->rr_col[c];
651 		uint64_t col = f + c;
652 		uint64_t coff = o;
653 		if (col >= dcols) {
654 			col -= dcols;
655 			coff += 1ULL << ashift;
656 		}
657 		rc->rc_devidx = col;
658 		rc->rc_offset = coff;
659 
660 		if (c >= acols)
661 			rc->rc_size = 0;
662 		else if (c < bc)
663 			rc->rc_size = (q + 1) << ashift;
664 		else
665 			rc->rc_size = q << ashift;
666 
667 		asize += rc->rc_size;
668 	}
669 
670 	ASSERT3U(asize, ==, tot << ashift);
671 	rm->rm_nskip = roundup(tot, nparity + 1) - tot;
672 	rm->rm_skipstart = bc;
673 
674 	/*
675 	 * If all data stored spans all columns, there's a danger that parity
676 	 * will always be on the same device and, since parity isn't read
677 	 * during normal operation, that device's I/O bandwidth won't be
678 	 * used effectively. We therefore switch the parity every 1MB.
679 	 *
680 	 * ... at least that was, ostensibly, the theory. As a practical
681 	 * matter unless we juggle the parity between all devices evenly, we
682 	 * won't see any benefit. Further, occasional writes that aren't a
683 	 * multiple of the LCM of the number of children and the minimum
684 	 * stripe width are sufficient to avoid pessimal behavior.
685 	 * Unfortunately, this decision created an implicit on-disk format
686 	 * requirement that we need to support for all eternity, but only
687 	 * for single-parity RAID-Z.
688 	 *
689 	 * If we intend to skip a sector in the zeroth column for padding
690 	 * we must make sure to note this swap. We will never intend to
691 	 * skip the first column since at least one data and one parity
692 	 * column must appear in each row.
693 	 */
694 	ASSERT(rr->rr_cols >= 2);
695 	ASSERT(rr->rr_col[0].rc_size == rr->rr_col[1].rc_size);
696 
697 	if (rr->rr_firstdatacol == 1 && (zio->io_offset & (1ULL << 20))) {
698 		uint64_t devidx = rr->rr_col[0].rc_devidx;
699 		o = rr->rr_col[0].rc_offset;
700 		rr->rr_col[0].rc_devidx = rr->rr_col[1].rc_devidx;
701 		rr->rr_col[0].rc_offset = rr->rr_col[1].rc_offset;
702 		rr->rr_col[1].rc_devidx = devidx;
703 		rr->rr_col[1].rc_offset = o;
704 		if (rm->rm_skipstart == 0)
705 			rm->rm_skipstart = 1;
706 	}
707 
708 	if (zio->io_type == ZIO_TYPE_WRITE) {
709 		vdev_raidz_map_alloc_write(zio, rm, ashift);
710 	} else {
711 		vdev_raidz_map_alloc_read(zio, rm);
712 	}
713 	/* init RAIDZ parity ops */
714 	rm->rm_ops = vdev_raidz_math_get_ops();
715 
716 	return (rm);
717 }
718 
719 /*
720  * Everything before reflow_offset_synced should have been moved to the new
721  * location (read and write completed).  However, this may not yet be reflected
722  * in the on-disk format (e.g. raidz_reflow_sync() has been called but the
723  * uberblock has not yet been written). If reflow is not in progress,
724  * reflow_offset_synced should be UINT64_MAX. For each row, if the row is
725  * entirely before reflow_offset_synced, it will come from the new location.
726  * Otherwise this row will come from the old location.  Therefore, rows that
727  * straddle the reflow_offset_synced will come from the old location.
728  *
729  * For writes, reflow_offset_next is the next offset to copy.  If a sector has
730  * been copied, but not yet reflected in the on-disk progress
731  * (reflow_offset_synced), it will also be written to the new (already copied)
732  * offset.
733  */
734 noinline raidz_map_t *
vdev_raidz_map_alloc_expanded(zio_t * zio,uint64_t ashift,uint64_t physical_cols,uint64_t logical_cols,uint64_t nparity,uint64_t reflow_offset_synced,uint64_t reflow_offset_next,boolean_t use_scratch)735 vdev_raidz_map_alloc_expanded(zio_t *zio,
736     uint64_t ashift, uint64_t physical_cols, uint64_t logical_cols,
737     uint64_t nparity, uint64_t reflow_offset_synced,
738     uint64_t reflow_offset_next, boolean_t use_scratch)
739 {
740 	abd_t *abd = zio->io_abd;
741 	uint64_t offset = zio->io_offset;
742 	uint64_t size = zio->io_size;
743 
744 	/* The zio's size in units of the vdev's minimum sector size. */
745 	uint64_t s = size >> ashift;
746 
747 	/*
748 	 * "Quotient": The number of data sectors for this stripe on all but
749 	 * the "big column" child vdevs that also contain "remainder" data.
750 	 * AKA "full rows"
751 	 */
752 	uint64_t q = s / (logical_cols - nparity);
753 
754 	/*
755 	 * "Remainder": The number of partial stripe data sectors in this I/O.
756 	 * This will add a sector to some, but not all, child vdevs.
757 	 */
758 	uint64_t r = s - q * (logical_cols - nparity);
759 
760 	/* The number of "big columns" - those which contain remainder data. */
761 	uint64_t bc = (r == 0 ? 0 : r + nparity);
762 
763 	/*
764 	 * The total number of data and parity sectors associated with
765 	 * this I/O.
766 	 */
767 	uint64_t tot = s + nparity * (q + (r == 0 ? 0 : 1));
768 
769 	/* How many rows contain data (not skip) */
770 	uint64_t rows = howmany(tot, logical_cols);
771 	int cols = MIN(tot, logical_cols);
772 
773 	raidz_map_t *rm =
774 	    kmem_zalloc(offsetof(raidz_map_t, rm_row[rows]),
775 	    KM_SLEEP);
776 	rm->rm_nrows = rows;
777 	rm->rm_nskip = roundup(tot, nparity + 1) - tot;
778 	rm->rm_skipstart = bc;
779 	uint64_t asize = 0;
780 
781 	for (uint64_t row = 0; row < rows; row++) {
782 		boolean_t row_use_scratch = B_FALSE;
783 		raidz_row_t *rr = vdev_raidz_row_alloc(cols, zio);
784 		rm->rm_row[row] = rr;
785 
786 		/* The starting RAIDZ (parent) vdev sector of the row. */
787 		uint64_t b = (offset >> ashift) + row * logical_cols;
788 
789 		/*
790 		 * If we are in the middle of a reflow, and the copying has
791 		 * not yet completed for any part of this row, then use the
792 		 * old location of this row.  Note that reflow_offset_synced
793 		 * reflects the i/o that's been completed, because it's
794 		 * updated by a synctask, after zio_wait(spa_txg_zio[]).
795 		 * This is sufficient for our check, even if that progress
796 		 * has not yet been recorded to disk (reflected in
797 		 * spa_ubsync).  Also note that we consider the last row to
798 		 * be "full width" (`cols`-wide rather than `bc`-wide) for
799 		 * this calculation. This causes a tiny bit of unnecessary
800 		 * double-writes but is safe and simpler to calculate.
801 		 */
802 		int row_phys_cols = physical_cols;
803 		if (b + cols > reflow_offset_synced >> ashift)
804 			row_phys_cols--;
805 		else if (use_scratch)
806 			row_use_scratch = B_TRUE;
807 
808 		/* starting child of this row */
809 		uint64_t child_id = b % row_phys_cols;
810 		/* The starting byte offset on each child vdev. */
811 		uint64_t child_offset = (b / row_phys_cols) << ashift;
812 
813 		/*
814 		 * Note, rr_cols is the entire width of the block, even
815 		 * if this row is shorter.  This is needed because parity
816 		 * generation (for Q and R) needs to know the entire width,
817 		 * because it treats the short row as though it was
818 		 * full-width (and the "phantom" sectors were zero-filled).
819 		 *
820 		 * Another approach to this would be to set cols shorter
821 		 * (to just the number of columns that we might do i/o to)
822 		 * and have another mechanism to tell the parity generation
823 		 * about the "entire width".  Reconstruction (at least
824 		 * vdev_raidz_reconstruct_general()) would also need to
825 		 * know about the "entire width".
826 		 */
827 		rr->rr_firstdatacol = nparity;
828 #ifdef ZFS_DEBUG
829 		/*
830 		 * note: rr_size is PSIZE, not ASIZE
831 		 */
832 		rr->rr_offset = b << ashift;
833 		rr->rr_size = (rr->rr_cols - rr->rr_firstdatacol) << ashift;
834 #endif
835 
836 		for (int c = 0; c < rr->rr_cols; c++, child_id++) {
837 			if (child_id >= row_phys_cols) {
838 				child_id -= row_phys_cols;
839 				child_offset += 1ULL << ashift;
840 			}
841 			raidz_col_t *rc = &rr->rr_col[c];
842 			rc->rc_devidx = child_id;
843 			rc->rc_offset = child_offset;
844 
845 			/*
846 			 * Get this from the scratch space if appropriate.
847 			 * This only happens if we crashed in the middle of
848 			 * raidz_reflow_scratch_sync() (while it's running,
849 			 * the rangelock prevents us from doing concurrent
850 			 * io), and even then only during zpool import or
851 			 * when the pool is imported readonly.
852 			 */
853 			if (row_use_scratch)
854 				rc->rc_offset -= VDEV_BOOT_SIZE;
855 
856 			uint64_t dc = c - rr->rr_firstdatacol;
857 			if (c < rr->rr_firstdatacol) {
858 				rc->rc_size = 1ULL << ashift;
859 
860 				/*
861 				 * Parity sectors' rc_abd's are set below
862 				 * after determining if this is an aggregation.
863 				 */
864 			} else if (row == rows - 1 && bc != 0 && c >= bc) {
865 				/*
866 				 * Past the end of the block (even including
867 				 * skip sectors).  This sector is part of the
868 				 * map so that we have full rows for p/q parity
869 				 * generation.
870 				 */
871 				rc->rc_size = 0;
872 				rc->rc_abd = NULL;
873 			} else {
874 				/* "data column" (col excluding parity) */
875 				uint64_t off;
876 
877 				if (c < bc || r == 0) {
878 					off = dc * rows + row;
879 				} else {
880 					off = r * rows +
881 					    (dc - r) * (rows - 1) + row;
882 				}
883 				rc->rc_size = 1ULL << ashift;
884 				rc->rc_abd = abd_get_offset_struct(
885 				    &rc->rc_abdstruct, abd, off << ashift,
886 				    rc->rc_size);
887 			}
888 
889 			if (rc->rc_size == 0)
890 				continue;
891 
892 			/*
893 			 * If any part of this row is in both old and new
894 			 * locations, the primary location is the old
895 			 * location. If this sector was already copied to the
896 			 * new location, we need to also write to the new,
897 			 * "shadow" location.
898 			 *
899 			 * Note, `row_phys_cols != physical_cols` indicates
900 			 * that the primary location is the old location.
901 			 * `b+c < reflow_offset_next` indicates that the copy
902 			 * to the new location has been initiated. We know
903 			 * that the copy has completed because we have the
904 			 * rangelock, which is held exclusively while the
905 			 * copy is in progress.
906 			 */
907 			if (row_use_scratch ||
908 			    (row_phys_cols != physical_cols &&
909 			    b + c < reflow_offset_next >> ashift)) {
910 				rc->rc_shadow_devidx = (b + c) % physical_cols;
911 				rc->rc_shadow_offset =
912 				    ((b + c) / physical_cols) << ashift;
913 				if (row_use_scratch)
914 					rc->rc_shadow_offset -= VDEV_BOOT_SIZE;
915 			}
916 
917 			asize += rc->rc_size;
918 		}
919 
920 		/*
921 		 * See comment in vdev_raidz_map_alloc()
922 		 */
923 		if (rr->rr_firstdatacol == 1 && rr->rr_cols > 1 &&
924 		    (offset & (1ULL << 20))) {
925 			ASSERT(rr->rr_cols >= 2);
926 			ASSERT(rr->rr_col[0].rc_size == rr->rr_col[1].rc_size);
927 
928 			int devidx0 = rr->rr_col[0].rc_devidx;
929 			uint64_t offset0 = rr->rr_col[0].rc_offset;
930 			int shadow_devidx0 = rr->rr_col[0].rc_shadow_devidx;
931 			uint64_t shadow_offset0 =
932 			    rr->rr_col[0].rc_shadow_offset;
933 
934 			rr->rr_col[0].rc_devidx = rr->rr_col[1].rc_devidx;
935 			rr->rr_col[0].rc_offset = rr->rr_col[1].rc_offset;
936 			rr->rr_col[0].rc_shadow_devidx =
937 			    rr->rr_col[1].rc_shadow_devidx;
938 			rr->rr_col[0].rc_shadow_offset =
939 			    rr->rr_col[1].rc_shadow_offset;
940 
941 			rr->rr_col[1].rc_devidx = devidx0;
942 			rr->rr_col[1].rc_offset = offset0;
943 			rr->rr_col[1].rc_shadow_devidx = shadow_devidx0;
944 			rr->rr_col[1].rc_shadow_offset = shadow_offset0;
945 		}
946 	}
947 	ASSERT3U(asize, ==, tot << ashift);
948 
949 	/*
950 	 * Determine if the block is contiguous, in which case we can use
951 	 * an aggregation.
952 	 */
953 	if (rows >= raidz_io_aggregate_rows) {
954 		rm->rm_nphys_cols = physical_cols;
955 		rm->rm_phys_col =
956 		    kmem_zalloc(sizeof (raidz_col_t) * rm->rm_nphys_cols,
957 		    KM_SLEEP);
958 
959 		/*
960 		 * Determine the aggregate io's offset and size, and check
961 		 * that the io is contiguous.
962 		 */
963 		for (int i = 0;
964 		    i < rm->rm_nrows && rm->rm_phys_col != NULL; i++) {
965 			raidz_row_t *rr = rm->rm_row[i];
966 			for (int c = 0; c < rr->rr_cols; c++) {
967 				raidz_col_t *rc = &rr->rr_col[c];
968 				raidz_col_t *prc =
969 				    &rm->rm_phys_col[rc->rc_devidx];
970 
971 				if (rc->rc_size == 0)
972 					continue;
973 
974 				if (prc->rc_size == 0) {
975 					ASSERT0(prc->rc_offset);
976 					prc->rc_offset = rc->rc_offset;
977 				} else if (prc->rc_offset + prc->rc_size !=
978 				    rc->rc_offset) {
979 					/*
980 					 * This block is not contiguous and
981 					 * therefore can't be aggregated.
982 					 * This is expected to be rare, so
983 					 * the cost of allocating and then
984 					 * freeing rm_phys_col is not
985 					 * significant.
986 					 */
987 					kmem_free(rm->rm_phys_col,
988 					    sizeof (raidz_col_t) *
989 					    rm->rm_nphys_cols);
990 					rm->rm_phys_col = NULL;
991 					rm->rm_nphys_cols = 0;
992 					break;
993 				}
994 				prc->rc_size += rc->rc_size;
995 			}
996 		}
997 	}
998 	if (rm->rm_phys_col != NULL) {
999 		/*
1000 		 * Allocate aggregate ABD's.
1001 		 */
1002 		for (int i = 0; i < rm->rm_nphys_cols; i++) {
1003 			raidz_col_t *prc = &rm->rm_phys_col[i];
1004 
1005 			prc->rc_devidx = i;
1006 
1007 			if (prc->rc_size == 0)
1008 				continue;
1009 
1010 			prc->rc_abd =
1011 			    abd_alloc_linear(rm->rm_phys_col[i].rc_size,
1012 			    B_FALSE);
1013 		}
1014 
1015 		/*
1016 		 * Point the parity abd's into the aggregate abd's.
1017 		 */
1018 		for (int i = 0; i < rm->rm_nrows; i++) {
1019 			raidz_row_t *rr = rm->rm_row[i];
1020 			for (int c = 0; c < rr->rr_firstdatacol; c++) {
1021 				raidz_col_t *rc = &rr->rr_col[c];
1022 				raidz_col_t *prc =
1023 				    &rm->rm_phys_col[rc->rc_devidx];
1024 				rc->rc_abd =
1025 				    abd_get_offset_struct(&rc->rc_abdstruct,
1026 				    prc->rc_abd,
1027 				    rc->rc_offset - prc->rc_offset,
1028 				    rc->rc_size);
1029 			}
1030 		}
1031 	} else {
1032 		/*
1033 		 * Allocate new abd's for the parity sectors.
1034 		 */
1035 		for (int i = 0; i < rm->rm_nrows; i++) {
1036 			raidz_row_t *rr = rm->rm_row[i];
1037 			for (int c = 0; c < rr->rr_firstdatacol; c++) {
1038 				raidz_col_t *rc = &rr->rr_col[c];
1039 				rc->rc_abd =
1040 				    abd_alloc_linear(rc->rc_size,
1041 				    B_TRUE);
1042 			}
1043 		}
1044 	}
1045 	/* init RAIDZ parity ops */
1046 	rm->rm_ops = vdev_raidz_math_get_ops();
1047 
1048 	return (rm);
1049 }
1050 
1051 struct pqr_struct {
1052 	uint64_t *p;
1053 	uint64_t *q;
1054 	uint64_t *r;
1055 };
1056 
1057 static int
vdev_raidz_p_func(void * buf,size_t size,void * private)1058 vdev_raidz_p_func(void *buf, size_t size, void *private)
1059 {
1060 	struct pqr_struct *pqr = private;
1061 	const uint64_t *src = buf;
1062 	int cnt = size / sizeof (src[0]);
1063 
1064 	ASSERT(pqr->p && !pqr->q && !pqr->r);
1065 
1066 	for (int i = 0; i < cnt; i++, src++, pqr->p++)
1067 		*pqr->p ^= *src;
1068 
1069 	return (0);
1070 }
1071 
1072 static int
vdev_raidz_pq_func(void * buf,size_t size,void * private)1073 vdev_raidz_pq_func(void *buf, size_t size, void *private)
1074 {
1075 	struct pqr_struct *pqr = private;
1076 	const uint64_t *src = buf;
1077 	uint64_t mask;
1078 	int cnt = size / sizeof (src[0]);
1079 
1080 	ASSERT(pqr->p && pqr->q && !pqr->r);
1081 
1082 	for (int i = 0; i < cnt; i++, src++, pqr->p++, pqr->q++) {
1083 		*pqr->p ^= *src;
1084 		VDEV_RAIDZ_64MUL_2(*pqr->q, mask);
1085 		*pqr->q ^= *src;
1086 	}
1087 
1088 	return (0);
1089 }
1090 
1091 static int
vdev_raidz_pqr_func(void * buf,size_t size,void * private)1092 vdev_raidz_pqr_func(void *buf, size_t size, void *private)
1093 {
1094 	struct pqr_struct *pqr = private;
1095 	const uint64_t *src = buf;
1096 	uint64_t mask;
1097 	int cnt = size / sizeof (src[0]);
1098 
1099 	ASSERT(pqr->p && pqr->q && pqr->r);
1100 
1101 	for (int i = 0; i < cnt; i++, src++, pqr->p++, pqr->q++, pqr->r++) {
1102 		*pqr->p ^= *src;
1103 		VDEV_RAIDZ_64MUL_2(*pqr->q, mask);
1104 		*pqr->q ^= *src;
1105 		VDEV_RAIDZ_64MUL_4(*pqr->r, mask);
1106 		*pqr->r ^= *src;
1107 	}
1108 
1109 	return (0);
1110 }
1111 
1112 static void
vdev_raidz_generate_parity_p(raidz_row_t * rr)1113 vdev_raidz_generate_parity_p(raidz_row_t *rr)
1114 {
1115 	uint64_t *p = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
1116 
1117 	for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
1118 		abd_t *src = rr->rr_col[c].rc_abd;
1119 
1120 		if (c == rr->rr_firstdatacol) {
1121 			abd_copy_to_buf(p, src, rr->rr_col[c].rc_size);
1122 		} else {
1123 			struct pqr_struct pqr = { p, NULL, NULL };
1124 			(void) abd_iterate_func(src, 0, rr->rr_col[c].rc_size,
1125 			    vdev_raidz_p_func, &pqr);
1126 		}
1127 	}
1128 }
1129 
1130 static void
vdev_raidz_generate_parity_pq(raidz_row_t * rr)1131 vdev_raidz_generate_parity_pq(raidz_row_t *rr)
1132 {
1133 	uint64_t *p = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
1134 	uint64_t *q = abd_to_buf(rr->rr_col[VDEV_RAIDZ_Q].rc_abd);
1135 	uint64_t pcnt = rr->rr_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]);
1136 	ASSERT(rr->rr_col[VDEV_RAIDZ_P].rc_size ==
1137 	    rr->rr_col[VDEV_RAIDZ_Q].rc_size);
1138 
1139 	for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
1140 		abd_t *src = rr->rr_col[c].rc_abd;
1141 
1142 		uint64_t ccnt = rr->rr_col[c].rc_size / sizeof (p[0]);
1143 
1144 		if (c == rr->rr_firstdatacol) {
1145 			ASSERT(ccnt == pcnt || ccnt == 0);
1146 			abd_copy_to_buf(p, src, rr->rr_col[c].rc_size);
1147 			(void) memcpy(q, p, rr->rr_col[c].rc_size);
1148 
1149 			for (uint64_t i = ccnt; i < pcnt; i++) {
1150 				p[i] = 0;
1151 				q[i] = 0;
1152 			}
1153 		} else {
1154 			struct pqr_struct pqr = { p, q, NULL };
1155 
1156 			ASSERT(ccnt <= pcnt);
1157 			(void) abd_iterate_func(src, 0, rr->rr_col[c].rc_size,
1158 			    vdev_raidz_pq_func, &pqr);
1159 
1160 			/*
1161 			 * Treat short columns as though they are full of 0s.
1162 			 * Note that there's therefore nothing needed for P.
1163 			 */
1164 			uint64_t mask;
1165 			for (uint64_t i = ccnt; i < pcnt; i++) {
1166 				VDEV_RAIDZ_64MUL_2(q[i], mask);
1167 			}
1168 		}
1169 	}
1170 }
1171 
1172 static void
vdev_raidz_generate_parity_pqr(raidz_row_t * rr)1173 vdev_raidz_generate_parity_pqr(raidz_row_t *rr)
1174 {
1175 	uint64_t *p = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
1176 	uint64_t *q = abd_to_buf(rr->rr_col[VDEV_RAIDZ_Q].rc_abd);
1177 	uint64_t *r = abd_to_buf(rr->rr_col[VDEV_RAIDZ_R].rc_abd);
1178 	uint64_t pcnt = rr->rr_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]);
1179 	ASSERT(rr->rr_col[VDEV_RAIDZ_P].rc_size ==
1180 	    rr->rr_col[VDEV_RAIDZ_Q].rc_size);
1181 	ASSERT(rr->rr_col[VDEV_RAIDZ_P].rc_size ==
1182 	    rr->rr_col[VDEV_RAIDZ_R].rc_size);
1183 
1184 	for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
1185 		abd_t *src = rr->rr_col[c].rc_abd;
1186 
1187 		uint64_t ccnt = rr->rr_col[c].rc_size / sizeof (p[0]);
1188 
1189 		if (c == rr->rr_firstdatacol) {
1190 			ASSERT(ccnt == pcnt || ccnt == 0);
1191 			abd_copy_to_buf(p, src, rr->rr_col[c].rc_size);
1192 			(void) memcpy(q, p, rr->rr_col[c].rc_size);
1193 			(void) memcpy(r, p, rr->rr_col[c].rc_size);
1194 
1195 			for (uint64_t i = ccnt; i < pcnt; i++) {
1196 				p[i] = 0;
1197 				q[i] = 0;
1198 				r[i] = 0;
1199 			}
1200 		} else {
1201 			struct pqr_struct pqr = { p, q, r };
1202 
1203 			ASSERT(ccnt <= pcnt);
1204 			(void) abd_iterate_func(src, 0, rr->rr_col[c].rc_size,
1205 			    vdev_raidz_pqr_func, &pqr);
1206 
1207 			/*
1208 			 * Treat short columns as though they are full of 0s.
1209 			 * Note that there's therefore nothing needed for P.
1210 			 */
1211 			uint64_t mask;
1212 			for (uint64_t i = ccnt; i < pcnt; i++) {
1213 				VDEV_RAIDZ_64MUL_2(q[i], mask);
1214 				VDEV_RAIDZ_64MUL_4(r[i], mask);
1215 			}
1216 		}
1217 	}
1218 }
1219 
1220 /*
1221  * Generate RAID parity in the first virtual columns according to the number of
1222  * parity columns available.
1223  */
1224 void
vdev_raidz_generate_parity_row(raidz_map_t * rm,raidz_row_t * rr)1225 vdev_raidz_generate_parity_row(raidz_map_t *rm, raidz_row_t *rr)
1226 {
1227 	if (rr->rr_cols == 0) {
1228 		/*
1229 		 * We are handling this block one row at a time (because
1230 		 * this block has a different logical vs physical width,
1231 		 * due to RAIDZ expansion), and this is a pad-only row,
1232 		 * which has no parity.
1233 		 */
1234 		return;
1235 	}
1236 
1237 	/* Generate using the new math implementation */
1238 	if (vdev_raidz_math_generate(rm, rr) != RAIDZ_ORIGINAL_IMPL)
1239 		return;
1240 
1241 	switch (rr->rr_firstdatacol) {
1242 	case 1:
1243 		vdev_raidz_generate_parity_p(rr);
1244 		break;
1245 	case 2:
1246 		vdev_raidz_generate_parity_pq(rr);
1247 		break;
1248 	case 3:
1249 		vdev_raidz_generate_parity_pqr(rr);
1250 		break;
1251 	default:
1252 		cmn_err(CE_PANIC, "invalid RAID-Z configuration");
1253 	}
1254 }
1255 
1256 void
vdev_raidz_generate_parity(raidz_map_t * rm)1257 vdev_raidz_generate_parity(raidz_map_t *rm)
1258 {
1259 	for (int i = 0; i < rm->rm_nrows; i++) {
1260 		raidz_row_t *rr = rm->rm_row[i];
1261 		vdev_raidz_generate_parity_row(rm, rr);
1262 	}
1263 }
1264 
1265 static int
vdev_raidz_reconst_p_func(void * dbuf,void * sbuf,size_t size,void * private)1266 vdev_raidz_reconst_p_func(void *dbuf, void *sbuf, size_t size, void *private)
1267 {
1268 	(void) private;
1269 	uint64_t *dst = dbuf;
1270 	uint64_t *src = sbuf;
1271 	int cnt = size / sizeof (src[0]);
1272 
1273 	for (int i = 0; i < cnt; i++) {
1274 		dst[i] ^= src[i];
1275 	}
1276 
1277 	return (0);
1278 }
1279 
1280 static int
vdev_raidz_reconst_q_pre_func(void * dbuf,void * sbuf,size_t size,void * private)1281 vdev_raidz_reconst_q_pre_func(void *dbuf, void *sbuf, size_t size,
1282     void *private)
1283 {
1284 	(void) private;
1285 	uint64_t *dst = dbuf;
1286 	uint64_t *src = sbuf;
1287 	uint64_t mask;
1288 	int cnt = size / sizeof (dst[0]);
1289 
1290 	for (int i = 0; i < cnt; i++, dst++, src++) {
1291 		VDEV_RAIDZ_64MUL_2(*dst, mask);
1292 		*dst ^= *src;
1293 	}
1294 
1295 	return (0);
1296 }
1297 
1298 static int
vdev_raidz_reconst_q_pre_tail_func(void * buf,size_t size,void * private)1299 vdev_raidz_reconst_q_pre_tail_func(void *buf, size_t size, void *private)
1300 {
1301 	(void) private;
1302 	uint64_t *dst = buf;
1303 	uint64_t mask;
1304 	int cnt = size / sizeof (dst[0]);
1305 
1306 	for (int i = 0; i < cnt; i++, dst++) {
1307 		/* same operation as vdev_raidz_reconst_q_pre_func() on dst */
1308 		VDEV_RAIDZ_64MUL_2(*dst, mask);
1309 	}
1310 
1311 	return (0);
1312 }
1313 
1314 struct reconst_q_struct {
1315 	uint64_t *q;
1316 	int exp;
1317 };
1318 
1319 static int
vdev_raidz_reconst_q_post_func(void * buf,size_t size,void * private)1320 vdev_raidz_reconst_q_post_func(void *buf, size_t size, void *private)
1321 {
1322 	struct reconst_q_struct *rq = private;
1323 	uint64_t *dst = buf;
1324 	int cnt = size / sizeof (dst[0]);
1325 
1326 	for (int i = 0; i < cnt; i++, dst++, rq->q++) {
1327 		int j;
1328 		uint8_t *b;
1329 
1330 		*dst ^= *rq->q;
1331 		for (j = 0, b = (uint8_t *)dst; j < 8; j++, b++) {
1332 			*b = vdev_raidz_exp2(*b, rq->exp);
1333 		}
1334 	}
1335 
1336 	return (0);
1337 }
1338 
1339 struct reconst_pq_struct {
1340 	uint8_t *p;
1341 	uint8_t *q;
1342 	uint8_t *pxy;
1343 	uint8_t *qxy;
1344 	int aexp;
1345 	int bexp;
1346 };
1347 
1348 static int
vdev_raidz_reconst_pq_func(void * xbuf,void * ybuf,size_t size,void * private)1349 vdev_raidz_reconst_pq_func(void *xbuf, void *ybuf, size_t size, void *private)
1350 {
1351 	struct reconst_pq_struct *rpq = private;
1352 	uint8_t *xd = xbuf;
1353 	uint8_t *yd = ybuf;
1354 
1355 	for (int i = 0; i < size;
1356 	    i++, rpq->p++, rpq->q++, rpq->pxy++, rpq->qxy++, xd++, yd++) {
1357 		*xd = vdev_raidz_exp2(*rpq->p ^ *rpq->pxy, rpq->aexp) ^
1358 		    vdev_raidz_exp2(*rpq->q ^ *rpq->qxy, rpq->bexp);
1359 		*yd = *rpq->p ^ *rpq->pxy ^ *xd;
1360 	}
1361 
1362 	return (0);
1363 }
1364 
1365 static int
vdev_raidz_reconst_pq_tail_func(void * xbuf,size_t size,void * private)1366 vdev_raidz_reconst_pq_tail_func(void *xbuf, size_t size, void *private)
1367 {
1368 	struct reconst_pq_struct *rpq = private;
1369 	uint8_t *xd = xbuf;
1370 
1371 	for (int i = 0; i < size;
1372 	    i++, rpq->p++, rpq->q++, rpq->pxy++, rpq->qxy++, xd++) {
1373 		/* same operation as vdev_raidz_reconst_pq_func() on xd */
1374 		*xd = vdev_raidz_exp2(*rpq->p ^ *rpq->pxy, rpq->aexp) ^
1375 		    vdev_raidz_exp2(*rpq->q ^ *rpq->qxy, rpq->bexp);
1376 	}
1377 
1378 	return (0);
1379 }
1380 
1381 static void
vdev_raidz_reconstruct_p(raidz_row_t * rr,int * tgts,int ntgts)1382 vdev_raidz_reconstruct_p(raidz_row_t *rr, int *tgts, int ntgts)
1383 {
1384 	int x = tgts[0];
1385 	abd_t *dst, *src;
1386 
1387 	if (zfs_flags & ZFS_DEBUG_RAIDZ_RECONSTRUCT)
1388 		zfs_dbgmsg("reconstruct_p(rm=%px x=%u)", rr, x);
1389 
1390 	ASSERT3U(ntgts, ==, 1);
1391 	ASSERT3U(x, >=, rr->rr_firstdatacol);
1392 	ASSERT3U(x, <, rr->rr_cols);
1393 
1394 	ASSERT3U(rr->rr_col[x].rc_size, <=, rr->rr_col[VDEV_RAIDZ_P].rc_size);
1395 
1396 	src = rr->rr_col[VDEV_RAIDZ_P].rc_abd;
1397 	dst = rr->rr_col[x].rc_abd;
1398 
1399 	abd_copy_from_buf(dst, abd_to_buf(src), rr->rr_col[x].rc_size);
1400 
1401 	for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
1402 		uint64_t size = MIN(rr->rr_col[x].rc_size,
1403 		    rr->rr_col[c].rc_size);
1404 
1405 		src = rr->rr_col[c].rc_abd;
1406 
1407 		if (c == x)
1408 			continue;
1409 
1410 		(void) abd_iterate_func2(dst, src, 0, 0, size,
1411 		    vdev_raidz_reconst_p_func, NULL);
1412 	}
1413 }
1414 
1415 static void
vdev_raidz_reconstruct_q(raidz_row_t * rr,int * tgts,int ntgts)1416 vdev_raidz_reconstruct_q(raidz_row_t *rr, int *tgts, int ntgts)
1417 {
1418 	int x = tgts[0];
1419 	int c, exp;
1420 	abd_t *dst, *src;
1421 
1422 	if (zfs_flags & ZFS_DEBUG_RAIDZ_RECONSTRUCT)
1423 		zfs_dbgmsg("reconstruct_q(rm=%px x=%u)", rr, x);
1424 
1425 	ASSERT(ntgts == 1);
1426 
1427 	ASSERT(rr->rr_col[x].rc_size <= rr->rr_col[VDEV_RAIDZ_Q].rc_size);
1428 
1429 	for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
1430 		uint64_t size = (c == x) ? 0 : MIN(rr->rr_col[x].rc_size,
1431 		    rr->rr_col[c].rc_size);
1432 
1433 		src = rr->rr_col[c].rc_abd;
1434 		dst = rr->rr_col[x].rc_abd;
1435 
1436 		if (c == rr->rr_firstdatacol) {
1437 			abd_copy(dst, src, size);
1438 			if (rr->rr_col[x].rc_size > size) {
1439 				abd_zero_off(dst, size,
1440 				    rr->rr_col[x].rc_size - size);
1441 			}
1442 		} else {
1443 			ASSERT3U(size, <=, rr->rr_col[x].rc_size);
1444 			(void) abd_iterate_func2(dst, src, 0, 0, size,
1445 			    vdev_raidz_reconst_q_pre_func, NULL);
1446 			(void) abd_iterate_func(dst,
1447 			    size, rr->rr_col[x].rc_size - size,
1448 			    vdev_raidz_reconst_q_pre_tail_func, NULL);
1449 		}
1450 	}
1451 
1452 	src = rr->rr_col[VDEV_RAIDZ_Q].rc_abd;
1453 	dst = rr->rr_col[x].rc_abd;
1454 	exp = 255 - (rr->rr_cols - 1 - x);
1455 
1456 	struct reconst_q_struct rq = { abd_to_buf(src), exp };
1457 	(void) abd_iterate_func(dst, 0, rr->rr_col[x].rc_size,
1458 	    vdev_raidz_reconst_q_post_func, &rq);
1459 }
1460 
1461 static void
vdev_raidz_reconstruct_pq(raidz_row_t * rr,int * tgts,int ntgts)1462 vdev_raidz_reconstruct_pq(raidz_row_t *rr, int *tgts, int ntgts)
1463 {
1464 	uint8_t *p, *q, *pxy, *qxy, tmp, a, b, aexp, bexp;
1465 	abd_t *pdata, *qdata;
1466 	uint64_t xsize, ysize;
1467 	int x = tgts[0];
1468 	int y = tgts[1];
1469 	abd_t *xd, *yd;
1470 
1471 	if (zfs_flags & ZFS_DEBUG_RAIDZ_RECONSTRUCT)
1472 		zfs_dbgmsg("reconstruct_pq(rm=%px x=%u y=%u)", rr, x, y);
1473 
1474 	ASSERT(ntgts == 2);
1475 	ASSERT(x < y);
1476 	ASSERT(x >= rr->rr_firstdatacol);
1477 	ASSERT(y < rr->rr_cols);
1478 
1479 	ASSERT(rr->rr_col[x].rc_size >= rr->rr_col[y].rc_size);
1480 
1481 	/*
1482 	 * Move the parity data aside -- we're going to compute parity as
1483 	 * though columns x and y were full of zeros -- Pxy and Qxy. We want to
1484 	 * reuse the parity generation mechanism without trashing the actual
1485 	 * parity so we make those columns appear to be full of zeros by
1486 	 * setting their lengths to zero.
1487 	 */
1488 	pdata = rr->rr_col[VDEV_RAIDZ_P].rc_abd;
1489 	qdata = rr->rr_col[VDEV_RAIDZ_Q].rc_abd;
1490 	xsize = rr->rr_col[x].rc_size;
1491 	ysize = rr->rr_col[y].rc_size;
1492 
1493 	rr->rr_col[VDEV_RAIDZ_P].rc_abd =
1494 	    abd_alloc_linear(rr->rr_col[VDEV_RAIDZ_P].rc_size, B_TRUE);
1495 	rr->rr_col[VDEV_RAIDZ_Q].rc_abd =
1496 	    abd_alloc_linear(rr->rr_col[VDEV_RAIDZ_Q].rc_size, B_TRUE);
1497 	rr->rr_col[x].rc_size = 0;
1498 	rr->rr_col[y].rc_size = 0;
1499 
1500 	vdev_raidz_generate_parity_pq(rr);
1501 
1502 	rr->rr_col[x].rc_size = xsize;
1503 	rr->rr_col[y].rc_size = ysize;
1504 
1505 	p = abd_to_buf(pdata);
1506 	q = abd_to_buf(qdata);
1507 	pxy = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
1508 	qxy = abd_to_buf(rr->rr_col[VDEV_RAIDZ_Q].rc_abd);
1509 	xd = rr->rr_col[x].rc_abd;
1510 	yd = rr->rr_col[y].rc_abd;
1511 
1512 	/*
1513 	 * We now have:
1514 	 *	Pxy = P + D_x + D_y
1515 	 *	Qxy = Q + 2^(ndevs - 1 - x) * D_x + 2^(ndevs - 1 - y) * D_y
1516 	 *
1517 	 * We can then solve for D_x:
1518 	 *	D_x = A * (P + Pxy) + B * (Q + Qxy)
1519 	 * where
1520 	 *	A = 2^(x - y) * (2^(x - y) + 1)^-1
1521 	 *	B = 2^(ndevs - 1 - x) * (2^(x - y) + 1)^-1
1522 	 *
1523 	 * With D_x in hand, we can easily solve for D_y:
1524 	 *	D_y = P + Pxy + D_x
1525 	 */
1526 
1527 	a = vdev_raidz_pow2[255 + x - y];
1528 	b = vdev_raidz_pow2[255 - (rr->rr_cols - 1 - x)];
1529 	tmp = 255 - vdev_raidz_log2[a ^ 1];
1530 
1531 	aexp = vdev_raidz_log2[vdev_raidz_exp2(a, tmp)];
1532 	bexp = vdev_raidz_log2[vdev_raidz_exp2(b, tmp)];
1533 
1534 	ASSERT3U(xsize, >=, ysize);
1535 	struct reconst_pq_struct rpq = { p, q, pxy, qxy, aexp, bexp };
1536 
1537 	(void) abd_iterate_func2(xd, yd, 0, 0, ysize,
1538 	    vdev_raidz_reconst_pq_func, &rpq);
1539 	(void) abd_iterate_func(xd, ysize, xsize - ysize,
1540 	    vdev_raidz_reconst_pq_tail_func, &rpq);
1541 
1542 	abd_free(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
1543 	abd_free(rr->rr_col[VDEV_RAIDZ_Q].rc_abd);
1544 
1545 	/*
1546 	 * Restore the saved parity data.
1547 	 */
1548 	rr->rr_col[VDEV_RAIDZ_P].rc_abd = pdata;
1549 	rr->rr_col[VDEV_RAIDZ_Q].rc_abd = qdata;
1550 }
1551 
1552 /*
1553  * In the general case of reconstruction, we must solve the system of linear
1554  * equations defined by the coefficients used to generate parity as well as
1555  * the contents of the data and parity disks. This can be expressed with
1556  * vectors for the original data (D) and the actual data (d) and parity (p)
1557  * and a matrix composed of the identity matrix (I) and a dispersal matrix (V):
1558  *
1559  *            __   __                     __     __
1560  *            |     |         __     __   |  p_0  |
1561  *            |  V  |         |  D_0  |   | p_m-1 |
1562  *            |     |    x    |   :   | = |  d_0  |
1563  *            |  I  |         | D_n-1 |   |   :   |
1564  *            |     |         ~~     ~~   | d_n-1 |
1565  *            ~~   ~~                     ~~     ~~
1566  *
1567  * I is simply a square identity matrix of size n, and V is a vandermonde
1568  * matrix defined by the coefficients we chose for the various parity columns
1569  * (1, 2, 4). Note that these values were chosen both for simplicity, speedy
1570  * computation as well as linear separability.
1571  *
1572  *      __               __               __     __
1573  *      |   1   ..  1 1 1 |               |  p_0  |
1574  *      | 2^n-1 ..  4 2 1 |   __     __   |   :   |
1575  *      | 4^n-1 .. 16 4 1 |   |  D_0  |   | p_m-1 |
1576  *      |   1   ..  0 0 0 |   |  D_1  |   |  d_0  |
1577  *      |   0   ..  0 0 0 | x |  D_2  | = |  d_1  |
1578  *      |   :       : : : |   |   :   |   |  d_2  |
1579  *      |   0   ..  1 0 0 |   | D_n-1 |   |   :   |
1580  *      |   0   ..  0 1 0 |   ~~     ~~   |   :   |
1581  *      |   0   ..  0 0 1 |               | d_n-1 |
1582  *      ~~               ~~               ~~     ~~
1583  *
1584  * Note that I, V, d, and p are known. To compute D, we must invert the
1585  * matrix and use the known data and parity values to reconstruct the unknown
1586  * data values. We begin by removing the rows in V|I and d|p that correspond
1587  * to failed or missing columns; we then make V|I square (n x n) and d|p
1588  * sized n by removing rows corresponding to unused parity from the bottom up
1589  * to generate (V|I)' and (d|p)'. We can then generate the inverse of (V|I)'
1590  * using Gauss-Jordan elimination. In the example below we use m=3 parity
1591  * columns, n=8 data columns, with errors in d_1, d_2, and p_1:
1592  *           __                               __
1593  *           |  1   1   1   1   1   1   1   1  |
1594  *           | 128  64  32  16  8   4   2   1  | <-----+-+-- missing disks
1595  *           |  19 205 116  29  64  16  4   1  |      / /
1596  *           |  1   0   0   0   0   0   0   0  |     / /
1597  *           |  0   1   0   0   0   0   0   0  | <--' /
1598  *  (V|I)  = |  0   0   1   0   0   0   0   0  | <---'
1599  *           |  0   0   0   1   0   0   0   0  |
1600  *           |  0   0   0   0   1   0   0   0  |
1601  *           |  0   0   0   0   0   1   0   0  |
1602  *           |  0   0   0   0   0   0   1   0  |
1603  *           |  0   0   0   0   0   0   0   1  |
1604  *           ~~                               ~~
1605  *           __                               __
1606  *           |  1   1   1   1   1   1   1   1  |
1607  *           | 128  64  32  16  8   4   2   1  |
1608  *           |  19 205 116  29  64  16  4   1  |
1609  *           |  1   0   0   0   0   0   0   0  |
1610  *           |  0   1   0   0   0   0   0   0  |
1611  *  (V|I)' = |  0   0   1   0   0   0   0   0  |
1612  *           |  0   0   0   1   0   0   0   0  |
1613  *           |  0   0   0   0   1   0   0   0  |
1614  *           |  0   0   0   0   0   1   0   0  |
1615  *           |  0   0   0   0   0   0   1   0  |
1616  *           |  0   0   0   0   0   0   0   1  |
1617  *           ~~                               ~~
1618  *
1619  * Here we employ Gauss-Jordan elimination to find the inverse of (V|I)'. We
1620  * have carefully chosen the seed values 1, 2, and 4 to ensure that this
1621  * matrix is not singular.
1622  * __                                                                 __
1623  * |  1   1   1   1   1   1   1   1     1   0   0   0   0   0   0   0  |
1624  * |  19 205 116  29  64  16  4   1     0   1   0   0   0   0   0   0  |
1625  * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
1626  * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
1627  * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
1628  * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
1629  * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
1630  * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
1631  * ~~                                                                 ~~
1632  * __                                                                 __
1633  * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
1634  * |  1   1   1   1   1   1   1   1     1   0   0   0   0   0   0   0  |
1635  * |  19 205 116  29  64  16  4   1     0   1   0   0   0   0   0   0  |
1636  * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
1637  * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
1638  * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
1639  * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
1640  * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
1641  * ~~                                                                 ~~
1642  * __                                                                 __
1643  * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
1644  * |  0   1   1   0   0   0   0   0     1   0   1   1   1   1   1   1  |
1645  * |  0  205 116  0   0   0   0   0     0   1   19  29  64  16  4   1  |
1646  * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
1647  * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
1648  * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
1649  * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
1650  * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
1651  * ~~                                                                 ~~
1652  * __                                                                 __
1653  * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
1654  * |  0   1   1   0   0   0   0   0     1   0   1   1   1   1   1   1  |
1655  * |  0   0  185  0   0   0   0   0    205  1  222 208 141 221 201 204 |
1656  * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
1657  * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
1658  * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
1659  * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
1660  * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
1661  * ~~                                                                 ~~
1662  * __                                                                 __
1663  * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
1664  * |  0   1   1   0   0   0   0   0     1   0   1   1   1   1   1   1  |
1665  * |  0   0   1   0   0   0   0   0    166 100  4   40 158 168 216 209 |
1666  * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
1667  * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
1668  * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
1669  * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
1670  * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
1671  * ~~                                                                 ~~
1672  * __                                                                 __
1673  * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
1674  * |  0   1   0   0   0   0   0   0    167 100  5   41 159 169 217 208 |
1675  * |  0   0   1   0   0   0   0   0    166 100  4   40 158 168 216 209 |
1676  * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
1677  * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
1678  * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
1679  * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
1680  * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
1681  * ~~                                                                 ~~
1682  *                   __                               __
1683  *                   |  0   0   1   0   0   0   0   0  |
1684  *                   | 167 100  5   41 159 169 217 208 |
1685  *                   | 166 100  4   40 158 168 216 209 |
1686  *       (V|I)'^-1 = |  0   0   0   1   0   0   0   0  |
1687  *                   |  0   0   0   0   1   0   0   0  |
1688  *                   |  0   0   0   0   0   1   0   0  |
1689  *                   |  0   0   0   0   0   0   1   0  |
1690  *                   |  0   0   0   0   0   0   0   1  |
1691  *                   ~~                               ~~
1692  *
1693  * We can then simply compute D = (V|I)'^-1 x (d|p)' to discover the values
1694  * of the missing data.
1695  *
1696  * As is apparent from the example above, the only non-trivial rows in the
1697  * inverse matrix correspond to the data disks that we're trying to
1698  * reconstruct. Indeed, those are the only rows we need as the others would
1699  * only be useful for reconstructing data known or assumed to be valid. For
1700  * that reason, we only build the coefficients in the rows that correspond to
1701  * targeted columns.
1702  */
1703 
1704 static void
vdev_raidz_matrix_init(raidz_row_t * rr,int n,int nmap,int * map,uint8_t ** rows)1705 vdev_raidz_matrix_init(raidz_row_t *rr, int n, int nmap, int *map,
1706     uint8_t **rows)
1707 {
1708 	int i, j;
1709 	int pow;
1710 
1711 	ASSERT(n == rr->rr_cols - rr->rr_firstdatacol);
1712 
1713 	/*
1714 	 * Fill in the missing rows of interest.
1715 	 */
1716 	for (i = 0; i < nmap; i++) {
1717 		ASSERT3S(0, <=, map[i]);
1718 		ASSERT3S(map[i], <=, 2);
1719 
1720 		pow = map[i] * n;
1721 		if (pow > 255)
1722 			pow -= 255;
1723 		ASSERT(pow <= 255);
1724 
1725 		for (j = 0; j < n; j++) {
1726 			pow -= map[i];
1727 			if (pow < 0)
1728 				pow += 255;
1729 			rows[i][j] = vdev_raidz_pow2[pow];
1730 		}
1731 	}
1732 }
1733 
1734 static void
vdev_raidz_matrix_invert(raidz_row_t * rr,int n,int nmissing,int * missing,uint8_t ** rows,uint8_t ** invrows,const uint8_t * used)1735 vdev_raidz_matrix_invert(raidz_row_t *rr, int n, int nmissing, int *missing,
1736     uint8_t **rows, uint8_t **invrows, const uint8_t *used)
1737 {
1738 	int i, j, ii, jj;
1739 	uint8_t log;
1740 
1741 	/*
1742 	 * Assert that the first nmissing entries from the array of used
1743 	 * columns correspond to parity columns and that subsequent entries
1744 	 * correspond to data columns.
1745 	 */
1746 	for (i = 0; i < nmissing; i++) {
1747 		ASSERT3S(used[i], <, rr->rr_firstdatacol);
1748 	}
1749 	for (; i < n; i++) {
1750 		ASSERT3S(used[i], >=, rr->rr_firstdatacol);
1751 	}
1752 
1753 	/*
1754 	 * First initialize the storage where we'll compute the inverse rows.
1755 	 */
1756 	for (i = 0; i < nmissing; i++) {
1757 		for (j = 0; j < n; j++) {
1758 			invrows[i][j] = (i == j) ? 1 : 0;
1759 		}
1760 	}
1761 
1762 	/*
1763 	 * Subtract all trivial rows from the rows of consequence.
1764 	 */
1765 	for (i = 0; i < nmissing; i++) {
1766 		for (j = nmissing; j < n; j++) {
1767 			ASSERT3U(used[j], >=, rr->rr_firstdatacol);
1768 			jj = used[j] - rr->rr_firstdatacol;
1769 			ASSERT3S(jj, <, n);
1770 			invrows[i][j] = rows[i][jj];
1771 			rows[i][jj] = 0;
1772 		}
1773 	}
1774 
1775 	/*
1776 	 * For each of the rows of interest, we must normalize it and subtract
1777 	 * a multiple of it from the other rows.
1778 	 */
1779 	for (i = 0; i < nmissing; i++) {
1780 		for (j = 0; j < missing[i]; j++) {
1781 			ASSERT0(rows[i][j]);
1782 		}
1783 		ASSERT3U(rows[i][missing[i]], !=, 0);
1784 
1785 		/*
1786 		 * Compute the inverse of the first element and multiply each
1787 		 * element in the row by that value.
1788 		 */
1789 		log = 255 - vdev_raidz_log2[rows[i][missing[i]]];
1790 
1791 		for (j = 0; j < n; j++) {
1792 			rows[i][j] = vdev_raidz_exp2(rows[i][j], log);
1793 			invrows[i][j] = vdev_raidz_exp2(invrows[i][j], log);
1794 		}
1795 
1796 		for (ii = 0; ii < nmissing; ii++) {
1797 			if (i == ii)
1798 				continue;
1799 
1800 			ASSERT3U(rows[ii][missing[i]], !=, 0);
1801 
1802 			log = vdev_raidz_log2[rows[ii][missing[i]]];
1803 
1804 			for (j = 0; j < n; j++) {
1805 				rows[ii][j] ^=
1806 				    vdev_raidz_exp2(rows[i][j], log);
1807 				invrows[ii][j] ^=
1808 				    vdev_raidz_exp2(invrows[i][j], log);
1809 			}
1810 		}
1811 	}
1812 
1813 	/*
1814 	 * Verify that the data that is left in the rows are properly part of
1815 	 * an identity matrix.
1816 	 */
1817 	for (i = 0; i < nmissing; i++) {
1818 		for (j = 0; j < n; j++) {
1819 			if (j == missing[i]) {
1820 				ASSERT3U(rows[i][j], ==, 1);
1821 			} else {
1822 				ASSERT0(rows[i][j]);
1823 			}
1824 		}
1825 	}
1826 }
1827 
1828 static void
vdev_raidz_matrix_reconstruct(raidz_row_t * rr,int n,int nmissing,int * missing,uint8_t ** invrows,const uint8_t * used)1829 vdev_raidz_matrix_reconstruct(raidz_row_t *rr, int n, int nmissing,
1830     int *missing, uint8_t **invrows, const uint8_t *used)
1831 {
1832 	int i, j, x, cc, c;
1833 	uint8_t *src;
1834 	uint64_t ccount;
1835 	uint8_t *dst[VDEV_RAIDZ_MAXPARITY] = { NULL };
1836 	uint64_t dcount[VDEV_RAIDZ_MAXPARITY] = { 0 };
1837 	uint8_t log = 0;
1838 	uint8_t val;
1839 	int ll;
1840 	uint8_t *invlog[VDEV_RAIDZ_MAXPARITY];
1841 	uint8_t *p, *pp;
1842 	size_t psize;
1843 
1844 	psize = sizeof (invlog[0][0]) * n * nmissing;
1845 	p = kmem_alloc(psize, KM_SLEEP);
1846 
1847 	for (pp = p, i = 0; i < nmissing; i++) {
1848 		invlog[i] = pp;
1849 		pp += n;
1850 	}
1851 
1852 	for (i = 0; i < nmissing; i++) {
1853 		for (j = 0; j < n; j++) {
1854 			ASSERT3U(invrows[i][j], !=, 0);
1855 			invlog[i][j] = vdev_raidz_log2[invrows[i][j]];
1856 		}
1857 	}
1858 
1859 	for (i = 0; i < n; i++) {
1860 		c = used[i];
1861 		ASSERT3U(c, <, rr->rr_cols);
1862 
1863 		ccount = rr->rr_col[c].rc_size;
1864 		ASSERT(ccount >= rr->rr_col[missing[0]].rc_size || i > 0);
1865 		if (ccount == 0)
1866 			continue;
1867 		src = abd_to_buf(rr->rr_col[c].rc_abd);
1868 		for (j = 0; j < nmissing; j++) {
1869 			cc = missing[j] + rr->rr_firstdatacol;
1870 			ASSERT3U(cc, >=, rr->rr_firstdatacol);
1871 			ASSERT3U(cc, <, rr->rr_cols);
1872 			ASSERT3U(cc, !=, c);
1873 
1874 			dcount[j] = rr->rr_col[cc].rc_size;
1875 			if (dcount[j] != 0)
1876 				dst[j] = abd_to_buf(rr->rr_col[cc].rc_abd);
1877 		}
1878 
1879 		for (x = 0; x < ccount; x++, src++) {
1880 			if (*src != 0)
1881 				log = vdev_raidz_log2[*src];
1882 
1883 			for (cc = 0; cc < nmissing; cc++) {
1884 				if (x >= dcount[cc])
1885 					continue;
1886 
1887 				if (*src == 0) {
1888 					val = 0;
1889 				} else {
1890 					if ((ll = log + invlog[cc][i]) >= 255)
1891 						ll -= 255;
1892 					val = vdev_raidz_pow2[ll];
1893 				}
1894 
1895 				if (i == 0)
1896 					dst[cc][x] = val;
1897 				else
1898 					dst[cc][x] ^= val;
1899 			}
1900 		}
1901 	}
1902 
1903 	kmem_free(p, psize);
1904 }
1905 
1906 static void
vdev_raidz_reconstruct_general(raidz_row_t * rr,int * tgts,int ntgts)1907 vdev_raidz_reconstruct_general(raidz_row_t *rr, int *tgts, int ntgts)
1908 {
1909 	int i, c, t, tt;
1910 	unsigned int n;
1911 	unsigned int nmissing_rows;
1912 	int missing_rows[VDEV_RAIDZ_MAXPARITY];
1913 	int parity_map[VDEV_RAIDZ_MAXPARITY];
1914 	uint8_t *p, *pp;
1915 	size_t psize;
1916 	uint8_t *rows[VDEV_RAIDZ_MAXPARITY];
1917 	uint8_t *invrows[VDEV_RAIDZ_MAXPARITY];
1918 	uint8_t *used;
1919 
1920 	abd_t **bufs = NULL;
1921 
1922 	if (zfs_flags & ZFS_DEBUG_RAIDZ_RECONSTRUCT)
1923 		zfs_dbgmsg("reconstruct_general(rm=%px ntgts=%u)", rr, ntgts);
1924 	/*
1925 	 * Matrix reconstruction can't use scatter ABDs yet, so we allocate
1926 	 * temporary linear ABDs if any non-linear ABDs are found.
1927 	 */
1928 	for (i = rr->rr_firstdatacol; i < rr->rr_cols; i++) {
1929 		ASSERT(rr->rr_col[i].rc_abd != NULL);
1930 		if (!abd_is_linear(rr->rr_col[i].rc_abd)) {
1931 			bufs = kmem_alloc(rr->rr_cols * sizeof (abd_t *),
1932 			    KM_PUSHPAGE);
1933 
1934 			for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
1935 				raidz_col_t *col = &rr->rr_col[c];
1936 
1937 				bufs[c] = col->rc_abd;
1938 				if (bufs[c] != NULL) {
1939 					col->rc_abd = abd_alloc_linear(
1940 					    col->rc_size, B_TRUE);
1941 					abd_copy(col->rc_abd, bufs[c],
1942 					    col->rc_size);
1943 				}
1944 			}
1945 
1946 			break;
1947 		}
1948 	}
1949 
1950 	n = rr->rr_cols - rr->rr_firstdatacol;
1951 
1952 	/*
1953 	 * Figure out which data columns are missing.
1954 	 */
1955 	nmissing_rows = 0;
1956 	for (t = 0; t < ntgts; t++) {
1957 		if (tgts[t] >= rr->rr_firstdatacol) {
1958 			missing_rows[nmissing_rows++] =
1959 			    tgts[t] - rr->rr_firstdatacol;
1960 		}
1961 	}
1962 
1963 	/*
1964 	 * Figure out which parity columns to use to help generate the missing
1965 	 * data columns.
1966 	 */
1967 	for (tt = 0, c = 0, i = 0; i < nmissing_rows; c++) {
1968 		ASSERT(tt < ntgts);
1969 		ASSERT(c < rr->rr_firstdatacol);
1970 
1971 		/*
1972 		 * Skip any targeted parity columns.
1973 		 */
1974 		if (c == tgts[tt]) {
1975 			tt++;
1976 			continue;
1977 		}
1978 
1979 		parity_map[i] = c;
1980 		i++;
1981 	}
1982 
1983 	psize = (sizeof (rows[0][0]) + sizeof (invrows[0][0])) *
1984 	    nmissing_rows * n + sizeof (used[0]) * n;
1985 	p = kmem_alloc(psize, KM_SLEEP);
1986 
1987 	for (pp = p, i = 0; i < nmissing_rows; i++) {
1988 		rows[i] = pp;
1989 		pp += n;
1990 		invrows[i] = pp;
1991 		pp += n;
1992 	}
1993 	used = pp;
1994 
1995 	for (i = 0; i < nmissing_rows; i++) {
1996 		used[i] = parity_map[i];
1997 	}
1998 
1999 	for (tt = 0, c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
2000 		if (tt < nmissing_rows &&
2001 		    c == missing_rows[tt] + rr->rr_firstdatacol) {
2002 			tt++;
2003 			continue;
2004 		}
2005 
2006 		ASSERT3S(i, <, n);
2007 		used[i] = c;
2008 		i++;
2009 	}
2010 
2011 	/*
2012 	 * Initialize the interesting rows of the matrix.
2013 	 */
2014 	vdev_raidz_matrix_init(rr, n, nmissing_rows, parity_map, rows);
2015 
2016 	/*
2017 	 * Invert the matrix.
2018 	 */
2019 	vdev_raidz_matrix_invert(rr, n, nmissing_rows, missing_rows, rows,
2020 	    invrows, used);
2021 
2022 	/*
2023 	 * Reconstruct the missing data using the generated matrix.
2024 	 */
2025 	vdev_raidz_matrix_reconstruct(rr, n, nmissing_rows, missing_rows,
2026 	    invrows, used);
2027 
2028 	kmem_free(p, psize);
2029 
2030 	/*
2031 	 * copy back from temporary linear abds and free them
2032 	 */
2033 	if (bufs) {
2034 		for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
2035 			raidz_col_t *col = &rr->rr_col[c];
2036 
2037 			if (bufs[c] != NULL) {
2038 				abd_copy(bufs[c], col->rc_abd, col->rc_size);
2039 				abd_free(col->rc_abd);
2040 			}
2041 			col->rc_abd = bufs[c];
2042 		}
2043 		kmem_free(bufs, rr->rr_cols * sizeof (abd_t *));
2044 	}
2045 }
2046 
2047 static void
vdev_raidz_reconstruct_row(raidz_map_t * rm,raidz_row_t * rr,const int * t,int nt)2048 vdev_raidz_reconstruct_row(raidz_map_t *rm, raidz_row_t *rr,
2049     const int *t, int nt)
2050 {
2051 	int tgts[VDEV_RAIDZ_MAXPARITY], *dt;
2052 	int ntgts;
2053 	int i, c, ret;
2054 	int nbadparity, nbaddata;
2055 	int parity_valid[VDEV_RAIDZ_MAXPARITY];
2056 
2057 	if (zfs_flags & ZFS_DEBUG_RAIDZ_RECONSTRUCT) {
2058 		zfs_dbgmsg("reconstruct(rm=%px nt=%u cols=%u md=%u mp=%u)",
2059 		    rr, nt, (int)rr->rr_cols, (int)rr->rr_missingdata,
2060 		    (int)rr->rr_missingparity);
2061 	}
2062 
2063 	nbadparity = rr->rr_firstdatacol;
2064 	nbaddata = rr->rr_cols - nbadparity;
2065 	ntgts = 0;
2066 	for (i = 0, c = 0; c < rr->rr_cols; c++) {
2067 		if (zfs_flags & ZFS_DEBUG_RAIDZ_RECONSTRUCT) {
2068 			zfs_dbgmsg("reconstruct(rm=%px col=%u devid=%u "
2069 			    "offset=%llx error=%u)",
2070 			    rr, c, (int)rr->rr_col[c].rc_devidx,
2071 			    (long long)rr->rr_col[c].rc_offset,
2072 			    (int)rr->rr_col[c].rc_error);
2073 		}
2074 		if (c < rr->rr_firstdatacol)
2075 			parity_valid[c] = B_FALSE;
2076 
2077 		if (i < nt && c == t[i]) {
2078 			tgts[ntgts++] = c;
2079 			i++;
2080 		} else if (rr->rr_col[c].rc_error != 0) {
2081 			tgts[ntgts++] = c;
2082 		} else if (c >= rr->rr_firstdatacol) {
2083 			nbaddata--;
2084 		} else {
2085 			parity_valid[c] = B_TRUE;
2086 			nbadparity--;
2087 		}
2088 	}
2089 
2090 	ASSERT(ntgts >= nt);
2091 	ASSERT(nbaddata >= 0);
2092 	ASSERT(nbaddata + nbadparity == ntgts);
2093 
2094 	dt = &tgts[nbadparity];
2095 
2096 	/* Reconstruct using the new math implementation */
2097 	ret = vdev_raidz_math_reconstruct(rm, rr, parity_valid, dt, nbaddata);
2098 	if (ret != RAIDZ_ORIGINAL_IMPL)
2099 		return;
2100 
2101 	/*
2102 	 * See if we can use any of our optimized reconstruction routines.
2103 	 */
2104 	switch (nbaddata) {
2105 	case 1:
2106 		if (parity_valid[VDEV_RAIDZ_P]) {
2107 			vdev_raidz_reconstruct_p(rr, dt, 1);
2108 			return;
2109 		}
2110 
2111 		ASSERT(rr->rr_firstdatacol > 1);
2112 
2113 		if (parity_valid[VDEV_RAIDZ_Q]) {
2114 			vdev_raidz_reconstruct_q(rr, dt, 1);
2115 			return;
2116 		}
2117 
2118 		ASSERT(rr->rr_firstdatacol > 2);
2119 		break;
2120 
2121 	case 2:
2122 		ASSERT(rr->rr_firstdatacol > 1);
2123 
2124 		if (parity_valid[VDEV_RAIDZ_P] &&
2125 		    parity_valid[VDEV_RAIDZ_Q]) {
2126 			vdev_raidz_reconstruct_pq(rr, dt, 2);
2127 			return;
2128 		}
2129 
2130 		ASSERT(rr->rr_firstdatacol > 2);
2131 
2132 		break;
2133 	}
2134 
2135 	vdev_raidz_reconstruct_general(rr, tgts, ntgts);
2136 }
2137 
2138 static int
vdev_raidz_open(vdev_t * vd,uint64_t * asize,uint64_t * max_asize,uint64_t * logical_ashift,uint64_t * physical_ashift)2139 vdev_raidz_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
2140     uint64_t *logical_ashift, uint64_t *physical_ashift)
2141 {
2142 	vdev_raidz_t *vdrz = vd->vdev_tsd;
2143 	uint64_t nparity = vdrz->vd_nparity;
2144 	int c;
2145 	int lasterror = 0;
2146 	int numerrors = 0;
2147 
2148 	ASSERT(nparity > 0);
2149 
2150 	if (nparity > VDEV_RAIDZ_MAXPARITY ||
2151 	    vd->vdev_children < nparity + 1) {
2152 		vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
2153 		return (SET_ERROR(EINVAL));
2154 	}
2155 
2156 	vdev_open_children(vd);
2157 
2158 	for (c = 0; c < vd->vdev_children; c++) {
2159 		vdev_t *cvd = vd->vdev_child[c];
2160 
2161 		if (cvd->vdev_open_error != 0) {
2162 			lasterror = cvd->vdev_open_error;
2163 			numerrors++;
2164 			continue;
2165 		}
2166 
2167 		*asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
2168 		*max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1;
2169 		*logical_ashift = MAX(*logical_ashift, cvd->vdev_ashift);
2170 	}
2171 	for (c = 0; c < vd->vdev_children; c++) {
2172 		vdev_t *cvd = vd->vdev_child[c];
2173 
2174 		if (cvd->vdev_open_error != 0)
2175 			continue;
2176 		*physical_ashift = vdev_best_ashift(*logical_ashift,
2177 		    *physical_ashift, cvd->vdev_physical_ashift);
2178 	}
2179 
2180 	if (vd->vdev_rz_expanding) {
2181 		*asize *= vd->vdev_children - 1;
2182 		*max_asize *= vd->vdev_children - 1;
2183 
2184 		vd->vdev_min_asize = *asize;
2185 	} else {
2186 		*asize *= vd->vdev_children;
2187 		*max_asize *= vd->vdev_children;
2188 	}
2189 
2190 	if (numerrors > nparity) {
2191 		vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
2192 		return (lasterror);
2193 	}
2194 
2195 	return (0);
2196 }
2197 
2198 static void
vdev_raidz_close(vdev_t * vd)2199 vdev_raidz_close(vdev_t *vd)
2200 {
2201 	for (int c = 0; c < vd->vdev_children; c++) {
2202 		if (vd->vdev_child[c] != NULL)
2203 			vdev_close(vd->vdev_child[c]);
2204 	}
2205 }
2206 
2207 /*
2208  * Return the logical width to use, given the txg in which the allocation
2209  * happened.  Note that BP_GET_BIRTH() is usually the txg in which the
2210  * BP was allocated.  Remapped BP's (that were relocated due to device
2211  * removal, see remap_blkptr_cb()), will have a more recent physical birth
2212  * which reflects when the BP was relocated, but we can ignore these because
2213  * they can't be on RAIDZ (device removal doesn't support RAIDZ).
2214  */
2215 static uint64_t
vdev_raidz_get_logical_width(vdev_raidz_t * vdrz,uint64_t txg)2216 vdev_raidz_get_logical_width(vdev_raidz_t *vdrz, uint64_t txg)
2217 {
2218 	reflow_node_t lookup = {
2219 		.re_txg = txg,
2220 	};
2221 	avl_index_t where;
2222 
2223 	uint64_t width;
2224 	mutex_enter(&vdrz->vd_expand_lock);
2225 	reflow_node_t *re = avl_find(&vdrz->vd_expand_txgs, &lookup, &where);
2226 	if (re != NULL) {
2227 		width = re->re_logical_width;
2228 	} else {
2229 		re = avl_nearest(&vdrz->vd_expand_txgs, where, AVL_BEFORE);
2230 		if (re != NULL)
2231 			width = re->re_logical_width;
2232 		else
2233 			width = vdrz->vd_original_width;
2234 	}
2235 	mutex_exit(&vdrz->vd_expand_lock);
2236 	return (width);
2237 }
2238 
2239 /*
2240  * Note: If the RAIDZ vdev has been expanded, older BP's may have allocated
2241  * more space due to the lower data-to-parity ratio.  In this case it's
2242  * important to pass in the correct txg.  Note that vdev_gang_header_asize()
2243  * relies on a constant asize for psize=SPA_GANGBLOCKSIZE=SPA_MINBLOCKSIZE,
2244  * regardless of txg.  This is assured because for a single data sector, we
2245  * allocate P+1 sectors regardless of width ("cols", which is at least P+1).
2246  */
2247 static uint64_t
vdev_raidz_asize(vdev_t * vd,uint64_t psize,uint64_t txg)2248 vdev_raidz_asize(vdev_t *vd, uint64_t psize, uint64_t txg)
2249 {
2250 	vdev_raidz_t *vdrz = vd->vdev_tsd;
2251 	uint64_t asize;
2252 	uint64_t ashift = vd->vdev_top->vdev_ashift;
2253 	uint64_t cols = vdrz->vd_original_width;
2254 	uint64_t nparity = vdrz->vd_nparity;
2255 
2256 	cols = vdev_raidz_get_logical_width(vdrz, txg);
2257 
2258 	asize = ((psize - 1) >> ashift) + 1;
2259 	asize += nparity * ((asize + cols - nparity - 1) / (cols - nparity));
2260 	asize = roundup(asize, nparity + 1) << ashift;
2261 
2262 #ifdef ZFS_DEBUG
2263 	uint64_t asize_new = ((psize - 1) >> ashift) + 1;
2264 	uint64_t ncols_new = vdrz->vd_physical_width;
2265 	asize_new += nparity * ((asize_new + ncols_new - nparity - 1) /
2266 	    (ncols_new - nparity));
2267 	asize_new = roundup(asize_new, nparity + 1) << ashift;
2268 	VERIFY3U(asize_new, <=, asize);
2269 #endif
2270 
2271 	return (asize);
2272 }
2273 
2274 /*
2275  * The allocatable space for a raidz vdev is N * sizeof(smallest child)
2276  * so each child must provide at least 1/Nth of its asize.
2277  */
2278 static uint64_t
vdev_raidz_min_asize(vdev_t * vd)2279 vdev_raidz_min_asize(vdev_t *vd)
2280 {
2281 	return ((vd->vdev_min_asize + vd->vdev_children - 1) /
2282 	    vd->vdev_children);
2283 }
2284 
2285 void
vdev_raidz_child_done(zio_t * zio)2286 vdev_raidz_child_done(zio_t *zio)
2287 {
2288 	raidz_col_t *rc = zio->io_private;
2289 
2290 	ASSERT3P(rc->rc_abd, !=, NULL);
2291 	rc->rc_error = zio->io_error;
2292 	rc->rc_tried = 1;
2293 	rc->rc_skipped = 0;
2294 }
2295 
2296 static void
vdev_raidz_shadow_child_done(zio_t * zio)2297 vdev_raidz_shadow_child_done(zio_t *zio)
2298 {
2299 	raidz_col_t *rc = zio->io_private;
2300 
2301 	rc->rc_shadow_error = zio->io_error;
2302 }
2303 
2304 static void
vdev_raidz_io_verify(zio_t * zio,raidz_map_t * rm,raidz_row_t * rr,int col)2305 vdev_raidz_io_verify(zio_t *zio, raidz_map_t *rm, raidz_row_t *rr, int col)
2306 {
2307 	(void) rm;
2308 #ifdef ZFS_DEBUG
2309 	zfs_range_seg64_t logical_rs, physical_rs, remain_rs;
2310 	logical_rs.rs_start = rr->rr_offset;
2311 	logical_rs.rs_end = logical_rs.rs_start +
2312 	    vdev_raidz_asize(zio->io_vd, rr->rr_size,
2313 	    BP_GET_BIRTH(zio->io_bp));
2314 
2315 	raidz_col_t *rc = &rr->rr_col[col];
2316 	vdev_t *cvd = zio->io_vd->vdev_child[rc->rc_devidx];
2317 
2318 	vdev_xlate(cvd, &logical_rs, &physical_rs, &remain_rs);
2319 	ASSERT(vdev_xlate_is_empty(&remain_rs));
2320 	if (vdev_xlate_is_empty(&physical_rs)) {
2321 		/*
2322 		 * If we are in the middle of expansion, the
2323 		 * physical->logical mapping is changing so vdev_xlate()
2324 		 * can't give us a reliable answer.
2325 		 */
2326 		return;
2327 	}
2328 	ASSERT3U(rc->rc_offset, ==, physical_rs.rs_start);
2329 	ASSERT3U(rc->rc_offset, <, physical_rs.rs_end);
2330 	/*
2331 	 * It would be nice to assert that rs_end is equal
2332 	 * to rc_offset + rc_size but there might be an
2333 	 * optional I/O at the end that is not accounted in
2334 	 * rc_size.
2335 	 */
2336 	if (physical_rs.rs_end > rc->rc_offset + rc->rc_size) {
2337 		ASSERT3U(physical_rs.rs_end, ==, rc->rc_offset +
2338 		    rc->rc_size + (1 << zio->io_vd->vdev_top->vdev_ashift));
2339 	} else {
2340 		ASSERT3U(physical_rs.rs_end, ==, rc->rc_offset + rc->rc_size);
2341 	}
2342 #endif
2343 }
2344 
2345 static void
vdev_raidz_io_start_write(zio_t * zio,raidz_row_t * rr)2346 vdev_raidz_io_start_write(zio_t *zio, raidz_row_t *rr)
2347 {
2348 	vdev_t *vd = zio->io_vd;
2349 	raidz_map_t *rm = zio->io_vsd;
2350 
2351 	vdev_raidz_generate_parity_row(rm, rr);
2352 
2353 	for (int c = 0; c < rr->rr_scols; c++) {
2354 		raidz_col_t *rc = &rr->rr_col[c];
2355 		vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
2356 
2357 		/* Verify physical to logical translation */
2358 		vdev_raidz_io_verify(zio, rm, rr, c);
2359 
2360 		if (rc->rc_size == 0)
2361 			continue;
2362 
2363 		ASSERT3U(rc->rc_offset + rc->rc_size, <,
2364 		    cvd->vdev_psize - VDEV_LABEL_END_SIZE);
2365 
2366 		ASSERT3P(rc->rc_abd, !=, NULL);
2367 		zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2368 		    rc->rc_offset, rc->rc_abd,
2369 		    abd_get_size(rc->rc_abd), zio->io_type,
2370 		    zio->io_priority, 0, vdev_raidz_child_done, rc));
2371 
2372 		if (rc->rc_shadow_devidx != INT_MAX) {
2373 			vdev_t *cvd2 = vd->vdev_child[rc->rc_shadow_devidx];
2374 
2375 			ASSERT3U(
2376 			    rc->rc_shadow_offset + abd_get_size(rc->rc_abd), <,
2377 			    cvd2->vdev_psize - VDEV_LABEL_END_SIZE);
2378 
2379 			zio_nowait(zio_vdev_child_io(zio, NULL, cvd2,
2380 			    rc->rc_shadow_offset, rc->rc_abd,
2381 			    abd_get_size(rc->rc_abd),
2382 			    zio->io_type, zio->io_priority, 0,
2383 			    vdev_raidz_shadow_child_done, rc));
2384 		}
2385 	}
2386 }
2387 
2388 /*
2389  * Generate optional I/Os for skip sectors to improve aggregation contiguity.
2390  * This only works for vdev_raidz_map_alloc() (not _expanded()).
2391  */
2392 static void
raidz_start_skip_writes(zio_t * zio)2393 raidz_start_skip_writes(zio_t *zio)
2394 {
2395 	vdev_t *vd = zio->io_vd;
2396 	uint64_t ashift = vd->vdev_top->vdev_ashift;
2397 	raidz_map_t *rm = zio->io_vsd;
2398 	ASSERT3U(rm->rm_nrows, ==, 1);
2399 	raidz_row_t *rr = rm->rm_row[0];
2400 	for (int c = 0; c < rr->rr_scols; c++) {
2401 		raidz_col_t *rc = &rr->rr_col[c];
2402 		vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
2403 		if (rc->rc_size != 0)
2404 			continue;
2405 		ASSERT3P(rc->rc_abd, ==, NULL);
2406 
2407 		ASSERT3U(rc->rc_offset, <,
2408 		    cvd->vdev_psize - VDEV_LABEL_END_SIZE);
2409 
2410 		zio_nowait(zio_vdev_child_io(zio, NULL, cvd, rc->rc_offset,
2411 		    NULL, 1ULL << ashift, zio->io_type, zio->io_priority,
2412 		    ZIO_FLAG_NODATA | ZIO_FLAG_OPTIONAL, NULL, NULL));
2413 	}
2414 }
2415 
2416 static void
vdev_raidz_io_start_read_row(zio_t * zio,raidz_row_t * rr,boolean_t forceparity)2417 vdev_raidz_io_start_read_row(zio_t *zio, raidz_row_t *rr, boolean_t forceparity)
2418 {
2419 	vdev_t *vd = zio->io_vd;
2420 
2421 	/*
2422 	 * Iterate over the columns in reverse order so that we hit the parity
2423 	 * last -- any errors along the way will force us to read the parity.
2424 	 */
2425 	for (int c = rr->rr_cols - 1; c >= 0; c--) {
2426 		raidz_col_t *rc = &rr->rr_col[c];
2427 		if (rc->rc_size == 0)
2428 			continue;
2429 		vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
2430 		if (!vdev_readable(cvd)) {
2431 			if (c >= rr->rr_firstdatacol)
2432 				rr->rr_missingdata++;
2433 			else
2434 				rr->rr_missingparity++;
2435 			rc->rc_error = SET_ERROR(ENXIO);
2436 			rc->rc_tried = 1;	/* don't even try */
2437 			rc->rc_skipped = 1;
2438 			continue;
2439 		}
2440 		if (vdev_dtl_contains(cvd, DTL_MISSING, zio->io_txg, 1)) {
2441 			if (c >= rr->rr_firstdatacol)
2442 				rr->rr_missingdata++;
2443 			else
2444 				rr->rr_missingparity++;
2445 			rc->rc_error = SET_ERROR(ESTALE);
2446 			rc->rc_skipped = 1;
2447 			continue;
2448 		}
2449 		if (forceparity ||
2450 		    c >= rr->rr_firstdatacol || rr->rr_missingdata > 0 ||
2451 		    (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
2452 			zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2453 			    rc->rc_offset, rc->rc_abd, rc->rc_size,
2454 			    zio->io_type, zio->io_priority, 0,
2455 			    vdev_raidz_child_done, rc));
2456 		}
2457 	}
2458 }
2459 
2460 static void
vdev_raidz_io_start_read_phys_cols(zio_t * zio,raidz_map_t * rm)2461 vdev_raidz_io_start_read_phys_cols(zio_t *zio, raidz_map_t *rm)
2462 {
2463 	vdev_t *vd = zio->io_vd;
2464 
2465 	for (int i = 0; i < rm->rm_nphys_cols; i++) {
2466 		raidz_col_t *prc = &rm->rm_phys_col[i];
2467 		if (prc->rc_size == 0)
2468 			continue;
2469 
2470 		ASSERT3U(prc->rc_devidx, ==, i);
2471 		vdev_t *cvd = vd->vdev_child[i];
2472 		if (!vdev_readable(cvd)) {
2473 			prc->rc_error = SET_ERROR(ENXIO);
2474 			prc->rc_tried = 1;	/* don't even try */
2475 			prc->rc_skipped = 1;
2476 			continue;
2477 		}
2478 		if (vdev_dtl_contains(cvd, DTL_MISSING, zio->io_txg, 1)) {
2479 			prc->rc_error = SET_ERROR(ESTALE);
2480 			prc->rc_skipped = 1;
2481 			continue;
2482 		}
2483 		zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2484 		    prc->rc_offset, prc->rc_abd, prc->rc_size,
2485 		    zio->io_type, zio->io_priority, 0,
2486 		    vdev_raidz_child_done, prc));
2487 	}
2488 }
2489 
2490 static void
vdev_raidz_io_start_read(zio_t * zio,raidz_map_t * rm)2491 vdev_raidz_io_start_read(zio_t *zio, raidz_map_t *rm)
2492 {
2493 	/*
2494 	 * If there are multiple rows, we will be hitting
2495 	 * all disks, so go ahead and read the parity so
2496 	 * that we are reading in decent size chunks.
2497 	 */
2498 	boolean_t forceparity = rm->rm_nrows > 1;
2499 
2500 	if (rm->rm_phys_col) {
2501 		vdev_raidz_io_start_read_phys_cols(zio, rm);
2502 	} else {
2503 		for (int i = 0; i < rm->rm_nrows; i++) {
2504 			raidz_row_t *rr = rm->rm_row[i];
2505 			vdev_raidz_io_start_read_row(zio, rr, forceparity);
2506 		}
2507 	}
2508 }
2509 
2510 /*
2511  * Start an IO operation on a RAIDZ VDev
2512  *
2513  * Outline:
2514  * - For write operations:
2515  *   1. Generate the parity data
2516  *   2. Create child zio write operations to each column's vdev, for both
2517  *      data and parity.
2518  *   3. If the column skips any sectors for padding, create optional dummy
2519  *      write zio children for those areas to improve aggregation continuity.
2520  * - For read operations:
2521  *   1. Create child zio read operations to each data column's vdev to read
2522  *      the range of data required for zio.
2523  *   2. If this is a scrub or resilver operation, or if any of the data
2524  *      vdevs have had errors, then create zio read operations to the parity
2525  *      columns' VDevs as well.
2526  */
2527 static void
vdev_raidz_io_start(zio_t * zio)2528 vdev_raidz_io_start(zio_t *zio)
2529 {
2530 	vdev_t *vd = zio->io_vd;
2531 	vdev_t *tvd = vd->vdev_top;
2532 	vdev_raidz_t *vdrz = vd->vdev_tsd;
2533 	raidz_map_t *rm;
2534 
2535 	uint64_t logical_width = vdev_raidz_get_logical_width(vdrz,
2536 	    BP_GET_BIRTH(zio->io_bp));
2537 	if (logical_width != vdrz->vd_physical_width) {
2538 		zfs_locked_range_t *lr = NULL;
2539 		uint64_t synced_offset = UINT64_MAX;
2540 		uint64_t next_offset = UINT64_MAX;
2541 		boolean_t use_scratch = B_FALSE;
2542 		/*
2543 		 * Note: when the expansion is completing, we set
2544 		 * vre_state=DSS_FINISHED (in raidz_reflow_complete_sync())
2545 		 * in a later txg than when we last update spa_ubsync's state
2546 		 * (see the end of spa_raidz_expand_thread()).  Therefore we
2547 		 * may see vre_state!=SCANNING before
2548 		 * VDEV_TOP_ZAP_RAIDZ_EXPAND_STATE=DSS_FINISHED is reflected
2549 		 * on disk, but the copying progress has been synced to disk
2550 		 * (and reflected in spa_ubsync).  In this case it's fine to
2551 		 * treat the expansion as completed, since if we crash there's
2552 		 * no additional copying to do.
2553 		 */
2554 		if (vdrz->vn_vre.vre_state == DSS_SCANNING) {
2555 			ASSERT3P(vd->vdev_spa->spa_raidz_expand, ==,
2556 			    &vdrz->vn_vre);
2557 			lr = zfs_rangelock_enter(&vdrz->vn_vre.vre_rangelock,
2558 			    zio->io_offset, zio->io_size, RL_READER);
2559 			use_scratch =
2560 			    (RRSS_GET_STATE(&vd->vdev_spa->spa_ubsync) ==
2561 			    RRSS_SCRATCH_VALID);
2562 			synced_offset =
2563 			    RRSS_GET_OFFSET(&vd->vdev_spa->spa_ubsync);
2564 			next_offset = vdrz->vn_vre.vre_offset;
2565 			/*
2566 			 * If we haven't resumed expanding since importing the
2567 			 * pool, vre_offset won't have been set yet.  In
2568 			 * this case the next offset to be copied is the same
2569 			 * as what was synced.
2570 			 */
2571 			if (next_offset == UINT64_MAX) {
2572 				next_offset = synced_offset;
2573 			}
2574 		}
2575 		if (use_scratch) {
2576 			zfs_dbgmsg("zio=%px %s io_offset=%llu offset_synced="
2577 			    "%lld next_offset=%lld use_scratch=%u",
2578 			    zio,
2579 			    zio->io_type == ZIO_TYPE_WRITE ? "WRITE" : "READ",
2580 			    (long long)zio->io_offset,
2581 			    (long long)synced_offset,
2582 			    (long long)next_offset,
2583 			    use_scratch);
2584 		}
2585 
2586 		rm = vdev_raidz_map_alloc_expanded(zio,
2587 		    tvd->vdev_ashift, vdrz->vd_physical_width,
2588 		    logical_width, vdrz->vd_nparity,
2589 		    synced_offset, next_offset, use_scratch);
2590 		rm->rm_lr = lr;
2591 	} else {
2592 		rm = vdev_raidz_map_alloc(zio,
2593 		    tvd->vdev_ashift, logical_width, vdrz->vd_nparity);
2594 	}
2595 	rm->rm_original_width = vdrz->vd_original_width;
2596 
2597 	zio->io_vsd = rm;
2598 	zio->io_vsd_ops = &vdev_raidz_vsd_ops;
2599 	if (zio->io_type == ZIO_TYPE_WRITE) {
2600 		for (int i = 0; i < rm->rm_nrows; i++) {
2601 			vdev_raidz_io_start_write(zio, rm->rm_row[i]);
2602 		}
2603 
2604 		if (logical_width == vdrz->vd_physical_width) {
2605 			raidz_start_skip_writes(zio);
2606 		}
2607 	} else {
2608 		ASSERT(zio->io_type == ZIO_TYPE_READ);
2609 		vdev_raidz_io_start_read(zio, rm);
2610 	}
2611 
2612 	zio_execute(zio);
2613 }
2614 
2615 /*
2616  * Report a checksum error for a child of a RAID-Z device.
2617  */
2618 void
vdev_raidz_checksum_error(zio_t * zio,raidz_col_t * rc,abd_t * bad_data)2619 vdev_raidz_checksum_error(zio_t *zio, raidz_col_t *rc, abd_t *bad_data)
2620 {
2621 	vdev_t *vd = zio->io_vd->vdev_child[rc->rc_devidx];
2622 
2623 	if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE) &&
2624 	    zio->io_priority != ZIO_PRIORITY_REBUILD) {
2625 		zio_bad_cksum_t zbc;
2626 		raidz_map_t *rm = zio->io_vsd;
2627 
2628 		zbc.zbc_has_cksum = 0;
2629 		zbc.zbc_injected = rm->rm_ecksuminjected;
2630 
2631 		mutex_enter(&vd->vdev_stat_lock);
2632 		vd->vdev_stat.vs_checksum_errors++;
2633 		mutex_exit(&vd->vdev_stat_lock);
2634 		(void) zfs_ereport_post_checksum(zio->io_spa, vd,
2635 		    &zio->io_bookmark, zio, rc->rc_offset, rc->rc_size,
2636 		    rc->rc_abd, bad_data, &zbc);
2637 	}
2638 }
2639 
2640 /*
2641  * We keep track of whether or not there were any injected errors, so that
2642  * any ereports we generate can note it.
2643  */
2644 static int
raidz_checksum_verify(zio_t * zio)2645 raidz_checksum_verify(zio_t *zio)
2646 {
2647 	zio_bad_cksum_t zbc = {0};
2648 	raidz_map_t *rm = zio->io_vsd;
2649 
2650 	int ret = zio_checksum_error(zio, &zbc);
2651 	/*
2652 	 * Any Direct I/O read that has a checksum error must be treated as
2653 	 * suspicious as the contents of the buffer could be getting
2654 	 * manipulated while the I/O is taking place. The checksum verify error
2655 	 * will be reported to the top-level RAIDZ VDEV.
2656 	 */
2657 	if (zio->io_flags & ZIO_FLAG_DIO_READ && ret == ECKSUM) {
2658 		zio->io_error = ret;
2659 		zio->io_flags |= ZIO_FLAG_DIO_CHKSUM_ERR;
2660 		zio_dio_chksum_verify_error_report(zio);
2661 		zio_checksum_verified(zio);
2662 		return (0);
2663 	}
2664 
2665 	if (ret != 0 && zbc.zbc_injected != 0)
2666 		rm->rm_ecksuminjected = 1;
2667 
2668 	return (ret);
2669 }
2670 
2671 /*
2672  * Generate the parity from the data columns. If we tried and were able to
2673  * read the parity without error, verify that the generated parity matches the
2674  * data we read. If it doesn't, we fire off a checksum error. Return the
2675  * number of such failures.
2676  */
2677 static int
raidz_parity_verify(zio_t * zio,raidz_row_t * rr)2678 raidz_parity_verify(zio_t *zio, raidz_row_t *rr)
2679 {
2680 	abd_t *orig[VDEV_RAIDZ_MAXPARITY];
2681 	int c, ret = 0;
2682 	raidz_map_t *rm = zio->io_vsd;
2683 	raidz_col_t *rc;
2684 
2685 	blkptr_t *bp = zio->io_bp;
2686 	enum zio_checksum checksum = (bp == NULL ? zio->io_prop.zp_checksum :
2687 	    (BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp)));
2688 
2689 	if (checksum == ZIO_CHECKSUM_NOPARITY)
2690 		return (ret);
2691 
2692 	for (c = 0; c < rr->rr_firstdatacol; c++) {
2693 		rc = &rr->rr_col[c];
2694 		if (!rc->rc_tried || rc->rc_error != 0)
2695 			continue;
2696 
2697 		orig[c] = rc->rc_abd;
2698 		ASSERT3U(abd_get_size(rc->rc_abd), ==, rc->rc_size);
2699 		rc->rc_abd = abd_alloc_linear(rc->rc_size, B_FALSE);
2700 	}
2701 
2702 	/*
2703 	 * Verify any empty sectors are zero filled to ensure the parity
2704 	 * is calculated correctly even if these non-data sectors are damaged.
2705 	 */
2706 	if (rr->rr_nempty && rr->rr_abd_empty != NULL)
2707 		ret += vdev_draid_map_verify_empty(zio, rr);
2708 
2709 	/*
2710 	 * Regenerates parity even for !tried||rc_error!=0 columns.  This
2711 	 * isn't harmful but it does have the side effect of fixing stuff
2712 	 * we didn't realize was necessary (i.e. even if we return 0).
2713 	 */
2714 	vdev_raidz_generate_parity_row(rm, rr);
2715 
2716 	for (c = 0; c < rr->rr_firstdatacol; c++) {
2717 		rc = &rr->rr_col[c];
2718 
2719 		if (!rc->rc_tried || rc->rc_error != 0)
2720 			continue;
2721 
2722 		if (abd_cmp(orig[c], rc->rc_abd) != 0) {
2723 			zfs_dbgmsg("found error on col=%u devidx=%u off %llx",
2724 			    c, (int)rc->rc_devidx, (u_longlong_t)rc->rc_offset);
2725 			vdev_raidz_checksum_error(zio, rc, orig[c]);
2726 			rc->rc_error = SET_ERROR(ECKSUM);
2727 			ret++;
2728 		}
2729 		abd_free(orig[c]);
2730 	}
2731 
2732 	return (ret);
2733 }
2734 
2735 static int
vdev_raidz_worst_error(raidz_row_t * rr)2736 vdev_raidz_worst_error(raidz_row_t *rr)
2737 {
2738 	int error = 0;
2739 
2740 	for (int c = 0; c < rr->rr_cols; c++) {
2741 		error = zio_worst_error(error, rr->rr_col[c].rc_error);
2742 		error = zio_worst_error(error, rr->rr_col[c].rc_shadow_error);
2743 	}
2744 
2745 	return (error);
2746 }
2747 
2748 static void
vdev_raidz_io_done_verified(zio_t * zio,raidz_row_t * rr)2749 vdev_raidz_io_done_verified(zio_t *zio, raidz_row_t *rr)
2750 {
2751 	int unexpected_errors = 0;
2752 	int parity_errors = 0;
2753 	int parity_untried = 0;
2754 	int data_errors = 0;
2755 
2756 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
2757 
2758 	for (int c = 0; c < rr->rr_cols; c++) {
2759 		raidz_col_t *rc = &rr->rr_col[c];
2760 
2761 		if (rc->rc_error) {
2762 			if (c < rr->rr_firstdatacol)
2763 				parity_errors++;
2764 			else
2765 				data_errors++;
2766 
2767 			if (!rc->rc_skipped)
2768 				unexpected_errors++;
2769 		} else if (c < rr->rr_firstdatacol && !rc->rc_tried) {
2770 			parity_untried++;
2771 		}
2772 
2773 		if (rc->rc_force_repair)
2774 			unexpected_errors++;
2775 	}
2776 
2777 	/*
2778 	 * If we read more parity disks than were used for
2779 	 * reconstruction, confirm that the other parity disks produced
2780 	 * correct data.
2781 	 *
2782 	 * Note that we also regenerate parity when resilvering so we
2783 	 * can write it out to failed devices later.
2784 	 */
2785 	if (parity_errors + parity_untried <
2786 	    rr->rr_firstdatacol - data_errors ||
2787 	    (zio->io_flags & ZIO_FLAG_RESILVER)) {
2788 		int n = raidz_parity_verify(zio, rr);
2789 		unexpected_errors += n;
2790 	}
2791 
2792 	if (zio->io_error == 0 && spa_writeable(zio->io_spa) &&
2793 	    (unexpected_errors > 0 || (zio->io_flags & ZIO_FLAG_RESILVER))) {
2794 		/*
2795 		 * Use the good data we have in hand to repair damaged children.
2796 		 */
2797 		for (int c = 0; c < rr->rr_cols; c++) {
2798 			raidz_col_t *rc = &rr->rr_col[c];
2799 			vdev_t *vd = zio->io_vd;
2800 			vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
2801 
2802 			if (!rc->rc_allow_repair) {
2803 				continue;
2804 			} else if (!rc->rc_force_repair &&
2805 			    (rc->rc_error == 0 || rc->rc_size == 0)) {
2806 				continue;
2807 			}
2808 			/*
2809 			 * We do not allow self healing for Direct I/O reads.
2810 			 * See comment in vdev_raid_row_alloc().
2811 			 */
2812 			ASSERT0(zio->io_flags & ZIO_FLAG_DIO_READ);
2813 
2814 			zfs_dbgmsg("zio=%px repairing c=%u devidx=%u "
2815 			    "offset=%llx",
2816 			    zio, c, rc->rc_devidx, (long long)rc->rc_offset);
2817 
2818 			zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2819 			    rc->rc_offset, rc->rc_abd, rc->rc_size,
2820 			    ZIO_TYPE_WRITE,
2821 			    zio->io_priority == ZIO_PRIORITY_REBUILD ?
2822 			    ZIO_PRIORITY_REBUILD : ZIO_PRIORITY_ASYNC_WRITE,
2823 			    ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
2824 			    ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
2825 		}
2826 	}
2827 
2828 	/*
2829 	 * Scrub or resilver i/o's: overwrite any shadow locations with the
2830 	 * good data.  This ensures that if we've already copied this sector,
2831 	 * it will be corrected if it was damaged.  This writes more than is
2832 	 * necessary, but since expansion is paused during scrub/resilver, at
2833 	 * most a single row will have a shadow location.
2834 	 */
2835 	if (zio->io_error == 0 && spa_writeable(zio->io_spa) &&
2836 	    (zio->io_flags & (ZIO_FLAG_RESILVER | ZIO_FLAG_SCRUB))) {
2837 		for (int c = 0; c < rr->rr_cols; c++) {
2838 			raidz_col_t *rc = &rr->rr_col[c];
2839 			vdev_t *vd = zio->io_vd;
2840 
2841 			if (rc->rc_shadow_devidx == INT_MAX || rc->rc_size == 0)
2842 				continue;
2843 			vdev_t *cvd = vd->vdev_child[rc->rc_shadow_devidx];
2844 
2845 			/*
2846 			 * Note: We don't want to update the repair stats
2847 			 * because that would incorrectly indicate that there
2848 			 * was bad data to repair, which we aren't sure about.
2849 			 * By clearing the SCAN_THREAD flag, we prevent this
2850 			 * from happening, despite having the REPAIR flag set.
2851 			 * We need to set SELF_HEAL so that this i/o can't be
2852 			 * bypassed by zio_vdev_io_start().
2853 			 */
2854 			zio_t *cio = zio_vdev_child_io(zio, NULL, cvd,
2855 			    rc->rc_shadow_offset, rc->rc_abd, rc->rc_size,
2856 			    ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
2857 			    ZIO_FLAG_IO_REPAIR | ZIO_FLAG_SELF_HEAL,
2858 			    NULL, NULL);
2859 			cio->io_flags &= ~ZIO_FLAG_SCAN_THREAD;
2860 			zio_nowait(cio);
2861 		}
2862 	}
2863 }
2864 
2865 static void
raidz_restore_orig_data(raidz_map_t * rm)2866 raidz_restore_orig_data(raidz_map_t *rm)
2867 {
2868 	for (int i = 0; i < rm->rm_nrows; i++) {
2869 		raidz_row_t *rr = rm->rm_row[i];
2870 		for (int c = 0; c < rr->rr_cols; c++) {
2871 			raidz_col_t *rc = &rr->rr_col[c];
2872 			if (rc->rc_need_orig_restore) {
2873 				abd_copy(rc->rc_abd,
2874 				    rc->rc_orig_data, rc->rc_size);
2875 				rc->rc_need_orig_restore = B_FALSE;
2876 			}
2877 		}
2878 	}
2879 }
2880 
2881 /*
2882  * During raidz_reconstruct() for expanded VDEV, we need special consideration
2883  * failure simulations.  See note in raidz_reconstruct() on simulating failure
2884  * of a pre-expansion device.
2885  *
2886  * Treating logical child i as failed, return TRUE if the given column should
2887  * be treated as failed.  The idea of logical children allows us to imagine
2888  * that a disk silently failed before a RAIDZ expansion (reads from this disk
2889  * succeed but return the wrong data).  Since the expansion doesn't verify
2890  * checksums, the incorrect data will be moved to new locations spread among
2891  * the children (going diagonally across them).
2892  *
2893  * Higher "logical child failures" (values of `i`) indicate these
2894  * "pre-expansion failures".  The first physical_width values imagine that a
2895  * current child failed; the next physical_width-1 values imagine that a
2896  * child failed before the most recent expansion; the next physical_width-2
2897  * values imagine a child failed in the expansion before that, etc.
2898  */
2899 static boolean_t
raidz_simulate_failure(int physical_width,int original_width,int ashift,int i,raidz_col_t * rc)2900 raidz_simulate_failure(int physical_width, int original_width, int ashift,
2901     int i, raidz_col_t *rc)
2902 {
2903 	uint64_t sector_id =
2904 	    physical_width * (rc->rc_offset >> ashift) +
2905 	    rc->rc_devidx;
2906 
2907 	for (int w = physical_width; w >= original_width; w--) {
2908 		if (i < w) {
2909 			return (sector_id % w == i);
2910 		} else {
2911 			i -= w;
2912 		}
2913 	}
2914 	ASSERT(!"invalid logical child id");
2915 	return (B_FALSE);
2916 }
2917 
2918 /*
2919  * returns EINVAL if reconstruction of the block will not be possible
2920  * returns ECKSUM if this specific reconstruction failed
2921  * returns 0 on successful reconstruction
2922  */
2923 static int
raidz_reconstruct(zio_t * zio,int * ltgts,int ntgts,int nparity)2924 raidz_reconstruct(zio_t *zio, int *ltgts, int ntgts, int nparity)
2925 {
2926 	raidz_map_t *rm = zio->io_vsd;
2927 	int physical_width = zio->io_vd->vdev_children;
2928 	int original_width = (rm->rm_original_width != 0) ?
2929 	    rm->rm_original_width : physical_width;
2930 	int dbgmsg = zfs_flags & ZFS_DEBUG_RAIDZ_RECONSTRUCT;
2931 
2932 	if (dbgmsg) {
2933 		zfs_dbgmsg("raidz_reconstruct_expanded(zio=%px ltgts=%u,%u,%u "
2934 		    "ntgts=%u", zio, ltgts[0], ltgts[1], ltgts[2], ntgts);
2935 	}
2936 
2937 	/* Reconstruct each row */
2938 	for (int r = 0; r < rm->rm_nrows; r++) {
2939 		raidz_row_t *rr = rm->rm_row[r];
2940 		int my_tgts[VDEV_RAIDZ_MAXPARITY]; /* value is child id */
2941 		int t = 0;
2942 		int dead = 0;
2943 		int dead_data = 0;
2944 
2945 		if (dbgmsg)
2946 			zfs_dbgmsg("raidz_reconstruct_expanded(row=%u)", r);
2947 
2948 		for (int c = 0; c < rr->rr_cols; c++) {
2949 			raidz_col_t *rc = &rr->rr_col[c];
2950 			ASSERT0(rc->rc_need_orig_restore);
2951 			if (rc->rc_error != 0) {
2952 				dead++;
2953 				if (c >= nparity)
2954 					dead_data++;
2955 				continue;
2956 			}
2957 			if (rc->rc_size == 0)
2958 				continue;
2959 			for (int lt = 0; lt < ntgts; lt++) {
2960 				if (raidz_simulate_failure(physical_width,
2961 				    original_width,
2962 				    zio->io_vd->vdev_top->vdev_ashift,
2963 				    ltgts[lt], rc)) {
2964 					if (rc->rc_orig_data == NULL) {
2965 						rc->rc_orig_data =
2966 						    abd_alloc_linear(
2967 						    rc->rc_size, B_TRUE);
2968 						abd_copy(rc->rc_orig_data,
2969 						    rc->rc_abd, rc->rc_size);
2970 					}
2971 					rc->rc_need_orig_restore = B_TRUE;
2972 
2973 					dead++;
2974 					if (c >= nparity)
2975 						dead_data++;
2976 					/*
2977 					 * Note: simulating failure of a
2978 					 * pre-expansion device can hit more
2979 					 * than one column, in which case we
2980 					 * might try to simulate more failures
2981 					 * than can be reconstructed, which is
2982 					 * also more than the size of my_tgts.
2983 					 * This check prevents accessing past
2984 					 * the end of my_tgts.  The "dead >
2985 					 * nparity" check below will fail this
2986 					 * reconstruction attempt.
2987 					 */
2988 					if (t < VDEV_RAIDZ_MAXPARITY) {
2989 						my_tgts[t++] = c;
2990 						if (dbgmsg) {
2991 							zfs_dbgmsg("simulating "
2992 							    "failure of col %u "
2993 							    "devidx %u", c,
2994 							    (int)rc->rc_devidx);
2995 						}
2996 					}
2997 					break;
2998 				}
2999 			}
3000 		}
3001 		if (dead > nparity) {
3002 			/* reconstruction not possible */
3003 			if (dbgmsg) {
3004 				zfs_dbgmsg("reconstruction not possible; "
3005 				    "too many failures");
3006 			}
3007 			raidz_restore_orig_data(rm);
3008 			return (EINVAL);
3009 		}
3010 		if (dead_data > 0)
3011 			vdev_raidz_reconstruct_row(rm, rr, my_tgts, t);
3012 	}
3013 
3014 	/* Check for success */
3015 	if (raidz_checksum_verify(zio) == 0) {
3016 		if (zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR)
3017 			return (0);
3018 
3019 		/* Reconstruction succeeded - report errors */
3020 		for (int i = 0; i < rm->rm_nrows; i++) {
3021 			raidz_row_t *rr = rm->rm_row[i];
3022 
3023 			for (int c = 0; c < rr->rr_cols; c++) {
3024 				raidz_col_t *rc = &rr->rr_col[c];
3025 				if (rc->rc_need_orig_restore) {
3026 					/*
3027 					 * Note: if this is a parity column,
3028 					 * we don't really know if it's wrong.
3029 					 * We need to let
3030 					 * vdev_raidz_io_done_verified() check
3031 					 * it, and if we set rc_error, it will
3032 					 * think that it is a "known" error
3033 					 * that doesn't need to be checked
3034 					 * or corrected.
3035 					 */
3036 					if (rc->rc_error == 0 &&
3037 					    c >= rr->rr_firstdatacol) {
3038 						vdev_raidz_checksum_error(zio,
3039 						    rc, rc->rc_orig_data);
3040 						rc->rc_error =
3041 						    SET_ERROR(ECKSUM);
3042 					}
3043 					rc->rc_need_orig_restore = B_FALSE;
3044 				}
3045 			}
3046 
3047 			vdev_raidz_io_done_verified(zio, rr);
3048 		}
3049 
3050 		zio_checksum_verified(zio);
3051 
3052 		if (dbgmsg) {
3053 			zfs_dbgmsg("reconstruction successful "
3054 			    "(checksum verified)");
3055 		}
3056 		return (0);
3057 	}
3058 
3059 	/* Reconstruction failed - restore original data */
3060 	raidz_restore_orig_data(rm);
3061 	if (dbgmsg) {
3062 		zfs_dbgmsg("raidz_reconstruct_expanded(zio=%px) checksum "
3063 		    "failed", zio);
3064 	}
3065 	return (ECKSUM);
3066 }
3067 
3068 /*
3069  * Iterate over all combinations of N bad vdevs and attempt a reconstruction.
3070  * Note that the algorithm below is non-optimal because it doesn't take into
3071  * account how reconstruction is actually performed. For example, with
3072  * triple-parity RAID-Z the reconstruction procedure is the same if column 4
3073  * is targeted as invalid as if columns 1 and 4 are targeted since in both
3074  * cases we'd only use parity information in column 0.
3075  *
3076  * The order that we find the various possible combinations of failed
3077  * disks is dictated by these rules:
3078  * - Examine each "slot" (the "i" in tgts[i])
3079  *   - Try to increment this slot (tgts[i] += 1)
3080  *   - if we can't increment because it runs into the next slot,
3081  *     reset our slot to the minimum, and examine the next slot
3082  *
3083  *  For example, with a 6-wide RAIDZ3, and no known errors (so we have to choose
3084  *  3 columns to reconstruct), we will generate the following sequence:
3085  *
3086  *  STATE        ACTION
3087  *  0 1 2        special case: skip since these are all parity
3088  *  0 1   3      first slot: reset to 0; middle slot: increment to 2
3089  *  0   2 3      first slot: increment to 1
3090  *    1 2 3      first: reset to 0; middle: reset to 1; last: increment to 4
3091  *  0 1     4    first: reset to 0; middle: increment to 2
3092  *  0   2   4    first: increment to 1
3093  *    1 2   4    first: reset to 0; middle: increment to 3
3094  *  0     3 4    first: increment to 1
3095  *    1   3 4    first: increment to 2
3096  *      2 3 4    first: reset to 0; middle: reset to 1; last: increment to 5
3097  *  0 1       5  first: reset to 0; middle: increment to 2
3098  *  0   2     5  first: increment to 1
3099  *    1 2     5  first: reset to 0; middle: increment to 3
3100  *  0     3   5  first: increment to 1
3101  *    1   3   5  first: increment to 2
3102  *      2 3   5  first: reset to 0; middle: increment to 4
3103  *  0       4 5  first: increment to 1
3104  *    1     4 5  first: increment to 2
3105  *      2   4 5  first: increment to 3
3106  *        3 4 5  done
3107  *
3108  * This strategy works for dRAID but is less efficient when there are a large
3109  * number of child vdevs and therefore permutations to check. Furthermore,
3110  * since the raidz_map_t rows likely do not overlap, reconstruction would be
3111  * possible as long as there are no more than nparity data errors per row.
3112  * These additional permutations are not currently checked but could be as
3113  * a future improvement.
3114  *
3115  * Returns 0 on success, ECKSUM on failure.
3116  */
3117 static int
vdev_raidz_combrec(zio_t * zio)3118 vdev_raidz_combrec(zio_t *zio)
3119 {
3120 	int nparity = vdev_get_nparity(zio->io_vd);
3121 	raidz_map_t *rm = zio->io_vsd;
3122 	int physical_width = zio->io_vd->vdev_children;
3123 	int original_width = (rm->rm_original_width != 0) ?
3124 	    rm->rm_original_width : physical_width;
3125 
3126 	for (int i = 0; i < rm->rm_nrows; i++) {
3127 		raidz_row_t *rr = rm->rm_row[i];
3128 		int total_errors = 0;
3129 
3130 		for (int c = 0; c < rr->rr_cols; c++) {
3131 			if (rr->rr_col[c].rc_error)
3132 				total_errors++;
3133 		}
3134 
3135 		if (total_errors > nparity)
3136 			return (vdev_raidz_worst_error(rr));
3137 	}
3138 
3139 	for (int num_failures = 1; num_failures <= nparity; num_failures++) {
3140 		int tstore[VDEV_RAIDZ_MAXPARITY + 2];
3141 		int *ltgts = &tstore[1]; /* value is logical child ID */
3142 
3143 
3144 		/*
3145 		 * Determine number of logical children, n.  See comment
3146 		 * above raidz_simulate_failure().
3147 		 */
3148 		int n = 0;
3149 		for (int w = physical_width;
3150 		    w >= original_width; w--) {
3151 			n += w;
3152 		}
3153 
3154 		ASSERT3U(num_failures, <=, nparity);
3155 		ASSERT3U(num_failures, <=, VDEV_RAIDZ_MAXPARITY);
3156 
3157 		/* Handle corner cases in combrec logic */
3158 		ltgts[-1] = -1;
3159 		for (int i = 0; i < num_failures; i++) {
3160 			ltgts[i] = i;
3161 		}
3162 		ltgts[num_failures] = n;
3163 
3164 		for (;;) {
3165 			int err = raidz_reconstruct(zio, ltgts, num_failures,
3166 			    nparity);
3167 			if (err == EINVAL) {
3168 				/*
3169 				 * Reconstruction not possible with this #
3170 				 * failures; try more failures.
3171 				 */
3172 				break;
3173 			} else if (err == 0)
3174 				return (0);
3175 
3176 			/* Compute next targets to try */
3177 			for (int t = 0; ; t++) {
3178 				ASSERT3U(t, <, num_failures);
3179 				ltgts[t]++;
3180 				if (ltgts[t] == n) {
3181 					/* try more failures */
3182 					ASSERT3U(t, ==, num_failures - 1);
3183 					if (zfs_flags &
3184 					    ZFS_DEBUG_RAIDZ_RECONSTRUCT) {
3185 						zfs_dbgmsg("reconstruction "
3186 						    "failed for num_failures="
3187 						    "%u; tried all "
3188 						    "combinations",
3189 						    num_failures);
3190 					}
3191 					break;
3192 				}
3193 
3194 				ASSERT3U(ltgts[t], <, n);
3195 				ASSERT3U(ltgts[t], <=, ltgts[t + 1]);
3196 
3197 				/*
3198 				 * If that spot is available, we're done here.
3199 				 * Try the next combination.
3200 				 */
3201 				if (ltgts[t] != ltgts[t + 1])
3202 					break; // found next combination
3203 
3204 				/*
3205 				 * Otherwise, reset this tgt to the minimum,
3206 				 * and move on to the next tgt.
3207 				 */
3208 				ltgts[t] = ltgts[t - 1] + 1;
3209 				ASSERT3U(ltgts[t], ==, t);
3210 			}
3211 
3212 			/* Increase the number of failures and keep trying. */
3213 			if (ltgts[num_failures - 1] == n)
3214 				break;
3215 		}
3216 	}
3217 	if (zfs_flags & ZFS_DEBUG_RAIDZ_RECONSTRUCT)
3218 		zfs_dbgmsg("reconstruction failed for all num_failures");
3219 	return (ECKSUM);
3220 }
3221 
3222 void
vdev_raidz_reconstruct(raidz_map_t * rm,const int * t,int nt)3223 vdev_raidz_reconstruct(raidz_map_t *rm, const int *t, int nt)
3224 {
3225 	for (uint64_t row = 0; row < rm->rm_nrows; row++) {
3226 		raidz_row_t *rr = rm->rm_row[row];
3227 		vdev_raidz_reconstruct_row(rm, rr, t, nt);
3228 	}
3229 }
3230 
3231 /*
3232  * Complete a write IO operation on a RAIDZ VDev
3233  *
3234  * Outline:
3235  *   1. Check for errors on the child IOs.
3236  *   2. Return, setting an error code if too few child VDevs were written
3237  *      to reconstruct the data later.  Note that partial writes are
3238  *      considered successful if they can be reconstructed at all.
3239  */
3240 static void
vdev_raidz_io_done_write_impl(zio_t * zio,raidz_row_t * rr)3241 vdev_raidz_io_done_write_impl(zio_t *zio, raidz_row_t *rr)
3242 {
3243 	int normal_errors = 0;
3244 	int shadow_errors = 0;
3245 
3246 	ASSERT3U(rr->rr_missingparity, <=, rr->rr_firstdatacol);
3247 	ASSERT3U(rr->rr_missingdata, <=, rr->rr_cols - rr->rr_firstdatacol);
3248 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
3249 
3250 	for (int c = 0; c < rr->rr_cols; c++) {
3251 		raidz_col_t *rc = &rr->rr_col[c];
3252 
3253 		if (rc->rc_error != 0) {
3254 			ASSERT(rc->rc_error != ECKSUM);	/* child has no bp */
3255 			normal_errors++;
3256 		}
3257 		if (rc->rc_shadow_error != 0) {
3258 			ASSERT(rc->rc_shadow_error != ECKSUM);
3259 			shadow_errors++;
3260 		}
3261 	}
3262 
3263 	/*
3264 	 * Treat partial writes as a success. If we couldn't write enough
3265 	 * columns to reconstruct the data, the I/O failed.  Otherwise, good
3266 	 * enough.  Note that in the case of a shadow write (during raidz
3267 	 * expansion), depending on if we crash, either the normal (old) or
3268 	 * shadow (new) location may become the "real" version of the block,
3269 	 * so both locations must have sufficient redundancy.
3270 	 *
3271 	 * Now that we support write reallocation, it would be better
3272 	 * to treat partial failure as real failure unless there are
3273 	 * no non-degraded top-level vdevs left, and not update DTLs
3274 	 * if we intend to reallocate.
3275 	 */
3276 	if (normal_errors > rr->rr_firstdatacol ||
3277 	    shadow_errors > rr->rr_firstdatacol) {
3278 		zio->io_error = zio_worst_error(zio->io_error,
3279 		    vdev_raidz_worst_error(rr));
3280 	}
3281 }
3282 
3283 static void
vdev_raidz_io_done_reconstruct_known_missing(zio_t * zio,raidz_map_t * rm,raidz_row_t * rr)3284 vdev_raidz_io_done_reconstruct_known_missing(zio_t *zio, raidz_map_t *rm,
3285     raidz_row_t *rr)
3286 {
3287 	int parity_errors = 0;
3288 	int parity_untried = 0;
3289 	int data_errors = 0;
3290 	int total_errors = 0;
3291 
3292 	ASSERT3U(rr->rr_missingparity, <=, rr->rr_firstdatacol);
3293 	ASSERT3U(rr->rr_missingdata, <=, rr->rr_cols - rr->rr_firstdatacol);
3294 
3295 	for (int c = 0; c < rr->rr_cols; c++) {
3296 		raidz_col_t *rc = &rr->rr_col[c];
3297 
3298 		/*
3299 		 * If scrubbing and a replacing/sparing child vdev determined
3300 		 * that not all of its children have an identical copy of the
3301 		 * data, then clear the error so the column is treated like
3302 		 * any other read and force a repair to correct the damage.
3303 		 */
3304 		if (rc->rc_error == ECKSUM) {
3305 			ASSERT(zio->io_flags & ZIO_FLAG_SCRUB);
3306 			vdev_raidz_checksum_error(zio, rc, rc->rc_abd);
3307 			rc->rc_force_repair = 1;
3308 			rc->rc_error = 0;
3309 		}
3310 
3311 		if (rc->rc_error) {
3312 			if (c < rr->rr_firstdatacol)
3313 				parity_errors++;
3314 			else
3315 				data_errors++;
3316 
3317 			total_errors++;
3318 		} else if (c < rr->rr_firstdatacol && !rc->rc_tried) {
3319 			parity_untried++;
3320 		}
3321 	}
3322 
3323 	/*
3324 	 * If there were data errors and the number of errors we saw was
3325 	 * correctable -- less than or equal to the number of parity disks read
3326 	 * -- reconstruct based on the missing data.
3327 	 */
3328 	if (data_errors != 0 &&
3329 	    total_errors <= rr->rr_firstdatacol - parity_untried) {
3330 		/*
3331 		 * We either attempt to read all the parity columns or
3332 		 * none of them. If we didn't try to read parity, we
3333 		 * wouldn't be here in the correctable case. There must
3334 		 * also have been fewer parity errors than parity
3335 		 * columns or, again, we wouldn't be in this code path.
3336 		 */
3337 		ASSERT(parity_untried == 0);
3338 		ASSERT(parity_errors < rr->rr_firstdatacol);
3339 
3340 		/*
3341 		 * Identify the data columns that reported an error.
3342 		 */
3343 		int n = 0;
3344 		int tgts[VDEV_RAIDZ_MAXPARITY];
3345 		for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
3346 			raidz_col_t *rc = &rr->rr_col[c];
3347 			if (rc->rc_error != 0) {
3348 				ASSERT(n < VDEV_RAIDZ_MAXPARITY);
3349 				tgts[n++] = c;
3350 			}
3351 		}
3352 
3353 		ASSERT(rr->rr_firstdatacol >= n);
3354 
3355 		vdev_raidz_reconstruct_row(rm, rr, tgts, n);
3356 	}
3357 }
3358 
3359 /*
3360  * Return the number of reads issued.
3361  */
3362 static int
vdev_raidz_read_all(zio_t * zio,raidz_row_t * rr)3363 vdev_raidz_read_all(zio_t *zio, raidz_row_t *rr)
3364 {
3365 	vdev_t *vd = zio->io_vd;
3366 	int nread = 0;
3367 
3368 	rr->rr_missingdata = 0;
3369 	rr->rr_missingparity = 0;
3370 
3371 	/*
3372 	 * If this rows contains empty sectors which are not required
3373 	 * for a normal read then allocate an ABD for them now so they
3374 	 * may be read, verified, and any needed repairs performed.
3375 	 */
3376 	if (rr->rr_nempty != 0 && rr->rr_abd_empty == NULL)
3377 		vdev_draid_map_alloc_empty(zio, rr);
3378 
3379 	for (int c = 0; c < rr->rr_cols; c++) {
3380 		raidz_col_t *rc = &rr->rr_col[c];
3381 		if (rc->rc_tried || rc->rc_size == 0)
3382 			continue;
3383 
3384 		zio_nowait(zio_vdev_child_io(zio, NULL,
3385 		    vd->vdev_child[rc->rc_devidx],
3386 		    rc->rc_offset, rc->rc_abd, rc->rc_size,
3387 		    zio->io_type, zio->io_priority, 0,
3388 		    vdev_raidz_child_done, rc));
3389 		nread++;
3390 	}
3391 	return (nread);
3392 }
3393 
3394 /*
3395  * We're here because either there were too many errors to even attempt
3396  * reconstruction (total_errors == rm_first_datacol), or vdev_*_combrec()
3397  * failed. In either case, there is enough bad data to prevent reconstruction.
3398  * Start checksum ereports for all children which haven't failed.
3399  */
3400 static void
vdev_raidz_io_done_unrecoverable(zio_t * zio)3401 vdev_raidz_io_done_unrecoverable(zio_t *zio)
3402 {
3403 	raidz_map_t *rm = zio->io_vsd;
3404 
3405 	for (int i = 0; i < rm->rm_nrows; i++) {
3406 		raidz_row_t *rr = rm->rm_row[i];
3407 
3408 		for (int c = 0; c < rr->rr_cols; c++) {
3409 			raidz_col_t *rc = &rr->rr_col[c];
3410 			vdev_t *cvd = zio->io_vd->vdev_child[rc->rc_devidx];
3411 
3412 			if (rc->rc_error != 0)
3413 				continue;
3414 
3415 			zio_bad_cksum_t zbc;
3416 			zbc.zbc_has_cksum = 0;
3417 			zbc.zbc_injected = rm->rm_ecksuminjected;
3418 			mutex_enter(&cvd->vdev_stat_lock);
3419 			cvd->vdev_stat.vs_checksum_errors++;
3420 			mutex_exit(&cvd->vdev_stat_lock);
3421 			(void) zfs_ereport_start_checksum(zio->io_spa,
3422 			    cvd, &zio->io_bookmark, zio, rc->rc_offset,
3423 			    rc->rc_size, &zbc);
3424 		}
3425 	}
3426 }
3427 
3428 void
vdev_raidz_io_done(zio_t * zio)3429 vdev_raidz_io_done(zio_t *zio)
3430 {
3431 	raidz_map_t *rm = zio->io_vsd;
3432 
3433 	ASSERT(zio->io_bp != NULL);
3434 	if (zio->io_type == ZIO_TYPE_WRITE) {
3435 		for (int i = 0; i < rm->rm_nrows; i++) {
3436 			vdev_raidz_io_done_write_impl(zio, rm->rm_row[i]);
3437 		}
3438 	} else {
3439 		if (rm->rm_phys_col) {
3440 			/*
3441 			 * This is an aggregated read.  Copy the data and status
3442 			 * from the aggregate abd's to the individual rows.
3443 			 */
3444 			for (int i = 0; i < rm->rm_nrows; i++) {
3445 				raidz_row_t *rr = rm->rm_row[i];
3446 
3447 				for (int c = 0; c < rr->rr_cols; c++) {
3448 					raidz_col_t *rc = &rr->rr_col[c];
3449 					if (rc->rc_tried || rc->rc_size == 0)
3450 						continue;
3451 
3452 					raidz_col_t *prc =
3453 					    &rm->rm_phys_col[rc->rc_devidx];
3454 					rc->rc_error = prc->rc_error;
3455 					rc->rc_tried = prc->rc_tried;
3456 					rc->rc_skipped = prc->rc_skipped;
3457 					if (c >= rr->rr_firstdatacol) {
3458 						/*
3459 						 * Note: this is slightly faster
3460 						 * than using abd_copy_off().
3461 						 */
3462 						char *physbuf = abd_to_buf(
3463 						    prc->rc_abd);
3464 						void *physloc = physbuf +
3465 						    rc->rc_offset -
3466 						    prc->rc_offset;
3467 
3468 						abd_copy_from_buf(rc->rc_abd,
3469 						    physloc, rc->rc_size);
3470 					}
3471 				}
3472 			}
3473 		}
3474 
3475 		for (int i = 0; i < rm->rm_nrows; i++) {
3476 			raidz_row_t *rr = rm->rm_row[i];
3477 			vdev_raidz_io_done_reconstruct_known_missing(zio,
3478 			    rm, rr);
3479 		}
3480 
3481 		if (raidz_checksum_verify(zio) == 0) {
3482 			if (zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR)
3483 				goto done;
3484 
3485 			for (int i = 0; i < rm->rm_nrows; i++) {
3486 				raidz_row_t *rr = rm->rm_row[i];
3487 				vdev_raidz_io_done_verified(zio, rr);
3488 			}
3489 			zio_checksum_verified(zio);
3490 		} else {
3491 			/*
3492 			 * A sequential resilver has no checksum which makes
3493 			 * combinatoral reconstruction impossible. This code
3494 			 * path is unreachable since raidz_checksum_verify()
3495 			 * has no checksum to verify and must succeed.
3496 			 */
3497 			ASSERT3U(zio->io_priority, !=, ZIO_PRIORITY_REBUILD);
3498 
3499 			/*
3500 			 * This isn't a typical situation -- either we got a
3501 			 * read error or a child silently returned bad data.
3502 			 * Read every block so we can try again with as much
3503 			 * data and parity as we can track down. If we've
3504 			 * already been through once before, all children will
3505 			 * be marked as tried so we'll proceed to combinatorial
3506 			 * reconstruction.
3507 			 */
3508 			int nread = 0;
3509 			for (int i = 0; i < rm->rm_nrows; i++) {
3510 				nread += vdev_raidz_read_all(zio,
3511 				    rm->rm_row[i]);
3512 			}
3513 			if (nread != 0) {
3514 				/*
3515 				 * Normally our stage is VDEV_IO_DONE, but if
3516 				 * we've already called redone(), it will have
3517 				 * changed to VDEV_IO_START, in which case we
3518 				 * don't want to call redone() again.
3519 				 */
3520 				if (zio->io_stage != ZIO_STAGE_VDEV_IO_START)
3521 					zio_vdev_io_redone(zio);
3522 				return;
3523 			}
3524 			/*
3525 			 * It would be too expensive to try every possible
3526 			 * combination of failed sectors in every row, so
3527 			 * instead we try every combination of failed current or
3528 			 * past physical disk. This means that if the incorrect
3529 			 * sectors were all on Nparity disks at any point in the
3530 			 * past, we will find the correct data.  The only known
3531 			 * case where this is less durable than a non-expanded
3532 			 * RAIDZ, is if we have a silent failure during
3533 			 * expansion.  In that case, one block could be
3534 			 * partially in the old format and partially in the
3535 			 * new format, so we'd lost some sectors from the old
3536 			 * format and some from the new format.
3537 			 *
3538 			 * e.g. logical_width=4 physical_width=6
3539 			 * the 15 (6+5+4) possible failed disks are:
3540 			 * width=6 child=0
3541 			 * width=6 child=1
3542 			 * width=6 child=2
3543 			 * width=6 child=3
3544 			 * width=6 child=4
3545 			 * width=6 child=5
3546 			 * width=5 child=0
3547 			 * width=5 child=1
3548 			 * width=5 child=2
3549 			 * width=5 child=3
3550 			 * width=5 child=4
3551 			 * width=4 child=0
3552 			 * width=4 child=1
3553 			 * width=4 child=2
3554 			 * width=4 child=3
3555 			 * And we will try every combination of Nparity of these
3556 			 * failing.
3557 			 *
3558 			 * As a first pass, we can generate every combo,
3559 			 * and try reconstructing, ignoring any known
3560 			 * failures.  If any row has too many known + simulated
3561 			 * failures, then we bail on reconstructing with this
3562 			 * number of simulated failures.  As an improvement,
3563 			 * we could detect the number of whole known failures
3564 			 * (i.e. we have known failures on these disks for
3565 			 * every row; the disks never succeeded), and
3566 			 * subtract that from the max # failures to simulate.
3567 			 * We could go even further like the current
3568 			 * combrec code, but that doesn't seem like it
3569 			 * gains us very much.  If we simulate a failure
3570 			 * that is also a known failure, that's fine.
3571 			 */
3572 			zio->io_error = vdev_raidz_combrec(zio);
3573 			if (zio->io_error == ECKSUM &&
3574 			    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3575 				vdev_raidz_io_done_unrecoverable(zio);
3576 			}
3577 		}
3578 	}
3579 done:
3580 	if (rm->rm_lr != NULL) {
3581 		zfs_rangelock_exit(rm->rm_lr);
3582 		rm->rm_lr = NULL;
3583 	}
3584 }
3585 
3586 static void
vdev_raidz_state_change(vdev_t * vd,int faulted,int degraded)3587 vdev_raidz_state_change(vdev_t *vd, int faulted, int degraded)
3588 {
3589 	vdev_raidz_t *vdrz = vd->vdev_tsd;
3590 	if (faulted > vdrz->vd_nparity)
3591 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3592 		    VDEV_AUX_NO_REPLICAS);
3593 	else if (degraded + faulted != 0)
3594 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
3595 	else
3596 		vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
3597 }
3598 
3599 /*
3600  * Determine if any portion of the provided block resides on a child vdev
3601  * with a dirty DTL and therefore needs to be resilvered.  The function
3602  * assumes that at least one DTL is dirty which implies that full stripe
3603  * width blocks must be resilvered.
3604  */
3605 static boolean_t
vdev_raidz_need_resilver(vdev_t * vd,const dva_t * dva,size_t psize,uint64_t phys_birth)3606 vdev_raidz_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
3607     uint64_t phys_birth)
3608 {
3609 	vdev_raidz_t *vdrz = vd->vdev_tsd;
3610 
3611 	/*
3612 	 * If we're in the middle of a RAIDZ expansion, this block may be in
3613 	 * the old and/or new location.  For simplicity, always resilver it.
3614 	 */
3615 	if (vdrz->vn_vre.vre_state == DSS_SCANNING)
3616 		return (B_TRUE);
3617 
3618 	uint64_t dcols = vd->vdev_children;
3619 	uint64_t nparity = vdrz->vd_nparity;
3620 	uint64_t ashift = vd->vdev_top->vdev_ashift;
3621 	/* The starting RAIDZ (parent) vdev sector of the block. */
3622 	uint64_t b = DVA_GET_OFFSET(dva) >> ashift;
3623 	/* The zio's size in units of the vdev's minimum sector size. */
3624 	uint64_t s = ((psize - 1) >> ashift) + 1;
3625 	/* The first column for this stripe. */
3626 	uint64_t f = b % dcols;
3627 
3628 	/* Unreachable by sequential resilver. */
3629 	ASSERT3U(phys_birth, !=, TXG_UNKNOWN);
3630 
3631 	if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1))
3632 		return (B_FALSE);
3633 
3634 	if (s + nparity >= dcols)
3635 		return (B_TRUE);
3636 
3637 	for (uint64_t c = 0; c < s + nparity; c++) {
3638 		uint64_t devidx = (f + c) % dcols;
3639 		vdev_t *cvd = vd->vdev_child[devidx];
3640 
3641 		/*
3642 		 * dsl_scan_need_resilver() already checked vd with
3643 		 * vdev_dtl_contains(). So here just check cvd with
3644 		 * vdev_dtl_empty(), cheaper and a good approximation.
3645 		 */
3646 		if (!vdev_dtl_empty(cvd, DTL_PARTIAL))
3647 			return (B_TRUE);
3648 	}
3649 
3650 	return (B_FALSE);
3651 }
3652 
3653 static void
vdev_raidz_xlate(vdev_t * cvd,const zfs_range_seg64_t * logical_rs,zfs_range_seg64_t * physical_rs,zfs_range_seg64_t * remain_rs)3654 vdev_raidz_xlate(vdev_t *cvd, const zfs_range_seg64_t *logical_rs,
3655     zfs_range_seg64_t *physical_rs, zfs_range_seg64_t *remain_rs)
3656 {
3657 	(void) remain_rs;
3658 
3659 	vdev_t *raidvd = cvd->vdev_parent;
3660 	ASSERT(raidvd->vdev_ops == &vdev_raidz_ops);
3661 
3662 	vdev_raidz_t *vdrz = raidvd->vdev_tsd;
3663 
3664 	if (vdrz->vn_vre.vre_state == DSS_SCANNING) {
3665 		/*
3666 		 * We're in the middle of expansion, in which case the
3667 		 * translation is in flux.  Any answer we give may be wrong
3668 		 * by the time we return, so it isn't safe for the caller to
3669 		 * act on it.  Therefore we say that this range isn't present
3670 		 * on any children.  The only consumers of this are "zpool
3671 		 * initialize" and trimming, both of which are "best effort"
3672 		 * anyway.
3673 		 */
3674 		physical_rs->rs_start = physical_rs->rs_end = 0;
3675 		remain_rs->rs_start = remain_rs->rs_end = 0;
3676 		return;
3677 	}
3678 
3679 	uint64_t width = vdrz->vd_physical_width;
3680 	uint64_t tgt_col = cvd->vdev_id;
3681 	uint64_t ashift = raidvd->vdev_top->vdev_ashift;
3682 
3683 	/* make sure the offsets are block-aligned */
3684 	ASSERT0(logical_rs->rs_start % (1 << ashift));
3685 	ASSERT0(logical_rs->rs_end % (1 << ashift));
3686 	uint64_t b_start = logical_rs->rs_start >> ashift;
3687 	uint64_t b_end = logical_rs->rs_end >> ashift;
3688 
3689 	uint64_t start_row = 0;
3690 	if (b_start > tgt_col) /* avoid underflow */
3691 		start_row = ((b_start - tgt_col - 1) / width) + 1;
3692 
3693 	uint64_t end_row = 0;
3694 	if (b_end > tgt_col)
3695 		end_row = ((b_end - tgt_col - 1) / width) + 1;
3696 
3697 	physical_rs->rs_start = start_row << ashift;
3698 	physical_rs->rs_end = end_row << ashift;
3699 
3700 	ASSERT3U(physical_rs->rs_start, <=, logical_rs->rs_start);
3701 	ASSERT3U(physical_rs->rs_end - physical_rs->rs_start, <=,
3702 	    logical_rs->rs_end - logical_rs->rs_start);
3703 }
3704 
3705 static void
raidz_reflow_sync(void * arg,dmu_tx_t * tx)3706 raidz_reflow_sync(void *arg, dmu_tx_t *tx)
3707 {
3708 	spa_t *spa = arg;
3709 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
3710 	vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
3711 
3712 	/*
3713 	 * Ensure there are no i/os to the range that is being committed.
3714 	 */
3715 	uint64_t old_offset = RRSS_GET_OFFSET(&spa->spa_uberblock);
3716 	ASSERT3U(vre->vre_offset_pertxg[txgoff], >=, old_offset);
3717 
3718 	mutex_enter(&vre->vre_lock);
3719 	uint64_t new_offset =
3720 	    MIN(vre->vre_offset_pertxg[txgoff], vre->vre_failed_offset);
3721 	/*
3722 	 * We should not have committed anything that failed.
3723 	 */
3724 	VERIFY3U(vre->vre_failed_offset, >=, old_offset);
3725 	mutex_exit(&vre->vre_lock);
3726 
3727 	zfs_locked_range_t *lr = zfs_rangelock_enter(&vre->vre_rangelock,
3728 	    old_offset, new_offset - old_offset,
3729 	    RL_WRITER);
3730 
3731 	/*
3732 	 * Update the uberblock that will be written when this txg completes.
3733 	 */
3734 	RAIDZ_REFLOW_SET(&spa->spa_uberblock,
3735 	    RRSS_SCRATCH_INVALID_SYNCED_REFLOW, new_offset);
3736 	vre->vre_offset_pertxg[txgoff] = 0;
3737 	zfs_rangelock_exit(lr);
3738 
3739 	mutex_enter(&vre->vre_lock);
3740 	vre->vre_bytes_copied += vre->vre_bytes_copied_pertxg[txgoff];
3741 	vre->vre_bytes_copied_pertxg[txgoff] = 0;
3742 	mutex_exit(&vre->vre_lock);
3743 
3744 	vdev_t *vd = vdev_lookup_top(spa, vre->vre_vdev_id);
3745 	VERIFY0(zap_update(spa->spa_meta_objset,
3746 	    vd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_BYTES_COPIED,
3747 	    sizeof (vre->vre_bytes_copied), 1, &vre->vre_bytes_copied, tx));
3748 }
3749 
3750 static void
raidz_reflow_complete_sync(void * arg,dmu_tx_t * tx)3751 raidz_reflow_complete_sync(void *arg, dmu_tx_t *tx)
3752 {
3753 	spa_t *spa = arg;
3754 	vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
3755 	vdev_t *raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
3756 	vdev_raidz_t *vdrz = raidvd->vdev_tsd;
3757 
3758 	for (int i = 0; i < TXG_SIZE; i++)
3759 		VERIFY0(vre->vre_offset_pertxg[i]);
3760 
3761 	reflow_node_t *re = kmem_zalloc(sizeof (*re), KM_SLEEP);
3762 	re->re_txg = tx->tx_txg + TXG_CONCURRENT_STATES;
3763 	re->re_logical_width = vdrz->vd_physical_width;
3764 	mutex_enter(&vdrz->vd_expand_lock);
3765 	avl_add(&vdrz->vd_expand_txgs, re);
3766 	mutex_exit(&vdrz->vd_expand_lock);
3767 
3768 	vdev_t *vd = vdev_lookup_top(spa, vre->vre_vdev_id);
3769 
3770 	/*
3771 	 * Dirty the config so that the updated ZPOOL_CONFIG_RAIDZ_EXPAND_TXGS
3772 	 * will get written (based on vd_expand_txgs).
3773 	 */
3774 	vdev_config_dirty(vd);
3775 
3776 	/*
3777 	 * Before we change vre_state, the on-disk state must reflect that we
3778 	 * have completed all copying, so that vdev_raidz_io_start() can use
3779 	 * vre_state to determine if the reflow is in progress.  See also the
3780 	 * end of spa_raidz_expand_thread().
3781 	 */
3782 	VERIFY3U(RRSS_GET_OFFSET(&spa->spa_ubsync), ==,
3783 	    raidvd->vdev_ms_count << raidvd->vdev_ms_shift);
3784 
3785 	vre->vre_end_time = gethrestime_sec();
3786 	vre->vre_state = DSS_FINISHED;
3787 
3788 	uint64_t state = vre->vre_state;
3789 	VERIFY0(zap_update(spa->spa_meta_objset,
3790 	    vd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_STATE,
3791 	    sizeof (state), 1, &state, tx));
3792 
3793 	uint64_t end_time = vre->vre_end_time;
3794 	VERIFY0(zap_update(spa->spa_meta_objset,
3795 	    vd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_END_TIME,
3796 	    sizeof (end_time), 1, &end_time, tx));
3797 
3798 	spa->spa_uberblock.ub_raidz_reflow_info = 0;
3799 
3800 	spa_history_log_internal(spa, "raidz vdev expansion completed",  tx,
3801 	    "%s vdev %llu new width %llu", spa_name(spa),
3802 	    (unsigned long long)vd->vdev_id,
3803 	    (unsigned long long)vd->vdev_children);
3804 
3805 	spa->spa_raidz_expand = NULL;
3806 	raidvd->vdev_rz_expanding = B_FALSE;
3807 
3808 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
3809 	spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
3810 	spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
3811 
3812 	spa_notify_waiters(spa);
3813 
3814 	/*
3815 	 * While we're in syncing context take the opportunity to
3816 	 * setup a scrub. All the data has been sucessfully copied
3817 	 * but we have not validated any checksums.
3818 	 */
3819 	setup_sync_arg_t setup_sync_arg = {
3820 		.func = POOL_SCAN_SCRUB,
3821 		.txgstart = 0,
3822 		.txgend = 0,
3823 	};
3824 	if (zfs_scrub_after_expand &&
3825 	    dsl_scan_setup_check(&setup_sync_arg.func, tx) == 0) {
3826 		dsl_scan_setup_sync(&setup_sync_arg, tx);
3827 	}
3828 }
3829 
3830 /*
3831  * State of one copy batch.
3832  */
3833 typedef struct raidz_reflow_arg {
3834 	vdev_raidz_expand_t *rra_vre;	/* Global expantion state. */
3835 	zfs_locked_range_t *rra_lr;	/* Range lock of this batch. */
3836 	uint64_t rra_txg;	/* TXG of this batch. */
3837 	uint_t rra_ashift;	/* Ashift of the vdev. */
3838 	uint32_t rra_tbd;	/* Number of in-flight ZIOs. */
3839 	uint32_t rra_writes;	/* Number of write ZIOs. */
3840 	zio_t *rra_zio[];	/* Write ZIO pointers. */
3841 } raidz_reflow_arg_t;
3842 
3843 /*
3844  * Write of the new location on one child is done.  Once all of them are done
3845  * we can unlock and free everything.
3846  */
3847 static void
raidz_reflow_write_done(zio_t * zio)3848 raidz_reflow_write_done(zio_t *zio)
3849 {
3850 	raidz_reflow_arg_t *rra = zio->io_private;
3851 	vdev_raidz_expand_t *vre = rra->rra_vre;
3852 
3853 	abd_free(zio->io_abd);
3854 
3855 	mutex_enter(&vre->vre_lock);
3856 	if (zio->io_error != 0) {
3857 		/* Force a reflow pause on errors */
3858 		vre->vre_failed_offset =
3859 		    MIN(vre->vre_failed_offset, rra->rra_lr->lr_offset);
3860 	}
3861 	ASSERT3U(vre->vre_outstanding_bytes, >=, zio->io_size);
3862 	vre->vre_outstanding_bytes -= zio->io_size;
3863 	if (rra->rra_lr->lr_offset + rra->rra_lr->lr_length <
3864 	    vre->vre_failed_offset) {
3865 		vre->vre_bytes_copied_pertxg[rra->rra_txg & TXG_MASK] +=
3866 		    zio->io_size;
3867 	}
3868 	cv_signal(&vre->vre_cv);
3869 	boolean_t done = (--rra->rra_tbd == 0);
3870 	mutex_exit(&vre->vre_lock);
3871 
3872 	if (!done)
3873 		return;
3874 	spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
3875 	zfs_rangelock_exit(rra->rra_lr);
3876 	kmem_free(rra, sizeof (*rra) + sizeof (zio_t *) * rra->rra_writes);
3877 }
3878 
3879 /*
3880  * Read of the old location on one child is done.  Once all of them are done
3881  * writes should have all the data and we can issue them.
3882  */
3883 static void
raidz_reflow_read_done(zio_t * zio)3884 raidz_reflow_read_done(zio_t *zio)
3885 {
3886 	raidz_reflow_arg_t *rra = zio->io_private;
3887 	vdev_raidz_expand_t *vre = rra->rra_vre;
3888 
3889 	/* Reads of only one block use write ABDs.  For bigger free gangs. */
3890 	if (zio->io_size > (1 << rra->rra_ashift))
3891 		abd_free(zio->io_abd);
3892 
3893 	/*
3894 	 * If the read failed, or if it was done on a vdev that is not fully
3895 	 * healthy (e.g. a child that has a resilver in progress), we may not
3896 	 * have the correct data.  Note that it's OK if the write proceeds.
3897 	 * It may write garbage but the location is otherwise unused and we
3898 	 * will retry later due to vre_failed_offset.
3899 	 */
3900 	if (zio->io_error != 0 || !vdev_dtl_empty(zio->io_vd, DTL_MISSING)) {
3901 		zfs_dbgmsg("reflow read failed off=%llu size=%llu txg=%llu "
3902 		    "err=%u partial_dtl_empty=%u missing_dtl_empty=%u",
3903 		    (long long)rra->rra_lr->lr_offset,
3904 		    (long long)rra->rra_lr->lr_length,
3905 		    (long long)rra->rra_txg,
3906 		    zio->io_error,
3907 		    vdev_dtl_empty(zio->io_vd, DTL_PARTIAL),
3908 		    vdev_dtl_empty(zio->io_vd, DTL_MISSING));
3909 		mutex_enter(&vre->vre_lock);
3910 		/* Force a reflow pause on errors */
3911 		vre->vre_failed_offset =
3912 		    MIN(vre->vre_failed_offset, rra->rra_lr->lr_offset);
3913 		mutex_exit(&vre->vre_lock);
3914 	}
3915 
3916 	if (atomic_dec_32_nv(&rra->rra_tbd) > 0)
3917 		return;
3918 	uint32_t writes = rra->rra_tbd = rra->rra_writes;
3919 	for (uint64_t i = 0; i < writes; i++)
3920 		zio_nowait(rra->rra_zio[i]);
3921 }
3922 
3923 static void
raidz_reflow_record_progress(vdev_raidz_expand_t * vre,uint64_t offset,dmu_tx_t * tx)3924 raidz_reflow_record_progress(vdev_raidz_expand_t *vre, uint64_t offset,
3925     dmu_tx_t *tx)
3926 {
3927 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
3928 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
3929 
3930 	if (offset == 0)
3931 		return;
3932 
3933 	mutex_enter(&vre->vre_lock);
3934 	ASSERT3U(vre->vre_offset, <=, offset);
3935 	vre->vre_offset = offset;
3936 	mutex_exit(&vre->vre_lock);
3937 
3938 	if (vre->vre_offset_pertxg[txgoff] == 0) {
3939 		dsl_sync_task_nowait(dmu_tx_pool(tx), raidz_reflow_sync,
3940 		    spa, tx);
3941 	}
3942 	vre->vre_offset_pertxg[txgoff] = offset;
3943 }
3944 
3945 static boolean_t
vdev_raidz_expand_child_replacing(vdev_t * raidz_vd)3946 vdev_raidz_expand_child_replacing(vdev_t *raidz_vd)
3947 {
3948 	for (int i = 0; i < raidz_vd->vdev_children; i++) {
3949 		/* Quick check if a child is being replaced */
3950 		if (!raidz_vd->vdev_child[i]->vdev_ops->vdev_op_leaf)
3951 			return (B_TRUE);
3952 	}
3953 	return (B_FALSE);
3954 }
3955 
3956 static boolean_t
raidz_reflow_impl(vdev_t * vd,vdev_raidz_expand_t * vre,zfs_range_tree_t * rt,dmu_tx_t * tx)3957 raidz_reflow_impl(vdev_t *vd, vdev_raidz_expand_t *vre, zfs_range_tree_t *rt,
3958     dmu_tx_t *tx)
3959 {
3960 	spa_t *spa = vd->vdev_spa;
3961 	uint_t ashift = vd->vdev_top->vdev_ashift;
3962 
3963 	zfs_range_seg_t *rs = zfs_range_tree_first(rt);
3964 	if (rt == NULL)
3965 		return (B_FALSE);
3966 	uint64_t offset = zfs_rs_get_start(rs, rt);
3967 	ASSERT(IS_P2ALIGNED(offset, 1 << ashift));
3968 	uint64_t size = zfs_rs_get_end(rs, rt) - offset;
3969 	ASSERT3U(size, >=, 1 << ashift);
3970 	ASSERT(IS_P2ALIGNED(size, 1 << ashift));
3971 
3972 	uint64_t blkid = offset >> ashift;
3973 	uint_t old_children = vd->vdev_children - 1;
3974 
3975 	/*
3976 	 * We can only progress to the point that writes will not overlap
3977 	 * with blocks whose progress has not yet been recorded on disk.
3978 	 * Since partially-copied rows are still read from the old location,
3979 	 * we need to stop one row before the sector-wise overlap, to prevent
3980 	 * row-wise overlap.
3981 	 *
3982 	 * Note that even if we are skipping over a large unallocated region,
3983 	 * we can't move the on-disk progress to `offset`, because concurrent
3984 	 * writes/allocations could still use the currently-unallocated
3985 	 * region.
3986 	 */
3987 	uint64_t ubsync_blkid =
3988 	    RRSS_GET_OFFSET(&spa->spa_ubsync) >> ashift;
3989 	uint64_t next_overwrite_blkid = ubsync_blkid +
3990 	    ubsync_blkid / old_children - old_children;
3991 	VERIFY3U(next_overwrite_blkid, >, ubsync_blkid);
3992 	if (blkid >= next_overwrite_blkid) {
3993 		raidz_reflow_record_progress(vre,
3994 		    next_overwrite_blkid << ashift, tx);
3995 		return (B_TRUE);
3996 	}
3997 
3998 	size = MIN(size, raidz_expand_max_copy_bytes);
3999 	size = MIN(size, (uint64_t)old_children *
4000 	    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE));
4001 	size = MAX(size, 1 << ashift);
4002 	uint_t blocks = MIN(size >> ashift, next_overwrite_blkid - blkid);
4003 	size = (uint64_t)blocks << ashift;
4004 
4005 	zfs_range_tree_remove(rt, offset, size);
4006 
4007 	uint_t reads = MIN(blocks, old_children);
4008 	uint_t writes = MIN(blocks, vd->vdev_children);
4009 	raidz_reflow_arg_t *rra = kmem_zalloc(sizeof (*rra) +
4010 	    sizeof (zio_t *) * writes, KM_SLEEP);
4011 	rra->rra_vre = vre;
4012 	rra->rra_lr = zfs_rangelock_enter(&vre->vre_rangelock,
4013 	    offset, size, RL_WRITER);
4014 	rra->rra_txg = dmu_tx_get_txg(tx);
4015 	rra->rra_ashift = ashift;
4016 	rra->rra_tbd = reads;
4017 	rra->rra_writes = writes;
4018 
4019 	raidz_reflow_record_progress(vre, offset + size, tx);
4020 
4021 	/*
4022 	 * SCL_STATE will be released when the read and write are done,
4023 	 * by raidz_reflow_write_done().
4024 	 */
4025 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4026 
4027 	/* check if a replacing vdev was added, if so treat it as an error */
4028 	if (vdev_raidz_expand_child_replacing(vd)) {
4029 		zfs_dbgmsg("replacing vdev encountered, reflow paused at "
4030 		    "offset=%llu txg=%llu",
4031 		    (long long)rra->rra_lr->lr_offset,
4032 		    (long long)rra->rra_txg);
4033 
4034 		mutex_enter(&vre->vre_lock);
4035 		vre->vre_failed_offset =
4036 		    MIN(vre->vre_failed_offset, rra->rra_lr->lr_offset);
4037 		cv_signal(&vre->vre_cv);
4038 		mutex_exit(&vre->vre_lock);
4039 
4040 		/* drop everything we acquired */
4041 		spa_config_exit(spa, SCL_STATE, spa);
4042 		zfs_rangelock_exit(rra->rra_lr);
4043 		kmem_free(rra, sizeof (*rra) + sizeof (zio_t *) * writes);
4044 		return (B_TRUE);
4045 	}
4046 
4047 	mutex_enter(&vre->vre_lock);
4048 	vre->vre_outstanding_bytes += size;
4049 	mutex_exit(&vre->vre_lock);
4050 
4051 	/* Allocate ABD and ZIO for each child we write. */
4052 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
4053 	zio_t *pio = spa->spa_txg_zio[txgoff];
4054 	uint_t b = blocks / vd->vdev_children;
4055 	uint_t bb = blocks % vd->vdev_children;
4056 	for (uint_t i = 0; i < writes; i++) {
4057 		uint_t n = b + (i < bb);
4058 		abd_t *abd = abd_alloc_for_io(n << ashift, B_FALSE);
4059 		rra->rra_zio[i] = zio_vdev_child_io(pio, NULL,
4060 		    vd->vdev_child[(blkid + i) % vd->vdev_children],
4061 		    ((blkid + i) / vd->vdev_children) << ashift,
4062 		    abd, n << ashift, ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
4063 		    ZIO_FLAG_CANFAIL, raidz_reflow_write_done, rra);
4064 	}
4065 
4066 	/*
4067 	 * Allocate and issue ZIO for each child we read.  For reads of only
4068 	 * one block we can use respective writer ABDs, since they will also
4069 	 * have only one block.  For bigger reads create gang ABDs and fill
4070 	 * them with respective blocks from writer ABDs.
4071 	 */
4072 	b = blocks / old_children;
4073 	bb = blocks % old_children;
4074 	for (uint_t i = 0; i < reads; i++) {
4075 		uint_t n = b + (i < bb);
4076 		abd_t *abd;
4077 		if (n > 1) {
4078 			abd = abd_alloc_gang();
4079 			for (uint_t j = 0; j < n; j++) {
4080 				uint_t b = j * old_children + i;
4081 				abd_t *cabd = abd_get_offset_size(
4082 				    rra->rra_zio[b % vd->vdev_children]->io_abd,
4083 				    (b / vd->vdev_children) << ashift,
4084 				    1 << ashift);
4085 				abd_gang_add(abd, cabd, B_TRUE);
4086 			}
4087 		} else {
4088 			abd = rra->rra_zio[i]->io_abd;
4089 		}
4090 		zio_nowait(zio_vdev_child_io(pio, NULL,
4091 		    vd->vdev_child[(blkid + i) % old_children],
4092 		    ((blkid + i) / old_children) << ashift, abd,
4093 		    n << ashift, ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
4094 		    ZIO_FLAG_CANFAIL, raidz_reflow_read_done, rra));
4095 	}
4096 
4097 	return (B_FALSE);
4098 }
4099 
4100 /*
4101  * For testing (ztest specific)
4102  */
4103 static void
raidz_expand_pause(uint_t pause_point)4104 raidz_expand_pause(uint_t pause_point)
4105 {
4106 	while (raidz_expand_pause_point != 0 &&
4107 	    raidz_expand_pause_point <= pause_point)
4108 		delay(hz);
4109 }
4110 
4111 static void
raidz_scratch_child_done(zio_t * zio)4112 raidz_scratch_child_done(zio_t *zio)
4113 {
4114 	zio_t *pio = zio->io_private;
4115 
4116 	mutex_enter(&pio->io_lock);
4117 	pio->io_error = zio_worst_error(pio->io_error, zio->io_error);
4118 	mutex_exit(&pio->io_lock);
4119 }
4120 
4121 /*
4122  * Reflow the beginning portion of the vdev into an intermediate scratch area
4123  * in memory and on disk. This operation must be persisted on disk before we
4124  * proceed to overwrite the beginning portion with the reflowed data.
4125  *
4126  * This multi-step task can fail to complete if disk errors are encountered
4127  * and we can return here after a pause (waiting for disk to become healthy).
4128  */
4129 static void
raidz_reflow_scratch_sync(void * arg,dmu_tx_t * tx)4130 raidz_reflow_scratch_sync(void *arg, dmu_tx_t *tx)
4131 {
4132 	vdev_raidz_expand_t *vre = arg;
4133 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
4134 	zio_t *pio;
4135 	int error;
4136 
4137 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4138 	vdev_t *raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
4139 	int ashift = raidvd->vdev_ashift;
4140 	uint64_t write_size = P2ALIGN_TYPED(VDEV_BOOT_SIZE, 1 << ashift,
4141 	    uint64_t);
4142 	uint64_t logical_size = write_size * raidvd->vdev_children;
4143 	uint64_t read_size =
4144 	    P2ROUNDUP(DIV_ROUND_UP(logical_size, (raidvd->vdev_children - 1)),
4145 	    1 << ashift);
4146 
4147 	/*
4148 	 * The scratch space must be large enough to get us to the point
4149 	 * that one row does not overlap itself when moved.  This is checked
4150 	 * by vdev_raidz_attach_check().
4151 	 */
4152 	VERIFY3U(write_size, >=, raidvd->vdev_children << ashift);
4153 	VERIFY3U(write_size, <=, VDEV_BOOT_SIZE);
4154 	VERIFY3U(write_size, <=, read_size);
4155 
4156 	zfs_locked_range_t *lr = zfs_rangelock_enter(&vre->vre_rangelock,
4157 	    0, logical_size, RL_WRITER);
4158 
4159 	abd_t **abds = kmem_alloc(raidvd->vdev_children * sizeof (abd_t *),
4160 	    KM_SLEEP);
4161 	for (int i = 0; i < raidvd->vdev_children; i++) {
4162 		abds[i] = abd_alloc_linear(read_size, B_FALSE);
4163 	}
4164 
4165 	raidz_expand_pause(RAIDZ_EXPAND_PAUSE_PRE_SCRATCH_1);
4166 
4167 	/*
4168 	 * If we have already written the scratch area then we must read from
4169 	 * there, since new writes were redirected there while we were paused
4170 	 * or the original location may have been partially overwritten with
4171 	 * reflowed data.
4172 	 */
4173 	if (RRSS_GET_STATE(&spa->spa_ubsync) == RRSS_SCRATCH_VALID) {
4174 		VERIFY3U(RRSS_GET_OFFSET(&spa->spa_ubsync), ==, logical_size);
4175 		/*
4176 		 * Read from scratch space.
4177 		 */
4178 		pio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
4179 		for (int i = 0; i < raidvd->vdev_children; i++) {
4180 			/*
4181 			 * Note: zio_vdev_child_io() adds VDEV_LABEL_START_SIZE
4182 			 * to the offset to calculate the physical offset to
4183 			 * write to.  Passing in a negative offset makes us
4184 			 * access the scratch area.
4185 			 */
4186 			zio_nowait(zio_vdev_child_io(pio, NULL,
4187 			    raidvd->vdev_child[i],
4188 			    VDEV_BOOT_OFFSET - VDEV_LABEL_START_SIZE, abds[i],
4189 			    write_size, ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
4190 			    ZIO_FLAG_CANFAIL, raidz_scratch_child_done, pio));
4191 		}
4192 		error = zio_wait(pio);
4193 		if (error != 0) {
4194 			zfs_dbgmsg("reflow: error %d reading scratch location",
4195 			    error);
4196 			goto io_error_exit;
4197 		}
4198 		goto overwrite;
4199 	}
4200 
4201 	/*
4202 	 * Read from original location.
4203 	 */
4204 	pio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
4205 	for (int i = 0; i < raidvd->vdev_children - 1; i++) {
4206 		ASSERT0(vdev_is_dead(raidvd->vdev_child[i]));
4207 		zio_nowait(zio_vdev_child_io(pio, NULL, raidvd->vdev_child[i],
4208 		    0, abds[i], read_size, ZIO_TYPE_READ,
4209 		    ZIO_PRIORITY_REMOVAL, ZIO_FLAG_CANFAIL,
4210 		    raidz_scratch_child_done, pio));
4211 	}
4212 	error = zio_wait(pio);
4213 	if (error != 0) {
4214 		zfs_dbgmsg("reflow: error %d reading original location", error);
4215 io_error_exit:
4216 		for (int i = 0; i < raidvd->vdev_children; i++)
4217 			abd_free(abds[i]);
4218 		kmem_free(abds, raidvd->vdev_children * sizeof (abd_t *));
4219 		zfs_rangelock_exit(lr);
4220 		spa_config_exit(spa, SCL_STATE, FTAG);
4221 		return;
4222 	}
4223 
4224 	raidz_expand_pause(RAIDZ_EXPAND_PAUSE_PRE_SCRATCH_2);
4225 
4226 	/*
4227 	 * Reflow in memory.
4228 	 */
4229 	uint64_t logical_sectors = logical_size >> ashift;
4230 	for (int i = raidvd->vdev_children - 1; i < logical_sectors; i++) {
4231 		int oldchild = i % (raidvd->vdev_children - 1);
4232 		uint64_t oldoff = (i / (raidvd->vdev_children - 1)) << ashift;
4233 
4234 		int newchild = i % raidvd->vdev_children;
4235 		uint64_t newoff = (i / raidvd->vdev_children) << ashift;
4236 
4237 		/* a single sector should not be copying over itself */
4238 		ASSERT(!(newchild == oldchild && newoff == oldoff));
4239 
4240 		abd_copy_off(abds[newchild], abds[oldchild],
4241 		    newoff, oldoff, 1 << ashift);
4242 	}
4243 
4244 	/*
4245 	 * Verify that we filled in everything we intended to (write_size on
4246 	 * each child).
4247 	 */
4248 	VERIFY0(logical_sectors % raidvd->vdev_children);
4249 	VERIFY3U((logical_sectors / raidvd->vdev_children) << ashift, ==,
4250 	    write_size);
4251 
4252 	/*
4253 	 * Write to scratch location (boot area).
4254 	 */
4255 	pio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
4256 	for (int i = 0; i < raidvd->vdev_children; i++) {
4257 		/*
4258 		 * Note: zio_vdev_child_io() adds VDEV_LABEL_START_SIZE to
4259 		 * the offset to calculate the physical offset to write to.
4260 		 * Passing in a negative offset lets us access the boot area.
4261 		 */
4262 		zio_nowait(zio_vdev_child_io(pio, NULL, raidvd->vdev_child[i],
4263 		    VDEV_BOOT_OFFSET - VDEV_LABEL_START_SIZE, abds[i],
4264 		    write_size, ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
4265 		    ZIO_FLAG_CANFAIL, raidz_scratch_child_done, pio));
4266 	}
4267 	error = zio_wait(pio);
4268 	if (error != 0) {
4269 		zfs_dbgmsg("reflow: error %d writing scratch location", error);
4270 		goto io_error_exit;
4271 	}
4272 	pio = zio_root(spa, NULL, NULL, 0);
4273 	zio_flush(pio, raidvd);
4274 	zio_wait(pio);
4275 
4276 	zfs_dbgmsg("reflow: wrote %llu bytes (logical) to scratch area",
4277 	    (long long)logical_size);
4278 
4279 	raidz_expand_pause(RAIDZ_EXPAND_PAUSE_PRE_SCRATCH_3);
4280 
4281 	/*
4282 	 * Update uberblock to indicate that scratch space is valid.  This is
4283 	 * needed because after this point, the real location may be
4284 	 * overwritten.  If we crash, we need to get the data from the
4285 	 * scratch space, rather than the real location.
4286 	 *
4287 	 * Note: ub_timestamp is bumped so that vdev_uberblock_compare()
4288 	 * will prefer this uberblock.
4289 	 */
4290 	RAIDZ_REFLOW_SET(&spa->spa_ubsync, RRSS_SCRATCH_VALID, logical_size);
4291 	spa->spa_ubsync.ub_timestamp++;
4292 	ASSERT0(vdev_uberblock_sync_list(&spa->spa_root_vdev, 1,
4293 	    &spa->spa_ubsync, ZIO_FLAG_CONFIG_WRITER));
4294 	if (spa_multihost(spa))
4295 		mmp_update_uberblock(spa, &spa->spa_ubsync);
4296 
4297 	zfs_dbgmsg("reflow: uberblock updated "
4298 	    "(txg %llu, SCRATCH_VALID, size %llu, ts %llu)",
4299 	    (long long)spa->spa_ubsync.ub_txg,
4300 	    (long long)logical_size,
4301 	    (long long)spa->spa_ubsync.ub_timestamp);
4302 
4303 	raidz_expand_pause(RAIDZ_EXPAND_PAUSE_SCRATCH_VALID);
4304 
4305 	/*
4306 	 * Overwrite with reflow'ed data.
4307 	 */
4308 overwrite:
4309 	pio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
4310 	for (int i = 0; i < raidvd->vdev_children; i++) {
4311 		zio_nowait(zio_vdev_child_io(pio, NULL, raidvd->vdev_child[i],
4312 		    0, abds[i], write_size, ZIO_TYPE_WRITE,
4313 		    ZIO_PRIORITY_REMOVAL, ZIO_FLAG_CANFAIL,
4314 		    raidz_scratch_child_done, pio));
4315 	}
4316 	error = zio_wait(pio);
4317 	if (error != 0) {
4318 		/*
4319 		 * When we exit early here and drop the range lock, new
4320 		 * writes will go into the scratch area so we'll need to
4321 		 * read from there when we return after pausing.
4322 		 */
4323 		zfs_dbgmsg("reflow: error %d writing real location", error);
4324 		/*
4325 		 * Update the uberblock that is written when this txg completes.
4326 		 */
4327 		RAIDZ_REFLOW_SET(&spa->spa_uberblock, RRSS_SCRATCH_VALID,
4328 		    logical_size);
4329 		goto io_error_exit;
4330 	}
4331 	pio = zio_root(spa, NULL, NULL, 0);
4332 	zio_flush(pio, raidvd);
4333 	zio_wait(pio);
4334 
4335 	zfs_dbgmsg("reflow: overwrote %llu bytes (logical) to real location",
4336 	    (long long)logical_size);
4337 	for (int i = 0; i < raidvd->vdev_children; i++)
4338 		abd_free(abds[i]);
4339 	kmem_free(abds, raidvd->vdev_children * sizeof (abd_t *));
4340 
4341 	raidz_expand_pause(RAIDZ_EXPAND_PAUSE_SCRATCH_REFLOWED);
4342 
4343 	/*
4344 	 * Update uberblock to indicate that the initial part has been
4345 	 * reflow'ed.  This is needed because after this point (when we exit
4346 	 * the rangelock), we allow regular writes to this region, which will
4347 	 * be written to the new location only (because reflow_offset_next ==
4348 	 * reflow_offset_synced).  If we crashed and re-copied from the
4349 	 * scratch space, we would lose the regular writes.
4350 	 */
4351 	RAIDZ_REFLOW_SET(&spa->spa_ubsync, RRSS_SCRATCH_INVALID_SYNCED,
4352 	    logical_size);
4353 	spa->spa_ubsync.ub_timestamp++;
4354 	ASSERT0(vdev_uberblock_sync_list(&spa->spa_root_vdev, 1,
4355 	    &spa->spa_ubsync, ZIO_FLAG_CONFIG_WRITER));
4356 	if (spa_multihost(spa))
4357 		mmp_update_uberblock(spa, &spa->spa_ubsync);
4358 
4359 	zfs_dbgmsg("reflow: uberblock updated "
4360 	    "(txg %llu, SCRATCH_NOT_IN_USE, size %llu, ts %llu)",
4361 	    (long long)spa->spa_ubsync.ub_txg,
4362 	    (long long)logical_size,
4363 	    (long long)spa->spa_ubsync.ub_timestamp);
4364 
4365 	raidz_expand_pause(RAIDZ_EXPAND_PAUSE_SCRATCH_POST_REFLOW_1);
4366 
4367 	/*
4368 	 * Update progress.
4369 	 */
4370 	vre->vre_offset = logical_size;
4371 	zfs_rangelock_exit(lr);
4372 	spa_config_exit(spa, SCL_STATE, FTAG);
4373 
4374 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
4375 	vre->vre_offset_pertxg[txgoff] = vre->vre_offset;
4376 	vre->vre_bytes_copied_pertxg[txgoff] = vre->vre_bytes_copied;
4377 	/*
4378 	 * Note - raidz_reflow_sync() will update the uberblock state to
4379 	 * RRSS_SCRATCH_INVALID_SYNCED_REFLOW
4380 	 */
4381 	raidz_reflow_sync(spa, tx);
4382 
4383 	raidz_expand_pause(RAIDZ_EXPAND_PAUSE_SCRATCH_POST_REFLOW_2);
4384 }
4385 
4386 /*
4387  * We crashed in the middle of raidz_reflow_scratch_sync(); complete its work
4388  * here.  No other i/o can be in progress, so we don't need the vre_rangelock.
4389  */
4390 void
vdev_raidz_reflow_copy_scratch(spa_t * spa)4391 vdev_raidz_reflow_copy_scratch(spa_t *spa)
4392 {
4393 	vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
4394 	uint64_t logical_size = RRSS_GET_OFFSET(&spa->spa_uberblock);
4395 	ASSERT3U(RRSS_GET_STATE(&spa->spa_uberblock), ==, RRSS_SCRATCH_VALID);
4396 
4397 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4398 	vdev_t *raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
4399 	ASSERT0(logical_size % raidvd->vdev_children);
4400 	uint64_t write_size = logical_size / raidvd->vdev_children;
4401 
4402 	zio_t *pio;
4403 
4404 	/*
4405 	 * Read from scratch space.
4406 	 */
4407 	abd_t **abds = kmem_alloc(raidvd->vdev_children * sizeof (abd_t *),
4408 	    KM_SLEEP);
4409 	for (int i = 0; i < raidvd->vdev_children; i++) {
4410 		abds[i] = abd_alloc_linear(write_size, B_FALSE);
4411 	}
4412 
4413 	pio = zio_root(spa, NULL, NULL, 0);
4414 	for (int i = 0; i < raidvd->vdev_children; i++) {
4415 		/*
4416 		 * Note: zio_vdev_child_io() adds VDEV_LABEL_START_SIZE to
4417 		 * the offset to calculate the physical offset to write to.
4418 		 * Passing in a negative offset lets us access the boot area.
4419 		 */
4420 		zio_nowait(zio_vdev_child_io(pio, NULL, raidvd->vdev_child[i],
4421 		    VDEV_BOOT_OFFSET - VDEV_LABEL_START_SIZE, abds[i],
4422 		    write_size, ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL, 0,
4423 		    raidz_scratch_child_done, pio));
4424 	}
4425 	zio_wait(pio);
4426 
4427 	/*
4428 	 * Overwrite real location with reflow'ed data.
4429 	 */
4430 	pio = zio_root(spa, NULL, NULL, 0);
4431 	for (int i = 0; i < raidvd->vdev_children; i++) {
4432 		zio_nowait(zio_vdev_child_io(pio, NULL, raidvd->vdev_child[i],
4433 		    0, abds[i], write_size, ZIO_TYPE_WRITE,
4434 		    ZIO_PRIORITY_REMOVAL, 0,
4435 		    raidz_scratch_child_done, pio));
4436 	}
4437 	zio_wait(pio);
4438 	pio = zio_root(spa, NULL, NULL, 0);
4439 	zio_flush(pio, raidvd);
4440 	zio_wait(pio);
4441 
4442 	zfs_dbgmsg("reflow recovery: overwrote %llu bytes (logical) "
4443 	    "to real location", (long long)logical_size);
4444 
4445 	for (int i = 0; i < raidvd->vdev_children; i++)
4446 		abd_free(abds[i]);
4447 	kmem_free(abds, raidvd->vdev_children * sizeof (abd_t *));
4448 
4449 	/*
4450 	 * Update uberblock.
4451 	 */
4452 	RAIDZ_REFLOW_SET(&spa->spa_ubsync,
4453 	    RRSS_SCRATCH_INVALID_SYNCED_ON_IMPORT, logical_size);
4454 	spa->spa_ubsync.ub_timestamp++;
4455 	VERIFY0(vdev_uberblock_sync_list(&spa->spa_root_vdev, 1,
4456 	    &spa->spa_ubsync, ZIO_FLAG_CONFIG_WRITER));
4457 	if (spa_multihost(spa))
4458 		mmp_update_uberblock(spa, &spa->spa_ubsync);
4459 
4460 	zfs_dbgmsg("reflow recovery: uberblock updated "
4461 	    "(txg %llu, SCRATCH_NOT_IN_USE, size %llu, ts %llu)",
4462 	    (long long)spa->spa_ubsync.ub_txg,
4463 	    (long long)logical_size,
4464 	    (long long)spa->spa_ubsync.ub_timestamp);
4465 
4466 	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool,
4467 	    spa_first_txg(spa));
4468 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
4469 	vre->vre_offset = logical_size;
4470 	vre->vre_offset_pertxg[txgoff] = vre->vre_offset;
4471 	vre->vre_bytes_copied_pertxg[txgoff] = vre->vre_bytes_copied;
4472 	/*
4473 	 * Note that raidz_reflow_sync() will update the uberblock once more
4474 	 */
4475 	raidz_reflow_sync(spa, tx);
4476 
4477 	dmu_tx_commit(tx);
4478 
4479 	spa_config_exit(spa, SCL_STATE, FTAG);
4480 }
4481 
4482 static boolean_t
spa_raidz_expand_thread_check(void * arg,zthr_t * zthr)4483 spa_raidz_expand_thread_check(void *arg, zthr_t *zthr)
4484 {
4485 	(void) zthr;
4486 	spa_t *spa = arg;
4487 
4488 	return (spa->spa_raidz_expand != NULL &&
4489 	    !spa->spa_raidz_expand->vre_waiting_for_resilver);
4490 }
4491 
4492 /*
4493  * RAIDZ expansion background thread
4494  *
4495  * Can be called multiple times if the reflow is paused
4496  */
4497 static void
spa_raidz_expand_thread(void * arg,zthr_t * zthr)4498 spa_raidz_expand_thread(void *arg, zthr_t *zthr)
4499 {
4500 	spa_t *spa = arg;
4501 	vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
4502 
4503 	if (RRSS_GET_STATE(&spa->spa_ubsync) == RRSS_SCRATCH_VALID)
4504 		vre->vre_offset = 0;
4505 	else
4506 		vre->vre_offset = RRSS_GET_OFFSET(&spa->spa_ubsync);
4507 
4508 	/* Reflow the begining portion using the scratch area */
4509 	if (vre->vre_offset == 0) {
4510 		VERIFY0(dsl_sync_task(spa_name(spa),
4511 		    NULL, raidz_reflow_scratch_sync,
4512 		    vre, 0, ZFS_SPACE_CHECK_NONE));
4513 
4514 		/* if we encountered errors then pause */
4515 		if (vre->vre_offset == 0) {
4516 			mutex_enter(&vre->vre_lock);
4517 			vre->vre_waiting_for_resilver = B_TRUE;
4518 			mutex_exit(&vre->vre_lock);
4519 			return;
4520 		}
4521 	}
4522 
4523 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4524 	vdev_t *raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
4525 
4526 	uint64_t guid = raidvd->vdev_guid;
4527 
4528 	/* Iterate over all the remaining metaslabs */
4529 	for (uint64_t i = vre->vre_offset >> raidvd->vdev_ms_shift;
4530 	    i < raidvd->vdev_ms_count &&
4531 	    !zthr_iscancelled(zthr) &&
4532 	    vre->vre_failed_offset == UINT64_MAX; i++) {
4533 		metaslab_t *msp = raidvd->vdev_ms[i];
4534 
4535 		metaslab_disable(msp);
4536 		mutex_enter(&msp->ms_lock);
4537 
4538 		/*
4539 		 * The metaslab may be newly created (for the expanded
4540 		 * space), in which case its trees won't exist yet,
4541 		 * so we need to bail out early.
4542 		 */
4543 		if (msp->ms_new) {
4544 			mutex_exit(&msp->ms_lock);
4545 			metaslab_enable(msp, B_FALSE, B_FALSE);
4546 			continue;
4547 		}
4548 
4549 		VERIFY0(metaslab_load(msp));
4550 
4551 		/*
4552 		 * We want to copy everything except the free (allocatable)
4553 		 * space.  Note that there may be a little bit more free
4554 		 * space (e.g. in ms_defer), and it's fine to copy that too.
4555 		 */
4556 		uint64_t shift, start;
4557 		zfs_range_seg_type_t type = metaslab_calculate_range_tree_type(
4558 		    raidvd, msp, &start, &shift);
4559 		zfs_range_tree_t *rt = zfs_range_tree_create(NULL, type, NULL,
4560 		    start, shift);
4561 		zfs_range_tree_add(rt, msp->ms_start, msp->ms_size);
4562 		zfs_range_tree_walk(msp->ms_allocatable, zfs_range_tree_remove,
4563 		    rt);
4564 		mutex_exit(&msp->ms_lock);
4565 
4566 		/*
4567 		 * Force the last sector of each metaslab to be copied.  This
4568 		 * ensures that we advance the on-disk progress to the end of
4569 		 * this metaslab while the metaslab is disabled.  Otherwise, we
4570 		 * could move past this metaslab without advancing the on-disk
4571 		 * progress, and then an allocation to this metaslab would not
4572 		 * be copied.
4573 		 */
4574 		int sectorsz = 1 << raidvd->vdev_ashift;
4575 		uint64_t ms_last_offset = msp->ms_start +
4576 		    msp->ms_size - sectorsz;
4577 		if (!zfs_range_tree_contains(rt, ms_last_offset, sectorsz)) {
4578 			zfs_range_tree_add(rt, ms_last_offset, sectorsz);
4579 		}
4580 
4581 		/*
4582 		 * When we are resuming from a paused expansion (i.e.
4583 		 * when importing a pool with a expansion in progress),
4584 		 * discard any state that we have already processed.
4585 		 */
4586 		if (vre->vre_offset > msp->ms_start) {
4587 			zfs_range_tree_clear(rt, msp->ms_start,
4588 			    vre->vre_offset - msp->ms_start);
4589 		}
4590 
4591 		while (!zthr_iscancelled(zthr) &&
4592 		    !zfs_range_tree_is_empty(rt) &&
4593 		    vre->vre_failed_offset == UINT64_MAX) {
4594 
4595 			/*
4596 			 * We need to periodically drop the config lock so that
4597 			 * writers can get in.  Additionally, we can't wait
4598 			 * for a txg to sync while holding a config lock
4599 			 * (since a waiting writer could cause a 3-way deadlock
4600 			 * with the sync thread, which also gets a config
4601 			 * lock for reader).  So we can't hold the config lock
4602 			 * while calling dmu_tx_assign().
4603 			 */
4604 			spa_config_exit(spa, SCL_CONFIG, FTAG);
4605 
4606 			/*
4607 			 * If requested, pause the reflow when the amount
4608 			 * specified by raidz_expand_max_reflow_bytes is reached
4609 			 *
4610 			 * This pause is only used during testing or debugging.
4611 			 */
4612 			while (raidz_expand_max_reflow_bytes != 0 &&
4613 			    raidz_expand_max_reflow_bytes <=
4614 			    vre->vre_bytes_copied && !zthr_iscancelled(zthr)) {
4615 				delay(hz);
4616 			}
4617 
4618 			mutex_enter(&vre->vre_lock);
4619 			while (vre->vre_outstanding_bytes >
4620 			    raidz_expand_max_copy_bytes) {
4621 				cv_wait(&vre->vre_cv, &vre->vre_lock);
4622 			}
4623 			mutex_exit(&vre->vre_lock);
4624 
4625 			dmu_tx_t *tx =
4626 			    dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4627 
4628 			VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT));
4629 			uint64_t txg = dmu_tx_get_txg(tx);
4630 
4631 			/*
4632 			 * Reacquire the vdev_config lock.  Theoretically, the
4633 			 * vdev_t that we're expanding may have changed.
4634 			 */
4635 			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4636 			raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
4637 
4638 			boolean_t needsync =
4639 			    raidz_reflow_impl(raidvd, vre, rt, tx);
4640 
4641 			dmu_tx_commit(tx);
4642 
4643 			if (needsync) {
4644 				spa_config_exit(spa, SCL_CONFIG, FTAG);
4645 				txg_wait_synced(spa->spa_dsl_pool, txg);
4646 				spa_config_enter(spa, SCL_CONFIG, FTAG,
4647 				    RW_READER);
4648 			}
4649 		}
4650 
4651 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4652 
4653 		metaslab_enable(msp, B_FALSE, B_FALSE);
4654 		zfs_range_tree_vacate(rt, NULL, NULL);
4655 		zfs_range_tree_destroy(rt);
4656 
4657 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4658 		raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
4659 	}
4660 
4661 	spa_config_exit(spa, SCL_CONFIG, FTAG);
4662 
4663 	/*
4664 	 * The txg_wait_synced() here ensures that all reflow zio's have
4665 	 * completed, and vre_failed_offset has been set if necessary.  It
4666 	 * also ensures that the progress of the last raidz_reflow_sync() is
4667 	 * written to disk before raidz_reflow_complete_sync() changes the
4668 	 * in-memory vre_state.  vdev_raidz_io_start() uses vre_state to
4669 	 * determine if a reflow is in progress, in which case we may need to
4670 	 * write to both old and new locations.  Therefore we can only change
4671 	 * vre_state once this is not necessary, which is once the on-disk
4672 	 * progress (in spa_ubsync) has been set past any possible writes (to
4673 	 * the end of the last metaslab).
4674 	 */
4675 	txg_wait_synced(spa->spa_dsl_pool, 0);
4676 
4677 	if (!zthr_iscancelled(zthr) &&
4678 	    vre->vre_offset == raidvd->vdev_ms_count << raidvd->vdev_ms_shift) {
4679 		/*
4680 		 * We are not being canceled or paused, so the reflow must be
4681 		 * complete. In that case also mark it as completed on disk.
4682 		 */
4683 		ASSERT3U(vre->vre_failed_offset, ==, UINT64_MAX);
4684 		VERIFY0(dsl_sync_task(spa_name(spa), NULL,
4685 		    raidz_reflow_complete_sync, spa,
4686 		    0, ZFS_SPACE_CHECK_NONE));
4687 		(void) vdev_online(spa, guid, ZFS_ONLINE_EXPAND, NULL);
4688 	} else {
4689 		/*
4690 		 * Wait for all copy zio's to complete and for all the
4691 		 * raidz_reflow_sync() synctasks to be run.
4692 		 */
4693 		spa_history_log_internal(spa, "reflow pause",
4694 		    NULL, "offset=%llu failed_offset=%lld",
4695 		    (long long)vre->vre_offset,
4696 		    (long long)vre->vre_failed_offset);
4697 		mutex_enter(&vre->vre_lock);
4698 		if (vre->vre_failed_offset != UINT64_MAX) {
4699 			/*
4700 			 * Reset progress so that we will retry everything
4701 			 * after the point that something failed.
4702 			 */
4703 			vre->vre_offset = vre->vre_failed_offset;
4704 			vre->vre_failed_offset = UINT64_MAX;
4705 			vre->vre_waiting_for_resilver = B_TRUE;
4706 		}
4707 		mutex_exit(&vre->vre_lock);
4708 	}
4709 }
4710 
4711 void
spa_start_raidz_expansion_thread(spa_t * spa)4712 spa_start_raidz_expansion_thread(spa_t *spa)
4713 {
4714 	ASSERT3P(spa->spa_raidz_expand_zthr, ==, NULL);
4715 	spa->spa_raidz_expand_zthr = zthr_create("raidz_expand",
4716 	    spa_raidz_expand_thread_check, spa_raidz_expand_thread,
4717 	    spa, defclsyspri);
4718 }
4719 
4720 void
raidz_dtl_reassessed(vdev_t * vd)4721 raidz_dtl_reassessed(vdev_t *vd)
4722 {
4723 	spa_t *spa = vd->vdev_spa;
4724 	if (spa->spa_raidz_expand != NULL) {
4725 		vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
4726 		/*
4727 		 * we get called often from vdev_dtl_reassess() so make
4728 		 * sure it's our vdev and any replacing is complete
4729 		 */
4730 		if (vd->vdev_top->vdev_id == vre->vre_vdev_id &&
4731 		    !vdev_raidz_expand_child_replacing(vd->vdev_top)) {
4732 			mutex_enter(&vre->vre_lock);
4733 			if (vre->vre_waiting_for_resilver) {
4734 				vdev_dbgmsg(vd, "DTL reassessed, "
4735 				    "continuing raidz expansion");
4736 				vre->vre_waiting_for_resilver = B_FALSE;
4737 				zthr_wakeup(spa->spa_raidz_expand_zthr);
4738 			}
4739 			mutex_exit(&vre->vre_lock);
4740 		}
4741 	}
4742 }
4743 
4744 int
vdev_raidz_attach_check(vdev_t * new_child)4745 vdev_raidz_attach_check(vdev_t *new_child)
4746 {
4747 	vdev_t *raidvd = new_child->vdev_parent;
4748 	uint64_t new_children = raidvd->vdev_children;
4749 
4750 	/*
4751 	 * We use the "boot" space as scratch space to handle overwriting the
4752 	 * initial part of the vdev.  If it is too small, then this expansion
4753 	 * is not allowed.  This would be very unusual (e.g. ashift > 13 and
4754 	 * >200 children).
4755 	 */
4756 	if (new_children << raidvd->vdev_ashift > VDEV_BOOT_SIZE) {
4757 		return (EINVAL);
4758 	}
4759 	return (0);
4760 }
4761 
4762 void
vdev_raidz_attach_sync(void * arg,dmu_tx_t * tx)4763 vdev_raidz_attach_sync(void *arg, dmu_tx_t *tx)
4764 {
4765 	vdev_t *new_child = arg;
4766 	spa_t *spa = new_child->vdev_spa;
4767 	vdev_t *raidvd = new_child->vdev_parent;
4768 	vdev_raidz_t *vdrz = raidvd->vdev_tsd;
4769 	ASSERT3P(raidvd->vdev_ops, ==, &vdev_raidz_ops);
4770 	ASSERT3P(raidvd->vdev_top, ==, raidvd);
4771 	ASSERT3U(raidvd->vdev_children, >, vdrz->vd_original_width);
4772 	ASSERT3U(raidvd->vdev_children, ==, vdrz->vd_physical_width + 1);
4773 	ASSERT3P(raidvd->vdev_child[raidvd->vdev_children - 1], ==,
4774 	    new_child);
4775 
4776 	spa_feature_incr(spa, SPA_FEATURE_RAIDZ_EXPANSION, tx);
4777 
4778 	vdrz->vd_physical_width++;
4779 
4780 	VERIFY0(spa->spa_uberblock.ub_raidz_reflow_info);
4781 	vdrz->vn_vre.vre_vdev_id = raidvd->vdev_id;
4782 	vdrz->vn_vre.vre_offset = 0;
4783 	vdrz->vn_vre.vre_failed_offset = UINT64_MAX;
4784 	spa->spa_raidz_expand = &vdrz->vn_vre;
4785 	zthr_wakeup(spa->spa_raidz_expand_zthr);
4786 
4787 	/*
4788 	 * Dirty the config so that ZPOOL_CONFIG_RAIDZ_EXPANDING will get
4789 	 * written to the config.
4790 	 */
4791 	vdev_config_dirty(raidvd);
4792 
4793 	vdrz->vn_vre.vre_start_time = gethrestime_sec();
4794 	vdrz->vn_vre.vre_end_time = 0;
4795 	vdrz->vn_vre.vre_state = DSS_SCANNING;
4796 	vdrz->vn_vre.vre_bytes_copied = 0;
4797 
4798 	uint64_t state = vdrz->vn_vre.vre_state;
4799 	VERIFY0(zap_update(spa->spa_meta_objset,
4800 	    raidvd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_STATE,
4801 	    sizeof (state), 1, &state, tx));
4802 
4803 	uint64_t start_time = vdrz->vn_vre.vre_start_time;
4804 	VERIFY0(zap_update(spa->spa_meta_objset,
4805 	    raidvd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_START_TIME,
4806 	    sizeof (start_time), 1, &start_time, tx));
4807 
4808 	(void) zap_remove(spa->spa_meta_objset,
4809 	    raidvd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_END_TIME, tx);
4810 	(void) zap_remove(spa->spa_meta_objset,
4811 	    raidvd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_BYTES_COPIED, tx);
4812 
4813 	spa_history_log_internal(spa, "raidz vdev expansion started",  tx,
4814 	    "%s vdev %llu new width %llu", spa_name(spa),
4815 	    (unsigned long long)raidvd->vdev_id,
4816 	    (unsigned long long)raidvd->vdev_children);
4817 }
4818 
4819 int
vdev_raidz_load(vdev_t * vd)4820 vdev_raidz_load(vdev_t *vd)
4821 {
4822 	vdev_raidz_t *vdrz = vd->vdev_tsd;
4823 	int err;
4824 
4825 	uint64_t state = DSS_NONE;
4826 	uint64_t start_time = 0;
4827 	uint64_t end_time = 0;
4828 	uint64_t bytes_copied = 0;
4829 
4830 	if (vd->vdev_top_zap != 0) {
4831 		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
4832 		    vd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_STATE,
4833 		    sizeof (state), 1, &state);
4834 		if (err != 0 && err != ENOENT)
4835 			return (err);
4836 
4837 		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
4838 		    vd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_START_TIME,
4839 		    sizeof (start_time), 1, &start_time);
4840 		if (err != 0 && err != ENOENT)
4841 			return (err);
4842 
4843 		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
4844 		    vd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_END_TIME,
4845 		    sizeof (end_time), 1, &end_time);
4846 		if (err != 0 && err != ENOENT)
4847 			return (err);
4848 
4849 		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
4850 		    vd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_BYTES_COPIED,
4851 		    sizeof (bytes_copied), 1, &bytes_copied);
4852 		if (err != 0 && err != ENOENT)
4853 			return (err);
4854 	}
4855 
4856 	/*
4857 	 * If we are in the middle of expansion, vre_state should have
4858 	 * already been set by vdev_raidz_init().
4859 	 */
4860 	EQUIV(vdrz->vn_vre.vre_state == DSS_SCANNING, state == DSS_SCANNING);
4861 	vdrz->vn_vre.vre_state = (dsl_scan_state_t)state;
4862 	vdrz->vn_vre.vre_start_time = start_time;
4863 	vdrz->vn_vre.vre_end_time = end_time;
4864 	vdrz->vn_vre.vre_bytes_copied = bytes_copied;
4865 
4866 	return (0);
4867 }
4868 
4869 int
spa_raidz_expand_get_stats(spa_t * spa,pool_raidz_expand_stat_t * pres)4870 spa_raidz_expand_get_stats(spa_t *spa, pool_raidz_expand_stat_t *pres)
4871 {
4872 	vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
4873 
4874 	if (vre == NULL) {
4875 		/* no removal in progress; find most recent completed */
4876 		for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
4877 			vdev_t *vd = spa->spa_root_vdev->vdev_child[c];
4878 			if (vd->vdev_ops == &vdev_raidz_ops) {
4879 				vdev_raidz_t *vdrz = vd->vdev_tsd;
4880 
4881 				if (vdrz->vn_vre.vre_end_time != 0 &&
4882 				    (vre == NULL ||
4883 				    vdrz->vn_vre.vre_end_time >
4884 				    vre->vre_end_time)) {
4885 					vre = &vdrz->vn_vre;
4886 				}
4887 			}
4888 		}
4889 	}
4890 
4891 	if (vre == NULL) {
4892 		return (SET_ERROR(ENOENT));
4893 	}
4894 
4895 	pres->pres_state = vre->vre_state;
4896 	pres->pres_expanding_vdev = vre->vre_vdev_id;
4897 
4898 	vdev_t *vd = vdev_lookup_top(spa, vre->vre_vdev_id);
4899 	pres->pres_to_reflow = vd->vdev_stat.vs_alloc;
4900 
4901 	mutex_enter(&vre->vre_lock);
4902 	pres->pres_reflowed = vre->vre_bytes_copied;
4903 	for (int i = 0; i < TXG_SIZE; i++)
4904 		pres->pres_reflowed += vre->vre_bytes_copied_pertxg[i];
4905 	mutex_exit(&vre->vre_lock);
4906 
4907 	pres->pres_start_time = vre->vre_start_time;
4908 	pres->pres_end_time = vre->vre_end_time;
4909 	pres->pres_waiting_for_resilver = vre->vre_waiting_for_resilver;
4910 
4911 	return (0);
4912 }
4913 
4914 /*
4915  * Initialize private RAIDZ specific fields from the nvlist.
4916  */
4917 static int
vdev_raidz_init(spa_t * spa,nvlist_t * nv,void ** tsd)4918 vdev_raidz_init(spa_t *spa, nvlist_t *nv, void **tsd)
4919 {
4920 	uint_t children;
4921 	nvlist_t **child;
4922 	int error = nvlist_lookup_nvlist_array(nv,
4923 	    ZPOOL_CONFIG_CHILDREN, &child, &children);
4924 	if (error != 0)
4925 		return (SET_ERROR(EINVAL));
4926 
4927 	uint64_t nparity;
4928 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, &nparity) == 0) {
4929 		if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
4930 			return (SET_ERROR(EINVAL));
4931 
4932 		/*
4933 		 * Previous versions could only support 1 or 2 parity
4934 		 * device.
4935 		 */
4936 		if (nparity > 1 && spa_version(spa) < SPA_VERSION_RAIDZ2)
4937 			return (SET_ERROR(EINVAL));
4938 		else if (nparity > 2 && spa_version(spa) < SPA_VERSION_RAIDZ3)
4939 			return (SET_ERROR(EINVAL));
4940 	} else {
4941 		/*
4942 		 * We require the parity to be specified for SPAs that
4943 		 * support multiple parity levels.
4944 		 */
4945 		if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
4946 			return (SET_ERROR(EINVAL));
4947 
4948 		/*
4949 		 * Otherwise, we default to 1 parity device for RAID-Z.
4950 		 */
4951 		nparity = 1;
4952 	}
4953 
4954 	vdev_raidz_t *vdrz = kmem_zalloc(sizeof (*vdrz), KM_SLEEP);
4955 	vdrz->vn_vre.vre_vdev_id = -1;
4956 	vdrz->vn_vre.vre_offset = UINT64_MAX;
4957 	vdrz->vn_vre.vre_failed_offset = UINT64_MAX;
4958 	mutex_init(&vdrz->vn_vre.vre_lock, NULL, MUTEX_DEFAULT, NULL);
4959 	cv_init(&vdrz->vn_vre.vre_cv, NULL, CV_DEFAULT, NULL);
4960 	zfs_rangelock_init(&vdrz->vn_vre.vre_rangelock, NULL, NULL);
4961 	mutex_init(&vdrz->vd_expand_lock, NULL, MUTEX_DEFAULT, NULL);
4962 	avl_create(&vdrz->vd_expand_txgs, vdev_raidz_reflow_compare,
4963 	    sizeof (reflow_node_t), offsetof(reflow_node_t, re_link));
4964 
4965 	vdrz->vd_physical_width = children;
4966 	vdrz->vd_nparity = nparity;
4967 
4968 	/* note, the ID does not exist when creating a pool */
4969 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID,
4970 	    &vdrz->vn_vre.vre_vdev_id);
4971 
4972 	boolean_t reflow_in_progress =
4973 	    nvlist_exists(nv, ZPOOL_CONFIG_RAIDZ_EXPANDING);
4974 	if (reflow_in_progress) {
4975 		spa->spa_raidz_expand = &vdrz->vn_vre;
4976 		vdrz->vn_vre.vre_state = DSS_SCANNING;
4977 	}
4978 
4979 	vdrz->vd_original_width = children;
4980 	uint64_t *txgs;
4981 	unsigned int txgs_size = 0;
4982 	error = nvlist_lookup_uint64_array(nv, ZPOOL_CONFIG_RAIDZ_EXPAND_TXGS,
4983 	    &txgs, &txgs_size);
4984 	if (error == 0) {
4985 		for (int i = 0; i < txgs_size; i++) {
4986 			reflow_node_t *re = kmem_zalloc(sizeof (*re), KM_SLEEP);
4987 			re->re_txg = txgs[txgs_size - i - 1];
4988 			re->re_logical_width = vdrz->vd_physical_width - i;
4989 
4990 			if (reflow_in_progress)
4991 				re->re_logical_width--;
4992 
4993 			avl_add(&vdrz->vd_expand_txgs, re);
4994 		}
4995 
4996 		vdrz->vd_original_width = vdrz->vd_physical_width - txgs_size;
4997 	}
4998 	if (reflow_in_progress) {
4999 		vdrz->vd_original_width--;
5000 		zfs_dbgmsg("reflow_in_progress, %u wide, %d prior expansions",
5001 		    children, txgs_size);
5002 	}
5003 
5004 	*tsd = vdrz;
5005 
5006 	return (0);
5007 }
5008 
5009 static void
vdev_raidz_fini(vdev_t * vd)5010 vdev_raidz_fini(vdev_t *vd)
5011 {
5012 	vdev_raidz_t *vdrz = vd->vdev_tsd;
5013 	if (vd->vdev_spa->spa_raidz_expand == &vdrz->vn_vre)
5014 		vd->vdev_spa->spa_raidz_expand = NULL;
5015 	reflow_node_t *re;
5016 	void *cookie = NULL;
5017 	avl_tree_t *tree = &vdrz->vd_expand_txgs;
5018 	while ((re = avl_destroy_nodes(tree, &cookie)) != NULL)
5019 		kmem_free(re, sizeof (*re));
5020 	avl_destroy(&vdrz->vd_expand_txgs);
5021 	mutex_destroy(&vdrz->vd_expand_lock);
5022 	mutex_destroy(&vdrz->vn_vre.vre_lock);
5023 	cv_destroy(&vdrz->vn_vre.vre_cv);
5024 	zfs_rangelock_fini(&vdrz->vn_vre.vre_rangelock);
5025 	kmem_free(vdrz, sizeof (*vdrz));
5026 }
5027 
5028 /*
5029  * Add RAIDZ specific fields to the config nvlist.
5030  */
5031 static void
vdev_raidz_config_generate(vdev_t * vd,nvlist_t * nv)5032 vdev_raidz_config_generate(vdev_t *vd, nvlist_t *nv)
5033 {
5034 	ASSERT3P(vd->vdev_ops, ==, &vdev_raidz_ops);
5035 	vdev_raidz_t *vdrz = vd->vdev_tsd;
5036 
5037 	/*
5038 	 * Make sure someone hasn't managed to sneak a fancy new vdev
5039 	 * into a crufty old storage pool.
5040 	 */
5041 	ASSERT(vdrz->vd_nparity == 1 ||
5042 	    (vdrz->vd_nparity <= 2 &&
5043 	    spa_version(vd->vdev_spa) >= SPA_VERSION_RAIDZ2) ||
5044 	    (vdrz->vd_nparity <= 3 &&
5045 	    spa_version(vd->vdev_spa) >= SPA_VERSION_RAIDZ3));
5046 
5047 	/*
5048 	 * Note that we'll add these even on storage pools where they
5049 	 * aren't strictly required -- older software will just ignore
5050 	 * it.
5051 	 */
5052 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vdrz->vd_nparity);
5053 
5054 	if (vdrz->vn_vre.vre_state == DSS_SCANNING) {
5055 		fnvlist_add_boolean(nv, ZPOOL_CONFIG_RAIDZ_EXPANDING);
5056 	}
5057 
5058 	mutex_enter(&vdrz->vd_expand_lock);
5059 	if (!avl_is_empty(&vdrz->vd_expand_txgs)) {
5060 		uint64_t count = avl_numnodes(&vdrz->vd_expand_txgs);
5061 		uint64_t *txgs = kmem_alloc(sizeof (uint64_t) * count,
5062 		    KM_SLEEP);
5063 		uint64_t i = 0;
5064 
5065 		for (reflow_node_t *re = avl_first(&vdrz->vd_expand_txgs);
5066 		    re != NULL; re = AVL_NEXT(&vdrz->vd_expand_txgs, re)) {
5067 			txgs[i++] = re->re_txg;
5068 		}
5069 
5070 		fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_RAIDZ_EXPAND_TXGS,
5071 		    txgs, count);
5072 
5073 		kmem_free(txgs, sizeof (uint64_t) * count);
5074 	}
5075 	mutex_exit(&vdrz->vd_expand_lock);
5076 }
5077 
5078 static uint64_t
vdev_raidz_nparity(vdev_t * vd)5079 vdev_raidz_nparity(vdev_t *vd)
5080 {
5081 	vdev_raidz_t *vdrz = vd->vdev_tsd;
5082 	return (vdrz->vd_nparity);
5083 }
5084 
5085 static uint64_t
vdev_raidz_ndisks(vdev_t * vd)5086 vdev_raidz_ndisks(vdev_t *vd)
5087 {
5088 	return (vd->vdev_children);
5089 }
5090 
5091 vdev_ops_t vdev_raidz_ops = {
5092 	.vdev_op_init = vdev_raidz_init,
5093 	.vdev_op_fini = vdev_raidz_fini,
5094 	.vdev_op_open = vdev_raidz_open,
5095 	.vdev_op_close = vdev_raidz_close,
5096 	.vdev_op_asize = vdev_raidz_asize,
5097 	.vdev_op_min_asize = vdev_raidz_min_asize,
5098 	.vdev_op_min_alloc = NULL,
5099 	.vdev_op_io_start = vdev_raidz_io_start,
5100 	.vdev_op_io_done = vdev_raidz_io_done,
5101 	.vdev_op_state_change = vdev_raidz_state_change,
5102 	.vdev_op_need_resilver = vdev_raidz_need_resilver,
5103 	.vdev_op_hold = NULL,
5104 	.vdev_op_rele = NULL,
5105 	.vdev_op_remap = NULL,
5106 	.vdev_op_xlate = vdev_raidz_xlate,
5107 	.vdev_op_rebuild_asize = NULL,
5108 	.vdev_op_metaslab_init = NULL,
5109 	.vdev_op_config_generate = vdev_raidz_config_generate,
5110 	.vdev_op_nparity = vdev_raidz_nparity,
5111 	.vdev_op_ndisks = vdev_raidz_ndisks,
5112 	.vdev_op_type = VDEV_TYPE_RAIDZ,	/* name of this vdev type */
5113 	.vdev_op_leaf = B_FALSE			/* not a leaf vdev */
5114 };
5115 
5116 ZFS_MODULE_PARAM(zfs_vdev, raidz_, expand_max_reflow_bytes, ULONG, ZMOD_RW,
5117 	"For testing, pause RAIDZ expansion after reflowing this many bytes");
5118 ZFS_MODULE_PARAM(zfs_vdev, raidz_, expand_max_copy_bytes, ULONG, ZMOD_RW,
5119 	"Max amount of concurrent i/o for RAIDZ expansion");
5120 ZFS_MODULE_PARAM(zfs_vdev, raidz_, io_aggregate_rows, ULONG, ZMOD_RW,
5121 	"For expanded RAIDZ, aggregate reads that have more rows than this");
5122 ZFS_MODULE_PARAM(zfs, zfs_, scrub_after_expand, INT, ZMOD_RW,
5123 	"For expanded RAIDZ, automatically start a pool scrub when expansion "
5124 	"completes");
5125