xref: /linux/kernel/printk/printk.c (revision 96050814a3f667eb28dabb78e7b3a7b06e5243e9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/printk.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  * Modified to make sys_syslog() more flexible: added commands to
8  * return the last 4k of kernel messages, regardless of whether
9  * they've been read or not.  Added option to suppress kernel printk's
10  * to the console.  Added hook for sending the console messages
11  * elsewhere, in preparation for a serial line console (someday).
12  * Ted Ts'o, 2/11/93.
13  * Modified for sysctl support, 1/8/97, Chris Horn.
14  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15  *     manfred@colorfullife.com
16  * Rewrote bits to get rid of console_lock
17  *	01Mar01 Andrew Morton
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/tty.h>
25 #include <linux/tty_driver.h>
26 #include <linux/console.h>
27 #include <linux/init.h>
28 #include <linux/jiffies.h>
29 #include <linux/nmi.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/delay.h>
33 #include <linux/smp.h>
34 #include <linux/security.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/syscore_ops.h>
38 #include <linux/vmcore_info.h>
39 #include <linux/ratelimit.h>
40 #include <linux/kmsg_dump.h>
41 #include <linux/syslog.h>
42 #include <linux/cpu.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45 #include <linux/irq_work.h>
46 #include <linux/ctype.h>
47 #include <linux/uio.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/debug.h>
50 #include <linux/sched/task_stack.h>
51 
52 #include <linux/uaccess.h>
53 #include <asm/sections.h>
54 
55 #include <trace/events/initcall.h>
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/printk.h>
58 
59 #include "printk_ringbuffer.h"
60 #include "console_cmdline.h"
61 #include "braille.h"
62 #include "internal.h"
63 
64 int console_printk[4] = {
65 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
66 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
67 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
68 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
69 };
70 EXPORT_SYMBOL_GPL(console_printk);
71 
72 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
73 EXPORT_SYMBOL(ignore_console_lock_warning);
74 
75 EXPORT_TRACEPOINT_SYMBOL_GPL(console);
76 
77 /*
78  * Low level drivers may need that to know if they can schedule in
79  * their unblank() callback or not. So let's export it.
80  */
81 int oops_in_progress;
82 EXPORT_SYMBOL(oops_in_progress);
83 
84 /*
85  * console_mutex protects console_list updates and console->flags updates.
86  * The flags are synchronized only for consoles that are registered, i.e.
87  * accessible via the console list.
88  */
89 static DEFINE_MUTEX(console_mutex);
90 
91 /*
92  * console_sem protects updates to console->seq
93  * and also provides serialization for console printing.
94  */
95 static DEFINE_SEMAPHORE(console_sem, 1);
96 HLIST_HEAD(console_list);
97 EXPORT_SYMBOL_GPL(console_list);
98 DEFINE_STATIC_SRCU(console_srcu);
99 
100 /*
101  * System may need to suppress printk message under certain
102  * circumstances, like after kernel panic happens.
103  */
104 int __read_mostly suppress_printk;
105 
106 #ifdef CONFIG_LOCKDEP
107 static struct lockdep_map console_lock_dep_map = {
108 	.name = "console_lock"
109 };
110 
lockdep_assert_console_list_lock_held(void)111 void lockdep_assert_console_list_lock_held(void)
112 {
113 	lockdep_assert_held(&console_mutex);
114 }
115 EXPORT_SYMBOL(lockdep_assert_console_list_lock_held);
116 #endif
117 
118 #ifdef CONFIG_DEBUG_LOCK_ALLOC
console_srcu_read_lock_is_held(void)119 bool console_srcu_read_lock_is_held(void)
120 {
121 	return srcu_read_lock_held(&console_srcu);
122 }
123 EXPORT_SYMBOL(console_srcu_read_lock_is_held);
124 #endif
125 
126 enum devkmsg_log_bits {
127 	__DEVKMSG_LOG_BIT_ON = 0,
128 	__DEVKMSG_LOG_BIT_OFF,
129 	__DEVKMSG_LOG_BIT_LOCK,
130 };
131 
132 enum devkmsg_log_masks {
133 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
134 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
135 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
136 };
137 
138 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
139 #define DEVKMSG_LOG_MASK_DEFAULT	0
140 
141 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
142 
__control_devkmsg(char * str)143 static int __control_devkmsg(char *str)
144 {
145 	size_t len;
146 
147 	if (!str)
148 		return -EINVAL;
149 
150 	len = str_has_prefix(str, "on");
151 	if (len) {
152 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
153 		return len;
154 	}
155 
156 	len = str_has_prefix(str, "off");
157 	if (len) {
158 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
159 		return len;
160 	}
161 
162 	len = str_has_prefix(str, "ratelimit");
163 	if (len) {
164 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
165 		return len;
166 	}
167 
168 	return -EINVAL;
169 }
170 
control_devkmsg(char * str)171 static int __init control_devkmsg(char *str)
172 {
173 	if (__control_devkmsg(str) < 0) {
174 		pr_warn("printk.devkmsg: bad option string '%s'\n", str);
175 		return 1;
176 	}
177 
178 	/*
179 	 * Set sysctl string accordingly:
180 	 */
181 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
182 		strscpy(devkmsg_log_str, "on");
183 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
184 		strscpy(devkmsg_log_str, "off");
185 	/* else "ratelimit" which is set by default. */
186 
187 	/*
188 	 * Sysctl cannot change it anymore. The kernel command line setting of
189 	 * this parameter is to force the setting to be permanent throughout the
190 	 * runtime of the system. This is a precation measure against userspace
191 	 * trying to be a smarta** and attempting to change it up on us.
192 	 */
193 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
194 
195 	return 1;
196 }
197 __setup("printk.devkmsg=", control_devkmsg);
198 
199 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
200 #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL)
devkmsg_sysctl_set_loglvl(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)201 int devkmsg_sysctl_set_loglvl(const struct ctl_table *table, int write,
202 			      void *buffer, size_t *lenp, loff_t *ppos)
203 {
204 	char old_str[DEVKMSG_STR_MAX_SIZE];
205 	unsigned int old;
206 	int err;
207 
208 	if (write) {
209 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
210 			return -EINVAL;
211 
212 		old = devkmsg_log;
213 		strscpy(old_str, devkmsg_log_str);
214 	}
215 
216 	err = proc_dostring(table, write, buffer, lenp, ppos);
217 	if (err)
218 		return err;
219 
220 	if (write) {
221 		err = __control_devkmsg(devkmsg_log_str);
222 
223 		/*
224 		 * Do not accept an unknown string OR a known string with
225 		 * trailing crap...
226 		 */
227 		if (err < 0 || (err + 1 != *lenp)) {
228 
229 			/* ... and restore old setting. */
230 			devkmsg_log = old;
231 			strscpy(devkmsg_log_str, old_str);
232 
233 			return -EINVAL;
234 		}
235 	}
236 
237 	return 0;
238 }
239 #endif /* CONFIG_PRINTK && CONFIG_SYSCTL */
240 
241 /**
242  * console_list_lock - Lock the console list
243  *
244  * For console list or console->flags updates
245  */
console_list_lock(void)246 void console_list_lock(void)
247 {
248 	/*
249 	 * In unregister_console() and console_force_preferred_locked(),
250 	 * synchronize_srcu() is called with the console_list_lock held.
251 	 * Therefore it is not allowed that the console_list_lock is taken
252 	 * with the srcu_lock held.
253 	 *
254 	 * Detecting if this context is really in the read-side critical
255 	 * section is only possible if the appropriate debug options are
256 	 * enabled.
257 	 */
258 	WARN_ON_ONCE(debug_lockdep_rcu_enabled() &&
259 		     srcu_read_lock_held(&console_srcu));
260 
261 	mutex_lock(&console_mutex);
262 }
263 EXPORT_SYMBOL(console_list_lock);
264 
265 /**
266  * console_list_unlock - Unlock the console list
267  *
268  * Counterpart to console_list_lock()
269  */
console_list_unlock(void)270 void console_list_unlock(void)
271 {
272 	mutex_unlock(&console_mutex);
273 }
274 EXPORT_SYMBOL(console_list_unlock);
275 
276 /**
277  * console_srcu_read_lock - Register a new reader for the
278  *	SRCU-protected console list
279  *
280  * Use for_each_console_srcu() to iterate the console list
281  *
282  * Context: Any context.
283  * Return: A cookie to pass to console_srcu_read_unlock().
284  */
console_srcu_read_lock(void)285 int console_srcu_read_lock(void)
286 	__acquires(&console_srcu)
287 {
288 	return srcu_read_lock_nmisafe(&console_srcu);
289 }
290 EXPORT_SYMBOL(console_srcu_read_lock);
291 
292 /**
293  * console_srcu_read_unlock - Unregister an old reader from
294  *	the SRCU-protected console list
295  * @cookie: cookie returned from console_srcu_read_lock()
296  *
297  * Counterpart to console_srcu_read_lock()
298  */
console_srcu_read_unlock(int cookie)299 void console_srcu_read_unlock(int cookie)
300 	__releases(&console_srcu)
301 {
302 	srcu_read_unlock_nmisafe(&console_srcu, cookie);
303 }
304 EXPORT_SYMBOL(console_srcu_read_unlock);
305 
306 /*
307  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
308  * macros instead of functions so that _RET_IP_ contains useful information.
309  */
310 #define down_console_sem() do { \
311 	down(&console_sem);\
312 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
313 } while (0)
314 
__down_trylock_console_sem(unsigned long ip)315 static int __down_trylock_console_sem(unsigned long ip)
316 {
317 	int lock_failed;
318 	unsigned long flags;
319 
320 	/*
321 	 * Here and in __up_console_sem() we need to be in safe mode,
322 	 * because spindump/WARN/etc from under console ->lock will
323 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
324 	 */
325 	printk_safe_enter_irqsave(flags);
326 	lock_failed = down_trylock(&console_sem);
327 	printk_safe_exit_irqrestore(flags);
328 
329 	if (lock_failed)
330 		return 1;
331 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
332 	return 0;
333 }
334 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
335 
__up_console_sem(unsigned long ip)336 static void __up_console_sem(unsigned long ip)
337 {
338 	unsigned long flags;
339 
340 	mutex_release(&console_lock_dep_map, ip);
341 
342 	printk_safe_enter_irqsave(flags);
343 	up(&console_sem);
344 	printk_safe_exit_irqrestore(flags);
345 }
346 #define up_console_sem() __up_console_sem(_RET_IP_)
347 
panic_in_progress(void)348 static bool panic_in_progress(void)
349 {
350 	return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID);
351 }
352 
353 /* Return true if a panic is in progress on the current CPU. */
this_cpu_in_panic(void)354 bool this_cpu_in_panic(void)
355 {
356 	/*
357 	 * We can use raw_smp_processor_id() here because it is impossible for
358 	 * the task to be migrated to the panic_cpu, or away from it. If
359 	 * panic_cpu has already been set, and we're not currently executing on
360 	 * that CPU, then we never will be.
361 	 */
362 	return unlikely(atomic_read(&panic_cpu) == raw_smp_processor_id());
363 }
364 
365 /*
366  * Return true if a panic is in progress on a remote CPU.
367  *
368  * On true, the local CPU should immediately release any printing resources
369  * that may be needed by the panic CPU.
370  */
other_cpu_in_panic(void)371 bool other_cpu_in_panic(void)
372 {
373 	return (panic_in_progress() && !this_cpu_in_panic());
374 }
375 
376 /*
377  * This is used for debugging the mess that is the VT code by
378  * keeping track if we have the console semaphore held. It's
379  * definitely not the perfect debug tool (we don't know if _WE_
380  * hold it and are racing, but it helps tracking those weird code
381  * paths in the console code where we end up in places I want
382  * locked without the console semaphore held).
383  */
384 static int console_locked;
385 
386 /*
387  *	Array of consoles built from command line options (console=)
388  */
389 
390 #define MAX_CMDLINECONSOLES 8
391 
392 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
393 
394 static int preferred_console = -1;
395 int console_set_on_cmdline;
396 EXPORT_SYMBOL(console_set_on_cmdline);
397 
398 /* Flag: console code may call schedule() */
399 static int console_may_schedule;
400 
401 enum con_msg_format_flags {
402 	MSG_FORMAT_DEFAULT	= 0,
403 	MSG_FORMAT_SYSLOG	= (1 << 0),
404 };
405 
406 static int console_msg_format = MSG_FORMAT_DEFAULT;
407 
408 /*
409  * The printk log buffer consists of a sequenced collection of records, each
410  * containing variable length message text. Every record also contains its
411  * own meta-data (@info).
412  *
413  * Every record meta-data carries the timestamp in microseconds, as well as
414  * the standard userspace syslog level and syslog facility. The usual kernel
415  * messages use LOG_KERN; userspace-injected messages always carry a matching
416  * syslog facility, by default LOG_USER. The origin of every message can be
417  * reliably determined that way.
418  *
419  * The human readable log message of a record is available in @text, the
420  * length of the message text in @text_len. The stored message is not
421  * terminated.
422  *
423  * Optionally, a record can carry a dictionary of properties (key/value
424  * pairs), to provide userspace with a machine-readable message context.
425  *
426  * Examples for well-defined, commonly used property names are:
427  *   DEVICE=b12:8               device identifier
428  *                                b12:8         block dev_t
429  *                                c127:3        char dev_t
430  *                                n8            netdev ifindex
431  *                                +sound:card0  subsystem:devname
432  *   SUBSYSTEM=pci              driver-core subsystem name
433  *
434  * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
435  * and values are terminated by a '\0' character.
436  *
437  * Example of record values:
438  *   record.text_buf                = "it's a line" (unterminated)
439  *   record.info.seq                = 56
440  *   record.info.ts_nsec            = 36863
441  *   record.info.text_len           = 11
442  *   record.info.facility           = 0 (LOG_KERN)
443  *   record.info.flags              = 0
444  *   record.info.level              = 3 (LOG_ERR)
445  *   record.info.caller_id          = 299 (task 299)
446  *   record.info.dev_info.subsystem = "pci" (terminated)
447  *   record.info.dev_info.device    = "+pci:0000:00:01.0" (terminated)
448  *
449  * The 'struct printk_info' buffer must never be directly exported to
450  * userspace, it is a kernel-private implementation detail that might
451  * need to be changed in the future, when the requirements change.
452  *
453  * /dev/kmsg exports the structured data in the following line format:
454  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
455  *
456  * Users of the export format should ignore possible additional values
457  * separated by ',', and find the message after the ';' character.
458  *
459  * The optional key/value pairs are attached as continuation lines starting
460  * with a space character and terminated by a newline. All possible
461  * non-prinatable characters are escaped in the "\xff" notation.
462  */
463 
464 /* syslog_lock protects syslog_* variables and write access to clear_seq. */
465 static DEFINE_MUTEX(syslog_lock);
466 
467 /*
468  * Specifies if a legacy console is registered. If legacy consoles are
469  * present, it is necessary to perform the console lock/unlock dance
470  * whenever console flushing should occur.
471  */
472 bool have_legacy_console;
473 
474 /*
475  * Specifies if an nbcon console is registered. If nbcon consoles are present,
476  * synchronous printing of legacy consoles will not occur during panic until
477  * the backtrace has been stored to the ringbuffer.
478  */
479 bool have_nbcon_console;
480 
481 /*
482  * Specifies if a boot console is registered. If boot consoles are present,
483  * nbcon consoles cannot print simultaneously and must be synchronized by
484  * the console lock. This is because boot consoles and nbcon consoles may
485  * have mapped the same hardware.
486  */
487 bool have_boot_console;
488 
489 /* See printk_legacy_allow_panic_sync() for details. */
490 bool legacy_allow_panic_sync;
491 
492 #ifdef CONFIG_PRINTK
493 DECLARE_WAIT_QUEUE_HEAD(log_wait);
494 static DECLARE_WAIT_QUEUE_HEAD(legacy_wait);
495 /* All 3 protected by @syslog_lock. */
496 /* the next printk record to read by syslog(READ) or /proc/kmsg */
497 static u64 syslog_seq;
498 static size_t syslog_partial;
499 static bool syslog_time;
500 
501 /* True when _all_ printer threads are available for printing. */
502 bool printk_kthreads_running;
503 
504 struct latched_seq {
505 	seqcount_latch_t	latch;
506 	u64			val[2];
507 };
508 
509 /*
510  * The next printk record to read after the last 'clear' command. There are
511  * two copies (updated with seqcount_latch) so that reads can locklessly
512  * access a valid value. Writers are synchronized by @syslog_lock.
513  */
514 static struct latched_seq clear_seq = {
515 	.latch		= SEQCNT_LATCH_ZERO(clear_seq.latch),
516 	.val[0]		= 0,
517 	.val[1]		= 0,
518 };
519 
520 #define LOG_LEVEL(v)		((v) & 0x07)
521 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
522 
523 /* record buffer */
524 #define LOG_ALIGN __alignof__(unsigned long)
525 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
526 #define LOG_BUF_LEN_MAX ((u32)1 << 31)
527 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
528 static char *log_buf = __log_buf;
529 static u32 log_buf_len = __LOG_BUF_LEN;
530 
531 /*
532  * Define the average message size. This only affects the number of
533  * descriptors that will be available. Underestimating is better than
534  * overestimating (too many available descriptors is better than not enough).
535  */
536 #define PRB_AVGBITS 5	/* 32 character average length */
537 
538 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
539 #error CONFIG_LOG_BUF_SHIFT value too small.
540 #endif
541 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
542 		 PRB_AVGBITS, &__log_buf[0]);
543 
544 static struct printk_ringbuffer printk_rb_dynamic;
545 
546 struct printk_ringbuffer *prb = &printk_rb_static;
547 
548 /*
549  * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
550  * per_cpu_areas are initialised. This variable is set to true when
551  * it's safe to access per-CPU data.
552  */
553 static bool __printk_percpu_data_ready __ro_after_init;
554 
printk_percpu_data_ready(void)555 bool printk_percpu_data_ready(void)
556 {
557 	return __printk_percpu_data_ready;
558 }
559 
560 /* Must be called under syslog_lock. */
latched_seq_write(struct latched_seq * ls,u64 val)561 static void latched_seq_write(struct latched_seq *ls, u64 val)
562 {
563 	write_seqcount_latch_begin(&ls->latch);
564 	ls->val[0] = val;
565 	write_seqcount_latch(&ls->latch);
566 	ls->val[1] = val;
567 	write_seqcount_latch_end(&ls->latch);
568 }
569 
570 /* Can be called from any context. */
latched_seq_read_nolock(struct latched_seq * ls)571 static u64 latched_seq_read_nolock(struct latched_seq *ls)
572 {
573 	unsigned int seq;
574 	unsigned int idx;
575 	u64 val;
576 
577 	do {
578 		seq = read_seqcount_latch(&ls->latch);
579 		idx = seq & 0x1;
580 		val = ls->val[idx];
581 	} while (read_seqcount_latch_retry(&ls->latch, seq));
582 
583 	return val;
584 }
585 
586 /* Return log buffer address */
log_buf_addr_get(void)587 char *log_buf_addr_get(void)
588 {
589 	return log_buf;
590 }
591 
592 /* Return log buffer size */
log_buf_len_get(void)593 u32 log_buf_len_get(void)
594 {
595 	return log_buf_len;
596 }
597 
598 /*
599  * Define how much of the log buffer we could take at maximum. The value
600  * must be greater than two. Note that only half of the buffer is available
601  * when the index points to the middle.
602  */
603 #define MAX_LOG_TAKE_PART 4
604 static const char trunc_msg[] = "<truncated>";
605 
truncate_msg(u16 * text_len,u16 * trunc_msg_len)606 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
607 {
608 	/*
609 	 * The message should not take the whole buffer. Otherwise, it might
610 	 * get removed too soon.
611 	 */
612 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
613 
614 	if (*text_len > max_text_len)
615 		*text_len = max_text_len;
616 
617 	/* enable the warning message (if there is room) */
618 	*trunc_msg_len = strlen(trunc_msg);
619 	if (*text_len >= *trunc_msg_len)
620 		*text_len -= *trunc_msg_len;
621 	else
622 		*trunc_msg_len = 0;
623 }
624 
625 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
626 
syslog_action_restricted(int type)627 static int syslog_action_restricted(int type)
628 {
629 	if (dmesg_restrict)
630 		return 1;
631 	/*
632 	 * Unless restricted, we allow "read all" and "get buffer size"
633 	 * for everybody.
634 	 */
635 	return type != SYSLOG_ACTION_READ_ALL &&
636 	       type != SYSLOG_ACTION_SIZE_BUFFER;
637 }
638 
check_syslog_permissions(int type,int source)639 static int check_syslog_permissions(int type, int source)
640 {
641 	/*
642 	 * If this is from /proc/kmsg and we've already opened it, then we've
643 	 * already done the capabilities checks at open time.
644 	 */
645 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
646 		goto ok;
647 
648 	if (syslog_action_restricted(type)) {
649 		if (capable(CAP_SYSLOG))
650 			goto ok;
651 		return -EPERM;
652 	}
653 ok:
654 	return security_syslog(type);
655 }
656 
append_char(char ** pp,char * e,char c)657 static void append_char(char **pp, char *e, char c)
658 {
659 	if (*pp < e)
660 		*(*pp)++ = c;
661 }
662 
info_print_ext_header(char * buf,size_t size,struct printk_info * info)663 static ssize_t info_print_ext_header(char *buf, size_t size,
664 				     struct printk_info *info)
665 {
666 	u64 ts_usec = info->ts_nsec;
667 	char caller[20];
668 #ifdef CONFIG_PRINTK_CALLER
669 	u32 id = info->caller_id;
670 
671 	snprintf(caller, sizeof(caller), ",caller=%c%u",
672 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
673 #else
674 	caller[0] = '\0';
675 #endif
676 
677 	do_div(ts_usec, 1000);
678 
679 	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
680 			 (info->facility << 3) | info->level, info->seq,
681 			 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
682 }
683 
msg_add_ext_text(char * buf,size_t size,const char * text,size_t text_len,unsigned char endc)684 static ssize_t msg_add_ext_text(char *buf, size_t size,
685 				const char *text, size_t text_len,
686 				unsigned char endc)
687 {
688 	char *p = buf, *e = buf + size;
689 	size_t i;
690 
691 	/* escape non-printable characters */
692 	for (i = 0; i < text_len; i++) {
693 		unsigned char c = text[i];
694 
695 		if (c < ' ' || c >= 127 || c == '\\')
696 			p += scnprintf(p, e - p, "\\x%02x", c);
697 		else
698 			append_char(&p, e, c);
699 	}
700 	append_char(&p, e, endc);
701 
702 	return p - buf;
703 }
704 
msg_add_dict_text(char * buf,size_t size,const char * key,const char * val)705 static ssize_t msg_add_dict_text(char *buf, size_t size,
706 				 const char *key, const char *val)
707 {
708 	size_t val_len = strlen(val);
709 	ssize_t len;
710 
711 	if (!val_len)
712 		return 0;
713 
714 	len = msg_add_ext_text(buf, size, "", 0, ' ');	/* dict prefix */
715 	len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
716 	len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
717 
718 	return len;
719 }
720 
msg_print_ext_body(char * buf,size_t size,char * text,size_t text_len,struct dev_printk_info * dev_info)721 static ssize_t msg_print_ext_body(char *buf, size_t size,
722 				  char *text, size_t text_len,
723 				  struct dev_printk_info *dev_info)
724 {
725 	ssize_t len;
726 
727 	len = msg_add_ext_text(buf, size, text, text_len, '\n');
728 
729 	if (!dev_info)
730 		goto out;
731 
732 	len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
733 				 dev_info->subsystem);
734 	len += msg_add_dict_text(buf + len, size - len, "DEVICE",
735 				 dev_info->device);
736 out:
737 	return len;
738 }
739 
740 /* /dev/kmsg - userspace message inject/listen interface */
741 struct devkmsg_user {
742 	atomic64_t seq;
743 	struct ratelimit_state rs;
744 	struct mutex lock;
745 	struct printk_buffers pbufs;
746 };
747 
748 static __printf(3, 4) __cold
devkmsg_emit(int facility,int level,const char * fmt,...)749 int devkmsg_emit(int facility, int level, const char *fmt, ...)
750 {
751 	va_list args;
752 	int r;
753 
754 	va_start(args, fmt);
755 	r = vprintk_emit(facility, level, NULL, fmt, args);
756 	va_end(args);
757 
758 	return r;
759 }
760 
devkmsg_write(struct kiocb * iocb,struct iov_iter * from)761 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
762 {
763 	char *buf, *line;
764 	int level = default_message_loglevel;
765 	int facility = 1;	/* LOG_USER */
766 	struct file *file = iocb->ki_filp;
767 	struct devkmsg_user *user = file->private_data;
768 	size_t len = iov_iter_count(from);
769 	ssize_t ret = len;
770 
771 	if (len > PRINTKRB_RECORD_MAX)
772 		return -EINVAL;
773 
774 	/* Ignore when user logging is disabled. */
775 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
776 		return len;
777 
778 	/* Ratelimit when not explicitly enabled. */
779 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
780 		if (!___ratelimit(&user->rs, current->comm))
781 			return ret;
782 	}
783 
784 	buf = kmalloc(len+1, GFP_KERNEL);
785 	if (buf == NULL)
786 		return -ENOMEM;
787 
788 	buf[len] = '\0';
789 	if (!copy_from_iter_full(buf, len, from)) {
790 		kfree(buf);
791 		return -EFAULT;
792 	}
793 
794 	/*
795 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
796 	 * the decimal value represents 32bit, the lower 3 bit are the log
797 	 * level, the rest are the log facility.
798 	 *
799 	 * If no prefix or no userspace facility is specified, we
800 	 * enforce LOG_USER, to be able to reliably distinguish
801 	 * kernel-generated messages from userspace-injected ones.
802 	 */
803 	line = buf;
804 	if (line[0] == '<') {
805 		char *endp = NULL;
806 		unsigned int u;
807 
808 		u = simple_strtoul(line + 1, &endp, 10);
809 		if (endp && endp[0] == '>') {
810 			level = LOG_LEVEL(u);
811 			if (LOG_FACILITY(u) != 0)
812 				facility = LOG_FACILITY(u);
813 			endp++;
814 			line = endp;
815 		}
816 	}
817 
818 	devkmsg_emit(facility, level, "%s", line);
819 	kfree(buf);
820 	return ret;
821 }
822 
devkmsg_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)823 static ssize_t devkmsg_read(struct file *file, char __user *buf,
824 			    size_t count, loff_t *ppos)
825 {
826 	struct devkmsg_user *user = file->private_data;
827 	char *outbuf = &user->pbufs.outbuf[0];
828 	struct printk_message pmsg = {
829 		.pbufs = &user->pbufs,
830 	};
831 	ssize_t ret;
832 
833 	ret = mutex_lock_interruptible(&user->lock);
834 	if (ret)
835 		return ret;
836 
837 	if (!printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, false)) {
838 		if (file->f_flags & O_NONBLOCK) {
839 			ret = -EAGAIN;
840 			goto out;
841 		}
842 
843 		/*
844 		 * Guarantee this task is visible on the waitqueue before
845 		 * checking the wake condition.
846 		 *
847 		 * The full memory barrier within set_current_state() of
848 		 * prepare_to_wait_event() pairs with the full memory barrier
849 		 * within wq_has_sleeper().
850 		 *
851 		 * This pairs with __wake_up_klogd:A.
852 		 */
853 		ret = wait_event_interruptible(log_wait,
854 				printk_get_next_message(&pmsg, atomic64_read(&user->seq), true,
855 							false)); /* LMM(devkmsg_read:A) */
856 		if (ret)
857 			goto out;
858 	}
859 
860 	if (pmsg.dropped) {
861 		/* our last seen message is gone, return error and reset */
862 		atomic64_set(&user->seq, pmsg.seq);
863 		ret = -EPIPE;
864 		goto out;
865 	}
866 
867 	atomic64_set(&user->seq, pmsg.seq + 1);
868 
869 	if (pmsg.outbuf_len > count) {
870 		ret = -EINVAL;
871 		goto out;
872 	}
873 
874 	if (copy_to_user(buf, outbuf, pmsg.outbuf_len)) {
875 		ret = -EFAULT;
876 		goto out;
877 	}
878 	ret = pmsg.outbuf_len;
879 out:
880 	mutex_unlock(&user->lock);
881 	return ret;
882 }
883 
884 /*
885  * Be careful when modifying this function!!!
886  *
887  * Only few operations are supported because the device works only with the
888  * entire variable length messages (records). Non-standard values are
889  * returned in the other cases and has been this way for quite some time.
890  * User space applications might depend on this behavior.
891  */
devkmsg_llseek(struct file * file,loff_t offset,int whence)892 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
893 {
894 	struct devkmsg_user *user = file->private_data;
895 	loff_t ret = 0;
896 
897 	if (offset)
898 		return -ESPIPE;
899 
900 	switch (whence) {
901 	case SEEK_SET:
902 		/* the first record */
903 		atomic64_set(&user->seq, prb_first_valid_seq(prb));
904 		break;
905 	case SEEK_DATA:
906 		/*
907 		 * The first record after the last SYSLOG_ACTION_CLEAR,
908 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
909 		 * changes no global state, and does not clear anything.
910 		 */
911 		atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
912 		break;
913 	case SEEK_END:
914 		/* after the last record */
915 		atomic64_set(&user->seq, prb_next_seq(prb));
916 		break;
917 	default:
918 		ret = -EINVAL;
919 	}
920 	return ret;
921 }
922 
devkmsg_poll(struct file * file,poll_table * wait)923 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
924 {
925 	struct devkmsg_user *user = file->private_data;
926 	struct printk_info info;
927 	__poll_t ret = 0;
928 
929 	poll_wait(file, &log_wait, wait);
930 
931 	if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
932 		/* return error when data has vanished underneath us */
933 		if (info.seq != atomic64_read(&user->seq))
934 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
935 		else
936 			ret = EPOLLIN|EPOLLRDNORM;
937 	}
938 
939 	return ret;
940 }
941 
devkmsg_open(struct inode * inode,struct file * file)942 static int devkmsg_open(struct inode *inode, struct file *file)
943 {
944 	struct devkmsg_user *user;
945 	int err;
946 
947 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
948 		return -EPERM;
949 
950 	/* write-only does not need any file context */
951 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
952 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
953 					       SYSLOG_FROM_READER);
954 		if (err)
955 			return err;
956 	}
957 
958 	user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
959 	if (!user)
960 		return -ENOMEM;
961 
962 	ratelimit_default_init(&user->rs);
963 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
964 
965 	mutex_init(&user->lock);
966 
967 	atomic64_set(&user->seq, prb_first_valid_seq(prb));
968 
969 	file->private_data = user;
970 	return 0;
971 }
972 
devkmsg_release(struct inode * inode,struct file * file)973 static int devkmsg_release(struct inode *inode, struct file *file)
974 {
975 	struct devkmsg_user *user = file->private_data;
976 
977 	ratelimit_state_exit(&user->rs);
978 
979 	mutex_destroy(&user->lock);
980 	kvfree(user);
981 	return 0;
982 }
983 
984 const struct file_operations kmsg_fops = {
985 	.open = devkmsg_open,
986 	.read = devkmsg_read,
987 	.write_iter = devkmsg_write,
988 	.llseek = devkmsg_llseek,
989 	.poll = devkmsg_poll,
990 	.release = devkmsg_release,
991 };
992 
993 #ifdef CONFIG_VMCORE_INFO
994 /*
995  * This appends the listed symbols to /proc/vmcore
996  *
997  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
998  * obtain access to symbols that are otherwise very difficult to locate.  These
999  * symbols are specifically used so that utilities can access and extract the
1000  * dmesg log from a vmcore file after a crash.
1001  */
log_buf_vmcoreinfo_setup(void)1002 void log_buf_vmcoreinfo_setup(void)
1003 {
1004 	struct dev_printk_info *dev_info = NULL;
1005 
1006 	VMCOREINFO_SYMBOL(prb);
1007 	VMCOREINFO_SYMBOL(printk_rb_static);
1008 	VMCOREINFO_SYMBOL(clear_seq);
1009 
1010 	/*
1011 	 * Export struct size and field offsets. User space tools can
1012 	 * parse it and detect any changes to structure down the line.
1013 	 */
1014 
1015 	VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
1016 	VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
1017 	VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
1018 	VMCOREINFO_OFFSET(printk_ringbuffer, fail);
1019 
1020 	VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
1021 	VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
1022 	VMCOREINFO_OFFSET(prb_desc_ring, descs);
1023 	VMCOREINFO_OFFSET(prb_desc_ring, infos);
1024 	VMCOREINFO_OFFSET(prb_desc_ring, head_id);
1025 	VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
1026 
1027 	VMCOREINFO_STRUCT_SIZE(prb_desc);
1028 	VMCOREINFO_OFFSET(prb_desc, state_var);
1029 	VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
1030 
1031 	VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
1032 	VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
1033 	VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
1034 
1035 	VMCOREINFO_STRUCT_SIZE(printk_info);
1036 	VMCOREINFO_OFFSET(printk_info, seq);
1037 	VMCOREINFO_OFFSET(printk_info, ts_nsec);
1038 	VMCOREINFO_OFFSET(printk_info, text_len);
1039 	VMCOREINFO_OFFSET(printk_info, caller_id);
1040 	VMCOREINFO_OFFSET(printk_info, dev_info);
1041 
1042 	VMCOREINFO_STRUCT_SIZE(dev_printk_info);
1043 	VMCOREINFO_OFFSET(dev_printk_info, subsystem);
1044 	VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
1045 	VMCOREINFO_OFFSET(dev_printk_info, device);
1046 	VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
1047 
1048 	VMCOREINFO_STRUCT_SIZE(prb_data_ring);
1049 	VMCOREINFO_OFFSET(prb_data_ring, size_bits);
1050 	VMCOREINFO_OFFSET(prb_data_ring, data);
1051 	VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
1052 	VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
1053 
1054 	VMCOREINFO_SIZE(atomic_long_t);
1055 	VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
1056 
1057 	VMCOREINFO_STRUCT_SIZE(latched_seq);
1058 	VMCOREINFO_OFFSET(latched_seq, val);
1059 }
1060 #endif
1061 
1062 /* requested log_buf_len from kernel cmdline */
1063 static unsigned long __initdata new_log_buf_len;
1064 
1065 /* we practice scaling the ring buffer by powers of 2 */
log_buf_len_update(u64 size)1066 static void __init log_buf_len_update(u64 size)
1067 {
1068 	if (size > (u64)LOG_BUF_LEN_MAX) {
1069 		size = (u64)LOG_BUF_LEN_MAX;
1070 		pr_err("log_buf over 2G is not supported.\n");
1071 	}
1072 
1073 	if (size)
1074 		size = roundup_pow_of_two(size);
1075 	if (size > log_buf_len)
1076 		new_log_buf_len = (unsigned long)size;
1077 }
1078 
1079 /* save requested log_buf_len since it's too early to process it */
log_buf_len_setup(char * str)1080 static int __init log_buf_len_setup(char *str)
1081 {
1082 	u64 size;
1083 
1084 	if (!str)
1085 		return -EINVAL;
1086 
1087 	size = memparse(str, &str);
1088 
1089 	log_buf_len_update(size);
1090 
1091 	return 0;
1092 }
1093 early_param("log_buf_len", log_buf_len_setup);
1094 
1095 #ifdef CONFIG_SMP
1096 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1097 
log_buf_add_cpu(void)1098 static void __init log_buf_add_cpu(void)
1099 {
1100 	unsigned int cpu_extra;
1101 
1102 	/*
1103 	 * archs should set up cpu_possible_bits properly with
1104 	 * set_cpu_possible() after setup_arch() but just in
1105 	 * case lets ensure this is valid.
1106 	 */
1107 	if (num_possible_cpus() == 1)
1108 		return;
1109 
1110 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1111 
1112 	/* by default this will only continue through for large > 64 CPUs */
1113 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1114 		return;
1115 
1116 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1117 		__LOG_CPU_MAX_BUF_LEN);
1118 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1119 		cpu_extra);
1120 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1121 
1122 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1123 }
1124 #else /* !CONFIG_SMP */
log_buf_add_cpu(void)1125 static inline void log_buf_add_cpu(void) {}
1126 #endif /* CONFIG_SMP */
1127 
set_percpu_data_ready(void)1128 static void __init set_percpu_data_ready(void)
1129 {
1130 	__printk_percpu_data_ready = true;
1131 }
1132 
add_to_rb(struct printk_ringbuffer * rb,struct printk_record * r)1133 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1134 				     struct printk_record *r)
1135 {
1136 	struct prb_reserved_entry e;
1137 	struct printk_record dest_r;
1138 
1139 	prb_rec_init_wr(&dest_r, r->info->text_len);
1140 
1141 	if (!prb_reserve(&e, rb, &dest_r))
1142 		return 0;
1143 
1144 	memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1145 	dest_r.info->text_len = r->info->text_len;
1146 	dest_r.info->facility = r->info->facility;
1147 	dest_r.info->level = r->info->level;
1148 	dest_r.info->flags = r->info->flags;
1149 	dest_r.info->ts_nsec = r->info->ts_nsec;
1150 	dest_r.info->caller_id = r->info->caller_id;
1151 	memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1152 
1153 	prb_final_commit(&e);
1154 
1155 	return prb_record_text_space(&e);
1156 }
1157 
1158 static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata;
1159 
print_log_buf_usage_stats(void)1160 static void print_log_buf_usage_stats(void)
1161 {
1162 	unsigned int descs_count = log_buf_len >> PRB_AVGBITS;
1163 	size_t meta_data_size;
1164 
1165 	meta_data_size = descs_count * (sizeof(struct prb_desc) + sizeof(struct printk_info));
1166 
1167 	pr_info("log buffer data + meta data: %u + %zu = %zu bytes\n",
1168 		log_buf_len, meta_data_size, log_buf_len + meta_data_size);
1169 }
1170 
setup_log_buf(int early)1171 void __init setup_log_buf(int early)
1172 {
1173 	struct printk_info *new_infos;
1174 	unsigned int new_descs_count;
1175 	struct prb_desc *new_descs;
1176 	struct printk_info info;
1177 	struct printk_record r;
1178 	unsigned int text_size;
1179 	size_t new_descs_size;
1180 	size_t new_infos_size;
1181 	unsigned long flags;
1182 	char *new_log_buf;
1183 	unsigned int free;
1184 	u64 seq;
1185 
1186 	/*
1187 	 * Some archs call setup_log_buf() multiple times - first is very
1188 	 * early, e.g. from setup_arch(), and second - when percpu_areas
1189 	 * are initialised.
1190 	 */
1191 	if (!early)
1192 		set_percpu_data_ready();
1193 
1194 	if (log_buf != __log_buf)
1195 		return;
1196 
1197 	if (!early && !new_log_buf_len)
1198 		log_buf_add_cpu();
1199 
1200 	if (!new_log_buf_len) {
1201 		/* Show the memory stats only once. */
1202 		if (!early)
1203 			goto out;
1204 
1205 		return;
1206 	}
1207 
1208 	new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1209 	if (new_descs_count == 0) {
1210 		pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1211 		goto out;
1212 	}
1213 
1214 	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1215 	if (unlikely(!new_log_buf)) {
1216 		pr_err("log_buf_len: %lu text bytes not available\n",
1217 		       new_log_buf_len);
1218 		goto out;
1219 	}
1220 
1221 	new_descs_size = new_descs_count * sizeof(struct prb_desc);
1222 	new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1223 	if (unlikely(!new_descs)) {
1224 		pr_err("log_buf_len: %zu desc bytes not available\n",
1225 		       new_descs_size);
1226 		goto err_free_log_buf;
1227 	}
1228 
1229 	new_infos_size = new_descs_count * sizeof(struct printk_info);
1230 	new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1231 	if (unlikely(!new_infos)) {
1232 		pr_err("log_buf_len: %zu info bytes not available\n",
1233 		       new_infos_size);
1234 		goto err_free_descs;
1235 	}
1236 
1237 	prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1238 
1239 	prb_init(&printk_rb_dynamic,
1240 		 new_log_buf, ilog2(new_log_buf_len),
1241 		 new_descs, ilog2(new_descs_count),
1242 		 new_infos);
1243 
1244 	local_irq_save(flags);
1245 
1246 	log_buf_len = new_log_buf_len;
1247 	log_buf = new_log_buf;
1248 	new_log_buf_len = 0;
1249 
1250 	free = __LOG_BUF_LEN;
1251 	prb_for_each_record(0, &printk_rb_static, seq, &r) {
1252 		text_size = add_to_rb(&printk_rb_dynamic, &r);
1253 		if (text_size > free)
1254 			free = 0;
1255 		else
1256 			free -= text_size;
1257 	}
1258 
1259 	prb = &printk_rb_dynamic;
1260 
1261 	local_irq_restore(flags);
1262 
1263 	/*
1264 	 * Copy any remaining messages that might have appeared from
1265 	 * NMI context after copying but before switching to the
1266 	 * dynamic buffer.
1267 	 */
1268 	prb_for_each_record(seq, &printk_rb_static, seq, &r) {
1269 		text_size = add_to_rb(&printk_rb_dynamic, &r);
1270 		if (text_size > free)
1271 			free = 0;
1272 		else
1273 			free -= text_size;
1274 	}
1275 
1276 	if (seq != prb_next_seq(&printk_rb_static)) {
1277 		pr_err("dropped %llu messages\n",
1278 		       prb_next_seq(&printk_rb_static) - seq);
1279 	}
1280 
1281 	print_log_buf_usage_stats();
1282 	pr_info("early log buf free: %u(%u%%)\n",
1283 		free, (free * 100) / __LOG_BUF_LEN);
1284 	return;
1285 
1286 err_free_descs:
1287 	memblock_free(new_descs, new_descs_size);
1288 err_free_log_buf:
1289 	memblock_free(new_log_buf, new_log_buf_len);
1290 out:
1291 	print_log_buf_usage_stats();
1292 }
1293 
1294 static bool __read_mostly ignore_loglevel;
1295 
ignore_loglevel_setup(char * str)1296 static int __init ignore_loglevel_setup(char *str)
1297 {
1298 	ignore_loglevel = true;
1299 	pr_info("debug: ignoring loglevel setting.\n");
1300 
1301 	return 0;
1302 }
1303 
1304 early_param("ignore_loglevel", ignore_loglevel_setup);
1305 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1306 MODULE_PARM_DESC(ignore_loglevel,
1307 		 "ignore loglevel setting (prints all kernel messages to the console)");
1308 
suppress_message_printing(int level)1309 static bool suppress_message_printing(int level)
1310 {
1311 	return (level >= console_loglevel && !ignore_loglevel);
1312 }
1313 
1314 #ifdef CONFIG_BOOT_PRINTK_DELAY
1315 
1316 static int boot_delay; /* msecs delay after each printk during bootup */
1317 static unsigned long long loops_per_msec;	/* based on boot_delay */
1318 
boot_delay_setup(char * str)1319 static int __init boot_delay_setup(char *str)
1320 {
1321 	unsigned long lpj;
1322 
1323 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1324 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1325 
1326 	get_option(&str, &boot_delay);
1327 	if (boot_delay > 10 * 1000)
1328 		boot_delay = 0;
1329 
1330 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1331 		"HZ: %d, loops_per_msec: %llu\n",
1332 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1333 	return 0;
1334 }
1335 early_param("boot_delay", boot_delay_setup);
1336 
boot_delay_msec(int level)1337 static void boot_delay_msec(int level)
1338 {
1339 	unsigned long long k;
1340 	unsigned long timeout;
1341 	bool suppress = !is_printk_force_console() &&
1342 			suppress_message_printing(level);
1343 
1344 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) || suppress)
1345 		return;
1346 
1347 	k = (unsigned long long)loops_per_msec * boot_delay;
1348 
1349 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1350 	while (k) {
1351 		k--;
1352 		cpu_relax();
1353 		/*
1354 		 * use (volatile) jiffies to prevent
1355 		 * compiler reduction; loop termination via jiffies
1356 		 * is secondary and may or may not happen.
1357 		 */
1358 		if (time_after(jiffies, timeout))
1359 			break;
1360 		touch_nmi_watchdog();
1361 	}
1362 }
1363 #else
boot_delay_msec(int level)1364 static inline void boot_delay_msec(int level)
1365 {
1366 }
1367 #endif
1368 
1369 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1370 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1371 
print_syslog(unsigned int level,char * buf)1372 static size_t print_syslog(unsigned int level, char *buf)
1373 {
1374 	return sprintf(buf, "<%u>", level);
1375 }
1376 
print_time(u64 ts,char * buf)1377 static size_t print_time(u64 ts, char *buf)
1378 {
1379 	unsigned long rem_nsec = do_div(ts, 1000000000);
1380 
1381 	return sprintf(buf, "[%5lu.%06lu]",
1382 		       (unsigned long)ts, rem_nsec / 1000);
1383 }
1384 
1385 #ifdef CONFIG_PRINTK_CALLER
print_caller(u32 id,char * buf)1386 static size_t print_caller(u32 id, char *buf)
1387 {
1388 	char caller[12];
1389 
1390 	snprintf(caller, sizeof(caller), "%c%u",
1391 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1392 	return sprintf(buf, "[%6s]", caller);
1393 }
1394 #else
1395 #define print_caller(id, buf) 0
1396 #endif
1397 
info_print_prefix(const struct printk_info * info,bool syslog,bool time,char * buf)1398 static size_t info_print_prefix(const struct printk_info  *info, bool syslog,
1399 				bool time, char *buf)
1400 {
1401 	size_t len = 0;
1402 
1403 	if (syslog)
1404 		len = print_syslog((info->facility << 3) | info->level, buf);
1405 
1406 	if (time)
1407 		len += print_time(info->ts_nsec, buf + len);
1408 
1409 	len += print_caller(info->caller_id, buf + len);
1410 
1411 	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1412 		buf[len++] = ' ';
1413 		buf[len] = '\0';
1414 	}
1415 
1416 	return len;
1417 }
1418 
1419 /*
1420  * Prepare the record for printing. The text is shifted within the given
1421  * buffer to avoid a need for another one. The following operations are
1422  * done:
1423  *
1424  *   - Add prefix for each line.
1425  *   - Drop truncated lines that no longer fit into the buffer.
1426  *   - Add the trailing newline that has been removed in vprintk_store().
1427  *   - Add a string terminator.
1428  *
1429  * Since the produced string is always terminated, the maximum possible
1430  * return value is @r->text_buf_size - 1;
1431  *
1432  * Return: The length of the updated/prepared text, including the added
1433  * prefixes and the newline. The terminator is not counted. The dropped
1434  * line(s) are not counted.
1435  */
record_print_text(struct printk_record * r,bool syslog,bool time)1436 static size_t record_print_text(struct printk_record *r, bool syslog,
1437 				bool time)
1438 {
1439 	size_t text_len = r->info->text_len;
1440 	size_t buf_size = r->text_buf_size;
1441 	char *text = r->text_buf;
1442 	char prefix[PRINTK_PREFIX_MAX];
1443 	bool truncated = false;
1444 	size_t prefix_len;
1445 	size_t line_len;
1446 	size_t len = 0;
1447 	char *next;
1448 
1449 	/*
1450 	 * If the message was truncated because the buffer was not large
1451 	 * enough, treat the available text as if it were the full text.
1452 	 */
1453 	if (text_len > buf_size)
1454 		text_len = buf_size;
1455 
1456 	prefix_len = info_print_prefix(r->info, syslog, time, prefix);
1457 
1458 	/*
1459 	 * @text_len: bytes of unprocessed text
1460 	 * @line_len: bytes of current line _without_ newline
1461 	 * @text:     pointer to beginning of current line
1462 	 * @len:      number of bytes prepared in r->text_buf
1463 	 */
1464 	for (;;) {
1465 		next = memchr(text, '\n', text_len);
1466 		if (next) {
1467 			line_len = next - text;
1468 		} else {
1469 			/* Drop truncated line(s). */
1470 			if (truncated)
1471 				break;
1472 			line_len = text_len;
1473 		}
1474 
1475 		/*
1476 		 * Truncate the text if there is not enough space to add the
1477 		 * prefix and a trailing newline and a terminator.
1478 		 */
1479 		if (len + prefix_len + text_len + 1 + 1 > buf_size) {
1480 			/* Drop even the current line if no space. */
1481 			if (len + prefix_len + line_len + 1 + 1 > buf_size)
1482 				break;
1483 
1484 			text_len = buf_size - len - prefix_len - 1 - 1;
1485 			truncated = true;
1486 		}
1487 
1488 		memmove(text + prefix_len, text, text_len);
1489 		memcpy(text, prefix, prefix_len);
1490 
1491 		/*
1492 		 * Increment the prepared length to include the text and
1493 		 * prefix that were just moved+copied. Also increment for the
1494 		 * newline at the end of this line. If this is the last line,
1495 		 * there is no newline, but it will be added immediately below.
1496 		 */
1497 		len += prefix_len + line_len + 1;
1498 		if (text_len == line_len) {
1499 			/*
1500 			 * This is the last line. Add the trailing newline
1501 			 * removed in vprintk_store().
1502 			 */
1503 			text[prefix_len + line_len] = '\n';
1504 			break;
1505 		}
1506 
1507 		/*
1508 		 * Advance beyond the added prefix and the related line with
1509 		 * its newline.
1510 		 */
1511 		text += prefix_len + line_len + 1;
1512 
1513 		/*
1514 		 * The remaining text has only decreased by the line with its
1515 		 * newline.
1516 		 *
1517 		 * Note that @text_len can become zero. It happens when @text
1518 		 * ended with a newline (either due to truncation or the
1519 		 * original string ending with "\n\n"). The loop is correctly
1520 		 * repeated and (if not truncated) an empty line with a prefix
1521 		 * will be prepared.
1522 		 */
1523 		text_len -= line_len + 1;
1524 	}
1525 
1526 	/*
1527 	 * If a buffer was provided, it will be terminated. Space for the
1528 	 * string terminator is guaranteed to be available. The terminator is
1529 	 * not counted in the return value.
1530 	 */
1531 	if (buf_size > 0)
1532 		r->text_buf[len] = 0;
1533 
1534 	return len;
1535 }
1536 
get_record_print_text_size(struct printk_info * info,unsigned int line_count,bool syslog,bool time)1537 static size_t get_record_print_text_size(struct printk_info *info,
1538 					 unsigned int line_count,
1539 					 bool syslog, bool time)
1540 {
1541 	char prefix[PRINTK_PREFIX_MAX];
1542 	size_t prefix_len;
1543 
1544 	prefix_len = info_print_prefix(info, syslog, time, prefix);
1545 
1546 	/*
1547 	 * Each line will be preceded with a prefix. The intermediate
1548 	 * newlines are already within the text, but a final trailing
1549 	 * newline will be added.
1550 	 */
1551 	return ((prefix_len * line_count) + info->text_len + 1);
1552 }
1553 
1554 /*
1555  * Beginning with @start_seq, find the first record where it and all following
1556  * records up to (but not including) @max_seq fit into @size.
1557  *
1558  * @max_seq is simply an upper bound and does not need to exist. If the caller
1559  * does not require an upper bound, -1 can be used for @max_seq.
1560  */
find_first_fitting_seq(u64 start_seq,u64 max_seq,size_t size,bool syslog,bool time)1561 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
1562 				  bool syslog, bool time)
1563 {
1564 	struct printk_info info;
1565 	unsigned int line_count;
1566 	size_t len = 0;
1567 	u64 seq;
1568 
1569 	/* Determine the size of the records up to @max_seq. */
1570 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1571 		if (info.seq >= max_seq)
1572 			break;
1573 		len += get_record_print_text_size(&info, line_count, syslog, time);
1574 	}
1575 
1576 	/*
1577 	 * Adjust the upper bound for the next loop to avoid subtracting
1578 	 * lengths that were never added.
1579 	 */
1580 	if (seq < max_seq)
1581 		max_seq = seq;
1582 
1583 	/*
1584 	 * Move first record forward until length fits into the buffer. Ignore
1585 	 * newest messages that were not counted in the above cycle. Messages
1586 	 * might appear and get lost in the meantime. This is a best effort
1587 	 * that prevents an infinite loop that could occur with a retry.
1588 	 */
1589 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1590 		if (len <= size || info.seq >= max_seq)
1591 			break;
1592 		len -= get_record_print_text_size(&info, line_count, syslog, time);
1593 	}
1594 
1595 	return seq;
1596 }
1597 
1598 /* The caller is responsible for making sure @size is greater than 0. */
syslog_print(char __user * buf,int size)1599 static int syslog_print(char __user *buf, int size)
1600 {
1601 	struct printk_info info;
1602 	struct printk_record r;
1603 	char *text;
1604 	int len = 0;
1605 	u64 seq;
1606 
1607 	text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1608 	if (!text)
1609 		return -ENOMEM;
1610 
1611 	prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1612 
1613 	mutex_lock(&syslog_lock);
1614 
1615 	/*
1616 	 * Wait for the @syslog_seq record to be available. @syslog_seq may
1617 	 * change while waiting.
1618 	 */
1619 	do {
1620 		seq = syslog_seq;
1621 
1622 		mutex_unlock(&syslog_lock);
1623 		/*
1624 		 * Guarantee this task is visible on the waitqueue before
1625 		 * checking the wake condition.
1626 		 *
1627 		 * The full memory barrier within set_current_state() of
1628 		 * prepare_to_wait_event() pairs with the full memory barrier
1629 		 * within wq_has_sleeper().
1630 		 *
1631 		 * This pairs with __wake_up_klogd:A.
1632 		 */
1633 		len = wait_event_interruptible(log_wait,
1634 				prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */
1635 		mutex_lock(&syslog_lock);
1636 
1637 		if (len)
1638 			goto out;
1639 	} while (syslog_seq != seq);
1640 
1641 	/*
1642 	 * Copy records that fit into the buffer. The above cycle makes sure
1643 	 * that the first record is always available.
1644 	 */
1645 	do {
1646 		size_t n;
1647 		size_t skip;
1648 		int err;
1649 
1650 		if (!prb_read_valid(prb, syslog_seq, &r))
1651 			break;
1652 
1653 		if (r.info->seq != syslog_seq) {
1654 			/* message is gone, move to next valid one */
1655 			syslog_seq = r.info->seq;
1656 			syslog_partial = 0;
1657 		}
1658 
1659 		/*
1660 		 * To keep reading/counting partial line consistent,
1661 		 * use printk_time value as of the beginning of a line.
1662 		 */
1663 		if (!syslog_partial)
1664 			syslog_time = printk_time;
1665 
1666 		skip = syslog_partial;
1667 		n = record_print_text(&r, true, syslog_time);
1668 		if (n - syslog_partial <= size) {
1669 			/* message fits into buffer, move forward */
1670 			syslog_seq = r.info->seq + 1;
1671 			n -= syslog_partial;
1672 			syslog_partial = 0;
1673 		} else if (!len){
1674 			/* partial read(), remember position */
1675 			n = size;
1676 			syslog_partial += n;
1677 		} else
1678 			n = 0;
1679 
1680 		if (!n)
1681 			break;
1682 
1683 		mutex_unlock(&syslog_lock);
1684 		err = copy_to_user(buf, text + skip, n);
1685 		mutex_lock(&syslog_lock);
1686 
1687 		if (err) {
1688 			if (!len)
1689 				len = -EFAULT;
1690 			break;
1691 		}
1692 
1693 		len += n;
1694 		size -= n;
1695 		buf += n;
1696 	} while (size);
1697 out:
1698 	mutex_unlock(&syslog_lock);
1699 	kfree(text);
1700 	return len;
1701 }
1702 
syslog_print_all(char __user * buf,int size,bool clear)1703 static int syslog_print_all(char __user *buf, int size, bool clear)
1704 {
1705 	struct printk_info info;
1706 	struct printk_record r;
1707 	char *text;
1708 	int len = 0;
1709 	u64 seq;
1710 	bool time;
1711 
1712 	text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1713 	if (!text)
1714 		return -ENOMEM;
1715 
1716 	time = printk_time;
1717 	/*
1718 	 * Find first record that fits, including all following records,
1719 	 * into the user-provided buffer for this dump.
1720 	 */
1721 	seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
1722 				     size, true, time);
1723 
1724 	prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1725 
1726 	prb_for_each_record(seq, prb, seq, &r) {
1727 		int textlen;
1728 
1729 		textlen = record_print_text(&r, true, time);
1730 
1731 		if (len + textlen > size) {
1732 			seq--;
1733 			break;
1734 		}
1735 
1736 		if (copy_to_user(buf + len, text, textlen))
1737 			len = -EFAULT;
1738 		else
1739 			len += textlen;
1740 
1741 		if (len < 0)
1742 			break;
1743 	}
1744 
1745 	if (clear) {
1746 		mutex_lock(&syslog_lock);
1747 		latched_seq_write(&clear_seq, seq);
1748 		mutex_unlock(&syslog_lock);
1749 	}
1750 
1751 	kfree(text);
1752 	return len;
1753 }
1754 
syslog_clear(void)1755 static void syslog_clear(void)
1756 {
1757 	mutex_lock(&syslog_lock);
1758 	latched_seq_write(&clear_seq, prb_next_seq(prb));
1759 	mutex_unlock(&syslog_lock);
1760 }
1761 
do_syslog(int type,char __user * buf,int len,int source)1762 int do_syslog(int type, char __user *buf, int len, int source)
1763 {
1764 	struct printk_info info;
1765 	bool clear = false;
1766 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1767 	int error;
1768 
1769 	error = check_syslog_permissions(type, source);
1770 	if (error)
1771 		return error;
1772 
1773 	switch (type) {
1774 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1775 		break;
1776 	case SYSLOG_ACTION_OPEN:	/* Open log */
1777 		break;
1778 	case SYSLOG_ACTION_READ:	/* Read from log */
1779 		if (!buf || len < 0)
1780 			return -EINVAL;
1781 		if (!len)
1782 			return 0;
1783 		if (!access_ok(buf, len))
1784 			return -EFAULT;
1785 		error = syslog_print(buf, len);
1786 		break;
1787 	/* Read/clear last kernel messages */
1788 	case SYSLOG_ACTION_READ_CLEAR:
1789 		clear = true;
1790 		fallthrough;
1791 	/* Read last kernel messages */
1792 	case SYSLOG_ACTION_READ_ALL:
1793 		if (!buf || len < 0)
1794 			return -EINVAL;
1795 		if (!len)
1796 			return 0;
1797 		if (!access_ok(buf, len))
1798 			return -EFAULT;
1799 		error = syslog_print_all(buf, len, clear);
1800 		break;
1801 	/* Clear ring buffer */
1802 	case SYSLOG_ACTION_CLEAR:
1803 		syslog_clear();
1804 		break;
1805 	/* Disable logging to console */
1806 	case SYSLOG_ACTION_CONSOLE_OFF:
1807 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1808 			saved_console_loglevel = console_loglevel;
1809 		console_loglevel = minimum_console_loglevel;
1810 		break;
1811 	/* Enable logging to console */
1812 	case SYSLOG_ACTION_CONSOLE_ON:
1813 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1814 			console_loglevel = saved_console_loglevel;
1815 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1816 		}
1817 		break;
1818 	/* Set level of messages printed to console */
1819 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1820 		if (len < 1 || len > 8)
1821 			return -EINVAL;
1822 		if (len < minimum_console_loglevel)
1823 			len = minimum_console_loglevel;
1824 		console_loglevel = len;
1825 		/* Implicitly re-enable logging to console */
1826 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1827 		break;
1828 	/* Number of chars in the log buffer */
1829 	case SYSLOG_ACTION_SIZE_UNREAD:
1830 		mutex_lock(&syslog_lock);
1831 		if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
1832 			/* No unread messages. */
1833 			mutex_unlock(&syslog_lock);
1834 			return 0;
1835 		}
1836 		if (info.seq != syslog_seq) {
1837 			/* messages are gone, move to first one */
1838 			syslog_seq = info.seq;
1839 			syslog_partial = 0;
1840 		}
1841 		if (source == SYSLOG_FROM_PROC) {
1842 			/*
1843 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1844 			 * for pending data, not the size; return the count of
1845 			 * records, not the length.
1846 			 */
1847 			error = prb_next_seq(prb) - syslog_seq;
1848 		} else {
1849 			bool time = syslog_partial ? syslog_time : printk_time;
1850 			unsigned int line_count;
1851 			u64 seq;
1852 
1853 			prb_for_each_info(syslog_seq, prb, seq, &info,
1854 					  &line_count) {
1855 				error += get_record_print_text_size(&info, line_count,
1856 								    true, time);
1857 				time = printk_time;
1858 			}
1859 			error -= syslog_partial;
1860 		}
1861 		mutex_unlock(&syslog_lock);
1862 		break;
1863 	/* Size of the log buffer */
1864 	case SYSLOG_ACTION_SIZE_BUFFER:
1865 		error = log_buf_len;
1866 		break;
1867 	default:
1868 		error = -EINVAL;
1869 		break;
1870 	}
1871 
1872 	return error;
1873 }
1874 
SYSCALL_DEFINE3(syslog,int,type,char __user *,buf,int,len)1875 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1876 {
1877 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1878 }
1879 
1880 /*
1881  * Special console_lock variants that help to reduce the risk of soft-lockups.
1882  * They allow to pass console_lock to another printk() call using a busy wait.
1883  */
1884 
1885 #ifdef CONFIG_LOCKDEP
1886 static struct lockdep_map console_owner_dep_map = {
1887 	.name = "console_owner"
1888 };
1889 #endif
1890 
1891 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1892 static struct task_struct *console_owner;
1893 static bool console_waiter;
1894 
1895 /**
1896  * console_lock_spinning_enable - mark beginning of code where another
1897  *	thread might safely busy wait
1898  *
1899  * This basically converts console_lock into a spinlock. This marks
1900  * the section where the console_lock owner can not sleep, because
1901  * there may be a waiter spinning (like a spinlock). Also it must be
1902  * ready to hand over the lock at the end of the section.
1903  */
console_lock_spinning_enable(void)1904 void console_lock_spinning_enable(void)
1905 {
1906 	/*
1907 	 * Do not use spinning in panic(). The panic CPU wants to keep the lock.
1908 	 * Non-panic CPUs abandon the flush anyway.
1909 	 *
1910 	 * Just keep the lockdep annotation. The panic-CPU should avoid
1911 	 * taking console_owner_lock because it might cause a deadlock.
1912 	 * This looks like the easiest way how to prevent false lockdep
1913 	 * reports without handling races a lockless way.
1914 	 */
1915 	if (panic_in_progress())
1916 		goto lockdep;
1917 
1918 	raw_spin_lock(&console_owner_lock);
1919 	console_owner = current;
1920 	raw_spin_unlock(&console_owner_lock);
1921 
1922 lockdep:
1923 	/* The waiter may spin on us after setting console_owner */
1924 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1925 }
1926 
1927 /**
1928  * console_lock_spinning_disable_and_check - mark end of code where another
1929  *	thread was able to busy wait and check if there is a waiter
1930  * @cookie: cookie returned from console_srcu_read_lock()
1931  *
1932  * This is called at the end of the section where spinning is allowed.
1933  * It has two functions. First, it is a signal that it is no longer
1934  * safe to start busy waiting for the lock. Second, it checks if
1935  * there is a busy waiter and passes the lock rights to her.
1936  *
1937  * Important: Callers lose both the console_lock and the SRCU read lock if
1938  *	there was a busy waiter. They must not touch items synchronized by
1939  *	console_lock or SRCU read lock in this case.
1940  *
1941  * Return: 1 if the lock rights were passed, 0 otherwise.
1942  */
console_lock_spinning_disable_and_check(int cookie)1943 int console_lock_spinning_disable_and_check(int cookie)
1944 {
1945 	int waiter;
1946 
1947 	/*
1948 	 * Ignore spinning waiters during panic() because they might get stopped
1949 	 * or blocked at any time,
1950 	 *
1951 	 * It is safe because nobody is allowed to start spinning during panic
1952 	 * in the first place. If there has been a waiter then non panic CPUs
1953 	 * might stay spinning. They would get stopped anyway. The panic context
1954 	 * will never start spinning and an interrupted spin on panic CPU will
1955 	 * never continue.
1956 	 */
1957 	if (panic_in_progress()) {
1958 		/* Keep lockdep happy. */
1959 		spin_release(&console_owner_dep_map, _THIS_IP_);
1960 		return 0;
1961 	}
1962 
1963 	raw_spin_lock(&console_owner_lock);
1964 	waiter = READ_ONCE(console_waiter);
1965 	console_owner = NULL;
1966 	raw_spin_unlock(&console_owner_lock);
1967 
1968 	if (!waiter) {
1969 		spin_release(&console_owner_dep_map, _THIS_IP_);
1970 		return 0;
1971 	}
1972 
1973 	/* The waiter is now free to continue */
1974 	WRITE_ONCE(console_waiter, false);
1975 
1976 	spin_release(&console_owner_dep_map, _THIS_IP_);
1977 
1978 	/*
1979 	 * Preserve lockdep lock ordering. Release the SRCU read lock before
1980 	 * releasing the console_lock.
1981 	 */
1982 	console_srcu_read_unlock(cookie);
1983 
1984 	/*
1985 	 * Hand off console_lock to waiter. The waiter will perform
1986 	 * the up(). After this, the waiter is the console_lock owner.
1987 	 */
1988 	mutex_release(&console_lock_dep_map, _THIS_IP_);
1989 	return 1;
1990 }
1991 
1992 /**
1993  * console_trylock_spinning - try to get console_lock by busy waiting
1994  *
1995  * This allows to busy wait for the console_lock when the current
1996  * owner is running in specially marked sections. It means that
1997  * the current owner is running and cannot reschedule until it
1998  * is ready to lose the lock.
1999  *
2000  * Return: 1 if we got the lock, 0 othrewise
2001  */
console_trylock_spinning(void)2002 static int console_trylock_spinning(void)
2003 {
2004 	struct task_struct *owner = NULL;
2005 	bool waiter;
2006 	bool spin = false;
2007 	unsigned long flags;
2008 
2009 	if (console_trylock())
2010 		return 1;
2011 
2012 	/*
2013 	 * It's unsafe to spin once a panic has begun. If we are the
2014 	 * panic CPU, we may have already halted the owner of the
2015 	 * console_sem. If we are not the panic CPU, then we should
2016 	 * avoid taking console_sem, so the panic CPU has a better
2017 	 * chance of cleanly acquiring it later.
2018 	 */
2019 	if (panic_in_progress())
2020 		return 0;
2021 
2022 	printk_safe_enter_irqsave(flags);
2023 
2024 	raw_spin_lock(&console_owner_lock);
2025 	owner = READ_ONCE(console_owner);
2026 	waiter = READ_ONCE(console_waiter);
2027 	if (!waiter && owner && owner != current) {
2028 		WRITE_ONCE(console_waiter, true);
2029 		spin = true;
2030 	}
2031 	raw_spin_unlock(&console_owner_lock);
2032 
2033 	/*
2034 	 * If there is an active printk() writing to the
2035 	 * consoles, instead of having it write our data too,
2036 	 * see if we can offload that load from the active
2037 	 * printer, and do some printing ourselves.
2038 	 * Go into a spin only if there isn't already a waiter
2039 	 * spinning, and there is an active printer, and
2040 	 * that active printer isn't us (recursive printk?).
2041 	 */
2042 	if (!spin) {
2043 		printk_safe_exit_irqrestore(flags);
2044 		return 0;
2045 	}
2046 
2047 	/* We spin waiting for the owner to release us */
2048 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
2049 	/* Owner will clear console_waiter on hand off */
2050 	while (READ_ONCE(console_waiter))
2051 		cpu_relax();
2052 	spin_release(&console_owner_dep_map, _THIS_IP_);
2053 
2054 	printk_safe_exit_irqrestore(flags);
2055 	/*
2056 	 * The owner passed the console lock to us.
2057 	 * Since we did not spin on console lock, annotate
2058 	 * this as a trylock. Otherwise lockdep will
2059 	 * complain.
2060 	 */
2061 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
2062 
2063 	/*
2064 	 * Update @console_may_schedule for trylock because the previous
2065 	 * owner may have been schedulable.
2066 	 */
2067 	console_may_schedule = 0;
2068 
2069 	return 1;
2070 }
2071 
2072 /*
2073  * Recursion is tracked separately on each CPU. If NMIs are supported, an
2074  * additional NMI context per CPU is also separately tracked. Until per-CPU
2075  * is available, a separate "early tracking" is performed.
2076  */
2077 static DEFINE_PER_CPU(u8, printk_count);
2078 static u8 printk_count_early;
2079 #ifdef CONFIG_HAVE_NMI
2080 static DEFINE_PER_CPU(u8, printk_count_nmi);
2081 static u8 printk_count_nmi_early;
2082 #endif
2083 
2084 /*
2085  * Recursion is limited to keep the output sane. printk() should not require
2086  * more than 1 level of recursion (allowing, for example, printk() to trigger
2087  * a WARN), but a higher value is used in case some printk-internal errors
2088  * exist, such as the ringbuffer validation checks failing.
2089  */
2090 #define PRINTK_MAX_RECURSION 3
2091 
2092 /*
2093  * Return a pointer to the dedicated counter for the CPU+context of the
2094  * caller.
2095  */
__printk_recursion_counter(void)2096 static u8 *__printk_recursion_counter(void)
2097 {
2098 #ifdef CONFIG_HAVE_NMI
2099 	if (in_nmi()) {
2100 		if (printk_percpu_data_ready())
2101 			return this_cpu_ptr(&printk_count_nmi);
2102 		return &printk_count_nmi_early;
2103 	}
2104 #endif
2105 	if (printk_percpu_data_ready())
2106 		return this_cpu_ptr(&printk_count);
2107 	return &printk_count_early;
2108 }
2109 
2110 /*
2111  * Enter recursion tracking. Interrupts are disabled to simplify tracking.
2112  * The caller must check the boolean return value to see if the recursion is
2113  * allowed. On failure, interrupts are not disabled.
2114  *
2115  * @recursion_ptr must be a variable of type (u8 *) and is the same variable
2116  * that is passed to printk_exit_irqrestore().
2117  */
2118 #define printk_enter_irqsave(recursion_ptr, flags)	\
2119 ({							\
2120 	bool success = true;				\
2121 							\
2122 	typecheck(u8 *, recursion_ptr);			\
2123 	local_irq_save(flags);				\
2124 	(recursion_ptr) = __printk_recursion_counter();	\
2125 	if (*(recursion_ptr) > PRINTK_MAX_RECURSION) {	\
2126 		local_irq_restore(flags);		\
2127 		success = false;			\
2128 	} else {					\
2129 		(*(recursion_ptr))++;			\
2130 	}						\
2131 	success;					\
2132 })
2133 
2134 /* Exit recursion tracking, restoring interrupts. */
2135 #define printk_exit_irqrestore(recursion_ptr, flags)	\
2136 	do {						\
2137 		typecheck(u8 *, recursion_ptr);		\
2138 		(*(recursion_ptr))--;			\
2139 		local_irq_restore(flags);		\
2140 	} while (0)
2141 
2142 int printk_delay_msec __read_mostly;
2143 
printk_delay(int level)2144 static inline void printk_delay(int level)
2145 {
2146 	boot_delay_msec(level);
2147 
2148 	if (unlikely(printk_delay_msec)) {
2149 		int m = printk_delay_msec;
2150 
2151 		while (m--) {
2152 			mdelay(1);
2153 			touch_nmi_watchdog();
2154 		}
2155 	}
2156 }
2157 
printk_caller_id(void)2158 static inline u32 printk_caller_id(void)
2159 {
2160 	return in_task() ? task_pid_nr(current) :
2161 		0x80000000 + smp_processor_id();
2162 }
2163 
2164 /**
2165  * printk_parse_prefix - Parse level and control flags.
2166  *
2167  * @text:     The terminated text message.
2168  * @level:    A pointer to the current level value, will be updated.
2169  * @flags:    A pointer to the current printk_info flags, will be updated.
2170  *
2171  * @level may be NULL if the caller is not interested in the parsed value.
2172  * Otherwise the variable pointed to by @level must be set to
2173  * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
2174  *
2175  * @flags may be NULL if the caller is not interested in the parsed value.
2176  * Otherwise the variable pointed to by @flags will be OR'd with the parsed
2177  * value.
2178  *
2179  * Return: The length of the parsed level and control flags.
2180  */
printk_parse_prefix(const char * text,int * level,enum printk_info_flags * flags)2181 u16 printk_parse_prefix(const char *text, int *level,
2182 			enum printk_info_flags *flags)
2183 {
2184 	u16 prefix_len = 0;
2185 	int kern_level;
2186 
2187 	while (*text) {
2188 		kern_level = printk_get_level(text);
2189 		if (!kern_level)
2190 			break;
2191 
2192 		switch (kern_level) {
2193 		case '0' ... '7':
2194 			if (level && *level == LOGLEVEL_DEFAULT)
2195 				*level = kern_level - '0';
2196 			break;
2197 		case 'c':	/* KERN_CONT */
2198 			if (flags)
2199 				*flags |= LOG_CONT;
2200 		}
2201 
2202 		prefix_len += 2;
2203 		text += 2;
2204 	}
2205 
2206 	return prefix_len;
2207 }
2208 
2209 __printf(5, 0)
printk_sprint(char * text,u16 size,int facility,enum printk_info_flags * flags,const char * fmt,va_list args)2210 static u16 printk_sprint(char *text, u16 size, int facility,
2211 			 enum printk_info_flags *flags, const char *fmt,
2212 			 va_list args)
2213 {
2214 	u16 text_len;
2215 
2216 	text_len = vscnprintf(text, size, fmt, args);
2217 
2218 	/* Mark and strip a trailing newline. */
2219 	if (text_len && text[text_len - 1] == '\n') {
2220 		text_len--;
2221 		*flags |= LOG_NEWLINE;
2222 	}
2223 
2224 	/* Strip log level and control flags. */
2225 	if (facility == 0) {
2226 		u16 prefix_len;
2227 
2228 		prefix_len = printk_parse_prefix(text, NULL, NULL);
2229 		if (prefix_len) {
2230 			text_len -= prefix_len;
2231 			memmove(text, text + prefix_len, text_len);
2232 		}
2233 	}
2234 
2235 	trace_console(text, text_len);
2236 
2237 	return text_len;
2238 }
2239 
2240 __printf(4, 0)
vprintk_store(int facility,int level,const struct dev_printk_info * dev_info,const char * fmt,va_list args)2241 int vprintk_store(int facility, int level,
2242 		  const struct dev_printk_info *dev_info,
2243 		  const char *fmt, va_list args)
2244 {
2245 	struct prb_reserved_entry e;
2246 	enum printk_info_flags flags = 0;
2247 	struct printk_record r;
2248 	unsigned long irqflags;
2249 	u16 trunc_msg_len = 0;
2250 	char prefix_buf[8];
2251 	u8 *recursion_ptr;
2252 	u16 reserve_size;
2253 	va_list args2;
2254 	u32 caller_id;
2255 	u16 text_len;
2256 	int ret = 0;
2257 	u64 ts_nsec;
2258 
2259 	if (!printk_enter_irqsave(recursion_ptr, irqflags))
2260 		return 0;
2261 
2262 	/*
2263 	 * Since the duration of printk() can vary depending on the message
2264 	 * and state of the ringbuffer, grab the timestamp now so that it is
2265 	 * close to the call of printk(). This provides a more deterministic
2266 	 * timestamp with respect to the caller.
2267 	 */
2268 	ts_nsec = local_clock();
2269 
2270 	caller_id = printk_caller_id();
2271 
2272 	/*
2273 	 * The sprintf needs to come first since the syslog prefix might be
2274 	 * passed in as a parameter. An extra byte must be reserved so that
2275 	 * later the vscnprintf() into the reserved buffer has room for the
2276 	 * terminating '\0', which is not counted by vsnprintf().
2277 	 */
2278 	va_copy(args2, args);
2279 	reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
2280 	va_end(args2);
2281 
2282 	if (reserve_size > PRINTKRB_RECORD_MAX)
2283 		reserve_size = PRINTKRB_RECORD_MAX;
2284 
2285 	/* Extract log level or control flags. */
2286 	if (facility == 0)
2287 		printk_parse_prefix(&prefix_buf[0], &level, &flags);
2288 
2289 	if (level == LOGLEVEL_DEFAULT)
2290 		level = default_message_loglevel;
2291 
2292 	if (dev_info)
2293 		flags |= LOG_NEWLINE;
2294 
2295 	if (is_printk_force_console())
2296 		flags |= LOG_FORCE_CON;
2297 
2298 	if (flags & LOG_CONT) {
2299 		prb_rec_init_wr(&r, reserve_size);
2300 		if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) {
2301 			text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
2302 						 facility, &flags, fmt, args);
2303 			r.info->text_len += text_len;
2304 
2305 			if (flags & LOG_FORCE_CON)
2306 				r.info->flags |= LOG_FORCE_CON;
2307 
2308 			if (flags & LOG_NEWLINE) {
2309 				r.info->flags |= LOG_NEWLINE;
2310 				prb_final_commit(&e);
2311 			} else {
2312 				prb_commit(&e);
2313 			}
2314 
2315 			ret = text_len;
2316 			goto out;
2317 		}
2318 	}
2319 
2320 	/*
2321 	 * Explicitly initialize the record before every prb_reserve() call.
2322 	 * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2323 	 * structure when they fail.
2324 	 */
2325 	prb_rec_init_wr(&r, reserve_size);
2326 	if (!prb_reserve(&e, prb, &r)) {
2327 		/* truncate the message if it is too long for empty buffer */
2328 		truncate_msg(&reserve_size, &trunc_msg_len);
2329 
2330 		prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2331 		if (!prb_reserve(&e, prb, &r))
2332 			goto out;
2333 	}
2334 
2335 	/* fill message */
2336 	text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args);
2337 	if (trunc_msg_len)
2338 		memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2339 	r.info->text_len = text_len + trunc_msg_len;
2340 	r.info->facility = facility;
2341 	r.info->level = level & 7;
2342 	r.info->flags = flags & 0x1f;
2343 	r.info->ts_nsec = ts_nsec;
2344 	r.info->caller_id = caller_id;
2345 	if (dev_info)
2346 		memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2347 
2348 	/* A message without a trailing newline can be continued. */
2349 	if (!(flags & LOG_NEWLINE))
2350 		prb_commit(&e);
2351 	else
2352 		prb_final_commit(&e);
2353 
2354 	ret = text_len + trunc_msg_len;
2355 out:
2356 	printk_exit_irqrestore(recursion_ptr, irqflags);
2357 	return ret;
2358 }
2359 
2360 /*
2361  * This acts as a one-way switch to allow legacy consoles to print from
2362  * the printk() caller context on a panic CPU. It also attempts to flush
2363  * the legacy consoles in this context.
2364  */
printk_legacy_allow_panic_sync(void)2365 void printk_legacy_allow_panic_sync(void)
2366 {
2367 	struct console_flush_type ft;
2368 
2369 	legacy_allow_panic_sync = true;
2370 
2371 	printk_get_console_flush_type(&ft);
2372 	if (ft.legacy_direct) {
2373 		if (console_trylock())
2374 			console_unlock();
2375 	}
2376 }
2377 
2378 bool __read_mostly debug_non_panic_cpus;
2379 
2380 #ifdef CONFIG_PRINTK_CALLER
debug_non_panic_cpus_setup(char * str)2381 static int __init debug_non_panic_cpus_setup(char *str)
2382 {
2383 	debug_non_panic_cpus = true;
2384 	pr_info("allow messages from non-panic CPUs in panic()\n");
2385 
2386 	return 0;
2387 }
2388 early_param("debug_non_panic_cpus", debug_non_panic_cpus_setup);
2389 module_param(debug_non_panic_cpus, bool, 0644);
2390 MODULE_PARM_DESC(debug_non_panic_cpus,
2391 		 "allow messages from non-panic CPUs in panic()");
2392 #endif
2393 
vprintk_emit(int facility,int level,const struct dev_printk_info * dev_info,const char * fmt,va_list args)2394 asmlinkage int vprintk_emit(int facility, int level,
2395 			    const struct dev_printk_info *dev_info,
2396 			    const char *fmt, va_list args)
2397 {
2398 	struct console_flush_type ft;
2399 	int printed_len;
2400 
2401 	/* Suppress unimportant messages after panic happens */
2402 	if (unlikely(suppress_printk))
2403 		return 0;
2404 
2405 	/*
2406 	 * The messages on the panic CPU are the most important. If
2407 	 * non-panic CPUs are generating any messages, they will be
2408 	 * silently dropped.
2409 	 */
2410 	if (other_cpu_in_panic() &&
2411 	    !debug_non_panic_cpus &&
2412 	    !panic_triggering_all_cpu_backtrace)
2413 		return 0;
2414 
2415 	printk_get_console_flush_type(&ft);
2416 
2417 	/* If called from the scheduler, we can not call up(). */
2418 	if (level == LOGLEVEL_SCHED) {
2419 		level = LOGLEVEL_DEFAULT;
2420 		ft.legacy_offload |= ft.legacy_direct;
2421 		ft.legacy_direct = false;
2422 	}
2423 
2424 	printk_delay(level);
2425 
2426 	printed_len = vprintk_store(facility, level, dev_info, fmt, args);
2427 
2428 	if (ft.nbcon_atomic)
2429 		nbcon_atomic_flush_pending();
2430 
2431 	if (ft.nbcon_offload)
2432 		nbcon_kthreads_wake();
2433 
2434 	if (ft.legacy_direct) {
2435 		/*
2436 		 * The caller may be holding system-critical or
2437 		 * timing-sensitive locks. Disable preemption during
2438 		 * printing of all remaining records to all consoles so that
2439 		 * this context can return as soon as possible. Hopefully
2440 		 * another printk() caller will take over the printing.
2441 		 */
2442 		preempt_disable();
2443 		/*
2444 		 * Try to acquire and then immediately release the console
2445 		 * semaphore. The release will print out buffers. With the
2446 		 * spinning variant, this context tries to take over the
2447 		 * printing from another printing context.
2448 		 */
2449 		if (console_trylock_spinning())
2450 			console_unlock();
2451 		preempt_enable();
2452 	}
2453 
2454 	if (ft.legacy_offload)
2455 		defer_console_output();
2456 	else
2457 		wake_up_klogd();
2458 
2459 	return printed_len;
2460 }
2461 EXPORT_SYMBOL(vprintk_emit);
2462 
vprintk_default(const char * fmt,va_list args)2463 int vprintk_default(const char *fmt, va_list args)
2464 {
2465 	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
2466 }
2467 EXPORT_SYMBOL_GPL(vprintk_default);
2468 
_printk(const char * fmt,...)2469 asmlinkage __visible int _printk(const char *fmt, ...)
2470 {
2471 	va_list args;
2472 	int r;
2473 
2474 	va_start(args, fmt);
2475 	r = vprintk(fmt, args);
2476 	va_end(args);
2477 
2478 	return r;
2479 }
2480 EXPORT_SYMBOL(_printk);
2481 
2482 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress);
2483 
2484 #else /* CONFIG_PRINTK */
2485 
2486 #define printk_time		false
2487 
2488 #define prb_read_valid(rb, seq, r)	false
2489 #define prb_first_valid_seq(rb)		0
2490 #define prb_next_seq(rb)		0
2491 
2492 static u64 syslog_seq;
2493 
__pr_flush(struct console * con,int timeout_ms,bool reset_on_progress)2494 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; }
2495 
2496 #endif /* CONFIG_PRINTK */
2497 
2498 #ifdef CONFIG_EARLY_PRINTK
2499 struct console *early_console;
2500 
early_printk(const char * fmt,...)2501 asmlinkage __visible void early_printk(const char *fmt, ...)
2502 {
2503 	va_list ap;
2504 	char buf[512];
2505 	int n;
2506 
2507 	if (!early_console)
2508 		return;
2509 
2510 	va_start(ap, fmt);
2511 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2512 	va_end(ap);
2513 
2514 	early_console->write(early_console, buf, n);
2515 }
2516 #endif
2517 
set_user_specified(struct console_cmdline * c,bool user_specified)2518 static void set_user_specified(struct console_cmdline *c, bool user_specified)
2519 {
2520 	if (!user_specified)
2521 		return;
2522 
2523 	/*
2524 	 * @c console was defined by the user on the command line.
2525 	 * Do not clear when added twice also by SPCR or the device tree.
2526 	 */
2527 	c->user_specified = true;
2528 	/* At least one console defined by the user on the command line. */
2529 	console_set_on_cmdline = 1;
2530 }
2531 
__add_preferred_console(const char * name,const short idx,const char * devname,char * options,char * brl_options,bool user_specified)2532 static int __add_preferred_console(const char *name, const short idx,
2533 				   const char *devname, char *options,
2534 				   char *brl_options, bool user_specified)
2535 {
2536 	struct console_cmdline *c;
2537 	int i;
2538 
2539 	if (!name && !devname)
2540 		return -EINVAL;
2541 
2542 	/*
2543 	 * We use a signed short index for struct console for device drivers to
2544 	 * indicate a not yet assigned index or port. However, a negative index
2545 	 * value is not valid when the console name and index are defined on
2546 	 * the command line.
2547 	 */
2548 	if (name && idx < 0)
2549 		return -EINVAL;
2550 
2551 	/*
2552 	 *	See if this tty is not yet registered, and
2553 	 *	if we have a slot free.
2554 	 */
2555 	for (i = 0, c = console_cmdline;
2556 	     i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]);
2557 	     i++, c++) {
2558 		if ((name && strcmp(c->name, name) == 0 && c->index == idx) ||
2559 		    (devname && strcmp(c->devname, devname) == 0)) {
2560 			if (!brl_options)
2561 				preferred_console = i;
2562 			set_user_specified(c, user_specified);
2563 			return 0;
2564 		}
2565 	}
2566 	if (i == MAX_CMDLINECONSOLES)
2567 		return -E2BIG;
2568 	if (!brl_options)
2569 		preferred_console = i;
2570 	if (name)
2571 		strscpy(c->name, name);
2572 	if (devname)
2573 		strscpy(c->devname, devname);
2574 	c->options = options;
2575 	set_user_specified(c, user_specified);
2576 	braille_set_options(c, brl_options);
2577 
2578 	c->index = idx;
2579 	return 0;
2580 }
2581 
console_msg_format_setup(char * str)2582 static int __init console_msg_format_setup(char *str)
2583 {
2584 	if (!strcmp(str, "syslog"))
2585 		console_msg_format = MSG_FORMAT_SYSLOG;
2586 	if (!strcmp(str, "default"))
2587 		console_msg_format = MSG_FORMAT_DEFAULT;
2588 	return 1;
2589 }
2590 __setup("console_msg_format=", console_msg_format_setup);
2591 
2592 /*
2593  * Set up a console.  Called via do_early_param() in init/main.c
2594  * for each "console=" parameter in the boot command line.
2595  */
console_setup(char * str)2596 static int __init console_setup(char *str)
2597 {
2598 	static_assert(sizeof(console_cmdline[0].devname) >= sizeof(console_cmdline[0].name) + 4);
2599 	char buf[sizeof(console_cmdline[0].devname)];
2600 	char *brl_options = NULL;
2601 	char *ttyname = NULL;
2602 	char *devname = NULL;
2603 	char *options;
2604 	char *s;
2605 	int idx;
2606 
2607 	/*
2608 	 * console="" or console=null have been suggested as a way to
2609 	 * disable console output. Use ttynull that has been created
2610 	 * for exactly this purpose.
2611 	 */
2612 	if (str[0] == 0 || strcmp(str, "null") == 0) {
2613 		__add_preferred_console("ttynull", 0, NULL, NULL, NULL, true);
2614 		return 1;
2615 	}
2616 
2617 	if (_braille_console_setup(&str, &brl_options))
2618 		return 1;
2619 
2620 	/* For a DEVNAME:0.0 style console the character device is unknown early */
2621 	if (strchr(str, ':'))
2622 		devname = buf;
2623 	else
2624 		ttyname = buf;
2625 
2626 	/*
2627 	 * Decode str into name, index, options.
2628 	 */
2629 	if (ttyname && isdigit(str[0]))
2630 		scnprintf(buf, sizeof(buf), "ttyS%s", str);
2631 	else
2632 		strscpy(buf, str);
2633 
2634 	options = strchr(str, ',');
2635 	if (options)
2636 		*(options++) = 0;
2637 
2638 #ifdef __sparc__
2639 	if (!strcmp(str, "ttya"))
2640 		strscpy(buf, "ttyS0");
2641 	if (!strcmp(str, "ttyb"))
2642 		strscpy(buf, "ttyS1");
2643 #endif
2644 
2645 	for (s = buf; *s; s++)
2646 		if ((ttyname && isdigit(*s)) || *s == ',')
2647 			break;
2648 
2649 	/* @idx will get defined when devname matches. */
2650 	if (devname)
2651 		idx = -1;
2652 	else
2653 		idx = simple_strtoul(s, NULL, 10);
2654 
2655 	*s = 0;
2656 
2657 	__add_preferred_console(ttyname, idx, devname, options, brl_options, true);
2658 	return 1;
2659 }
2660 __setup("console=", console_setup);
2661 
2662 /**
2663  * add_preferred_console - add a device to the list of preferred consoles.
2664  * @name: device name
2665  * @idx: device index
2666  * @options: options for this console
2667  *
2668  * The last preferred console added will be used for kernel messages
2669  * and stdin/out/err for init.  Normally this is used by console_setup
2670  * above to handle user-supplied console arguments; however it can also
2671  * be used by arch-specific code either to override the user or more
2672  * commonly to provide a default console (ie from PROM variables) when
2673  * the user has not supplied one.
2674  */
add_preferred_console(const char * name,const short idx,char * options)2675 int add_preferred_console(const char *name, const short idx, char *options)
2676 {
2677 	return __add_preferred_console(name, idx, NULL, options, NULL, false);
2678 }
2679 
2680 /**
2681  * match_devname_and_update_preferred_console - Update a preferred console
2682  *	when matching devname is found.
2683  * @devname: DEVNAME:0.0 style device name
2684  * @name: Name of the corresponding console driver, e.g. "ttyS"
2685  * @idx: Console index, e.g. port number.
2686  *
2687  * The function checks whether a device with the given @devname is
2688  * preferred via the console=DEVNAME:0.0 command line option.
2689  * It fills the missing console driver name and console index
2690  * so that a later register_console() call could find (match)
2691  * and enable this device.
2692  *
2693  * It might be used when a driver subsystem initializes particular
2694  * devices with already known DEVNAME:0.0 style names. And it
2695  * could predict which console driver name and index this device
2696  * would later get associated with.
2697  *
2698  * Return: 0 on success, negative error code on failure.
2699  */
match_devname_and_update_preferred_console(const char * devname,const char * name,const short idx)2700 int match_devname_and_update_preferred_console(const char *devname,
2701 					       const char *name,
2702 					       const short idx)
2703 {
2704 	struct console_cmdline *c = console_cmdline;
2705 	int i;
2706 
2707 	if (!devname || !strlen(devname) || !name || !strlen(name) || idx < 0)
2708 		return -EINVAL;
2709 
2710 	for (i = 0; i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]);
2711 	     i++, c++) {
2712 		if (!strcmp(devname, c->devname)) {
2713 			pr_info("associate the preferred console \"%s\" with \"%s%d\"\n",
2714 				devname, name, idx);
2715 			strscpy(c->name, name);
2716 			c->index = idx;
2717 			return 0;
2718 		}
2719 	}
2720 
2721 	return -ENOENT;
2722 }
2723 EXPORT_SYMBOL_GPL(match_devname_and_update_preferred_console);
2724 
2725 bool console_suspend_enabled = true;
2726 EXPORT_SYMBOL(console_suspend_enabled);
2727 
console_suspend_disable(char * str)2728 static int __init console_suspend_disable(char *str)
2729 {
2730 	console_suspend_enabled = false;
2731 	return 1;
2732 }
2733 __setup("no_console_suspend", console_suspend_disable);
2734 module_param_named(console_suspend, console_suspend_enabled,
2735 		bool, S_IRUGO | S_IWUSR);
2736 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2737 	" and hibernate operations");
2738 
2739 static bool printk_console_no_auto_verbose;
2740 
console_verbose(void)2741 void console_verbose(void)
2742 {
2743 	if (console_loglevel && !printk_console_no_auto_verbose)
2744 		console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
2745 }
2746 EXPORT_SYMBOL_GPL(console_verbose);
2747 
2748 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644);
2749 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc");
2750 
2751 /**
2752  * console_suspend_all - suspend the console subsystem
2753  *
2754  * This disables printk() while we go into suspend states
2755  */
console_suspend_all(void)2756 void console_suspend_all(void)
2757 {
2758 	struct console *con;
2759 
2760 	if (!console_suspend_enabled)
2761 		return;
2762 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2763 	pr_flush(1000, true);
2764 
2765 	console_list_lock();
2766 	for_each_console(con)
2767 		console_srcu_write_flags(con, con->flags | CON_SUSPENDED);
2768 	console_list_unlock();
2769 
2770 	/*
2771 	 * Ensure that all SRCU list walks have completed. All printing
2772 	 * contexts must be able to see that they are suspended so that it
2773 	 * is guaranteed that all printing has stopped when this function
2774 	 * completes.
2775 	 */
2776 	synchronize_srcu(&console_srcu);
2777 }
2778 
console_resume_all(void)2779 void console_resume_all(void)
2780 {
2781 	struct console_flush_type ft;
2782 	struct console *con;
2783 
2784 	if (!console_suspend_enabled)
2785 		return;
2786 
2787 	console_list_lock();
2788 	for_each_console(con)
2789 		console_srcu_write_flags(con, con->flags & ~CON_SUSPENDED);
2790 	console_list_unlock();
2791 
2792 	/*
2793 	 * Ensure that all SRCU list walks have completed. All printing
2794 	 * contexts must be able to see they are no longer suspended so
2795 	 * that they are guaranteed to wake up and resume printing.
2796 	 */
2797 	synchronize_srcu(&console_srcu);
2798 
2799 	printk_get_console_flush_type(&ft);
2800 	if (ft.nbcon_offload)
2801 		nbcon_kthreads_wake();
2802 	if (ft.legacy_offload)
2803 		defer_console_output();
2804 
2805 	pr_flush(1000, true);
2806 }
2807 
2808 /**
2809  * console_cpu_notify - print deferred console messages after CPU hotplug
2810  * @cpu: unused
2811  *
2812  * If printk() is called from a CPU that is not online yet, the messages
2813  * will be printed on the console only if there are CON_ANYTIME consoles.
2814  * This function is called when a new CPU comes online (or fails to come
2815  * up) or goes offline.
2816  */
console_cpu_notify(unsigned int cpu)2817 static int console_cpu_notify(unsigned int cpu)
2818 {
2819 	struct console_flush_type ft;
2820 
2821 	if (!cpuhp_tasks_frozen) {
2822 		printk_get_console_flush_type(&ft);
2823 		if (ft.nbcon_atomic)
2824 			nbcon_atomic_flush_pending();
2825 		if (ft.legacy_direct) {
2826 			if (console_trylock())
2827 				console_unlock();
2828 		}
2829 	}
2830 	return 0;
2831 }
2832 
2833 /**
2834  * console_lock - block the console subsystem from printing
2835  *
2836  * Acquires a lock which guarantees that no consoles will
2837  * be in or enter their write() callback.
2838  *
2839  * Can sleep, returns nothing.
2840  */
console_lock(void)2841 void console_lock(void)
2842 {
2843 	might_sleep();
2844 
2845 	/* On panic, the console_lock must be left to the panic cpu. */
2846 	while (other_cpu_in_panic())
2847 		msleep(1000);
2848 
2849 	down_console_sem();
2850 	console_locked = 1;
2851 	console_may_schedule = 1;
2852 }
2853 EXPORT_SYMBOL(console_lock);
2854 
2855 /**
2856  * console_trylock - try to block the console subsystem from printing
2857  *
2858  * Try to acquire a lock which guarantees that no consoles will
2859  * be in or enter their write() callback.
2860  *
2861  * returns 1 on success, and 0 on failure to acquire the lock.
2862  */
console_trylock(void)2863 int console_trylock(void)
2864 {
2865 	/* On panic, the console_lock must be left to the panic cpu. */
2866 	if (other_cpu_in_panic())
2867 		return 0;
2868 	if (down_trylock_console_sem())
2869 		return 0;
2870 	console_locked = 1;
2871 	console_may_schedule = 0;
2872 	return 1;
2873 }
2874 EXPORT_SYMBOL(console_trylock);
2875 
is_console_locked(void)2876 int is_console_locked(void)
2877 {
2878 	return console_locked;
2879 }
2880 EXPORT_SYMBOL(is_console_locked);
2881 
__console_unlock(void)2882 static void __console_unlock(void)
2883 {
2884 	console_locked = 0;
2885 	up_console_sem();
2886 }
2887 
2888 #ifdef CONFIG_PRINTK
2889 
2890 /*
2891  * Prepend the message in @pmsg->pbufs->outbuf. This is achieved by shifting
2892  * the existing message over and inserting the scratchbuf message.
2893  *
2894  * @pmsg is the original printk message.
2895  * @fmt is the printf format of the message which will prepend the existing one.
2896  *
2897  * If there is not enough space in @pmsg->pbufs->outbuf, the existing
2898  * message text will be sufficiently truncated.
2899  *
2900  * If @pmsg->pbufs->outbuf is modified, @pmsg->outbuf_len is updated.
2901  */
2902 __printf(2, 3)
console_prepend_message(struct printk_message * pmsg,const char * fmt,...)2903 static void console_prepend_message(struct printk_message *pmsg, const char *fmt, ...)
2904 {
2905 	struct printk_buffers *pbufs = pmsg->pbufs;
2906 	const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2907 	const size_t outbuf_sz = sizeof(pbufs->outbuf);
2908 	char *scratchbuf = &pbufs->scratchbuf[0];
2909 	char *outbuf = &pbufs->outbuf[0];
2910 	va_list args;
2911 	size_t len;
2912 
2913 	va_start(args, fmt);
2914 	len = vscnprintf(scratchbuf, scratchbuf_sz, fmt, args);
2915 	va_end(args);
2916 
2917 	/*
2918 	 * Make sure outbuf is sufficiently large before prepending.
2919 	 * Keep at least the prefix when the message must be truncated.
2920 	 * It is a rather theoretical problem when someone tries to
2921 	 * use a minimalist buffer.
2922 	 */
2923 	if (WARN_ON_ONCE(len + PRINTK_PREFIX_MAX >= outbuf_sz))
2924 		return;
2925 
2926 	if (pmsg->outbuf_len + len >= outbuf_sz) {
2927 		/* Truncate the message, but keep it terminated. */
2928 		pmsg->outbuf_len = outbuf_sz - (len + 1);
2929 		outbuf[pmsg->outbuf_len] = 0;
2930 	}
2931 
2932 	memmove(outbuf + len, outbuf, pmsg->outbuf_len + 1);
2933 	memcpy(outbuf, scratchbuf, len);
2934 	pmsg->outbuf_len += len;
2935 }
2936 
2937 /*
2938  * Prepend the message in @pmsg->pbufs->outbuf with a "dropped message".
2939  * @pmsg->outbuf_len is updated appropriately.
2940  *
2941  * @pmsg is the printk message to prepend.
2942  *
2943  * @dropped is the dropped count to report in the dropped message.
2944  */
console_prepend_dropped(struct printk_message * pmsg,unsigned long dropped)2945 void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped)
2946 {
2947 	console_prepend_message(pmsg, "** %lu printk messages dropped **\n", dropped);
2948 }
2949 
2950 /*
2951  * Prepend the message in @pmsg->pbufs->outbuf with a "replay message".
2952  * @pmsg->outbuf_len is updated appropriately.
2953  *
2954  * @pmsg is the printk message to prepend.
2955  */
console_prepend_replay(struct printk_message * pmsg)2956 void console_prepend_replay(struct printk_message *pmsg)
2957 {
2958 	console_prepend_message(pmsg, "** replaying previous printk message **\n");
2959 }
2960 
2961 /*
2962  * Read and format the specified record (or a later record if the specified
2963  * record is not available).
2964  *
2965  * @pmsg will contain the formatted result. @pmsg->pbufs must point to a
2966  * struct printk_buffers.
2967  *
2968  * @seq is the record to read and format. If it is not available, the next
2969  * valid record is read.
2970  *
2971  * @is_extended specifies if the message should be formatted for extended
2972  * console output.
2973  *
2974  * @may_supress specifies if records may be skipped based on loglevel.
2975  *
2976  * Returns false if no record is available. Otherwise true and all fields
2977  * of @pmsg are valid. (See the documentation of struct printk_message
2978  * for information about the @pmsg fields.)
2979  */
printk_get_next_message(struct printk_message * pmsg,u64 seq,bool is_extended,bool may_suppress)2980 bool printk_get_next_message(struct printk_message *pmsg, u64 seq,
2981 			     bool is_extended, bool may_suppress)
2982 {
2983 	struct printk_buffers *pbufs = pmsg->pbufs;
2984 	const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2985 	const size_t outbuf_sz = sizeof(pbufs->outbuf);
2986 	char *scratchbuf = &pbufs->scratchbuf[0];
2987 	char *outbuf = &pbufs->outbuf[0];
2988 	struct printk_info info;
2989 	struct printk_record r;
2990 	size_t len = 0;
2991 	bool force_con;
2992 
2993 	/*
2994 	 * Formatting extended messages requires a separate buffer, so use the
2995 	 * scratch buffer to read in the ringbuffer text.
2996 	 *
2997 	 * Formatting normal messages is done in-place, so read the ringbuffer
2998 	 * text directly into the output buffer.
2999 	 */
3000 	if (is_extended)
3001 		prb_rec_init_rd(&r, &info, scratchbuf, scratchbuf_sz);
3002 	else
3003 		prb_rec_init_rd(&r, &info, outbuf, outbuf_sz);
3004 
3005 	if (!prb_read_valid(prb, seq, &r))
3006 		return false;
3007 
3008 	pmsg->seq = r.info->seq;
3009 	pmsg->dropped = r.info->seq - seq;
3010 	force_con = r.info->flags & LOG_FORCE_CON;
3011 
3012 	/*
3013 	 * Skip records that are not forced to be printed on consoles and that
3014 	 * has level above the console loglevel.
3015 	 */
3016 	if (!force_con && may_suppress && suppress_message_printing(r.info->level))
3017 		goto out;
3018 
3019 	if (is_extended) {
3020 		len = info_print_ext_header(outbuf, outbuf_sz, r.info);
3021 		len += msg_print_ext_body(outbuf + len, outbuf_sz - len,
3022 					  &r.text_buf[0], r.info->text_len, &r.info->dev_info);
3023 	} else {
3024 		len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time);
3025 	}
3026 out:
3027 	pmsg->outbuf_len = len;
3028 	return true;
3029 }
3030 
3031 /*
3032  * Legacy console printing from printk() caller context does not respect
3033  * raw_spinlock/spinlock nesting. For !PREEMPT_RT the lockdep warning is a
3034  * false positive. For PREEMPT_RT the false positive condition does not
3035  * occur.
3036  *
3037  * This map is used to temporarily establish LD_WAIT_SLEEP context for the
3038  * console write() callback when legacy printing to avoid false positive
3039  * lockdep complaints, thus allowing lockdep to continue to function for
3040  * real issues.
3041  */
3042 #ifdef CONFIG_PREEMPT_RT
printk_legacy_allow_spinlock_enter(void)3043 static inline void printk_legacy_allow_spinlock_enter(void) { }
printk_legacy_allow_spinlock_exit(void)3044 static inline void printk_legacy_allow_spinlock_exit(void) { }
3045 #else
3046 static DEFINE_WAIT_OVERRIDE_MAP(printk_legacy_map, LD_WAIT_SLEEP);
3047 
printk_legacy_allow_spinlock_enter(void)3048 static inline void printk_legacy_allow_spinlock_enter(void)
3049 {
3050 	lock_map_acquire_try(&printk_legacy_map);
3051 }
3052 
printk_legacy_allow_spinlock_exit(void)3053 static inline void printk_legacy_allow_spinlock_exit(void)
3054 {
3055 	lock_map_release(&printk_legacy_map);
3056 }
3057 #endif /* CONFIG_PREEMPT_RT */
3058 
3059 /*
3060  * Used as the printk buffers for non-panic, serialized console printing.
3061  * This is for legacy (!CON_NBCON) as well as all boot (CON_BOOT) consoles.
3062  * Its usage requires the console_lock held.
3063  */
3064 struct printk_buffers printk_shared_pbufs;
3065 
3066 /*
3067  * Print one record for the given console. The record printed is whatever
3068  * record is the next available record for the given console.
3069  *
3070  * @handover will be set to true if a printk waiter has taken over the
3071  * console_lock, in which case the caller is no longer holding both the
3072  * console_lock and the SRCU read lock. Otherwise it is set to false.
3073  *
3074  * @cookie is the cookie from the SRCU read lock.
3075  *
3076  * Returns false if the given console has no next record to print, otherwise
3077  * true.
3078  *
3079  * Requires the console_lock and the SRCU read lock.
3080  */
console_emit_next_record(struct console * con,bool * handover,int cookie)3081 static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
3082 {
3083 	bool is_extended = console_srcu_read_flags(con) & CON_EXTENDED;
3084 	char *outbuf = &printk_shared_pbufs.outbuf[0];
3085 	struct printk_message pmsg = {
3086 		.pbufs = &printk_shared_pbufs,
3087 	};
3088 	unsigned long flags;
3089 
3090 	*handover = false;
3091 
3092 	if (!printk_get_next_message(&pmsg, con->seq, is_extended, true))
3093 		return false;
3094 
3095 	con->dropped += pmsg.dropped;
3096 
3097 	/* Skip messages of formatted length 0. */
3098 	if (pmsg.outbuf_len == 0) {
3099 		con->seq = pmsg.seq + 1;
3100 		goto skip;
3101 	}
3102 
3103 	if (con->dropped && !is_extended) {
3104 		console_prepend_dropped(&pmsg, con->dropped);
3105 		con->dropped = 0;
3106 	}
3107 
3108 	/* Write everything out to the hardware. */
3109 
3110 	if (force_legacy_kthread() && !panic_in_progress()) {
3111 		/*
3112 		 * With forced threading this function is in a task context
3113 		 * (either legacy kthread or get_init_console_seq()). There
3114 		 * is no need for concern about printk reentrance, handovers,
3115 		 * or lockdep complaints.
3116 		 */
3117 
3118 		con->write(con, outbuf, pmsg.outbuf_len);
3119 		con->seq = pmsg.seq + 1;
3120 	} else {
3121 		/*
3122 		 * While actively printing out messages, if another printk()
3123 		 * were to occur on another CPU, it may wait for this one to
3124 		 * finish. This task can not be preempted if there is a
3125 		 * waiter waiting to take over.
3126 		 *
3127 		 * Interrupts are disabled because the hand over to a waiter
3128 		 * must not be interrupted until the hand over is completed
3129 		 * (@console_waiter is cleared).
3130 		 */
3131 		printk_safe_enter_irqsave(flags);
3132 		console_lock_spinning_enable();
3133 
3134 		/* Do not trace print latency. */
3135 		stop_critical_timings();
3136 
3137 		printk_legacy_allow_spinlock_enter();
3138 		con->write(con, outbuf, pmsg.outbuf_len);
3139 		printk_legacy_allow_spinlock_exit();
3140 
3141 		start_critical_timings();
3142 
3143 		con->seq = pmsg.seq + 1;
3144 
3145 		*handover = console_lock_spinning_disable_and_check(cookie);
3146 		printk_safe_exit_irqrestore(flags);
3147 	}
3148 skip:
3149 	return true;
3150 }
3151 
3152 #else
3153 
console_emit_next_record(struct console * con,bool * handover,int cookie)3154 static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
3155 {
3156 	*handover = false;
3157 	return false;
3158 }
3159 
printk_kthreads_check_locked(void)3160 static inline void printk_kthreads_check_locked(void) { }
3161 
3162 #endif /* CONFIG_PRINTK */
3163 
3164 /*
3165  * Print out all remaining records to all consoles.
3166  *
3167  * @do_cond_resched is set by the caller. It can be true only in schedulable
3168  * context.
3169  *
3170  * @next_seq is set to the sequence number after the last available record.
3171  * The value is valid only when this function returns true. It means that all
3172  * usable consoles are completely flushed.
3173  *
3174  * @handover will be set to true if a printk waiter has taken over the
3175  * console_lock, in which case the caller is no longer holding the
3176  * console_lock. Otherwise it is set to false.
3177  *
3178  * Returns true when there was at least one usable console and all messages
3179  * were flushed to all usable consoles. A returned false informs the caller
3180  * that everything was not flushed (either there were no usable consoles or
3181  * another context has taken over printing or it is a panic situation and this
3182  * is not the panic CPU). Regardless the reason, the caller should assume it
3183  * is not useful to immediately try again.
3184  *
3185  * Requires the console_lock.
3186  */
console_flush_all(bool do_cond_resched,u64 * next_seq,bool * handover)3187 static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover)
3188 {
3189 	struct console_flush_type ft;
3190 	bool any_usable = false;
3191 	struct console *con;
3192 	bool any_progress;
3193 	int cookie;
3194 
3195 	*next_seq = 0;
3196 	*handover = false;
3197 
3198 	do {
3199 		any_progress = false;
3200 
3201 		printk_get_console_flush_type(&ft);
3202 
3203 		cookie = console_srcu_read_lock();
3204 		for_each_console_srcu(con) {
3205 			short flags = console_srcu_read_flags(con);
3206 			u64 printk_seq;
3207 			bool progress;
3208 
3209 			/*
3210 			 * console_flush_all() is only responsible for nbcon
3211 			 * consoles when the nbcon consoles cannot print via
3212 			 * their atomic or threaded flushing.
3213 			 */
3214 			if ((flags & CON_NBCON) && (ft.nbcon_atomic || ft.nbcon_offload))
3215 				continue;
3216 
3217 			if (!console_is_usable(con, flags, !do_cond_resched))
3218 				continue;
3219 			any_usable = true;
3220 
3221 			if (flags & CON_NBCON) {
3222 				progress = nbcon_legacy_emit_next_record(con, handover, cookie,
3223 									 !do_cond_resched);
3224 				printk_seq = nbcon_seq_read(con);
3225 			} else {
3226 				progress = console_emit_next_record(con, handover, cookie);
3227 				printk_seq = con->seq;
3228 			}
3229 
3230 			/*
3231 			 * If a handover has occurred, the SRCU read lock
3232 			 * is already released.
3233 			 */
3234 			if (*handover)
3235 				return false;
3236 
3237 			/* Track the next of the highest seq flushed. */
3238 			if (printk_seq > *next_seq)
3239 				*next_seq = printk_seq;
3240 
3241 			if (!progress)
3242 				continue;
3243 			any_progress = true;
3244 
3245 			/* Allow panic_cpu to take over the consoles safely. */
3246 			if (other_cpu_in_panic())
3247 				goto abandon;
3248 
3249 			if (do_cond_resched)
3250 				cond_resched();
3251 		}
3252 		console_srcu_read_unlock(cookie);
3253 	} while (any_progress);
3254 
3255 	return any_usable;
3256 
3257 abandon:
3258 	console_srcu_read_unlock(cookie);
3259 	return false;
3260 }
3261 
__console_flush_and_unlock(void)3262 static void __console_flush_and_unlock(void)
3263 {
3264 	bool do_cond_resched;
3265 	bool handover;
3266 	bool flushed;
3267 	u64 next_seq;
3268 
3269 	/*
3270 	 * Console drivers are called with interrupts disabled, so
3271 	 * @console_may_schedule should be cleared before; however, we may
3272 	 * end up dumping a lot of lines, for example, if called from
3273 	 * console registration path, and should invoke cond_resched()
3274 	 * between lines if allowable.  Not doing so can cause a very long
3275 	 * scheduling stall on a slow console leading to RCU stall and
3276 	 * softlockup warnings which exacerbate the issue with more
3277 	 * messages practically incapacitating the system. Therefore, create
3278 	 * a local to use for the printing loop.
3279 	 */
3280 	do_cond_resched = console_may_schedule;
3281 
3282 	do {
3283 		console_may_schedule = 0;
3284 
3285 		flushed = console_flush_all(do_cond_resched, &next_seq, &handover);
3286 		if (!handover)
3287 			__console_unlock();
3288 
3289 		/*
3290 		 * Abort if there was a failure to flush all messages to all
3291 		 * usable consoles. Either it is not possible to flush (in
3292 		 * which case it would be an infinite loop of retrying) or
3293 		 * another context has taken over printing.
3294 		 */
3295 		if (!flushed)
3296 			break;
3297 
3298 		/*
3299 		 * Some context may have added new records after
3300 		 * console_flush_all() but before unlocking the console.
3301 		 * Re-check if there is a new record to flush. If the trylock
3302 		 * fails, another context is already handling the printing.
3303 		 */
3304 	} while (prb_read_valid(prb, next_seq, NULL) && console_trylock());
3305 }
3306 
3307 /**
3308  * console_unlock - unblock the legacy console subsystem from printing
3309  *
3310  * Releases the console_lock which the caller holds to block printing of
3311  * the legacy console subsystem.
3312  *
3313  * While the console_lock was held, console output may have been buffered
3314  * by printk(). If this is the case, console_unlock() emits the output on
3315  * legacy consoles prior to releasing the lock.
3316  *
3317  * console_unlock(); may be called from any context.
3318  */
console_unlock(void)3319 void console_unlock(void)
3320 {
3321 	struct console_flush_type ft;
3322 
3323 	printk_get_console_flush_type(&ft);
3324 	if (ft.legacy_direct)
3325 		__console_flush_and_unlock();
3326 	else
3327 		__console_unlock();
3328 }
3329 EXPORT_SYMBOL(console_unlock);
3330 
3331 /**
3332  * console_conditional_schedule - yield the CPU if required
3333  *
3334  * If the console code is currently allowed to sleep, and
3335  * if this CPU should yield the CPU to another task, do
3336  * so here.
3337  *
3338  * Must be called within console_lock();.
3339  */
console_conditional_schedule(void)3340 void __sched console_conditional_schedule(void)
3341 {
3342 	if (console_may_schedule)
3343 		cond_resched();
3344 }
3345 EXPORT_SYMBOL(console_conditional_schedule);
3346 
console_unblank(void)3347 void console_unblank(void)
3348 {
3349 	bool found_unblank = false;
3350 	struct console *c;
3351 	int cookie;
3352 
3353 	/*
3354 	 * First check if there are any consoles implementing the unblank()
3355 	 * callback. If not, there is no reason to continue and take the
3356 	 * console lock, which in particular can be dangerous if
3357 	 * @oops_in_progress is set.
3358 	 */
3359 	cookie = console_srcu_read_lock();
3360 	for_each_console_srcu(c) {
3361 		short flags = console_srcu_read_flags(c);
3362 
3363 		if (flags & CON_SUSPENDED)
3364 			continue;
3365 
3366 		if ((flags & CON_ENABLED) && c->unblank) {
3367 			found_unblank = true;
3368 			break;
3369 		}
3370 	}
3371 	console_srcu_read_unlock(cookie);
3372 	if (!found_unblank)
3373 		return;
3374 
3375 	/*
3376 	 * Stop console printing because the unblank() callback may
3377 	 * assume the console is not within its write() callback.
3378 	 *
3379 	 * If @oops_in_progress is set, this may be an atomic context.
3380 	 * In that case, attempt a trylock as best-effort.
3381 	 */
3382 	if (oops_in_progress) {
3383 		/* Semaphores are not NMI-safe. */
3384 		if (in_nmi())
3385 			return;
3386 
3387 		/*
3388 		 * Attempting to trylock the console lock can deadlock
3389 		 * if another CPU was stopped while modifying the
3390 		 * semaphore. "Hope and pray" that this is not the
3391 		 * current situation.
3392 		 */
3393 		if (down_trylock_console_sem() != 0)
3394 			return;
3395 	} else
3396 		console_lock();
3397 
3398 	console_locked = 1;
3399 	console_may_schedule = 0;
3400 
3401 	cookie = console_srcu_read_lock();
3402 	for_each_console_srcu(c) {
3403 		short flags = console_srcu_read_flags(c);
3404 
3405 		if (flags & CON_SUSPENDED)
3406 			continue;
3407 
3408 		if ((flags & CON_ENABLED) && c->unblank)
3409 			c->unblank();
3410 	}
3411 	console_srcu_read_unlock(cookie);
3412 
3413 	console_unlock();
3414 
3415 	if (!oops_in_progress)
3416 		pr_flush(1000, true);
3417 }
3418 
3419 /*
3420  * Rewind all consoles to the oldest available record.
3421  *
3422  * IMPORTANT: The function is safe only when called under
3423  *            console_lock(). It is not enforced because
3424  *            it is used as a best effort in panic().
3425  */
__console_rewind_all(void)3426 static void __console_rewind_all(void)
3427 {
3428 	struct console *c;
3429 	short flags;
3430 	int cookie;
3431 	u64 seq;
3432 
3433 	seq = prb_first_valid_seq(prb);
3434 
3435 	cookie = console_srcu_read_lock();
3436 	for_each_console_srcu(c) {
3437 		flags = console_srcu_read_flags(c);
3438 
3439 		if (flags & CON_NBCON) {
3440 			nbcon_seq_force(c, seq);
3441 		} else {
3442 			/*
3443 			 * This assignment is safe only when called under
3444 			 * console_lock(). On panic, legacy consoles are
3445 			 * only best effort.
3446 			 */
3447 			c->seq = seq;
3448 		}
3449 	}
3450 	console_srcu_read_unlock(cookie);
3451 }
3452 
3453 /**
3454  * console_flush_on_panic - flush console content on panic
3455  * @mode: flush all messages in buffer or just the pending ones
3456  *
3457  * Immediately output all pending messages no matter what.
3458  */
console_flush_on_panic(enum con_flush_mode mode)3459 void console_flush_on_panic(enum con_flush_mode mode)
3460 {
3461 	struct console_flush_type ft;
3462 	bool handover;
3463 	u64 next_seq;
3464 
3465 	/*
3466 	 * Ignore the console lock and flush out the messages. Attempting a
3467 	 * trylock would not be useful because:
3468 	 *
3469 	 *   - if it is contended, it must be ignored anyway
3470 	 *   - console_lock() and console_trylock() block and fail
3471 	 *     respectively in panic for non-panic CPUs
3472 	 *   - semaphores are not NMI-safe
3473 	 */
3474 
3475 	/*
3476 	 * If another context is holding the console lock,
3477 	 * @console_may_schedule might be set. Clear it so that
3478 	 * this context does not call cond_resched() while flushing.
3479 	 */
3480 	console_may_schedule = 0;
3481 
3482 	if (mode == CONSOLE_REPLAY_ALL)
3483 		__console_rewind_all();
3484 
3485 	printk_get_console_flush_type(&ft);
3486 	if (ft.nbcon_atomic)
3487 		nbcon_atomic_flush_pending();
3488 
3489 	/* Flush legacy consoles once allowed, even when dangerous. */
3490 	if (legacy_allow_panic_sync)
3491 		console_flush_all(false, &next_seq, &handover);
3492 }
3493 
3494 /*
3495  * Return the console tty driver structure and its associated index
3496  */
console_device(int * index)3497 struct tty_driver *console_device(int *index)
3498 {
3499 	struct console *c;
3500 	struct tty_driver *driver = NULL;
3501 	int cookie;
3502 
3503 	/*
3504 	 * Take console_lock to serialize device() callback with
3505 	 * other console operations. For example, fg_console is
3506 	 * modified under console_lock when switching vt.
3507 	 */
3508 	console_lock();
3509 
3510 	cookie = console_srcu_read_lock();
3511 	for_each_console_srcu(c) {
3512 		if (!c->device)
3513 			continue;
3514 		driver = c->device(c, index);
3515 		if (driver)
3516 			break;
3517 	}
3518 	console_srcu_read_unlock(cookie);
3519 
3520 	console_unlock();
3521 	return driver;
3522 }
3523 
3524 /*
3525  * Prevent further output on the passed console device so that (for example)
3526  * serial drivers can suspend console output before suspending a port, and can
3527  * re-enable output afterwards.
3528  */
console_suspend(struct console * console)3529 void console_suspend(struct console *console)
3530 {
3531 	__pr_flush(console, 1000, true);
3532 	console_list_lock();
3533 	console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3534 	console_list_unlock();
3535 
3536 	/*
3537 	 * Ensure that all SRCU list walks have completed. All contexts must
3538 	 * be able to see that this console is disabled so that (for example)
3539 	 * the caller can suspend the port without risk of another context
3540 	 * using the port.
3541 	 */
3542 	synchronize_srcu(&console_srcu);
3543 }
3544 EXPORT_SYMBOL(console_suspend);
3545 
console_resume(struct console * console)3546 void console_resume(struct console *console)
3547 {
3548 	struct console_flush_type ft;
3549 	bool is_nbcon;
3550 
3551 	console_list_lock();
3552 	console_srcu_write_flags(console, console->flags | CON_ENABLED);
3553 	is_nbcon = console->flags & CON_NBCON;
3554 	console_list_unlock();
3555 
3556 	/*
3557 	 * Ensure that all SRCU list walks have completed. The related
3558 	 * printing context must be able to see it is enabled so that
3559 	 * it is guaranteed to wake up and resume printing.
3560 	 */
3561 	synchronize_srcu(&console_srcu);
3562 
3563 	printk_get_console_flush_type(&ft);
3564 	if (is_nbcon && ft.nbcon_offload)
3565 		nbcon_kthread_wake(console);
3566 	else if (ft.legacy_offload)
3567 		defer_console_output();
3568 
3569 	__pr_flush(console, 1000, true);
3570 }
3571 EXPORT_SYMBOL(console_resume);
3572 
3573 #ifdef CONFIG_PRINTK
3574 static int unregister_console_locked(struct console *console);
3575 
3576 /* True when system boot is far enough to create printer threads. */
3577 static bool printk_kthreads_ready __ro_after_init;
3578 
3579 static struct task_struct *printk_legacy_kthread;
3580 
legacy_kthread_should_wakeup(void)3581 static bool legacy_kthread_should_wakeup(void)
3582 {
3583 	struct console_flush_type ft;
3584 	struct console *con;
3585 	bool ret = false;
3586 	int cookie;
3587 
3588 	if (kthread_should_stop())
3589 		return true;
3590 
3591 	printk_get_console_flush_type(&ft);
3592 
3593 	cookie = console_srcu_read_lock();
3594 	for_each_console_srcu(con) {
3595 		short flags = console_srcu_read_flags(con);
3596 		u64 printk_seq;
3597 
3598 		/*
3599 		 * The legacy printer thread is only responsible for nbcon
3600 		 * consoles when the nbcon consoles cannot print via their
3601 		 * atomic or threaded flushing.
3602 		 */
3603 		if ((flags & CON_NBCON) && (ft.nbcon_atomic || ft.nbcon_offload))
3604 			continue;
3605 
3606 		if (!console_is_usable(con, flags, false))
3607 			continue;
3608 
3609 		if (flags & CON_NBCON) {
3610 			printk_seq = nbcon_seq_read(con);
3611 		} else {
3612 			/*
3613 			 * It is safe to read @seq because only this
3614 			 * thread context updates @seq.
3615 			 */
3616 			printk_seq = con->seq;
3617 		}
3618 
3619 		if (prb_read_valid(prb, printk_seq, NULL)) {
3620 			ret = true;
3621 			break;
3622 		}
3623 	}
3624 	console_srcu_read_unlock(cookie);
3625 
3626 	return ret;
3627 }
3628 
legacy_kthread_func(void * unused)3629 static int legacy_kthread_func(void *unused)
3630 {
3631 	for (;;) {
3632 		wait_event_interruptible(legacy_wait, legacy_kthread_should_wakeup());
3633 
3634 		if (kthread_should_stop())
3635 			break;
3636 
3637 		console_lock();
3638 		__console_flush_and_unlock();
3639 	}
3640 
3641 	return 0;
3642 }
3643 
legacy_kthread_create(void)3644 static bool legacy_kthread_create(void)
3645 {
3646 	struct task_struct *kt;
3647 
3648 	lockdep_assert_console_list_lock_held();
3649 
3650 	kt = kthread_run(legacy_kthread_func, NULL, "pr/legacy");
3651 	if (WARN_ON(IS_ERR(kt))) {
3652 		pr_err("failed to start legacy printing thread\n");
3653 		return false;
3654 	}
3655 
3656 	printk_legacy_kthread = kt;
3657 
3658 	/*
3659 	 * It is important that console printing threads are scheduled
3660 	 * shortly after a printk call and with generous runtime budgets.
3661 	 */
3662 	sched_set_normal(printk_legacy_kthread, -20);
3663 
3664 	return true;
3665 }
3666 
3667 /**
3668  * printk_kthreads_shutdown - shutdown all threaded printers
3669  *
3670  * On system shutdown all threaded printers are stopped. This allows printk
3671  * to transition back to atomic printing, thus providing a robust mechanism
3672  * for the final shutdown/reboot messages to be output.
3673  */
printk_kthreads_shutdown(void)3674 static void printk_kthreads_shutdown(void)
3675 {
3676 	struct console *con;
3677 
3678 	console_list_lock();
3679 	if (printk_kthreads_running) {
3680 		printk_kthreads_running = false;
3681 
3682 		for_each_console(con) {
3683 			if (con->flags & CON_NBCON)
3684 				nbcon_kthread_stop(con);
3685 		}
3686 
3687 		/*
3688 		 * The threads may have been stopped while printing a
3689 		 * backlog. Flush any records left over.
3690 		 */
3691 		nbcon_atomic_flush_pending();
3692 	}
3693 	console_list_unlock();
3694 }
3695 
3696 static struct syscore_ops printk_syscore_ops = {
3697 	.shutdown = printk_kthreads_shutdown,
3698 };
3699 
3700 /*
3701  * If appropriate, start nbcon kthreads and set @printk_kthreads_running.
3702  * If any kthreads fail to start, those consoles are unregistered.
3703  *
3704  * Must be called under console_list_lock().
3705  */
printk_kthreads_check_locked(void)3706 static void printk_kthreads_check_locked(void)
3707 {
3708 	struct hlist_node *tmp;
3709 	struct console *con;
3710 
3711 	lockdep_assert_console_list_lock_held();
3712 
3713 	if (!printk_kthreads_ready)
3714 		return;
3715 
3716 	if (have_legacy_console || have_boot_console) {
3717 		if (!printk_legacy_kthread &&
3718 		    force_legacy_kthread() &&
3719 		    !legacy_kthread_create()) {
3720 			/*
3721 			 * All legacy consoles must be unregistered. If there
3722 			 * are any nbcon consoles, they will set up their own
3723 			 * kthread.
3724 			 */
3725 			hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3726 				if (con->flags & CON_NBCON)
3727 					continue;
3728 
3729 				unregister_console_locked(con);
3730 			}
3731 		}
3732 	} else if (printk_legacy_kthread) {
3733 		kthread_stop(printk_legacy_kthread);
3734 		printk_legacy_kthread = NULL;
3735 	}
3736 
3737 	/*
3738 	 * Printer threads cannot be started as long as any boot console is
3739 	 * registered because there is no way to synchronize the hardware
3740 	 * registers between boot console code and regular console code.
3741 	 * It can only be known that there will be no new boot consoles when
3742 	 * an nbcon console is registered.
3743 	 */
3744 	if (have_boot_console || !have_nbcon_console) {
3745 		/* Clear flag in case all nbcon consoles unregistered. */
3746 		printk_kthreads_running = false;
3747 		return;
3748 	}
3749 
3750 	if (printk_kthreads_running)
3751 		return;
3752 
3753 	hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3754 		if (!(con->flags & CON_NBCON))
3755 			continue;
3756 
3757 		if (!nbcon_kthread_create(con))
3758 			unregister_console_locked(con);
3759 	}
3760 
3761 	printk_kthreads_running = true;
3762 }
3763 
printk_set_kthreads_ready(void)3764 static int __init printk_set_kthreads_ready(void)
3765 {
3766 	register_syscore_ops(&printk_syscore_ops);
3767 
3768 	console_list_lock();
3769 	printk_kthreads_ready = true;
3770 	printk_kthreads_check_locked();
3771 	console_list_unlock();
3772 
3773 	return 0;
3774 }
3775 early_initcall(printk_set_kthreads_ready);
3776 #endif /* CONFIG_PRINTK */
3777 
3778 static int __read_mostly keep_bootcon;
3779 
keep_bootcon_setup(char * str)3780 static int __init keep_bootcon_setup(char *str)
3781 {
3782 	keep_bootcon = 1;
3783 	pr_info("debug: skip boot console de-registration.\n");
3784 
3785 	return 0;
3786 }
3787 
3788 early_param("keep_bootcon", keep_bootcon_setup);
3789 
console_call_setup(struct console * newcon,char * options)3790 static int console_call_setup(struct console *newcon, char *options)
3791 {
3792 	int err;
3793 
3794 	if (!newcon->setup)
3795 		return 0;
3796 
3797 	/* Synchronize with possible boot console. */
3798 	console_lock();
3799 	err = newcon->setup(newcon, options);
3800 	console_unlock();
3801 
3802 	return err;
3803 }
3804 
3805 /*
3806  * This is called by register_console() to try to match
3807  * the newly registered console with any of the ones selected
3808  * by either the command line or add_preferred_console() and
3809  * setup/enable it.
3810  *
3811  * Care need to be taken with consoles that are statically
3812  * enabled such as netconsole
3813  */
try_enable_preferred_console(struct console * newcon,bool user_specified)3814 static int try_enable_preferred_console(struct console *newcon,
3815 					bool user_specified)
3816 {
3817 	struct console_cmdline *c;
3818 	int i, err;
3819 
3820 	for (i = 0, c = console_cmdline;
3821 	     i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]);
3822 	     i++, c++) {
3823 		/* Console not yet initialized? */
3824 		if (!c->name[0])
3825 			continue;
3826 		if (c->user_specified != user_specified)
3827 			continue;
3828 		if (!newcon->match ||
3829 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
3830 			/* default matching */
3831 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
3832 			if (strcmp(c->name, newcon->name) != 0)
3833 				continue;
3834 			if (newcon->index >= 0 &&
3835 			    newcon->index != c->index)
3836 				continue;
3837 			if (newcon->index < 0)
3838 				newcon->index = c->index;
3839 
3840 			if (_braille_register_console(newcon, c))
3841 				return 0;
3842 
3843 			err = console_call_setup(newcon, c->options);
3844 			if (err)
3845 				return err;
3846 		}
3847 		newcon->flags |= CON_ENABLED;
3848 		if (i == preferred_console)
3849 			newcon->flags |= CON_CONSDEV;
3850 		return 0;
3851 	}
3852 
3853 	/*
3854 	 * Some consoles, such as pstore and netconsole, can be enabled even
3855 	 * without matching. Accept the pre-enabled consoles only when match()
3856 	 * and setup() had a chance to be called.
3857 	 */
3858 	if (newcon->flags & CON_ENABLED && c->user_specified ==	user_specified)
3859 		return 0;
3860 
3861 	return -ENOENT;
3862 }
3863 
3864 /* Try to enable the console unconditionally */
try_enable_default_console(struct console * newcon)3865 static void try_enable_default_console(struct console *newcon)
3866 {
3867 	if (newcon->index < 0)
3868 		newcon->index = 0;
3869 
3870 	if (console_call_setup(newcon, NULL) != 0)
3871 		return;
3872 
3873 	newcon->flags |= CON_ENABLED;
3874 
3875 	if (newcon->device)
3876 		newcon->flags |= CON_CONSDEV;
3877 }
3878 
3879 /* Return the starting sequence number for a newly registered console. */
get_init_console_seq(struct console * newcon,bool bootcon_registered)3880 static u64 get_init_console_seq(struct console *newcon, bool bootcon_registered)
3881 {
3882 	struct console *con;
3883 	bool handover;
3884 	u64 init_seq;
3885 
3886 	if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) {
3887 		/* Get a consistent copy of @syslog_seq. */
3888 		mutex_lock(&syslog_lock);
3889 		init_seq = syslog_seq;
3890 		mutex_unlock(&syslog_lock);
3891 	} else {
3892 		/* Begin with next message added to ringbuffer. */
3893 		init_seq = prb_next_seq(prb);
3894 
3895 		/*
3896 		 * If any enabled boot consoles are due to be unregistered
3897 		 * shortly, some may not be caught up and may be the same
3898 		 * device as @newcon. Since it is not known which boot console
3899 		 * is the same device, flush all consoles and, if necessary,
3900 		 * start with the message of the enabled boot console that is
3901 		 * the furthest behind.
3902 		 */
3903 		if (bootcon_registered && !keep_bootcon) {
3904 			/*
3905 			 * Hold the console_lock to stop console printing and
3906 			 * guarantee safe access to console->seq.
3907 			 */
3908 			console_lock();
3909 
3910 			/*
3911 			 * Flush all consoles and set the console to start at
3912 			 * the next unprinted sequence number.
3913 			 */
3914 			if (!console_flush_all(true, &init_seq, &handover)) {
3915 				/*
3916 				 * Flushing failed. Just choose the lowest
3917 				 * sequence of the enabled boot consoles.
3918 				 */
3919 
3920 				/*
3921 				 * If there was a handover, this context no
3922 				 * longer holds the console_lock.
3923 				 */
3924 				if (handover)
3925 					console_lock();
3926 
3927 				init_seq = prb_next_seq(prb);
3928 				for_each_console(con) {
3929 					u64 seq;
3930 
3931 					if (!(con->flags & CON_BOOT) ||
3932 					    !(con->flags & CON_ENABLED)) {
3933 						continue;
3934 					}
3935 
3936 					if (con->flags & CON_NBCON)
3937 						seq = nbcon_seq_read(con);
3938 					else
3939 						seq = con->seq;
3940 
3941 					if (seq < init_seq)
3942 						init_seq = seq;
3943 				}
3944 			}
3945 
3946 			console_unlock();
3947 		}
3948 	}
3949 
3950 	return init_seq;
3951 }
3952 
3953 #define console_first()				\
3954 	hlist_entry(console_list.first, struct console, node)
3955 
3956 static int unregister_console_locked(struct console *console);
3957 
3958 /*
3959  * The console driver calls this routine during kernel initialization
3960  * to register the console printing procedure with printk() and to
3961  * print any messages that were printed by the kernel before the
3962  * console driver was initialized.
3963  *
3964  * This can happen pretty early during the boot process (because of
3965  * early_printk) - sometimes before setup_arch() completes - be careful
3966  * of what kernel features are used - they may not be initialised yet.
3967  *
3968  * There are two types of consoles - bootconsoles (early_printk) and
3969  * "real" consoles (everything which is not a bootconsole) which are
3970  * handled differently.
3971  *  - Any number of bootconsoles can be registered at any time.
3972  *  - As soon as a "real" console is registered, all bootconsoles
3973  *    will be unregistered automatically.
3974  *  - Once a "real" console is registered, any attempt to register a
3975  *    bootconsoles will be rejected
3976  */
register_console(struct console * newcon)3977 void register_console(struct console *newcon)
3978 {
3979 	bool use_device_lock = (newcon->flags & CON_NBCON) && newcon->write_atomic;
3980 	bool bootcon_registered = false;
3981 	bool realcon_registered = false;
3982 	struct console *con;
3983 	unsigned long flags;
3984 	u64 init_seq;
3985 	int err;
3986 
3987 	console_list_lock();
3988 
3989 	for_each_console(con) {
3990 		if (WARN(con == newcon, "console '%s%d' already registered\n",
3991 					 con->name, con->index)) {
3992 			goto unlock;
3993 		}
3994 
3995 		if (con->flags & CON_BOOT)
3996 			bootcon_registered = true;
3997 		else
3998 			realcon_registered = true;
3999 	}
4000 
4001 	/* Do not register boot consoles when there already is a real one. */
4002 	if ((newcon->flags & CON_BOOT) && realcon_registered) {
4003 		pr_info("Too late to register bootconsole %s%d\n",
4004 			newcon->name, newcon->index);
4005 		goto unlock;
4006 	}
4007 
4008 	if (newcon->flags & CON_NBCON) {
4009 		/*
4010 		 * Ensure the nbcon console buffers can be allocated
4011 		 * before modifying any global data.
4012 		 */
4013 		if (!nbcon_alloc(newcon))
4014 			goto unlock;
4015 	}
4016 
4017 	/*
4018 	 * See if we want to enable this console driver by default.
4019 	 *
4020 	 * Nope when a console is preferred by the command line, device
4021 	 * tree, or SPCR.
4022 	 *
4023 	 * The first real console with tty binding (driver) wins. More
4024 	 * consoles might get enabled before the right one is found.
4025 	 *
4026 	 * Note that a console with tty binding will have CON_CONSDEV
4027 	 * flag set and will be first in the list.
4028 	 */
4029 	if (preferred_console < 0) {
4030 		if (hlist_empty(&console_list) || !console_first()->device ||
4031 		    console_first()->flags & CON_BOOT) {
4032 			try_enable_default_console(newcon);
4033 		}
4034 	}
4035 
4036 	/* See if this console matches one we selected on the command line */
4037 	err = try_enable_preferred_console(newcon, true);
4038 
4039 	/* If not, try to match against the platform default(s) */
4040 	if (err == -ENOENT)
4041 		err = try_enable_preferred_console(newcon, false);
4042 
4043 	/* printk() messages are not printed to the Braille console. */
4044 	if (err || newcon->flags & CON_BRL) {
4045 		if (newcon->flags & CON_NBCON)
4046 			nbcon_free(newcon);
4047 		goto unlock;
4048 	}
4049 
4050 	/*
4051 	 * If we have a bootconsole, and are switching to a real console,
4052 	 * don't print everything out again, since when the boot console, and
4053 	 * the real console are the same physical device, it's annoying to
4054 	 * see the beginning boot messages twice
4055 	 */
4056 	if (bootcon_registered &&
4057 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) {
4058 		newcon->flags &= ~CON_PRINTBUFFER;
4059 	}
4060 
4061 	newcon->dropped = 0;
4062 	init_seq = get_init_console_seq(newcon, bootcon_registered);
4063 
4064 	if (newcon->flags & CON_NBCON) {
4065 		have_nbcon_console = true;
4066 		nbcon_seq_force(newcon, init_seq);
4067 	} else {
4068 		have_legacy_console = true;
4069 		newcon->seq = init_seq;
4070 	}
4071 
4072 	if (newcon->flags & CON_BOOT)
4073 		have_boot_console = true;
4074 
4075 	/*
4076 	 * If another context is actively using the hardware of this new
4077 	 * console, it will not be aware of the nbcon synchronization. This
4078 	 * is a risk that two contexts could access the hardware
4079 	 * simultaneously if this new console is used for atomic printing
4080 	 * and the other context is still using the hardware.
4081 	 *
4082 	 * Use the driver synchronization to ensure that the hardware is not
4083 	 * in use while this new console transitions to being registered.
4084 	 */
4085 	if (use_device_lock)
4086 		newcon->device_lock(newcon, &flags);
4087 
4088 	/*
4089 	 * Put this console in the list - keep the
4090 	 * preferred driver at the head of the list.
4091 	 */
4092 	if (hlist_empty(&console_list)) {
4093 		/* Ensure CON_CONSDEV is always set for the head. */
4094 		newcon->flags |= CON_CONSDEV;
4095 		hlist_add_head_rcu(&newcon->node, &console_list);
4096 
4097 	} else if (newcon->flags & CON_CONSDEV) {
4098 		/* Only the new head can have CON_CONSDEV set. */
4099 		console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV);
4100 		hlist_add_head_rcu(&newcon->node, &console_list);
4101 
4102 	} else {
4103 		hlist_add_behind_rcu(&newcon->node, console_list.first);
4104 	}
4105 
4106 	/*
4107 	 * No need to synchronize SRCU here! The caller does not rely
4108 	 * on all contexts being able to see the new console before
4109 	 * register_console() completes.
4110 	 */
4111 
4112 	/* This new console is now registered. */
4113 	if (use_device_lock)
4114 		newcon->device_unlock(newcon, flags);
4115 
4116 	console_sysfs_notify();
4117 
4118 	/*
4119 	 * By unregistering the bootconsoles after we enable the real console
4120 	 * we get the "console xxx enabled" message on all the consoles -
4121 	 * boot consoles, real consoles, etc - this is to ensure that end
4122 	 * users know there might be something in the kernel's log buffer that
4123 	 * went to the bootconsole (that they do not see on the real console)
4124 	 */
4125 	con_printk(KERN_INFO, newcon, "enabled\n");
4126 	if (bootcon_registered &&
4127 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
4128 	    !keep_bootcon) {
4129 		struct hlist_node *tmp;
4130 
4131 		hlist_for_each_entry_safe(con, tmp, &console_list, node) {
4132 			if (con->flags & CON_BOOT)
4133 				unregister_console_locked(con);
4134 		}
4135 	}
4136 
4137 	/* Changed console list, may require printer threads to start/stop. */
4138 	printk_kthreads_check_locked();
4139 unlock:
4140 	console_list_unlock();
4141 }
4142 EXPORT_SYMBOL(register_console);
4143 
4144 /* Must be called under console_list_lock(). */
unregister_console_locked(struct console * console)4145 static int unregister_console_locked(struct console *console)
4146 {
4147 	bool use_device_lock = (console->flags & CON_NBCON) && console->write_atomic;
4148 	bool found_legacy_con = false;
4149 	bool found_nbcon_con = false;
4150 	bool found_boot_con = false;
4151 	unsigned long flags;
4152 	struct console *c;
4153 	int res;
4154 
4155 	lockdep_assert_console_list_lock_held();
4156 
4157 	con_printk(KERN_INFO, console, "disabled\n");
4158 
4159 	res = _braille_unregister_console(console);
4160 	if (res < 0)
4161 		return res;
4162 	if (res > 0)
4163 		return 0;
4164 
4165 	if (!console_is_registered_locked(console))
4166 		res = -ENODEV;
4167 	else if (console_is_usable(console, console->flags, true))
4168 		__pr_flush(console, 1000, true);
4169 
4170 	/* Disable it unconditionally */
4171 	console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
4172 
4173 	if (res < 0)
4174 		return res;
4175 
4176 	/*
4177 	 * Use the driver synchronization to ensure that the hardware is not
4178 	 * in use while this console transitions to being unregistered.
4179 	 */
4180 	if (use_device_lock)
4181 		console->device_lock(console, &flags);
4182 
4183 	hlist_del_init_rcu(&console->node);
4184 
4185 	if (use_device_lock)
4186 		console->device_unlock(console, flags);
4187 
4188 	/*
4189 	 * <HISTORICAL>
4190 	 * If this isn't the last console and it has CON_CONSDEV set, we
4191 	 * need to set it on the next preferred console.
4192 	 * </HISTORICAL>
4193 	 *
4194 	 * The above makes no sense as there is no guarantee that the next
4195 	 * console has any device attached. Oh well....
4196 	 */
4197 	if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV)
4198 		console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV);
4199 
4200 	/*
4201 	 * Ensure that all SRCU list walks have completed. All contexts
4202 	 * must not be able to see this console in the list so that any
4203 	 * exit/cleanup routines can be performed safely.
4204 	 */
4205 	synchronize_srcu(&console_srcu);
4206 
4207 	if (console->flags & CON_NBCON)
4208 		nbcon_free(console);
4209 
4210 	console_sysfs_notify();
4211 
4212 	if (console->exit)
4213 		res = console->exit(console);
4214 
4215 	/*
4216 	 * With this console gone, the global flags tracking registered
4217 	 * console types may have changed. Update them.
4218 	 */
4219 	for_each_console(c) {
4220 		if (c->flags & CON_BOOT)
4221 			found_boot_con = true;
4222 
4223 		if (c->flags & CON_NBCON)
4224 			found_nbcon_con = true;
4225 		else
4226 			found_legacy_con = true;
4227 	}
4228 	if (!found_boot_con)
4229 		have_boot_console = found_boot_con;
4230 	if (!found_legacy_con)
4231 		have_legacy_console = found_legacy_con;
4232 	if (!found_nbcon_con)
4233 		have_nbcon_console = found_nbcon_con;
4234 
4235 	/* Changed console list, may require printer threads to start/stop. */
4236 	printk_kthreads_check_locked();
4237 
4238 	return res;
4239 }
4240 
unregister_console(struct console * console)4241 int unregister_console(struct console *console)
4242 {
4243 	int res;
4244 
4245 	console_list_lock();
4246 	res = unregister_console_locked(console);
4247 	console_list_unlock();
4248 	return res;
4249 }
4250 EXPORT_SYMBOL(unregister_console);
4251 
4252 /**
4253  * console_force_preferred_locked - force a registered console preferred
4254  * @con: The registered console to force preferred.
4255  *
4256  * Must be called under console_list_lock().
4257  */
console_force_preferred_locked(struct console * con)4258 void console_force_preferred_locked(struct console *con)
4259 {
4260 	struct console *cur_pref_con;
4261 
4262 	if (!console_is_registered_locked(con))
4263 		return;
4264 
4265 	cur_pref_con = console_first();
4266 
4267 	/* Already preferred? */
4268 	if (cur_pref_con == con)
4269 		return;
4270 
4271 	/*
4272 	 * Delete, but do not re-initialize the entry. This allows the console
4273 	 * to continue to appear registered (via any hlist_unhashed_lockless()
4274 	 * checks), even though it was briefly removed from the console list.
4275 	 */
4276 	hlist_del_rcu(&con->node);
4277 
4278 	/*
4279 	 * Ensure that all SRCU list walks have completed so that the console
4280 	 * can be added to the beginning of the console list and its forward
4281 	 * list pointer can be re-initialized.
4282 	 */
4283 	synchronize_srcu(&console_srcu);
4284 
4285 	con->flags |= CON_CONSDEV;
4286 	WARN_ON(!con->device);
4287 
4288 	/* Only the new head can have CON_CONSDEV set. */
4289 	console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV);
4290 	hlist_add_head_rcu(&con->node, &console_list);
4291 }
4292 EXPORT_SYMBOL(console_force_preferred_locked);
4293 
4294 /*
4295  * Initialize the console device. This is called *early*, so
4296  * we can't necessarily depend on lots of kernel help here.
4297  * Just do some early initializations, and do the complex setup
4298  * later.
4299  */
console_init(void)4300 void __init console_init(void)
4301 {
4302 	int ret;
4303 	initcall_t call;
4304 	initcall_entry_t *ce;
4305 
4306 #ifdef CONFIG_NULL_TTY_DEFAULT_CONSOLE
4307 	if (!console_set_on_cmdline)
4308 		add_preferred_console("ttynull", 0, NULL);
4309 #endif
4310 
4311 	/* Setup the default TTY line discipline. */
4312 	n_tty_init();
4313 
4314 	/*
4315 	 * set up the console device so that later boot sequences can
4316 	 * inform about problems etc..
4317 	 */
4318 	ce = __con_initcall_start;
4319 	trace_initcall_level("console");
4320 	while (ce < __con_initcall_end) {
4321 		call = initcall_from_entry(ce);
4322 		trace_initcall_start(call);
4323 		ret = call();
4324 		trace_initcall_finish(call, ret);
4325 		ce++;
4326 	}
4327 }
4328 
4329 /*
4330  * Some boot consoles access data that is in the init section and which will
4331  * be discarded after the initcalls have been run. To make sure that no code
4332  * will access this data, unregister the boot consoles in a late initcall.
4333  *
4334  * If for some reason, such as deferred probe or the driver being a loadable
4335  * module, the real console hasn't registered yet at this point, there will
4336  * be a brief interval in which no messages are logged to the console, which
4337  * makes it difficult to diagnose problems that occur during this time.
4338  *
4339  * To mitigate this problem somewhat, only unregister consoles whose memory
4340  * intersects with the init section. Note that all other boot consoles will
4341  * get unregistered when the real preferred console is registered.
4342  */
printk_late_init(void)4343 static int __init printk_late_init(void)
4344 {
4345 	struct hlist_node *tmp;
4346 	struct console *con;
4347 	int ret;
4348 
4349 	console_list_lock();
4350 	hlist_for_each_entry_safe(con, tmp, &console_list, node) {
4351 		if (!(con->flags & CON_BOOT))
4352 			continue;
4353 
4354 		/* Check addresses that might be used for enabled consoles. */
4355 		if (init_section_intersects(con, sizeof(*con)) ||
4356 		    init_section_contains(con->write, 0) ||
4357 		    init_section_contains(con->read, 0) ||
4358 		    init_section_contains(con->device, 0) ||
4359 		    init_section_contains(con->unblank, 0) ||
4360 		    init_section_contains(con->data, 0)) {
4361 			/*
4362 			 * Please, consider moving the reported consoles out
4363 			 * of the init section.
4364 			 */
4365 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
4366 				con->name, con->index);
4367 			unregister_console_locked(con);
4368 		}
4369 	}
4370 	console_list_unlock();
4371 
4372 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
4373 					console_cpu_notify);
4374 	WARN_ON(ret < 0);
4375 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
4376 					console_cpu_notify, NULL);
4377 	WARN_ON(ret < 0);
4378 	printk_sysctl_init();
4379 	return 0;
4380 }
4381 late_initcall(printk_late_init);
4382 
4383 #if defined CONFIG_PRINTK
4384 /* If @con is specified, only wait for that console. Otherwise wait for all. */
__pr_flush(struct console * con,int timeout_ms,bool reset_on_progress)4385 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress)
4386 {
4387 	unsigned long timeout_jiffies = msecs_to_jiffies(timeout_ms);
4388 	unsigned long remaining_jiffies = timeout_jiffies;
4389 	struct console_flush_type ft;
4390 	struct console *c;
4391 	u64 last_diff = 0;
4392 	u64 printk_seq;
4393 	short flags;
4394 	int cookie;
4395 	u64 diff;
4396 	u64 seq;
4397 
4398 	/* Sorry, pr_flush() will not work this early. */
4399 	if (system_state < SYSTEM_SCHEDULING)
4400 		return false;
4401 
4402 	might_sleep();
4403 
4404 	seq = prb_next_reserve_seq(prb);
4405 
4406 	/* Flush the consoles so that records up to @seq are printed. */
4407 	printk_get_console_flush_type(&ft);
4408 	if (ft.nbcon_atomic)
4409 		nbcon_atomic_flush_pending();
4410 	if (ft.legacy_direct) {
4411 		console_lock();
4412 		console_unlock();
4413 	}
4414 
4415 	for (;;) {
4416 		unsigned long begin_jiffies;
4417 		unsigned long slept_jiffies;
4418 
4419 		diff = 0;
4420 
4421 		/*
4422 		 * Hold the console_lock to guarantee safe access to
4423 		 * console->seq. Releasing console_lock flushes more
4424 		 * records in case @seq is still not printed on all
4425 		 * usable consoles.
4426 		 *
4427 		 * Holding the console_lock is not necessary if there
4428 		 * are no legacy or boot consoles. However, such a
4429 		 * console could register at any time. Always hold the
4430 		 * console_lock as a precaution rather than
4431 		 * synchronizing against register_console().
4432 		 */
4433 		console_lock();
4434 
4435 		cookie = console_srcu_read_lock();
4436 		for_each_console_srcu(c) {
4437 			if (con && con != c)
4438 				continue;
4439 
4440 			flags = console_srcu_read_flags(c);
4441 
4442 			/*
4443 			 * If consoles are not usable, it cannot be expected
4444 			 * that they make forward progress, so only increment
4445 			 * @diff for usable consoles.
4446 			 */
4447 			if (!console_is_usable(c, flags, true) &&
4448 			    !console_is_usable(c, flags, false)) {
4449 				continue;
4450 			}
4451 
4452 			if (flags & CON_NBCON) {
4453 				printk_seq = nbcon_seq_read(c);
4454 			} else {
4455 				printk_seq = c->seq;
4456 			}
4457 
4458 			if (printk_seq < seq)
4459 				diff += seq - printk_seq;
4460 		}
4461 		console_srcu_read_unlock(cookie);
4462 
4463 		if (diff != last_diff && reset_on_progress)
4464 			remaining_jiffies = timeout_jiffies;
4465 
4466 		console_unlock();
4467 
4468 		/* Note: @diff is 0 if there are no usable consoles. */
4469 		if (diff == 0 || remaining_jiffies == 0)
4470 			break;
4471 
4472 		/* msleep(1) might sleep much longer. Check time by jiffies. */
4473 		begin_jiffies = jiffies;
4474 		msleep(1);
4475 		slept_jiffies = jiffies - begin_jiffies;
4476 
4477 		remaining_jiffies -= min(slept_jiffies, remaining_jiffies);
4478 
4479 		last_diff = diff;
4480 	}
4481 
4482 	return (diff == 0);
4483 }
4484 
4485 /**
4486  * pr_flush() - Wait for printing threads to catch up.
4487  *
4488  * @timeout_ms:        The maximum time (in ms) to wait.
4489  * @reset_on_progress: Reset the timeout if forward progress is seen.
4490  *
4491  * A value of 0 for @timeout_ms means no waiting will occur. A value of -1
4492  * represents infinite waiting.
4493  *
4494  * If @reset_on_progress is true, the timeout will be reset whenever any
4495  * printer has been seen to make some forward progress.
4496  *
4497  * Context: Process context. May sleep while acquiring console lock.
4498  * Return: true if all usable printers are caught up.
4499  */
pr_flush(int timeout_ms,bool reset_on_progress)4500 bool pr_flush(int timeout_ms, bool reset_on_progress)
4501 {
4502 	return __pr_flush(NULL, timeout_ms, reset_on_progress);
4503 }
4504 
4505 /*
4506  * Delayed printk version, for scheduler-internal messages:
4507  */
4508 #define PRINTK_PENDING_WAKEUP	0x01
4509 #define PRINTK_PENDING_OUTPUT	0x02
4510 
4511 static DEFINE_PER_CPU(int, printk_pending);
4512 
wake_up_klogd_work_func(struct irq_work * irq_work)4513 static void wake_up_klogd_work_func(struct irq_work *irq_work)
4514 {
4515 	int pending = this_cpu_xchg(printk_pending, 0);
4516 
4517 	if (pending & PRINTK_PENDING_OUTPUT) {
4518 		if (force_legacy_kthread()) {
4519 			if (printk_legacy_kthread)
4520 				wake_up_interruptible(&legacy_wait);
4521 		} else {
4522 			if (console_trylock())
4523 				console_unlock();
4524 		}
4525 	}
4526 
4527 	if (pending & PRINTK_PENDING_WAKEUP)
4528 		wake_up_interruptible(&log_wait);
4529 }
4530 
4531 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
4532 	IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
4533 
__wake_up_klogd(int val)4534 static void __wake_up_klogd(int val)
4535 {
4536 	if (!printk_percpu_data_ready())
4537 		return;
4538 
4539 	preempt_disable();
4540 	/*
4541 	 * Guarantee any new records can be seen by tasks preparing to wait
4542 	 * before this context checks if the wait queue is empty.
4543 	 *
4544 	 * The full memory barrier within wq_has_sleeper() pairs with the full
4545 	 * memory barrier within set_current_state() of
4546 	 * prepare_to_wait_event(), which is called after ___wait_event() adds
4547 	 * the waiter but before it has checked the wait condition.
4548 	 *
4549 	 * This pairs with devkmsg_read:A and syslog_print:A.
4550 	 */
4551 	if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */
4552 	    (val & PRINTK_PENDING_OUTPUT)) {
4553 		this_cpu_or(printk_pending, val);
4554 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
4555 	}
4556 	preempt_enable();
4557 }
4558 
4559 /**
4560  * wake_up_klogd - Wake kernel logging daemon
4561  *
4562  * Use this function when new records have been added to the ringbuffer
4563  * and the console printing of those records has already occurred or is
4564  * known to be handled by some other context. This function will only
4565  * wake the logging daemon.
4566  *
4567  * Context: Any context.
4568  */
wake_up_klogd(void)4569 void wake_up_klogd(void)
4570 {
4571 	__wake_up_klogd(PRINTK_PENDING_WAKEUP);
4572 }
4573 
4574 /**
4575  * defer_console_output - Wake kernel logging daemon and trigger
4576  *	console printing in a deferred context
4577  *
4578  * Use this function when new records have been added to the ringbuffer,
4579  * this context is responsible for console printing those records, but
4580  * the current context is not allowed to perform the console printing.
4581  * Trigger an irq_work context to perform the console printing. This
4582  * function also wakes the logging daemon.
4583  *
4584  * Context: Any context.
4585  */
defer_console_output(void)4586 void defer_console_output(void)
4587 {
4588 	/*
4589 	 * New messages may have been added directly to the ringbuffer
4590 	 * using vprintk_store(), so wake any waiters as well.
4591 	 */
4592 	__wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT);
4593 }
4594 
printk_trigger_flush(void)4595 void printk_trigger_flush(void)
4596 {
4597 	defer_console_output();
4598 }
4599 
vprintk_deferred(const char * fmt,va_list args)4600 int vprintk_deferred(const char *fmt, va_list args)
4601 {
4602 	return vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
4603 }
4604 
_printk_deferred(const char * fmt,...)4605 int _printk_deferred(const char *fmt, ...)
4606 {
4607 	va_list args;
4608 	int r;
4609 
4610 	va_start(args, fmt);
4611 	r = vprintk_deferred(fmt, args);
4612 	va_end(args);
4613 
4614 	return r;
4615 }
4616 
4617 /*
4618  * printk rate limiting, lifted from the networking subsystem.
4619  *
4620  * This enforces a rate limit: not more than 10 kernel messages
4621  * every 5s to make a denial-of-service attack impossible.
4622  */
4623 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
4624 
__printk_ratelimit(const char * func)4625 int __printk_ratelimit(const char *func)
4626 {
4627 	return ___ratelimit(&printk_ratelimit_state, func);
4628 }
4629 EXPORT_SYMBOL(__printk_ratelimit);
4630 
4631 /**
4632  * printk_timed_ratelimit - caller-controlled printk ratelimiting
4633  * @caller_jiffies: pointer to caller's state
4634  * @interval_msecs: minimum interval between prints
4635  *
4636  * printk_timed_ratelimit() returns true if more than @interval_msecs
4637  * milliseconds have elapsed since the last time printk_timed_ratelimit()
4638  * returned true.
4639  */
printk_timed_ratelimit(unsigned long * caller_jiffies,unsigned int interval_msecs)4640 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
4641 			unsigned int interval_msecs)
4642 {
4643 	unsigned long elapsed = jiffies - *caller_jiffies;
4644 
4645 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
4646 		return false;
4647 
4648 	*caller_jiffies = jiffies;
4649 	return true;
4650 }
4651 EXPORT_SYMBOL(printk_timed_ratelimit);
4652 
4653 static DEFINE_SPINLOCK(dump_list_lock);
4654 static LIST_HEAD(dump_list);
4655 
4656 /**
4657  * kmsg_dump_register - register a kernel log dumper.
4658  * @dumper: pointer to the kmsg_dumper structure
4659  *
4660  * Adds a kernel log dumper to the system. The dump callback in the
4661  * structure will be called when the kernel oopses or panics and must be
4662  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
4663  */
kmsg_dump_register(struct kmsg_dumper * dumper)4664 int kmsg_dump_register(struct kmsg_dumper *dumper)
4665 {
4666 	unsigned long flags;
4667 	int err = -EBUSY;
4668 
4669 	/* The dump callback needs to be set */
4670 	if (!dumper->dump)
4671 		return -EINVAL;
4672 
4673 	spin_lock_irqsave(&dump_list_lock, flags);
4674 	/* Don't allow registering multiple times */
4675 	if (!dumper->registered) {
4676 		dumper->registered = 1;
4677 		list_add_tail_rcu(&dumper->list, &dump_list);
4678 		err = 0;
4679 	}
4680 	spin_unlock_irqrestore(&dump_list_lock, flags);
4681 
4682 	return err;
4683 }
4684 EXPORT_SYMBOL_GPL(kmsg_dump_register);
4685 
4686 /**
4687  * kmsg_dump_unregister - unregister a kmsg dumper.
4688  * @dumper: pointer to the kmsg_dumper structure
4689  *
4690  * Removes a dump device from the system. Returns zero on success and
4691  * %-EINVAL otherwise.
4692  */
kmsg_dump_unregister(struct kmsg_dumper * dumper)4693 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
4694 {
4695 	unsigned long flags;
4696 	int err = -EINVAL;
4697 
4698 	spin_lock_irqsave(&dump_list_lock, flags);
4699 	if (dumper->registered) {
4700 		dumper->registered = 0;
4701 		list_del_rcu(&dumper->list);
4702 		err = 0;
4703 	}
4704 	spin_unlock_irqrestore(&dump_list_lock, flags);
4705 	synchronize_rcu();
4706 
4707 	return err;
4708 }
4709 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
4710 
4711 static bool always_kmsg_dump;
4712 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
4713 
kmsg_dump_reason_str(enum kmsg_dump_reason reason)4714 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
4715 {
4716 	switch (reason) {
4717 	case KMSG_DUMP_PANIC:
4718 		return "Panic";
4719 	case KMSG_DUMP_OOPS:
4720 		return "Oops";
4721 	case KMSG_DUMP_EMERG:
4722 		return "Emergency";
4723 	case KMSG_DUMP_SHUTDOWN:
4724 		return "Shutdown";
4725 	default:
4726 		return "Unknown";
4727 	}
4728 }
4729 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
4730 
4731 /**
4732  * kmsg_dump_desc - dump kernel log to kernel message dumpers.
4733  * @reason: the reason (oops, panic etc) for dumping
4734  * @desc: a short string to describe what caused the panic or oops. Can be NULL
4735  * if no additional description is available.
4736  *
4737  * Call each of the registered dumper's dump() callback, which can
4738  * retrieve the kmsg records with kmsg_dump_get_line() or
4739  * kmsg_dump_get_buffer().
4740  */
kmsg_dump_desc(enum kmsg_dump_reason reason,const char * desc)4741 void kmsg_dump_desc(enum kmsg_dump_reason reason, const char *desc)
4742 {
4743 	struct kmsg_dumper *dumper;
4744 	struct kmsg_dump_detail detail = {
4745 		.reason = reason,
4746 		.description = desc};
4747 
4748 	rcu_read_lock();
4749 	list_for_each_entry_rcu(dumper, &dump_list, list) {
4750 		enum kmsg_dump_reason max_reason = dumper->max_reason;
4751 
4752 		/*
4753 		 * If client has not provided a specific max_reason, default
4754 		 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
4755 		 */
4756 		if (max_reason == KMSG_DUMP_UNDEF) {
4757 			max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
4758 							KMSG_DUMP_OOPS;
4759 		}
4760 		if (reason > max_reason)
4761 			continue;
4762 
4763 		/* invoke dumper which will iterate over records */
4764 		dumper->dump(dumper, &detail);
4765 	}
4766 	rcu_read_unlock();
4767 }
4768 
4769 /**
4770  * kmsg_dump_get_line - retrieve one kmsg log line
4771  * @iter: kmsg dump iterator
4772  * @syslog: include the "<4>" prefixes
4773  * @line: buffer to copy the line to
4774  * @size: maximum size of the buffer
4775  * @len: length of line placed into buffer
4776  *
4777  * Start at the beginning of the kmsg buffer, with the oldest kmsg
4778  * record, and copy one record into the provided buffer.
4779  *
4780  * Consecutive calls will return the next available record moving
4781  * towards the end of the buffer with the youngest messages.
4782  *
4783  * A return value of FALSE indicates that there are no more records to
4784  * read.
4785  */
kmsg_dump_get_line(struct kmsg_dump_iter * iter,bool syslog,char * line,size_t size,size_t * len)4786 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
4787 			char *line, size_t size, size_t *len)
4788 {
4789 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
4790 	struct printk_info info;
4791 	unsigned int line_count;
4792 	struct printk_record r;
4793 	size_t l = 0;
4794 	bool ret = false;
4795 
4796 	if (iter->cur_seq < min_seq)
4797 		iter->cur_seq = min_seq;
4798 
4799 	prb_rec_init_rd(&r, &info, line, size);
4800 
4801 	/* Read text or count text lines? */
4802 	if (line) {
4803 		if (!prb_read_valid(prb, iter->cur_seq, &r))
4804 			goto out;
4805 		l = record_print_text(&r, syslog, printk_time);
4806 	} else {
4807 		if (!prb_read_valid_info(prb, iter->cur_seq,
4808 					 &info, &line_count)) {
4809 			goto out;
4810 		}
4811 		l = get_record_print_text_size(&info, line_count, syslog,
4812 					       printk_time);
4813 
4814 	}
4815 
4816 	iter->cur_seq = r.info->seq + 1;
4817 	ret = true;
4818 out:
4819 	if (len)
4820 		*len = l;
4821 	return ret;
4822 }
4823 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
4824 
4825 /**
4826  * kmsg_dump_get_buffer - copy kmsg log lines
4827  * @iter: kmsg dump iterator
4828  * @syslog: include the "<4>" prefixes
4829  * @buf: buffer to copy the line to
4830  * @size: maximum size of the buffer
4831  * @len_out: length of line placed into buffer
4832  *
4833  * Start at the end of the kmsg buffer and fill the provided buffer
4834  * with as many of the *youngest* kmsg records that fit into it.
4835  * If the buffer is large enough, all available kmsg records will be
4836  * copied with a single call.
4837  *
4838  * Consecutive calls will fill the buffer with the next block of
4839  * available older records, not including the earlier retrieved ones.
4840  *
4841  * A return value of FALSE indicates that there are no more records to
4842  * read.
4843  */
kmsg_dump_get_buffer(struct kmsg_dump_iter * iter,bool syslog,char * buf,size_t size,size_t * len_out)4844 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
4845 			  char *buf, size_t size, size_t *len_out)
4846 {
4847 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
4848 	struct printk_info info;
4849 	struct printk_record r;
4850 	u64 seq;
4851 	u64 next_seq;
4852 	size_t len = 0;
4853 	bool ret = false;
4854 	bool time = printk_time;
4855 
4856 	if (!buf || !size)
4857 		goto out;
4858 
4859 	if (iter->cur_seq < min_seq)
4860 		iter->cur_seq = min_seq;
4861 
4862 	if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
4863 		if (info.seq != iter->cur_seq) {
4864 			/* messages are gone, move to first available one */
4865 			iter->cur_seq = info.seq;
4866 		}
4867 	}
4868 
4869 	/* last entry */
4870 	if (iter->cur_seq >= iter->next_seq)
4871 		goto out;
4872 
4873 	/*
4874 	 * Find first record that fits, including all following records,
4875 	 * into the user-provided buffer for this dump. Pass in size-1
4876 	 * because this function (by way of record_print_text()) will
4877 	 * not write more than size-1 bytes of text into @buf.
4878 	 */
4879 	seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
4880 				     size - 1, syslog, time);
4881 
4882 	/*
4883 	 * Next kmsg_dump_get_buffer() invocation will dump block of
4884 	 * older records stored right before this one.
4885 	 */
4886 	next_seq = seq;
4887 
4888 	prb_rec_init_rd(&r, &info, buf, size);
4889 
4890 	prb_for_each_record(seq, prb, seq, &r) {
4891 		if (r.info->seq >= iter->next_seq)
4892 			break;
4893 
4894 		len += record_print_text(&r, syslog, time);
4895 
4896 		/* Adjust record to store to remaining buffer space. */
4897 		prb_rec_init_rd(&r, &info, buf + len, size - len);
4898 	}
4899 
4900 	iter->next_seq = next_seq;
4901 	ret = true;
4902 out:
4903 	if (len_out)
4904 		*len_out = len;
4905 	return ret;
4906 }
4907 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
4908 
4909 /**
4910  * kmsg_dump_rewind - reset the iterator
4911  * @iter: kmsg dump iterator
4912  *
4913  * Reset the dumper's iterator so that kmsg_dump_get_line() and
4914  * kmsg_dump_get_buffer() can be called again and used multiple
4915  * times within the same dumper.dump() callback.
4916  */
kmsg_dump_rewind(struct kmsg_dump_iter * iter)4917 void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
4918 {
4919 	iter->cur_seq = latched_seq_read_nolock(&clear_seq);
4920 	iter->next_seq = prb_next_seq(prb);
4921 }
4922 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
4923 
4924 /**
4925  * console_try_replay_all - try to replay kernel log on consoles
4926  *
4927  * Try to obtain lock on console subsystem and replay all
4928  * available records in printk buffer on the consoles.
4929  * Does nothing if lock is not obtained.
4930  *
4931  * Context: Any, except for NMI.
4932  */
console_try_replay_all(void)4933 void console_try_replay_all(void)
4934 {
4935 	struct console_flush_type ft;
4936 
4937 	printk_get_console_flush_type(&ft);
4938 	if (console_trylock()) {
4939 		__console_rewind_all();
4940 		if (ft.nbcon_atomic)
4941 			nbcon_atomic_flush_pending();
4942 		if (ft.nbcon_offload)
4943 			nbcon_kthreads_wake();
4944 		if (ft.legacy_offload)
4945 			defer_console_output();
4946 		/* Consoles are flushed as part of console_unlock(). */
4947 		console_unlock();
4948 	}
4949 }
4950 #endif
4951 
4952 #ifdef CONFIG_SMP
4953 static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1);
4954 static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0);
4955 
is_printk_cpu_sync_owner(void)4956 bool is_printk_cpu_sync_owner(void)
4957 {
4958 	return (atomic_read(&printk_cpu_sync_owner) == raw_smp_processor_id());
4959 }
4960 
4961 /**
4962  * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant
4963  *                            spinning lock is not owned by any CPU.
4964  *
4965  * Context: Any context.
4966  */
__printk_cpu_sync_wait(void)4967 void __printk_cpu_sync_wait(void)
4968 {
4969 	do {
4970 		cpu_relax();
4971 	} while (atomic_read(&printk_cpu_sync_owner) != -1);
4972 }
4973 EXPORT_SYMBOL(__printk_cpu_sync_wait);
4974 
4975 /**
4976  * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant
4977  *                               spinning lock.
4978  *
4979  * If no processor has the lock, the calling processor takes the lock and
4980  * becomes the owner. If the calling processor is already the owner of the
4981  * lock, this function succeeds immediately.
4982  *
4983  * Context: Any context. Expects interrupts to be disabled.
4984  * Return: 1 on success, otherwise 0.
4985  */
__printk_cpu_sync_try_get(void)4986 int __printk_cpu_sync_try_get(void)
4987 {
4988 	int cpu;
4989 	int old;
4990 
4991 	cpu = smp_processor_id();
4992 
4993 	/*
4994 	 * Guarantee loads and stores from this CPU when it is the lock owner
4995 	 * are _not_ visible to the previous lock owner. This pairs with
4996 	 * __printk_cpu_sync_put:B.
4997 	 *
4998 	 * Memory barrier involvement:
4999 	 *
5000 	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
5001 	 * then __printk_cpu_sync_put:A can never read from
5002 	 * __printk_cpu_sync_try_get:B.
5003 	 *
5004 	 * Relies on:
5005 	 *
5006 	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
5007 	 * of the previous CPU
5008 	 *    matching
5009 	 * ACQUIRE from __printk_cpu_sync_try_get:A to
5010 	 * __printk_cpu_sync_try_get:B of this CPU
5011 	 */
5012 	old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1,
5013 				     cpu); /* LMM(__printk_cpu_sync_try_get:A) */
5014 	if (old == -1) {
5015 		/*
5016 		 * This CPU is now the owner and begins loading/storing
5017 		 * data: LMM(__printk_cpu_sync_try_get:B)
5018 		 */
5019 		return 1;
5020 
5021 	} else if (old == cpu) {
5022 		/* This CPU is already the owner. */
5023 		atomic_inc(&printk_cpu_sync_nested);
5024 		return 1;
5025 	}
5026 
5027 	return 0;
5028 }
5029 EXPORT_SYMBOL(__printk_cpu_sync_try_get);
5030 
5031 /**
5032  * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock.
5033  *
5034  * The calling processor must be the owner of the lock.
5035  *
5036  * Context: Any context. Expects interrupts to be disabled.
5037  */
__printk_cpu_sync_put(void)5038 void __printk_cpu_sync_put(void)
5039 {
5040 	if (atomic_read(&printk_cpu_sync_nested)) {
5041 		atomic_dec(&printk_cpu_sync_nested);
5042 		return;
5043 	}
5044 
5045 	/*
5046 	 * This CPU is finished loading/storing data:
5047 	 * LMM(__printk_cpu_sync_put:A)
5048 	 */
5049 
5050 	/*
5051 	 * Guarantee loads and stores from this CPU when it was the
5052 	 * lock owner are visible to the next lock owner. This pairs
5053 	 * with __printk_cpu_sync_try_get:A.
5054 	 *
5055 	 * Memory barrier involvement:
5056 	 *
5057 	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
5058 	 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A.
5059 	 *
5060 	 * Relies on:
5061 	 *
5062 	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
5063 	 * of this CPU
5064 	 *    matching
5065 	 * ACQUIRE from __printk_cpu_sync_try_get:A to
5066 	 * __printk_cpu_sync_try_get:B of the next CPU
5067 	 */
5068 	atomic_set_release(&printk_cpu_sync_owner,
5069 			   -1); /* LMM(__printk_cpu_sync_put:B) */
5070 }
5071 EXPORT_SYMBOL(__printk_cpu_sync_put);
5072 #endif /* CONFIG_SMP */
5073