xref: /freebsd/contrib/llvm-project/lld/ELF/LinkerScript.cpp (revision 52418fc2be8efa5172b90a3a9e617017173612c4)
1 //===- LinkerScript.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the parser/evaluator of the linker script.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LinkerScript.h"
14 #include "Config.h"
15 #include "InputFiles.h"
16 #include "InputSection.h"
17 #include "OutputSections.h"
18 #include "SymbolTable.h"
19 #include "Symbols.h"
20 #include "SyntheticSections.h"
21 #include "Target.h"
22 #include "Writer.h"
23 #include "lld/Common/CommonLinkerContext.h"
24 #include "lld/Common/Strings.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/BinaryFormat/ELF.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/Endian.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/TimeProfiler.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <cstddef>
35 #include <cstdint>
36 #include <limits>
37 #include <string>
38 #include <vector>
39 
40 using namespace llvm;
41 using namespace llvm::ELF;
42 using namespace llvm::object;
43 using namespace llvm::support::endian;
44 using namespace lld;
45 using namespace lld::elf;
46 
47 ScriptWrapper elf::script;
48 
isSectionPrefix(StringRef prefix,StringRef name)49 static bool isSectionPrefix(StringRef prefix, StringRef name) {
50   return name.consume_front(prefix) && (name.empty() || name[0] == '.');
51 }
52 
getOutputSectionName(const InputSectionBase * s)53 static StringRef getOutputSectionName(const InputSectionBase *s) {
54   // This is for --emit-relocs and -r. If .text.foo is emitted as .text.bar, we
55   // want to emit .rela.text.foo as .rela.text.bar for consistency (this is not
56   // technically required, but not doing it is odd). This code guarantees that.
57   if (auto *isec = dyn_cast<InputSection>(s)) {
58     if (InputSectionBase *rel = isec->getRelocatedSection()) {
59       OutputSection *out = rel->getOutputSection();
60       if (!out) {
61         assert(config->relocatable && (rel->flags & SHF_LINK_ORDER));
62         return s->name;
63       }
64       if (s->type == SHT_CREL)
65         return saver().save(".crel" + out->name);
66       if (s->type == SHT_RELA)
67         return saver().save(".rela" + out->name);
68       return saver().save(".rel" + out->name);
69     }
70   }
71 
72   if (config->relocatable)
73     return s->name;
74 
75   // A BssSection created for a common symbol is identified as "COMMON" in
76   // linker scripts. It should go to .bss section.
77   if (s->name == "COMMON")
78     return ".bss";
79 
80   if (script->hasSectionsCommand)
81     return s->name;
82 
83   // When no SECTIONS is specified, emulate GNU ld's internal linker scripts
84   // by grouping sections with certain prefixes.
85 
86   // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.",
87   // ".text.unlikely.", ".text.startup." or ".text.exit." before others.
88   // We provide an option -z keep-text-section-prefix to group such sections
89   // into separate output sections. This is more flexible. See also
90   // sortISDBySectionOrder().
91   // ".text.unknown" means the hotness of the section is unknown. When
92   // SampleFDO is used, if a function doesn't have sample, it could be very
93   // cold or it could be a new function never being sampled. Those functions
94   // will be kept in the ".text.unknown" section.
95   // ".text.split." holds symbols which are split out from functions in other
96   // input sections. For example, with -fsplit-machine-functions, placing the
97   // cold parts in .text.split instead of .text.unlikely mitigates against poor
98   // profile inaccuracy. Techniques such as hugepage remapping can make
99   // conservative decisions at the section granularity.
100   if (isSectionPrefix(".text", s->name)) {
101     if (config->zKeepTextSectionPrefix)
102       for (StringRef v : {".text.hot", ".text.unknown", ".text.unlikely",
103                           ".text.startup", ".text.exit", ".text.split"})
104         if (isSectionPrefix(v.substr(5), s->name.substr(5)))
105           return v;
106     return ".text";
107   }
108 
109   for (StringRef v :
110        {".data.rel.ro", ".data", ".rodata", ".bss.rel.ro", ".bss", ".ldata",
111         ".lrodata", ".lbss", ".gcc_except_table", ".init_array", ".fini_array",
112         ".tbss", ".tdata", ".ARM.exidx", ".ARM.extab", ".ctors", ".dtors"})
113     if (isSectionPrefix(v, s->name))
114       return v;
115 
116   return s->name;
117 }
118 
getValue() const119 uint64_t ExprValue::getValue() const {
120   if (sec)
121     return alignToPowerOf2(sec->getOutputSection()->addr + sec->getOffset(val),
122                            alignment);
123   return alignToPowerOf2(val, alignment);
124 }
125 
getSecAddr() const126 uint64_t ExprValue::getSecAddr() const {
127   return sec ? sec->getOutputSection()->addr + sec->getOffset(0) : 0;
128 }
129 
getSectionOffset() const130 uint64_t ExprValue::getSectionOffset() const {
131   return getValue() - getSecAddr();
132 }
133 
createOutputSection(StringRef name,StringRef location)134 OutputDesc *LinkerScript::createOutputSection(StringRef name,
135                                               StringRef location) {
136   OutputDesc *&secRef = nameToOutputSection[CachedHashStringRef(name)];
137   OutputDesc *sec;
138   if (secRef && secRef->osec.location.empty()) {
139     // There was a forward reference.
140     sec = secRef;
141   } else {
142     sec = make<OutputDesc>(name, SHT_PROGBITS, 0);
143     if (!secRef)
144       secRef = sec;
145   }
146   sec->osec.location = std::string(location);
147   return sec;
148 }
149 
getOrCreateOutputSection(StringRef name)150 OutputDesc *LinkerScript::getOrCreateOutputSection(StringRef name) {
151   OutputDesc *&cmdRef = nameToOutputSection[CachedHashStringRef(name)];
152   if (!cmdRef)
153     cmdRef = make<OutputDesc>(name, SHT_PROGBITS, 0);
154   return cmdRef;
155 }
156 
157 // Expands the memory region by the specified size.
expandMemoryRegion(MemoryRegion * memRegion,uint64_t size,StringRef secName)158 static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size,
159                                StringRef secName) {
160   memRegion->curPos += size;
161 }
162 
expandMemoryRegions(uint64_t size)163 void LinkerScript::expandMemoryRegions(uint64_t size) {
164   if (state->memRegion)
165     expandMemoryRegion(state->memRegion, size, state->outSec->name);
166   // Only expand the LMARegion if it is different from memRegion.
167   if (state->lmaRegion && state->memRegion != state->lmaRegion)
168     expandMemoryRegion(state->lmaRegion, size, state->outSec->name);
169 }
170 
expandOutputSection(uint64_t size)171 void LinkerScript::expandOutputSection(uint64_t size) {
172   state->outSec->size += size;
173   expandMemoryRegions(size);
174 }
175 
setDot(Expr e,const Twine & loc,bool inSec)176 void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) {
177   uint64_t val = e().getValue();
178   // If val is smaller and we are in an output section, record the error and
179   // report it if this is the last assignAddresses iteration. dot may be smaller
180   // if there is another assignAddresses iteration.
181   if (val < dot && inSec) {
182     recordError(loc + ": unable to move location counter (0x" +
183                 Twine::utohexstr(dot) + ") backward to 0x" +
184                 Twine::utohexstr(val) + " for section '" + state->outSec->name +
185                 "'");
186   }
187 
188   // Update to location counter means update to section size.
189   if (inSec)
190     expandOutputSection(val - dot);
191 
192   dot = val;
193 }
194 
195 // Used for handling linker symbol assignments, for both finalizing
196 // their values and doing early declarations. Returns true if symbol
197 // should be defined from linker script.
shouldDefineSym(SymbolAssignment * cmd)198 static bool shouldDefineSym(SymbolAssignment *cmd) {
199   if (cmd->name == ".")
200     return false;
201 
202   return !cmd->provide || LinkerScript::shouldAddProvideSym(cmd->name);
203 }
204 
205 // Called by processSymbolAssignments() to assign definitions to
206 // linker-script-defined symbols.
addSymbol(SymbolAssignment * cmd)207 void LinkerScript::addSymbol(SymbolAssignment *cmd) {
208   if (!shouldDefineSym(cmd))
209     return;
210 
211   // Define a symbol.
212   ExprValue value = cmd->expression();
213   SectionBase *sec = value.isAbsolute() ? nullptr : value.sec;
214   uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;
215 
216   // When this function is called, section addresses have not been
217   // fixed yet. So, we may or may not know the value of the RHS
218   // expression.
219   //
220   // For example, if an expression is `x = 42`, we know x is always 42.
221   // However, if an expression is `x = .`, there's no way to know its
222   // value at the moment.
223   //
224   // We want to set symbol values early if we can. This allows us to
225   // use symbols as variables in linker scripts. Doing so allows us to
226   // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`.
227   uint64_t symValue = value.sec ? 0 : value.getValue();
228 
229   Defined newSym(createInternalFile(cmd->location), cmd->name, STB_GLOBAL,
230                  visibility, value.type, symValue, 0, sec);
231 
232   Symbol *sym = symtab.insert(cmd->name);
233   sym->mergeProperties(newSym);
234   newSym.overwrite(*sym);
235   sym->isUsedInRegularObj = true;
236   cmd->sym = cast<Defined>(sym);
237 }
238 
239 // This function is called from LinkerScript::declareSymbols.
240 // It creates a placeholder symbol if needed.
declareSymbol(SymbolAssignment * cmd)241 static void declareSymbol(SymbolAssignment *cmd) {
242   if (!shouldDefineSym(cmd))
243     return;
244 
245   uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;
246   Defined newSym(ctx.internalFile, cmd->name, STB_GLOBAL, visibility,
247                  STT_NOTYPE, 0, 0, nullptr);
248 
249   // If the symbol is already defined, its order is 0 (with absence indicating
250   // 0); otherwise it's assigned the order of the SymbolAssignment.
251   Symbol *sym = symtab.insert(cmd->name);
252   if (!sym->isDefined())
253     ctx.scriptSymOrder.insert({sym, cmd->symOrder});
254 
255   // We can't calculate final value right now.
256   sym->mergeProperties(newSym);
257   newSym.overwrite(*sym);
258 
259   cmd->sym = cast<Defined>(sym);
260   cmd->provide = false;
261   sym->isUsedInRegularObj = true;
262   sym->scriptDefined = true;
263 }
264 
265 using SymbolAssignmentMap =
266     DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>;
267 
268 // Collect section/value pairs of linker-script-defined symbols. This is used to
269 // check whether symbol values converge.
270 static SymbolAssignmentMap
getSymbolAssignmentValues(ArrayRef<SectionCommand * > sectionCommands)271 getSymbolAssignmentValues(ArrayRef<SectionCommand *> sectionCommands) {
272   SymbolAssignmentMap ret;
273   for (SectionCommand *cmd : sectionCommands) {
274     if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) {
275       if (assign->sym) // sym is nullptr for dot.
276         ret.try_emplace(assign->sym, std::make_pair(assign->sym->section,
277                                                     assign->sym->value));
278       continue;
279     }
280     for (SectionCommand *subCmd : cast<OutputDesc>(cmd)->osec.commands)
281       if (auto *assign = dyn_cast<SymbolAssignment>(subCmd))
282         if (assign->sym)
283           ret.try_emplace(assign->sym, std::make_pair(assign->sym->section,
284                                                       assign->sym->value));
285   }
286   return ret;
287 }
288 
289 // Returns the lexicographical smallest (for determinism) Defined whose
290 // section/value has changed.
291 static const Defined *
getChangedSymbolAssignment(const SymbolAssignmentMap & oldValues)292 getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) {
293   const Defined *changed = nullptr;
294   for (auto &it : oldValues) {
295     const Defined *sym = it.first;
296     if (std::make_pair(sym->section, sym->value) != it.second &&
297         (!changed || sym->getName() < changed->getName()))
298       changed = sym;
299   }
300   return changed;
301 }
302 
303 // Process INSERT [AFTER|BEFORE] commands. For each command, we move the
304 // specified output section to the designated place.
processInsertCommands()305 void LinkerScript::processInsertCommands() {
306   SmallVector<OutputDesc *, 0> moves;
307   for (const InsertCommand &cmd : insertCommands) {
308     if (config->enableNonContiguousRegions)
309       error("INSERT cannot be used with --enable-non-contiguous-regions");
310 
311     for (StringRef name : cmd.names) {
312       // If base is empty, it may have been discarded by
313       // adjustOutputSections(). We do not handle such output sections.
314       auto from = llvm::find_if(sectionCommands, [&](SectionCommand *subCmd) {
315         return isa<OutputDesc>(subCmd) &&
316                cast<OutputDesc>(subCmd)->osec.name == name;
317       });
318       if (from == sectionCommands.end())
319         continue;
320       moves.push_back(cast<OutputDesc>(*from));
321       sectionCommands.erase(from);
322     }
323 
324     auto insertPos =
325         llvm::find_if(sectionCommands, [&cmd](SectionCommand *subCmd) {
326           auto *to = dyn_cast<OutputDesc>(subCmd);
327           return to != nullptr && to->osec.name == cmd.where;
328         });
329     if (insertPos == sectionCommands.end()) {
330       error("unable to insert " + cmd.names[0] +
331             (cmd.isAfter ? " after " : " before ") + cmd.where);
332     } else {
333       if (cmd.isAfter)
334         ++insertPos;
335       sectionCommands.insert(insertPos, moves.begin(), moves.end());
336     }
337     moves.clear();
338   }
339 }
340 
341 // Symbols defined in script should not be inlined by LTO. At the same time
342 // we don't know their final values until late stages of link. Here we scan
343 // over symbol assignment commands and create placeholder symbols if needed.
declareSymbols()344 void LinkerScript::declareSymbols() {
345   assert(!state);
346   for (SectionCommand *cmd : sectionCommands) {
347     if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) {
348       declareSymbol(assign);
349       continue;
350     }
351 
352     // If the output section directive has constraints,
353     // we can't say for sure if it is going to be included or not.
354     // Skip such sections for now. Improve the checks if we ever
355     // need symbols from that sections to be declared early.
356     const OutputSection &sec = cast<OutputDesc>(cmd)->osec;
357     if (sec.constraint != ConstraintKind::NoConstraint)
358       continue;
359     for (SectionCommand *cmd : sec.commands)
360       if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
361         declareSymbol(assign);
362   }
363 }
364 
365 // This function is called from assignAddresses, while we are
366 // fixing the output section addresses. This function is supposed
367 // to set the final value for a given symbol assignment.
assignSymbol(SymbolAssignment * cmd,bool inSec)368 void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) {
369   if (cmd->name == ".") {
370     setDot(cmd->expression, cmd->location, inSec);
371     return;
372   }
373 
374   if (!cmd->sym)
375     return;
376 
377   ExprValue v = cmd->expression();
378   if (v.isAbsolute()) {
379     cmd->sym->section = nullptr;
380     cmd->sym->value = v.getValue();
381   } else {
382     cmd->sym->section = v.sec;
383     cmd->sym->value = v.getSectionOffset();
384   }
385   cmd->sym->type = v.type;
386 }
387 
getFilename(const InputFile * file)388 static inline StringRef getFilename(const InputFile *file) {
389   return file ? file->getNameForScript() : StringRef();
390 }
391 
matchesFile(const InputFile * file) const392 bool InputSectionDescription::matchesFile(const InputFile *file) const {
393   if (filePat.isTrivialMatchAll())
394     return true;
395 
396   if (!matchesFileCache || matchesFileCache->first != file)
397     matchesFileCache.emplace(file, filePat.match(getFilename(file)));
398 
399   return matchesFileCache->second;
400 }
401 
excludesFile(const InputFile * file) const402 bool SectionPattern::excludesFile(const InputFile *file) const {
403   if (excludedFilePat.empty())
404     return false;
405 
406   if (!excludesFileCache || excludesFileCache->first != file)
407     excludesFileCache.emplace(file, excludedFilePat.match(getFilename(file)));
408 
409   return excludesFileCache->second;
410 }
411 
shouldKeep(InputSectionBase * s)412 bool LinkerScript::shouldKeep(InputSectionBase *s) {
413   for (InputSectionDescription *id : keptSections)
414     if (id->matchesFile(s->file))
415       for (SectionPattern &p : id->sectionPatterns)
416         if (p.sectionPat.match(s->name) &&
417             (s->flags & id->withFlags) == id->withFlags &&
418             (s->flags & id->withoutFlags) == 0)
419           return true;
420   return false;
421 }
422 
423 // A helper function for the SORT() command.
matchConstraints(ArrayRef<InputSectionBase * > sections,ConstraintKind kind)424 static bool matchConstraints(ArrayRef<InputSectionBase *> sections,
425                              ConstraintKind kind) {
426   if (kind == ConstraintKind::NoConstraint)
427     return true;
428 
429   bool isRW = llvm::any_of(
430       sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; });
431 
432   return (isRW && kind == ConstraintKind::ReadWrite) ||
433          (!isRW && kind == ConstraintKind::ReadOnly);
434 }
435 
sortSections(MutableArrayRef<InputSectionBase * > vec,SortSectionPolicy k)436 static void sortSections(MutableArrayRef<InputSectionBase *> vec,
437                          SortSectionPolicy k) {
438   auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) {
439     // ">" is not a mistake. Sections with larger alignments are placed
440     // before sections with smaller alignments in order to reduce the
441     // amount of padding necessary. This is compatible with GNU.
442     return a->addralign > b->addralign;
443   };
444   auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) {
445     return a->name < b->name;
446   };
447   auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) {
448     return getPriority(a->name) < getPriority(b->name);
449   };
450 
451   switch (k) {
452   case SortSectionPolicy::Default:
453   case SortSectionPolicy::None:
454     return;
455   case SortSectionPolicy::Alignment:
456     return llvm::stable_sort(vec, alignmentComparator);
457   case SortSectionPolicy::Name:
458     return llvm::stable_sort(vec, nameComparator);
459   case SortSectionPolicy::Priority:
460     return llvm::stable_sort(vec, priorityComparator);
461   case SortSectionPolicy::Reverse:
462     return std::reverse(vec.begin(), vec.end());
463   }
464 }
465 
466 // Sort sections as instructed by SORT-family commands and --sort-section
467 // option. Because SORT-family commands can be nested at most two depth
468 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command
469 // line option is respected even if a SORT command is given, the exact
470 // behavior we have here is a bit complicated. Here are the rules.
471 //
472 // 1. If two SORT commands are given, --sort-section is ignored.
473 // 2. If one SORT command is given, and if it is not SORT_NONE,
474 //    --sort-section is handled as an inner SORT command.
475 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort.
476 // 4. If no SORT command is given, sort according to --sort-section.
sortInputSections(MutableArrayRef<InputSectionBase * > vec,SortSectionPolicy outer,SortSectionPolicy inner)477 static void sortInputSections(MutableArrayRef<InputSectionBase *> vec,
478                               SortSectionPolicy outer,
479                               SortSectionPolicy inner) {
480   if (outer == SortSectionPolicy::None)
481     return;
482 
483   if (inner == SortSectionPolicy::Default)
484     sortSections(vec, config->sortSection);
485   else
486     sortSections(vec, inner);
487   sortSections(vec, outer);
488 }
489 
490 // Compute and remember which sections the InputSectionDescription matches.
491 SmallVector<InputSectionBase *, 0>
computeInputSections(const InputSectionDescription * cmd,ArrayRef<InputSectionBase * > sections,const OutputSection & outCmd)492 LinkerScript::computeInputSections(const InputSectionDescription *cmd,
493                                    ArrayRef<InputSectionBase *> sections,
494                                    const OutputSection &outCmd) {
495   SmallVector<InputSectionBase *, 0> ret;
496   SmallVector<size_t, 0> indexes;
497   DenseSet<size_t> seen;
498   DenseSet<InputSectionBase *> spills;
499   auto sortByPositionThenCommandLine = [&](size_t begin, size_t end) {
500     llvm::sort(MutableArrayRef<size_t>(indexes).slice(begin, end - begin));
501     for (size_t i = begin; i != end; ++i)
502       ret[i] = sections[indexes[i]];
503     sortInputSections(
504         MutableArrayRef<InputSectionBase *>(ret).slice(begin, end - begin),
505         config->sortSection, SortSectionPolicy::None);
506   };
507 
508   // Collects all sections that satisfy constraints of Cmd.
509   size_t sizeAfterPrevSort = 0;
510   for (const SectionPattern &pat : cmd->sectionPatterns) {
511     size_t sizeBeforeCurrPat = ret.size();
512 
513     for (size_t i = 0, e = sections.size(); i != e; ++i) {
514       // Skip if the section is dead or has been matched by a previous pattern
515       // in this input section description.
516       InputSectionBase *sec = sections[i];
517       if (!sec->isLive() || seen.contains(i))
518         continue;
519 
520       // For --emit-relocs we have to ignore entries like
521       //   .rela.dyn : { *(.rela.data) }
522       // which are common because they are in the default bfd script.
523       // We do not ignore SHT_REL[A] linker-synthesized sections here because
524       // want to support scripts that do custom layout for them.
525       if (isa<InputSection>(sec) &&
526           cast<InputSection>(sec)->getRelocatedSection())
527         continue;
528 
529       // Check the name early to improve performance in the common case.
530       if (!pat.sectionPat.match(sec->name))
531         continue;
532 
533       if (!cmd->matchesFile(sec->file) || pat.excludesFile(sec->file) ||
534           (sec->flags & cmd->withFlags) != cmd->withFlags ||
535           (sec->flags & cmd->withoutFlags) != 0)
536         continue;
537 
538       if (sec->parent) {
539         // Skip if not allowing multiple matches.
540         if (!config->enableNonContiguousRegions)
541           continue;
542 
543         // Disallow spilling into /DISCARD/; special handling would be needed
544         // for this in address assignment, and the semantics are nebulous.
545         if (outCmd.name == "/DISCARD/")
546           continue;
547 
548         // Skip if the section's first match was /DISCARD/; such sections are
549         // always discarded.
550         if (sec->parent->name == "/DISCARD/")
551           continue;
552 
553         // Skip if the section was already matched by a different input section
554         // description within this output section.
555         if (sec->parent == &outCmd)
556           continue;
557 
558         spills.insert(sec);
559       }
560 
561       ret.push_back(sec);
562       indexes.push_back(i);
563       seen.insert(i);
564     }
565 
566     if (pat.sortOuter == SortSectionPolicy::Default)
567       continue;
568 
569     // Matched sections are ordered by radix sort with the keys being (SORT*,
570     // --sort-section, input order), where SORT* (if present) is most
571     // significant.
572     //
573     // Matched sections between the previous SORT* and this SORT* are sorted by
574     // (--sort-alignment, input order).
575     sortByPositionThenCommandLine(sizeAfterPrevSort, sizeBeforeCurrPat);
576     // Matched sections by this SORT* pattern are sorted using all 3 keys.
577     // ret[sizeBeforeCurrPat,ret.size()) are already in the input order, so we
578     // just sort by sortOuter and sortInner.
579     sortInputSections(
580         MutableArrayRef<InputSectionBase *>(ret).slice(sizeBeforeCurrPat),
581         pat.sortOuter, pat.sortInner);
582     sizeAfterPrevSort = ret.size();
583   }
584   // Matched sections after the last SORT* are sorted by (--sort-alignment,
585   // input order).
586   sortByPositionThenCommandLine(sizeAfterPrevSort, ret.size());
587 
588   // The flag --enable-non-contiguous-regions may cause sections to match an
589   // InputSectionDescription in more than one OutputSection. Matches after the
590   // first were collected in the spills set, so replace these with potential
591   // spill sections.
592   if (!spills.empty()) {
593     for (InputSectionBase *&sec : ret) {
594       if (!spills.contains(sec))
595         continue;
596 
597       // Append the spill input section to the list for the input section,
598       // creating it if necessary.
599       PotentialSpillSection *pss = make<PotentialSpillSection>(
600           *sec, const_cast<InputSectionDescription &>(*cmd));
601       auto [it, inserted] =
602           potentialSpillLists.try_emplace(sec, PotentialSpillList{pss, pss});
603       if (!inserted) {
604         PotentialSpillSection *&tail = it->second.tail;
605         tail = tail->next = pss;
606       }
607       sec = pss;
608     }
609   }
610 
611   return ret;
612 }
613 
discard(InputSectionBase & s)614 void LinkerScript::discard(InputSectionBase &s) {
615   if (&s == in.shStrTab.get())
616     error("discarding " + s.name + " section is not allowed");
617 
618   s.markDead();
619   s.parent = nullptr;
620   for (InputSection *sec : s.dependentSections)
621     discard(*sec);
622 }
623 
discardSynthetic(OutputSection & outCmd)624 void LinkerScript::discardSynthetic(OutputSection &outCmd) {
625   for (Partition &part : partitions) {
626     if (!part.armExidx || !part.armExidx->isLive())
627       continue;
628     SmallVector<InputSectionBase *, 0> secs(
629         part.armExidx->exidxSections.begin(),
630         part.armExidx->exidxSections.end());
631     for (SectionCommand *cmd : outCmd.commands)
632       if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
633         for (InputSectionBase *s : computeInputSections(isd, secs, outCmd))
634           discard(*s);
635   }
636 }
637 
638 SmallVector<InputSectionBase *, 0>
createInputSectionList(OutputSection & outCmd)639 LinkerScript::createInputSectionList(OutputSection &outCmd) {
640   SmallVector<InputSectionBase *, 0> ret;
641 
642   for (SectionCommand *cmd : outCmd.commands) {
643     if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) {
644       isd->sectionBases = computeInputSections(isd, ctx.inputSections, outCmd);
645       for (InputSectionBase *s : isd->sectionBases)
646         s->parent = &outCmd;
647       ret.insert(ret.end(), isd->sectionBases.begin(), isd->sectionBases.end());
648     }
649   }
650   return ret;
651 }
652 
653 // Create output sections described by SECTIONS commands.
processSectionCommands()654 void LinkerScript::processSectionCommands() {
655   auto process = [this](OutputSection *osec) {
656     SmallVector<InputSectionBase *, 0> v = createInputSectionList(*osec);
657 
658     // The output section name `/DISCARD/' is special.
659     // Any input section assigned to it is discarded.
660     if (osec->name == "/DISCARD/") {
661       for (InputSectionBase *s : v)
662         discard(*s);
663       discardSynthetic(*osec);
664       osec->commands.clear();
665       return false;
666     }
667 
668     // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive
669     // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input
670     // sections satisfy a given constraint. If not, a directive is handled
671     // as if it wasn't present from the beginning.
672     //
673     // Because we'll iterate over SectionCommands many more times, the easy
674     // way to "make it as if it wasn't present" is to make it empty.
675     if (!matchConstraints(v, osec->constraint)) {
676       for (InputSectionBase *s : v)
677         s->parent = nullptr;
678       osec->commands.clear();
679       return false;
680     }
681 
682     // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign
683     // is given, input sections are aligned to that value, whether the
684     // given value is larger or smaller than the original section alignment.
685     if (osec->subalignExpr) {
686       uint32_t subalign = osec->subalignExpr().getValue();
687       for (InputSectionBase *s : v)
688         s->addralign = subalign;
689     }
690 
691     // Set the partition field the same way OutputSection::recordSection()
692     // does. Partitions cannot be used with the SECTIONS command, so this is
693     // always 1.
694     osec->partition = 1;
695     return true;
696   };
697 
698   // Process OVERWRITE_SECTIONS first so that it can overwrite the main script
699   // or orphans.
700   if (config->enableNonContiguousRegions && !overwriteSections.empty())
701     error("OVERWRITE_SECTIONS cannot be used with "
702           "--enable-non-contiguous-regions");
703   DenseMap<CachedHashStringRef, OutputDesc *> map;
704   size_t i = 0;
705   for (OutputDesc *osd : overwriteSections) {
706     OutputSection *osec = &osd->osec;
707     if (process(osec) &&
708         !map.try_emplace(CachedHashStringRef(osec->name), osd).second)
709       warn("OVERWRITE_SECTIONS specifies duplicate " + osec->name);
710   }
711   for (SectionCommand *&base : sectionCommands)
712     if (auto *osd = dyn_cast<OutputDesc>(base)) {
713       OutputSection *osec = &osd->osec;
714       if (OutputDesc *overwrite = map.lookup(CachedHashStringRef(osec->name))) {
715         log(overwrite->osec.location + " overwrites " + osec->name);
716         overwrite->osec.sectionIndex = i++;
717         base = overwrite;
718       } else if (process(osec)) {
719         osec->sectionIndex = i++;
720       }
721     }
722 
723   // If an OVERWRITE_SECTIONS specified output section is not in
724   // sectionCommands, append it to the end. The section will be inserted by
725   // orphan placement.
726   for (OutputDesc *osd : overwriteSections)
727     if (osd->osec.partition == 1 && osd->osec.sectionIndex == UINT32_MAX)
728       sectionCommands.push_back(osd);
729 }
730 
processSymbolAssignments()731 void LinkerScript::processSymbolAssignments() {
732   // Dot outside an output section still represents a relative address, whose
733   // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section
734   // that fills the void outside a section. It has an index of one, which is
735   // indistinguishable from any other regular section index.
736   aether = make<OutputSection>("", 0, SHF_ALLOC);
737   aether->sectionIndex = 1;
738 
739   // `st` captures the local AddressState and makes it accessible deliberately.
740   // This is needed as there are some cases where we cannot just thread the
741   // current state through to a lambda function created by the script parser.
742   AddressState st;
743   state = &st;
744   st.outSec = aether;
745 
746   for (SectionCommand *cmd : sectionCommands) {
747     if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
748       addSymbol(assign);
749     else
750       for (SectionCommand *subCmd : cast<OutputDesc>(cmd)->osec.commands)
751         if (auto *assign = dyn_cast<SymbolAssignment>(subCmd))
752           addSymbol(assign);
753   }
754 
755   state = nullptr;
756 }
757 
findByName(ArrayRef<SectionCommand * > vec,StringRef name)758 static OutputSection *findByName(ArrayRef<SectionCommand *> vec,
759                                  StringRef name) {
760   for (SectionCommand *cmd : vec)
761     if (auto *osd = dyn_cast<OutputDesc>(cmd))
762       if (osd->osec.name == name)
763         return &osd->osec;
764   return nullptr;
765 }
766 
createSection(InputSectionBase * isec,StringRef outsecName)767 static OutputDesc *createSection(InputSectionBase *isec, StringRef outsecName) {
768   OutputDesc *osd = script->createOutputSection(outsecName, "<internal>");
769   osd->osec.recordSection(isec);
770   return osd;
771 }
772 
addInputSec(StringMap<TinyPtrVector<OutputSection * >> & map,InputSectionBase * isec,StringRef outsecName)773 static OutputDesc *addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map,
774                                InputSectionBase *isec, StringRef outsecName) {
775   // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r
776   // option is given. A section with SHT_GROUP defines a "section group", and
777   // its members have SHF_GROUP attribute. Usually these flags have already been
778   // stripped by InputFiles.cpp as section groups are processed and uniquified.
779   // However, for the -r option, we want to pass through all section groups
780   // as-is because adding/removing members or merging them with other groups
781   // change their semantics.
782   if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP))
783     return createSection(isec, outsecName);
784 
785   // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have
786   // relocation sections .rela.foo and .rela.bar for example. Most tools do
787   // not allow multiple REL[A] sections for output section. Hence we
788   // should combine these relocation sections into single output.
789   // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any
790   // other REL[A] sections created by linker itself.
791   if (!isa<SyntheticSection>(isec) && isStaticRelSecType(isec->type)) {
792     auto *sec = cast<InputSection>(isec);
793     OutputSection *out = sec->getRelocatedSection()->getOutputSection();
794 
795     if (auto *relSec = out->relocationSection) {
796       relSec->recordSection(sec);
797       return nullptr;
798     }
799 
800     OutputDesc *osd = createSection(isec, outsecName);
801     out->relocationSection = &osd->osec;
802     return osd;
803   }
804 
805   //  The ELF spec just says
806   // ----------------------------------------------------------------
807   // In the first phase, input sections that match in name, type and
808   // attribute flags should be concatenated into single sections.
809   // ----------------------------------------------------------------
810   //
811   // However, it is clear that at least some flags have to be ignored for
812   // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be
813   // ignored. We should not have two output .text sections just because one was
814   // in a group and another was not for example.
815   //
816   // It also seems that wording was a late addition and didn't get the
817   // necessary scrutiny.
818   //
819   // Merging sections with different flags is expected by some users. One
820   // reason is that if one file has
821   //
822   // int *const bar __attribute__((section(".foo"))) = (int *)0;
823   //
824   // gcc with -fPIC will produce a read only .foo section. But if another
825   // file has
826   //
827   // int zed;
828   // int *const bar __attribute__((section(".foo"))) = (int *)&zed;
829   //
830   // gcc with -fPIC will produce a read write section.
831   //
832   // Last but not least, when using linker script the merge rules are forced by
833   // the script. Unfortunately, linker scripts are name based. This means that
834   // expressions like *(.foo*) can refer to multiple input sections with
835   // different flags. We cannot put them in different output sections or we
836   // would produce wrong results for
837   //
838   // start = .; *(.foo.*) end = .; *(.bar)
839   //
840   // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to
841   // another. The problem is that there is no way to layout those output
842   // sections such that the .foo sections are the only thing between the start
843   // and end symbols.
844   //
845   // Given the above issues, we instead merge sections by name and error on
846   // incompatible types and flags.
847   TinyPtrVector<OutputSection *> &v = map[outsecName];
848   for (OutputSection *sec : v) {
849     if (sec->partition != isec->partition)
850       continue;
851 
852     if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) {
853       // Merging two SHF_LINK_ORDER sections with different sh_link fields will
854       // change their semantics, so we only merge them in -r links if they will
855       // end up being linked to the same output section. The casts are fine
856       // because everything in the map was created by the orphan placement code.
857       auto *firstIsec = cast<InputSectionBase>(
858           cast<InputSectionDescription>(sec->commands[0])->sectionBases[0]);
859       OutputSection *firstIsecOut =
860           (firstIsec->flags & SHF_LINK_ORDER)
861               ? firstIsec->getLinkOrderDep()->getOutputSection()
862               : nullptr;
863       if (firstIsecOut != isec->getLinkOrderDep()->getOutputSection())
864         continue;
865     }
866 
867     sec->recordSection(isec);
868     return nullptr;
869   }
870 
871   OutputDesc *osd = createSection(isec, outsecName);
872   v.push_back(&osd->osec);
873   return osd;
874 }
875 
876 // Add sections that didn't match any sections command.
addOrphanSections()877 void LinkerScript::addOrphanSections() {
878   StringMap<TinyPtrVector<OutputSection *>> map;
879   SmallVector<OutputDesc *, 0> v;
880 
881   auto add = [&](InputSectionBase *s) {
882     if (s->isLive() && !s->parent) {
883       orphanSections.push_back(s);
884 
885       StringRef name = getOutputSectionName(s);
886       if (config->unique) {
887         v.push_back(createSection(s, name));
888       } else if (OutputSection *sec = findByName(sectionCommands, name)) {
889         sec->recordSection(s);
890       } else {
891         if (OutputDesc *osd = addInputSec(map, s, name))
892           v.push_back(osd);
893         assert(isa<MergeInputSection>(s) ||
894                s->getOutputSection()->sectionIndex == UINT32_MAX);
895       }
896     }
897   };
898 
899   // For further --emit-reloc handling code we need target output section
900   // to be created before we create relocation output section, so we want
901   // to create target sections first. We do not want priority handling
902   // for synthetic sections because them are special.
903   size_t n = 0;
904   for (InputSectionBase *isec : ctx.inputSections) {
905     // Process InputSection and MergeInputSection.
906     if (LLVM_LIKELY(isa<InputSection>(isec)))
907       ctx.inputSections[n++] = isec;
908 
909     // In -r links, SHF_LINK_ORDER sections are added while adding their parent
910     // sections because we need to know the parent's output section before we
911     // can select an output section for the SHF_LINK_ORDER section.
912     if (config->relocatable && (isec->flags & SHF_LINK_ORDER))
913       continue;
914 
915     if (auto *sec = dyn_cast<InputSection>(isec))
916       if (InputSectionBase *rel = sec->getRelocatedSection())
917         if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent))
918           add(relIS);
919     add(isec);
920     if (config->relocatable)
921       for (InputSectionBase *depSec : isec->dependentSections)
922         if (depSec->flags & SHF_LINK_ORDER)
923           add(depSec);
924   }
925   // Keep just InputSection.
926   ctx.inputSections.resize(n);
927 
928   // If no SECTIONS command was given, we should insert sections commands
929   // before others, so that we can handle scripts which refers them,
930   // for example: "foo = ABSOLUTE(ADDR(.text)));".
931   // When SECTIONS command is present we just add all orphans to the end.
932   if (hasSectionsCommand)
933     sectionCommands.insert(sectionCommands.end(), v.begin(), v.end());
934   else
935     sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end());
936 }
937 
diagnoseOrphanHandling() const938 void LinkerScript::diagnoseOrphanHandling() const {
939   llvm::TimeTraceScope timeScope("Diagnose orphan sections");
940   if (config->orphanHandling == OrphanHandlingPolicy::Place ||
941       !hasSectionsCommand)
942     return;
943   for (const InputSectionBase *sec : orphanSections) {
944     // .relro_padding is inserted before DATA_SEGMENT_RELRO_END, if present,
945     // automatically. The section is not supposed to be specified by scripts.
946     if (sec == in.relroPadding.get())
947       continue;
948     // Input SHT_REL[A] retained by --emit-relocs are ignored by
949     // computeInputSections(). Don't warn/error.
950     if (isa<InputSection>(sec) &&
951         cast<InputSection>(sec)->getRelocatedSection())
952       continue;
953 
954     StringRef name = getOutputSectionName(sec);
955     if (config->orphanHandling == OrphanHandlingPolicy::Error)
956       error(toString(sec) + " is being placed in '" + name + "'");
957     else
958       warn(toString(sec) + " is being placed in '" + name + "'");
959   }
960 }
961 
diagnoseMissingSGSectionAddress() const962 void LinkerScript::diagnoseMissingSGSectionAddress() const {
963   if (!config->cmseImplib || !in.armCmseSGSection->isNeeded())
964     return;
965 
966   OutputSection *sec = findByName(sectionCommands, ".gnu.sgstubs");
967   if (sec && !sec->addrExpr && !config->sectionStartMap.count(".gnu.sgstubs"))
968     error("no address assigned to the veneers output section " + sec->name);
969 }
970 
971 // This function searches for a memory region to place the given output
972 // section in. If found, a pointer to the appropriate memory region is
973 // returned in the first member of the pair. Otherwise, a nullptr is returned.
974 // The second member of the pair is a hint that should be passed to the
975 // subsequent call of this method.
976 std::pair<MemoryRegion *, MemoryRegion *>
findMemoryRegion(OutputSection * sec,MemoryRegion * hint)977 LinkerScript::findMemoryRegion(OutputSection *sec, MemoryRegion *hint) {
978   // Non-allocatable sections are not part of the process image.
979   if (!(sec->flags & SHF_ALLOC)) {
980     bool hasInputOrByteCommand =
981         sec->hasInputSections ||
982         llvm::any_of(sec->commands, [](SectionCommand *comm) {
983           return ByteCommand::classof(comm);
984         });
985     if (!sec->memoryRegionName.empty() && hasInputOrByteCommand)
986       warn("ignoring memory region assignment for non-allocatable section '" +
987            sec->name + "'");
988     return {nullptr, nullptr};
989   }
990 
991   // If a memory region name was specified in the output section command,
992   // then try to find that region first.
993   if (!sec->memoryRegionName.empty()) {
994     if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName))
995       return {m, m};
996     error("memory region '" + sec->memoryRegionName + "' not declared");
997     return {nullptr, nullptr};
998   }
999 
1000   // If at least one memory region is defined, all sections must
1001   // belong to some memory region. Otherwise, we don't need to do
1002   // anything for memory regions.
1003   if (memoryRegions.empty())
1004     return {nullptr, nullptr};
1005 
1006   // An orphan section should continue the previous memory region.
1007   if (sec->sectionIndex == UINT32_MAX && hint)
1008     return {hint, hint};
1009 
1010   // See if a region can be found by matching section flags.
1011   for (auto &pair : memoryRegions) {
1012     MemoryRegion *m = pair.second;
1013     if (m->compatibleWith(sec->flags))
1014       return {m, nullptr};
1015   }
1016 
1017   // Otherwise, no suitable region was found.
1018   error("no memory region specified for section '" + sec->name + "'");
1019   return {nullptr, nullptr};
1020 }
1021 
findFirstSection(PhdrEntry * load)1022 static OutputSection *findFirstSection(PhdrEntry *load) {
1023   for (OutputSection *sec : outputSections)
1024     if (sec->ptLoad == load)
1025       return sec;
1026   return nullptr;
1027 }
1028 
1029 // Assign addresses to an output section and offsets to its input sections and
1030 // symbol assignments. Return true if the output section's address has changed.
assignOffsets(OutputSection * sec)1031 bool LinkerScript::assignOffsets(OutputSection *sec) {
1032   const bool isTbss = (sec->flags & SHF_TLS) && sec->type == SHT_NOBITS;
1033   const bool sameMemRegion = state->memRegion == sec->memRegion;
1034   const bool prevLMARegionIsDefault = state->lmaRegion == nullptr;
1035   const uint64_t savedDot = dot;
1036   bool addressChanged = false;
1037   state->memRegion = sec->memRegion;
1038   state->lmaRegion = sec->lmaRegion;
1039 
1040   if (!(sec->flags & SHF_ALLOC)) {
1041     // Non-SHF_ALLOC sections have zero addresses.
1042     dot = 0;
1043   } else if (isTbss) {
1044     // Allow consecutive SHF_TLS SHT_NOBITS output sections. The address range
1045     // starts from the end address of the previous tbss section.
1046     if (state->tbssAddr == 0)
1047       state->tbssAddr = dot;
1048     else
1049       dot = state->tbssAddr;
1050   } else {
1051     if (state->memRegion)
1052       dot = state->memRegion->curPos;
1053     if (sec->addrExpr)
1054       setDot(sec->addrExpr, sec->location, false);
1055 
1056     // If the address of the section has been moved forward by an explicit
1057     // expression so that it now starts past the current curPos of the enclosing
1058     // region, we need to expand the current region to account for the space
1059     // between the previous section, if any, and the start of this section.
1060     if (state->memRegion && state->memRegion->curPos < dot)
1061       expandMemoryRegion(state->memRegion, dot - state->memRegion->curPos,
1062                          sec->name);
1063   }
1064 
1065   state->outSec = sec;
1066   if (!(sec->addrExpr && script->hasSectionsCommand)) {
1067     // ALIGN is respected. sec->alignment is the max of ALIGN and the maximum of
1068     // input section alignments.
1069     const uint64_t pos = dot;
1070     dot = alignToPowerOf2(dot, sec->addralign);
1071     expandMemoryRegions(dot - pos);
1072   }
1073   addressChanged = sec->addr != dot;
1074   sec->addr = dot;
1075 
1076   // state->lmaOffset is LMA minus VMA. If LMA is explicitly specified via AT()
1077   // or AT>, recompute state->lmaOffset; otherwise, if both previous/current LMA
1078   // region is the default, and the two sections are in the same memory region,
1079   // reuse previous lmaOffset; otherwise, reset lmaOffset to 0. This emulates
1080   // heuristics described in
1081   // https://sourceware.org/binutils/docs/ld/Output-Section-LMA.html
1082   if (sec->lmaExpr) {
1083     state->lmaOffset = sec->lmaExpr().getValue() - dot;
1084   } else if (MemoryRegion *mr = sec->lmaRegion) {
1085     uint64_t lmaStart = alignToPowerOf2(mr->curPos, sec->addralign);
1086     if (mr->curPos < lmaStart)
1087       expandMemoryRegion(mr, lmaStart - mr->curPos, sec->name);
1088     state->lmaOffset = lmaStart - dot;
1089   } else if (!sameMemRegion || !prevLMARegionIsDefault) {
1090     state->lmaOffset = 0;
1091   }
1092 
1093   // Propagate state->lmaOffset to the first "non-header" section.
1094   if (PhdrEntry *l = sec->ptLoad)
1095     if (sec == findFirstSection(l))
1096       l->lmaOffset = state->lmaOffset;
1097 
1098   // We can call this method multiple times during the creation of
1099   // thunks and want to start over calculation each time.
1100   sec->size = 0;
1101 
1102   // We visited SectionsCommands from processSectionCommands to
1103   // layout sections. Now, we visit SectionsCommands again to fix
1104   // section offsets.
1105   for (SectionCommand *cmd : sec->commands) {
1106     // This handles the assignments to symbol or to the dot.
1107     if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) {
1108       assign->addr = dot;
1109       assignSymbol(assign, true);
1110       assign->size = dot - assign->addr;
1111       continue;
1112     }
1113 
1114     // Handle BYTE(), SHORT(), LONG(), or QUAD().
1115     if (auto *data = dyn_cast<ByteCommand>(cmd)) {
1116       data->offset = dot - sec->addr;
1117       dot += data->size;
1118       expandOutputSection(data->size);
1119       continue;
1120     }
1121 
1122     // Handle a single input section description command.
1123     // It calculates and assigns the offsets for each section and also
1124     // updates the output section size.
1125 
1126     auto &sections = cast<InputSectionDescription>(cmd)->sections;
1127     for (InputSection *isec : sections) {
1128       assert(isec->getParent() == sec);
1129       if (isa<PotentialSpillSection>(isec))
1130         continue;
1131       const uint64_t pos = dot;
1132       dot = alignToPowerOf2(dot, isec->addralign);
1133       isec->outSecOff = dot - sec->addr;
1134       dot += isec->getSize();
1135 
1136       // Update output section size after adding each section. This is so that
1137       // SIZEOF works correctly in the case below:
1138       // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) }
1139       expandOutputSection(dot - pos);
1140     }
1141   }
1142 
1143   // If .relro_padding is present, round up the end to a common-page-size
1144   // boundary to protect the last page.
1145   if (in.relroPadding && sec == in.relroPadding->getParent())
1146     expandOutputSection(alignToPowerOf2(dot, config->commonPageSize) - dot);
1147 
1148   // Non-SHF_ALLOC sections do not affect the addresses of other OutputSections
1149   // as they are not part of the process image.
1150   if (!(sec->flags & SHF_ALLOC)) {
1151     dot = savedDot;
1152   } else if (isTbss) {
1153     // NOBITS TLS sections are similar. Additionally save the end address.
1154     state->tbssAddr = dot;
1155     dot = savedDot;
1156   }
1157   return addressChanged;
1158 }
1159 
isDiscardable(const OutputSection & sec)1160 static bool isDiscardable(const OutputSection &sec) {
1161   if (sec.name == "/DISCARD/")
1162     return true;
1163 
1164   // We do not want to remove OutputSections with expressions that reference
1165   // symbols even if the OutputSection is empty. We want to ensure that the
1166   // expressions can be evaluated and report an error if they cannot.
1167   if (sec.expressionsUseSymbols)
1168     return false;
1169 
1170   // OutputSections may be referenced by name in ADDR and LOADADDR expressions,
1171   // as an empty Section can has a valid VMA and LMA we keep the OutputSection
1172   // to maintain the integrity of the other Expression.
1173   if (sec.usedInExpression)
1174     return false;
1175 
1176   for (SectionCommand *cmd : sec.commands) {
1177     if (auto assign = dyn_cast<SymbolAssignment>(cmd))
1178       // Don't create empty output sections just for unreferenced PROVIDE
1179       // symbols.
1180       if (assign->name != "." && !assign->sym)
1181         continue;
1182 
1183     if (!isa<InputSectionDescription>(*cmd))
1184       return false;
1185   }
1186   return true;
1187 }
1188 
maybePropagatePhdrs(OutputSection & sec,SmallVector<StringRef,0> & phdrs)1189 static void maybePropagatePhdrs(OutputSection &sec,
1190                                 SmallVector<StringRef, 0> &phdrs) {
1191   if (sec.phdrs.empty()) {
1192     // To match the bfd linker script behaviour, only propagate program
1193     // headers to sections that are allocated.
1194     if (sec.flags & SHF_ALLOC)
1195       sec.phdrs = phdrs;
1196   } else {
1197     phdrs = sec.phdrs;
1198   }
1199 }
1200 
adjustOutputSections()1201 void LinkerScript::adjustOutputSections() {
1202   // If the output section contains only symbol assignments, create a
1203   // corresponding output section. The issue is what to do with linker script
1204   // like ".foo : { symbol = 42; }". One option would be to convert it to
1205   // "symbol = 42;". That is, move the symbol out of the empty section
1206   // description. That seems to be what bfd does for this simple case. The
1207   // problem is that this is not completely general. bfd will give up and
1208   // create a dummy section too if there is a ". = . + 1" inside the section
1209   // for example.
1210   // Given that we want to create the section, we have to worry what impact
1211   // it will have on the link. For example, if we just create a section with
1212   // 0 for flags, it would change which PT_LOADs are created.
1213   // We could remember that particular section is dummy and ignore it in
1214   // other parts of the linker, but unfortunately there are quite a few places
1215   // that would need to change:
1216   //   * The program header creation.
1217   //   * The orphan section placement.
1218   //   * The address assignment.
1219   // The other option is to pick flags that minimize the impact the section
1220   // will have on the rest of the linker. That is why we copy the flags from
1221   // the previous sections. We copy just SHF_ALLOC and SHF_WRITE to keep the
1222   // impact low. We do not propagate SHF_EXECINSTR as in some cases this can
1223   // lead to executable writeable section.
1224   uint64_t flags = SHF_ALLOC;
1225 
1226   SmallVector<StringRef, 0> defPhdrs;
1227   bool seenRelro = false;
1228   for (SectionCommand *&cmd : sectionCommands) {
1229     if (!isa<OutputDesc>(cmd))
1230       continue;
1231     auto *sec = &cast<OutputDesc>(cmd)->osec;
1232 
1233     // Handle align (e.g. ".foo : ALIGN(16) { ... }").
1234     if (sec->alignExpr)
1235       sec->addralign =
1236           std::max<uint32_t>(sec->addralign, sec->alignExpr().getValue());
1237 
1238     bool isEmpty = (getFirstInputSection(sec) == nullptr);
1239     bool discardable = isEmpty && isDiscardable(*sec);
1240     // If sec has at least one input section and not discarded, remember its
1241     // flags to be inherited by subsequent output sections. (sec may contain
1242     // just one empty synthetic section.)
1243     if (sec->hasInputSections && !discardable)
1244       flags = sec->flags;
1245 
1246     // We do not want to keep any special flags for output section
1247     // in case it is empty.
1248     if (isEmpty) {
1249       sec->flags =
1250           flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) | SHF_WRITE);
1251       sec->sortRank = getSectionRank(*sec);
1252     }
1253 
1254     // The code below may remove empty output sections. We should save the
1255     // specified program headers (if exist) and propagate them to subsequent
1256     // sections which do not specify program headers.
1257     // An example of such a linker script is:
1258     // SECTIONS { .empty : { *(.empty) } :rw
1259     //            .foo : { *(.foo) } }
1260     // Note: at this point the order of output sections has not been finalized,
1261     // because orphans have not been inserted into their expected positions. We
1262     // will handle them in adjustSectionsAfterSorting().
1263     if (sec->sectionIndex != UINT32_MAX)
1264       maybePropagatePhdrs(*sec, defPhdrs);
1265 
1266     // Discard .relro_padding if we have not seen one RELRO section. Note: when
1267     // .tbss is the only RELRO section, there is no associated PT_LOAD segment
1268     // (needsPtLoad), so we don't append .relro_padding in the case.
1269     if (in.relroPadding && in.relroPadding->getParent() == sec && !seenRelro)
1270       discardable = true;
1271     if (discardable) {
1272       sec->markDead();
1273       cmd = nullptr;
1274     } else {
1275       seenRelro |=
1276           sec->relro && !(sec->type == SHT_NOBITS && (sec->flags & SHF_TLS));
1277     }
1278   }
1279 
1280   // It is common practice to use very generic linker scripts. So for any
1281   // given run some of the output sections in the script will be empty.
1282   // We could create corresponding empty output sections, but that would
1283   // clutter the output.
1284   // We instead remove trivially empty sections. The bfd linker seems even
1285   // more aggressive at removing them.
1286   llvm::erase_if(sectionCommands, [&](SectionCommand *cmd) { return !cmd; });
1287 }
1288 
adjustSectionsAfterSorting()1289 void LinkerScript::adjustSectionsAfterSorting() {
1290   // Try and find an appropriate memory region to assign offsets in.
1291   MemoryRegion *hint = nullptr;
1292   for (SectionCommand *cmd : sectionCommands) {
1293     if (auto *osd = dyn_cast<OutputDesc>(cmd)) {
1294       OutputSection *sec = &osd->osec;
1295       if (!sec->lmaRegionName.empty()) {
1296         if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName))
1297           sec->lmaRegion = m;
1298         else
1299           error("memory region '" + sec->lmaRegionName + "' not declared");
1300       }
1301       std::tie(sec->memRegion, hint) = findMemoryRegion(sec, hint);
1302     }
1303   }
1304 
1305   // If output section command doesn't specify any segments,
1306   // and we haven't previously assigned any section to segment,
1307   // then we simply assign section to the very first load segment.
1308   // Below is an example of such linker script:
1309   // PHDRS { seg PT_LOAD; }
1310   // SECTIONS { .aaa : { *(.aaa) } }
1311   SmallVector<StringRef, 0> defPhdrs;
1312   auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) {
1313     return cmd.type == PT_LOAD;
1314   });
1315   if (firstPtLoad != phdrsCommands.end())
1316     defPhdrs.push_back(firstPtLoad->name);
1317 
1318   // Walk the commands and propagate the program headers to commands that don't
1319   // explicitly specify them.
1320   for (SectionCommand *cmd : sectionCommands)
1321     if (auto *osd = dyn_cast<OutputDesc>(cmd))
1322       maybePropagatePhdrs(osd->osec, defPhdrs);
1323 }
1324 
computeBase(uint64_t min,bool allocateHeaders)1325 static uint64_t computeBase(uint64_t min, bool allocateHeaders) {
1326   // If there is no SECTIONS or if the linkerscript is explicit about program
1327   // headers, do our best to allocate them.
1328   if (!script->hasSectionsCommand || allocateHeaders)
1329     return 0;
1330   // Otherwise only allocate program headers if that would not add a page.
1331   return alignDown(min, config->maxPageSize);
1332 }
1333 
1334 // When the SECTIONS command is used, try to find an address for the file and
1335 // program headers output sections, which can be added to the first PT_LOAD
1336 // segment when program headers are created.
1337 //
1338 // We check if the headers fit below the first allocated section. If there isn't
1339 // enough space for these sections, we'll remove them from the PT_LOAD segment,
1340 // and we'll also remove the PT_PHDR segment.
allocateHeaders(SmallVector<PhdrEntry *,0> & phdrs)1341 void LinkerScript::allocateHeaders(SmallVector<PhdrEntry *, 0> &phdrs) {
1342   uint64_t min = std::numeric_limits<uint64_t>::max();
1343   for (OutputSection *sec : outputSections)
1344     if (sec->flags & SHF_ALLOC)
1345       min = std::min<uint64_t>(min, sec->addr);
1346 
1347   auto it = llvm::find_if(
1348       phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; });
1349   if (it == phdrs.end())
1350     return;
1351   PhdrEntry *firstPTLoad = *it;
1352 
1353   bool hasExplicitHeaders =
1354       llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) {
1355         return cmd.hasPhdrs || cmd.hasFilehdr;
1356       });
1357   bool paged = !config->omagic && !config->nmagic;
1358   uint64_t headerSize = getHeaderSize();
1359   if ((paged || hasExplicitHeaders) &&
1360       headerSize <= min - computeBase(min, hasExplicitHeaders)) {
1361     min = alignDown(min - headerSize, config->maxPageSize);
1362     Out::elfHeader->addr = min;
1363     Out::programHeaders->addr = min + Out::elfHeader->size;
1364     return;
1365   }
1366 
1367   // Error if we were explicitly asked to allocate headers.
1368   if (hasExplicitHeaders)
1369     error("could not allocate headers");
1370 
1371   Out::elfHeader->ptLoad = nullptr;
1372   Out::programHeaders->ptLoad = nullptr;
1373   firstPTLoad->firstSec = findFirstSection(firstPTLoad);
1374 
1375   llvm::erase_if(phdrs,
1376                  [](const PhdrEntry *e) { return e->p_type == PT_PHDR; });
1377 }
1378 
AddressState()1379 LinkerScript::AddressState::AddressState() {
1380   for (auto &mri : script->memoryRegions) {
1381     MemoryRegion *mr = mri.second;
1382     mr->curPos = (mr->origin)().getValue();
1383   }
1384 }
1385 
1386 // Here we assign addresses as instructed by linker script SECTIONS
1387 // sub-commands. Doing that allows us to use final VA values, so here
1388 // we also handle rest commands like symbol assignments and ASSERTs.
1389 // Return an output section that has changed its address or null, and a symbol
1390 // that has changed its section or value (or nullptr if no symbol has changed).
1391 std::pair<const OutputSection *, const Defined *>
assignAddresses()1392 LinkerScript::assignAddresses() {
1393   if (script->hasSectionsCommand) {
1394     // With a linker script, assignment of addresses to headers is covered by
1395     // allocateHeaders().
1396     dot = config->imageBase.value_or(0);
1397   } else {
1398     // Assign addresses to headers right now.
1399     dot = target->getImageBase();
1400     Out::elfHeader->addr = dot;
1401     Out::programHeaders->addr = dot + Out::elfHeader->size;
1402     dot += getHeaderSize();
1403   }
1404 
1405   OutputSection *changedOsec = nullptr;
1406   AddressState st;
1407   state = &st;
1408   errorOnMissingSection = true;
1409   st.outSec = aether;
1410   recordedErrors.clear();
1411 
1412   SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands);
1413   for (SectionCommand *cmd : sectionCommands) {
1414     if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) {
1415       assign->addr = dot;
1416       assignSymbol(assign, false);
1417       assign->size = dot - assign->addr;
1418       continue;
1419     }
1420     if (assignOffsets(&cast<OutputDesc>(cmd)->osec) && !changedOsec)
1421       changedOsec = &cast<OutputDesc>(cmd)->osec;
1422   }
1423 
1424   state = nullptr;
1425   return {changedOsec, getChangedSymbolAssignment(oldValues)};
1426 }
1427 
hasRegionOverflowed(MemoryRegion * mr)1428 static bool hasRegionOverflowed(MemoryRegion *mr) {
1429   if (!mr)
1430     return false;
1431   return mr->curPos - mr->getOrigin() > mr->getLength();
1432 }
1433 
1434 // Spill input sections in reverse order of address assignment to (potentially)
1435 // bring memory regions out of overflow. The size savings of a spill can only be
1436 // estimated, since general linker script arithmetic may occur afterwards.
1437 // Under-estimates may cause unnecessary spills, but over-estimates can always
1438 // be corrected on the next pass.
spillSections()1439 bool LinkerScript::spillSections() {
1440   if (!config->enableNonContiguousRegions)
1441     return false;
1442 
1443   bool spilled = false;
1444   for (SectionCommand *cmd : reverse(sectionCommands)) {
1445     auto *od = dyn_cast<OutputDesc>(cmd);
1446     if (!od)
1447       continue;
1448     OutputSection *osec = &od->osec;
1449     if (!osec->memRegion)
1450       continue;
1451 
1452     // Input sections that have replaced a potential spill and should be removed
1453     // from their input section description.
1454     DenseSet<InputSection *> spilledInputSections;
1455 
1456     for (SectionCommand *cmd : reverse(osec->commands)) {
1457       if (!hasRegionOverflowed(osec->memRegion) &&
1458           !hasRegionOverflowed(osec->lmaRegion))
1459         break;
1460 
1461       auto *isd = dyn_cast<InputSectionDescription>(cmd);
1462       if (!isd)
1463         continue;
1464       for (InputSection *isec : reverse(isd->sections)) {
1465         // Potential spill locations cannot be spilled.
1466         if (isa<PotentialSpillSection>(isec))
1467           continue;
1468 
1469         // Find the next potential spill location and remove it from the list.
1470         auto it = potentialSpillLists.find(isec);
1471         if (it == potentialSpillLists.end())
1472           continue;
1473         PotentialSpillList &list = it->second;
1474         PotentialSpillSection *spill = list.head;
1475         if (spill->next)
1476           list.head = spill->next;
1477         else
1478           potentialSpillLists.erase(isec);
1479 
1480         // Replace the next spill location with the spilled section and adjust
1481         // its properties to match the new location. Note that the alignment of
1482         // the spill section may have diverged from the original due to e.g. a
1483         // SUBALIGN. Correct assignment requires the spill's alignment to be
1484         // used, not the original.
1485         spilledInputSections.insert(isec);
1486         *llvm::find(spill->isd->sections, spill) = isec;
1487         isec->parent = spill->parent;
1488         isec->addralign = spill->addralign;
1489 
1490         // Record the (potential) reduction in the region's end position.
1491         osec->memRegion->curPos -= isec->getSize();
1492         if (osec->lmaRegion)
1493           osec->lmaRegion->curPos -= isec->getSize();
1494 
1495         // Spilling continues until the end position no longer overflows the
1496         // region. Then, another round of address assignment will either confirm
1497         // the spill's success or lead to yet more spilling.
1498         if (!hasRegionOverflowed(osec->memRegion) &&
1499             !hasRegionOverflowed(osec->lmaRegion))
1500           break;
1501       }
1502 
1503       // Remove any spilled input sections to complete their move.
1504       if (!spilledInputSections.empty()) {
1505         spilled = true;
1506         llvm::erase_if(isd->sections, [&](InputSection *isec) {
1507           return spilledInputSections.contains(isec);
1508         });
1509       }
1510     }
1511   }
1512 
1513   return spilled;
1514 }
1515 
1516 // Erase any potential spill sections that were not used.
erasePotentialSpillSections()1517 void LinkerScript::erasePotentialSpillSections() {
1518   if (potentialSpillLists.empty())
1519     return;
1520 
1521   // Collect the set of input section descriptions that contain potential
1522   // spills.
1523   DenseSet<InputSectionDescription *> isds;
1524   for (const auto &[_, list] : potentialSpillLists)
1525     for (PotentialSpillSection *s = list.head; s; s = s->next)
1526       isds.insert(s->isd);
1527 
1528   for (InputSectionDescription *isd : isds)
1529     llvm::erase_if(isd->sections, [](InputSection *s) {
1530       return isa<PotentialSpillSection>(s);
1531     });
1532 
1533   potentialSpillLists.clear();
1534 }
1535 
1536 // Creates program headers as instructed by PHDRS linker script command.
createPhdrs()1537 SmallVector<PhdrEntry *, 0> LinkerScript::createPhdrs() {
1538   SmallVector<PhdrEntry *, 0> ret;
1539 
1540   // Process PHDRS and FILEHDR keywords because they are not
1541   // real output sections and cannot be added in the following loop.
1542   for (const PhdrsCommand &cmd : phdrsCommands) {
1543     PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags.value_or(PF_R));
1544 
1545     if (cmd.hasFilehdr)
1546       phdr->add(Out::elfHeader);
1547     if (cmd.hasPhdrs)
1548       phdr->add(Out::programHeaders);
1549 
1550     if (cmd.lmaExpr) {
1551       phdr->p_paddr = cmd.lmaExpr().getValue();
1552       phdr->hasLMA = true;
1553     }
1554     ret.push_back(phdr);
1555   }
1556 
1557   // Add output sections to program headers.
1558   for (OutputSection *sec : outputSections) {
1559     // Assign headers specified by linker script
1560     for (size_t id : getPhdrIndices(sec)) {
1561       ret[id]->add(sec);
1562       if (!phdrsCommands[id].flags)
1563         ret[id]->p_flags |= sec->getPhdrFlags();
1564     }
1565   }
1566   return ret;
1567 }
1568 
1569 // Returns true if we should emit an .interp section.
1570 //
1571 // We usually do. But if PHDRS commands are given, and
1572 // no PT_INTERP is there, there's no place to emit an
1573 // .interp, so we don't do that in that case.
needsInterpSection()1574 bool LinkerScript::needsInterpSection() {
1575   if (phdrsCommands.empty())
1576     return true;
1577   for (PhdrsCommand &cmd : phdrsCommands)
1578     if (cmd.type == PT_INTERP)
1579       return true;
1580   return false;
1581 }
1582 
getSymbolValue(StringRef name,const Twine & loc)1583 ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) {
1584   if (name == ".") {
1585     if (state)
1586       return {state->outSec, false, dot - state->outSec->addr, loc};
1587     error(loc + ": unable to get location counter value");
1588     return 0;
1589   }
1590 
1591   if (Symbol *sym = symtab.find(name)) {
1592     if (auto *ds = dyn_cast<Defined>(sym)) {
1593       ExprValue v{ds->section, false, ds->value, loc};
1594       // Retain the original st_type, so that the alias will get the same
1595       // behavior in relocation processing. Any operation will reset st_type to
1596       // STT_NOTYPE.
1597       v.type = ds->type;
1598       return v;
1599     }
1600     if (isa<SharedSymbol>(sym))
1601       if (!errorOnMissingSection)
1602         return {nullptr, false, 0, loc};
1603   }
1604 
1605   error(loc + ": symbol not found: " + name);
1606   return 0;
1607 }
1608 
1609 // Returns the index of the segment named Name.
getPhdrIndex(ArrayRef<PhdrsCommand> vec,StringRef name)1610 static std::optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec,
1611                                           StringRef name) {
1612   for (size_t i = 0; i < vec.size(); ++i)
1613     if (vec[i].name == name)
1614       return i;
1615   return std::nullopt;
1616 }
1617 
1618 // Returns indices of ELF headers containing specific section. Each index is a
1619 // zero based number of ELF header listed within PHDRS {} script block.
getPhdrIndices(OutputSection * cmd)1620 SmallVector<size_t, 0> LinkerScript::getPhdrIndices(OutputSection *cmd) {
1621   SmallVector<size_t, 0> ret;
1622 
1623   for (StringRef s : cmd->phdrs) {
1624     if (std::optional<size_t> idx = getPhdrIndex(phdrsCommands, s))
1625       ret.push_back(*idx);
1626     else if (s != "NONE")
1627       error(cmd->location + ": program header '" + s +
1628             "' is not listed in PHDRS");
1629   }
1630   return ret;
1631 }
1632 
printMemoryUsage(raw_ostream & os)1633 void LinkerScript::printMemoryUsage(raw_ostream& os) {
1634   auto printSize = [&](uint64_t size) {
1635     if ((size & 0x3fffffff) == 0)
1636       os << format_decimal(size >> 30, 10) << " GB";
1637     else if ((size & 0xfffff) == 0)
1638       os << format_decimal(size >> 20, 10) << " MB";
1639     else if ((size & 0x3ff) == 0)
1640       os << format_decimal(size >> 10, 10) << " KB";
1641     else
1642       os << " " << format_decimal(size, 10) << " B";
1643   };
1644   os << "Memory region         Used Size  Region Size  %age Used\n";
1645   for (auto &pair : memoryRegions) {
1646     MemoryRegion *m = pair.second;
1647     uint64_t usedLength = m->curPos - m->getOrigin();
1648     os << right_justify(m->name, 16) << ": ";
1649     printSize(usedLength);
1650     uint64_t length = m->getLength();
1651     if (length != 0) {
1652       printSize(length);
1653       double percent = usedLength * 100.0 / length;
1654       os << "    " << format("%6.2f%%", percent);
1655     }
1656     os << '\n';
1657   }
1658 }
1659 
recordError(const Twine & msg)1660 void LinkerScript::recordError(const Twine &msg) {
1661   auto &str = recordedErrors.emplace_back();
1662   msg.toVector(str);
1663 }
1664 
checkMemoryRegion(const MemoryRegion * region,const OutputSection * osec,uint64_t addr)1665 static void checkMemoryRegion(const MemoryRegion *region,
1666                               const OutputSection *osec, uint64_t addr) {
1667   uint64_t osecEnd = addr + osec->size;
1668   uint64_t regionEnd = region->getOrigin() + region->getLength();
1669   if (osecEnd > regionEnd) {
1670     error("section '" + osec->name + "' will not fit in region '" +
1671           region->name + "': overflowed by " + Twine(osecEnd - regionEnd) +
1672           " bytes");
1673   }
1674 }
1675 
checkFinalScriptConditions() const1676 void LinkerScript::checkFinalScriptConditions() const {
1677   for (StringRef err : recordedErrors)
1678     errorOrWarn(err);
1679   for (const OutputSection *sec : outputSections) {
1680     if (const MemoryRegion *memoryRegion = sec->memRegion)
1681       checkMemoryRegion(memoryRegion, sec, sec->addr);
1682     if (const MemoryRegion *lmaRegion = sec->lmaRegion)
1683       checkMemoryRegion(lmaRegion, sec, sec->getLMA());
1684   }
1685 }
1686 
addScriptReferencedSymbolsToSymTable()1687 void LinkerScript::addScriptReferencedSymbolsToSymTable() {
1688   // Some symbols (such as __ehdr_start) are defined lazily only when there
1689   // are undefined symbols for them, so we add these to trigger that logic.
1690   auto reference = [](StringRef name) {
1691     Symbol *sym = symtab.addUnusedUndefined(name);
1692     sym->isUsedInRegularObj = true;
1693     sym->referenced = true;
1694   };
1695   for (StringRef name : referencedSymbols)
1696     reference(name);
1697 
1698   // Keeps track of references from which PROVIDE symbols have been added to the
1699   // symbol table.
1700   DenseSet<StringRef> added;
1701   SmallVector<const SmallVector<StringRef, 0> *, 0> symRefsVec;
1702   for (const auto &[name, symRefs] : provideMap)
1703     if (LinkerScript::shouldAddProvideSym(name) && added.insert(name).second)
1704       symRefsVec.push_back(&symRefs);
1705   while (symRefsVec.size()) {
1706     for (StringRef name : *symRefsVec.pop_back_val()) {
1707       reference(name);
1708       // Prevent the symbol from being discarded by --gc-sections.
1709       script->referencedSymbols.push_back(name);
1710       auto it = script->provideMap.find(name);
1711       if (it != script->provideMap.end() &&
1712           LinkerScript::shouldAddProvideSym(name) &&
1713           added.insert(name).second) {
1714         symRefsVec.push_back(&it->second);
1715       }
1716     }
1717   }
1718 }
1719 
shouldAddProvideSym(StringRef symName)1720 bool LinkerScript::shouldAddProvideSym(StringRef symName) {
1721   Symbol *sym = symtab.find(symName);
1722   return sym && !sym->isDefined() && !sym->isCommon();
1723 }
1724