xref: /freebsd/sys/kern/sched_4bsd.c (revision df114daef4c48548c3c2b86717612761185ae18f)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1990, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 #include <sys/cdefs.h>
38 #include "opt_hwpmc_hooks.h"
39 #include "opt_hwt_hooks.h"
40 #include "opt_sched.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/cpuset.h>
45 #include <sys/kernel.h>
46 #include <sys/ktr.h>
47 #include <sys/lock.h>
48 #include <sys/kthread.h>
49 #include <sys/mutex.h>
50 #include <sys/proc.h>
51 #include <sys/resourcevar.h>
52 #include <sys/runq.h>
53 #include <sys/sched.h>
54 #include <sys/sdt.h>
55 #include <sys/smp.h>
56 #include <sys/sysctl.h>
57 #include <sys/sx.h>
58 #include <sys/turnstile.h>
59 #include <sys/umtxvar.h>
60 #include <machine/pcb.h>
61 #include <machine/smp.h>
62 
63 #ifdef HWPMC_HOOKS
64 #include <sys/pmckern.h>
65 #endif
66 
67 #ifdef HWT_HOOKS
68 #include <dev/hwt/hwt_hook.h>
69 #endif
70 
71 #ifdef KDTRACE_HOOKS
72 #include <sys/dtrace_bsd.h>
73 int __read_mostly		dtrace_vtime_active;
74 dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
75 #endif
76 
77 /*
78  * INVERSE_ESTCPU_WEIGHT is only suitable for statclock() frequencies in
79  * the range 100-256 Hz (approximately).
80  */
81 #ifdef SMP
82 #define	INVERSE_ESTCPU_WEIGHT	(8 * smp_cpus)
83 #else
84 #define	INVERSE_ESTCPU_WEIGHT	8	/* 1 / (priorities per estcpu level). */
85 #endif
86 #define	NICE_WEIGHT		1	/* Priorities per nice level. */
87 #define	ESTCPULIM(e)							\
88 	min((e), INVERSE_ESTCPU_WEIGHT *				\
89 	    (NICE_WEIGHT * (PRIO_MAX - PRIO_MIN) +			\
90 	    PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE)			\
91 	    + INVERSE_ESTCPU_WEIGHT - 1)
92 
93 #define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
94 
95 /*
96  * The schedulable entity that runs a context.
97  * This is  an extension to the thread structure and is tailored to
98  * the requirements of this scheduler.
99  * All fields are protected by the scheduler lock.
100  */
101 struct td_sched {
102 	fixpt_t		ts_pctcpu;	/* %cpu during p_swtime. */
103 	u_int		ts_estcpu;	/* Estimated cpu utilization. */
104 	int		ts_cpticks;	/* Ticks of cpu time. */
105 	int		ts_slptime;	/* Seconds !RUNNING. */
106 	int		ts_slice;	/* Remaining part of time slice. */
107 	int		ts_flags;
108 	struct runq	*ts_runq;	/* runq the thread is currently on */
109 #ifdef KTR
110 	char		ts_name[TS_NAME_LEN];
111 #endif
112 };
113 
114 /* flags kept in td_flags */
115 #define TDF_DIDRUN	TDF_SCHED0	/* thread actually ran. */
116 #define TDF_BOUND	TDF_SCHED1	/* Bound to one CPU. */
117 #define	TDF_SLICEEND	TDF_SCHED2	/* Thread time slice is over. */
118 
119 /* flags kept in ts_flags */
120 #define	TSF_AFFINITY	0x0001		/* Has a non-"full" CPU set. */
121 
122 #define SKE_RUNQ_PCPU(ts)						\
123     ((ts)->ts_runq != 0 && (ts)->ts_runq != &runq)
124 
125 #define	THREAD_CAN_SCHED(td, cpu)	\
126     CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
127 
128 _Static_assert(sizeof(struct thread) + sizeof(struct td_sched) <=
129     sizeof(struct thread0_storage),
130     "increase struct thread0_storage.t0st_sched size");
131 
132 static struct mtx sched_lock;
133 
134 static int	realstathz = 127; /* stathz is sometimes 0 and run off of hz. */
135 static int	sched_tdcnt;	/* Total runnable threads in the system. */
136 static int	sched_slice = 12; /* Thread run time before rescheduling. */
137 
138 static void	setup_runqs(void);
139 static void	schedcpu(void);
140 static void	schedcpu_thread(void);
141 static void	sched_priority(struct thread *td, u_char prio);
142 static void	sched_setup(void *dummy);
143 static void	maybe_resched(struct thread *td);
144 static void	updatepri(struct thread *td);
145 static void	resetpriority(struct thread *td);
146 static void	resetpriority_thread(struct thread *td);
147 #ifdef SMP
148 static int	sched_pickcpu(struct thread *td);
149 static int	forward_wakeup(int cpunum);
150 static void	kick_other_cpu(int pri, int cpuid);
151 #endif
152 
153 static struct kproc_desc sched_kp = {
154         "schedcpu",
155         schedcpu_thread,
156         NULL
157 };
158 SYSINIT(schedcpu, SI_SUB_LAST, SI_ORDER_FIRST, kproc_start,
159     &sched_kp);
160 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
161 
162 static void sched_initticks(void *dummy);
163 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
164     NULL);
165 
166 /*
167  * Global run queue.
168  */
169 static struct runq runq;
170 
171 #ifdef SMP
172 /*
173  * Per-CPU run queues
174  */
175 static struct runq runq_pcpu[MAXCPU];
176 long runq_length[MAXCPU];
177 
178 static cpuset_t idle_cpus_mask;
179 #endif
180 
181 struct pcpuidlestat {
182 	u_int idlecalls;
183 	u_int oldidlecalls;
184 };
185 DPCPU_DEFINE_STATIC(struct pcpuidlestat, idlestat);
186 
187 static void
setup_runqs(void)188 setup_runqs(void)
189 {
190 #ifdef SMP
191 	int i;
192 
193 	for (i = 0; i < MAXCPU; ++i)
194 		runq_init(&runq_pcpu[i]);
195 #endif
196 
197 	runq_init(&runq);
198 }
199 
200 static int
sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)201 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
202 {
203 	int error, new_val, period;
204 
205 	period = 1000000 / realstathz;
206 	new_val = period * sched_slice;
207 	error = sysctl_handle_int(oidp, &new_val, 0, req);
208 	if (error != 0 || req->newptr == NULL)
209 		return (error);
210 	if (new_val <= 0)
211 		return (EINVAL);
212 	sched_slice = imax(1, (new_val + period / 2) / period);
213 	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
214 	    realstathz);
215 	return (0);
216 }
217 
218 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
219     "Scheduler");
220 
221 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "4BSD", 0,
222     "Scheduler name");
223 SYSCTL_PROC(_kern_sched, OID_AUTO, quantum,
224     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
225     sysctl_kern_quantum, "I",
226     "Quantum for timeshare threads in microseconds");
227 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
228     "Quantum for timeshare threads in stathz ticks");
229 #ifdef SMP
230 /* Enable forwarding of wakeups to all other cpus */
231 static SYSCTL_NODE(_kern_sched, OID_AUTO, ipiwakeup,
232     CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
233     "Kernel SMP");
234 
235 static int runq_fuzz = 1;
236 SYSCTL_INT(_kern_sched, OID_AUTO, runq_fuzz, CTLFLAG_RW, &runq_fuzz, 0, "");
237 
238 static int forward_wakeup_enabled = 1;
239 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, enabled, CTLFLAG_RW,
240 	   &forward_wakeup_enabled, 0,
241 	   "Forwarding of wakeup to idle CPUs");
242 
243 static int forward_wakeups_requested = 0;
244 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, requested, CTLFLAG_RD,
245 	   &forward_wakeups_requested, 0,
246 	   "Requests for Forwarding of wakeup to idle CPUs");
247 
248 static int forward_wakeups_delivered = 0;
249 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, delivered, CTLFLAG_RD,
250 	   &forward_wakeups_delivered, 0,
251 	   "Completed Forwarding of wakeup to idle CPUs");
252 
253 static int forward_wakeup_use_mask = 1;
254 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, usemask, CTLFLAG_RW,
255 	   &forward_wakeup_use_mask, 0,
256 	   "Use the mask of idle cpus");
257 
258 static int forward_wakeup_use_loop = 0;
259 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, useloop, CTLFLAG_RW,
260 	   &forward_wakeup_use_loop, 0,
261 	   "Use a loop to find idle cpus");
262 
263 #endif
264 #if 0
265 static int sched_followon = 0;
266 SYSCTL_INT(_kern_sched, OID_AUTO, followon, CTLFLAG_RW,
267 	   &sched_followon, 0,
268 	   "allow threads to share a quantum");
269 #endif
270 
271 SDT_PROVIDER_DEFINE(sched);
272 
273 SDT_PROBE_DEFINE3(sched, , , change__pri, "struct thread *",
274     "struct proc *", "uint8_t");
275 SDT_PROBE_DEFINE3(sched, , , dequeue, "struct thread *",
276     "struct proc *", "void *");
277 SDT_PROBE_DEFINE4(sched, , , enqueue, "struct thread *",
278     "struct proc *", "void *", "int");
279 SDT_PROBE_DEFINE4(sched, , , lend__pri, "struct thread *",
280     "struct proc *", "uint8_t", "struct thread *");
281 SDT_PROBE_DEFINE2(sched, , , load__change, "int", "int");
282 SDT_PROBE_DEFINE2(sched, , , off__cpu, "struct thread *",
283     "struct proc *");
284 SDT_PROBE_DEFINE(sched, , , on__cpu);
285 SDT_PROBE_DEFINE(sched, , , remain__cpu);
286 SDT_PROBE_DEFINE2(sched, , , surrender, "struct thread *",
287     "struct proc *");
288 
289 static __inline void
sched_load_add(void)290 sched_load_add(void)
291 {
292 
293 	sched_tdcnt++;
294 	KTR_COUNTER0(KTR_SCHED, "load", "global load", sched_tdcnt);
295 	SDT_PROBE2(sched, , , load__change, NOCPU, sched_tdcnt);
296 }
297 
298 static __inline void
sched_load_rem(void)299 sched_load_rem(void)
300 {
301 
302 	sched_tdcnt--;
303 	KTR_COUNTER0(KTR_SCHED, "load", "global load", sched_tdcnt);
304 	SDT_PROBE2(sched, , , load__change, NOCPU, sched_tdcnt);
305 }
306 /*
307  * Arrange to reschedule if necessary, taking the priorities and
308  * schedulers into account.
309  */
310 static void
maybe_resched(struct thread * td)311 maybe_resched(struct thread *td)
312 {
313 
314 	THREAD_LOCK_ASSERT(td, MA_OWNED);
315 	if (td->td_priority < curthread->td_priority)
316 		ast_sched_locked(curthread, TDA_SCHED);
317 }
318 
319 /*
320  * This function is called when a thread is about to be put on run queue
321  * because it has been made runnable or its priority has been adjusted.  It
322  * determines if the new thread should preempt the current thread.  If so,
323  * it sets td_owepreempt to request a preemption.
324  */
325 int
maybe_preempt(struct thread * td)326 maybe_preempt(struct thread *td)
327 {
328 #ifdef PREEMPTION
329 	struct thread *ctd;
330 	int cpri, pri;
331 
332 	/*
333 	 * The new thread should not preempt the current thread if any of the
334 	 * following conditions are true:
335 	 *
336 	 *  - The kernel is in the throes of crashing (panicstr).
337 	 *  - The current thread has a higher (numerically lower) or
338 	 *    equivalent priority.  Note that this prevents curthread from
339 	 *    trying to preempt to itself.
340 	 *  - The current thread has an inhibitor set or is in the process of
341 	 *    exiting.  In this case, the current thread is about to switch
342 	 *    out anyways, so there's no point in preempting.  If we did,
343 	 *    the current thread would not be properly resumed as well, so
344 	 *    just avoid that whole landmine.
345 	 *  - If the new thread's priority is not a realtime priority and
346 	 *    the current thread's priority is not an idle priority and
347 	 *    FULL_PREEMPTION is disabled.
348 	 *
349 	 * If all of these conditions are false, but the current thread is in
350 	 * a nested critical section, then we have to defer the preemption
351 	 * until we exit the critical section.  Otherwise, switch immediately
352 	 * to the new thread.
353 	 */
354 	ctd = curthread;
355 	THREAD_LOCK_ASSERT(td, MA_OWNED);
356 	KASSERT((td->td_inhibitors == 0),
357 			("maybe_preempt: trying to run inhibited thread"));
358 	pri = td->td_priority;
359 	cpri = ctd->td_priority;
360 	if (KERNEL_PANICKED() || pri >= cpri /* || dumping */ ||
361 	    TD_IS_INHIBITED(ctd))
362 		return (0);
363 #ifndef FULL_PREEMPTION
364 	if (pri > PRI_MAX_ITHD && cpri < PRI_MIN_IDLE)
365 		return (0);
366 #endif
367 
368 	CTR0(KTR_PROC, "maybe_preempt: scheduling preemption");
369 	ctd->td_owepreempt = 1;
370 	return (1);
371 #else
372 	return (0);
373 #endif
374 }
375 
376 /*
377  * Constants for digital decay and forget:
378  *	90% of (ts_estcpu) usage in 5 * loadav time
379  *	95% of (ts_pctcpu) usage in 60 seconds (load insensitive)
380  *          Note that, as ps(1) mentions, this can let percentages
381  *          total over 100% (I've seen 137.9% for 3 processes).
382  *
383  * Note that schedclock() updates ts_estcpu and p_cpticks asynchronously.
384  *
385  * We wish to decay away 90% of ts_estcpu in (5 * loadavg) seconds.
386  * That is, the system wants to compute a value of decay such
387  * that the following for loop:
388  * 	for (i = 0; i < (5 * loadavg); i++)
389  * 		ts_estcpu *= decay;
390  * will compute
391  * 	ts_estcpu *= 0.1;
392  * for all values of loadavg:
393  *
394  * Mathematically this loop can be expressed by saying:
395  * 	decay ** (5 * loadavg) ~= .1
396  *
397  * The system computes decay as:
398  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
399  *
400  * We wish to prove that the system's computation of decay
401  * will always fulfill the equation:
402  * 	decay ** (5 * loadavg) ~= .1
403  *
404  * If we compute b as:
405  * 	b = 2 * loadavg
406  * then
407  * 	decay = b / (b + 1)
408  *
409  * We now need to prove two things:
410  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
411  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
412  *
413  * Facts:
414  *         For x close to zero, exp(x) =~ 1 + x, since
415  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
416  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
417  *         For x close to zero, ln(1+x) =~ x, since
418  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
419  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
420  *         ln(.1) =~ -2.30
421  *
422  * Proof of (1):
423  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
424  *	solving for factor,
425  *      ln(factor) =~ (-2.30/5*loadav), or
426  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
427  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
428  *
429  * Proof of (2):
430  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
431  *	solving for power,
432  *      power*ln(b/(b+1)) =~ -2.30, or
433  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
434  *
435  * Actual power values for the implemented algorithm are as follows:
436  *      loadav: 1       2       3       4
437  *      power:  5.68    10.32   14.94   19.55
438  */
439 
440 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
441 #define	loadfactor(loadav)	(2 * (loadav))
442 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
443 
444 /* decay 95% of `ts_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
445 static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
446 SYSCTL_UINT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0,
447     "Decay factor used for updating %CPU");
448 
449 /*
450  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
451  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
452  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
453  *
454  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
455  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
456  *
457  * If you don't want to bother with the faster/more-accurate formula, you
458  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
459  * (more general) method of calculating the %age of CPU used by a process.
460  */
461 #define	CCPU_SHIFT	11
462 
463 /*
464  * Recompute process priorities, every hz ticks.
465  * MP-safe, called without the Giant mutex.
466  */
467 /* ARGSUSED */
468 static void
schedcpu(void)469 schedcpu(void)
470 {
471 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
472 	struct thread *td;
473 	struct proc *p;
474 	struct td_sched *ts;
475 	int awake;
476 
477 	sx_slock(&allproc_lock);
478 	FOREACH_PROC_IN_SYSTEM(p) {
479 		PROC_LOCK(p);
480 		if (p->p_state == PRS_NEW) {
481 			PROC_UNLOCK(p);
482 			continue;
483 		}
484 		FOREACH_THREAD_IN_PROC(p, td) {
485 			awake = 0;
486 			ts = td_get_sched(td);
487 			thread_lock(td);
488 			/*
489 			 * Increment sleep time (if sleeping).  We
490 			 * ignore overflow, as above.
491 			 */
492 			/*
493 			 * The td_sched slptimes are not touched in wakeup
494 			 * because the thread may not HAVE everything in
495 			 * memory? XXX I think this is out of date.
496 			 */
497 			if (TD_ON_RUNQ(td)) {
498 				awake = 1;
499 				td->td_flags &= ~TDF_DIDRUN;
500 			} else if (TD_IS_RUNNING(td)) {
501 				awake = 1;
502 				/* Do not clear TDF_DIDRUN */
503 			} else if (td->td_flags & TDF_DIDRUN) {
504 				awake = 1;
505 				td->td_flags &= ~TDF_DIDRUN;
506 			}
507 
508 			/*
509 			 * ts_pctcpu is only for ps and ttyinfo().
510 			 */
511 			ts->ts_pctcpu = (ts->ts_pctcpu * ccpu) >> FSHIFT;
512 			/*
513 			 * If the td_sched has been idle the entire second,
514 			 * stop recalculating its priority until
515 			 * it wakes up.
516 			 */
517 			if (ts->ts_cpticks != 0) {
518 #if	(FSHIFT >= CCPU_SHIFT)
519 				ts->ts_pctcpu += (realstathz == 100)
520 				    ? ((fixpt_t) ts->ts_cpticks) <<
521 				    (FSHIFT - CCPU_SHIFT) :
522 				    100 * (((fixpt_t) ts->ts_cpticks)
523 				    << (FSHIFT - CCPU_SHIFT)) / realstathz;
524 #else
525 				ts->ts_pctcpu += ((FSCALE - ccpu) *
526 				    (ts->ts_cpticks *
527 				    FSCALE / realstathz)) >> FSHIFT;
528 #endif
529 				ts->ts_cpticks = 0;
530 			}
531 			/*
532 			 * If there are ANY running threads in this process,
533 			 * then don't count it as sleeping.
534 			 * XXX: this is broken.
535 			 */
536 			if (awake) {
537 				if (ts->ts_slptime > 1) {
538 					/*
539 					 * In an ideal world, this should not
540 					 * happen, because whoever woke us
541 					 * up from the long sleep should have
542 					 * unwound the slptime and reset our
543 					 * priority before we run at the stale
544 					 * priority.  Should KASSERT at some
545 					 * point when all the cases are fixed.
546 					 */
547 					updatepri(td);
548 				}
549 				ts->ts_slptime = 0;
550 			} else
551 				ts->ts_slptime++;
552 			if (ts->ts_slptime > 1) {
553 				thread_unlock(td);
554 				continue;
555 			}
556 			ts->ts_estcpu = decay_cpu(loadfac, ts->ts_estcpu);
557 		      	resetpriority(td);
558 			resetpriority_thread(td);
559 			thread_unlock(td);
560 		}
561 		PROC_UNLOCK(p);
562 	}
563 	sx_sunlock(&allproc_lock);
564 }
565 
566 /*
567  * Main loop for a kthread that executes schedcpu once a second.
568  */
569 static void
schedcpu_thread(void)570 schedcpu_thread(void)
571 {
572 
573 	for (;;) {
574 		schedcpu();
575 		pause("-", hz);
576 	}
577 }
578 
579 /*
580  * Recalculate the priority of a process after it has slept for a while.
581  * For all load averages >= 1 and max ts_estcpu of 255, sleeping for at
582  * least six times the loadfactor will decay ts_estcpu to zero.
583  */
584 static void
updatepri(struct thread * td)585 updatepri(struct thread *td)
586 {
587 	struct td_sched *ts;
588 	fixpt_t loadfac;
589 	unsigned int newcpu;
590 
591 	ts = td_get_sched(td);
592 	loadfac = loadfactor(averunnable.ldavg[0]);
593 	if (ts->ts_slptime > 5 * loadfac)
594 		ts->ts_estcpu = 0;
595 	else {
596 		newcpu = ts->ts_estcpu;
597 		ts->ts_slptime--;	/* was incremented in schedcpu() */
598 		while (newcpu && --ts->ts_slptime)
599 			newcpu = decay_cpu(loadfac, newcpu);
600 		ts->ts_estcpu = newcpu;
601 	}
602 }
603 
604 /*
605  * Compute the priority of a process when running in user mode.
606  * Arrange to reschedule if the resulting priority is better
607  * than that of the current process.
608  */
609 static void
resetpriority(struct thread * td)610 resetpriority(struct thread *td)
611 {
612 	u_int newpriority;
613 
614 	if (td->td_pri_class != PRI_TIMESHARE)
615 		return;
616 	newpriority = PUSER +
617 	    td_get_sched(td)->ts_estcpu / INVERSE_ESTCPU_WEIGHT +
618 	    NICE_WEIGHT * (td->td_proc->p_nice - PRIO_MIN);
619 	newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
620 	    PRI_MAX_TIMESHARE);
621 	sched_user_prio(td, newpriority);
622 }
623 
624 /*
625  * Update the thread's priority when the associated process's user
626  * priority changes.
627  */
628 static void
resetpriority_thread(struct thread * td)629 resetpriority_thread(struct thread *td)
630 {
631 
632 	/* Only change threads with a time sharing user priority. */
633 	if (td->td_priority < PRI_MIN_TIMESHARE ||
634 	    td->td_priority > PRI_MAX_TIMESHARE)
635 		return;
636 
637 	/* XXX the whole needresched thing is broken, but not silly. */
638 	maybe_resched(td);
639 
640 	sched_prio(td, td->td_user_pri);
641 }
642 
643 /* ARGSUSED */
644 static void
sched_setup(void * dummy)645 sched_setup(void *dummy)
646 {
647 
648 	setup_runqs();
649 
650 	/* Account for thread0. */
651 	sched_load_add();
652 }
653 
654 /*
655  * This routine determines time constants after stathz and hz are setup.
656  */
657 static void
sched_initticks(void * dummy)658 sched_initticks(void *dummy)
659 {
660 
661 	realstathz = stathz ? stathz : hz;
662 	sched_slice = realstathz / 10;	/* ~100ms */
663 	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
664 	    realstathz);
665 }
666 
667 /* External interfaces start here */
668 
669 /*
670  * Very early in the boot some setup of scheduler-specific
671  * parts of proc0 and of some scheduler resources needs to be done.
672  * Called from:
673  *  proc0_init()
674  */
675 void
schedinit(void)676 schedinit(void)
677 {
678 
679 	/*
680 	 * Set up the scheduler specific parts of thread0.
681 	 */
682 	thread0.td_lock = &sched_lock;
683 	td_get_sched(&thread0)->ts_slice = sched_slice;
684 	mtx_init(&sched_lock, "sched lock", NULL, MTX_SPIN);
685 }
686 
687 void
schedinit_ap(void)688 schedinit_ap(void)
689 {
690 
691 	/* Nothing needed. */
692 }
693 
694 bool
sched_runnable(void)695 sched_runnable(void)
696 {
697 #ifdef SMP
698 	return (runq_not_empty(&runq) ||
699 	    runq_not_empty(&runq_pcpu[PCPU_GET(cpuid)]));
700 #else
701 	return (runq_not_empty(&runq));
702 #endif
703 }
704 
705 int
sched_rr_interval(void)706 sched_rr_interval(void)
707 {
708 
709 	/* Convert sched_slice from stathz to hz. */
710 	return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
711 }
712 
713 SCHED_STAT_DEFINE(ithread_demotions, "Interrupt thread priority demotions");
714 SCHED_STAT_DEFINE(ithread_preemptions,
715     "Interrupt thread preemptions due to time-sharing");
716 
717 /*
718  * We adjust the priority of the current process.  The priority of a
719  * process gets worse as it accumulates CPU time.  The cpu usage
720  * estimator (ts_estcpu) is increased here.  resetpriority() will
721  * compute a different priority each time ts_estcpu increases by
722  * INVERSE_ESTCPU_WEIGHT (until PRI_MAX_TIMESHARE is reached).  The
723  * cpu usage estimator ramps up quite quickly when the process is
724  * running (linearly), and decays away exponentially, at a rate which
725  * is proportionally slower when the system is busy.  The basic
726  * principle is that the system will 90% forget that the process used
727  * a lot of CPU time in 5 * loadav seconds.  This causes the system to
728  * favor processes which haven't run much recently, and to round-robin
729  * among other processes.
730  */
731 static void
sched_clock_tick(struct thread * td)732 sched_clock_tick(struct thread *td)
733 {
734 	struct pcpuidlestat *stat;
735 	struct td_sched *ts;
736 
737 	THREAD_LOCK_ASSERT(td, MA_OWNED);
738 	ts = td_get_sched(td);
739 
740 	ts->ts_cpticks++;
741 	ts->ts_estcpu = ESTCPULIM(ts->ts_estcpu + 1);
742 	if ((ts->ts_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
743 		resetpriority(td);
744 		resetpriority_thread(td);
745 	}
746 
747 	/*
748 	 * Force a context switch if the current thread has used up a full
749 	 * time slice (default is 100ms).
750 	 */
751 	if (!TD_IS_IDLETHREAD(td) && --ts->ts_slice <= 0) {
752 		ts->ts_slice = sched_slice;
753 
754 		/*
755 		 * If an ithread uses a full quantum, demote its
756 		 * priority and preempt it.
757 		 */
758 		if (PRI_BASE(td->td_pri_class) == PRI_ITHD) {
759 			SCHED_STAT_INC(ithread_preemptions);
760 			td->td_owepreempt = 1;
761 			if (td->td_base_pri + RQ_PPQ < PRI_MAX_ITHD) {
762 				SCHED_STAT_INC(ithread_demotions);
763 				sched_prio(td, td->td_base_pri + RQ_PPQ);
764 			}
765 		} else {
766 			td->td_flags |= TDF_SLICEEND;
767 			ast_sched_locked(td, TDA_SCHED);
768 		}
769 	}
770 
771 	stat = DPCPU_PTR(idlestat);
772 	stat->oldidlecalls = stat->idlecalls;
773 	stat->idlecalls = 0;
774 }
775 
776 void
sched_clock(struct thread * td,int cnt)777 sched_clock(struct thread *td, int cnt)
778 {
779 
780 	for ( ; cnt > 0; cnt--)
781 		sched_clock_tick(td);
782 }
783 
784 /*
785  * Charge child's scheduling CPU usage to parent.
786  */
787 void
sched_exit(struct proc * p,struct thread * td)788 sched_exit(struct proc *p, struct thread *td)
789 {
790 
791 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "proc exit",
792 	    "prio:%d", td->td_priority);
793 
794 	PROC_LOCK_ASSERT(p, MA_OWNED);
795 	sched_exit_thread(FIRST_THREAD_IN_PROC(p), td);
796 }
797 
798 void
sched_exit_thread(struct thread * td,struct thread * child)799 sched_exit_thread(struct thread *td, struct thread *child)
800 {
801 
802 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "exit",
803 	    "prio:%d", child->td_priority);
804 	thread_lock(td);
805 	td_get_sched(td)->ts_estcpu = ESTCPULIM(td_get_sched(td)->ts_estcpu +
806 	    td_get_sched(child)->ts_estcpu);
807 	thread_unlock(td);
808 	thread_lock(child);
809 	if ((child->td_flags & TDF_NOLOAD) == 0)
810 		sched_load_rem();
811 	thread_unlock(child);
812 }
813 
814 void
sched_fork(struct thread * td,struct thread * childtd)815 sched_fork(struct thread *td, struct thread *childtd)
816 {
817 	sched_fork_thread(td, childtd);
818 }
819 
820 void
sched_fork_thread(struct thread * td,struct thread * childtd)821 sched_fork_thread(struct thread *td, struct thread *childtd)
822 {
823 	struct td_sched *ts, *tsc;
824 
825 	childtd->td_oncpu = NOCPU;
826 	childtd->td_lastcpu = NOCPU;
827 	childtd->td_lock = &sched_lock;
828 	childtd->td_cpuset = cpuset_ref(td->td_cpuset);
829 	childtd->td_domain.dr_policy = td->td_cpuset->cs_domain;
830 	childtd->td_priority = childtd->td_base_pri;
831 	ts = td_get_sched(childtd);
832 	bzero(ts, sizeof(*ts));
833 	tsc = td_get_sched(td);
834 	ts->ts_estcpu = tsc->ts_estcpu;
835 	ts->ts_flags |= (tsc->ts_flags & TSF_AFFINITY);
836 	ts->ts_slice = 1;
837 }
838 
839 void
sched_nice(struct proc * p,int nice)840 sched_nice(struct proc *p, int nice)
841 {
842 	struct thread *td;
843 
844 	PROC_LOCK_ASSERT(p, MA_OWNED);
845 	p->p_nice = nice;
846 	FOREACH_THREAD_IN_PROC(p, td) {
847 		thread_lock(td);
848 		resetpriority(td);
849 		resetpriority_thread(td);
850 		thread_unlock(td);
851 	}
852 }
853 
854 void
sched_class(struct thread * td,int class)855 sched_class(struct thread *td, int class)
856 {
857 	THREAD_LOCK_ASSERT(td, MA_OWNED);
858 	td->td_pri_class = class;
859 }
860 
861 /*
862  * Adjust the priority of a thread.
863  */
864 static void
sched_priority(struct thread * td,u_char prio)865 sched_priority(struct thread *td, u_char prio)
866 {
867 
868 	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "priority change",
869 	    "prio:%d", td->td_priority, "new prio:%d", prio, KTR_ATTR_LINKED,
870 	    sched_tdname(curthread));
871 	SDT_PROBE3(sched, , , change__pri, td, td->td_proc, prio);
872 	if (td != curthread && prio > td->td_priority) {
873 		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
874 		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
875 		    prio, KTR_ATTR_LINKED, sched_tdname(td));
876 		SDT_PROBE4(sched, , , lend__pri, td, td->td_proc, prio,
877 		    curthread);
878 	}
879 	THREAD_LOCK_ASSERT(td, MA_OWNED);
880 	if (td->td_priority == prio)
881 		return;
882 	td->td_priority = prio;
883 	if (TD_ON_RUNQ(td) && td->td_rqindex != RQ_PRI_TO_QUEUE_IDX(prio)) {
884 		sched_rem(td);
885 		sched_add(td, SRQ_BORING | SRQ_HOLDTD);
886 	}
887 }
888 
889 /*
890  * Update a thread's priority when it is lent another thread's
891  * priority.
892  */
893 void
sched_lend_prio(struct thread * td,u_char prio)894 sched_lend_prio(struct thread *td, u_char prio)
895 {
896 
897 	td->td_flags |= TDF_BORROWING;
898 	sched_priority(td, prio);
899 }
900 
901 /*
902  * Restore a thread's priority when priority propagation is
903  * over.  The prio argument is the minimum priority the thread
904  * needs to have to satisfy other possible priority lending
905  * requests.  If the thread's regulary priority is less
906  * important than prio the thread will keep a priority boost
907  * of prio.
908  */
909 void
sched_unlend_prio(struct thread * td,u_char prio)910 sched_unlend_prio(struct thread *td, u_char prio)
911 {
912 	u_char base_pri;
913 
914 	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
915 	    td->td_base_pri <= PRI_MAX_TIMESHARE)
916 		base_pri = td->td_user_pri;
917 	else
918 		base_pri = td->td_base_pri;
919 	if (prio >= base_pri) {
920 		td->td_flags &= ~TDF_BORROWING;
921 		sched_prio(td, base_pri);
922 	} else
923 		sched_lend_prio(td, prio);
924 }
925 
926 void
sched_prio(struct thread * td,u_char prio)927 sched_prio(struct thread *td, u_char prio)
928 {
929 	u_char oldprio;
930 
931 	/* First, update the base priority. */
932 	td->td_base_pri = prio;
933 
934 	/*
935 	 * If the thread is borrowing another thread's priority, don't ever
936 	 * lower the priority.
937 	 */
938 	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
939 		return;
940 
941 	/* Change the real priority. */
942 	oldprio = td->td_priority;
943 	sched_priority(td, prio);
944 
945 	/*
946 	 * If the thread is on a turnstile, then let the turnstile update
947 	 * its state.
948 	 */
949 	if (TD_ON_LOCK(td) && oldprio != prio)
950 		turnstile_adjust(td, oldprio);
951 }
952 
953 void
sched_ithread_prio(struct thread * td,u_char prio)954 sched_ithread_prio(struct thread *td, u_char prio)
955 {
956 	THREAD_LOCK_ASSERT(td, MA_OWNED);
957 	MPASS(td->td_pri_class == PRI_ITHD);
958 	td->td_base_ithread_pri = prio;
959 	sched_prio(td, prio);
960 }
961 
962 void
sched_user_prio(struct thread * td,u_char prio)963 sched_user_prio(struct thread *td, u_char prio)
964 {
965 
966 	THREAD_LOCK_ASSERT(td, MA_OWNED);
967 	td->td_base_user_pri = prio;
968 	if (td->td_lend_user_pri <= prio)
969 		return;
970 	td->td_user_pri = prio;
971 }
972 
973 void
sched_lend_user_prio(struct thread * td,u_char prio)974 sched_lend_user_prio(struct thread *td, u_char prio)
975 {
976 
977 	THREAD_LOCK_ASSERT(td, MA_OWNED);
978 	td->td_lend_user_pri = prio;
979 	td->td_user_pri = min(prio, td->td_base_user_pri);
980 	if (td->td_priority > td->td_user_pri)
981 		sched_prio(td, td->td_user_pri);
982 	else if (td->td_priority != td->td_user_pri)
983 		ast_sched_locked(td, TDA_SCHED);
984 }
985 
986 /*
987  * Like the above but first check if there is anything to do.
988  */
989 void
sched_lend_user_prio_cond(struct thread * td,u_char prio)990 sched_lend_user_prio_cond(struct thread *td, u_char prio)
991 {
992 
993 	if (td->td_lend_user_pri == prio)
994 		return;
995 
996 	thread_lock(td);
997 	sched_lend_user_prio(td, prio);
998 	thread_unlock(td);
999 }
1000 
1001 void
sched_sleep(struct thread * td,int pri)1002 sched_sleep(struct thread *td, int pri)
1003 {
1004 
1005 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1006 	td->td_slptick = ticks;
1007 	td_get_sched(td)->ts_slptime = 0;
1008 	if (pri != 0 && PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
1009 		sched_prio(td, pri);
1010 }
1011 
1012 void
sched_switch(struct thread * td,int flags)1013 sched_switch(struct thread *td, int flags)
1014 {
1015 	struct thread *newtd;
1016 	struct mtx *tmtx;
1017 	int preempted;
1018 
1019 	tmtx = &sched_lock;
1020 
1021 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1022 
1023 	td->td_lastcpu = td->td_oncpu;
1024 	preempted = (td->td_flags & TDF_SLICEEND) == 0 &&
1025 	    (flags & SW_PREEMPT) != 0;
1026 	td->td_flags &= ~TDF_SLICEEND;
1027 	ast_unsched_locked(td, TDA_SCHED);
1028 	td->td_owepreempt = 0;
1029 	td->td_oncpu = NOCPU;
1030 
1031 	/*
1032 	 * At the last moment, if this thread is still marked RUNNING,
1033 	 * then put it back on the run queue as it has not been suspended
1034 	 * or stopped or any thing else similar.  We never put the idle
1035 	 * threads on the run queue, however.
1036 	 */
1037 	if (td->td_flags & TDF_IDLETD) {
1038 		TD_SET_CAN_RUN(td);
1039 #ifdef SMP
1040 		CPU_CLR(PCPU_GET(cpuid), &idle_cpus_mask);
1041 #endif
1042 	} else {
1043 		if (TD_IS_RUNNING(td)) {
1044 			/* Put us back on the run queue. */
1045 			sched_add(td, SRQ_HOLDTD | SRQ_OURSELF | SRQ_YIELDING |
1046 			    (preempted ? SRQ_PREEMPTED : 0));
1047 		}
1048 	}
1049 
1050 	/*
1051 	 * Switch to the sched lock to fix things up and pick
1052 	 * a new thread.  Block the td_lock in order to avoid
1053 	 * breaking the critical path.
1054 	 */
1055 	if (td->td_lock != &sched_lock) {
1056 		mtx_lock_spin(&sched_lock);
1057 		tmtx = thread_lock_block(td);
1058 		mtx_unlock_spin(tmtx);
1059 	}
1060 
1061 	if ((td->td_flags & TDF_NOLOAD) == 0)
1062 		sched_load_rem();
1063 
1064 	newtd = choosethread();
1065 	MPASS(newtd->td_lock == &sched_lock);
1066 
1067 #if (KTR_COMPILE & KTR_SCHED) != 0
1068 	if (TD_IS_IDLETHREAD(td))
1069 		KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
1070 		    "prio:%d", td->td_priority);
1071 	else
1072 		KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
1073 		    "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
1074 		    "lockname:\"%s\"", td->td_lockname);
1075 #endif
1076 
1077 	if (td != newtd) {
1078 #ifdef	HWPMC_HOOKS
1079 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1080 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1081 #endif
1082 
1083 #ifdef HWT_HOOKS
1084 		HWT_CALL_HOOK(td, HWT_SWITCH_OUT, NULL);
1085 		HWT_CALL_HOOK(newtd, HWT_SWITCH_IN, NULL);
1086 #endif
1087 
1088 		SDT_PROBE2(sched, , , off__cpu, newtd, newtd->td_proc);
1089 
1090                 /* I feel sleepy */
1091 		lock_profile_release_lock(&sched_lock.lock_object, true);
1092 #ifdef KDTRACE_HOOKS
1093 		/*
1094 		 * If DTrace has set the active vtime enum to anything
1095 		 * other than INACTIVE (0), then it should have set the
1096 		 * function to call.
1097 		 */
1098 		if (dtrace_vtime_active)
1099 			(*dtrace_vtime_switch_func)(newtd);
1100 #endif
1101 
1102 		cpu_switch(td, newtd, tmtx);
1103 		lock_profile_obtain_lock_success(&sched_lock.lock_object, true,
1104 		    0, 0, __FILE__, __LINE__);
1105 		/*
1106 		 * Where am I?  What year is it?
1107 		 * We are in the same thread that went to sleep above,
1108 		 * but any amount of time may have passed. All our context
1109 		 * will still be available as will local variables.
1110 		 * PCPU values however may have changed as we may have
1111 		 * changed CPU so don't trust cached values of them.
1112 		 * New threads will go to fork_exit() instead of here
1113 		 * so if you change things here you may need to change
1114 		 * things there too.
1115 		 *
1116 		 * If the thread above was exiting it will never wake
1117 		 * up again here, so either it has saved everything it
1118 		 * needed to, or the thread_wait() or wait() will
1119 		 * need to reap it.
1120 		 */
1121 
1122 		SDT_PROBE0(sched, , , on__cpu);
1123 #ifdef	HWPMC_HOOKS
1124 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1125 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1126 #endif
1127 	} else {
1128 		td->td_lock = &sched_lock;
1129 		SDT_PROBE0(sched, , , remain__cpu);
1130 	}
1131 
1132 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
1133 	    "prio:%d", td->td_priority);
1134 
1135 #ifdef SMP
1136 	if (td->td_flags & TDF_IDLETD)
1137 		CPU_SET(PCPU_GET(cpuid), &idle_cpus_mask);
1138 #endif
1139 	sched_lock.mtx_lock = (uintptr_t)td;
1140 	td->td_oncpu = PCPU_GET(cpuid);
1141 	spinlock_enter();
1142 	mtx_unlock_spin(&sched_lock);
1143 }
1144 
1145 void
sched_wakeup(struct thread * td,int srqflags)1146 sched_wakeup(struct thread *td, int srqflags)
1147 {
1148 	struct td_sched *ts;
1149 
1150 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1151 	ts = td_get_sched(td);
1152 	if (ts->ts_slptime > 1) {
1153 		updatepri(td);
1154 		resetpriority(td);
1155 	}
1156 	td->td_slptick = 0;
1157 	ts->ts_slptime = 0;
1158 	ts->ts_slice = sched_slice;
1159 
1160 	/*
1161 	 * When resuming an idle ithread, restore its base ithread
1162 	 * priority.
1163 	 */
1164 	if (PRI_BASE(td->td_pri_class) == PRI_ITHD &&
1165 	    td->td_base_pri != td->td_base_ithread_pri)
1166 		sched_prio(td, td->td_base_ithread_pri);
1167 
1168 	sched_add(td, srqflags);
1169 }
1170 
1171 #ifdef SMP
1172 static int
forward_wakeup(int cpunum)1173 forward_wakeup(int cpunum)
1174 {
1175 	struct pcpu *pc;
1176 	cpuset_t dontuse, map, map2;
1177 	u_int id, me;
1178 	int iscpuset;
1179 
1180 	mtx_assert(&sched_lock, MA_OWNED);
1181 
1182 	CTR0(KTR_RUNQ, "forward_wakeup()");
1183 
1184 	if ((!forward_wakeup_enabled) ||
1185 	     (forward_wakeup_use_mask == 0 && forward_wakeup_use_loop == 0))
1186 		return (0);
1187 	if (!smp_started || KERNEL_PANICKED())
1188 		return (0);
1189 
1190 	forward_wakeups_requested++;
1191 
1192 	/*
1193 	 * Check the idle mask we received against what we calculated
1194 	 * before in the old version.
1195 	 */
1196 	me = PCPU_GET(cpuid);
1197 
1198 	/* Don't bother if we should be doing it ourself. */
1199 	if (CPU_ISSET(me, &idle_cpus_mask) &&
1200 	    (cpunum == NOCPU || me == cpunum))
1201 		return (0);
1202 
1203 	CPU_SETOF(me, &dontuse);
1204 	CPU_OR(&dontuse, &dontuse, &stopped_cpus);
1205 	CPU_OR(&dontuse, &dontuse, &hlt_cpus_mask);
1206 	CPU_ZERO(&map2);
1207 	if (forward_wakeup_use_loop) {
1208 		STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
1209 			id = pc->pc_cpuid;
1210 			if (!CPU_ISSET(id, &dontuse) &&
1211 			    pc->pc_curthread == pc->pc_idlethread) {
1212 				CPU_SET(id, &map2);
1213 			}
1214 		}
1215 	}
1216 
1217 	if (forward_wakeup_use_mask) {
1218 		map = idle_cpus_mask;
1219 		CPU_ANDNOT(&map, &map, &dontuse);
1220 
1221 		/* If they are both on, compare and use loop if different. */
1222 		if (forward_wakeup_use_loop) {
1223 			if (CPU_CMP(&map, &map2)) {
1224 				printf("map != map2, loop method preferred\n");
1225 				map = map2;
1226 			}
1227 		}
1228 	} else {
1229 		map = map2;
1230 	}
1231 
1232 	/* If we only allow a specific CPU, then mask off all the others. */
1233 	if (cpunum != NOCPU) {
1234 		KASSERT((cpunum <= mp_maxcpus),("forward_wakeup: bad cpunum."));
1235 		iscpuset = CPU_ISSET(cpunum, &map);
1236 		if (iscpuset == 0)
1237 			CPU_ZERO(&map);
1238 		else
1239 			CPU_SETOF(cpunum, &map);
1240 	}
1241 	if (!CPU_EMPTY(&map)) {
1242 		forward_wakeups_delivered++;
1243 		STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
1244 			id = pc->pc_cpuid;
1245 			if (!CPU_ISSET(id, &map))
1246 				continue;
1247 			if (cpu_idle_wakeup(pc->pc_cpuid))
1248 				CPU_CLR(id, &map);
1249 		}
1250 		if (!CPU_EMPTY(&map))
1251 			ipi_selected(map, IPI_AST);
1252 		return (1);
1253 	}
1254 	if (cpunum == NOCPU)
1255 		printf("forward_wakeup: Idle processor not found\n");
1256 	return (0);
1257 }
1258 
1259 static void
kick_other_cpu(int pri,int cpuid)1260 kick_other_cpu(int pri, int cpuid)
1261 {
1262 	struct pcpu *pcpu;
1263 	int cpri;
1264 
1265 	pcpu = pcpu_find(cpuid);
1266 	if (CPU_ISSET(cpuid, &idle_cpus_mask)) {
1267 		forward_wakeups_delivered++;
1268 		if (!cpu_idle_wakeup(cpuid))
1269 			ipi_cpu(cpuid, IPI_AST);
1270 		return;
1271 	}
1272 
1273 	cpri = pcpu->pc_curthread->td_priority;
1274 	if (pri >= cpri)
1275 		return;
1276 
1277 #if defined(IPI_PREEMPTION) && defined(PREEMPTION)
1278 #if !defined(FULL_PREEMPTION)
1279 	if (pri <= PRI_MAX_ITHD)
1280 #endif /* ! FULL_PREEMPTION */
1281 	{
1282 		ipi_cpu(cpuid, IPI_PREEMPT);
1283 		return;
1284 	}
1285 #endif /* defined(IPI_PREEMPTION) && defined(PREEMPTION) */
1286 
1287 	if (pcpu->pc_curthread->td_lock == &sched_lock) {
1288 		ast_sched_locked(pcpu->pc_curthread, TDA_SCHED);
1289 		ipi_cpu(cpuid, IPI_AST);
1290 	}
1291 }
1292 #endif /* SMP */
1293 
1294 #ifdef SMP
1295 static int
sched_pickcpu(struct thread * td)1296 sched_pickcpu(struct thread *td)
1297 {
1298 	int best, cpu;
1299 
1300 	mtx_assert(&sched_lock, MA_OWNED);
1301 
1302 	if (td->td_lastcpu != NOCPU && THREAD_CAN_SCHED(td, td->td_lastcpu))
1303 		best = td->td_lastcpu;
1304 	else
1305 		best = NOCPU;
1306 	CPU_FOREACH(cpu) {
1307 		if (!THREAD_CAN_SCHED(td, cpu))
1308 			continue;
1309 
1310 		if (best == NOCPU)
1311 			best = cpu;
1312 		else if (runq_length[cpu] < runq_length[best])
1313 			best = cpu;
1314 	}
1315 	KASSERT(best != NOCPU, ("no valid CPUs"));
1316 
1317 	return (best);
1318 }
1319 #endif
1320 
1321 void
sched_add(struct thread * td,int flags)1322 sched_add(struct thread *td, int flags)
1323 #ifdef SMP
1324 {
1325 	cpuset_t tidlemsk;
1326 	struct td_sched *ts;
1327 	u_int cpu, cpuid;
1328 	int forwarded = 0;
1329 	int single_cpu = 0;
1330 
1331 	ts = td_get_sched(td);
1332 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1333 	KASSERT((td->td_inhibitors == 0),
1334 	    ("sched_add: trying to run inhibited thread"));
1335 	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
1336 	    ("sched_add: bad thread state"));
1337 	KASSERT(td->td_flags & TDF_INMEM,
1338 	    ("sched_add: thread swapped out"));
1339 
1340 	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
1341 	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
1342 	    sched_tdname(curthread));
1343 	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
1344 	    KTR_ATTR_LINKED, sched_tdname(td));
1345 	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
1346 	    flags & SRQ_PREEMPTED);
1347 
1348 	/*
1349 	 * Now that the thread is moving to the run-queue, set the lock
1350 	 * to the scheduler's lock.
1351 	 */
1352 	if (td->td_lock != &sched_lock) {
1353 		mtx_lock_spin(&sched_lock);
1354 		if ((flags & SRQ_HOLD) != 0)
1355 			td->td_lock = &sched_lock;
1356 		else
1357 			thread_lock_set(td, &sched_lock);
1358 	}
1359 	TD_SET_RUNQ(td);
1360 
1361 	/*
1362 	 * If SMP is started and the thread is pinned or otherwise limited to
1363 	 * a specific set of CPUs, queue the thread to a per-CPU run queue.
1364 	 * Otherwise, queue the thread to the global run queue.
1365 	 *
1366 	 * If SMP has not yet been started we must use the global run queue
1367 	 * as per-CPU state may not be initialized yet and we may crash if we
1368 	 * try to access the per-CPU run queues.
1369 	 */
1370 	if (smp_started && (td->td_pinned != 0 || td->td_flags & TDF_BOUND ||
1371 	    ts->ts_flags & TSF_AFFINITY)) {
1372 		if (td->td_pinned != 0)
1373 			cpu = td->td_lastcpu;
1374 		else if (td->td_flags & TDF_BOUND) {
1375 			/* Find CPU from bound runq. */
1376 			KASSERT(SKE_RUNQ_PCPU(ts),
1377 			    ("sched_add: bound td_sched not on cpu runq"));
1378 			cpu = ts->ts_runq - &runq_pcpu[0];
1379 		} else
1380 			/* Find a valid CPU for our cpuset */
1381 			cpu = sched_pickcpu(td);
1382 		ts->ts_runq = &runq_pcpu[cpu];
1383 		single_cpu = 1;
1384 		CTR3(KTR_RUNQ,
1385 		    "sched_add: Put td_sched:%p(td:%p) on cpu%d runq", ts, td,
1386 		    cpu);
1387 	} else {
1388 		CTR2(KTR_RUNQ,
1389 		    "sched_add: adding td_sched:%p (td:%p) to gbl runq", ts,
1390 		    td);
1391 		cpu = NOCPU;
1392 		ts->ts_runq = &runq;
1393 	}
1394 
1395 	if ((td->td_flags & TDF_NOLOAD) == 0)
1396 		sched_load_add();
1397 	runq_add(ts->ts_runq, td, flags);
1398 	if (cpu != NOCPU)
1399 		runq_length[cpu]++;
1400 
1401 	cpuid = PCPU_GET(cpuid);
1402 	if (single_cpu && cpu != cpuid) {
1403 	        kick_other_cpu(td->td_priority, cpu);
1404 	} else {
1405 		if (!single_cpu) {
1406 			tidlemsk = idle_cpus_mask;
1407 			CPU_ANDNOT(&tidlemsk, &tidlemsk, &hlt_cpus_mask);
1408 			CPU_CLR(cpuid, &tidlemsk);
1409 
1410 			if (!CPU_ISSET(cpuid, &idle_cpus_mask) &&
1411 			    ((flags & SRQ_INTR) == 0) &&
1412 			    !CPU_EMPTY(&tidlemsk))
1413 				forwarded = forward_wakeup(cpu);
1414 		}
1415 
1416 		if (!forwarded) {
1417 			if (!maybe_preempt(td))
1418 				maybe_resched(td);
1419 		}
1420 	}
1421 	if ((flags & SRQ_HOLDTD) == 0)
1422 		thread_unlock(td);
1423 }
1424 #else /* SMP */
1425 {
1426 	struct td_sched *ts;
1427 
1428 	ts = td_get_sched(td);
1429 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1430 	KASSERT((td->td_inhibitors == 0),
1431 	    ("sched_add: trying to run inhibited thread"));
1432 	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
1433 	    ("sched_add: bad thread state"));
1434 	KASSERT(td->td_flags & TDF_INMEM,
1435 	    ("sched_add: thread swapped out"));
1436 	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
1437 	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
1438 	    sched_tdname(curthread));
1439 	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
1440 	    KTR_ATTR_LINKED, sched_tdname(td));
1441 	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
1442 	    flags & SRQ_PREEMPTED);
1443 
1444 	/*
1445 	 * Now that the thread is moving to the run-queue, set the lock
1446 	 * to the scheduler's lock.
1447 	 */
1448 	if (td->td_lock != &sched_lock) {
1449 		mtx_lock_spin(&sched_lock);
1450 		if ((flags & SRQ_HOLD) != 0)
1451 			td->td_lock = &sched_lock;
1452 		else
1453 			thread_lock_set(td, &sched_lock);
1454 	}
1455 	TD_SET_RUNQ(td);
1456 	CTR2(KTR_RUNQ, "sched_add: adding td_sched:%p (td:%p) to runq", ts, td);
1457 	ts->ts_runq = &runq;
1458 
1459 	if ((td->td_flags & TDF_NOLOAD) == 0)
1460 		sched_load_add();
1461 	runq_add(ts->ts_runq, td, flags);
1462 	if (!maybe_preempt(td))
1463 		maybe_resched(td);
1464 	if ((flags & SRQ_HOLDTD) == 0)
1465 		thread_unlock(td);
1466 }
1467 #endif /* SMP */
1468 
1469 void
sched_rem(struct thread * td)1470 sched_rem(struct thread *td)
1471 {
1472 	struct td_sched *ts;
1473 
1474 	ts = td_get_sched(td);
1475 	KASSERT(td->td_flags & TDF_INMEM,
1476 	    ("sched_rem: thread swapped out"));
1477 	KASSERT(TD_ON_RUNQ(td),
1478 	    ("sched_rem: thread not on run queue"));
1479 	mtx_assert(&sched_lock, MA_OWNED);
1480 	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
1481 	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
1482 	    sched_tdname(curthread));
1483 	SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
1484 
1485 	if ((td->td_flags & TDF_NOLOAD) == 0)
1486 		sched_load_rem();
1487 #ifdef SMP
1488 	if (ts->ts_runq != &runq)
1489 		runq_length[ts->ts_runq - runq_pcpu]--;
1490 #endif
1491 	runq_remove(ts->ts_runq, td);
1492 	TD_SET_CAN_RUN(td);
1493 }
1494 
1495 /*
1496  * Select threads to run.  Note that running threads still consume a
1497  * slot.
1498  */
1499 struct thread *
sched_choose(void)1500 sched_choose(void)
1501 {
1502 	struct thread *td;
1503 	struct runq *rq;
1504 
1505 	mtx_assert(&sched_lock,  MA_OWNED);
1506 #ifdef SMP
1507 	struct thread *tdcpu;
1508 
1509 	rq = &runq;
1510 	td = runq_choose_fuzz(&runq, runq_fuzz);
1511 	tdcpu = runq_choose(&runq_pcpu[PCPU_GET(cpuid)]);
1512 
1513 	if (td == NULL ||
1514 	    (tdcpu != NULL &&
1515 	     tdcpu->td_priority < td->td_priority)) {
1516 		CTR2(KTR_RUNQ, "choosing td %p from pcpu runq %d", tdcpu,
1517 		     PCPU_GET(cpuid));
1518 		td = tdcpu;
1519 		rq = &runq_pcpu[PCPU_GET(cpuid)];
1520 	} else {
1521 		CTR1(KTR_RUNQ, "choosing td_sched %p from main runq", td);
1522 	}
1523 
1524 #else
1525 	rq = &runq;
1526 	td = runq_choose(&runq);
1527 #endif
1528 
1529 	if (td) {
1530 #ifdef SMP
1531 		if (td == tdcpu)
1532 			runq_length[PCPU_GET(cpuid)]--;
1533 #endif
1534 		runq_remove(rq, td);
1535 		td->td_flags |= TDF_DIDRUN;
1536 
1537 		KASSERT(td->td_flags & TDF_INMEM,
1538 		    ("sched_choose: thread swapped out"));
1539 		return (td);
1540 	}
1541 	return (PCPU_GET(idlethread));
1542 }
1543 
1544 void
sched_preempt(struct thread * td)1545 sched_preempt(struct thread *td)
1546 {
1547 	int flags;
1548 
1549 	SDT_PROBE2(sched, , , surrender, td, td->td_proc);
1550 	if (td->td_critnest > 1) {
1551 		td->td_owepreempt = 1;
1552 	} else {
1553 		thread_lock(td);
1554 		flags = SW_INVOL | SW_PREEMPT;
1555 		flags |= TD_IS_IDLETHREAD(td) ? SWT_REMOTEWAKEIDLE :
1556 		    SWT_REMOTEPREEMPT;
1557 		mi_switch(flags);
1558 	}
1559 }
1560 
1561 void
sched_userret_slowpath(struct thread * td)1562 sched_userret_slowpath(struct thread *td)
1563 {
1564 
1565 	thread_lock(td);
1566 	td->td_priority = td->td_user_pri;
1567 	td->td_base_pri = td->td_user_pri;
1568 	thread_unlock(td);
1569 }
1570 
1571 void
sched_bind(struct thread * td,int cpu)1572 sched_bind(struct thread *td, int cpu)
1573 {
1574 #ifdef SMP
1575 	struct td_sched *ts = td_get_sched(td);
1576 #endif
1577 
1578 	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
1579 	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
1580 
1581 	td->td_flags |= TDF_BOUND;
1582 #ifdef SMP
1583 	ts->ts_runq = &runq_pcpu[cpu];
1584 	if (PCPU_GET(cpuid) == cpu)
1585 		return;
1586 
1587 	mi_switch(SW_VOL | SWT_BIND);
1588 	thread_lock(td);
1589 #endif
1590 }
1591 
1592 void
sched_unbind(struct thread * td)1593 sched_unbind(struct thread* td)
1594 {
1595 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1596 	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
1597 	td->td_flags &= ~TDF_BOUND;
1598 }
1599 
1600 int
sched_is_bound(struct thread * td)1601 sched_is_bound(struct thread *td)
1602 {
1603 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1604 	return (td->td_flags & TDF_BOUND);
1605 }
1606 
1607 void
sched_relinquish(struct thread * td)1608 sched_relinquish(struct thread *td)
1609 {
1610 	thread_lock(td);
1611 	mi_switch(SW_VOL | SWT_RELINQUISH);
1612 }
1613 
1614 int
sched_load(void)1615 sched_load(void)
1616 {
1617 	return (sched_tdcnt);
1618 }
1619 
1620 int
sched_sizeof_proc(void)1621 sched_sizeof_proc(void)
1622 {
1623 	return (sizeof(struct proc));
1624 }
1625 
1626 int
sched_sizeof_thread(void)1627 sched_sizeof_thread(void)
1628 {
1629 	return (sizeof(struct thread) + sizeof(struct td_sched));
1630 }
1631 
1632 fixpt_t
sched_pctcpu(struct thread * td)1633 sched_pctcpu(struct thread *td)
1634 {
1635 	struct td_sched *ts;
1636 
1637 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1638 	ts = td_get_sched(td);
1639 	return (ts->ts_pctcpu);
1640 }
1641 
1642 #ifdef RACCT
1643 /*
1644  * Calculates the contribution to the thread cpu usage for the latest
1645  * (unfinished) second.
1646  */
1647 fixpt_t
sched_pctcpu_delta(struct thread * td)1648 sched_pctcpu_delta(struct thread *td)
1649 {
1650 	struct td_sched *ts;
1651 	fixpt_t delta;
1652 	int realstathz;
1653 
1654 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1655 	ts = td_get_sched(td);
1656 	delta = 0;
1657 	realstathz = stathz ? stathz : hz;
1658 	if (ts->ts_cpticks != 0) {
1659 #if	(FSHIFT >= CCPU_SHIFT)
1660 		delta = (realstathz == 100)
1661 		    ? ((fixpt_t) ts->ts_cpticks) <<
1662 		    (FSHIFT - CCPU_SHIFT) :
1663 		    100 * (((fixpt_t) ts->ts_cpticks)
1664 		    << (FSHIFT - CCPU_SHIFT)) / realstathz;
1665 #else
1666 		delta = ((FSCALE - ccpu) *
1667 		    (ts->ts_cpticks *
1668 		    FSCALE / realstathz)) >> FSHIFT;
1669 #endif
1670 	}
1671 
1672 	return (delta);
1673 }
1674 #endif
1675 
1676 u_int
sched_estcpu(struct thread * td)1677 sched_estcpu(struct thread *td)
1678 {
1679 
1680 	return (td_get_sched(td)->ts_estcpu);
1681 }
1682 
1683 /*
1684  * The actual idle process.
1685  */
1686 void
sched_idletd(void * dummy)1687 sched_idletd(void *dummy)
1688 {
1689 	struct pcpuidlestat *stat;
1690 
1691 	THREAD_NO_SLEEPING();
1692 	stat = DPCPU_PTR(idlestat);
1693 	for (;;) {
1694 		mtx_assert(&Giant, MA_NOTOWNED);
1695 
1696 		while (!sched_runnable()) {
1697 			cpu_idle(stat->idlecalls + stat->oldidlecalls > 64);
1698 			stat->idlecalls++;
1699 		}
1700 
1701 		mtx_lock_spin(&sched_lock);
1702 		mi_switch(SW_VOL | SWT_IDLE);
1703 	}
1704 }
1705 
1706 static void
sched_throw_tail(struct thread * td)1707 sched_throw_tail(struct thread *td)
1708 {
1709 	struct thread *newtd;
1710 
1711 	mtx_assert(&sched_lock, MA_OWNED);
1712 	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
1713 
1714 	newtd = choosethread();
1715 
1716 #ifdef HWT_HOOKS
1717 	if (td)
1718 		HWT_CALL_HOOK(td, HWT_SWITCH_OUT, NULL);
1719 	HWT_CALL_HOOK(newtd, HWT_SWITCH_IN, NULL);
1720 #endif
1721 
1722 	cpu_throw(td, newtd);	/* doesn't return */
1723 }
1724 
1725 /*
1726  * A CPU is entering for the first time.
1727  */
1728 void
sched_ap_entry(void)1729 sched_ap_entry(void)
1730 {
1731 
1732 	/*
1733 	 * Correct spinlock nesting.  The idle thread context that we are
1734 	 * borrowing was created so that it would start out with a single
1735 	 * spin lock (sched_lock) held in fork_trampoline().  Since we've
1736 	 * explicitly acquired locks in this function, the nesting count
1737 	 * is now 2 rather than 1.  Since we are nested, calling
1738 	 * spinlock_exit() will simply adjust the counts without allowing
1739 	 * spin lock using code to interrupt us.
1740 	 */
1741 	mtx_lock_spin(&sched_lock);
1742 	spinlock_exit();
1743 	PCPU_SET(switchtime, cpu_ticks());
1744 	PCPU_SET(switchticks, ticks);
1745 
1746 	sched_throw_tail(NULL);
1747 }
1748 
1749 /*
1750  * A thread is exiting.
1751  */
1752 void
sched_throw(struct thread * td)1753 sched_throw(struct thread *td)
1754 {
1755 
1756 	MPASS(td != NULL);
1757 	MPASS(td->td_lock == &sched_lock);
1758 
1759 	lock_profile_release_lock(&sched_lock.lock_object, true);
1760 	td->td_lastcpu = td->td_oncpu;
1761 	td->td_oncpu = NOCPU;
1762 
1763 	sched_throw_tail(td);
1764 }
1765 
1766 void
sched_fork_exit(struct thread * td)1767 sched_fork_exit(struct thread *td)
1768 {
1769 
1770 	/*
1771 	 * Finish setting up thread glue so that it begins execution in a
1772 	 * non-nested critical section with sched_lock held but not recursed.
1773 	 */
1774 	td->td_oncpu = PCPU_GET(cpuid);
1775 	sched_lock.mtx_lock = (uintptr_t)td;
1776 	lock_profile_obtain_lock_success(&sched_lock.lock_object, true,
1777 	    0, 0, __FILE__, __LINE__);
1778 	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
1779 
1780 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
1781 	    "prio:%d", td->td_priority);
1782 	SDT_PROBE0(sched, , , on__cpu);
1783 }
1784 
1785 char *
sched_tdname(struct thread * td)1786 sched_tdname(struct thread *td)
1787 {
1788 #ifdef KTR
1789 	struct td_sched *ts;
1790 
1791 	ts = td_get_sched(td);
1792 	if (ts->ts_name[0] == '\0')
1793 		snprintf(ts->ts_name, sizeof(ts->ts_name),
1794 		    "%s tid %d", td->td_name, td->td_tid);
1795 	return (ts->ts_name);
1796 #else
1797 	return (td->td_name);
1798 #endif
1799 }
1800 
1801 #ifdef KTR
1802 void
sched_clear_tdname(struct thread * td)1803 sched_clear_tdname(struct thread *td)
1804 {
1805 	struct td_sched *ts;
1806 
1807 	ts = td_get_sched(td);
1808 	ts->ts_name[0] = '\0';
1809 }
1810 #endif
1811 
1812 void
sched_affinity(struct thread * td)1813 sched_affinity(struct thread *td)
1814 {
1815 #ifdef SMP
1816 	struct td_sched *ts;
1817 	int cpu;
1818 
1819 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1820 
1821 	/*
1822 	 * Set the TSF_AFFINITY flag if there is at least one CPU this
1823 	 * thread can't run on.
1824 	 */
1825 	ts = td_get_sched(td);
1826 	ts->ts_flags &= ~TSF_AFFINITY;
1827 	CPU_FOREACH(cpu) {
1828 		if (!THREAD_CAN_SCHED(td, cpu)) {
1829 			ts->ts_flags |= TSF_AFFINITY;
1830 			break;
1831 		}
1832 	}
1833 
1834 	/*
1835 	 * If this thread can run on all CPUs, nothing else to do.
1836 	 */
1837 	if (!(ts->ts_flags & TSF_AFFINITY))
1838 		return;
1839 
1840 	/* Pinned threads and bound threads should be left alone. */
1841 	if (td->td_pinned != 0 || td->td_flags & TDF_BOUND)
1842 		return;
1843 
1844 	switch (TD_GET_STATE(td)) {
1845 	case TDS_RUNQ:
1846 		/*
1847 		 * If we are on a per-CPU runqueue that is in the set,
1848 		 * then nothing needs to be done.
1849 		 */
1850 		if (ts->ts_runq != &runq &&
1851 		    THREAD_CAN_SCHED(td, ts->ts_runq - runq_pcpu))
1852 			return;
1853 
1854 		/* Put this thread on a valid per-CPU runqueue. */
1855 		sched_rem(td);
1856 		sched_add(td, SRQ_HOLDTD | SRQ_BORING);
1857 		break;
1858 	case TDS_RUNNING:
1859 		/*
1860 		 * See if our current CPU is in the set.  If not, force a
1861 		 * context switch.
1862 		 */
1863 		if (THREAD_CAN_SCHED(td, td->td_oncpu))
1864 			return;
1865 
1866 		ast_sched_locked(td, TDA_SCHED);
1867 		if (td != curthread)
1868 			ipi_cpu(cpu, IPI_AST);
1869 		break;
1870 	default:
1871 		break;
1872 	}
1873 #endif
1874 }
1875