1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
23 *
24 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2016 Andrey Sokolov
26 * Copyright 2019 Joyent, Inc.
27 * Copyright 2019 OmniOS Community Edition (OmniOSce) Association.
28 * Copyright 2021 Toomas Soome <tsoome@me.com>
29 * Copyright 2023 Oxide Computer Company
30 */
31
32 /*
33 * lofi (loopback file) driver - allows you to attach a file to a device,
34 * which can then be accessed through that device. The simple model is that
35 * you tell lofi to open a file, and then use the block device you get as
36 * you would any block device. lofi translates access to the block device
37 * into I/O on the underlying file. This is mostly useful for
38 * mounting images of filesystems.
39 *
40 * lofi is controlled through /dev/lofictl - this is the only device exported
41 * during attach, and is instance number 0. lofiadm communicates with lofi
42 * through ioctls on this device. When a file is attached to lofi, block and
43 * character devices are exported in /dev/lofi and /dev/rlofi. These devices
44 * are identified by lofi instance number, and the instance number is also used
45 * as the name in /dev/lofi.
46 *
47 * Virtual disks, or, labeled lofi, implements virtual disk support to
48 * support partition table and related tools. Such mappings will cause
49 * block and character devices to be exported in /dev/dsk and /dev/rdsk
50 * directories.
51 *
52 * To support virtual disks, the instance number space is divided to two
53 * parts, upper part for instance number and lower part for minor number
54 * space to identify partitions and slices. The virtual disk support is
55 * implemented by stacking cmlb module. For virtual disks, the partition
56 * related ioctl calls are routed to cmlb module. Compression and encryption
57 * is not supported for virtual disks.
58 *
59 * Mapped devices are tracked with state structures handled with
60 * ddi_soft_state(9F) for simplicity.
61 *
62 * A file attached to lofi is opened when attached and not closed until
63 * explicitly detached from lofi. This seems more sensible than deferring
64 * the open until the /dev/lofi device is opened, for a number of reasons.
65 * One is that any failure is likely to be noticed by the person (or script)
66 * running lofiadm. Another is that it would be a security problem if the
67 * file was replaced by another one after being added but before being opened.
68 *
69 * The only hard part about lofi is the ioctls. In order to support things
70 * like 'newfs' on a lofi device, it needs to support certain disk ioctls.
71 * So it has to fake disk geometry and partition information. More may need
72 * to be faked if your favorite utility doesn't work and you think it should
73 * (fdformat doesn't work because it really wants to know the type of floppy
74 * controller to talk to, and that didn't seem easy to fake. Or possibly even
75 * necessary, since we have mkfs_pcfs now).
76 *
77 * Normally, a lofi device cannot be detached if it is open (i.e. busy). To
78 * support simulation of hotplug events, an optional force flag is provided.
79 * If a lofi device is open when a force detach is requested, then the
80 * underlying file is closed and any subsequent operations return EIO. When the
81 * device is closed for the last time, it will be cleaned up at that time. In
82 * addition, the DKIOCSTATE ioctl will return DKIO_DEV_GONE when the device is
83 * detached but not removed.
84 *
85 * If detach was requested and lofi device is not open, we will perform
86 * unmap and remove the lofi instance.
87 *
88 * If the lofi device is open and the li_cleanup is set on ioctl request,
89 * we set ls_cleanup flag to notify the cleanup is requested, and the
90 * last lofi_close will perform the unmapping and this lofi instance will be
91 * removed.
92 *
93 * If the lofi device is open and the li_force is set on ioctl request,
94 * we set ls_cleanup flag to notify the cleanup is requested,
95 * we also set ls_vp_closereq to notify IO tasks to return EIO on new
96 * IO requests and wait in process IO count to become 0, indicating there
97 * are no more IO requests. Since ls_cleanup is set, the last lofi_close
98 * will perform unmap and this lofi instance will be removed.
99 * See also lofi_unmap_file() for details.
100 *
101 * Once ls_cleanup is set for the instance, we do not allow lofi_open()
102 * calls to succeed and can have last lofi_close() to remove the instance.
103 *
104 * Known problems:
105 *
106 * UFS logging. Mounting a UFS filesystem image "logging"
107 * works for basic copy testing but wedges during a build of ON through
108 * that image. Some deadlock in lufs holding the log mutex and then
109 * getting stuck on a buf. So for now, don't do that.
110 *
111 * Direct I/O. Since the filesystem data is being cached in the buffer
112 * cache, _and_ again in the underlying filesystem, it's tempting to
113 * enable direct I/O on the underlying file. Don't, because that deadlocks.
114 * I think to fix the cache-twice problem we might need filesystem support.
115 *
116 * Interesting things to do:
117 *
118 * Allow multiple files for each device. A poor-man's metadisk, basically.
119 *
120 * Pass-through ioctls on block devices. You can (though it's not
121 * documented), give lofi a block device as a file name. Then we shouldn't
122 * need to fake a geometry, however, it may be relevant if you're replacing
123 * metadisk, or using lofi to get crypto.
124 * It makes sense to do lofiadm -c aes -a /dev/dsk/c0t0d0s4 /dev/lofi/1
125 * and then in /etc/vfstab have an entry for /dev/lofi/1 as /export/home.
126 * In fact this even makes sense if you have lofi "above" metadisk.
127 *
128 * Encryption:
129 * Each lofi device can have its own symmetric key and cipher.
130 * They are passed to us by lofiadm(8) in the correct format for use
131 * with the misc/kcf crypto_* routines.
132 *
133 * Each block has its own IV, that is calculated in lofi_blk_mech(), based
134 * on the "master" key held in the lsp and the block number of the buffer.
135 */
136
137 #include <sys/types.h>
138 #include <netinet/in.h>
139 #include <sys/sysmacros.h>
140 #include <sys/uio.h>
141 #include <sys/kmem.h>
142 #include <sys/cred.h>
143 #include <sys/mman.h>
144 #include <sys/errno.h>
145 #include <sys/aio_req.h>
146 #include <sys/stat.h>
147 #include <sys/file.h>
148 #include <sys/modctl.h>
149 #include <sys/conf.h>
150 #include <sys/debug.h>
151 #include <sys/vnode.h>
152 #include <sys/lofi.h>
153 #include <sys/lofi_impl.h> /* for cache structure */
154 #include <sys/fcntl.h>
155 #include <sys/pathname.h>
156 #include <sys/filio.h>
157 #include <sys/fdio.h>
158 #include <sys/open.h>
159 #include <sys/disp.h>
160 #include <vm/seg_map.h>
161 #include <sys/ddi.h>
162 #include <sys/dkioc_free_util.h>
163 #include <sys/sunddi.h>
164 #include <sys/zmod.h>
165 #include <sys/id_space.h>
166 #include <sys/mkdev.h>
167 #include <sys/crypto/common.h>
168 #include <sys/crypto/api.h>
169 #include <sys/rctl.h>
170 #include <sys/vtoc.h>
171 #include <sys/scsi/scsi.h> /* for DTYPE_DIRECT */
172 #include <sys/scsi/impl/uscsi.h>
173 #include <sys/sysevent/dev.h>
174 #include <sys/efi_partition.h>
175 #include <LzmaDec.h>
176
177 #define NBLOCKS_PROP_NAME "Nblocks"
178 #define SIZE_PROP_NAME "Size"
179 #define ZONE_PROP_NAME "zone"
180
181 #define SETUP_C_DATA(cd, buf, len) \
182 (cd).cd_format = CRYPTO_DATA_RAW; \
183 (cd).cd_offset = 0; \
184 (cd).cd_miscdata = NULL; \
185 (cd).cd_length = (len); \
186 (cd).cd_raw.iov_base = (buf); \
187 (cd).cd_raw.iov_len = (len);
188
189 #define UIO_CHECK(uio) \
190 if (((uio)->uio_loffset % DEV_BSIZE) != 0 || \
191 ((uio)->uio_resid % DEV_BSIZE) != 0) { \
192 return (EINVAL); \
193 }
194
195 #define LOFI_TIMEOUT 120
196
197 int lofi_timeout = LOFI_TIMEOUT;
198 static void *lofi_statep;
199 static kmutex_t lofi_lock; /* state lock */
200 static id_space_t *lofi_id; /* lofi ID values */
201 static list_t lofi_list;
202 static zone_key_t lofi_zone_key;
203
204 /*
205 * Because lofi_taskq_nthreads limits the actual swamping of the device, the
206 * maxalloc parameter (lofi_taskq_maxalloc) should be tuned conservatively
207 * high. If we want to be assured that the underlying device is always busy,
208 * we must be sure that the number of bytes enqueued when the number of
209 * enqueued tasks exceeds maxalloc is sufficient to keep the device busy for
210 * the duration of the sleep time in taskq_ent_alloc(). That is, lofi should
211 * set maxalloc to be the maximum throughput (in bytes per second) of the
212 * underlying device divided by the minimum I/O size. We assume a realistic
213 * maximum throughput of one hundred megabytes per second; we set maxalloc on
214 * the lofi task queue to be 104857600 divided by DEV_BSIZE.
215 */
216 static int lofi_taskq_maxalloc = 104857600 / DEV_BSIZE;
217 static int lofi_taskq_nthreads = 4; /* # of taskq threads per device */
218
219 const char lofi_crypto_magic[6] = LOFI_CRYPTO_MAGIC;
220
221 /*
222 * To avoid decompressing data in a compressed segment multiple times
223 * when accessing small parts of a segment's data, we cache and reuse
224 * the uncompressed segment's data.
225 *
226 * A single cached segment is sufficient to avoid lots of duplicate
227 * segment decompress operations. A small cache size also reduces the
228 * memory footprint.
229 *
230 * lofi_max_comp_cache is the maximum number of decompressed data segments
231 * cached for each compressed lofi image. It can be set to 0 to disable
232 * caching.
233 */
234
235 uint32_t lofi_max_comp_cache = 1;
236
237 static int gzip_decompress(void *src, size_t srclen, void *dst,
238 size_t *destlen, int level);
239
240 static int lzma_decompress(void *src, size_t srclen, void *dst,
241 size_t *dstlen, int level);
242
243 lofi_compress_info_t lofi_compress_table[LOFI_COMPRESS_FUNCTIONS] = {
244 {gzip_decompress, NULL, 6, "gzip"}, /* default */
245 {gzip_decompress, NULL, 6, "gzip-6"},
246 {gzip_decompress, NULL, 9, "gzip-9"},
247 {lzma_decompress, NULL, 0, "lzma"}
248 };
249
250 static void lofi_strategy_task(void *);
251 static int lofi_tg_rdwr(dev_info_t *, uchar_t, void *, diskaddr_t,
252 size_t, void *);
253 static int lofi_tg_getinfo(dev_info_t *, int, void *, void *);
254
255 struct cmlb_tg_ops lofi_tg_ops = {
256 TG_DK_OPS_VERSION_1,
257 lofi_tg_rdwr,
258 lofi_tg_getinfo
259 };
260
261 typedef enum {
262 RDWR_RAW,
263 RDWR_BCOPY
264 } lofi_rdrw_method_t;
265
266 static void
SzAlloc(void * p __unused,size_t size)267 *SzAlloc(void *p __unused, size_t size)
268 {
269 return (kmem_alloc(size, KM_SLEEP));
270 }
271
272 static void
SzFree(void * p __unused,void * address,size_t size)273 SzFree(void *p __unused, void *address, size_t size)
274 {
275 kmem_free(address, size);
276 }
277
278 static ISzAlloc g_Alloc = { SzAlloc, SzFree };
279
280 /*
281 * Free data referenced by the linked list of cached uncompressed
282 * segments.
283 */
284 static void
lofi_free_comp_cache(struct lofi_state * lsp)285 lofi_free_comp_cache(struct lofi_state *lsp)
286 {
287 struct lofi_comp_cache *lc;
288
289 while ((lc = list_remove_head(&lsp->ls_comp_cache)) != NULL) {
290 kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
291 kmem_free(lc, sizeof (struct lofi_comp_cache));
292 lsp->ls_comp_cache_count--;
293 }
294 ASSERT(lsp->ls_comp_cache_count == 0);
295 }
296
297 static int
is_opened(struct lofi_state * lsp)298 is_opened(struct lofi_state *lsp)
299 {
300 int i;
301 boolean_t last = B_TRUE;
302
303 ASSERT(MUTEX_HELD(&lofi_lock));
304 for (i = 0; i < LOFI_PART_MAX; i++) {
305 if (lsp->ls_open_lyr[i]) {
306 last = B_FALSE;
307 break;
308 }
309 }
310
311 for (i = 0; last && (i < OTYP_LYR); i++) {
312 if (lsp->ls_open_reg[i]) {
313 last = B_FALSE;
314 }
315 }
316
317 return (!last);
318 }
319
320 static void
lofi_set_cleanup(struct lofi_state * lsp)321 lofi_set_cleanup(struct lofi_state *lsp)
322 {
323 ASSERT(MUTEX_HELD(&lofi_lock));
324
325 lsp->ls_cleanup = B_TRUE;
326
327 /* wake up any threads waiting on dkiocstate */
328 cv_broadcast(&lsp->ls_vp_cv);
329 }
330
331 static void
lofi_free_crypto(struct lofi_state * lsp)332 lofi_free_crypto(struct lofi_state *lsp)
333 {
334 ASSERT(MUTEX_HELD(&lofi_lock));
335
336 if (lsp->ls_crypto_enabled) {
337 /*
338 * Clean up the crypto state so that it doesn't hang around
339 * in memory after we are done with it.
340 */
341 if (lsp->ls_key.ck_data != NULL) {
342 bzero(lsp->ls_key.ck_data,
343 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
344 kmem_free(lsp->ls_key.ck_data,
345 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
346 lsp->ls_key.ck_data = NULL;
347 lsp->ls_key.ck_length = 0;
348 }
349
350 if (lsp->ls_mech.cm_param != NULL) {
351 kmem_free(lsp->ls_mech.cm_param,
352 lsp->ls_mech.cm_param_len);
353 lsp->ls_mech.cm_param = NULL;
354 lsp->ls_mech.cm_param_len = 0;
355 }
356
357 if (lsp->ls_iv_mech.cm_param != NULL) {
358 kmem_free(lsp->ls_iv_mech.cm_param,
359 lsp->ls_iv_mech.cm_param_len);
360 lsp->ls_iv_mech.cm_param = NULL;
361 lsp->ls_iv_mech.cm_param_len = 0;
362 }
363
364 mutex_destroy(&lsp->ls_crypto_lock);
365 }
366 }
367
368 static int
lofi_tg_rdwr(dev_info_t * dip,uchar_t cmd,void * bufaddr,diskaddr_t start,size_t length,void * tg_cookie __unused)369 lofi_tg_rdwr(dev_info_t *dip, uchar_t cmd, void *bufaddr, diskaddr_t start,
370 size_t length, void *tg_cookie __unused)
371 {
372 struct lofi_state *lsp;
373 buf_t *bp;
374 int instance;
375 int rv = 0;
376
377 instance = ddi_get_instance(dip);
378 if (instance == 0) /* control node does not have disk */
379 return (ENXIO);
380
381 lsp = ddi_get_soft_state(lofi_statep, instance);
382
383 if (lsp == NULL)
384 return (ENXIO);
385
386 if (cmd != TG_READ && cmd != TG_WRITE)
387 return (EINVAL);
388
389 /*
390 * Make sure the mapping is set up by checking lsp->ls_vp_ready.
391 */
392 mutex_enter(&lsp->ls_vp_lock);
393 while (lsp->ls_vp_ready == B_FALSE)
394 cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock);
395 mutex_exit(&lsp->ls_vp_lock);
396
397 if (P2PHASE(length, (1U << lsp->ls_lbshift)) != 0) {
398 /* We can only transfer whole blocks at a time! */
399 return (EINVAL);
400 }
401
402 bp = getrbuf(KM_SLEEP);
403
404 if (cmd == TG_READ) {
405 bp->b_flags = B_READ;
406 } else {
407 if (lsp->ls_readonly == B_TRUE) {
408 freerbuf(bp);
409 return (EROFS);
410 }
411 bp->b_flags = B_WRITE;
412 }
413
414 bp->b_un.b_addr = bufaddr;
415 bp->b_bcount = length;
416 bp->b_lblkno = start;
417 bp->b_private = NULL;
418 bp->b_edev = lsp->ls_dev;
419
420 if (lsp->ls_kstat) {
421 mutex_enter(lsp->ls_kstat->ks_lock);
422 kstat_waitq_enter(KSTAT_IO_PTR(lsp->ls_kstat));
423 mutex_exit(lsp->ls_kstat->ks_lock);
424 }
425 (void) taskq_dispatch(lsp->ls_taskq, lofi_strategy_task, bp, KM_SLEEP);
426 (void) biowait(bp);
427
428 rv = geterror(bp);
429 freerbuf(bp);
430 return (rv);
431 }
432
433 /*
434 * Get device geometry info for cmlb.
435 *
436 * We have mapped disk image as virtual block device and have to report
437 * physical/virtual geometry to cmlb.
438 *
439 * So we have two principal cases:
440 * 1. Uninitialised image without any existing labels,
441 * for this case we fabricate the data based on mapped image.
442 * 2. Image with existing label information.
443 * Since we have no information how the image was created (it may be
444 * dump from some physical device), we need to rely on label information
445 * from image, or we get "corrupted label" errors.
446 * NOTE: label can be MBR, MBR+SMI, GPT
447 */
448 static int
lofi_tg_getinfo(dev_info_t * dip,int cmd,void * arg,void * tg_cookie __unused)449 lofi_tg_getinfo(dev_info_t *dip, int cmd, void *arg, void *tg_cookie __unused)
450 {
451 struct lofi_state *lsp;
452 int instance;
453 int ashift;
454
455 instance = ddi_get_instance(dip);
456 if (instance == 0) /* control device has no storage */
457 return (ENXIO);
458
459 lsp = ddi_get_soft_state(lofi_statep, instance);
460
461 if (lsp == NULL)
462 return (ENXIO);
463
464 /*
465 * Make sure the mapping is set up by checking lsp->ls_vp_ready.
466 *
467 * When mapping is created, new lofi instance is created and
468 * lofi_attach() will call cmlb_attach() as part of the procedure
469 * to set the mapping up. This chain of events will happen in
470 * the same thread.
471 * Since cmlb_attach() will call lofi_tg_getinfo to get
472 * capacity, we return error on that call if cookie is set,
473 * otherwise lofi_attach will be stuck as the mapping is not yet
474 * finalized and lofi is not yet ready.
475 * Note, such error is not fatal for cmlb, as the label setup
476 * will be finalized when cmlb_validate() is called.
477 */
478 mutex_enter(&lsp->ls_vp_lock);
479 if (tg_cookie != NULL && lsp->ls_vp_ready == B_FALSE) {
480 mutex_exit(&lsp->ls_vp_lock);
481 return (ENXIO);
482 }
483 while (lsp->ls_vp_ready == B_FALSE)
484 cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock);
485 mutex_exit(&lsp->ls_vp_lock);
486
487 ashift = lsp->ls_lbshift;
488
489 switch (cmd) {
490 case TG_GETPHYGEOM: {
491 cmlb_geom_t *geomp = arg;
492
493 geomp->g_capacity =
494 (lsp->ls_vp_size - lsp->ls_crypto_offset) >> ashift;
495 geomp->g_nsect = lsp->ls_dkg.dkg_nsect;
496 geomp->g_nhead = lsp->ls_dkg.dkg_nhead;
497 geomp->g_acyl = lsp->ls_dkg.dkg_acyl;
498 geomp->g_ncyl = lsp->ls_dkg.dkg_ncyl;
499 geomp->g_secsize = (1U << ashift);
500 geomp->g_intrlv = lsp->ls_dkg.dkg_intrlv;
501 geomp->g_rpm = lsp->ls_dkg.dkg_rpm;
502 return (0);
503 }
504
505 case TG_GETCAPACITY:
506 *(diskaddr_t *)arg =
507 (lsp->ls_vp_size - lsp->ls_crypto_offset) >> ashift;
508 return (0);
509
510 case TG_GETBLOCKSIZE:
511 *(uint32_t *)arg = (1U << ashift);
512 return (0);
513
514 case TG_GETATTR: {
515 tg_attribute_t *tgattr = arg;
516
517 tgattr->media_is_writable = !lsp->ls_readonly;
518 tgattr->media_is_solid_state = B_FALSE;
519 tgattr->media_is_rotational = B_FALSE;
520 return (0);
521 }
522
523 default:
524 return (EINVAL);
525 }
526 }
527
528 static void
lofi_teardown_task(void * arg)529 lofi_teardown_task(void *arg)
530 {
531 struct lofi_state *lsp = arg;
532 int id = LOFI_MINOR2ID(getminor(lsp->ls_dev));
533
534 mutex_enter(&lofi_lock);
535 while (ndi_devi_offline(lsp->ls_dip, NDI_DEVI_REMOVE) != NDI_SUCCESS) {
536 mutex_exit(&lofi_lock);
537 /* do a sleeping wait for one second */;
538 delay(drv_usectohz(MICROSEC));
539 mutex_enter(&lofi_lock);
540 }
541 id_free(lofi_id, id);
542 mutex_exit(&lofi_lock);
543 }
544
545 static void
lofi_destroy(struct lofi_state * lsp,cred_t * credp)546 lofi_destroy(struct lofi_state *lsp, cred_t *credp)
547 {
548 int id = LOFI_MINOR2ID(getminor(lsp->ls_dev));
549 int i;
550
551 ASSERT(MUTEX_HELD(&lofi_lock));
552
553 /*
554 * Before we can start to release the other resources,
555 * make sure we have all tasks completed and taskq removed.
556 */
557 if (lsp->ls_taskq != NULL) {
558 taskq_destroy(lsp->ls_taskq);
559 lsp->ls_taskq = NULL;
560 }
561
562 list_remove(&lofi_list, lsp);
563
564 lofi_free_crypto(lsp);
565
566 /*
567 * Free pre-allocated compressed buffers
568 */
569 if (lsp->ls_comp_bufs != NULL) {
570 for (i = 0; i < lofi_taskq_nthreads; i++) {
571 if (lsp->ls_comp_bufs[i].bufsize > 0)
572 kmem_free(lsp->ls_comp_bufs[i].buf,
573 lsp->ls_comp_bufs[i].bufsize);
574 }
575 kmem_free(lsp->ls_comp_bufs,
576 sizeof (struct compbuf) * lofi_taskq_nthreads);
577 }
578
579 if (lsp->ls_vp != NULL) {
580 (void) VOP_PUTPAGE(lsp->ls_vp, 0, 0, B_FREE, credp, NULL);
581 (void) VOP_CLOSE(lsp->ls_vp, lsp->ls_openflag,
582 1, 0, credp, NULL);
583 VN_RELE(lsp->ls_vp);
584 }
585 if (lsp->ls_stacked_vp != lsp->ls_vp)
586 VN_RELE(lsp->ls_stacked_vp);
587 lsp->ls_vp = lsp->ls_stacked_vp = NULL;
588
589 if (lsp->ls_kstat != NULL) {
590 kstat_delete(lsp->ls_kstat);
591 lsp->ls_kstat = NULL;
592 }
593
594 /*
595 * Free cached decompressed segment data
596 */
597 lofi_free_comp_cache(lsp);
598 list_destroy(&lsp->ls_comp_cache);
599
600 if (lsp->ls_uncomp_seg_sz > 0) {
601 kmem_free(lsp->ls_comp_index_data, lsp->ls_comp_index_data_sz);
602 lsp->ls_uncomp_seg_sz = 0;
603 }
604
605 rctl_decr_lofi(lsp->ls_zone.zref_zone, 1);
606 zone_rele_ref(&lsp->ls_zone, ZONE_REF_LOFI);
607
608 mutex_destroy(&lsp->ls_comp_cache_lock);
609 mutex_destroy(&lsp->ls_comp_bufs_lock);
610 mutex_destroy(&lsp->ls_kstat_lock);
611 mutex_destroy(&lsp->ls_vp_lock);
612 cv_destroy(&lsp->ls_vp_cv);
613 lsp->ls_vp_ready = B_FALSE;
614 lsp->ls_vp_closereq = B_FALSE;
615
616 ASSERT(ddi_get_soft_state(lofi_statep, id) == lsp);
617 /*
618 * Instance state is allocated in lofi_attach() and freed in
619 * lofi_detach(). New instance is created when we create new mapping.
620 * Instance removal is performed by unmap ioctl on lofi control
621 * instance (0).
622 *
623 * If the unmap is performed with instance which is still in use,
624 * we either cancel unmap with error or we can perform delayed unmap
625 * by blocking all IO, waiting the consumers to close access to this
626 * instance and once there are no more consumers, complete the unmap.
627 *
628 * Delayed unmap will trigger instance removal on last lofi_close(),
629 * but we can not remove device instance while the instance is still
630 * in use due to lofi_close() is running.
631 * Spawn task to complete device instance offlining in separate thread.
632 */
633 (void) taskq_dispatch(system_taskq, lofi_teardown_task, lsp, KM_SLEEP);
634 }
635
636 static void
lofi_free_dev(struct lofi_state * lsp)637 lofi_free_dev(struct lofi_state *lsp)
638 {
639 ASSERT(MUTEX_HELD(&lofi_lock));
640
641 if (lsp->ls_cmlbhandle != NULL) {
642 cmlb_invalidate(lsp->ls_cmlbhandle, 0);
643 cmlb_detach(lsp->ls_cmlbhandle, 0);
644 cmlb_free_handle(&lsp->ls_cmlbhandle);
645 lsp->ls_cmlbhandle = NULL;
646 }
647 (void) ddi_prop_remove_all(lsp->ls_dip);
648 ddi_remove_minor_node(lsp->ls_dip, NULL);
649 }
650
651 static void
lofi_zone_shutdown(zoneid_t zoneid,void * arg __unused)652 lofi_zone_shutdown(zoneid_t zoneid, void *arg __unused)
653 {
654 struct lofi_state *lsp;
655 struct lofi_state *next;
656
657 mutex_enter(&lofi_lock);
658
659 for (lsp = list_head(&lofi_list); lsp != NULL; lsp = next) {
660
661 /* lofi_destroy() frees lsp */
662 next = list_next(&lofi_list, lsp);
663
664 if (lsp->ls_zone.zref_zone->zone_id != zoneid)
665 continue;
666
667 /*
668 * No in-zone processes are running, but something has this
669 * open. It's either a global zone process, or a lofi
670 * mount. In either case we set ls_cleanup so the last
671 * user destroys the device.
672 */
673 if (is_opened(lsp)) {
674 lofi_set_cleanup(lsp);
675 } else {
676 lofi_free_dev(lsp);
677 lofi_destroy(lsp, kcred);
678 }
679 }
680
681 mutex_exit(&lofi_lock);
682 }
683
684 static int
lofi_open(dev_t * devp,int flag,int otyp,struct cred * credp __unused)685 lofi_open(dev_t *devp, int flag, int otyp, struct cred *credp __unused)
686 {
687 int id;
688 minor_t part;
689 uint64_t mask;
690 diskaddr_t nblks;
691 diskaddr_t lba;
692 boolean_t ndelay;
693
694 struct lofi_state *lsp;
695
696 if (otyp >= OTYPCNT)
697 return (EINVAL);
698
699 ndelay = (flag & (FNDELAY | FNONBLOCK)) ? B_TRUE : B_FALSE;
700
701 /*
702 * lofiadm -a /dev/lofi/1 gets us here.
703 */
704 if (mutex_owner(&lofi_lock) == curthread)
705 return (EINVAL);
706
707 mutex_enter(&lofi_lock);
708
709 id = LOFI_MINOR2ID(getminor(*devp));
710 part = LOFI_PART(getminor(*devp));
711 mask = (1U << part);
712
713 /* master control device */
714 if (id == 0) {
715 mutex_exit(&lofi_lock);
716 return (0);
717 }
718
719 /* otherwise, the mapping should already exist */
720 lsp = ddi_get_soft_state(lofi_statep, id);
721 if (lsp == NULL) {
722 mutex_exit(&lofi_lock);
723 return (EINVAL);
724 }
725
726 if (lsp->ls_cleanup == B_TRUE) {
727 mutex_exit(&lofi_lock);
728 return (ENXIO);
729 }
730
731 if (lsp->ls_vp == NULL) {
732 mutex_exit(&lofi_lock);
733 return (ENXIO);
734 }
735
736 if (lsp->ls_readonly && (flag & FWRITE)) {
737 mutex_exit(&lofi_lock);
738 return (EROFS);
739 }
740
741 if ((lsp->ls_open_excl) & (mask)) {
742 mutex_exit(&lofi_lock);
743 return (EBUSY);
744 }
745
746 if (flag & FEXCL) {
747 if (lsp->ls_open_lyr[part]) {
748 mutex_exit(&lofi_lock);
749 return (EBUSY);
750 }
751 for (int i = 0; i < OTYP_LYR; i++) {
752 if (lsp->ls_open_reg[i] & mask) {
753 mutex_exit(&lofi_lock);
754 return (EBUSY);
755 }
756 }
757 }
758
759 if (lsp->ls_cmlbhandle != NULL) {
760 if (cmlb_validate(lsp->ls_cmlbhandle, 0, 0) != 0) {
761 /*
762 * non-blocking opens are allowed to succeed to
763 * support format and fdisk to create partitioning.
764 */
765 if (!ndelay) {
766 mutex_exit(&lofi_lock);
767 return (ENXIO);
768 }
769 } else if (cmlb_partinfo(lsp->ls_cmlbhandle, part, &nblks, &lba,
770 NULL, NULL, 0) == 0) {
771 if ((!nblks) && ((!ndelay) || (otyp != OTYP_CHR))) {
772 mutex_exit(&lofi_lock);
773 return (ENXIO);
774 }
775 } else if (!ndelay) {
776 mutex_exit(&lofi_lock);
777 return (ENXIO);
778 }
779 }
780
781 if (otyp == OTYP_LYR) {
782 lsp->ls_open_lyr[part]++;
783 } else {
784 lsp->ls_open_reg[otyp] |= mask;
785 }
786 if (flag & FEXCL) {
787 lsp->ls_open_excl |= mask;
788 }
789
790 mutex_exit(&lofi_lock);
791 return (0);
792 }
793
794 static int
lofi_close(dev_t dev,int flag __unused,int otyp,struct cred * credp)795 lofi_close(dev_t dev, int flag __unused, int otyp, struct cred *credp)
796 {
797 minor_t part;
798 int id;
799 uint64_t mask;
800 struct lofi_state *lsp;
801
802 id = LOFI_MINOR2ID(getminor(dev));
803 part = LOFI_PART(getminor(dev));
804 mask = (1U << part);
805
806 mutex_enter(&lofi_lock);
807 lsp = ddi_get_soft_state(lofi_statep, id);
808 if (lsp == NULL) {
809 mutex_exit(&lofi_lock);
810 return (EINVAL);
811 }
812
813 if (id == 0) {
814 mutex_exit(&lofi_lock);
815 return (0);
816 }
817
818 if (lsp->ls_open_excl & mask)
819 lsp->ls_open_excl &= ~mask;
820
821 if (otyp == OTYP_LYR) {
822 lsp->ls_open_lyr[part]--;
823 } else {
824 lsp->ls_open_reg[otyp] &= ~mask;
825 }
826
827 /*
828 * If we forcibly closed the underlying device (li_force), or
829 * asked for cleanup (li_cleanup), finish up if we're the last
830 * out of the door.
831 */
832 if (!is_opened(lsp) &&
833 (lsp->ls_cleanup == B_TRUE || lsp->ls_vp == NULL)) {
834 lofi_free_dev(lsp);
835 lofi_destroy(lsp, credp);
836 }
837
838 mutex_exit(&lofi_lock);
839 return (0);
840 }
841
842 /*
843 * Sets the mechanism's initialization vector (IV) if one is needed.
844 * The IV is computed from the data block number. lsp->ls_mech is
845 * altered so that:
846 * lsp->ls_mech.cm_param_len is set to the IV len.
847 * lsp->ls_mech.cm_param is set to the IV.
848 */
849 static int
lofi_blk_mech(struct lofi_state * lsp,longlong_t lblkno)850 lofi_blk_mech(struct lofi_state *lsp, longlong_t lblkno)
851 {
852 int ret;
853 crypto_data_t cdata;
854 char *iv;
855 size_t iv_len;
856 size_t min;
857 void *data;
858 size_t datasz;
859
860 ASSERT(MUTEX_HELD(&lsp->ls_crypto_lock));
861
862 if (lsp == NULL)
863 return (CRYPTO_DEVICE_ERROR);
864
865 /* lsp->ls_mech.cm_param{_len} has already been set for static iv */
866 if (lsp->ls_iv_type == IVM_NONE) {
867 return (CRYPTO_SUCCESS);
868 }
869
870 /*
871 * if kmem already alloced from previous call and it's the same size
872 * we need now, just recycle it; allocate new kmem only if we have to
873 */
874 if (lsp->ls_mech.cm_param == NULL ||
875 lsp->ls_mech.cm_param_len != lsp->ls_iv_len) {
876 iv_len = lsp->ls_iv_len;
877 iv = kmem_zalloc(iv_len, KM_SLEEP);
878 } else {
879 iv_len = lsp->ls_mech.cm_param_len;
880 iv = lsp->ls_mech.cm_param;
881 bzero(iv, iv_len);
882 }
883
884 switch (lsp->ls_iv_type) {
885 case IVM_ENC_BLKNO:
886 /* iv is not static, lblkno changes each time */
887 data = &lblkno;
888 datasz = sizeof (lblkno);
889 break;
890 default:
891 data = 0;
892 datasz = 0;
893 break;
894 }
895
896 /*
897 * write blkno into the iv buffer padded on the left in case
898 * blkno ever grows bigger than its current longlong_t size
899 * or a variation other than blkno is used for the iv data
900 */
901 min = MIN(datasz, iv_len);
902 bcopy(data, iv + (iv_len - min), min);
903
904 /* encrypt the data in-place to get the IV */
905 SETUP_C_DATA(cdata, iv, iv_len);
906
907 ret = crypto_encrypt(&lsp->ls_iv_mech, &cdata, &lsp->ls_key,
908 NULL, NULL, NULL);
909 if (ret != CRYPTO_SUCCESS) {
910 cmn_err(CE_WARN, "failed to create iv for block %lld: (0x%x)",
911 lblkno, ret);
912 if (lsp->ls_mech.cm_param != iv)
913 kmem_free(iv, iv_len);
914
915 return (ret);
916 }
917
918 /* clean up the iv from the last computation */
919 if (lsp->ls_mech.cm_param != NULL && lsp->ls_mech.cm_param != iv)
920 kmem_free(lsp->ls_mech.cm_param, lsp->ls_mech.cm_param_len);
921
922 lsp->ls_mech.cm_param_len = iv_len;
923 lsp->ls_mech.cm_param = iv;
924
925 return (CRYPTO_SUCCESS);
926 }
927
928 /*
929 * Performs encryption and decryption of a chunk of data of size "len",
930 * one DEV_BSIZE block at a time. "len" is assumed to be a multiple of
931 * DEV_BSIZE.
932 */
933 static int
lofi_crypto(struct lofi_state * lsp,struct buf * bp,caddr_t plaintext,caddr_t ciphertext,size_t len,boolean_t op_encrypt)934 lofi_crypto(struct lofi_state *lsp, struct buf *bp, caddr_t plaintext,
935 caddr_t ciphertext, size_t len, boolean_t op_encrypt)
936 {
937 crypto_data_t cdata;
938 crypto_data_t wdata;
939 int ret;
940 longlong_t lblkno = bp->b_lblkno;
941
942 mutex_enter(&lsp->ls_crypto_lock);
943
944 /*
945 * though we could encrypt/decrypt entire "len" chunk of data, we need
946 * to break it into DEV_BSIZE pieces to capture blkno incrementing
947 */
948 SETUP_C_DATA(cdata, plaintext, len);
949 cdata.cd_length = DEV_BSIZE;
950 if (ciphertext != NULL) { /* not in-place crypto */
951 SETUP_C_DATA(wdata, ciphertext, len);
952 wdata.cd_length = DEV_BSIZE;
953 }
954
955 do {
956 ret = lofi_blk_mech(lsp, lblkno);
957 if (ret != CRYPTO_SUCCESS)
958 continue;
959
960 if (op_encrypt) {
961 ret = crypto_encrypt(&lsp->ls_mech, &cdata,
962 &lsp->ls_key, NULL,
963 ((ciphertext != NULL) ? &wdata : NULL), NULL);
964 } else {
965 ret = crypto_decrypt(&lsp->ls_mech, &cdata,
966 &lsp->ls_key, NULL,
967 ((ciphertext != NULL) ? &wdata : NULL), NULL);
968 }
969
970 cdata.cd_offset += DEV_BSIZE;
971 if (ciphertext != NULL)
972 wdata.cd_offset += DEV_BSIZE;
973 lblkno++;
974 } while (ret == CRYPTO_SUCCESS && cdata.cd_offset < len);
975
976 mutex_exit(&lsp->ls_crypto_lock);
977
978 if (ret != CRYPTO_SUCCESS) {
979 cmn_err(CE_WARN, "%s failed for block %lld: (0x%x)",
980 op_encrypt ? "crypto_encrypt()" : "crypto_decrypt()",
981 lblkno, ret);
982 }
983
984 return (ret);
985 }
986
987 static int
lofi_rdwr(caddr_t bufaddr,offset_t offset,struct buf * bp,struct lofi_state * lsp,size_t len,lofi_rdrw_method_t method,caddr_t bcopy_locn)988 lofi_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp,
989 struct lofi_state *lsp, size_t len, lofi_rdrw_method_t method,
990 caddr_t bcopy_locn)
991 {
992 ssize_t resid;
993 int isread;
994 int error;
995
996 /*
997 * Handles reads/writes for both plain and encrypted lofi
998 * Note: offset is already shifted by lsp->ls_crypto_offset
999 * when it gets here.
1000 */
1001
1002 isread = bp->b_flags & B_READ;
1003 if (isread) {
1004 if (method == RDWR_BCOPY) {
1005 /* DO NOT update bp->b_resid for bcopy */
1006 bcopy(bcopy_locn, bufaddr, len);
1007 error = 0;
1008 } else { /* RDWR_RAW */
1009 error = vn_rdwr(UIO_READ, lsp->ls_vp, bufaddr, len,
1010 offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred,
1011 &resid);
1012 bp->b_resid = resid;
1013 }
1014 if (lsp->ls_crypto_enabled && error == 0) {
1015 if (lofi_crypto(lsp, bp, bufaddr, NULL, len,
1016 B_FALSE) != CRYPTO_SUCCESS) {
1017 /*
1018 * XXX: original code didn't set residual
1019 * back to len because no error was expected
1020 * from bcopy() if encryption is not enabled
1021 */
1022 if (method != RDWR_BCOPY)
1023 bp->b_resid = len;
1024 error = EIO;
1025 }
1026 }
1027 return (error);
1028 } else {
1029 void *iobuf = bufaddr;
1030
1031 if (lsp->ls_crypto_enabled) {
1032 /* don't do in-place crypto to keep bufaddr intact */
1033 iobuf = kmem_alloc(len, KM_SLEEP);
1034 if (lofi_crypto(lsp, bp, bufaddr, iobuf, len,
1035 B_TRUE) != CRYPTO_SUCCESS) {
1036 kmem_free(iobuf, len);
1037 if (method != RDWR_BCOPY)
1038 bp->b_resid = len;
1039 return (EIO);
1040 }
1041 }
1042 if (method == RDWR_BCOPY) {
1043 /* DO NOT update bp->b_resid for bcopy */
1044 bcopy(iobuf, bcopy_locn, len);
1045 error = 0;
1046 } else { /* RDWR_RAW */
1047 error = vn_rdwr(UIO_WRITE, lsp->ls_vp, iobuf, len,
1048 offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred,
1049 &resid);
1050 bp->b_resid = resid;
1051 }
1052 if (lsp->ls_crypto_enabled) {
1053 kmem_free(iobuf, len);
1054 }
1055 return (error);
1056 }
1057 }
1058
1059 static int
lofi_mapped_rdwr(caddr_t bufaddr,offset_t offset,struct buf * bp,struct lofi_state * lsp)1060 lofi_mapped_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp,
1061 struct lofi_state *lsp)
1062 {
1063 int error;
1064 offset_t alignedoffset, mapoffset;
1065 size_t xfersize;
1066 int isread;
1067 int smflags;
1068 caddr_t mapaddr;
1069 size_t len;
1070 enum seg_rw srw;
1071 int save_error;
1072
1073 /*
1074 * Note: offset is already shifted by lsp->ls_crypto_offset
1075 * when it gets here.
1076 */
1077 if (lsp->ls_crypto_enabled)
1078 ASSERT(lsp->ls_vp_comp_size == lsp->ls_vp_size);
1079
1080 /*
1081 * segmap always gives us an 8K (MAXBSIZE) chunk, aligned on
1082 * an 8K boundary, but the buf transfer address may not be
1083 * aligned on more than a 512-byte boundary (we don't enforce
1084 * that even though we could). This matters since the initial
1085 * part of the transfer may not start at offset 0 within the
1086 * segmap'd chunk. So we have to compensate for that with
1087 * 'mapoffset'. Subsequent chunks always start off at the
1088 * beginning, and the last is capped by b_resid
1089 *
1090 * Visually, where "|" represents page map boundaries:
1091 * alignedoffset (mapaddr begins at this segmap boundary)
1092 * | offset (from beginning of file)
1093 * | | len
1094 * v v v
1095 * ===|====X========|====...======|========X====|====
1096 * /-------------...---------------/
1097 * ^ bp->b_bcount/bp->b_resid at start
1098 * /----/--------/----...------/--------/
1099 * ^ ^ ^ ^ ^
1100 * | | | | nth xfersize (<= MAXBSIZE)
1101 * | | 2nd thru n-1st xfersize (= MAXBSIZE)
1102 * | 1st xfersize (<= MAXBSIZE)
1103 * mapoffset (offset into 1st segmap, non-0 1st time, 0 thereafter)
1104 *
1105 * Notes: "alignedoffset" is "offset" rounded down to nearest
1106 * MAXBSIZE boundary. "len" is next page boundary of size
1107 * PAGESIZE after "alignedoffset".
1108 */
1109 mapoffset = offset & MAXBOFFSET;
1110 alignedoffset = offset - mapoffset;
1111 bp->b_resid = bp->b_bcount;
1112 isread = bp->b_flags & B_READ;
1113 srw = isread ? S_READ : S_WRITE;
1114 do {
1115 xfersize = MIN(lsp->ls_vp_comp_size - offset,
1116 MIN(MAXBSIZE - mapoffset, bp->b_resid));
1117 len = roundup(mapoffset + xfersize, PAGESIZE);
1118 mapaddr = segmap_getmapflt(segkmap, lsp->ls_vp,
1119 alignedoffset, MAXBSIZE, 1, srw);
1120 /*
1121 * Now fault in the pages. This lets us check
1122 * for errors before we reference mapaddr and
1123 * try to resolve the fault in bcopy (which would
1124 * panic instead). And this can easily happen,
1125 * particularly if you've lofi'd a file over NFS
1126 * and someone deletes the file on the server.
1127 */
1128 error = segmap_fault(kas.a_hat, segkmap, mapaddr,
1129 len, F_SOFTLOCK, srw);
1130 if (error) {
1131 (void) segmap_release(segkmap, mapaddr, 0);
1132 if (FC_CODE(error) == FC_OBJERR)
1133 error = FC_ERRNO(error);
1134 else
1135 error = EIO;
1136 break;
1137 }
1138 /* error may be non-zero for encrypted lofi */
1139 error = lofi_rdwr(bufaddr, 0, bp, lsp, xfersize,
1140 RDWR_BCOPY, mapaddr + mapoffset);
1141 if (error == 0) {
1142 bp->b_resid -= xfersize;
1143 bufaddr += xfersize;
1144 offset += xfersize;
1145 }
1146 smflags = 0;
1147 if (isread) {
1148 smflags |= SM_FREE;
1149 /*
1150 * If we're reading an entire page starting
1151 * at a page boundary, there's a good chance
1152 * we won't need it again. Put it on the
1153 * head of the freelist.
1154 */
1155 if (mapoffset == 0 && xfersize == MAXBSIZE)
1156 smflags |= SM_DONTNEED;
1157 } else {
1158 /*
1159 * Write back good pages, it is okay to
1160 * always release asynchronous here as we'll
1161 * follow with VOP_FSYNC for B_SYNC buffers.
1162 */
1163 if (error == 0)
1164 smflags |= SM_WRITE | SM_ASYNC;
1165 }
1166 (void) segmap_fault(kas.a_hat, segkmap, mapaddr,
1167 len, F_SOFTUNLOCK, srw);
1168 save_error = segmap_release(segkmap, mapaddr, smflags);
1169 if (error == 0)
1170 error = save_error;
1171 /* only the first map may start partial */
1172 mapoffset = 0;
1173 alignedoffset += MAXBSIZE;
1174 } while ((error == 0) && (bp->b_resid > 0) &&
1175 (offset < lsp->ls_vp_comp_size));
1176
1177 return (error);
1178 }
1179
1180 /*
1181 * Check if segment seg_index is present in the decompressed segment
1182 * data cache.
1183 *
1184 * Returns a pointer to the decompressed segment data cache entry if
1185 * found, and NULL when decompressed data for this segment is not yet
1186 * cached.
1187 */
1188 static struct lofi_comp_cache *
lofi_find_comp_data(struct lofi_state * lsp,uint64_t seg_index)1189 lofi_find_comp_data(struct lofi_state *lsp, uint64_t seg_index)
1190 {
1191 struct lofi_comp_cache *lc;
1192
1193 ASSERT(MUTEX_HELD(&lsp->ls_comp_cache_lock));
1194
1195 for (lc = list_head(&lsp->ls_comp_cache); lc != NULL;
1196 lc = list_next(&lsp->ls_comp_cache, lc)) {
1197 if (lc->lc_index == seg_index) {
1198 /*
1199 * Decompressed segment data was found in the
1200 * cache.
1201 *
1202 * The cache uses an LRU replacement strategy;
1203 * move the entry to head of list.
1204 */
1205 list_remove(&lsp->ls_comp_cache, lc);
1206 list_insert_head(&lsp->ls_comp_cache, lc);
1207 return (lc);
1208 }
1209 }
1210 return (NULL);
1211 }
1212
1213 /*
1214 * Add the data for a decompressed segment at segment index
1215 * seg_index to the cache of the decompressed segments.
1216 *
1217 * Returns a pointer to the cache element structure in case
1218 * the data was added to the cache; returns NULL when the data
1219 * wasn't cached.
1220 */
1221 static struct lofi_comp_cache *
lofi_add_comp_data(struct lofi_state * lsp,uint64_t seg_index,uchar_t * data)1222 lofi_add_comp_data(struct lofi_state *lsp, uint64_t seg_index,
1223 uchar_t *data)
1224 {
1225 struct lofi_comp_cache *lc;
1226
1227 ASSERT(MUTEX_HELD(&lsp->ls_comp_cache_lock));
1228
1229 while (lsp->ls_comp_cache_count > lofi_max_comp_cache) {
1230 lc = list_remove_tail(&lsp->ls_comp_cache);
1231 ASSERT(lc != NULL);
1232 kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
1233 kmem_free(lc, sizeof (struct lofi_comp_cache));
1234 lsp->ls_comp_cache_count--;
1235 }
1236
1237 /*
1238 * Do not cache when disabled by tunable variable
1239 */
1240 if (lofi_max_comp_cache == 0)
1241 return (NULL);
1242
1243 /*
1244 * When the cache has not yet reached the maximum allowed
1245 * number of segments, allocate a new cache element.
1246 * Otherwise the cache is full; reuse the last list element
1247 * (LRU) for caching the decompressed segment data.
1248 *
1249 * The cache element for the new decompressed segment data is
1250 * added to the head of the list.
1251 */
1252 if (lsp->ls_comp_cache_count < lofi_max_comp_cache) {
1253 lc = kmem_alloc(sizeof (struct lofi_comp_cache), KM_SLEEP);
1254 lc->lc_data = NULL;
1255 list_insert_head(&lsp->ls_comp_cache, lc);
1256 lsp->ls_comp_cache_count++;
1257 } else {
1258 lc = list_remove_tail(&lsp->ls_comp_cache);
1259 if (lc == NULL)
1260 return (NULL);
1261 list_insert_head(&lsp->ls_comp_cache, lc);
1262 }
1263
1264 /*
1265 * Free old uncompressed segment data when reusing a cache
1266 * entry.
1267 */
1268 if (lc->lc_data != NULL)
1269 kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
1270
1271 lc->lc_data = data;
1272 lc->lc_index = seg_index;
1273 return (lc);
1274 }
1275
1276 static int
gzip_decompress(void * src,size_t srclen,void * dst,size_t * dstlen,int level __unused)1277 gzip_decompress(void *src, size_t srclen, void *dst,
1278 size_t *dstlen, int level __unused)
1279 {
1280 ASSERT(*dstlen >= srclen);
1281
1282 if (z_uncompress(dst, dstlen, src, srclen) != Z_OK)
1283 return (-1);
1284 return (0);
1285 }
1286
1287 #define LZMA_HEADER_SIZE (LZMA_PROPS_SIZE + 8)
1288 static int
lzma_decompress(void * src,size_t srclen,void * dst,size_t * dstlen,int level __unused)1289 lzma_decompress(void *src, size_t srclen, void *dst,
1290 size_t *dstlen, int level __unused)
1291 {
1292 size_t insizepure;
1293 void *actual_src;
1294 ELzmaStatus status;
1295
1296 insizepure = srclen - LZMA_HEADER_SIZE;
1297 actual_src = (void *)((Byte *)src + LZMA_HEADER_SIZE);
1298
1299 if (LzmaDecode((Byte *)dst, (size_t *)dstlen,
1300 (const Byte *)actual_src, &insizepure,
1301 (const Byte *)src, LZMA_PROPS_SIZE, LZMA_FINISH_ANY, &status,
1302 &g_Alloc) != SZ_OK) {
1303 return (-1);
1304 }
1305 return (0);
1306 }
1307
1308 static void
lofi_trim_task(void * arg)1309 lofi_trim_task(void *arg)
1310 {
1311 struct buf *bp = (struct buf *)arg;
1312 diskaddr_t p_lba = (diskaddr_t)(uintptr_t)bp->b_private;
1313 struct lofi_state *lsp;
1314 off64_t start, length;
1315 int error;
1316
1317 lsp = ddi_get_soft_state(lofi_statep,
1318 LOFI_MINOR2ID(getminor(bp->b_edev)));
1319
1320 if (lsp == NULL) {
1321 error = ENXIO;
1322 goto errout;
1323 }
1324
1325 if (lsp->ls_kstat != NULL) {
1326 mutex_enter(lsp->ls_kstat->ks_lock);
1327 kstat_waitq_to_runq(KSTAT_IO_PTR(lsp->ls_kstat));
1328 mutex_exit(lsp->ls_kstat->ks_lock);
1329 }
1330
1331 if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) {
1332 error = EIO;
1333 goto errout;
1334 }
1335
1336 mutex_enter(&lsp->ls_vp_lock);
1337 lsp->ls_vp_iocount++;
1338 mutex_exit(&lsp->ls_vp_lock);
1339
1340 start = (bp->b_lblkno + p_lba) << lsp->ls_lbshift;
1341 length = bp->b_bcount;
1342
1343 if (lsp->ls_vp->v_type == VCHR || lsp->ls_vp->v_type == VBLK) {
1344 int rv;
1345 dkioc_free_list_t dfl = {
1346 .dfl_num_exts = 1,
1347 .dfl_offset = 0,
1348 .dfl_flags = 0,
1349 .dfl_exts = {
1350 {
1351 .dfle_start = start,
1352 .dfle_length = length
1353 }
1354 }
1355 };
1356
1357 error = VOP_IOCTL(lsp->ls_vp, DKIOCFREE, (intptr_t)&dfl,
1358 FKIOCTL, kcred, &rv, NULL);
1359 } else {
1360 struct flock64 flck = { 0 };
1361
1362 flck.l_start = start;
1363 flck.l_len = length;
1364 flck.l_type = F_FREESP;
1365 flck.l_whence = 0;
1366
1367 error = VOP_SPACE(lsp->ls_vp, F_FREESP, &flck, 0, 0, kcred,
1368 NULL);
1369 }
1370
1371 mutex_enter(&lsp->ls_vp_lock);
1372 if (--lsp->ls_vp_iocount == 0)
1373 cv_broadcast(&lsp->ls_vp_cv);
1374 mutex_exit(&lsp->ls_vp_lock);
1375
1376 errout:
1377
1378 if (lsp != NULL && lsp->ls_kstat != NULL) {
1379 mutex_enter(lsp->ls_kstat->ks_lock);
1380 kstat_runq_exit(KSTAT_IO_PTR(lsp->ls_kstat));
1381 mutex_exit(lsp->ls_kstat->ks_lock);
1382 }
1383
1384 bioerror(bp, error);
1385 biodone(bp);
1386 }
1387
1388 /*
1389 * This is basically what strategy used to be before we found we
1390 * needed task queues.
1391 */
1392 static void
lofi_strategy_task(void * arg)1393 lofi_strategy_task(void *arg)
1394 {
1395 struct buf *bp = (struct buf *)arg;
1396 diskaddr_t p_lba = (diskaddr_t)(uintptr_t)bp->b_private;
1397 int error;
1398 int syncflag = 0;
1399 struct lofi_state *lsp;
1400 offset_t offset;
1401 caddr_t bufaddr;
1402 size_t len;
1403 size_t xfersize;
1404 boolean_t bufinited = B_FALSE;
1405
1406 lsp = ddi_get_soft_state(lofi_statep,
1407 LOFI_MINOR2ID(getminor(bp->b_edev)));
1408
1409 if (lsp == NULL) {
1410 error = ENXIO;
1411 goto errout;
1412 }
1413 if (lsp->ls_kstat) {
1414 mutex_enter(lsp->ls_kstat->ks_lock);
1415 kstat_waitq_to_runq(KSTAT_IO_PTR(lsp->ls_kstat));
1416 mutex_exit(lsp->ls_kstat->ks_lock);
1417 }
1418
1419 mutex_enter(&lsp->ls_vp_lock);
1420 lsp->ls_vp_iocount++;
1421 mutex_exit(&lsp->ls_vp_lock);
1422
1423 bp_mapin(bp);
1424 bufaddr = bp->b_un.b_addr;
1425 /* offset within file */
1426 offset = (bp->b_lblkno + p_lba) << lsp->ls_lbshift;
1427 if (lsp->ls_crypto_enabled) {
1428 /* encrypted data really begins after crypto header */
1429 offset += lsp->ls_crypto_offset;
1430 }
1431 len = bp->b_bcount;
1432 bufinited = B_TRUE;
1433
1434 if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) {
1435 error = EIO;
1436 goto errout;
1437 }
1438
1439 /*
1440 * If we're writing and the buffer was not B_ASYNC
1441 * we'll follow up with a VOP_FSYNC() to force any
1442 * asynchronous I/O to stable storage.
1443 */
1444 if (!(bp->b_flags & B_READ) && !(bp->b_flags & B_ASYNC))
1445 syncflag = FSYNC;
1446
1447 /*
1448 * We used to always use vn_rdwr here, but we cannot do that because
1449 * we might decide to read or write from the the underlying
1450 * file during this call, which would be a deadlock because
1451 * we have the rw_lock. So instead we page, unless it's not
1452 * mapable or it's a character device or it's an encrypted lofi.
1453 */
1454 if ((lsp->ls_vp->v_flag & VNOMAP) || (lsp->ls_vp->v_type == VCHR) ||
1455 lsp->ls_crypto_enabled) {
1456 error = lofi_rdwr(bufaddr, offset, bp, lsp, len, RDWR_RAW,
1457 NULL);
1458 } else if (lsp->ls_uncomp_seg_sz == 0) {
1459 error = lofi_mapped_rdwr(bufaddr, offset, bp, lsp);
1460 } else {
1461 uchar_t *compressed_seg = NULL, *cmpbuf;
1462 uchar_t *uncompressed_seg = NULL;
1463 lofi_compress_info_t *li;
1464 size_t oblkcount;
1465 ulong_t seglen;
1466 uint64_t sblkno, eblkno, cmpbytes;
1467 uint64_t uncompressed_seg_index;
1468 struct lofi_comp_cache *lc;
1469 offset_t sblkoff, eblkoff;
1470 u_offset_t salign, ealign;
1471 u_offset_t sdiff;
1472 uint32_t comp_data_sz;
1473 uint64_t i;
1474 int j;
1475
1476 /*
1477 * From here on we're dealing primarily with compressed files
1478 */
1479 ASSERT(!lsp->ls_crypto_enabled);
1480
1481 /*
1482 * Compressed files can only be read from and
1483 * not written to
1484 */
1485 if (!(bp->b_flags & B_READ)) {
1486 bp->b_resid = bp->b_bcount;
1487 error = EROFS;
1488 goto done;
1489 }
1490
1491 ASSERT(lsp->ls_comp_algorithm_index >= 0);
1492 li = &lofi_compress_table[lsp->ls_comp_algorithm_index];
1493 /*
1494 * Compute starting and ending compressed segment numbers
1495 * We use only bitwise operations avoiding division and
1496 * modulus because we enforce the compression segment size
1497 * to a power of 2
1498 */
1499 sblkno = offset >> lsp->ls_comp_seg_shift;
1500 sblkoff = offset & (lsp->ls_uncomp_seg_sz - 1);
1501 eblkno = (offset + bp->b_bcount) >> lsp->ls_comp_seg_shift;
1502 eblkoff = (offset + bp->b_bcount) & (lsp->ls_uncomp_seg_sz - 1);
1503
1504 /*
1505 * Check the decompressed segment cache.
1506 *
1507 * The cache is used only when the requested data
1508 * is within a segment. Requests that cross
1509 * segment boundaries bypass the cache.
1510 */
1511 if (sblkno == eblkno ||
1512 (sblkno + 1 == eblkno && eblkoff == 0)) {
1513 /*
1514 * Request doesn't cross a segment boundary,
1515 * now check the cache.
1516 */
1517 mutex_enter(&lsp->ls_comp_cache_lock);
1518 lc = lofi_find_comp_data(lsp, sblkno);
1519 if (lc != NULL) {
1520 /*
1521 * We've found the decompressed segment
1522 * data in the cache; reuse it.
1523 */
1524 bcopy(lc->lc_data + sblkoff, bufaddr,
1525 bp->b_bcount);
1526 mutex_exit(&lsp->ls_comp_cache_lock);
1527 bp->b_resid = 0;
1528 error = 0;
1529 goto done;
1530 }
1531 mutex_exit(&lsp->ls_comp_cache_lock);
1532 }
1533
1534 /*
1535 * Align start offset to block boundary for segmap
1536 */
1537 salign = lsp->ls_comp_seg_index[sblkno];
1538 sdiff = salign & (DEV_BSIZE - 1);
1539 salign -= sdiff;
1540 if (eblkno >= (lsp->ls_comp_index_sz - 1)) {
1541 /*
1542 * We're dealing with the last segment of
1543 * the compressed file -- the size of this
1544 * segment *may not* be the same as the
1545 * segment size for the file
1546 */
1547 eblkoff = (offset + bp->b_bcount) &
1548 (lsp->ls_uncomp_last_seg_sz - 1);
1549 ealign = lsp->ls_vp_comp_size;
1550 } else {
1551 ealign = lsp->ls_comp_seg_index[eblkno + 1];
1552 }
1553
1554 /*
1555 * Preserve original request paramaters
1556 */
1557 oblkcount = bp->b_bcount;
1558
1559 /*
1560 * Assign the calculated parameters
1561 */
1562 comp_data_sz = ealign - salign;
1563 bp->b_bcount = comp_data_sz;
1564
1565 /*
1566 * Buffers to hold compressed segments are pre-allocated
1567 * on a per-thread basis. Find a pre-allocated buffer
1568 * that is not currently in use and mark it for use.
1569 */
1570 mutex_enter(&lsp->ls_comp_bufs_lock);
1571 for (j = 0; j < lofi_taskq_nthreads; j++) {
1572 if (lsp->ls_comp_bufs[j].inuse == 0) {
1573 lsp->ls_comp_bufs[j].inuse = 1;
1574 break;
1575 }
1576 }
1577
1578 mutex_exit(&lsp->ls_comp_bufs_lock);
1579 ASSERT(j < lofi_taskq_nthreads);
1580
1581 /*
1582 * If the pre-allocated buffer size does not match
1583 * the size of the I/O request, re-allocate it with
1584 * the appropriate size
1585 */
1586 if (lsp->ls_comp_bufs[j].bufsize < bp->b_bcount) {
1587 if (lsp->ls_comp_bufs[j].bufsize > 0)
1588 kmem_free(lsp->ls_comp_bufs[j].buf,
1589 lsp->ls_comp_bufs[j].bufsize);
1590 lsp->ls_comp_bufs[j].buf = kmem_alloc(bp->b_bcount,
1591 KM_SLEEP);
1592 lsp->ls_comp_bufs[j].bufsize = bp->b_bcount;
1593 }
1594 compressed_seg = lsp->ls_comp_bufs[j].buf;
1595
1596 /*
1597 * Map in the calculated number of blocks
1598 */
1599 error = lofi_mapped_rdwr((caddr_t)compressed_seg, salign,
1600 bp, lsp);
1601
1602 bp->b_bcount = oblkcount;
1603 bp->b_resid = oblkcount;
1604 if (error != 0)
1605 goto done;
1606
1607 /*
1608 * decompress compressed blocks start
1609 */
1610 cmpbuf = compressed_seg + sdiff;
1611 for (i = sblkno; i <= eblkno; i++) {
1612 ASSERT(i < lsp->ls_comp_index_sz - 1);
1613 uchar_t *useg;
1614
1615 /*
1616 * The last segment is special in that it is
1617 * most likely not going to be the same
1618 * (uncompressed) size as the other segments.
1619 */
1620 if (i == (lsp->ls_comp_index_sz - 2)) {
1621 seglen = lsp->ls_uncomp_last_seg_sz;
1622 } else {
1623 seglen = lsp->ls_uncomp_seg_sz;
1624 }
1625
1626 /*
1627 * Each of the segment index entries contains
1628 * the starting block number for that segment.
1629 * The number of compressed bytes in a segment
1630 * is thus the difference between the starting
1631 * block number of this segment and the starting
1632 * block number of the next segment.
1633 */
1634 cmpbytes = lsp->ls_comp_seg_index[i + 1] -
1635 lsp->ls_comp_seg_index[i];
1636
1637 /*
1638 * The first byte in a compressed segment is a flag
1639 * that indicates whether this segment is compressed
1640 * at all.
1641 *
1642 * The variable 'useg' is used (instead of
1643 * uncompressed_seg) in this loop to keep a
1644 * reference to the uncompressed segment.
1645 *
1646 * N.B. If 'useg' is replaced with uncompressed_seg,
1647 * it leads to memory leaks and heap corruption in
1648 * corner cases where compressed segments lie
1649 * adjacent to uncompressed segments.
1650 */
1651 if (*cmpbuf == UNCOMPRESSED) {
1652 useg = cmpbuf + SEGHDR;
1653 } else {
1654 if (uncompressed_seg == NULL)
1655 uncompressed_seg =
1656 kmem_alloc(lsp->ls_uncomp_seg_sz,
1657 KM_SLEEP);
1658 useg = uncompressed_seg;
1659 uncompressed_seg_index = i;
1660
1661 if (li->l_decompress((cmpbuf + SEGHDR),
1662 (cmpbytes - SEGHDR), uncompressed_seg,
1663 &seglen, li->l_level) != 0) {
1664 error = EIO;
1665 goto done;
1666 }
1667 }
1668
1669 /*
1670 * Determine how much uncompressed data we
1671 * have to copy and copy it
1672 */
1673 xfersize = lsp->ls_uncomp_seg_sz - sblkoff;
1674 if (i == eblkno)
1675 xfersize -= (lsp->ls_uncomp_seg_sz - eblkoff);
1676
1677 bcopy((useg + sblkoff), bufaddr, xfersize);
1678
1679 cmpbuf += cmpbytes;
1680 bufaddr += xfersize;
1681 bp->b_resid -= xfersize;
1682 sblkoff = 0;
1683
1684 if (bp->b_resid == 0)
1685 break;
1686 } /* decompress compressed blocks ends */
1687
1688 /*
1689 * Skip to done if there is no uncompressed data to cache
1690 */
1691 if (uncompressed_seg == NULL)
1692 goto done;
1693
1694 /*
1695 * Add the data for the last decompressed segment to
1696 * the cache.
1697 *
1698 * In case the uncompressed segment data was added to (and
1699 * is referenced by) the cache, make sure we don't free it
1700 * here.
1701 */
1702 mutex_enter(&lsp->ls_comp_cache_lock);
1703 if ((lc = lofi_add_comp_data(lsp, uncompressed_seg_index,
1704 uncompressed_seg)) != NULL) {
1705 uncompressed_seg = NULL;
1706 }
1707 mutex_exit(&lsp->ls_comp_cache_lock);
1708
1709 done:
1710 if (compressed_seg != NULL) {
1711 mutex_enter(&lsp->ls_comp_bufs_lock);
1712 lsp->ls_comp_bufs[j].inuse = 0;
1713 mutex_exit(&lsp->ls_comp_bufs_lock);
1714 }
1715 if (uncompressed_seg != NULL)
1716 kmem_free(uncompressed_seg, lsp->ls_uncomp_seg_sz);
1717 } /* end of handling compressed files */
1718
1719 if ((error == 0) && (syncflag != 0))
1720 error = VOP_FSYNC(lsp->ls_vp, syncflag, kcred, NULL);
1721
1722 errout:
1723 if (bufinited && lsp->ls_kstat) {
1724 size_t n_done = bp->b_bcount - bp->b_resid;
1725 kstat_io_t *kioptr;
1726
1727 mutex_enter(lsp->ls_kstat->ks_lock);
1728 kioptr = KSTAT_IO_PTR(lsp->ls_kstat);
1729 if (bp->b_flags & B_READ) {
1730 kioptr->nread += n_done;
1731 kioptr->reads++;
1732 } else {
1733 kioptr->nwritten += n_done;
1734 kioptr->writes++;
1735 }
1736 kstat_runq_exit(kioptr);
1737 mutex_exit(lsp->ls_kstat->ks_lock);
1738 }
1739
1740 mutex_enter(&lsp->ls_vp_lock);
1741 if (--lsp->ls_vp_iocount == 0)
1742 cv_broadcast(&lsp->ls_vp_cv);
1743 mutex_exit(&lsp->ls_vp_lock);
1744
1745 bioerror(bp, error);
1746 biodone(bp);
1747 }
1748
1749 static int
lofi_strategy_backend(struct buf * bp,task_func_t taskfunc)1750 lofi_strategy_backend(struct buf *bp, task_func_t taskfunc)
1751 {
1752 struct lofi_state *lsp;
1753 offset_t offset;
1754 minor_t part;
1755 diskaddr_t p_lba;
1756 diskaddr_t p_nblks;
1757 int shift;
1758
1759 /*
1760 * We cannot just do I/O here, because the current thread
1761 * _might_ end up back in here because the underlying filesystem
1762 * wants a buffer, which eventually gets into bio_recycle and
1763 * might call into lofi to write out a delayed-write buffer.
1764 * This is bad if the filesystem above lofi is the same as below.
1765 *
1766 * We could come up with a complex strategy using threads to
1767 * do the I/O asynchronously, or we could use task queues. task
1768 * queues were incredibly easy so they win.
1769 */
1770
1771 lsp = ddi_get_soft_state(lofi_statep,
1772 LOFI_MINOR2ID(getminor(bp->b_edev)));
1773 part = LOFI_PART(getminor(bp->b_edev));
1774
1775 if (lsp == NULL) {
1776 bioerror(bp, ENXIO);
1777 biodone(bp);
1778 return (0);
1779 }
1780
1781 /* Check if we are closing. */
1782 mutex_enter(&lsp->ls_vp_lock);
1783 if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) {
1784 mutex_exit(&lsp->ls_vp_lock);
1785 bioerror(bp, EIO);
1786 biodone(bp);
1787 return (0);
1788 }
1789 mutex_exit(&lsp->ls_vp_lock);
1790
1791 shift = lsp->ls_lbshift;
1792 p_lba = 0;
1793 p_nblks = lsp->ls_vp_size >> shift;
1794
1795 if (lsp->ls_cmlbhandle != NULL) {
1796 if (cmlb_partinfo(lsp->ls_cmlbhandle, part, &p_nblks, &p_lba,
1797 NULL, NULL, 0)) {
1798 bioerror(bp, ENXIO);
1799 biodone(bp);
1800 return (0);
1801 }
1802 }
1803
1804 /* start block past partition end? */
1805 if (bp->b_lblkno > p_nblks) {
1806 bioerror(bp, ENXIO);
1807 biodone(bp);
1808 return (0);
1809 }
1810
1811 offset = (bp->b_lblkno + p_lba) << shift; /* offset within file */
1812
1813 mutex_enter(&lsp->ls_vp_lock);
1814 if (lsp->ls_crypto_enabled) {
1815 /* encrypted data really begins after crypto header */
1816 offset += lsp->ls_crypto_offset;
1817 }
1818
1819 /* make sure we will not pass the file or partition size */
1820 if (offset == lsp->ls_vp_size ||
1821 offset == (((p_lba + p_nblks) << shift) + lsp->ls_crypto_offset)) {
1822 /* EOF */
1823 if ((bp->b_flags & B_READ) != 0) {
1824 bp->b_resid = bp->b_bcount;
1825 bioerror(bp, 0);
1826 } else {
1827 /* writes should fail */
1828 bioerror(bp, ENXIO);
1829 }
1830 biodone(bp);
1831 mutex_exit(&lsp->ls_vp_lock);
1832 return (0);
1833 }
1834 if ((offset > lsp->ls_vp_size) ||
1835 (offset > (((p_lba + p_nblks) << shift) + lsp->ls_crypto_offset)) ||
1836 ((offset + bp->b_bcount) > ((p_lba + p_nblks) << shift))) {
1837 bioerror(bp, ENXIO);
1838 biodone(bp);
1839 mutex_exit(&lsp->ls_vp_lock);
1840 return (0);
1841 }
1842
1843 mutex_exit(&lsp->ls_vp_lock);
1844
1845 if (lsp->ls_kstat) {
1846 mutex_enter(lsp->ls_kstat->ks_lock);
1847 kstat_waitq_enter(KSTAT_IO_PTR(lsp->ls_kstat));
1848 mutex_exit(lsp->ls_kstat->ks_lock);
1849 }
1850 bp->b_private = (void *)(uintptr_t)p_lba; /* partition start */
1851 (void) taskq_dispatch(lsp->ls_taskq, taskfunc, bp, KM_SLEEP);
1852 return (0);
1853 }
1854
1855 static int
lofi_strategy(struct buf * bp)1856 lofi_strategy(struct buf *bp)
1857 {
1858 return (lofi_strategy_backend(bp, lofi_strategy_task));
1859 }
1860
1861 static int
lofi_read(dev_t dev,struct uio * uio,struct cred * credp __unused)1862 lofi_read(dev_t dev, struct uio *uio, struct cred *credp __unused)
1863 {
1864 if (getminor(dev) == 0)
1865 return (EINVAL);
1866 UIO_CHECK(uio);
1867 return (physio(lofi_strategy, NULL, dev, B_READ, minphys, uio));
1868 }
1869
1870 static int
lofi_write(dev_t dev,struct uio * uio,struct cred * credp __unused)1871 lofi_write(dev_t dev, struct uio *uio, struct cred *credp __unused)
1872 {
1873 if (getminor(dev) == 0)
1874 return (EINVAL);
1875 UIO_CHECK(uio);
1876 return (physio(lofi_strategy, NULL, dev, B_WRITE, minphys, uio));
1877 }
1878
1879 static int
lofi_urw(struct lofi_state * lsp,uint16_t fmode,diskaddr_t off,size_t size,intptr_t arg,int flag,cred_t * credp)1880 lofi_urw(struct lofi_state *lsp, uint16_t fmode, diskaddr_t off, size_t size,
1881 intptr_t arg, int flag, cred_t *credp)
1882 {
1883 struct uio uio;
1884 iovec_t iov;
1885
1886 /*
1887 * 1024 * 1024 apes cmlb_tg_max_efi_xfer as a reasonable max.
1888 */
1889 if (size == 0 || size > 1024 * 1024 ||
1890 (size % (1 << lsp->ls_lbshift)) != 0)
1891 return (EINVAL);
1892
1893 iov.iov_base = (void *)arg;
1894 iov.iov_len = size;
1895 uio.uio_iov = &iov;
1896 uio.uio_iovcnt = 1;
1897 uio.uio_loffset = off;
1898 uio.uio_segflg = (flag & FKIOCTL) ? UIO_SYSSPACE : UIO_USERSPACE;
1899 uio.uio_llimit = MAXOFFSET_T;
1900 uio.uio_resid = size;
1901 uio.uio_fmode = fmode;
1902 uio.uio_extflg = 0;
1903
1904 return (fmode == FREAD ?
1905 lofi_read(lsp->ls_dev, &uio, credp) :
1906 lofi_write(lsp->ls_dev, &uio, credp));
1907 }
1908
1909 typedef struct {
1910 struct lofi_state *lcd_lsp;
1911 dev_t lcd_dev;
1912 } lofi_cb_data_t;
1913
1914 static int
lofi_free_space_cb(dkioc_free_list_t * dfl,void * arg,int kmflag __unused)1915 lofi_free_space_cb(dkioc_free_list_t *dfl, void *arg, int kmflag __unused)
1916 {
1917 dkioc_free_list_ext_t *ext;
1918 lofi_cb_data_t *cbd = arg;
1919 struct lofi_state *lsp = cbd->lcd_lsp;
1920 buf_t *bp = NULL;
1921 int error = 0;
1922
1923 bp = getrbuf(KM_SLEEP);
1924
1925 ext = dfl->dfl_exts;
1926 for (uint_t i = 0; i < dfl->dfl_num_exts; i++, ext++) {
1927 uint64_t start = dfl->dfl_offset + ext->dfle_start;
1928 uint64_t length = ext->dfle_length;
1929
1930 bp->b_edev = cbd->lcd_dev;
1931 bp->b_flags = B_WRITE;
1932 bp->b_un.b_addr = NULL;
1933 bp->b_resid = 0;
1934 bp->b_lblkno = start >> lsp->ls_lbshift;
1935 bp->b_bcount = length;
1936
1937 DTRACE_PROBE2(trim__issued, uint64_t, start, uint64_t, length);
1938
1939 error = lofi_strategy_backend(bp, lofi_trim_task);
1940 if (error != 0)
1941 break;
1942 (void) biowait(bp);
1943 }
1944
1945 freerbuf(bp);
1946 dfl_free(dfl);
1947 return (error);
1948 }
1949
1950 static int
lofi_free_space(struct lofi_state * lsp,dkioc_free_list_t * dfl,dev_t dev)1951 lofi_free_space(struct lofi_state *lsp, dkioc_free_list_t *dfl, dev_t dev)
1952 {
1953 dkioc_free_info_t dfi = {
1954 .dfi_bshift = lsp->ls_lbshift,
1955 .dfi_align = 1U << lsp->ls_lbshift,
1956 .dfi_max_bytes = 0,
1957 .dfi_max_ext = 0,
1958 .dfi_max_ext_bytes = 0
1959 };
1960
1961 lofi_cb_data_t cbd = {
1962 .lcd_lsp = lsp,
1963 .lcd_dev = dev
1964 };
1965
1966 return (dfl_iter(dfl, &dfi, lsp->ls_vp_size, lofi_free_space_cb,
1967 &cbd, KM_SLEEP));
1968 }
1969
1970 static int
lofi_aread(dev_t dev,struct aio_req * aio,struct cred * credp __unused)1971 lofi_aread(dev_t dev, struct aio_req *aio, struct cred *credp __unused)
1972 {
1973 if (getminor(dev) == 0)
1974 return (EINVAL);
1975 UIO_CHECK(aio->aio_uio);
1976 return (aphysio(lofi_strategy, anocancel, dev, B_READ, minphys, aio));
1977 }
1978
1979 static int
lofi_awrite(dev_t dev,struct aio_req * aio,struct cred * credp __unused)1980 lofi_awrite(dev_t dev, struct aio_req *aio, struct cred *credp __unused)
1981 {
1982 if (getminor(dev) == 0)
1983 return (EINVAL);
1984 UIO_CHECK(aio->aio_uio);
1985 return (aphysio(lofi_strategy, anocancel, dev, B_WRITE, minphys, aio));
1986 }
1987
1988 static int
lofi_info(dev_info_t * dip __unused,ddi_info_cmd_t infocmd,void * arg,void ** result)1989 lofi_info(dev_info_t *dip __unused, ddi_info_cmd_t infocmd, void *arg,
1990 void **result)
1991 {
1992 struct lofi_state *lsp;
1993 dev_t dev = (dev_t)arg;
1994 int instance;
1995
1996 instance = LOFI_MINOR2ID(getminor(dev));
1997 switch (infocmd) {
1998 case DDI_INFO_DEVT2DEVINFO:
1999 lsp = ddi_get_soft_state(lofi_statep, instance);
2000 if (lsp == NULL)
2001 return (DDI_FAILURE);
2002 *result = lsp->ls_dip;
2003 return (DDI_SUCCESS);
2004 case DDI_INFO_DEVT2INSTANCE:
2005 *result = (void *) (intptr_t)instance;
2006 return (DDI_SUCCESS);
2007 }
2008 return (DDI_FAILURE);
2009 }
2010
2011 static int
lofi_create_minor_nodes(struct lofi_state * lsp,boolean_t labeled)2012 lofi_create_minor_nodes(struct lofi_state *lsp, boolean_t labeled)
2013 {
2014 int error = 0;
2015 int instance = ddi_get_instance(lsp->ls_dip);
2016
2017 if (labeled == B_TRUE) {
2018 cmlb_alloc_handle(&lsp->ls_cmlbhandle);
2019 error = cmlb_attach(lsp->ls_dip, &lofi_tg_ops, DTYPE_DIRECT,
2020 B_FALSE, B_FALSE, DDI_NT_BLOCK_CHAN,
2021 CMLB_CREATE_P0_MINOR_NODE, lsp->ls_cmlbhandle, (void *)1);
2022
2023 if (error != DDI_SUCCESS) {
2024 cmlb_free_handle(&lsp->ls_cmlbhandle);
2025 lsp->ls_cmlbhandle = NULL;
2026 error = ENXIO;
2027 }
2028 } else {
2029 /* create minor nodes */
2030 error = ddi_create_minor_node(lsp->ls_dip, LOFI_BLOCK_NODE,
2031 S_IFBLK, LOFI_ID2MINOR(instance), DDI_PSEUDO, 0);
2032 if (error == DDI_SUCCESS) {
2033 error = ddi_create_minor_node(lsp->ls_dip,
2034 LOFI_CHAR_NODE, S_IFCHR, LOFI_ID2MINOR(instance),
2035 DDI_PSEUDO, 0);
2036 if (error != DDI_SUCCESS) {
2037 ddi_remove_minor_node(lsp->ls_dip,
2038 LOFI_BLOCK_NODE);
2039 error = ENXIO;
2040 }
2041 } else
2042 error = ENXIO;
2043 }
2044 return (error);
2045 }
2046
2047 static int
lofi_zone_bind(struct lofi_state * lsp)2048 lofi_zone_bind(struct lofi_state *lsp)
2049 {
2050 int error = 0;
2051
2052 mutex_enter(&curproc->p_lock);
2053 if ((error = rctl_incr_lofi(curproc, curproc->p_zone, 1)) != 0) {
2054 mutex_exit(&curproc->p_lock);
2055 return (error);
2056 }
2057 mutex_exit(&curproc->p_lock);
2058
2059 if (ddi_prop_update_string(DDI_DEV_T_NONE, lsp->ls_dip, ZONE_PROP_NAME,
2060 (char *)curproc->p_zone->zone_name) != DDI_PROP_SUCCESS) {
2061 rctl_decr_lofi(curproc->p_zone, 1);
2062 error = EINVAL;
2063 } else {
2064 zone_init_ref(&lsp->ls_zone);
2065 zone_hold_ref(curzone, &lsp->ls_zone, ZONE_REF_LOFI);
2066 }
2067 return (error);
2068 }
2069
2070 static void
lofi_zone_unbind(struct lofi_state * lsp)2071 lofi_zone_unbind(struct lofi_state *lsp)
2072 {
2073 (void) ddi_prop_remove(DDI_DEV_T_NONE, lsp->ls_dip, ZONE_PROP_NAME);
2074 rctl_decr_lofi(curproc->p_zone, 1);
2075 zone_rele_ref(&lsp->ls_zone, ZONE_REF_LOFI);
2076 }
2077
2078 static int
lofi_online_dev(dev_info_t * dip)2079 lofi_online_dev(dev_info_t *dip)
2080 {
2081 boolean_t labeled;
2082 int error;
2083 int instance = ddi_get_instance(dip);
2084 struct lofi_state *lsp;
2085
2086 labeled = B_FALSE;
2087 if (ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "labeled"))
2088 labeled = B_TRUE;
2089
2090 /* lsp alloc+init, soft state is freed in lofi_detach */
2091 error = ddi_soft_state_zalloc(lofi_statep, instance);
2092 if (error == DDI_FAILURE) {
2093 return (ENOMEM);
2094 }
2095
2096 lsp = ddi_get_soft_state(lofi_statep, instance);
2097 lsp->ls_dip = dip;
2098
2099 if ((error = lofi_zone_bind(lsp)) != 0)
2100 goto err;
2101
2102 cv_init(&lsp->ls_vp_cv, NULL, CV_DRIVER, NULL);
2103 mutex_init(&lsp->ls_comp_cache_lock, NULL, MUTEX_DRIVER, NULL);
2104 mutex_init(&lsp->ls_comp_bufs_lock, NULL, MUTEX_DRIVER, NULL);
2105 mutex_init(&lsp->ls_kstat_lock, NULL, MUTEX_DRIVER, NULL);
2106 mutex_init(&lsp->ls_vp_lock, NULL, MUTEX_DRIVER, NULL);
2107
2108 if ((error = lofi_create_minor_nodes(lsp, labeled)) != 0) {
2109 lofi_zone_unbind(lsp);
2110 goto lerr;
2111 }
2112
2113 /* driver handles kernel-issued IOCTLs */
2114 if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
2115 DDI_KERNEL_IOCTL, NULL, 0) != DDI_PROP_SUCCESS) {
2116 error = DDI_FAILURE;
2117 goto merr;
2118 }
2119
2120 lsp->ls_kstat = kstat_create_zone(LOFI_DRIVER_NAME, instance,
2121 NULL, "disk", KSTAT_TYPE_IO, 1, 0, getzoneid());
2122 if (lsp->ls_kstat == NULL) {
2123 (void) ddi_prop_remove(DDI_DEV_T_NONE, lsp->ls_dip,
2124 DDI_KERNEL_IOCTL);
2125 error = ENOMEM;
2126 goto merr;
2127 }
2128
2129 lsp->ls_kstat->ks_lock = &lsp->ls_kstat_lock;
2130 kstat_zone_add(lsp->ls_kstat, GLOBAL_ZONEID);
2131 kstat_install(lsp->ls_kstat);
2132 return (DDI_SUCCESS);
2133 merr:
2134 if (lsp->ls_cmlbhandle != NULL) {
2135 cmlb_detach(lsp->ls_cmlbhandle, 0);
2136 cmlb_free_handle(&lsp->ls_cmlbhandle);
2137 }
2138 ddi_remove_minor_node(dip, NULL);
2139 lofi_zone_unbind(lsp);
2140 lerr:
2141 mutex_destroy(&lsp->ls_comp_cache_lock);
2142 mutex_destroy(&lsp->ls_comp_bufs_lock);
2143 mutex_destroy(&lsp->ls_kstat_lock);
2144 mutex_destroy(&lsp->ls_vp_lock);
2145 cv_destroy(&lsp->ls_vp_cv);
2146 err:
2147 ddi_soft_state_free(lofi_statep, instance);
2148 return (error);
2149 }
2150
2151 static int
lofi_attach(dev_info_t * dip,ddi_attach_cmd_t cmd)2152 lofi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
2153 {
2154 int rv;
2155 int instance = ddi_get_instance(dip);
2156 struct lofi_state *lsp;
2157
2158 if (cmd != DDI_ATTACH)
2159 return (DDI_FAILURE);
2160
2161 /*
2162 * Instance 0 is control instance, attaching control instance
2163 * will set the lofi up and ready.
2164 */
2165 if (instance == 0) {
2166 rv = ddi_soft_state_zalloc(lofi_statep, 0);
2167 if (rv == DDI_FAILURE) {
2168 return (DDI_FAILURE);
2169 }
2170 lsp = ddi_get_soft_state(lofi_statep, instance);
2171 rv = ddi_create_minor_node(dip, LOFI_CTL_NODE, S_IFCHR, 0,
2172 DDI_PSEUDO, 0);
2173 if (rv == DDI_FAILURE) {
2174 ddi_soft_state_free(lofi_statep, 0);
2175 return (DDI_FAILURE);
2176 }
2177 /* driver handles kernel-issued IOCTLs */
2178 if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
2179 DDI_KERNEL_IOCTL, NULL, 0) != DDI_PROP_SUCCESS) {
2180 ddi_remove_minor_node(dip, NULL);
2181 ddi_soft_state_free(lofi_statep, 0);
2182 return (DDI_FAILURE);
2183 }
2184
2185 zone_key_create(&lofi_zone_key, NULL, lofi_zone_shutdown, NULL);
2186
2187 lsp->ls_dip = dip;
2188 } else {
2189 if (lofi_online_dev(dip) == DDI_FAILURE)
2190 return (DDI_FAILURE);
2191 }
2192
2193 ddi_report_dev(dip);
2194 return (DDI_SUCCESS);
2195 }
2196
2197 static int
lofi_detach(dev_info_t * dip,ddi_detach_cmd_t cmd)2198 lofi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
2199 {
2200 struct lofi_state *lsp;
2201 int instance = ddi_get_instance(dip);
2202
2203 if (cmd != DDI_DETACH)
2204 return (DDI_FAILURE);
2205
2206 /*
2207 * If the instance is not 0, release state.
2208 * The instance 0 is control device, we can not detach it
2209 * before other instances are detached.
2210 */
2211 if (instance != 0) {
2212 lsp = ddi_get_soft_state(lofi_statep, instance);
2213 if (lsp != NULL && lsp->ls_vp_ready == B_FALSE) {
2214 ddi_soft_state_free(lofi_statep, instance);
2215 return (DDI_SUCCESS);
2216 } else
2217 return (DDI_FAILURE);
2218 }
2219 mutex_enter(&lofi_lock);
2220
2221 if (!list_is_empty(&lofi_list)) {
2222 mutex_exit(&lofi_lock);
2223 return (DDI_FAILURE);
2224 }
2225
2226 ddi_remove_minor_node(dip, NULL);
2227 ddi_prop_remove_all(dip);
2228
2229 mutex_exit(&lofi_lock);
2230
2231 if (zone_key_delete(lofi_zone_key) != 0)
2232 cmn_err(CE_WARN, "failed to delete zone key");
2233
2234 ddi_soft_state_free(lofi_statep, 0);
2235
2236 return (DDI_SUCCESS);
2237 }
2238
2239 /*
2240 * With the addition of encryption, we must be careful that encryption key is
2241 * wiped before kernel's data structures are freed so it cannot accidentally
2242 * slip out to userland through uninitialized data elsewhere.
2243 */
2244 static void
free_lofi_ioctl(struct lofi_ioctl * klip)2245 free_lofi_ioctl(struct lofi_ioctl *klip)
2246 {
2247 /* Make sure this encryption key doesn't stick around */
2248 bzero(klip->li_key, sizeof (klip->li_key));
2249 kmem_free(klip, sizeof (struct lofi_ioctl));
2250 }
2251
2252 /*
2253 * These two functions simplify the rest of the ioctls that need to copyin/out
2254 * the lofi_ioctl structure.
2255 */
2256 int
copy_in_lofi_ioctl(const struct lofi_ioctl * ulip,struct lofi_ioctl ** klipp,int flag)2257 copy_in_lofi_ioctl(const struct lofi_ioctl *ulip, struct lofi_ioctl **klipp,
2258 int flag)
2259 {
2260 struct lofi_ioctl *klip;
2261 int error;
2262
2263 klip = *klipp = kmem_alloc(sizeof (struct lofi_ioctl), KM_SLEEP);
2264 error = ddi_copyin(ulip, klip, sizeof (struct lofi_ioctl), flag);
2265 if (error)
2266 goto err;
2267
2268 /* ensure NULL termination */
2269 klip->li_filename[MAXPATHLEN-1] = '\0';
2270 klip->li_devpath[MAXPATHLEN-1] = '\0';
2271 klip->li_algorithm[MAXALGLEN-1] = '\0';
2272 klip->li_cipher[CRYPTO_MAX_MECH_NAME-1] = '\0';
2273 klip->li_iv_cipher[CRYPTO_MAX_MECH_NAME-1] = '\0';
2274
2275 if (klip->li_id > L_MAXMIN32) {
2276 error = EINVAL;
2277 goto err;
2278 }
2279
2280 return (0);
2281
2282 err:
2283 free_lofi_ioctl(klip);
2284 return (error);
2285 }
2286
2287 int
copy_out_lofi_ioctl(const struct lofi_ioctl * klip,struct lofi_ioctl * ulip,int flag)2288 copy_out_lofi_ioctl(const struct lofi_ioctl *klip, struct lofi_ioctl *ulip,
2289 int flag)
2290 {
2291 int error;
2292
2293 /*
2294 * NOTE: Do NOT copy the crypto_key_t "back" to userland.
2295 * This ensures that an attacker can't trivially find the
2296 * key for a mapping just by issuing the ioctl.
2297 *
2298 * It can still be found by poking around in kmem with mdb(1),
2299 * but there is no point in making it easy when the info isn't
2300 * of any use in this direction anyway.
2301 *
2302 * Either way we don't actually have the raw key stored in
2303 * a form that we can get it anyway, since we just used it
2304 * to create a ctx template and didn't keep "the original".
2305 */
2306 error = ddi_copyout(klip, ulip, sizeof (struct lofi_ioctl), flag);
2307 if (error)
2308 return (EFAULT);
2309 return (0);
2310 }
2311
2312 static int
lofi_access(struct lofi_state * lsp)2313 lofi_access(struct lofi_state *lsp)
2314 {
2315 ASSERT(MUTEX_HELD(&lofi_lock));
2316 if (INGLOBALZONE(curproc) || lsp->ls_zone.zref_zone == curzone)
2317 return (0);
2318 return (EPERM);
2319 }
2320
2321 /*
2322 * Find the lofi state for the given filename. We compare by vnode to
2323 * allow the global zone visibility into NGZ lofi nodes.
2324 */
2325 static int
file_to_lofi_nocheck(char * filename,boolean_t readonly,struct lofi_state ** lspp)2326 file_to_lofi_nocheck(char *filename, boolean_t readonly,
2327 struct lofi_state **lspp)
2328 {
2329 struct lofi_state *lsp;
2330 vnode_t *vp = NULL;
2331 int err = 0;
2332 int rdfiles = 0;
2333
2334 ASSERT(MUTEX_HELD(&lofi_lock));
2335
2336 if ((err = lookupname(filename, UIO_SYSSPACE, FOLLOW,
2337 NULLVPP, &vp)) != 0)
2338 goto out;
2339
2340 if (vp->v_type == VREG) {
2341 vnode_t *realvp;
2342 if (VOP_REALVP(vp, &realvp, NULL) == 0) {
2343 VN_HOLD(realvp);
2344 VN_RELE(vp);
2345 vp = realvp;
2346 }
2347 }
2348
2349 for (lsp = list_head(&lofi_list); lsp != NULL;
2350 lsp = list_next(&lofi_list, lsp)) {
2351 if (lsp->ls_vp == vp) {
2352 if (lspp != NULL)
2353 *lspp = lsp;
2354 if (lsp->ls_readonly) {
2355 rdfiles++;
2356 /* Skip if '-r' is specified */
2357 if (readonly)
2358 continue;
2359 }
2360 goto out;
2361 }
2362 }
2363
2364 err = ENOENT;
2365
2366 /*
2367 * If a filename is given as an argument for lofi_unmap, we shouldn't
2368 * allow unmap if there are multiple read-only lofi devices associated
2369 * with this file.
2370 */
2371 if (lspp != NULL) {
2372 if (rdfiles == 1)
2373 err = 0;
2374 else if (rdfiles > 1)
2375 err = EBUSY;
2376 }
2377
2378 out:
2379 if (vp != NULL)
2380 VN_RELE(vp);
2381 return (err);
2382 }
2383
2384 /*
2385 * Find the minor for the given filename, checking the zone can access
2386 * it.
2387 */
2388 static int
file_to_lofi(char * filename,boolean_t readonly,struct lofi_state ** lspp)2389 file_to_lofi(char *filename, boolean_t readonly, struct lofi_state **lspp)
2390 {
2391 int err = 0;
2392
2393 ASSERT(MUTEX_HELD(&lofi_lock));
2394
2395 if ((err = file_to_lofi_nocheck(filename, readonly, lspp)) != 0)
2396 return (err);
2397
2398 if ((err = lofi_access(*lspp)) != 0)
2399 return (err);
2400
2401 return (0);
2402 }
2403
2404 /*
2405 * Fakes up a disk geometry based on the size of the file. This is needed
2406 * to support newfs on traditional lofi device, but also will provide
2407 * geometry hint for cmlb.
2408 */
2409 static void
fake_disk_geometry(struct lofi_state * lsp)2410 fake_disk_geometry(struct lofi_state *lsp)
2411 {
2412 u_offset_t dsize = lsp->ls_vp_size - lsp->ls_crypto_offset;
2413
2414 /* dk_geom - see dkio(4I) */
2415 /*
2416 * dkg_ncyl _could_ be set to one here (one big cylinder with gobs
2417 * of sectors), but that breaks programs like fdisk which want to
2418 * partition a disk by cylinder. With one cylinder, you can't create
2419 * an fdisk partition and put pcfs on it for testing (hard to pick
2420 * a number between one and one).
2421 *
2422 * The cheezy floppy test is an attempt to not have too few cylinders
2423 * for a small file, or so many on a big file that you waste space
2424 * for backup superblocks or cylinder group structures.
2425 */
2426 bzero(&lsp->ls_dkg, sizeof (lsp->ls_dkg));
2427 if (dsize < (2 * 1024 * 1024)) /* floppy? */
2428 lsp->ls_dkg.dkg_ncyl = dsize / (100 * 1024);
2429 else
2430 lsp->ls_dkg.dkg_ncyl = dsize / (300 * 1024);
2431 /* in case file file is < 100k */
2432 if (lsp->ls_dkg.dkg_ncyl == 0)
2433 lsp->ls_dkg.dkg_ncyl = 1;
2434
2435 lsp->ls_dkg.dkg_pcyl = lsp->ls_dkg.dkg_ncyl;
2436 lsp->ls_dkg.dkg_nhead = 1;
2437 lsp->ls_dkg.dkg_rpm = 7200;
2438
2439 lsp->ls_dkg.dkg_nsect = dsize /
2440 (lsp->ls_dkg.dkg_ncyl << lsp->ls_pbshift);
2441 }
2442
2443 /*
2444 * build vtoc - see dkio(4I)
2445 *
2446 * Fakes one big partition based on the size of the file. This is needed
2447 * because we allow newfs'ing the traditional lofi device and newfs will
2448 * do several disk ioctls to figure out the geometry and partition information.
2449 * It uses that information to determine the parameters to pass to mkfs.
2450 */
2451 static void
fake_disk_vtoc(struct lofi_state * lsp,struct vtoc * vt)2452 fake_disk_vtoc(struct lofi_state *lsp, struct vtoc *vt)
2453 {
2454 bzero(vt, sizeof (struct vtoc));
2455 vt->v_sanity = VTOC_SANE;
2456 vt->v_version = V_VERSION;
2457 (void) strncpy(vt->v_volume, LOFI_DRIVER_NAME,
2458 sizeof (vt->v_volume));
2459 vt->v_sectorsz = 1 << lsp->ls_pbshift;
2460 vt->v_nparts = 1;
2461 vt->v_part[0].p_tag = V_UNASSIGNED;
2462
2463 /*
2464 * A compressed file is read-only, other files can
2465 * be read-write
2466 */
2467 if (lsp->ls_uncomp_seg_sz > 0) {
2468 vt->v_part[0].p_flag = V_UNMNT | V_RONLY;
2469 } else {
2470 vt->v_part[0].p_flag = V_UNMNT;
2471 }
2472 vt->v_part[0].p_start = (daddr_t)0;
2473 /*
2474 * The partition size cannot just be the number of sectors, because
2475 * that might not end on a cylinder boundary. And if that's the case,
2476 * newfs/mkfs will print a scary warning. So just figure the size
2477 * based on the number of cylinders and sectors/cylinder.
2478 */
2479 vt->v_part[0].p_size = lsp->ls_dkg.dkg_pcyl *
2480 lsp->ls_dkg.dkg_nsect * lsp->ls_dkg.dkg_nhead;
2481 }
2482
2483 /*
2484 * build dk_cinfo - see dkio(4I)
2485 */
2486 static void
fake_disk_info(dev_t dev,struct dk_cinfo * ci)2487 fake_disk_info(dev_t dev, struct dk_cinfo *ci)
2488 {
2489 bzero(ci, sizeof (struct dk_cinfo));
2490 (void) strlcpy(ci->dki_cname, LOFI_DRIVER_NAME, sizeof (ci->dki_cname));
2491 ci->dki_ctype = DKC_SCSI_CCS;
2492 (void) strlcpy(ci->dki_dname, LOFI_DRIVER_NAME, sizeof (ci->dki_dname));
2493 ci->dki_unit = LOFI_MINOR2ID(getminor(dev));
2494 ci->dki_partition = LOFI_PART(getminor(dev));
2495 /*
2496 * newfs uses this to set maxcontig. Must not be < 16, or it
2497 * will be 0 when newfs multiplies it by DEV_BSIZE and divides
2498 * it by the block size. Then tunefs doesn't work because
2499 * maxcontig is 0.
2500 */
2501 ci->dki_maxtransfer = 16;
2502 }
2503
2504 /*
2505 * map in a compressed file
2506 *
2507 * Read in the header and the index that follows.
2508 *
2509 * The header is as follows -
2510 *
2511 * Signature (name of the compression algorithm)
2512 * Compression segment size (a multiple of 512)
2513 * Number of index entries
2514 * Size of the last block
2515 * The array containing the index entries
2516 *
2517 * The header information is always stored in
2518 * network byte order on disk.
2519 */
2520 static int
lofi_map_compressed_file(struct lofi_state * lsp,char * buf)2521 lofi_map_compressed_file(struct lofi_state *lsp, char *buf)
2522 {
2523 uint32_t index_sz, header_len, i;
2524 ssize_t resid;
2525 enum uio_rw rw;
2526 char *tbuf = buf;
2527 int error;
2528
2529 /* The signature has already been read */
2530 tbuf += sizeof (lsp->ls_comp_algorithm);
2531 bcopy(tbuf, &(lsp->ls_uncomp_seg_sz), sizeof (lsp->ls_uncomp_seg_sz));
2532 lsp->ls_uncomp_seg_sz = ntohl(lsp->ls_uncomp_seg_sz);
2533
2534 /*
2535 * The compressed segment size must be a power of 2
2536 */
2537 if (lsp->ls_uncomp_seg_sz < DEV_BSIZE ||
2538 !ISP2(lsp->ls_uncomp_seg_sz))
2539 return (EINVAL);
2540
2541 for (i = 0; !((lsp->ls_uncomp_seg_sz >> i) & 1); i++)
2542 ;
2543
2544 lsp->ls_comp_seg_shift = i;
2545
2546 tbuf += sizeof (lsp->ls_uncomp_seg_sz);
2547 bcopy(tbuf, &(lsp->ls_comp_index_sz), sizeof (lsp->ls_comp_index_sz));
2548 lsp->ls_comp_index_sz = ntohl(lsp->ls_comp_index_sz);
2549
2550 tbuf += sizeof (lsp->ls_comp_index_sz);
2551 bcopy(tbuf, &(lsp->ls_uncomp_last_seg_sz),
2552 sizeof (lsp->ls_uncomp_last_seg_sz));
2553 lsp->ls_uncomp_last_seg_sz = ntohl(lsp->ls_uncomp_last_seg_sz);
2554
2555 /*
2556 * Compute the total size of the uncompressed data
2557 * for use in fake_disk_geometry and other calculations.
2558 * Disk geometry has to be faked with respect to the
2559 * actual uncompressed data size rather than the
2560 * compressed file size.
2561 */
2562 lsp->ls_vp_size =
2563 (u_offset_t)(lsp->ls_comp_index_sz - 2) * lsp->ls_uncomp_seg_sz
2564 + lsp->ls_uncomp_last_seg_sz;
2565
2566 /*
2567 * Index size is rounded up to DEV_BSIZE for ease
2568 * of segmapping
2569 */
2570 index_sz = sizeof (*lsp->ls_comp_seg_index) * lsp->ls_comp_index_sz;
2571 header_len = sizeof (lsp->ls_comp_algorithm) +
2572 sizeof (lsp->ls_uncomp_seg_sz) +
2573 sizeof (lsp->ls_comp_index_sz) +
2574 sizeof (lsp->ls_uncomp_last_seg_sz);
2575 lsp->ls_comp_offbase = header_len + index_sz;
2576
2577 index_sz += header_len;
2578 index_sz = roundup(index_sz, DEV_BSIZE);
2579
2580 lsp->ls_comp_index_data = kmem_alloc(index_sz, KM_SLEEP);
2581 lsp->ls_comp_index_data_sz = index_sz;
2582
2583 /*
2584 * Read in the index -- this has a side-effect
2585 * of reading in the header as well
2586 */
2587 rw = UIO_READ;
2588 error = vn_rdwr(rw, lsp->ls_vp, lsp->ls_comp_index_data, index_sz,
2589 0, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
2590
2591 if (error != 0)
2592 return (error);
2593
2594 /* Skip the header, this is where the index really begins */
2595 lsp->ls_comp_seg_index =
2596 (uint64_t *)(lsp->ls_comp_index_data + header_len);
2597
2598 /*
2599 * Now recompute offsets in the index to account for
2600 * the header length
2601 */
2602 for (i = 0; i < lsp->ls_comp_index_sz; i++) {
2603 lsp->ls_comp_seg_index[i] = lsp->ls_comp_offbase +
2604 BE_64(lsp->ls_comp_seg_index[i]);
2605 }
2606
2607 return (error);
2608 }
2609
2610 static int
lofi_init_crypto(struct lofi_state * lsp,struct lofi_ioctl * klip)2611 lofi_init_crypto(struct lofi_state *lsp, struct lofi_ioctl *klip)
2612 {
2613 struct crypto_meta chead;
2614 char buf[DEV_BSIZE];
2615 ssize_t resid;
2616 char *marker;
2617 int error;
2618 int ret;
2619 int i;
2620
2621 if (!klip->li_crypto_enabled)
2622 return (0);
2623
2624 /*
2625 * All current algorithms have a max of 448 bits.
2626 */
2627 if (klip->li_iv_len > CRYPTO_BITS2BYTES(512))
2628 return (EINVAL);
2629
2630 if (CRYPTO_BITS2BYTES(klip->li_key_len) > sizeof (klip->li_key))
2631 return (EINVAL);
2632
2633 lsp->ls_crypto_enabled = klip->li_crypto_enabled;
2634
2635 mutex_init(&lsp->ls_crypto_lock, NULL, MUTEX_DRIVER, NULL);
2636
2637 lsp->ls_mech.cm_type = crypto_mech2id(klip->li_cipher);
2638 if (lsp->ls_mech.cm_type == CRYPTO_MECH_INVALID) {
2639 cmn_err(CE_WARN, "invalid cipher %s requested for %s",
2640 klip->li_cipher, klip->li_filename);
2641 return (EINVAL);
2642 }
2643
2644 /* this is just initialization here */
2645 lsp->ls_mech.cm_param = NULL;
2646 lsp->ls_mech.cm_param_len = 0;
2647
2648 lsp->ls_iv_type = klip->li_iv_type;
2649 lsp->ls_iv_mech.cm_type = crypto_mech2id(klip->li_iv_cipher);
2650 if (lsp->ls_iv_mech.cm_type == CRYPTO_MECH_INVALID) {
2651 cmn_err(CE_WARN, "invalid iv cipher %s requested"
2652 " for %s", klip->li_iv_cipher, klip->li_filename);
2653 return (EINVAL);
2654 }
2655
2656 /* iv mech must itself take a null iv */
2657 lsp->ls_iv_mech.cm_param = NULL;
2658 lsp->ls_iv_mech.cm_param_len = 0;
2659 lsp->ls_iv_len = klip->li_iv_len;
2660
2661 /*
2662 * Create ctx using li_cipher & the raw li_key after checking
2663 * that it isn't a weak key.
2664 */
2665 lsp->ls_key.ck_format = CRYPTO_KEY_RAW;
2666 lsp->ls_key.ck_length = klip->li_key_len;
2667 lsp->ls_key.ck_data = kmem_alloc(
2668 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length), KM_SLEEP);
2669 bcopy(klip->li_key, lsp->ls_key.ck_data,
2670 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
2671
2672 ret = crypto_key_check(&lsp->ls_mech, &lsp->ls_key);
2673 if (ret != CRYPTO_SUCCESS) {
2674 cmn_err(CE_WARN, "weak key check failed for cipher "
2675 "%s on file %s (0x%x)", klip->li_cipher,
2676 klip->li_filename, ret);
2677 return (EINVAL);
2678 }
2679
2680 error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE,
2681 CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
2682 if (error != 0)
2683 return (error);
2684
2685 /*
2686 * This is the case where the header in the lofi image is already
2687 * initialized to indicate it is encrypted.
2688 */
2689 if (strncmp(buf, lofi_crypto_magic, sizeof (lofi_crypto_magic)) == 0) {
2690 /*
2691 * The encryption header information is laid out this way:
2692 * 6 bytes: hex "CFLOFI"
2693 * 2 bytes: version = 0 ... for now
2694 * 96 bytes: reserved1 (not implemented yet)
2695 * 4 bytes: data_sector = 2 ... for now
2696 * more... not implemented yet
2697 */
2698
2699 marker = buf;
2700
2701 /* copy the magic */
2702 bcopy(marker, lsp->ls_crypto.magic,
2703 sizeof (lsp->ls_crypto.magic));
2704 marker += sizeof (lsp->ls_crypto.magic);
2705
2706 /* read the encryption version number */
2707 bcopy(marker, &(lsp->ls_crypto.version),
2708 sizeof (lsp->ls_crypto.version));
2709 lsp->ls_crypto.version = ntohs(lsp->ls_crypto.version);
2710 marker += sizeof (lsp->ls_crypto.version);
2711
2712 /* read a chunk of reserved data */
2713 bcopy(marker, lsp->ls_crypto.reserved1,
2714 sizeof (lsp->ls_crypto.reserved1));
2715 marker += sizeof (lsp->ls_crypto.reserved1);
2716
2717 /* read block number where encrypted data begins */
2718 bcopy(marker, &(lsp->ls_crypto.data_sector),
2719 sizeof (lsp->ls_crypto.data_sector));
2720 lsp->ls_crypto.data_sector = ntohl(lsp->ls_crypto.data_sector);
2721 marker += sizeof (lsp->ls_crypto.data_sector);
2722
2723 /* and ignore the rest until it is implemented */
2724
2725 lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE;
2726 return (0);
2727 }
2728
2729 /*
2730 * We've requested encryption, but no magic was found, so it must be
2731 * a new image.
2732 */
2733
2734 for (i = 0; i < sizeof (struct crypto_meta); i++) {
2735 if (buf[i] != '\0')
2736 return (EINVAL);
2737 }
2738
2739 marker = buf;
2740 bcopy(lofi_crypto_magic, marker, sizeof (lofi_crypto_magic));
2741 marker += sizeof (lofi_crypto_magic);
2742 chead.version = htons(LOFI_CRYPTO_VERSION);
2743 bcopy(&(chead.version), marker, sizeof (chead.version));
2744 marker += sizeof (chead.version);
2745 marker += sizeof (chead.reserved1);
2746 chead.data_sector = htonl(LOFI_CRYPTO_DATA_SECTOR);
2747 bcopy(&(chead.data_sector), marker, sizeof (chead.data_sector));
2748
2749 /* write the header */
2750 error = vn_rdwr(UIO_WRITE, lsp->ls_vp, buf, DEV_BSIZE,
2751 CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
2752 if (error != 0)
2753 return (error);
2754
2755 /* fix things up so it looks like we read this info */
2756 bcopy(lofi_crypto_magic, lsp->ls_crypto.magic,
2757 sizeof (lofi_crypto_magic));
2758 lsp->ls_crypto.version = LOFI_CRYPTO_VERSION;
2759 lsp->ls_crypto.data_sector = LOFI_CRYPTO_DATA_SECTOR;
2760 lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE;
2761 return (0);
2762 }
2763
2764 /*
2765 * Check to see if the passed in signature is a valid one. If it is
2766 * valid, return the index into lofi_compress_table.
2767 *
2768 * Return -1 if it is invalid
2769 */
2770 static int
lofi_compress_select(const char * signature)2771 lofi_compress_select(const char *signature)
2772 {
2773 int i;
2774
2775 for (i = 0; i < LOFI_COMPRESS_FUNCTIONS; i++) {
2776 if (strcmp(lofi_compress_table[i].l_name, signature) == 0)
2777 return (i);
2778 }
2779
2780 return (-1);
2781 }
2782
2783 static int
lofi_init_compress(struct lofi_state * lsp)2784 lofi_init_compress(struct lofi_state *lsp)
2785 {
2786 char buf[DEV_BSIZE];
2787 int compress_index;
2788 ssize_t resid;
2789 int error;
2790
2791 error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE, 0, UIO_SYSSPACE,
2792 0, RLIM64_INFINITY, kcred, &resid);
2793
2794 if (error != 0)
2795 return (error);
2796
2797 if ((compress_index = lofi_compress_select(buf)) == -1)
2798 return (0);
2799
2800 /* compression and encryption are mutually exclusive */
2801 if (lsp->ls_crypto_enabled)
2802 return (ENOTSUP);
2803
2804 /* initialize compression info for compressed lofi */
2805 lsp->ls_comp_algorithm_index = compress_index;
2806 (void) strlcpy(lsp->ls_comp_algorithm,
2807 lofi_compress_table[compress_index].l_name,
2808 sizeof (lsp->ls_comp_algorithm));
2809
2810 /* Finally setup per-thread pre-allocated buffers */
2811 lsp->ls_comp_bufs = kmem_zalloc(lofi_taskq_nthreads *
2812 sizeof (struct compbuf), KM_SLEEP);
2813
2814 return (lofi_map_compressed_file(lsp, buf));
2815 }
2816
2817 /*
2818 * Allocate new or proposed id from lofi_id.
2819 *
2820 * Special cases for proposed id:
2821 * 0: not allowed, 0 is id for control device.
2822 * -1: allocate first usable id from lofi_id.
2823 * any other value is proposed value from userland
2824 *
2825 * returns DDI_SUCCESS or errno.
2826 */
2827 static int
lofi_alloc_id(int * idp)2828 lofi_alloc_id(int *idp)
2829 {
2830 int id, error = DDI_SUCCESS;
2831
2832 if (*idp == -1) {
2833 id = id_allocff_nosleep(lofi_id);
2834 if (id == -1) {
2835 error = EAGAIN;
2836 goto err;
2837 }
2838 } else if (*idp == 0) {
2839 error = EINVAL;
2840 goto err;
2841 } else if (*idp > ((1 << (L_BITSMINOR - LOFI_CMLB_SHIFT)) - 1)) {
2842 error = ERANGE;
2843 goto err;
2844 } else {
2845 if (ddi_get_soft_state(lofi_statep, *idp) != NULL) {
2846 error = EEXIST;
2847 goto err;
2848 }
2849
2850 id = id_alloc_specific_nosleep(lofi_id, *idp);
2851 if (id == -1) {
2852 error = EAGAIN;
2853 goto err;
2854 }
2855 }
2856 *idp = id;
2857 err:
2858 return (error);
2859 }
2860
2861 static int
lofi_create_dev(struct lofi_ioctl * klip)2862 lofi_create_dev(struct lofi_ioctl *klip)
2863 {
2864 dev_info_t *parent, *child;
2865 struct lofi_state *lsp = NULL;
2866 char namebuf[MAXNAMELEN];
2867 int error;
2868
2869 /* get control device */
2870 lsp = ddi_get_soft_state(lofi_statep, 0);
2871 parent = ddi_get_parent(lsp->ls_dip);
2872
2873 if ((error = lofi_alloc_id((int *)&klip->li_id)))
2874 return (error);
2875
2876 (void) snprintf(namebuf, sizeof (namebuf), LOFI_DRIVER_NAME "@%d",
2877 klip->li_id);
2878
2879 ndi_devi_enter(parent);
2880 child = ndi_devi_findchild(parent, namebuf);
2881 ndi_devi_exit(parent);
2882
2883 if (child == NULL) {
2884 child = ddi_add_child(parent, LOFI_DRIVER_NAME,
2885 (pnode_t)DEVI_SID_NODEID, klip->li_id);
2886 if ((error = ddi_prop_update_int(DDI_DEV_T_NONE, child,
2887 "instance", klip->li_id)) != DDI_PROP_SUCCESS)
2888 goto err;
2889
2890 if (klip->li_labeled == B_TRUE) {
2891 if ((error = ddi_prop_create(DDI_DEV_T_NONE, child,
2892 DDI_PROP_CANSLEEP, "labeled", 0, 0))
2893 != DDI_PROP_SUCCESS)
2894 goto err;
2895 }
2896
2897 if ((error = ndi_devi_online(child, NDI_ONLINE_ATTACH))
2898 != NDI_SUCCESS)
2899 goto err;
2900 } else {
2901 id_free(lofi_id, klip->li_id);
2902 error = EEXIST;
2903 return (error);
2904 }
2905
2906 goto done;
2907
2908 err:
2909 ddi_prop_remove_all(child);
2910 (void) ndi_devi_offline(child, NDI_DEVI_REMOVE);
2911 id_free(lofi_id, klip->li_id);
2912 done:
2913
2914 return (error);
2915 }
2916
2917 static void
lofi_create_inquiry(struct lofi_state * lsp,struct scsi_inquiry * inq)2918 lofi_create_inquiry(struct lofi_state *lsp, struct scsi_inquiry *inq)
2919 {
2920 char *p = NULL;
2921
2922 (void) strlcpy(inq->inq_vid, LOFI_DRIVER_NAME, sizeof (inq->inq_vid));
2923
2924 mutex_enter(&lsp->ls_vp_lock);
2925 if (lsp->ls_vp != NULL)
2926 p = strrchr(lsp->ls_vp->v_path, '/');
2927 if (p != NULL)
2928 (void) strncpy(inq->inq_pid, p + 1, sizeof (inq->inq_pid));
2929 mutex_exit(&lsp->ls_vp_lock);
2930 (void) strlcpy(inq->inq_revision, "1.0", sizeof (inq->inq_revision));
2931 }
2932
2933 /*
2934 * copy devlink name from event cache
2935 */
2936 static void
lofi_copy_devpath(struct lofi_ioctl * klip)2937 lofi_copy_devpath(struct lofi_ioctl *klip)
2938 {
2939 int error;
2940 char namebuf[MAXNAMELEN], *str;
2941 clock_t ticks;
2942 nvlist_t *nvl = NULL;
2943
2944 if (klip->li_labeled == B_TRUE)
2945 klip->li_devpath[0] = '\0';
2946 else {
2947 /* no need to wait for messages */
2948 (void) snprintf(klip->li_devpath, sizeof (klip->li_devpath),
2949 "/dev/" LOFI_CHAR_NAME "/%d", klip->li_id);
2950 return;
2951 }
2952
2953 (void) snprintf(namebuf, sizeof (namebuf), "%d", klip->li_id);
2954
2955 mutex_enter(&lofi_devlink_cache.ln_lock);
2956 for (;;) {
2957 error = nvlist_lookup_nvlist(lofi_devlink_cache.ln_data,
2958 namebuf, &nvl);
2959
2960 if (error == 0 &&
2961 nvlist_lookup_string(nvl, DEV_NAME, &str) == 0 &&
2962 strncmp(str, "/dev/" LOFI_CHAR_NAME,
2963 sizeof ("/dev/" LOFI_CHAR_NAME) - 1) != 0) {
2964 (void) strlcpy(klip->li_devpath, str,
2965 sizeof (klip->li_devpath));
2966 break;
2967 }
2968 /*
2969 * Either there is no data in the cache, or the
2970 * cache entry still has the wrong device name.
2971 */
2972 ticks = ddi_get_lbolt() + lofi_timeout * drv_usectohz(1000000);
2973 error = cv_timedwait(&lofi_devlink_cache.ln_cv,
2974 &lofi_devlink_cache.ln_lock, ticks);
2975 if (error == -1)
2976 break; /* timeout */
2977 }
2978 mutex_exit(&lofi_devlink_cache.ln_lock);
2979 }
2980
2981 /*
2982 * map a file to a minor number. Return the minor number.
2983 */
2984 static int
lofi_map_file(dev_t dev,struct lofi_ioctl * ulip,int pickminor,int * rvalp,struct cred * credp,int ioctl_flag)2985 lofi_map_file(dev_t dev, struct lofi_ioctl *ulip, int pickminor,
2986 int *rvalp, struct cred *credp, int ioctl_flag)
2987 {
2988 int id = -1;
2989 struct lofi_state *lsp = NULL;
2990 struct lofi_ioctl *klip;
2991 int error, canfree;
2992 struct vnode *vp = NULL;
2993 vattr_t vattr;
2994 int flag = 0;
2995 char namebuf[MAXNAMELEN];
2996
2997 error = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
2998 if (error != 0)
2999 return (error);
3000
3001 mutex_enter(&lofi_lock);
3002
3003 if (file_to_lofi_nocheck(klip->li_filename, klip->li_readonly,
3004 NULL) == 0) {
3005 error = EBUSY;
3006 goto err;
3007 }
3008
3009 flag = FREAD | FWRITE | FOFFMAX | FEXCL;
3010 error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0, &vp, 0, 0);
3011 if (error) {
3012 /* try read-only */
3013 flag &= ~FWRITE;
3014 error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0,
3015 &vp, 0, 0);
3016 if (error)
3017 goto err;
3018 }
3019
3020 if (!V_ISLOFIABLE(vp->v_type)) {
3021 error = EINVAL;
3022 goto err;
3023 }
3024
3025 vattr.va_mask = AT_SIZE;
3026 error = VOP_GETATTR(vp, &vattr, 0, credp, NULL);
3027 if (error)
3028 goto err;
3029
3030 /* the file needs to be a multiple of the block size */
3031 if ((vattr.va_size % DEV_BSIZE) != 0) {
3032 error = EINVAL;
3033 goto err;
3034 }
3035
3036 if (pickminor) {
3037 klip->li_id = (uint32_t)-1;
3038 }
3039 if ((error = lofi_create_dev(klip)) != 0)
3040 goto err;
3041
3042 id = klip->li_id;
3043 lsp = ddi_get_soft_state(lofi_statep, id);
3044 if (lsp == NULL)
3045 goto err;
3046
3047 /*
3048 * from this point lofi_destroy() is used to clean up on error
3049 * make sure the basic data is set
3050 */
3051 list_insert_tail(&lofi_list, lsp);
3052 lsp->ls_dev = makedevice(getmajor(dev), LOFI_ID2MINOR(id));
3053
3054 list_create(&lsp->ls_comp_cache, sizeof (struct lofi_comp_cache),
3055 offsetof(struct lofi_comp_cache, lc_list));
3056
3057 /*
3058 * save open mode so file can be closed properly and vnode counts
3059 * updated correctly.
3060 */
3061 lsp->ls_openflag = flag;
3062
3063 lsp->ls_vp = vp;
3064 lsp->ls_stacked_vp = vp;
3065
3066 lsp->ls_vp_size = vattr.va_size;
3067 lsp->ls_vp_comp_size = lsp->ls_vp_size;
3068
3069 /*
3070 * Try to handle stacked lofs vnodes.
3071 */
3072 if (vp->v_type == VREG) {
3073 vnode_t *realvp;
3074
3075 if (VOP_REALVP(vp, &realvp, NULL) == 0) {
3076 /*
3077 * We need to use the realvp for uniqueness
3078 * checking, but keep the stacked vp for
3079 * LOFI_GET_FILENAME display.
3080 */
3081 VN_HOLD(realvp);
3082 lsp->ls_vp = realvp;
3083 }
3084 }
3085
3086 lsp->ls_lbshift = highbit(DEV_BSIZE) - 1;
3087 lsp->ls_pbshift = lsp->ls_lbshift;
3088
3089 lsp->ls_readonly = klip->li_readonly;
3090 lsp->ls_uncomp_seg_sz = 0;
3091 lsp->ls_comp_algorithm[0] = '\0';
3092 lsp->ls_crypto_offset = 0;
3093
3094 (void) snprintf(namebuf, sizeof (namebuf), "%s_taskq_%d",
3095 LOFI_DRIVER_NAME, id);
3096 lsp->ls_taskq = taskq_create_proc(namebuf, lofi_taskq_nthreads,
3097 minclsyspri, 1, lofi_taskq_maxalloc, curzone->zone_zsched, 0);
3098
3099 if ((error = lofi_init_crypto(lsp, klip)) != 0)
3100 goto err;
3101
3102 if ((error = lofi_init_compress(lsp)) != 0)
3103 goto err;
3104
3105 fake_disk_geometry(lsp);
3106
3107 /* For unlabeled lofi add Nblocks and Size */
3108 if (klip->li_labeled == B_FALSE) {
3109 error = ddi_prop_update_int64(lsp->ls_dev, lsp->ls_dip,
3110 SIZE_PROP_NAME, lsp->ls_vp_size - lsp->ls_crypto_offset);
3111 if (error != DDI_PROP_SUCCESS) {
3112 error = EINVAL;
3113 goto err;
3114 }
3115 error = ddi_prop_update_int64(lsp->ls_dev, lsp->ls_dip,
3116 NBLOCKS_PROP_NAME,
3117 (lsp->ls_vp_size - lsp->ls_crypto_offset) / DEV_BSIZE);
3118 if (error != DDI_PROP_SUCCESS) {
3119 error = EINVAL;
3120 goto err;
3121 }
3122 }
3123
3124 /* Determine if the underlying device supports TRIM/DISCARD */
3125 if (lsp->ls_vp->v_type == VCHR || lsp->ls_vp->v_type == VBLK) {
3126 if (VOP_IOCTL(lsp->ls_vp, DKIOC_CANFREE, (intptr_t)&canfree,
3127 FKIOCTL, kcred, &error, NULL) != 0) {
3128 canfree = 0;
3129 }
3130 } else {
3131 /*
3132 * We don't have a way to discover if a file supports
3133 * the FREESP fcntl cmd (other than trying it).
3134 * However, since zfs, ufs, tmpfs, and udfs all have
3135 * support, and NFSv4 also forwards these requests to
3136 * the server, we always enable it for file based
3137 * volumes. When it comes to executing the commands
3138 * they may silently fail.
3139 */
3140 canfree = 1;
3141 }
3142
3143 if (lsp->ls_readonly)
3144 canfree = 0;
3145
3146 lsp->ls_canfree = (canfree != 0);
3147
3148 /*
3149 * Notify we are ready to rock. If we are a labeled device, we must now
3150 * ask cmlb to validate the label, which will finally create the right
3151 * minors for us. In particular, this is a challenge because before
3152 * ls_vp_ready was set, we couldn't even get the geometry count which
3153 * means that we'll have the wrong default label if we have a larger
3154 * device.
3155 */
3156 mutex_enter(&lsp->ls_vp_lock);
3157 lsp->ls_vp_ready = B_TRUE;
3158 cv_broadcast(&lsp->ls_vp_cv);
3159 mutex_exit(&lsp->ls_vp_lock);
3160 if (lsp->ls_cmlbhandle != NULL) {
3161 (void) cmlb_validate(lsp->ls_cmlbhandle, 0, 0);
3162 }
3163 mutex_exit(&lofi_lock);
3164
3165 lofi_copy_devpath(klip);
3166
3167 if (rvalp)
3168 *rvalp = id;
3169 (void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
3170 free_lofi_ioctl(klip);
3171 return (0);
3172
3173 err:
3174 if (lsp != NULL) {
3175 lofi_destroy(lsp, credp);
3176 } else {
3177 if (vp != NULL) {
3178 (void) VOP_PUTPAGE(vp, 0, 0, B_FREE, credp, NULL);
3179 (void) VOP_CLOSE(vp, flag, 1, 0, credp, NULL);
3180 VN_RELE(vp);
3181 }
3182 }
3183
3184 mutex_exit(&lofi_lock);
3185 free_lofi_ioctl(klip);
3186 return (error);
3187 }
3188
3189 /*
3190 * unmap a file.
3191 */
3192 static int
lofi_unmap_file(struct lofi_ioctl * ulip,int byfilename,struct cred * credp,int ioctl_flag)3193 lofi_unmap_file(struct lofi_ioctl *ulip, int byfilename,
3194 struct cred *credp, int ioctl_flag)
3195 {
3196 struct lofi_state *lsp;
3197 struct lofi_ioctl *klip;
3198 char namebuf[MAXNAMELEN];
3199 int err;
3200
3201 err = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
3202 if (err != 0)
3203 return (err);
3204
3205 mutex_enter(&lofi_lock);
3206 if (byfilename) {
3207 if ((err = file_to_lofi(klip->li_filename, klip->li_readonly,
3208 &lsp)) != 0) {
3209 goto done;
3210 }
3211 } else if (klip->li_id == 0) {
3212 err = ENXIO;
3213 goto done;
3214 } else {
3215 lsp = ddi_get_soft_state(lofi_statep, klip->li_id);
3216 }
3217
3218 if (lsp == NULL || lsp->ls_vp == NULL || lofi_access(lsp) != 0) {
3219 err = ENXIO;
3220 goto done;
3221 }
3222
3223 klip->li_id = LOFI_MINOR2ID(getminor(lsp->ls_dev));
3224 (void) snprintf(namebuf, sizeof (namebuf), "%u", klip->li_id);
3225
3226 /*
3227 * If it's still held open, we'll do one of three things:
3228 *
3229 * If no flag is set, just return EBUSY.
3230 *
3231 * If the 'cleanup' flag is set, unmap and remove the device when
3232 * the last user finishes.
3233 *
3234 * If the 'force' flag is set, then we forcibly close the underlying
3235 * file. Subsequent operations will fail, and the DKIOCSTATE ioctl
3236 * will return DKIO_DEV_GONE. When the device is last closed, the
3237 * device will be cleaned up appropriately.
3238 *
3239 * This is complicated by the fact that we may have outstanding
3240 * dispatched I/Os. Rather than having a single mutex to serialize all
3241 * I/O, we keep a count of the number of outstanding I/O requests
3242 * (ls_vp_iocount), as well as a flag to indicate that no new I/Os
3243 * should be dispatched (ls_vp_closereq).
3244 *
3245 * We set the flag, wait for the number of outstanding I/Os to reach 0,
3246 * and then close the underlying vnode.
3247 */
3248 if (is_opened(lsp)) {
3249 if (klip->li_force) {
3250 /* Mark the device for cleanup. */
3251 lofi_set_cleanup(lsp);
3252 mutex_enter(&lsp->ls_vp_lock);
3253 lsp->ls_vp_closereq = B_TRUE;
3254 /* Wake up any threads waiting on dkiocstate. */
3255 cv_broadcast(&lsp->ls_vp_cv);
3256 while (lsp->ls_vp_iocount > 0)
3257 cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock);
3258 mutex_exit(&lsp->ls_vp_lock);
3259 } else if (klip->li_cleanup) {
3260 lofi_set_cleanup(lsp);
3261 } else {
3262 err = EBUSY;
3263 }
3264 } else {
3265 lofi_free_dev(lsp);
3266 lofi_destroy(lsp, credp);
3267 }
3268
3269 /* Remove name from devlink cache */
3270 mutex_enter(&lofi_devlink_cache.ln_lock);
3271 (void) nvlist_remove_all(lofi_devlink_cache.ln_data, namebuf);
3272 cv_broadcast(&lofi_devlink_cache.ln_cv);
3273 mutex_exit(&lofi_devlink_cache.ln_lock);
3274 done:
3275 mutex_exit(&lofi_lock);
3276 if (err == 0)
3277 (void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
3278 free_lofi_ioctl(klip);
3279 return (err);
3280 }
3281
3282 /*
3283 * get the filename given the minor number, or the minor number given
3284 * the name.
3285 */
3286 static int
lofi_get_info(dev_t dev __unused,struct lofi_ioctl * ulip,int which,struct cred * credp __unused,int ioctl_flag)3287 lofi_get_info(dev_t dev __unused, struct lofi_ioctl *ulip, int which,
3288 struct cred *credp __unused, int ioctl_flag)
3289 {
3290 struct lofi_ioctl *klip;
3291 struct lofi_state *lsp;
3292 int error;
3293
3294 error = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
3295 if (error != 0)
3296 return (error);
3297
3298 switch (which) {
3299 case LOFI_GET_FILENAME:
3300 if (klip->li_id == 0) {
3301 free_lofi_ioctl(klip);
3302 return (EINVAL);
3303 }
3304
3305 mutex_enter(&lofi_lock);
3306 lsp = ddi_get_soft_state(lofi_statep, klip->li_id);
3307 if (lsp == NULL || lofi_access(lsp) != 0) {
3308 mutex_exit(&lofi_lock);
3309 free_lofi_ioctl(klip);
3310 return (ENXIO);
3311 }
3312
3313 /*
3314 * This may fail if, for example, we're trying to look
3315 * up a zoned NFS path from the global zone.
3316 */
3317 if (lsp->ls_stacked_vp == NULL ||
3318 vnodetopath(NULL, lsp->ls_stacked_vp, klip->li_filename,
3319 sizeof (klip->li_filename), CRED()) != 0) {
3320 (void) strlcpy(klip->li_filename, "?",
3321 sizeof (klip->li_filename));
3322 }
3323
3324 klip->li_readonly = lsp->ls_readonly;
3325 klip->li_labeled = lsp->ls_cmlbhandle != NULL;
3326
3327 (void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm,
3328 sizeof (klip->li_algorithm));
3329 klip->li_crypto_enabled = lsp->ls_crypto_enabled;
3330 mutex_exit(&lofi_lock);
3331
3332 lofi_copy_devpath(klip);
3333 error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
3334 free_lofi_ioctl(klip);
3335 return (error);
3336 case LOFI_GET_MINOR:
3337 mutex_enter(&lofi_lock);
3338 error = file_to_lofi(klip->li_filename,
3339 klip->li_readonly, &lsp);
3340 if (error != 0) {
3341 mutex_exit(&lofi_lock);
3342 free_lofi_ioctl(klip);
3343 return (error);
3344 }
3345 klip->li_id = LOFI_MINOR2ID(getminor(lsp->ls_dev));
3346
3347 klip->li_readonly = lsp->ls_readonly;
3348 klip->li_labeled = lsp->ls_cmlbhandle != NULL;
3349 mutex_exit(&lofi_lock);
3350
3351 lofi_copy_devpath(klip);
3352 error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
3353
3354 free_lofi_ioctl(klip);
3355 return (error);
3356 case LOFI_CHECK_COMPRESSED:
3357 mutex_enter(&lofi_lock);
3358 error = file_to_lofi(klip->li_filename,
3359 klip->li_readonly, &lsp);
3360 if (error != 0) {
3361 mutex_exit(&lofi_lock);
3362 free_lofi_ioctl(klip);
3363 return (error);
3364 }
3365
3366 klip->li_id = LOFI_MINOR2ID(getminor(lsp->ls_dev));
3367 (void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm,
3368 sizeof (klip->li_algorithm));
3369
3370 mutex_exit(&lofi_lock);
3371 error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
3372 free_lofi_ioctl(klip);
3373 return (error);
3374 default:
3375 free_lofi_ioctl(klip);
3376 return (EINVAL);
3377 }
3378 }
3379
3380 static int
uscsi_is_inquiry(intptr_t arg,int flag,union scsi_cdb * cdb,struct uscsi_cmd * uscmd)3381 uscsi_is_inquiry(intptr_t arg, int flag, union scsi_cdb *cdb,
3382 struct uscsi_cmd *uscmd)
3383 {
3384 int rval;
3385
3386 #ifdef _MULTI_DATAMODEL
3387 switch (ddi_model_convert_from(flag & FMODELS)) {
3388 case DDI_MODEL_ILP32: {
3389 struct uscsi_cmd32 ucmd32;
3390
3391 if (ddi_copyin((void *)arg, &ucmd32, sizeof (ucmd32), flag)) {
3392 rval = EFAULT;
3393 goto err;
3394 }
3395 uscsi_cmd32touscsi_cmd((&ucmd32), uscmd);
3396 break;
3397 }
3398 case DDI_MODEL_NONE:
3399 if (ddi_copyin((void *)arg, uscmd, sizeof (*uscmd), flag)) {
3400 rval = EFAULT;
3401 goto err;
3402 }
3403 break;
3404 default:
3405 rval = EFAULT;
3406 goto err;
3407 }
3408 #else
3409 if (ddi_copyin((void *)arg, uscmd, sizeof (*uscmd), flag)) {
3410 rval = EFAULT;
3411 goto err;
3412 }
3413 #endif /* _MULTI_DATAMODEL */
3414 if (ddi_copyin(uscmd->uscsi_cdb, cdb, uscmd->uscsi_cdblen, flag)) {
3415 rval = EFAULT;
3416 goto err;
3417 }
3418 if (cdb->scc_cmd == SCMD_INQUIRY) {
3419 return (0);
3420 }
3421 err:
3422 return (rval);
3423 }
3424
3425 static int
lofi_ioctl(dev_t dev,int cmd,intptr_t arg,int flag,cred_t * credp,int * rvalp)3426 lofi_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *credp,
3427 int *rvalp)
3428 {
3429 int error;
3430 enum dkio_state dkstate;
3431 struct lofi_state *lsp;
3432 dk_efi_t user_efi;
3433 int id;
3434
3435 id = LOFI_MINOR2ID(getminor(dev));
3436
3437 /* lofi ioctls only apply to the master device */
3438 if (id == 0) {
3439 struct lofi_ioctl *lip = (struct lofi_ioctl *)arg;
3440
3441 /*
3442 * the query command only need read-access - i.e., normal
3443 * users are allowed to do those on the ctl device as
3444 * long as they can open it read-only.
3445 */
3446 switch (cmd) {
3447 case LOFI_MAP_FILE:
3448 if ((flag & FWRITE) == 0)
3449 return (EPERM);
3450 return (lofi_map_file(dev, lip, 1, rvalp, credp, flag));
3451 case LOFI_MAP_FILE_MINOR:
3452 if ((flag & FWRITE) == 0)
3453 return (EPERM);
3454 return (lofi_map_file(dev, lip, 0, rvalp, credp, flag));
3455 case LOFI_UNMAP_FILE:
3456 if ((flag & FWRITE) == 0)
3457 return (EPERM);
3458 return (lofi_unmap_file(lip, 1, credp, flag));
3459 case LOFI_UNMAP_FILE_MINOR:
3460 if ((flag & FWRITE) == 0)
3461 return (EPERM);
3462 return (lofi_unmap_file(lip, 0, credp, flag));
3463 case LOFI_GET_FILENAME:
3464 return (lofi_get_info(dev, lip, LOFI_GET_FILENAME,
3465 credp, flag));
3466 case LOFI_GET_MINOR:
3467 return (lofi_get_info(dev, lip, LOFI_GET_MINOR,
3468 credp, flag));
3469
3470 /*
3471 * This API made limited sense when this value was fixed
3472 * at LOFI_MAX_FILES. However, its use to iterate
3473 * across all possible devices in lofiadm means we don't
3474 * want to return L_MAXMIN, but the highest
3475 * *allocated* id.
3476 */
3477 case LOFI_GET_MAXMINOR:
3478 id = 0;
3479
3480 mutex_enter(&lofi_lock);
3481
3482 for (lsp = list_head(&lofi_list); lsp != NULL;
3483 lsp = list_next(&lofi_list, lsp)) {
3484 int i;
3485 if (lofi_access(lsp) != 0)
3486 continue;
3487
3488 i = ddi_get_instance(lsp->ls_dip);
3489 if (i > id)
3490 id = i;
3491 }
3492
3493 mutex_exit(&lofi_lock);
3494
3495 error = ddi_copyout(&id, &lip->li_id,
3496 sizeof (id), flag);
3497 if (error)
3498 return (EFAULT);
3499 return (0);
3500
3501 case LOFI_CHECK_COMPRESSED:
3502 return (lofi_get_info(dev, lip, LOFI_CHECK_COMPRESSED,
3503 credp, flag));
3504 default:
3505 return (EINVAL);
3506 }
3507 }
3508
3509 mutex_enter(&lofi_lock);
3510 lsp = ddi_get_soft_state(lofi_statep, id);
3511 if (lsp == NULL || lsp->ls_cleanup) {
3512 mutex_exit(&lofi_lock);
3513 return (ENXIO);
3514 }
3515 mutex_exit(&lofi_lock);
3516
3517 if (ddi_prop_exists(DDI_DEV_T_ANY, lsp->ls_dip, DDI_PROP_DONTPASS,
3518 "labeled") == 1) {
3519 error = cmlb_ioctl(lsp->ls_cmlbhandle, dev, cmd, arg, flag,
3520 credp, rvalp, 0);
3521 if (error != ENOTTY)
3522 return (error);
3523 }
3524
3525 /*
3526 * We explicitly allow DKIOCSTATE, but all other ioctls should fail with
3527 * EIO as if the device was no longer present.
3528 */
3529 if (lsp->ls_vp == NULL && cmd != DKIOCSTATE)
3530 return (EIO);
3531
3532 /* these are for faking out utilities like newfs */
3533 switch (cmd) {
3534 case DKIOCGMEDIAINFO:
3535 case DKIOCGMEDIAINFOEXT: {
3536 struct dk_minfo_ext media_info;
3537 int shift = lsp->ls_lbshift;
3538 int size;
3539
3540 if (cmd == DKIOCGMEDIAINFOEXT) {
3541 media_info.dki_pbsize = 1U << lsp->ls_pbshift;
3542 switch (ddi_model_convert_from(flag & FMODELS)) {
3543 case DDI_MODEL_ILP32:
3544 size = sizeof (struct dk_minfo_ext32);
3545 break;
3546 default:
3547 size = sizeof (struct dk_minfo_ext);
3548 break;
3549 }
3550 } else {
3551 size = sizeof (struct dk_minfo);
3552 }
3553
3554 media_info.dki_media_type = DK_FIXED_DISK;
3555 media_info.dki_lbsize = 1U << shift;
3556 media_info.dki_capacity =
3557 (lsp->ls_vp_size - lsp->ls_crypto_offset) >> shift;
3558
3559 if (ddi_copyout(&media_info, (void *)arg, size, flag))
3560 return (EFAULT);
3561 return (0);
3562 }
3563 case DKIOCREMOVABLE: {
3564 int i = 0;
3565 if (ddi_copyout(&i, (caddr_t)arg, sizeof (int), flag))
3566 return (EFAULT);
3567 return (0);
3568 }
3569
3570 case DKIOCGVTOC: {
3571 struct vtoc vt;
3572 fake_disk_vtoc(lsp, &vt);
3573
3574 switch (ddi_model_convert_from(flag & FMODELS)) {
3575 case DDI_MODEL_ILP32: {
3576 struct vtoc32 vtoc32;
3577
3578 vtoctovtoc32(vt, vtoc32);
3579 if (ddi_copyout(&vtoc32, (void *)arg,
3580 sizeof (struct vtoc32), flag))
3581 return (EFAULT);
3582 break;
3583 }
3584
3585 case DDI_MODEL_NONE:
3586 if (ddi_copyout(&vt, (void *)arg,
3587 sizeof (struct vtoc), flag))
3588 return (EFAULT);
3589 break;
3590 }
3591 return (0);
3592 }
3593 case DKIOCINFO: {
3594 struct dk_cinfo ci;
3595 fake_disk_info(dev, &ci);
3596 if (ddi_copyout(&ci, (void *)arg, sizeof (ci), flag))
3597 return (EFAULT);
3598 return (0);
3599 }
3600 case DKIOCG_VIRTGEOM:
3601 case DKIOCG_PHYGEOM:
3602 case DKIOCGGEOM:
3603 error = ddi_copyout(&lsp->ls_dkg, (void *)arg,
3604 sizeof (struct dk_geom), flag);
3605 if (error)
3606 return (EFAULT);
3607 return (0);
3608 case DKIOCSTATE:
3609 /*
3610 * Normally, lofi devices are always in the INSERTED state. If
3611 * a device is forcefully unmapped, then the device transitions
3612 * to the DKIO_DEV_GONE state.
3613 */
3614 if (ddi_copyin((void *)arg, &dkstate, sizeof (dkstate),
3615 flag) != 0)
3616 return (EFAULT);
3617
3618 mutex_enter(&lsp->ls_vp_lock);
3619 while (((dkstate == DKIO_INSERTED && lsp->ls_vp != NULL) ||
3620 (dkstate == DKIO_DEV_GONE && lsp->ls_vp == NULL)) &&
3621 !lsp->ls_cleanup) {
3622 /*
3623 * By virtue of having the device open, we know that
3624 * 'lsp' will remain valid when we return.
3625 */
3626 if (!cv_wait_sig(&lsp->ls_vp_cv, &lsp->ls_vp_lock)) {
3627 mutex_exit(&lsp->ls_vp_lock);
3628 return (EINTR);
3629 }
3630 }
3631
3632 dkstate = (!lsp->ls_cleanup && lsp->ls_vp != NULL ?
3633 DKIO_INSERTED : DKIO_DEV_GONE);
3634 mutex_exit(&lsp->ls_vp_lock);
3635
3636 if (ddi_copyout(&dkstate, (void *)arg,
3637 sizeof (dkstate), flag) != 0)
3638 return (EFAULT);
3639 return (0);
3640 case USCSICMD: {
3641 struct uscsi_cmd uscmd;
3642 union scsi_cdb cdb;
3643
3644 if (uscsi_is_inquiry(arg, flag, &cdb, &uscmd) == 0) {
3645 struct scsi_inquiry inq = {0};
3646
3647 lofi_create_inquiry(lsp, &inq);
3648 if (ddi_copyout(&inq, uscmd.uscsi_bufaddr,
3649 uscmd.uscsi_buflen, flag) != 0)
3650 return (EFAULT);
3651 return (0);
3652 } else if (cdb.scc_cmd == SCMD_READ_CAPACITY) {
3653 struct scsi_capacity capacity;
3654
3655 capacity.capacity =
3656 BE_32((lsp->ls_vp_size - lsp->ls_crypto_offset) >>
3657 lsp->ls_lbshift);
3658 capacity.lbasize = BE_32(1 << lsp->ls_lbshift);
3659 if (ddi_copyout(&capacity, uscmd.uscsi_bufaddr,
3660 uscmd.uscsi_buflen, flag) != 0)
3661 return (EFAULT);
3662 return (0);
3663 }
3664
3665 uscmd.uscsi_rqstatus = 0xff;
3666 #ifdef _MULTI_DATAMODEL
3667 switch (ddi_model_convert_from(flag & FMODELS)) {
3668 case DDI_MODEL_ILP32: {
3669 struct uscsi_cmd32 ucmd32;
3670 uscsi_cmdtouscsi_cmd32((&uscmd), (&ucmd32));
3671 if (ddi_copyout(&ucmd32, (void *)arg, sizeof (ucmd32),
3672 flag) != 0)
3673 return (EFAULT);
3674 break;
3675 }
3676 case DDI_MODEL_NONE:
3677 if (ddi_copyout(&uscmd, (void *)arg, sizeof (uscmd),
3678 flag) != 0)
3679 return (EFAULT);
3680 break;
3681 default:
3682 return (EFAULT);
3683 }
3684 #else
3685 if (ddi_copyout(&uscmd, (void *)arg, sizeof (uscmd), flag) != 0)
3686 return (EFAULT);
3687 #endif /* _MULTI_DATAMODEL */
3688 return (0);
3689 }
3690
3691 case DKIOCGMBOOT:
3692 return (lofi_urw(lsp, FREAD, 0, 1 << lsp->ls_lbshift,
3693 arg, flag, credp));
3694
3695 case DKIOCSMBOOT:
3696 return (lofi_urw(lsp, FWRITE, 0, 1 << lsp->ls_lbshift,
3697 arg, flag, credp));
3698
3699 case DKIOCGETEFI:
3700 if (ddi_copyin((void *)arg, &user_efi,
3701 sizeof (dk_efi_t), flag) != 0)
3702 return (EFAULT);
3703
3704 return (lofi_urw(lsp, FREAD,
3705 user_efi.dki_lba * (1 << lsp->ls_lbshift),
3706 user_efi.dki_length, (intptr_t)user_efi.dki_data,
3707 flag, credp));
3708
3709 case DKIOCSETEFI:
3710 if (ddi_copyin((void *)arg, &user_efi,
3711 sizeof (dk_efi_t), flag) != 0)
3712 return (EFAULT);
3713
3714 return (lofi_urw(lsp, FWRITE,
3715 user_efi.dki_lba * (1 << lsp->ls_lbshift),
3716 user_efi.dki_length, (intptr_t)user_efi.dki_data,
3717 flag, credp));
3718
3719 case DKIOC_CANFREE: {
3720 int canfree = lsp->ls_canfree ? 1 : 0;
3721
3722 if (ddi_copyout(&canfree, (void *)arg, sizeof (canfree), flag))
3723 return (EFAULT);
3724
3725 return (0);
3726 }
3727
3728 case DKIOCFREE: {
3729 dkioc_free_list_t *dfl;
3730
3731 if (!lsp->ls_canfree)
3732 return (ENOTSUP);
3733
3734 error = dfl_copyin((void *)arg, &dfl, flag, KM_SLEEP);
3735 if (error != 0)
3736 return (error);
3737
3738 /*
3739 * lofi_free_space() calls dfl_iter() which consumes dfl;
3740 * there is no need to call dfl_free() here.
3741 */
3742 return (lofi_free_space(lsp, dfl, dev));
3743 }
3744
3745 default:
3746 #ifdef DEBUG
3747 cmn_err(CE_WARN, "lofi_ioctl: %d is not implemented\n", cmd);
3748 #endif /* DEBUG */
3749 return (ENOTTY);
3750 }
3751 }
3752
3753 static int
lofi_prop_op(dev_t dev,dev_info_t * dip,ddi_prop_op_t prop_op,int mod_flags,char * name,caddr_t valuep,int * lengthp)3754 lofi_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
3755 char *name, caddr_t valuep, int *lengthp)
3756 {
3757 struct lofi_state *lsp;
3758 int rc;
3759
3760 lsp = ddi_get_soft_state(lofi_statep, ddi_get_instance(dip));
3761 if (lsp == NULL) {
3762 return (ddi_prop_op(dev, dip, prop_op, mod_flags,
3763 name, valuep, lengthp));
3764 }
3765
3766 rc = cmlb_prop_op(lsp->ls_cmlbhandle, dev, dip, prop_op, mod_flags,
3767 name, valuep, lengthp, LOFI_PART(getminor(dev)), NULL);
3768 if (rc == DDI_PROP_SUCCESS)
3769 return (rc);
3770
3771 return (ddi_prop_op(DDI_DEV_T_ANY, dip, prop_op, mod_flags,
3772 name, valuep, lengthp));
3773 }
3774
3775 static struct cb_ops lofi_cb_ops = {
3776 lofi_open, /* open */
3777 lofi_close, /* close */
3778 lofi_strategy, /* strategy */
3779 nodev, /* print */
3780 nodev, /* dump */
3781 lofi_read, /* read */
3782 lofi_write, /* write */
3783 lofi_ioctl, /* ioctl */
3784 nodev, /* devmap */
3785 nodev, /* mmap */
3786 nodev, /* segmap */
3787 nochpoll, /* poll */
3788 lofi_prop_op, /* prop_op */
3789 0, /* streamtab */
3790 D_64BIT | D_NEW | D_MP, /* Driver compatibility flag */
3791 CB_REV,
3792 lofi_aread,
3793 lofi_awrite
3794 };
3795
3796 static struct dev_ops lofi_ops = {
3797 DEVO_REV, /* devo_rev, */
3798 0, /* refcnt */
3799 lofi_info, /* info */
3800 nulldev, /* identify */
3801 nulldev, /* probe */
3802 lofi_attach, /* attach */
3803 lofi_detach, /* detach */
3804 nodev, /* reset */
3805 &lofi_cb_ops, /* driver operations */
3806 NULL, /* no bus operations */
3807 NULL, /* power */
3808 ddi_quiesce_not_needed, /* quiesce */
3809 };
3810
3811 static struct modldrv modldrv = {
3812 &mod_driverops,
3813 "loopback file driver",
3814 &lofi_ops,
3815 };
3816
3817 static struct modlinkage modlinkage = {
3818 MODREV_1,
3819 &modldrv,
3820 NULL
3821 };
3822
3823 int
_init(void)3824 _init(void)
3825 {
3826 int error;
3827
3828 list_create(&lofi_list, sizeof (struct lofi_state),
3829 offsetof(struct lofi_state, ls_list));
3830
3831 error = ddi_soft_state_init((void **)&lofi_statep,
3832 sizeof (struct lofi_state), 0);
3833 if (error) {
3834 list_destroy(&lofi_list);
3835 return (error);
3836 }
3837
3838 /*
3839 * The minor number is stored as id << LOFI_CMLB_SHIFT as
3840 * we need to reserve space for cmlb minor numbers.
3841 * This will leave out 4096 id values on 32bit kernel, which should
3842 * still suffice.
3843 */
3844 lofi_id = id_space_create("lofi_id", 1,
3845 (1 << (L_BITSMINOR - LOFI_CMLB_SHIFT)));
3846
3847 if (lofi_id == NULL) {
3848 ddi_soft_state_fini((void **)&lofi_statep);
3849 list_destroy(&lofi_list);
3850 return (DDI_FAILURE);
3851 }
3852
3853 mutex_init(&lofi_lock, NULL, MUTEX_DRIVER, NULL);
3854
3855 error = mod_install(&modlinkage);
3856
3857 if (error) {
3858 id_space_destroy(lofi_id);
3859 mutex_destroy(&lofi_lock);
3860 ddi_soft_state_fini((void **)&lofi_statep);
3861 list_destroy(&lofi_list);
3862 }
3863
3864 return (error);
3865 }
3866
3867 int
_fini(void)3868 _fini(void)
3869 {
3870 int error;
3871
3872 mutex_enter(&lofi_lock);
3873
3874 if (!list_is_empty(&lofi_list)) {
3875 mutex_exit(&lofi_lock);
3876 return (EBUSY);
3877 }
3878
3879 mutex_exit(&lofi_lock);
3880
3881 error = mod_remove(&modlinkage);
3882 if (error)
3883 return (error);
3884
3885 mutex_destroy(&lofi_lock);
3886 id_space_destroy(lofi_id);
3887 ddi_soft_state_fini((void **)&lofi_statep);
3888 list_destroy(&lofi_list);
3889
3890 return (error);
3891 }
3892
3893 int
_info(struct modinfo * modinfop)3894 _info(struct modinfo *modinfop)
3895 {
3896 return (mod_info(&modlinkage, modinfop));
3897 }
3898