xref: /freebsd/sys/netpfil/ipfw/ip_fw2.c (revision 0fc7bdc978366abb4351b0b76b50a5848cc5d982)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 /*
30  * The FreeBSD IP packet firewall, main file
31  */
32 
33 #include "opt_ipfw.h"
34 #include "opt_ipdivert.h"
35 #include "opt_inet.h"
36 #ifndef INET
37 #error "IPFIREWALL requires INET"
38 #endif /* INET */
39 #include "opt_inet6.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/condvar.h>
44 #include <sys/counter.h>
45 #include <sys/eventhandler.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/kernel.h>
49 #include <sys/lock.h>
50 #include <sys/jail.h>
51 #include <sys/module.h>
52 #include <sys/priv.h>
53 #include <sys/proc.h>
54 #include <sys/rwlock.h>
55 #include <sys/rmlock.h>
56 #include <sys/sdt.h>
57 #include <sys/socket.h>
58 #include <sys/socketvar.h>
59 #include <sys/sysctl.h>
60 #include <sys/syslog.h>
61 #include <sys/ucred.h>
62 #include <net/ethernet.h> /* for ETHERTYPE_IP */
63 #include <net/if.h>
64 #include <net/if_var.h>
65 #include <net/if_private.h>
66 #include <net/route.h>
67 #include <net/route/nhop.h>
68 #include <net/pfil.h>
69 #include <net/vnet.h>
70 #include <net/if_pfsync.h>
71 
72 #include <netpfil/pf/pf_mtag.h>
73 
74 #include <netinet/in.h>
75 #include <netinet/in_var.h>
76 #include <netinet/in_pcb.h>
77 #include <netinet/ip.h>
78 #include <netinet/ip_var.h>
79 #include <netinet/ip_icmp.h>
80 #include <netinet/ip_fw.h>
81 #include <netinet/ip_carp.h>
82 #include <netinet/pim.h>
83 #include <netinet/tcp_var.h>
84 #include <netinet/udp.h>
85 #include <netinet/udp_var.h>
86 #include <netinet/sctp.h>
87 #include <netinet/sctp_crc32.h>
88 #include <netinet/sctp_header.h>
89 
90 #include <netinet/ip6.h>
91 #include <netinet/icmp6.h>
92 #include <netinet/in_fib.h>
93 #ifdef INET6
94 #include <netinet6/in6_fib.h>
95 #include <netinet6/in6_pcb.h>
96 #include <netinet6/scope6_var.h>
97 #include <netinet6/ip6_var.h>
98 #endif
99 
100 #include <net/if_gre.h> /* for struct grehdr */
101 
102 #include <netpfil/ipfw/ip_fw_private.h>
103 
104 #include <machine/in_cksum.h>	/* XXX for in_cksum */
105 
106 #ifdef MAC
107 #include <security/mac/mac_framework.h>
108 #endif
109 
110 #define	IPFW_PROBE(probe, arg0, arg1, arg2, arg3, arg4, arg5)		\
111     SDT_PROBE6(ipfw, , , probe, arg0, arg1, arg2, arg3, arg4, arg5)
112 
113 SDT_PROVIDER_DEFINE(ipfw);
114 SDT_PROBE_DEFINE6(ipfw, , , rule__matched,
115     "int",			/* retval */
116     "int",			/* af */
117     "void *",			/* src addr */
118     "void *",			/* dst addr */
119     "struct ip_fw_args *",	/* args */
120     "struct ip_fw *"		/* rule */);
121 
122 /*
123  * static variables followed by global ones.
124  * All ipfw global variables are here.
125  */
126 
127 VNET_DEFINE_STATIC(int, fw_deny_unknown_exthdrs);
128 #define	V_fw_deny_unknown_exthdrs	VNET(fw_deny_unknown_exthdrs)
129 
130 VNET_DEFINE_STATIC(int, fw_permit_single_frag6) = 1;
131 #define	V_fw_permit_single_frag6	VNET(fw_permit_single_frag6)
132 
133 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
134 static int default_to_accept = 1;
135 #else
136 static int default_to_accept;
137 #endif
138 
139 VNET_DEFINE(int, autoinc_step);
140 VNET_DEFINE(int, fw_one_pass) = 1;
141 
142 VNET_DEFINE(unsigned int, fw_tables_max);
143 VNET_DEFINE(unsigned int, fw_tables_sets) = 0;	/* Don't use set-aware tables */
144 /* Use 128 tables by default */
145 static unsigned int default_fw_tables = IPFW_TABLES_DEFAULT;
146 
147 static int jump_lookup_pos(struct ip_fw_chain *chain, struct ip_fw *f, int num,
148     int tablearg, int jump_backwards);
149 #ifndef LINEAR_SKIPTO
150 static int jump_cached(struct ip_fw_chain *chain, struct ip_fw *f, int num,
151     int tablearg, int jump_backwards);
152 #define	JUMP(ch, f, num, targ, back)	jump_cached(ch, f, num, targ, back)
153 #else
154 #define	JUMP(ch, f, num, targ, back)	jump_lookup_pos(ch, f, num, targ, back)
155 #endif
156 
157 /*
158  * Each rule belongs to one of 32 different sets (0..31).
159  * The variable set_disable contains one bit per set.
160  * If the bit is set, all rules in the corresponding set
161  * are disabled. Set RESVD_SET(31) is reserved for the default rule
162  * and rules that are not deleted by the flush command,
163  * and CANNOT be disabled.
164  * Rules in set RESVD_SET can only be deleted individually.
165  */
166 VNET_DEFINE(u_int32_t, set_disable);
167 #define	V_set_disable			VNET(set_disable)
168 
169 VNET_DEFINE(int, fw_verbose);
170 /* counter for ipfw_log(NULL...) */
171 VNET_DEFINE(u_int64_t, norule_counter);
172 VNET_DEFINE(int, verbose_limit);
173 
174 /* layer3_chain contains the list of rules for layer 3 */
175 VNET_DEFINE(struct ip_fw_chain, layer3_chain);
176 
177 /* ipfw_vnet_ready controls when we are open for business */
178 VNET_DEFINE(int, ipfw_vnet_ready) = 0;
179 
180 VNET_DEFINE(int, ipfw_nat_ready) = 0;
181 
182 ipfw_nat_t *ipfw_nat_ptr = NULL;
183 struct cfg_nat *(*lookup_nat_ptr)(struct nat_list *, int);
184 ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
185 ipfw_nat_cfg_t *ipfw_nat_del_ptr;
186 ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
187 ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
188 
189 #ifdef SYSCTL_NODE
190 uint32_t dummy_def = IPFW_DEFAULT_RULE;
191 static int sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS);
192 static int sysctl_ipfw_tables_sets(SYSCTL_HANDLER_ARGS);
193 
194 SYSBEGIN(f3)
195 
196 SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
197     "Firewall");
198 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
199     CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_one_pass), 0,
200     "Only do a single pass through ipfw when using dummynet(4)");
201 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step,
202     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(autoinc_step), 0,
203     "Rule number auto-increment step");
204 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
205     CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_verbose), 0,
206     "Log matches to ipfw rules");
207 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit,
208     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(verbose_limit), 0,
209     "Set upper limit of matches of ipfw rules logged");
210 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD,
211     &dummy_def, 0,
212     "The default/max possible rule number.");
213 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, tables_max,
214     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
215     0, 0, sysctl_ipfw_table_num, "IU",
216     "Maximum number of concurrently used tables");
217 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, tables_sets,
218     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
219     0, 0, sysctl_ipfw_tables_sets, "IU",
220     "Use per-set namespace for tables");
221 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, default_to_accept, CTLFLAG_RDTUN,
222     &default_to_accept, 0,
223     "Make the default rule accept all packets.");
224 TUNABLE_INT("net.inet.ip.fw.tables_max", (int *)&default_fw_tables);
225 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count,
226     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(layer3_chain.n_rules), 0,
227     "Number of static rules");
228 
229 #ifdef INET6
230 SYSCTL_DECL(_net_inet6_ip6);
231 SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, fw, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
232     "Firewall");
233 SYSCTL_INT(_net_inet6_ip6_fw, OID_AUTO, deny_unknown_exthdrs,
234     CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
235     &VNET_NAME(fw_deny_unknown_exthdrs), 0,
236     "Deny packets with unknown IPv6 Extension Headers");
237 SYSCTL_INT(_net_inet6_ip6_fw, OID_AUTO, permit_single_frag6,
238     CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
239     &VNET_NAME(fw_permit_single_frag6), 0,
240     "Permit single packet IPv6 fragments");
241 #endif /* INET6 */
242 
243 SYSEND
244 
245 #endif /* SYSCTL_NODE */
246 
247 /*
248  * Some macros used in the various matching options.
249  * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
250  * Other macros just cast void * into the appropriate type
251  */
252 #define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
253 #define	TCP(p)		((struct tcphdr *)(p))
254 #define	SCTP(p)		((struct sctphdr *)(p))
255 #define	UDP(p)		((struct udphdr *)(p))
256 #define	ICMP(p)		((struct icmphdr *)(p))
257 #define	ICMP6(p)	((struct icmp6_hdr *)(p))
258 
259 static __inline int
icmptype_match(struct icmphdr * icmp,ipfw_insn_u32 * cmd)260 icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
261 {
262 	int type = icmp->icmp_type;
263 
264 	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
265 }
266 
267 #define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
268     (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
269 
270 static int
is_icmp_query(struct icmphdr * icmp)271 is_icmp_query(struct icmphdr *icmp)
272 {
273 	int type = icmp->icmp_type;
274 
275 	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
276 }
277 #undef TT
278 
279 /*
280  * The following checks use two arrays of 8 or 16 bits to store the
281  * bits that we want set or clear, respectively. They are in the
282  * low and high half of cmd->arg1 or cmd->d[0].
283  *
284  * We scan options and store the bits we find set. We succeed if
285  *
286  *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
287  *
288  * The code is sometimes optimized not to store additional variables.
289  */
290 
291 static int
flags_match(ipfw_insn * cmd,u_int8_t bits)292 flags_match(ipfw_insn *cmd, u_int8_t bits)
293 {
294 	u_char want_clear;
295 	bits = ~bits;
296 
297 	if ( ((cmd->arg1 & 0xff) & bits) != 0)
298 		return 0; /* some bits we want set were clear */
299 	want_clear = (cmd->arg1 >> 8) & 0xff;
300 	if ( (want_clear & bits) != want_clear)
301 		return 0; /* some bits we want clear were set */
302 	return 1;
303 }
304 
305 static int
ipopts_match(struct ip * ip,ipfw_insn * cmd)306 ipopts_match(struct ip *ip, ipfw_insn *cmd)
307 {
308 	int optlen, bits = 0;
309 	u_char *cp = (u_char *)(ip + 1);
310 	int x = (ip->ip_hl << 2) - sizeof (struct ip);
311 
312 	for (; x > 0; x -= optlen, cp += optlen) {
313 		int opt = cp[IPOPT_OPTVAL];
314 
315 		if (opt == IPOPT_EOL)
316 			break;
317 		if (opt == IPOPT_NOP)
318 			optlen = 1;
319 		else {
320 			optlen = cp[IPOPT_OLEN];
321 			if (optlen <= 0 || optlen > x)
322 				return 0; /* invalid or truncated */
323 		}
324 		switch (opt) {
325 		default:
326 			break;
327 
328 		case IPOPT_LSRR:
329 			bits |= IP_FW_IPOPT_LSRR;
330 			break;
331 
332 		case IPOPT_SSRR:
333 			bits |= IP_FW_IPOPT_SSRR;
334 			break;
335 
336 		case IPOPT_RR:
337 			bits |= IP_FW_IPOPT_RR;
338 			break;
339 
340 		case IPOPT_TS:
341 			bits |= IP_FW_IPOPT_TS;
342 			break;
343 		}
344 	}
345 	return (flags_match(cmd, bits));
346 }
347 
348 /*
349  * Parse TCP options. The logic copied from tcp_dooptions().
350  */
351 static int
tcpopts_parse(const struct tcphdr * tcp,uint16_t * mss)352 tcpopts_parse(const struct tcphdr *tcp, uint16_t *mss)
353 {
354 	const u_char *cp = (const u_char *)(tcp + 1);
355 	int optlen, bits = 0;
356 	int cnt = (tcp->th_off << 2) - sizeof(struct tcphdr);
357 
358 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
359 		int opt = cp[0];
360 		if (opt == TCPOPT_EOL)
361 			break;
362 		if (opt == TCPOPT_NOP)
363 			optlen = 1;
364 		else {
365 			if (cnt < 2)
366 				break;
367 			optlen = cp[1];
368 			if (optlen < 2 || optlen > cnt)
369 				break;
370 		}
371 
372 		switch (opt) {
373 		default:
374 			break;
375 
376 		case TCPOPT_MAXSEG:
377 			if (optlen != TCPOLEN_MAXSEG)
378 				break;
379 			bits |= IP_FW_TCPOPT_MSS;
380 			if (mss != NULL)
381 				*mss = be16dec(cp + 2);
382 			break;
383 
384 		case TCPOPT_WINDOW:
385 			if (optlen == TCPOLEN_WINDOW)
386 				bits |= IP_FW_TCPOPT_WINDOW;
387 			break;
388 
389 		case TCPOPT_SACK_PERMITTED:
390 			if (optlen == TCPOLEN_SACK_PERMITTED)
391 				bits |= IP_FW_TCPOPT_SACK;
392 			break;
393 
394 		case TCPOPT_SACK:
395 			if (optlen > 2 && (optlen - 2) % TCPOLEN_SACK == 0)
396 				bits |= IP_FW_TCPOPT_SACK;
397 			break;
398 
399 		case TCPOPT_TIMESTAMP:
400 			if (optlen == TCPOLEN_TIMESTAMP)
401 				bits |= IP_FW_TCPOPT_TS;
402 			break;
403 		}
404 	}
405 	return (bits);
406 }
407 
408 static int
tcpopts_match(struct tcphdr * tcp,ipfw_insn * cmd)409 tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
410 {
411 
412 	return (flags_match(cmd, tcpopts_parse(tcp, NULL)));
413 }
414 
415 static int
iface_match(struct ifnet * ifp,ipfw_insn_if * cmd,struct ip_fw_chain * chain,uint32_t * tablearg)416 iface_match(struct ifnet *ifp, ipfw_insn_if *cmd, struct ip_fw_chain *chain,
417     uint32_t *tablearg)
418 {
419 
420 	if (ifp == NULL)	/* no iface with this packet, match fails */
421 		return (0);
422 
423 	/* Check by name or by IP address */
424 	if (cmd->name[0] != '\0') { /* match by name */
425 		if (cmd->name[0] == '\1') /* use tablearg to match */
426 			return ipfw_lookup_table(chain, cmd->p.kidx, 0,
427 			    &ifp->if_index, tablearg);
428 		/* Check name */
429 		if (cmd->p.glob) {
430 			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
431 				return(1);
432 		} else {
433 			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
434 				return(1);
435 		}
436 	} else {
437 #if !defined(USERSPACE) && defined(__FreeBSD__)	/* and OSX too ? */
438 		struct ifaddr *ia;
439 
440 		NET_EPOCH_ASSERT();
441 
442 		CK_STAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
443 			if (ia->ifa_addr->sa_family != AF_INET)
444 				continue;
445 			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
446 			    (ia->ifa_addr))->sin_addr.s_addr)
447 				return (1);	/* match */
448 		}
449 #endif /* __FreeBSD__ */
450 	}
451 	return(0);	/* no match, fail ... */
452 }
453 
454 /*
455  * The verify_path function checks if a route to the src exists and
456  * if it is reachable via ifp (when provided).
457  *
458  * The 'verrevpath' option checks that the interface that an IP packet
459  * arrives on is the same interface that traffic destined for the
460  * packet's source address would be routed out of.
461  * The 'versrcreach' option just checks that the source address is
462  * reachable via any route (except default) in the routing table.
463  * These two are a measure to block forged packets. This is also
464  * commonly known as "anti-spoofing" or Unicast Reverse Path
465  * Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
466  * is purposely reminiscent of the Cisco IOS command,
467  *
468  *   ip verify unicast reverse-path
469  *   ip verify unicast source reachable-via any
470  *
471  * which implements the same functionality. But note that the syntax
472  * is misleading, and the check may be performed on all IP packets
473  * whether unicast, multicast, or broadcast.
474  */
475 static int
verify_path(struct in_addr src,struct ifnet * ifp,u_int fib)476 verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
477 {
478 #if defined(USERSPACE) || !defined(__FreeBSD__)
479 	return 0;
480 #else
481 	struct nhop_object *nh;
482 
483 	nh = fib4_lookup(fib, src, 0, NHR_NONE, 0);
484 	if (nh == NULL)
485 		return (0);
486 
487 	/*
488 	 * If ifp is provided, check for equality with rtentry.
489 	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
490 	 * in order to pass packets injected back by if_simloop():
491 	 * routing entry (via lo0) for our own address
492 	 * may exist, so we need to handle routing assymetry.
493 	 */
494 	if (ifp != NULL && ifp != nh->nh_aifp)
495 		return (0);
496 
497 	/* if no ifp provided, check if rtentry is not default route */
498 	if (ifp == NULL && (nh->nh_flags & NHF_DEFAULT) != 0)
499 		return (0);
500 
501 	/* or if this is a blackhole/reject route */
502 	if (ifp == NULL && (nh->nh_flags & (NHF_REJECT|NHF_BLACKHOLE)) != 0)
503 		return (0);
504 
505 	/* found valid route */
506 	return 1;
507 #endif /* __FreeBSD__ */
508 }
509 
510 /*
511  * Generate an SCTP packet containing an ABORT chunk. The verification tag
512  * is given by vtag. The T-bit is set in the ABORT chunk if and only if
513  * reflected is not 0.
514  */
515 
516 static struct mbuf *
ipfw_send_abort(struct mbuf * replyto,struct ipfw_flow_id * id,u_int32_t vtag,int reflected)517 ipfw_send_abort(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t vtag,
518     int reflected)
519 {
520 	struct mbuf *m;
521 	struct ip *ip;
522 #ifdef INET6
523 	struct ip6_hdr *ip6;
524 #endif
525 	struct sctphdr *sctp;
526 	struct sctp_chunkhdr *chunk;
527 	u_int16_t hlen, plen, tlen;
528 
529 	MGETHDR(m, M_NOWAIT, MT_DATA);
530 	if (m == NULL)
531 		return (NULL);
532 
533 	M_SETFIB(m, id->fib);
534 #ifdef MAC
535 	if (replyto != NULL)
536 		mac_netinet_firewall_reply(replyto, m);
537 	else
538 		mac_netinet_firewall_send(m);
539 #else
540 	(void)replyto;		/* don't warn about unused arg */
541 #endif
542 
543 	switch (id->addr_type) {
544 	case 4:
545 		hlen = sizeof(struct ip);
546 		break;
547 #ifdef INET6
548 	case 6:
549 		hlen = sizeof(struct ip6_hdr);
550 		break;
551 #endif
552 	default:
553 		/* XXX: log me?!? */
554 		FREE_PKT(m);
555 		return (NULL);
556 	}
557 	plen = sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr);
558 	tlen = hlen + plen;
559 	m->m_data += max_linkhdr;
560 	m->m_flags |= M_SKIP_FIREWALL;
561 	m->m_pkthdr.len = m->m_len = tlen;
562 	m->m_pkthdr.rcvif = NULL;
563 	bzero(m->m_data, tlen);
564 
565 	switch (id->addr_type) {
566 	case 4:
567 		ip = mtod(m, struct ip *);
568 
569 		ip->ip_v = 4;
570 		ip->ip_hl = sizeof(struct ip) >> 2;
571 		ip->ip_tos = IPTOS_LOWDELAY;
572 		ip->ip_len = htons(tlen);
573 		ip->ip_id = htons(0);
574 		ip->ip_off = htons(0);
575 		ip->ip_ttl = V_ip_defttl;
576 		ip->ip_p = IPPROTO_SCTP;
577 		ip->ip_sum = 0;
578 		ip->ip_src.s_addr = htonl(id->dst_ip);
579 		ip->ip_dst.s_addr = htonl(id->src_ip);
580 
581 		sctp = (struct sctphdr *)(ip + 1);
582 		break;
583 #ifdef INET6
584 	case 6:
585 		ip6 = mtod(m, struct ip6_hdr *);
586 
587 		ip6->ip6_vfc = IPV6_VERSION;
588 		ip6->ip6_plen = htons(plen);
589 		ip6->ip6_nxt = IPPROTO_SCTP;
590 		ip6->ip6_hlim = IPV6_DEFHLIM;
591 		ip6->ip6_src = id->dst_ip6;
592 		ip6->ip6_dst = id->src_ip6;
593 
594 		sctp = (struct sctphdr *)(ip6 + 1);
595 		break;
596 #endif
597 	}
598 
599 	sctp->src_port = htons(id->dst_port);
600 	sctp->dest_port = htons(id->src_port);
601 	sctp->v_tag = htonl(vtag);
602 	sctp->checksum = htonl(0);
603 
604 	chunk = (struct sctp_chunkhdr *)(sctp + 1);
605 	chunk->chunk_type = SCTP_ABORT_ASSOCIATION;
606 	chunk->chunk_flags = 0;
607 	if (reflected != 0) {
608 		chunk->chunk_flags |= SCTP_HAD_NO_TCB;
609 	}
610 	chunk->chunk_length = htons(sizeof(struct sctp_chunkhdr));
611 
612 	sctp->checksum = sctp_calculate_cksum(m, hlen);
613 
614 	return (m);
615 }
616 
617 /*
618  * Generate a TCP packet, containing either a RST or a keepalive.
619  * When flags & TH_RST, we are sending a RST packet, because of a
620  * "reset" action matched the packet.
621  * Otherwise we are sending a keepalive, and flags & TH_
622  * The 'replyto' mbuf is the mbuf being replied to, if any, and is required
623  * so that MAC can label the reply appropriately.
624  */
625 struct mbuf *
ipfw_send_pkt(struct mbuf * replyto,struct ipfw_flow_id * id,u_int32_t seq,u_int32_t ack,int flags)626 ipfw_send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq,
627     u_int32_t ack, int flags)
628 {
629 	struct mbuf *m = NULL;		/* stupid compiler */
630 	struct ip *h = NULL;		/* stupid compiler */
631 #ifdef INET6
632 	struct ip6_hdr *h6 = NULL;
633 #endif
634 	struct tcphdr *th = NULL;
635 	int len, dir;
636 
637 	MGETHDR(m, M_NOWAIT, MT_DATA);
638 	if (m == NULL)
639 		return (NULL);
640 
641 	M_SETFIB(m, id->fib);
642 #ifdef MAC
643 	if (replyto != NULL)
644 		mac_netinet_firewall_reply(replyto, m);
645 	else
646 		mac_netinet_firewall_send(m);
647 #else
648 	(void)replyto;		/* don't warn about unused arg */
649 #endif
650 
651 	switch (id->addr_type) {
652 	case 4:
653 		len = sizeof(struct ip) + sizeof(struct tcphdr);
654 		break;
655 #ifdef INET6
656 	case 6:
657 		len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
658 		break;
659 #endif
660 	default:
661 		/* XXX: log me?!? */
662 		FREE_PKT(m);
663 		return (NULL);
664 	}
665 	dir = ((flags & (TH_SYN | TH_RST)) == TH_SYN);
666 
667 	m->m_data += max_linkhdr;
668 	m->m_flags |= M_SKIP_FIREWALL;
669 	m->m_pkthdr.len = m->m_len = len;
670 	m->m_pkthdr.rcvif = NULL;
671 	bzero(m->m_data, len);
672 
673 	switch (id->addr_type) {
674 	case 4:
675 		h = mtod(m, struct ip *);
676 
677 		/* prepare for checksum */
678 		h->ip_p = IPPROTO_TCP;
679 		h->ip_len = htons(sizeof(struct tcphdr));
680 		if (dir) {
681 			h->ip_src.s_addr = htonl(id->src_ip);
682 			h->ip_dst.s_addr = htonl(id->dst_ip);
683 		} else {
684 			h->ip_src.s_addr = htonl(id->dst_ip);
685 			h->ip_dst.s_addr = htonl(id->src_ip);
686 		}
687 
688 		th = (struct tcphdr *)(h + 1);
689 		break;
690 #ifdef INET6
691 	case 6:
692 		h6 = mtod(m, struct ip6_hdr *);
693 
694 		/* prepare for checksum */
695 		h6->ip6_nxt = IPPROTO_TCP;
696 		h6->ip6_plen = htons(sizeof(struct tcphdr));
697 		if (dir) {
698 			h6->ip6_src = id->src_ip6;
699 			h6->ip6_dst = id->dst_ip6;
700 		} else {
701 			h6->ip6_src = id->dst_ip6;
702 			h6->ip6_dst = id->src_ip6;
703 		}
704 
705 		th = (struct tcphdr *)(h6 + 1);
706 		break;
707 #endif
708 	}
709 
710 	if (dir) {
711 		th->th_sport = htons(id->src_port);
712 		th->th_dport = htons(id->dst_port);
713 	} else {
714 		th->th_sport = htons(id->dst_port);
715 		th->th_dport = htons(id->src_port);
716 	}
717 	th->th_off = sizeof(struct tcphdr) >> 2;
718 
719 	if (flags & TH_RST) {
720 		if (flags & TH_ACK) {
721 			th->th_seq = htonl(ack);
722 			tcp_set_flags(th, TH_RST);
723 		} else {
724 			if (flags & TH_SYN)
725 				seq++;
726 			th->th_ack = htonl(seq);
727 			tcp_set_flags(th, TH_RST | TH_ACK);
728 		}
729 	} else {
730 		/*
731 		 * Keepalive - use caller provided sequence numbers
732 		 */
733 		th->th_seq = htonl(seq);
734 		th->th_ack = htonl(ack);
735 		tcp_set_flags(th, TH_ACK);
736 	}
737 
738 	switch (id->addr_type) {
739 	case 4:
740 		th->th_sum = in_cksum(m, len);
741 
742 		/* finish the ip header */
743 		h->ip_v = 4;
744 		h->ip_hl = sizeof(*h) >> 2;
745 		h->ip_tos = IPTOS_LOWDELAY;
746 		h->ip_off = htons(0);
747 		h->ip_len = htons(len);
748 		h->ip_ttl = V_ip_defttl;
749 		h->ip_sum = 0;
750 		break;
751 #ifdef INET6
752 	case 6:
753 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(*h6),
754 		    sizeof(struct tcphdr));
755 
756 		/* finish the ip6 header */
757 		h6->ip6_vfc |= IPV6_VERSION;
758 		h6->ip6_hlim = IPV6_DEFHLIM;
759 		break;
760 #endif
761 	}
762 
763 	return (m);
764 }
765 
766 #ifdef INET6
767 /*
768  * ipv6 specific rules here...
769  */
770 static __inline int
icmp6type_match(int type,ipfw_insn_u32 * cmd)771 icmp6type_match(int type, ipfw_insn_u32 *cmd)
772 {
773 	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
774 }
775 
776 static int
flow6id_match(int curr_flow,ipfw_insn_u32 * cmd)777 flow6id_match(int curr_flow, ipfw_insn_u32 *cmd)
778 {
779 	int i;
780 	for (i=0; i <= cmd->o.arg1; ++i)
781 		if (curr_flow == cmd->d[i])
782 			return 1;
783 	return 0;
784 }
785 
786 /* support for IP6_*_ME opcodes */
787 static const struct in6_addr lla_mask = {{{
788 	0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
789 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
790 }}};
791 
792 static int
ipfw_localip6(struct in6_addr * in6)793 ipfw_localip6(struct in6_addr *in6)
794 {
795 	struct rm_priotracker in6_ifa_tracker;
796 	struct in6_ifaddr *ia;
797 
798 	if (IN6_IS_ADDR_MULTICAST(in6))
799 		return (0);
800 
801 	if (!IN6_IS_ADDR_LINKLOCAL(in6))
802 		return (in6_localip(in6));
803 
804 	IN6_IFADDR_RLOCK(&in6_ifa_tracker);
805 	CK_STAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) {
806 		if (!IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr))
807 			continue;
808 		if (IN6_ARE_MASKED_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
809 		    in6, &lla_mask)) {
810 			IN6_IFADDR_RUNLOCK(&in6_ifa_tracker);
811 			return (1);
812 		}
813 	}
814 	IN6_IFADDR_RUNLOCK(&in6_ifa_tracker);
815 	return (0);
816 }
817 
818 static int
verify_path6(struct in6_addr * src,struct ifnet * ifp,u_int fib)819 verify_path6(struct in6_addr *src, struct ifnet *ifp, u_int fib)
820 {
821 	struct nhop_object *nh;
822 
823 	if (IN6_IS_SCOPE_LINKLOCAL(src))
824 		return (1);
825 
826 	nh = fib6_lookup(fib, src, 0, NHR_NONE, 0);
827 	if (nh == NULL)
828 		return (0);
829 
830 	/* If ifp is provided, check for equality with route table. */
831 	if (ifp != NULL && ifp != nh->nh_aifp)
832 		return (0);
833 
834 	/* if no ifp provided, check if rtentry is not default route */
835 	if (ifp == NULL && (nh->nh_flags & NHF_DEFAULT) != 0)
836 		return (0);
837 
838 	/* or if this is a blackhole/reject route */
839 	if (ifp == NULL && (nh->nh_flags & (NHF_REJECT|NHF_BLACKHOLE)) != 0)
840 		return (0);
841 
842 	/* found valid route */
843 	return 1;
844 }
845 
846 static int
is_icmp6_query(int icmp6_type)847 is_icmp6_query(int icmp6_type)
848 {
849 	if ((icmp6_type <= ICMP6_MAXTYPE) &&
850 	    (icmp6_type == ICMP6_ECHO_REQUEST ||
851 	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
852 	    icmp6_type == ICMP6_WRUREQUEST ||
853 	    icmp6_type == ICMP6_FQDN_QUERY ||
854 	    icmp6_type == ICMP6_NI_QUERY))
855 		return (1);
856 
857 	return (0);
858 }
859 
860 static int
map_icmp_unreach(int code)861 map_icmp_unreach(int code)
862 {
863 
864 	/* RFC 7915 p4.2 */
865 	switch (code) {
866 	case ICMP_UNREACH_NET:
867 	case ICMP_UNREACH_HOST:
868 	case ICMP_UNREACH_SRCFAIL:
869 	case ICMP_UNREACH_NET_UNKNOWN:
870 	case ICMP_UNREACH_HOST_UNKNOWN:
871 	case ICMP_UNREACH_TOSNET:
872 	case ICMP_UNREACH_TOSHOST:
873 		return (ICMP6_DST_UNREACH_NOROUTE);
874 	case ICMP_UNREACH_PORT:
875 		return (ICMP6_DST_UNREACH_NOPORT);
876 	default:
877 		/*
878 		 * Map the rest of codes into admit prohibited.
879 		 * XXX: unreach proto should be mapped into ICMPv6
880 		 * parameter problem, but we use only unreach type.
881 		 */
882 		return (ICMP6_DST_UNREACH_ADMIN);
883 	}
884 }
885 
886 static void
send_reject6(struct ip_fw_args * args,int code,u_int hlen,struct ip6_hdr * ip6)887 send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6)
888 {
889 	struct mbuf *m;
890 
891 	m = args->m;
892 	if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
893 		struct tcphdr *tcp;
894 		tcp = (struct tcphdr *)((char *)ip6 + hlen);
895 
896 		if ((tcp_get_flags(tcp) & TH_RST) == 0) {
897 			struct mbuf *m0;
898 			m0 = ipfw_send_pkt(args->m, &(args->f_id),
899 			    ntohl(tcp->th_seq), ntohl(tcp->th_ack),
900 			    tcp_get_flags(tcp) | TH_RST);
901 			if (m0 != NULL)
902 				ip6_output(m0, NULL, NULL, 0, NULL, NULL,
903 				    NULL);
904 		}
905 		FREE_PKT(m);
906 	} else if (code == ICMP6_UNREACH_ABORT &&
907 	    args->f_id.proto == IPPROTO_SCTP) {
908 		struct mbuf *m0;
909 		struct sctphdr *sctp;
910 		u_int32_t v_tag;
911 		int reflected;
912 
913 		sctp = (struct sctphdr *)((char *)ip6 + hlen);
914 		reflected = 1;
915 		v_tag = ntohl(sctp->v_tag);
916 		/* Investigate the first chunk header if available */
917 		if (m->m_len >= hlen + sizeof(struct sctphdr) +
918 		    sizeof(struct sctp_chunkhdr)) {
919 			struct sctp_chunkhdr *chunk;
920 
921 			chunk = (struct sctp_chunkhdr *)(sctp + 1);
922 			switch (chunk->chunk_type) {
923 			case SCTP_INITIATION:
924 				/*
925 				 * Packets containing an INIT chunk MUST have
926 				 * a zero v-tag.
927 				 */
928 				if (v_tag != 0) {
929 					v_tag = 0;
930 					break;
931 				}
932 				/* INIT chunk MUST NOT be bundled */
933 				if (m->m_pkthdr.len >
934 				    hlen + sizeof(struct sctphdr) +
935 				    ntohs(chunk->chunk_length) + 3) {
936 					break;
937 				}
938 				/* Use the initiate tag if available */
939 				if ((m->m_len >= hlen + sizeof(struct sctphdr) +
940 				    sizeof(struct sctp_chunkhdr) +
941 				    offsetof(struct sctp_init, a_rwnd))) {
942 					struct sctp_init *init;
943 
944 					init = (struct sctp_init *)(chunk + 1);
945 					v_tag = ntohl(init->initiate_tag);
946 					reflected = 0;
947 				}
948 				break;
949 			case SCTP_ABORT_ASSOCIATION:
950 				/*
951 				 * If the packet contains an ABORT chunk, don't
952 				 * reply.
953 				 * XXX: We should search through all chunks,
954 				 * but do not do that to avoid attacks.
955 				 */
956 				v_tag = 0;
957 				break;
958 			}
959 		}
960 		if (v_tag == 0) {
961 			m0 = NULL;
962 		} else {
963 			m0 = ipfw_send_abort(args->m, &(args->f_id), v_tag,
964 			    reflected);
965 		}
966 		if (m0 != NULL)
967 			ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL);
968 		FREE_PKT(m);
969 	} else if (code != ICMP6_UNREACH_RST && code != ICMP6_UNREACH_ABORT) {
970 		/* Send an ICMPv6 unreach. */
971 #if 0
972 		/*
973 		 * Unlike above, the mbufs need to line up with the ip6 hdr,
974 		 * as the contents are read. We need to m_adj() the
975 		 * needed amount.
976 		 * The mbuf will however be thrown away so we can adjust it.
977 		 * Remember we did an m_pullup on it already so we
978 		 * can make some assumptions about contiguousness.
979 		 */
980 		if (args->L3offset)
981 			m_adj(m, args->L3offset);
982 #endif
983 		icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
984 	} else
985 		FREE_PKT(m);
986 
987 	args->m = NULL;
988 }
989 
990 #endif /* INET6 */
991 
992 /*
993  * sends a reject message, consuming the mbuf passed as an argument.
994  */
995 static void
send_reject(struct ip_fw_args * args,const ipfw_insn * cmd,int iplen,struct ip * ip)996 send_reject(struct ip_fw_args *args, const ipfw_insn *cmd, int iplen,
997     struct ip *ip)
998 {
999 	int code, mtu;
1000 
1001 	code = cmd->arg1;
1002 	if (code == ICMP_UNREACH_NEEDFRAG &&
1003 	    cmd->len == F_INSN_SIZE(ipfw_insn_u16))
1004 		mtu = ((const ipfw_insn_u16 *)cmd)->ports[0];
1005 	else
1006 		mtu = 0;
1007 
1008 #if 0
1009 	/* XXX When ip is not guaranteed to be at mtod() we will
1010 	 * need to account for this */
1011 	 * The mbuf will however be thrown away so we can adjust it.
1012 	 * Remember we did an m_pullup on it already so we
1013 	 * can make some assumptions about contiguousness.
1014 	 */
1015 	if (args->L3offset)
1016 		m_adj(m, args->L3offset);
1017 #endif
1018 	if (code != ICMP_REJECT_RST && code != ICMP_REJECT_ABORT) {
1019 		/* Send an ICMP unreach */
1020 		icmp_error(args->m, ICMP_UNREACH, code, 0L, mtu);
1021 	} else if (code == ICMP_REJECT_RST && args->f_id.proto == IPPROTO_TCP) {
1022 		struct tcphdr *const tcp =
1023 		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1024 		if ( (tcp_get_flags(tcp) & TH_RST) == 0) {
1025 			struct mbuf *m;
1026 			m = ipfw_send_pkt(args->m, &(args->f_id),
1027 				ntohl(tcp->th_seq), ntohl(tcp->th_ack),
1028 				tcp_get_flags(tcp) | TH_RST);
1029 			if (m != NULL)
1030 				ip_output(m, NULL, NULL, 0, NULL, NULL);
1031 		}
1032 		FREE_PKT(args->m);
1033 	} else if (code == ICMP_REJECT_ABORT &&
1034 	    args->f_id.proto == IPPROTO_SCTP) {
1035 		struct mbuf *m;
1036 		struct sctphdr *sctp;
1037 		struct sctp_chunkhdr *chunk;
1038 		struct sctp_init *init;
1039 		u_int32_t v_tag;
1040 		int reflected;
1041 
1042 		sctp = L3HDR(struct sctphdr, mtod(args->m, struct ip *));
1043 		reflected = 1;
1044 		v_tag = ntohl(sctp->v_tag);
1045 		if (iplen >= (ip->ip_hl << 2) + sizeof(struct sctphdr) +
1046 		    sizeof(struct sctp_chunkhdr)) {
1047 			/* Look at the first chunk header if available */
1048 			chunk = (struct sctp_chunkhdr *)(sctp + 1);
1049 			switch (chunk->chunk_type) {
1050 			case SCTP_INITIATION:
1051 				/*
1052 				 * Packets containing an INIT chunk MUST have
1053 				 * a zero v-tag.
1054 				 */
1055 				if (v_tag != 0) {
1056 					v_tag = 0;
1057 					break;
1058 				}
1059 				/* INIT chunk MUST NOT be bundled */
1060 				if (iplen >
1061 				    (ip->ip_hl << 2) + sizeof(struct sctphdr) +
1062 				    ntohs(chunk->chunk_length) + 3) {
1063 					break;
1064 				}
1065 				/* Use the initiate tag if available */
1066 				if ((iplen >= (ip->ip_hl << 2) +
1067 				    sizeof(struct sctphdr) +
1068 				    sizeof(struct sctp_chunkhdr) +
1069 				    offsetof(struct sctp_init, a_rwnd))) {
1070 					init = (struct sctp_init *)(chunk + 1);
1071 					v_tag = ntohl(init->initiate_tag);
1072 					reflected = 0;
1073 				}
1074 				break;
1075 			case SCTP_ABORT_ASSOCIATION:
1076 				/*
1077 				 * If the packet contains an ABORT chunk, don't
1078 				 * reply.
1079 				 * XXX: We should search through all chunks,
1080 				 * but do not do that to avoid attacks.
1081 				 */
1082 				v_tag = 0;
1083 				break;
1084 			}
1085 		}
1086 		if (v_tag == 0) {
1087 			m = NULL;
1088 		} else {
1089 			m = ipfw_send_abort(args->m, &(args->f_id), v_tag,
1090 			    reflected);
1091 		}
1092 		if (m != NULL)
1093 			ip_output(m, NULL, NULL, 0, NULL, NULL);
1094 		FREE_PKT(args->m);
1095 	} else
1096 		FREE_PKT(args->m);
1097 	args->m = NULL;
1098 }
1099 
1100 /*
1101  * Support for uid/gid/jail lookup. These tests are expensive
1102  * (because we may need to look into the list of active sockets)
1103  * so we cache the results. ugid_lookupp is 0 if we have not
1104  * yet done a lookup, 1 if we succeeded, and -1 if we tried
1105  * and failed. The function always returns the match value.
1106  * We could actually spare the variable and use *uc, setting
1107  * it to '(void *)check_uidgid if we have no info, NULL if
1108  * we tried and failed, or any other value if successful.
1109  */
1110 static int
check_uidgid(ipfw_insn_u32 * insn,struct ip_fw_args * args,int * ugid_lookupp,struct ucred ** uc)1111 check_uidgid(ipfw_insn_u32 *insn, struct ip_fw_args *args, int *ugid_lookupp,
1112     struct ucred **uc)
1113 {
1114 #if defined(USERSPACE)
1115 	return 0;	// not supported in userspace
1116 #else
1117 #ifndef __FreeBSD__
1118 	/* XXX */
1119 	return cred_check(insn, proto, oif,
1120 	    dst_ip, dst_port, src_ip, src_port,
1121 	    (struct bsd_ucred *)uc, ugid_lookupp, ((struct mbuf *)inp)->m_skb);
1122 #else  /* FreeBSD */
1123 	struct in_addr src_ip, dst_ip;
1124 	struct inpcbinfo *pi;
1125 	struct ipfw_flow_id *id;
1126 	struct inpcb *pcb, *inp;
1127 	int lookupflags;
1128 	int match;
1129 
1130 	id = &args->f_id;
1131 	inp = args->inp;
1132 
1133 	/*
1134 	 * Check to see if the UDP or TCP stack supplied us with
1135 	 * the PCB. If so, rather then holding a lock and looking
1136 	 * up the PCB, we can use the one that was supplied.
1137 	 */
1138 	if (inp && *ugid_lookupp == 0) {
1139 		INP_LOCK_ASSERT(inp);
1140 		if (inp->inp_socket != NULL) {
1141 			*uc = crhold(inp->inp_cred);
1142 			*ugid_lookupp = 1;
1143 		} else
1144 			*ugid_lookupp = -1;
1145 	}
1146 	/*
1147 	 * If we have already been here and the packet has no
1148 	 * PCB entry associated with it, then we can safely
1149 	 * assume that this is a no match.
1150 	 */
1151 	if (*ugid_lookupp == -1)
1152 		return (0);
1153 	if (id->proto == IPPROTO_TCP) {
1154 		lookupflags = 0;
1155 		pi = &V_tcbinfo;
1156 	} else if (id->proto == IPPROTO_UDP) {
1157 		lookupflags = INPLOOKUP_WILDCARD;
1158 		pi = &V_udbinfo;
1159 	} else if (id->proto == IPPROTO_UDPLITE) {
1160 		lookupflags = INPLOOKUP_WILDCARD;
1161 		pi = &V_ulitecbinfo;
1162 	} else
1163 		return 0;
1164 	lookupflags |= INPLOOKUP_RLOCKPCB;
1165 	match = 0;
1166 	if (*ugid_lookupp == 0) {
1167 		if (id->addr_type == 6) {
1168 #ifdef INET6
1169 			if (args->flags & IPFW_ARGS_IN)
1170 				pcb = in6_pcblookup_mbuf(pi,
1171 				    &id->src_ip6, htons(id->src_port),
1172 				    &id->dst_ip6, htons(id->dst_port),
1173 				    lookupflags, NULL, args->m);
1174 			else
1175 				pcb = in6_pcblookup_mbuf(pi,
1176 				    &id->dst_ip6, htons(id->dst_port),
1177 				    &id->src_ip6, htons(id->src_port),
1178 				    lookupflags, args->ifp, args->m);
1179 #else
1180 			*ugid_lookupp = -1;
1181 			return (0);
1182 #endif
1183 		} else {
1184 			src_ip.s_addr = htonl(id->src_ip);
1185 			dst_ip.s_addr = htonl(id->dst_ip);
1186 			if (args->flags & IPFW_ARGS_IN)
1187 				pcb = in_pcblookup_mbuf(pi,
1188 				    src_ip, htons(id->src_port),
1189 				    dst_ip, htons(id->dst_port),
1190 				    lookupflags, NULL, args->m);
1191 			else
1192 				pcb = in_pcblookup_mbuf(pi,
1193 				    dst_ip, htons(id->dst_port),
1194 				    src_ip, htons(id->src_port),
1195 				    lookupflags, args->ifp, args->m);
1196 		}
1197 		if (pcb != NULL) {
1198 			INP_RLOCK_ASSERT(pcb);
1199 			*uc = crhold(pcb->inp_cred);
1200 			*ugid_lookupp = 1;
1201 			INP_RUNLOCK(pcb);
1202 		}
1203 		if (*ugid_lookupp == 0) {
1204 			/*
1205 			 * We tried and failed, set the variable to -1
1206 			 * so we will not try again on this packet.
1207 			 */
1208 			*ugid_lookupp = -1;
1209 			return (0);
1210 		}
1211 	}
1212 	if (insn->o.opcode == O_UID)
1213 		match = ((*uc)->cr_uid == (uid_t)insn->d[0]);
1214 	else if (insn->o.opcode == O_GID)
1215 		match = groupmember((gid_t)insn->d[0], *uc);
1216 	else if (insn->o.opcode == O_JAIL)
1217 		match = ((*uc)->cr_prison->pr_id == (int)insn->d[0]);
1218 	return (match);
1219 #endif /* __FreeBSD__ */
1220 #endif /* not supported in userspace */
1221 }
1222 
1223 /*
1224  * Helper function to set args with info on the rule after the matching
1225  * one. slot is precise, whereas we guess rule_id as they are
1226  * assigned sequentially.
1227  */
1228 static inline void
set_match(struct ip_fw_args * args,int slot,struct ip_fw_chain * chain)1229 set_match(struct ip_fw_args *args, int slot,
1230 	struct ip_fw_chain *chain)
1231 {
1232 	args->rule.chain_id = chain->id;
1233 	args->rule.slot = slot + 1; /* we use 0 as a marker */
1234 	args->rule.rule_id = 1 + chain->map[slot]->id;
1235 	args->rule.rulenum = chain->map[slot]->rulenum;
1236 	args->flags |= IPFW_ARGS_REF;
1237 }
1238 
1239 static int
jump_lookup_pos(struct ip_fw_chain * chain,struct ip_fw * f,int num,int tablearg,int jump_backwards)1240 jump_lookup_pos(struct ip_fw_chain *chain, struct ip_fw *f, int num,
1241     int tablearg, int jump_backwards)
1242 {
1243 	int f_pos, i;
1244 
1245 	i = IP_FW_ARG_TABLEARG(chain, num, skipto);
1246 	/* make sure we do not jump backward */
1247 	if (jump_backwards == 0 && i <= f->rulenum)
1248 		i = f->rulenum + 1;
1249 
1250 #ifndef LINEAR_SKIPTO
1251 	if (chain->idxmap != NULL)
1252 		f_pos = chain->idxmap[i];
1253 	else
1254 		f_pos = ipfw_find_rule(chain, i, 0);
1255 #else
1256 	f_pos = chain->idxmap[i];
1257 #endif /* LINEAR_SKIPTO */
1258 
1259 	return (f_pos);
1260 }
1261 
1262 
1263 #ifndef LINEAR_SKIPTO
1264 /*
1265  * Helper function to enable cached rule lookups using
1266  * cache.id and cache.pos fields in ipfw rule.
1267  */
1268 static int
jump_cached(struct ip_fw_chain * chain,struct ip_fw * f,int num,int tablearg,int jump_backwards)1269 jump_cached(struct ip_fw_chain *chain, struct ip_fw *f, int num,
1270     int tablearg, int jump_backwards)
1271 {
1272 	int f_pos;
1273 
1274 	/* Can't use cache with IP_FW_TARG */
1275 	if (num == IP_FW_TARG)
1276 		return jump_lookup_pos(chain, f, num, tablearg, jump_backwards);
1277 
1278 	/*
1279 	 * If possible use cached f_pos (in f->cache.pos),
1280 	 * whose version is written in f->cache.id (horrible hacks
1281 	 * to avoid changing the ABI).
1282 	 *
1283 	 * Multiple threads can execute the same rule simultaneously,
1284 	 * we need to ensure that cache.pos is updated before cache.id.
1285 	 */
1286 
1287 #ifdef __LP64__
1288 	struct ip_fw_jump_cache cache;
1289 
1290 	cache.raw_value = f->cache.raw_value;
1291 	if (cache.id == chain->id)
1292 		return (cache.pos);
1293 
1294 	f_pos = jump_lookup_pos(chain, f, num, tablearg, jump_backwards);
1295 
1296 	cache.pos = f_pos;
1297 	cache.id = chain->id;
1298 	f->cache.raw_value = cache.raw_value;
1299 #else
1300 	if (f->cache.id == chain->id) {
1301 		/* Load pos after id */
1302 		atomic_thread_fence_acq();
1303 		return (f->cache.pos);
1304 	}
1305 
1306 	f_pos = jump_lookup_pos(chain, f, num, tablearg, jump_backwards);
1307 
1308 	f->cache.pos = f_pos;
1309 	/* Store id after pos */
1310 	atomic_thread_fence_rel();
1311 	f->cache.id = chain->id;
1312 #endif /* !__LP64__ */
1313 	return (f_pos);
1314 }
1315 #endif /* !LINEAR_SKIPTO */
1316 
1317 #define	TARG(k, f)	IP_FW_ARG_TABLEARG(chain, k, f)
1318 /*
1319  * The main check routine for the firewall.
1320  *
1321  * All arguments are in args so we can modify them and return them
1322  * back to the caller.
1323  *
1324  * Parameters:
1325  *
1326  *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
1327  *		Starts with the IP header.
1328  *	args->L3offset	Number of bytes bypassed if we came from L2.
1329  *			e.g. often sizeof(eh)  ** NOTYET **
1330  *	args->ifp	Incoming or outgoing interface.
1331  *	args->divert_rule (in/out)
1332  *		Skip up to the first rule past this rule number;
1333  *		upon return, non-zero port number for divert or tee.
1334  *
1335  *	args->rule	Pointer to the last matching rule (in/out)
1336  *	args->next_hop	Socket we are forwarding to (out).
1337  *	args->next_hop6	IPv6 next hop we are forwarding to (out).
1338  *	args->f_id	Addresses grabbed from the packet (out)
1339  * 	args->rule.info	a cookie depending on rule action
1340  *
1341  * Return value:
1342  *
1343  *	IP_FW_PASS	the packet must be accepted
1344  *	IP_FW_DENY	the packet must be dropped
1345  *	IP_FW_DIVERT	divert packet, port in m_tag
1346  *	IP_FW_TEE	tee packet, port in m_tag
1347  *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
1348  *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
1349  *		args->rule contains the matching rule,
1350  *		args->rule.info has additional information.
1351  *
1352  */
1353 int
ipfw_chk(struct ip_fw_args * args)1354 ipfw_chk(struct ip_fw_args *args)
1355 {
1356 
1357 	/*
1358 	 * Local variables holding state while processing a packet:
1359 	 *
1360 	 * IMPORTANT NOTE: to speed up the processing of rules, there
1361 	 * are some assumption on the values of the variables, which
1362 	 * are documented here. Should you change them, please check
1363 	 * the implementation of the various instructions to make sure
1364 	 * that they still work.
1365 	 *
1366 	 * m | args->m	Pointer to the mbuf, as received from the caller.
1367 	 *	It may change if ipfw_chk() does an m_pullup, or if it
1368 	 *	consumes the packet because it calls send_reject().
1369 	 *	XXX This has to change, so that ipfw_chk() never modifies
1370 	 *	or consumes the buffer.
1371 	 *	OR
1372 	 * args->mem	Pointer to contigous memory chunk.
1373 	 * ip	Is the beginning of the ip(4 or 6) header.
1374 	 * eh	Ethernet header in case if input is Layer2.
1375 	 */
1376 	struct mbuf *m;
1377 	struct ip *ip;
1378 	struct ether_header *eh;
1379 
1380 	/*
1381 	 * For rules which contain uid/gid or jail constraints, cache
1382 	 * a copy of the users credentials after the pcb lookup has been
1383 	 * executed. This will speed up the processing of rules with
1384 	 * these types of constraints, as well as decrease contention
1385 	 * on pcb related locks.
1386 	 */
1387 #ifndef __FreeBSD__
1388 	struct bsd_ucred ucred_cache;
1389 #else
1390 	struct ucred *ucred_cache = NULL;
1391 #endif
1392 	int ucred_lookup = 0;
1393 	int f_pos = 0;		/* index of current rule in the array */
1394 	int retval = 0;
1395 	struct ifnet *oif, *iif;
1396 
1397 	/*
1398 	 * hlen	The length of the IP header.
1399 	 */
1400 	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
1401 
1402 	/*
1403 	 * offset	The offset of a fragment. offset != 0 means that
1404 	 *	we have a fragment at this offset of an IPv4 packet.
1405 	 *	offset == 0 means that (if this is an IPv4 packet)
1406 	 *	this is the first or only fragment.
1407 	 *	For IPv6 offset|ip6f_mf == 0 means there is no Fragment Header
1408 	 *	or there is a single packet fragment (fragment header added
1409 	 *	without needed).  We will treat a single packet fragment as if
1410 	 *	there was no fragment header (or log/block depending on the
1411 	 *	V_fw_permit_single_frag6 sysctl setting).
1412 	 */
1413 	u_short offset = 0;
1414 	u_short ip6f_mf = 0;
1415 
1416 	/*
1417 	 * Local copies of addresses. They are only valid if we have
1418 	 * an IP packet.
1419 	 *
1420 	 * proto	The protocol. Set to 0 for non-ip packets,
1421 	 *	or to the protocol read from the packet otherwise.
1422 	 *	proto != 0 means that we have an IPv4 packet.
1423 	 *
1424 	 * src_port, dst_port	port numbers, in HOST format. Only
1425 	 *	valid for TCP and UDP packets.
1426 	 *
1427 	 * src_ip, dst_ip	ip addresses, in NETWORK format.
1428 	 *	Only valid for IPv4 packets.
1429 	 */
1430 	uint8_t proto;
1431 	uint16_t src_port, dst_port;		/* NOTE: host format	*/
1432 	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
1433 	int iplen = 0;
1434 	int pktlen;
1435 
1436 	struct ipfw_dyn_info dyn_info;
1437 	struct ip_fw *q = NULL;
1438 	struct ip_fw_chain *chain = &V_layer3_chain;
1439 
1440 	/*
1441 	 * We store in ulp a pointer to the upper layer protocol header.
1442 	 * In the ipv4 case this is easy to determine from the header,
1443 	 * but for ipv6 we might have some additional headers in the middle.
1444 	 * ulp is NULL if not found.
1445 	 */
1446 	void *ulp = NULL;		/* upper layer protocol pointer. */
1447 
1448 	/* XXX ipv6 variables */
1449 	int is_ipv6 = 0;
1450 #ifdef INET6
1451 	uint8_t	icmp6_type = 0;
1452 #endif
1453 	uint16_t ext_hd = 0;	/* bits vector for extension header filtering */
1454 	/* end of ipv6 variables */
1455 
1456 	int is_ipv4 = 0;
1457 
1458 	int done = 0;		/* flag to exit the outer loop */
1459 	IPFW_RLOCK_TRACKER;
1460 	bool mem;
1461 
1462 	if ((mem = (args->flags & IPFW_ARGS_LENMASK))) {
1463 		if (args->flags & IPFW_ARGS_ETHER) {
1464 			eh = (struct ether_header *)args->mem;
1465 			if (eh->ether_type == htons(ETHERTYPE_VLAN))
1466 				ip = (struct ip *)
1467 				    ((struct ether_vlan_header *)eh + 1);
1468 			else
1469 				ip = (struct ip *)(eh + 1);
1470 		} else {
1471 			eh = NULL;
1472 			ip = (struct ip *)args->mem;
1473 		}
1474 		pktlen = IPFW_ARGS_LENGTH(args->flags);
1475 		args->f_id.fib = args->ifp->if_fib;	/* best guess */
1476 	} else {
1477 		m = args->m;
1478 		if (m->m_flags & M_SKIP_FIREWALL || (! V_ipfw_vnet_ready))
1479 			return (IP_FW_PASS);	/* accept */
1480 		if (args->flags & IPFW_ARGS_ETHER) {
1481 	                /* We need some amount of data to be contiguous. */
1482 			if (m->m_len < min(m->m_pkthdr.len, max_protohdr) &&
1483 			    (args->m = m = m_pullup(m, min(m->m_pkthdr.len,
1484 			    max_protohdr))) == NULL)
1485 				goto pullup_failed;
1486 			eh = mtod(m, struct ether_header *);
1487 			ip = (struct ip *)(eh + 1);
1488 		} else {
1489 			eh = NULL;
1490 			ip = mtod(m, struct ip *);
1491 		}
1492 		pktlen = m->m_pkthdr.len;
1493 		args->f_id.fib = M_GETFIB(m); /* mbuf not altered */
1494 	}
1495 
1496 	dst_ip.s_addr = 0;		/* make sure it is initialized */
1497 	src_ip.s_addr = 0;		/* make sure it is initialized */
1498 	src_port = dst_port = 0;
1499 
1500 	DYN_INFO_INIT(&dyn_info);
1501 /*
1502  * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
1503  * then it sets p to point at the offset "len" in the mbuf. WARNING: the
1504  * pointer might become stale after other pullups (but we never use it
1505  * this way).
1506  */
1507 #define	PULLUP_TO(_len, p, T)	PULLUP_LEN(_len, p, sizeof(T))
1508 #define	EHLEN	(eh != NULL ? ((char *)ip - (char *)eh) : 0)
1509 #define	_PULLUP_LOCKED(_len, p, T, unlock)			\
1510 do {								\
1511 	int x = (_len) + T + EHLEN;				\
1512 	if (mem) {						\
1513 		if (__predict_false(pktlen < x)) {		\
1514 			unlock;					\
1515 			goto pullup_failed;			\
1516 		}						\
1517 		p = (char *)args->mem + (_len) + EHLEN;		\
1518 	} else {						\
1519 		if (__predict_false((m)->m_len < x)) {		\
1520 			args->m = m = m_pullup(m, x);		\
1521 			if (m == NULL) {			\
1522 				unlock;				\
1523 				goto pullup_failed;		\
1524 			}					\
1525 		}						\
1526 		p = mtod(m, char *) + (_len) + EHLEN;		\
1527 	}							\
1528 } while (0)
1529 
1530 #define	PULLUP_LEN(_len, p, T)	_PULLUP_LOCKED(_len, p, T, )
1531 #define	PULLUP_LEN_LOCKED(_len, p, T)	\
1532     _PULLUP_LOCKED(_len, p, T, IPFW_PF_RUNLOCK(chain));	\
1533     UPDATE_POINTERS()
1534 /*
1535  * In case pointers got stale after pullups, update them.
1536  */
1537 #define	UPDATE_POINTERS()					\
1538 do {								\
1539 	if (!mem) {						\
1540 		if (eh != NULL) {				\
1541 			eh = mtod(m, struct ether_header *);	\
1542 			ip = (struct ip *)(eh + 1);		\
1543 		} else						\
1544 			ip = mtod(m, struct ip *);		\
1545 		args->m = m;					\
1546 	}							\
1547 } while (0)
1548 
1549 	/* Identify IP packets and fill up variables. */
1550 	if (pktlen >= sizeof(struct ip6_hdr) &&
1551 	    (eh == NULL || eh->ether_type == htons(ETHERTYPE_IPV6)) &&
1552 	    ip->ip_v == 6) {
1553 		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
1554 
1555 		is_ipv6 = 1;
1556 		args->flags |= IPFW_ARGS_IP6;
1557 		hlen = sizeof(struct ip6_hdr);
1558 		proto = ip6->ip6_nxt;
1559 		/* Search extension headers to find upper layer protocols */
1560 		while (ulp == NULL && offset == 0) {
1561 			switch (proto) {
1562 			case IPPROTO_ICMPV6:
1563 				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
1564 #ifdef INET6
1565 				icmp6_type = ICMP6(ulp)->icmp6_type;
1566 #endif
1567 				break;
1568 
1569 			case IPPROTO_TCP:
1570 				PULLUP_TO(hlen, ulp, struct tcphdr);
1571 				dst_port = TCP(ulp)->th_dport;
1572 				src_port = TCP(ulp)->th_sport;
1573 				/* save flags for dynamic rules */
1574 				args->f_id._flags = tcp_get_flags(TCP(ulp));
1575 				break;
1576 
1577 			case IPPROTO_SCTP:
1578 				if (pktlen >= hlen + sizeof(struct sctphdr) +
1579 				    sizeof(struct sctp_chunkhdr) +
1580 				    offsetof(struct sctp_init, a_rwnd))
1581 					PULLUP_LEN(hlen, ulp,
1582 					    sizeof(struct sctphdr) +
1583 					    sizeof(struct sctp_chunkhdr) +
1584 					    offsetof(struct sctp_init, a_rwnd));
1585 				else if (pktlen >= hlen + sizeof(struct sctphdr))
1586 					PULLUP_LEN(hlen, ulp, pktlen - hlen);
1587 				else
1588 					PULLUP_LEN(hlen, ulp,
1589 					    sizeof(struct sctphdr));
1590 				src_port = SCTP(ulp)->src_port;
1591 				dst_port = SCTP(ulp)->dest_port;
1592 				break;
1593 
1594 			case IPPROTO_UDP:
1595 			case IPPROTO_UDPLITE:
1596 				PULLUP_TO(hlen, ulp, struct udphdr);
1597 				dst_port = UDP(ulp)->uh_dport;
1598 				src_port = UDP(ulp)->uh_sport;
1599 				break;
1600 
1601 			case IPPROTO_HOPOPTS:	/* RFC 2460 */
1602 				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1603 				ext_hd |= EXT_HOPOPTS;
1604 				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1605 				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1606 				ulp = NULL;
1607 				break;
1608 
1609 			case IPPROTO_ROUTING:	/* RFC 2460 */
1610 				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
1611 				switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
1612 				case 0:
1613 					ext_hd |= EXT_RTHDR0;
1614 					break;
1615 				case 2:
1616 					ext_hd |= EXT_RTHDR2;
1617 					break;
1618 				default:
1619 					if (V_fw_verbose)
1620 						printf("IPFW2: IPV6 - Unknown "
1621 						    "Routing Header type(%d)\n",
1622 						    ((struct ip6_rthdr *)
1623 						    ulp)->ip6r_type);
1624 					if (V_fw_deny_unknown_exthdrs)
1625 					    return (IP_FW_DENY);
1626 					break;
1627 				}
1628 				ext_hd |= EXT_ROUTING;
1629 				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
1630 				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
1631 				ulp = NULL;
1632 				break;
1633 
1634 			case IPPROTO_FRAGMENT:	/* RFC 2460 */
1635 				PULLUP_TO(hlen, ulp, struct ip6_frag);
1636 				ext_hd |= EXT_FRAGMENT;
1637 				hlen += sizeof (struct ip6_frag);
1638 				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
1639 				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
1640 					IP6F_OFF_MASK;
1641 				ip6f_mf = ((struct ip6_frag *)ulp)->ip6f_offlg &
1642 					IP6F_MORE_FRAG;
1643 				if (V_fw_permit_single_frag6 == 0 &&
1644 				    offset == 0 && ip6f_mf == 0) {
1645 					if (V_fw_verbose)
1646 						printf("IPFW2: IPV6 - Invalid "
1647 						    "Fragment Header\n");
1648 					if (V_fw_deny_unknown_exthdrs)
1649 					    return (IP_FW_DENY);
1650 					break;
1651 				}
1652 				args->f_id.extra =
1653 				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
1654 				ulp = NULL;
1655 				break;
1656 
1657 			case IPPROTO_DSTOPTS:	/* RFC 2460 */
1658 				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1659 				ext_hd |= EXT_DSTOPTS;
1660 				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1661 				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1662 				ulp = NULL;
1663 				break;
1664 
1665 			case IPPROTO_AH:	/* RFC 2402 */
1666 				PULLUP_TO(hlen, ulp, struct ip6_ext);
1667 				ext_hd |= EXT_AH;
1668 				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
1669 				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
1670 				ulp = NULL;
1671 				break;
1672 
1673 			case IPPROTO_ESP:	/* RFC 2406 */
1674 				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
1675 				/* Anything past Seq# is variable length and
1676 				 * data past this ext. header is encrypted. */
1677 				ext_hd |= EXT_ESP;
1678 				break;
1679 
1680 			case IPPROTO_NONE:	/* RFC 2460 */
1681 				/*
1682 				 * Packet ends here, and IPv6 header has
1683 				 * already been pulled up. If ip6e_len!=0
1684 				 * then octets must be ignored.
1685 				 */
1686 				ulp = ip; /* non-NULL to get out of loop. */
1687 				break;
1688 
1689 			case IPPROTO_OSPFIGP:
1690 				/* XXX OSPF header check? */
1691 				PULLUP_TO(hlen, ulp, struct ip6_ext);
1692 				break;
1693 
1694 			case IPPROTO_PIM:
1695 				/* XXX PIM header check? */
1696 				PULLUP_TO(hlen, ulp, struct pim);
1697 				break;
1698 
1699 			case IPPROTO_GRE:	/* RFC 1701 */
1700 				/* XXX GRE header check? */
1701 				PULLUP_TO(hlen, ulp, struct grehdr);
1702 				break;
1703 
1704 			case IPPROTO_CARP:
1705 				PULLUP_TO(hlen, ulp, offsetof(
1706 				    struct carp_header, carp_counter));
1707 				if (CARP_ADVERTISEMENT !=
1708 				    ((struct carp_header *)ulp)->carp_type)
1709 					return (IP_FW_DENY);
1710 				break;
1711 
1712 			case IPPROTO_IPV6:	/* RFC 2893 */
1713 				PULLUP_TO(hlen, ulp, struct ip6_hdr);
1714 				break;
1715 
1716 			case IPPROTO_IPV4:	/* RFC 2893 */
1717 				PULLUP_TO(hlen, ulp, struct ip);
1718 				break;
1719 
1720 			case IPPROTO_PFSYNC:
1721 				PULLUP_TO(hlen, ulp, struct pfsync_header);
1722 				break;
1723 
1724 			default:
1725 				if (V_fw_verbose)
1726 					printf("IPFW2: IPV6 - Unknown "
1727 					    "Extension Header(%d), ext_hd=%x\n",
1728 					     proto, ext_hd);
1729 				if (V_fw_deny_unknown_exthdrs)
1730 				    return (IP_FW_DENY);
1731 				PULLUP_TO(hlen, ulp, struct ip6_ext);
1732 				break;
1733 			} /*switch */
1734 		}
1735 		UPDATE_POINTERS();
1736 		ip6 = (struct ip6_hdr *)ip;
1737 		args->f_id.addr_type = 6;
1738 		args->f_id.src_ip6 = ip6->ip6_src;
1739 		args->f_id.dst_ip6 = ip6->ip6_dst;
1740 		args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
1741 		iplen = ntohs(ip6->ip6_plen) + sizeof(*ip6);
1742 	} else if (pktlen >= sizeof(struct ip) &&
1743 	    (eh == NULL || eh->ether_type == htons(ETHERTYPE_IP)) &&
1744 	    ip->ip_v == 4) {
1745 		is_ipv4 = 1;
1746 		args->flags |= IPFW_ARGS_IP4;
1747 		hlen = ip->ip_hl << 2;
1748 		/*
1749 		 * Collect parameters into local variables for faster
1750 		 * matching.
1751 		 */
1752 		proto = ip->ip_p;
1753 		src_ip = ip->ip_src;
1754 		dst_ip = ip->ip_dst;
1755 		offset = ntohs(ip->ip_off) & IP_OFFMASK;
1756 		iplen = ntohs(ip->ip_len);
1757 
1758 		if (offset == 0) {
1759 			switch (proto) {
1760 			case IPPROTO_TCP:
1761 				PULLUP_TO(hlen, ulp, struct tcphdr);
1762 				dst_port = TCP(ulp)->th_dport;
1763 				src_port = TCP(ulp)->th_sport;
1764 				/* save flags for dynamic rules */
1765 				args->f_id._flags = tcp_get_flags(TCP(ulp));
1766 				break;
1767 
1768 			case IPPROTO_SCTP:
1769 				if (pktlen >= hlen + sizeof(struct sctphdr) +
1770 				    sizeof(struct sctp_chunkhdr) +
1771 				    offsetof(struct sctp_init, a_rwnd))
1772 					PULLUP_LEN(hlen, ulp,
1773 					    sizeof(struct sctphdr) +
1774 					    sizeof(struct sctp_chunkhdr) +
1775 					    offsetof(struct sctp_init, a_rwnd));
1776 				else if (pktlen >= hlen + sizeof(struct sctphdr))
1777 					PULLUP_LEN(hlen, ulp, pktlen - hlen);
1778 				else
1779 					PULLUP_LEN(hlen, ulp,
1780 					    sizeof(struct sctphdr));
1781 				src_port = SCTP(ulp)->src_port;
1782 				dst_port = SCTP(ulp)->dest_port;
1783 				break;
1784 
1785 			case IPPROTO_UDP:
1786 			case IPPROTO_UDPLITE:
1787 				PULLUP_TO(hlen, ulp, struct udphdr);
1788 				dst_port = UDP(ulp)->uh_dport;
1789 				src_port = UDP(ulp)->uh_sport;
1790 				break;
1791 
1792 			case IPPROTO_ICMP:
1793 				PULLUP_TO(hlen, ulp, struct icmphdr);
1794 				//args->f_id.flags = ICMP(ulp)->icmp_type;
1795 				break;
1796 
1797 			default:
1798 				break;
1799 			}
1800 		} else {
1801 			if (offset == 1 && proto == IPPROTO_TCP) {
1802 				/* RFC 3128 */
1803 				goto pullup_failed;
1804 			}
1805 		}
1806 
1807 		UPDATE_POINTERS();
1808 		args->f_id.addr_type = 4;
1809 		args->f_id.src_ip = ntohl(src_ip.s_addr);
1810 		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
1811 	} else {
1812 		proto = 0;
1813 		dst_ip.s_addr = src_ip.s_addr = 0;
1814 
1815 		args->f_id.addr_type = 1; /* XXX */
1816 	}
1817 #undef PULLUP_TO
1818 	pktlen = iplen < pktlen ? iplen: pktlen;
1819 
1820 	/* Properly initialize the rest of f_id */
1821 	args->f_id.proto = proto;
1822 	args->f_id.src_port = src_port = ntohs(src_port);
1823 	args->f_id.dst_port = dst_port = ntohs(dst_port);
1824 
1825 	IPFW_PF_RLOCK(chain);
1826 	if (! V_ipfw_vnet_ready) { /* shutting down, leave NOW. */
1827 		IPFW_PF_RUNLOCK(chain);
1828 		return (IP_FW_PASS);	/* accept */
1829 	}
1830 	if (args->flags & IPFW_ARGS_REF) {
1831 		/*
1832 		 * Packet has already been tagged as a result of a previous
1833 		 * match on rule args->rule aka args->rule_id (PIPE, QUEUE,
1834 		 * REASS, NETGRAPH, DIVERT/TEE...)
1835 		 * Validate the slot and continue from the next one
1836 		 * if still present, otherwise do a lookup.
1837 		 */
1838 		f_pos = (args->rule.chain_id == chain->id) ?
1839 		    args->rule.slot :
1840 		    ipfw_find_rule(chain, args->rule.rulenum,
1841 			args->rule.rule_id);
1842 	} else {
1843 		f_pos = 0;
1844 	}
1845 
1846 	if (args->flags & IPFW_ARGS_IN) {
1847 		iif = args->ifp;
1848 		oif = NULL;
1849 	} else {
1850 		MPASS(args->flags & IPFW_ARGS_OUT);
1851 		iif = mem ? NULL : m_rcvif(m);
1852 		oif = args->ifp;
1853 	}
1854 
1855 	/*
1856 	 * Now scan the rules, and parse microinstructions for each rule.
1857 	 * We have two nested loops and an inner switch. Sometimes we
1858 	 * need to break out of one or both loops, or re-enter one of
1859 	 * the loops with updated variables. Loop variables are:
1860 	 *
1861 	 *	f_pos (outer loop) points to the current rule.
1862 	 *		On output it points to the matching rule.
1863 	 *	done (outer loop) is used as a flag to break the loop.
1864 	 *	l (inner loop)	residual length of current rule.
1865 	 *		cmd points to the current microinstruction.
1866 	 *
1867 	 * We break the inner loop by setting l=0 and possibly
1868 	 * cmdlen=0 if we don't want to advance cmd.
1869 	 * We break the outer loop by setting done=1
1870 	 * We can restart the inner loop by setting l>0 and f_pos, f, cmd
1871 	 * as needed.
1872 	 */
1873 	for (; f_pos < chain->n_rules; f_pos++) {
1874 		ipfw_insn *cmd;
1875 		uint32_t tablearg = 0;
1876 		int l, cmdlen, skip_or; /* skip rest of OR block */
1877 		struct ip_fw *f;
1878 
1879 		f = chain->map[f_pos];
1880 		if (V_set_disable & (1 << f->set) )
1881 			continue;
1882 
1883 		skip_or = 0;
1884 		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
1885 		    l -= cmdlen, cmd += cmdlen) {
1886 			int match;
1887 
1888 			/*
1889 			 * check_body is a jump target used when we find a
1890 			 * CHECK_STATE, and need to jump to the body of
1891 			 * the target rule.
1892 			 */
1893 
1894 /* check_body: */
1895 			cmdlen = F_LEN(cmd);
1896 			/*
1897 			 * An OR block (insn_1 || .. || insn_n) has the
1898 			 * F_OR bit set in all but the last instruction.
1899 			 * The first match will set "skip_or", and cause
1900 			 * the following instructions to be skipped until
1901 			 * past the one with the F_OR bit clear.
1902 			 */
1903 			if (skip_or) {		/* skip this instruction */
1904 				if ((cmd->len & F_OR) == 0)
1905 					skip_or = 0;	/* next one is good */
1906 				continue;
1907 			}
1908 			match = 0; /* set to 1 if we succeed */
1909 
1910 			switch (cmd->opcode) {
1911 			/*
1912 			 * The first set of opcodes compares the packet's
1913 			 * fields with some pattern, setting 'match' if a
1914 			 * match is found. At the end of the loop there is
1915 			 * logic to deal with F_NOT and F_OR flags associated
1916 			 * with the opcode.
1917 			 */
1918 			case O_NOP:
1919 				match = 1;
1920 				break;
1921 
1922 			case O_FORWARD_MAC:
1923 				printf("ipfw: opcode %d unimplemented\n",
1924 				    cmd->opcode);
1925 				break;
1926 
1927 			case O_GID:
1928 			case O_UID:
1929 			case O_JAIL:
1930 				/*
1931 				 * We only check offset == 0 && proto != 0,
1932 				 * as this ensures that we have a
1933 				 * packet with the ports info.
1934 				 */
1935 				if (offset != 0)
1936 					break;
1937 				if (proto == IPPROTO_TCP ||
1938 				    proto == IPPROTO_UDP ||
1939 				    proto == IPPROTO_UDPLITE)
1940 					match = check_uidgid(
1941 						    (ipfw_insn_u32 *)cmd,
1942 						    args, &ucred_lookup,
1943 #ifdef __FreeBSD__
1944 						    &ucred_cache);
1945 #else
1946 						    (void *)&ucred_cache);
1947 #endif
1948 				break;
1949 
1950 			case O_RECV:
1951 				match = iface_match(iif, (ipfw_insn_if *)cmd,
1952 				    chain, &tablearg);
1953 				break;
1954 
1955 			case O_XMIT:
1956 				match = iface_match(oif, (ipfw_insn_if *)cmd,
1957 				    chain, &tablearg);
1958 				break;
1959 
1960 			case O_VIA:
1961 				match = iface_match(args->ifp,
1962 				    (ipfw_insn_if *)cmd, chain, &tablearg);
1963 				break;
1964 
1965 			case O_MACADDR2:
1966 				if (args->flags & IPFW_ARGS_ETHER) {
1967 					u_int32_t *want = (u_int32_t *)
1968 						((ipfw_insn_mac *)cmd)->addr;
1969 					u_int32_t *mask = (u_int32_t *)
1970 						((ipfw_insn_mac *)cmd)->mask;
1971 					u_int32_t *hdr = (u_int32_t *)eh;
1972 
1973 					match =
1974 					    ( want[0] == (hdr[0] & mask[0]) &&
1975 					      want[1] == (hdr[1] & mask[1]) &&
1976 					      want[2] == (hdr[2] & mask[2]) );
1977 				}
1978 				break;
1979 
1980 			case O_MAC_TYPE:
1981 				if (args->flags & IPFW_ARGS_ETHER) {
1982 					u_int16_t *p =
1983 					    ((ipfw_insn_u16 *)cmd)->ports;
1984 					int i;
1985 
1986 					for (i = cmdlen - 1; !match && i>0;
1987 					    i--, p += 2)
1988 						match =
1989 						    (ntohs(eh->ether_type) >=
1990 						    p[0] &&
1991 						    ntohs(eh->ether_type) <=
1992 						    p[1]);
1993 				}
1994 				break;
1995 
1996 			case O_FRAG:
1997 				if (is_ipv4) {
1998 					/*
1999 					 * Since flags_match() works with
2000 					 * uint8_t we pack ip_off into 8 bits.
2001 					 * For this match offset is a boolean.
2002 					 */
2003 					match = flags_match(cmd,
2004 					    ((ntohs(ip->ip_off) & ~IP_OFFMASK)
2005 					    >> 8) | (offset != 0));
2006 				} else {
2007 					/*
2008 					 * Compatibility: historically bare
2009 					 * "frag" would match IPv6 fragments.
2010 					 */
2011 					match = (cmd->arg1 == 0x1 &&
2012 					    (offset != 0));
2013 				}
2014 				break;
2015 
2016 			case O_IN:	/* "out" is "not in" */
2017 				match = (oif == NULL);
2018 				break;
2019 
2020 			case O_LAYER2:
2021 				match = (args->flags & IPFW_ARGS_ETHER);
2022 				break;
2023 
2024 			case O_DIVERTED:
2025 				if ((args->flags & IPFW_ARGS_REF) == 0)
2026 					break;
2027 				/*
2028 				 * For diverted packets, args->rule.info
2029 				 * contains the divert port (in host format)
2030 				 * reason and direction.
2031 				 */
2032 				match = ((args->rule.info & IPFW_IS_MASK) ==
2033 				    IPFW_IS_DIVERT) && (
2034 				    ((args->rule.info & IPFW_INFO_IN) ?
2035 					1: 2) & cmd->arg1);
2036 				break;
2037 
2038 			case O_PROTO:
2039 				/*
2040 				 * We do not allow an arg of 0 so the
2041 				 * check of "proto" only suffices.
2042 				 */
2043 				match = (proto == cmd->arg1);
2044 				break;
2045 
2046 			case O_IP_SRC:
2047 				match = is_ipv4 &&
2048 				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2049 				    src_ip.s_addr);
2050 				break;
2051 
2052 			case O_IP_DST_LOOKUP:
2053 			{
2054 				if (cmdlen > F_INSN_SIZE(ipfw_insn_u32)) {
2055 					void *pkey;
2056 					uint32_t vidx, key;
2057 					uint16_t keylen = 0; /* zero if can't match the packet */
2058 
2059 					/* Determine lookup key type */
2060 					vidx = ((ipfw_insn_u32 *)cmd)->d[1];
2061 					switch (vidx) {
2062 					case LOOKUP_DST_IP:
2063 					case LOOKUP_SRC_IP:
2064 						/* Need IP frame */
2065 						if (is_ipv6 == 0 && is_ipv4 == 0)
2066 							break;
2067 						if (vidx == LOOKUP_DST_IP)
2068 							pkey = is_ipv6 ?
2069 								(void *)&args->f_id.dst_ip6:
2070 								(void *)&dst_ip;
2071 						else
2072 							pkey = is_ipv6 ?
2073 								(void *)&args->f_id.src_ip6:
2074 								(void *)&src_ip;
2075 						keylen = is_ipv6 ?
2076 							sizeof(struct in6_addr):
2077 							sizeof(in_addr_t);
2078 						break;
2079 					case LOOKUP_DST_PORT:
2080 					case LOOKUP_SRC_PORT:
2081 						/* Need IP frame */
2082 						if (is_ipv6 == 0 && is_ipv4 == 0)
2083 							break;
2084 						/* Skip fragments */
2085 						if (offset != 0)
2086 							break;
2087 						/* Skip proto without ports */
2088 						if (proto != IPPROTO_TCP &&
2089 							proto != IPPROTO_UDP &&
2090 							proto != IPPROTO_UDPLITE &&
2091 							proto != IPPROTO_SCTP)
2092 							break;
2093 						key = vidx == LOOKUP_DST_PORT ?
2094 							dst_port:
2095 							src_port;
2096 						pkey = &key;
2097 						keylen = sizeof(key);
2098 						break;
2099 					case LOOKUP_UID:
2100 					case LOOKUP_JAIL:
2101 						check_uidgid(
2102 						    (ipfw_insn_u32 *)cmd,
2103 						    args, &ucred_lookup,
2104 						    &ucred_cache);
2105 						key = vidx == LOOKUP_UID ?
2106 							ucred_cache->cr_uid:
2107 							ucred_cache->cr_prison->pr_id;
2108 						pkey = &key;
2109 						keylen = sizeof(key);
2110 						break;
2111 					case LOOKUP_DSCP:
2112 						/* Need IP frame */
2113 						if (is_ipv6 == 0 && is_ipv4 == 0)
2114 							break;
2115 						if (is_ipv6)
2116 							key = IPV6_DSCP(
2117 							    (struct ip6_hdr *)ip) >> 2;
2118 						else
2119 							key = ip->ip_tos >> 2;
2120 						pkey = &key;
2121 						keylen = sizeof(key);
2122 						break;
2123 					case LOOKUP_DST_MAC:
2124 					case LOOKUP_SRC_MAC:
2125 						/* Need ether frame */
2126 						if ((args->flags & IPFW_ARGS_ETHER) == 0)
2127 							break;
2128 						pkey = vidx == LOOKUP_DST_MAC ?
2129 							eh->ether_dhost:
2130 							eh->ether_shost;
2131 						keylen = ETHER_ADDR_LEN;
2132 						break;
2133 					case LOOKUP_MARK:
2134 						key = args->rule.pkt_mark;
2135 						pkey = &key;
2136 						keylen = sizeof(key);
2137 						break;
2138 					}
2139 					if (keylen == 0)
2140 						break;
2141 					match = ipfw_lookup_table(chain,
2142 					    cmd->arg1, keylen, pkey, &vidx);
2143 					if (!match)
2144 						break;
2145 					tablearg = vidx;
2146 					break;
2147 				}
2148 				/* cmdlen =< F_INSN_SIZE(ipfw_insn_u32) */
2149 				/* FALLTHROUGH */
2150 			}
2151 			case O_IP_SRC_LOOKUP:
2152 			{
2153 				void *pkey;
2154 				uint32_t vidx;
2155 				uint16_t keylen;
2156 
2157 				if (is_ipv4) {
2158 					keylen = sizeof(in_addr_t);
2159 					if (cmd->opcode == O_IP_DST_LOOKUP)
2160 						pkey = &dst_ip;
2161 					else
2162 						pkey = &src_ip;
2163 				} else if (is_ipv6) {
2164 					keylen = sizeof(struct in6_addr);
2165 					if (cmd->opcode == O_IP_DST_LOOKUP)
2166 						pkey = &args->f_id.dst_ip6;
2167 					else
2168 						pkey = &args->f_id.src_ip6;
2169 				} else
2170 					break;
2171 				match = ipfw_lookup_table(chain, cmd->arg1,
2172 				    keylen, pkey, &vidx);
2173 				if (!match)
2174 					break;
2175 				if (cmdlen == F_INSN_SIZE(ipfw_insn_u32)) {
2176 					match = ((ipfw_insn_u32 *)cmd)->d[0] ==
2177 					    TARG_VAL(chain, vidx, tag);
2178 					if (!match)
2179 						break;
2180 				}
2181 				tablearg = vidx;
2182 				break;
2183 			}
2184 
2185 			case O_MAC_SRC_LOOKUP:
2186 			case O_MAC_DST_LOOKUP:
2187 			{
2188 				void *pkey;
2189 				uint32_t vidx;
2190 				uint16_t keylen = ETHER_ADDR_LEN;
2191 
2192 				/* Need ether frame */
2193 				if ((args->flags & IPFW_ARGS_ETHER) == 0)
2194 					break;
2195 
2196 				if (cmd->opcode == O_MAC_DST_LOOKUP)
2197 					pkey = eh->ether_dhost;
2198 				else
2199 					pkey = eh->ether_shost;
2200 
2201 				match = ipfw_lookup_table(chain, cmd->arg1,
2202 				    keylen, pkey, &vidx);
2203 				if (!match)
2204 					break;
2205 				if (cmdlen == F_INSN_SIZE(ipfw_insn_u32)) {
2206 					match = ((ipfw_insn_u32 *)cmd)->d[0] ==
2207 					    TARG_VAL(chain, vidx, tag);
2208 					if (!match)
2209 						break;
2210 				}
2211 				tablearg = vidx;
2212 				break;
2213 			}
2214 
2215 			case O_IP_FLOW_LOOKUP:
2216 				{
2217 					uint32_t v = 0;
2218 					match = ipfw_lookup_table(chain,
2219 					    cmd->arg1, 0, &args->f_id, &v);
2220 					if (!match)
2221 						break;
2222 					if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
2223 						match = ((ipfw_insn_u32 *)cmd)->d[0] ==
2224 						    TARG_VAL(chain, v, tag);
2225 					if (match)
2226 						tablearg = v;
2227 				}
2228 				break;
2229 			case O_IP_SRC_MASK:
2230 			case O_IP_DST_MASK:
2231 				if (is_ipv4) {
2232 				    uint32_t a =
2233 					(cmd->opcode == O_IP_DST_MASK) ?
2234 					    dst_ip.s_addr : src_ip.s_addr;
2235 				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
2236 				    int i = cmdlen-1;
2237 
2238 				    for (; !match && i>0; i-= 2, p+= 2)
2239 					match = (p[0] == (a & p[1]));
2240 				}
2241 				break;
2242 
2243 			case O_IP_SRC_ME:
2244 				if (is_ipv4) {
2245 					match = in_localip(src_ip);
2246 					break;
2247 				}
2248 #ifdef INET6
2249 				/* FALLTHROUGH */
2250 			case O_IP6_SRC_ME:
2251 				match = is_ipv6 &&
2252 				    ipfw_localip6(&args->f_id.src_ip6);
2253 #endif
2254 				break;
2255 
2256 			case O_IP_DST_SET:
2257 			case O_IP_SRC_SET:
2258 				if (is_ipv4) {
2259 					u_int32_t *d = (u_int32_t *)(cmd+1);
2260 					u_int32_t addr =
2261 					    cmd->opcode == O_IP_DST_SET ?
2262 						args->f_id.dst_ip :
2263 						args->f_id.src_ip;
2264 
2265 					    if (addr < d[0])
2266 						    break;
2267 					    addr -= d[0]; /* subtract base */
2268 					    match = (addr < cmd->arg1) &&
2269 						( d[ 1 + (addr>>5)] &
2270 						  (1<<(addr & 0x1f)) );
2271 				}
2272 				break;
2273 
2274 			case O_IP_DST:
2275 				match = is_ipv4 &&
2276 				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2277 				    dst_ip.s_addr);
2278 				break;
2279 
2280 			case O_IP_DST_ME:
2281 				if (is_ipv4) {
2282 					match = in_localip(dst_ip);
2283 					break;
2284 				}
2285 #ifdef INET6
2286 				/* FALLTHROUGH */
2287 			case O_IP6_DST_ME:
2288 				match = is_ipv6 &&
2289 				    ipfw_localip6(&args->f_id.dst_ip6);
2290 #endif
2291 				break;
2292 
2293 			case O_IP_SRCPORT:
2294 			case O_IP_DSTPORT:
2295 				/*
2296 				 * offset == 0 && proto != 0 is enough
2297 				 * to guarantee that we have a
2298 				 * packet with port info.
2299 				 */
2300 				if ((proto == IPPROTO_UDP ||
2301 				    proto == IPPROTO_UDPLITE ||
2302 				    proto == IPPROTO_TCP ||
2303 				    proto == IPPROTO_SCTP) && offset == 0) {
2304 					u_int16_t x =
2305 					    (cmd->opcode == O_IP_SRCPORT) ?
2306 						src_port : dst_port ;
2307 					u_int16_t *p =
2308 					    ((ipfw_insn_u16 *)cmd)->ports;
2309 					int i;
2310 
2311 					for (i = cmdlen - 1; !match && i>0;
2312 					    i--, p += 2)
2313 						match = (x>=p[0] && x<=p[1]);
2314 				}
2315 				break;
2316 
2317 			case O_ICMPTYPE:
2318 				match = (offset == 0 && proto==IPPROTO_ICMP &&
2319 				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
2320 				break;
2321 
2322 #ifdef INET6
2323 			case O_ICMP6TYPE:
2324 				match = is_ipv6 && offset == 0 &&
2325 				    proto==IPPROTO_ICMPV6 &&
2326 				    icmp6type_match(
2327 					ICMP6(ulp)->icmp6_type,
2328 					(ipfw_insn_u32 *)cmd);
2329 				break;
2330 #endif /* INET6 */
2331 
2332 			case O_IPOPT:
2333 				match = (is_ipv4 &&
2334 				    ipopts_match(ip, cmd) );
2335 				break;
2336 
2337 			case O_IPVER:
2338 				match = ((is_ipv4 || is_ipv6) &&
2339 				    cmd->arg1 == ip->ip_v);
2340 				break;
2341 
2342 			case O_IPID:
2343 			case O_IPTTL:
2344 				if (!is_ipv4)
2345 					break;
2346 			case O_IPLEN:
2347 				{	/* only for IP packets */
2348 				    uint16_t x;
2349 				    uint16_t *p;
2350 				    int i;
2351 
2352 				    if (cmd->opcode == O_IPLEN)
2353 					x = iplen;
2354 				    else if (cmd->opcode == O_IPTTL)
2355 					x = ip->ip_ttl;
2356 				    else /* must be IPID */
2357 					x = ntohs(ip->ip_id);
2358 				    if (cmdlen == 1) {
2359 					match = (cmd->arg1 == x);
2360 					break;
2361 				    }
2362 				    /* otherwise we have ranges */
2363 				    p = ((ipfw_insn_u16 *)cmd)->ports;
2364 				    i = cmdlen - 1;
2365 				    for (; !match && i>0; i--, p += 2)
2366 					match = (x >= p[0] && x <= p[1]);
2367 				}
2368 				break;
2369 
2370 			case O_IPPRECEDENCE:
2371 				match = (is_ipv4 &&
2372 				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
2373 				break;
2374 
2375 			case O_IPTOS:
2376 				match = (is_ipv4 &&
2377 				    flags_match(cmd, ip->ip_tos));
2378 				break;
2379 
2380 			case O_DSCP:
2381 			    {
2382 				uint32_t *p;
2383 				uint16_t x;
2384 
2385 				p = ((ipfw_insn_u32 *)cmd)->d;
2386 
2387 				if (is_ipv4)
2388 					x = ip->ip_tos >> 2;
2389 				else if (is_ipv6) {
2390 					x = IPV6_DSCP(
2391 					    (struct ip6_hdr *)ip) >> 2;
2392 					x &= 0x3f;
2393 				} else
2394 					break;
2395 
2396 				/* DSCP bitmask is stored as low_u32 high_u32 */
2397 				if (x >= 32)
2398 					match = *(p + 1) & (1 << (x - 32));
2399 				else
2400 					match = *p & (1 << x);
2401 			    }
2402 				break;
2403 
2404 			case O_TCPDATALEN:
2405 				if (proto == IPPROTO_TCP && offset == 0) {
2406 				    struct tcphdr *tcp;
2407 				    uint16_t x;
2408 				    uint16_t *p;
2409 				    int i;
2410 #ifdef INET6
2411 				    if (is_ipv6) {
2412 					    struct ip6_hdr *ip6;
2413 
2414 					    ip6 = (struct ip6_hdr *)ip;
2415 					    if (ip6->ip6_plen == 0) {
2416 						    /*
2417 						     * Jumbo payload is not
2418 						     * supported by this
2419 						     * opcode.
2420 						     */
2421 						    break;
2422 					    }
2423 					    x = iplen - hlen;
2424 				    } else
2425 #endif /* INET6 */
2426 					    x = iplen - (ip->ip_hl << 2);
2427 				    tcp = TCP(ulp);
2428 				    x -= tcp->th_off << 2;
2429 				    if (cmdlen == 1) {
2430 					match = (cmd->arg1 == x);
2431 					break;
2432 				    }
2433 				    /* otherwise we have ranges */
2434 				    p = ((ipfw_insn_u16 *)cmd)->ports;
2435 				    i = cmdlen - 1;
2436 				    for (; !match && i>0; i--, p += 2)
2437 					match = (x >= p[0] && x <= p[1]);
2438 				}
2439 				break;
2440 
2441 			case O_TCPFLAGS:
2442 				/*
2443 				 * Note that this is currently only set up to
2444 				 * match the lower 8 TCP header flag bits, not
2445 				 * the full compliment of all 12 flags.
2446 				 */
2447 				match = (proto == IPPROTO_TCP && offset == 0 &&
2448 				    flags_match(cmd, tcp_get_flags(TCP(ulp))));
2449 				break;
2450 
2451 			case O_TCPOPTS:
2452 				if (proto == IPPROTO_TCP && offset == 0 && ulp){
2453 					PULLUP_LEN_LOCKED(hlen, ulp,
2454 					    (TCP(ulp)->th_off << 2));
2455 					match = tcpopts_match(TCP(ulp), cmd);
2456 				}
2457 				break;
2458 
2459 			case O_TCPSEQ:
2460 				match = (proto == IPPROTO_TCP && offset == 0 &&
2461 				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2462 					TCP(ulp)->th_seq);
2463 				break;
2464 
2465 			case O_TCPACK:
2466 				match = (proto == IPPROTO_TCP && offset == 0 &&
2467 				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2468 					TCP(ulp)->th_ack);
2469 				break;
2470 
2471 			case O_TCPMSS:
2472 				if (proto == IPPROTO_TCP &&
2473 				    (args->f_id._flags & TH_SYN) != 0 &&
2474 				    ulp != NULL) {
2475 					uint16_t mss, *p;
2476 					int i;
2477 
2478 					PULLUP_LEN_LOCKED(hlen, ulp,
2479 					    (TCP(ulp)->th_off << 2));
2480 					if ((tcpopts_parse(TCP(ulp), &mss) &
2481 					    IP_FW_TCPOPT_MSS) == 0)
2482 						break;
2483 					if (cmdlen == 1) {
2484 						match = (cmd->arg1 == mss);
2485 						break;
2486 					}
2487 					/* Otherwise we have ranges. */
2488 					p = ((ipfw_insn_u16 *)cmd)->ports;
2489 					i = cmdlen - 1;
2490 					for (; !match && i > 0; i--, p += 2)
2491 						match = (mss >= p[0] &&
2492 						    mss <= p[1]);
2493 				}
2494 				break;
2495 
2496 			case O_TCPWIN:
2497 				if (proto == IPPROTO_TCP && offset == 0) {
2498 				    uint16_t x;
2499 				    uint16_t *p;
2500 				    int i;
2501 
2502 				    x = ntohs(TCP(ulp)->th_win);
2503 				    if (cmdlen == 1) {
2504 					match = (cmd->arg1 == x);
2505 					break;
2506 				    }
2507 				    /* Otherwise we have ranges. */
2508 				    p = ((ipfw_insn_u16 *)cmd)->ports;
2509 				    i = cmdlen - 1;
2510 				    for (; !match && i > 0; i--, p += 2)
2511 					match = (x >= p[0] && x <= p[1]);
2512 				}
2513 				break;
2514 
2515 			case O_ESTAB:
2516 				/* reject packets which have SYN only */
2517 				/* XXX should i also check for TH_ACK ? */
2518 				match = (proto == IPPROTO_TCP && offset == 0 &&
2519 				    (tcp_get_flags(TCP(ulp)) &
2520 				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
2521 				break;
2522 
2523 			case O_ALTQ: {
2524 				struct pf_mtag *at;
2525 				struct m_tag *mtag;
2526 				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
2527 
2528 				/*
2529 				 * ALTQ uses mbuf tags from another
2530 				 * packet filtering system - pf(4).
2531 				 * We allocate a tag in its format
2532 				 * and fill it in, pretending to be pf(4).
2533 				 */
2534 				match = 1;
2535 				at = pf_find_mtag(m);
2536 				if (at != NULL && at->qid != 0)
2537 					break;
2538 				mtag = m_tag_get(PACKET_TAG_PF,
2539 				    sizeof(struct pf_mtag), M_NOWAIT | M_ZERO);
2540 				if (mtag == NULL) {
2541 					/*
2542 					 * Let the packet fall back to the
2543 					 * default ALTQ.
2544 					 */
2545 					break;
2546 				}
2547 				m_tag_prepend(m, mtag);
2548 				at = (struct pf_mtag *)(mtag + 1);
2549 				at->qid = altq->qid;
2550 				at->hdr = ip;
2551 				break;
2552 			}
2553 
2554 			case O_LOG:
2555 				ipfw_log(chain, f, hlen, args,
2556 				    offset | ip6f_mf, tablearg, ip);
2557 				match = 1;
2558 				break;
2559 
2560 			case O_PROB:
2561 				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
2562 				break;
2563 
2564 			case O_VERREVPATH:
2565 				/* Outgoing packets automatically pass/match */
2566 				match = (args->flags & IPFW_ARGS_OUT ||
2567 				    (
2568 #ifdef INET6
2569 				    is_ipv6 ?
2570 					verify_path6(&(args->f_id.src_ip6),
2571 					    iif, args->f_id.fib) :
2572 #endif
2573 				    verify_path(src_ip, iif, args->f_id.fib)));
2574 				break;
2575 
2576 			case O_VERSRCREACH:
2577 				/* Outgoing packets automatically pass/match */
2578 				match = (hlen > 0 && ((oif != NULL) || (
2579 #ifdef INET6
2580 				    is_ipv6 ?
2581 				        verify_path6(&(args->f_id.src_ip6),
2582 				            NULL, args->f_id.fib) :
2583 #endif
2584 				    verify_path(src_ip, NULL, args->f_id.fib))));
2585 				break;
2586 
2587 			case O_ANTISPOOF:
2588 				/* Outgoing packets automatically pass/match */
2589 				if (oif == NULL && hlen > 0 &&
2590 				    (  (is_ipv4 && in_localaddr(src_ip))
2591 #ifdef INET6
2592 				    || (is_ipv6 &&
2593 				        in6_localaddr(&(args->f_id.src_ip6)))
2594 #endif
2595 				    ))
2596 					match =
2597 #ifdef INET6
2598 					    is_ipv6 ? verify_path6(
2599 					        &(args->f_id.src_ip6), iif,
2600 						args->f_id.fib) :
2601 #endif
2602 					    verify_path(src_ip, iif,
2603 					        args->f_id.fib);
2604 				else
2605 					match = 1;
2606 				break;
2607 
2608 			case O_IPSEC:
2609 				match = (m_tag_find(m,
2610 				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
2611 				/* otherwise no match */
2612 				break;
2613 
2614 #ifdef INET6
2615 			case O_IP6_SRC:
2616 				match = is_ipv6 &&
2617 				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
2618 				    &((ipfw_insn_ip6 *)cmd)->addr6);
2619 				break;
2620 
2621 			case O_IP6_DST:
2622 				match = is_ipv6 &&
2623 				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
2624 				    &((ipfw_insn_ip6 *)cmd)->addr6);
2625 				break;
2626 			case O_IP6_SRC_MASK:
2627 			case O_IP6_DST_MASK:
2628 				if (is_ipv6) {
2629 					int i = cmdlen - 1;
2630 					struct in6_addr p;
2631 					struct in6_addr *d =
2632 					    &((ipfw_insn_ip6 *)cmd)->addr6;
2633 
2634 					for (; !match && i > 0; d += 2,
2635 					    i -= F_INSN_SIZE(struct in6_addr)
2636 					    * 2) {
2637 						p = (cmd->opcode ==
2638 						    O_IP6_SRC_MASK) ?
2639 						    args->f_id.src_ip6:
2640 						    args->f_id.dst_ip6;
2641 						APPLY_MASK(&p, &d[1]);
2642 						match =
2643 						    IN6_ARE_ADDR_EQUAL(&d[0],
2644 						    &p);
2645 					}
2646 				}
2647 				break;
2648 
2649 			case O_FLOW6ID:
2650 				match = is_ipv6 &&
2651 				    flow6id_match(args->f_id.flow_id6,
2652 				    (ipfw_insn_u32 *) cmd);
2653 				break;
2654 
2655 			case O_EXT_HDR:
2656 				match = is_ipv6 &&
2657 				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
2658 				break;
2659 
2660 			case O_IP6:
2661 				match = is_ipv6;
2662 				break;
2663 #endif
2664 
2665 			case O_IP4:
2666 				match = is_ipv4;
2667 				break;
2668 
2669 			case O_TAG: {
2670 				struct m_tag *mtag;
2671 				uint32_t tag = TARG(cmd->arg1, tag);
2672 
2673 				/* Packet is already tagged with this tag? */
2674 				mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
2675 
2676 				/* We have `untag' action when F_NOT flag is
2677 				 * present. And we must remove this mtag from
2678 				 * mbuf and reset `match' to zero (`match' will
2679 				 * be inversed later).
2680 				 * Otherwise we should allocate new mtag and
2681 				 * push it into mbuf.
2682 				 */
2683 				if (cmd->len & F_NOT) { /* `untag' action */
2684 					if (mtag != NULL)
2685 						m_tag_delete(m, mtag);
2686 					match = 0;
2687 				} else {
2688 					if (mtag == NULL) {
2689 						mtag = m_tag_alloc( MTAG_IPFW,
2690 						    tag, 0, M_NOWAIT);
2691 						if (mtag != NULL)
2692 							m_tag_prepend(m, mtag);
2693 					}
2694 					match = 1;
2695 				}
2696 				break;
2697 			}
2698 
2699 			case O_FIB: /* try match the specified fib */
2700 				if (args->f_id.fib == cmd->arg1)
2701 					match = 1;
2702 				break;
2703 
2704 			case O_SOCKARG:	{
2705 #ifndef USERSPACE	/* not supported in userspace */
2706 				struct inpcb *inp = args->inp;
2707 				struct inpcbinfo *pi;
2708 				bool inp_locked = false;
2709 
2710 				if (proto == IPPROTO_TCP)
2711 					pi = &V_tcbinfo;
2712 				else if (proto == IPPROTO_UDP)
2713 					pi = &V_udbinfo;
2714 				else if (proto == IPPROTO_UDPLITE)
2715 					pi = &V_ulitecbinfo;
2716 				else
2717 					break;
2718 
2719 				/*
2720 				 * XXXRW: so_user_cookie should almost
2721 				 * certainly be inp_user_cookie?
2722 				 */
2723 
2724 				/*
2725 				 * For incoming packet lookup the inpcb
2726 				 * using the src/dest ip/port tuple.
2727 				 */
2728 				if (is_ipv4 && inp == NULL) {
2729 					inp = in_pcblookup(pi,
2730 					    src_ip, htons(src_port),
2731 					    dst_ip, htons(dst_port),
2732 					    INPLOOKUP_RLOCKPCB, NULL);
2733 					inp_locked = true;
2734 				}
2735 #ifdef INET6
2736 				if (is_ipv6 && inp == NULL) {
2737 					inp = in6_pcblookup(pi,
2738 					    &args->f_id.src_ip6,
2739 					    htons(src_port),
2740 					    &args->f_id.dst_ip6,
2741 					    htons(dst_port),
2742 					    INPLOOKUP_RLOCKPCB, NULL);
2743 					inp_locked = true;
2744 				}
2745 #endif /* INET6 */
2746 				if (inp != NULL) {
2747 					if (inp->inp_socket) {
2748 						tablearg =
2749 						    inp->inp_socket->so_user_cookie;
2750 						if (tablearg)
2751 							match = 1;
2752 					}
2753 					if (inp_locked)
2754 						INP_RUNLOCK(inp);
2755 				}
2756 #endif /* !USERSPACE */
2757 				break;
2758 			}
2759 
2760 			case O_TAGGED: {
2761 				struct m_tag *mtag;
2762 				uint32_t tag = TARG(cmd->arg1, tag);
2763 
2764 				if (cmdlen == 1) {
2765 					match = m_tag_locate(m, MTAG_IPFW,
2766 					    tag, NULL) != NULL;
2767 					break;
2768 				}
2769 
2770 				/* we have ranges */
2771 				for (mtag = m_tag_first(m);
2772 				    mtag != NULL && !match;
2773 				    mtag = m_tag_next(m, mtag)) {
2774 					uint16_t *p;
2775 					int i;
2776 
2777 					if (mtag->m_tag_cookie != MTAG_IPFW)
2778 						continue;
2779 
2780 					p = ((ipfw_insn_u16 *)cmd)->ports;
2781 					i = cmdlen - 1;
2782 					for(; !match && i > 0; i--, p += 2)
2783 						match =
2784 						    mtag->m_tag_id >= p[0] &&
2785 						    mtag->m_tag_id <= p[1];
2786 				}
2787 				break;
2788 			}
2789 
2790 			case O_MARK: {
2791 				uint32_t mark;
2792 				if (cmd->arg1 == IP_FW_TARG)
2793 					mark = TARG_VAL(chain, tablearg, mark);
2794 				else
2795 					mark = ((ipfw_insn_u32 *)cmd)->d[0];
2796 				match =
2797 				    (args->rule.pkt_mark &
2798 				    ((ipfw_insn_u32 *)cmd)->d[1]) ==
2799 				    (mark & ((ipfw_insn_u32 *)cmd)->d[1]);
2800 				break;
2801 			}
2802 
2803 			/*
2804 			 * The second set of opcodes represents 'actions',
2805 			 * i.e. the terminal part of a rule once the packet
2806 			 * matches all previous patterns.
2807 			 * Typically there is only one action for each rule,
2808 			 * and the opcode is stored at the end of the rule
2809 			 * (but there are exceptions -- see below).
2810 			 *
2811 			 * In general, here we set retval and terminate the
2812 			 * outer loop (would be a 'break 3' in some language,
2813 			 * but we need to set l=0, done=1)
2814 			 *
2815 			 * Exceptions:
2816 			 * O_COUNT and O_SKIPTO actions:
2817 			 *   instead of terminating, we jump to the next rule
2818 			 *   (setting l=0), or to the SKIPTO target (setting
2819 			 *   f/f_len, cmd and l as needed), respectively.
2820 			 *
2821 			 * O_TAG, O_LOG and O_ALTQ action parameters:
2822 			 *   perform some action and set match = 1;
2823 			 *
2824 			 * O_LIMIT and O_KEEP_STATE: these opcodes are
2825 			 *   not real 'actions', and are stored right
2826 			 *   before the 'action' part of the rule (one
2827 			 *   exception is O_SKIP_ACTION which could be
2828 			 *   between these opcodes and 'action' one).
2829 			 *   These opcodes try to install an entry in the
2830 			 *   state tables; if successful, we continue with
2831 			 *   the next opcode (match=1; break;), otherwise
2832 			 *   the packet must be dropped (set retval,
2833 			 *   break loops with l=0, done=1)
2834 			 *
2835 			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
2836 			 *   cause a lookup of the state table, and a jump
2837 			 *   to the 'action' part of the parent rule
2838 			 *   if an entry is found, or
2839 			 *   (CHECK_STATE only) a jump to the next rule if
2840 			 *   the entry is not found.
2841 			 *   The result of the lookup is cached so that
2842 			 *   further instances of these opcodes become NOPs.
2843 			 *   The jump to the next rule is done by setting
2844 			 *   l=0, cmdlen=0.
2845 			 *
2846 			 * O_SKIP_ACTION: this opcode is not a real 'action'
2847 			 *  either, and is stored right before the 'action'
2848 			 *  part of the rule, right after the O_KEEP_STATE
2849 			 *  opcode. It causes match failure so the real
2850 			 *  'action' could be executed only if the rule
2851 			 *  is checked via dynamic rule from the state
2852 			 *  table, as in such case execution starts
2853 			 *  from the true 'action' opcode directly.
2854 			 *
2855 			 */
2856 			case O_LIMIT:
2857 			case O_KEEP_STATE:
2858 				if (ipfw_dyn_install_state(chain, f,
2859 				    (ipfw_insn_limit *)cmd, args, ulp,
2860 				    pktlen, &dyn_info, tablearg)) {
2861 					/* error or limit violation */
2862 					retval = IP_FW_DENY;
2863 					l = 0;	/* exit inner loop */
2864 					done = 1; /* exit outer loop */
2865 				}
2866 				match = 1;
2867 				break;
2868 
2869 			case O_PROBE_STATE:
2870 			case O_CHECK_STATE:
2871 				/*
2872 				 * dynamic rules are checked at the first
2873 				 * keep-state or check-state occurrence,
2874 				 * with the result being stored in dyn_info.
2875 				 * The compiler introduces a PROBE_STATE
2876 				 * instruction for us when we have a
2877 				 * KEEP_STATE (because PROBE_STATE needs
2878 				 * to be run first).
2879 				 */
2880 				if (DYN_LOOKUP_NEEDED(&dyn_info, cmd) &&
2881 				    (q = ipfw_dyn_lookup_state(args, ulp,
2882 				    pktlen, cmd, &dyn_info)) != NULL) {
2883 					/*
2884 					 * Found dynamic entry, jump to the
2885 					 * 'action' part of the parent rule
2886 					 * by setting f, cmd, l and clearing
2887 					 * cmdlen.
2888 					 */
2889 					f = q;
2890 					f_pos = dyn_info.f_pos;
2891 					cmd = ACTION_PTR(f);
2892 					l = f->cmd_len - f->act_ofs;
2893 					cmdlen = 0;
2894 					continue;
2895 				}
2896 				/*
2897 				 * Dynamic entry not found. If CHECK_STATE,
2898 				 * skip to next rule, if PROBE_STATE just
2899 				 * ignore and continue with next opcode.
2900 				 */
2901 				if (cmd->opcode == O_CHECK_STATE)
2902 					l = 0;	/* exit inner loop */
2903 				match = 1;
2904 				break;
2905 
2906 			case O_SKIP_ACTION:
2907 				match = 0;	/* skip to the next rule */
2908 				l = 0;		/* exit inner loop */
2909 				break;
2910 
2911 			case O_ACCEPT:
2912 				retval = 0;	/* accept */
2913 				l = 0;		/* exit inner loop */
2914 				done = 1;	/* exit outer loop */
2915 				break;
2916 
2917 			case O_PIPE:
2918 			case O_QUEUE:
2919 				set_match(args, f_pos, chain);
2920 				args->rule.info = TARG(cmd->arg1, pipe);
2921 				if (cmd->opcode == O_PIPE)
2922 					args->rule.info |= IPFW_IS_PIPE;
2923 				if (V_fw_one_pass)
2924 					args->rule.info |= IPFW_ONEPASS;
2925 				retval = IP_FW_DUMMYNET;
2926 				l = 0;          /* exit inner loop */
2927 				done = 1;       /* exit outer loop */
2928 				break;
2929 
2930 			case O_DIVERT:
2931 			case O_TEE:
2932 				if (args->flags & IPFW_ARGS_ETHER)
2933 					break;	/* not on layer 2 */
2934 				/* otherwise this is terminal */
2935 				l = 0;		/* exit inner loop */
2936 				done = 1;	/* exit outer loop */
2937 				retval = (cmd->opcode == O_DIVERT) ?
2938 					IP_FW_DIVERT : IP_FW_TEE;
2939 				set_match(args, f_pos, chain);
2940 				args->rule.info = TARG(cmd->arg1, divert);
2941 				break;
2942 
2943 			case O_COUNT:
2944 				IPFW_INC_RULE_COUNTER(f, pktlen);
2945 				l = 0;		/* exit inner loop */
2946 				break;
2947 
2948 			case O_SKIPTO:
2949 			    IPFW_INC_RULE_COUNTER(f, pktlen);
2950 			    f_pos = JUMP(chain, f, cmd->arg1, tablearg, 0);
2951 			    /*
2952 			     * Skip disabled rules, and re-enter
2953 			     * the inner loop with the correct
2954 			     * f_pos, f, l and cmd.
2955 			     * Also clear cmdlen and skip_or
2956 			     */
2957 			    for (; f_pos < chain->n_rules - 1 &&
2958 				    (V_set_disable &
2959 				     (1 << chain->map[f_pos]->set));
2960 				    f_pos++)
2961 				;
2962 			    /* Re-enter the inner loop at the skipto rule. */
2963 			    f = chain->map[f_pos];
2964 			    l = f->cmd_len;
2965 			    cmd = f->cmd;
2966 			    match = 1;
2967 			    cmdlen = 0;
2968 			    skip_or = 0;
2969 			    continue;
2970 			    break;	/* not reached */
2971 
2972 			case O_CALLRETURN: {
2973 				/*
2974 				 * Implementation of `subroutine' call/return,
2975 				 * in the stack carried in an mbuf tag. This
2976 				 * is different from `skipto' in that any call
2977 				 * address is possible (`skipto' must prevent
2978 				 * backward jumps to avoid endless loops).
2979 				 * We have `return' action when F_NOT flag is
2980 				 * present. The `m_tag_id' field is used as
2981 				 * stack pointer.
2982 				 */
2983 				struct m_tag *mtag;
2984 				uint16_t jmpto, *stack;
2985 
2986 #define	IS_CALL		((cmd->len & F_NOT) == 0)
2987 #define	IS_RETURN	((cmd->len & F_NOT) != 0)
2988 				/*
2989 				 * Hand-rolled version of m_tag_locate() with
2990 				 * wildcard `type'.
2991 				 * If not already tagged, allocate new tag.
2992 				 */
2993 				mtag = m_tag_first(m);
2994 				while (mtag != NULL) {
2995 					if (mtag->m_tag_cookie ==
2996 					    MTAG_IPFW_CALL)
2997 						break;
2998 					mtag = m_tag_next(m, mtag);
2999 				}
3000 				if (mtag == NULL && IS_CALL) {
3001 					mtag = m_tag_alloc(MTAG_IPFW_CALL, 0,
3002 					    IPFW_CALLSTACK_SIZE *
3003 					    sizeof(uint16_t), M_NOWAIT);
3004 					if (mtag != NULL)
3005 						m_tag_prepend(m, mtag);
3006 				}
3007 
3008 				/*
3009 				 * On error both `call' and `return' just
3010 				 * continue with next rule.
3011 				 */
3012 				if (IS_RETURN && (mtag == NULL ||
3013 				    mtag->m_tag_id == 0)) {
3014 					l = 0;		/* exit inner loop */
3015 					break;
3016 				}
3017 				if (IS_CALL && (mtag == NULL ||
3018 				    mtag->m_tag_id >= IPFW_CALLSTACK_SIZE)) {
3019 					printf("ipfw: call stack error, "
3020 					    "go to next rule\n");
3021 					l = 0;		/* exit inner loop */
3022 					break;
3023 				}
3024 
3025 				IPFW_INC_RULE_COUNTER(f, pktlen);
3026 				stack = (uint16_t *)(mtag + 1);
3027 
3028 				/*
3029 				 * The `call' action may use cached f_pos
3030 				 * (in f->next_rule), whose version is written
3031 				 * in f->next_rule.
3032 				 * The `return' action, however, doesn't have
3033 				 * fixed jump address in cmd->arg1 and can't use
3034 				 * cache.
3035 				 */
3036 				if (IS_CALL) {
3037 					stack[mtag->m_tag_id] = f->rulenum;
3038 					mtag->m_tag_id++;
3039 			    		f_pos = JUMP(chain, f, cmd->arg1,
3040 					    tablearg, 1);
3041 				} else {	/* `return' action */
3042 					mtag->m_tag_id--;
3043 					jmpto = stack[mtag->m_tag_id] + 1;
3044 					f_pos = ipfw_find_rule(chain, jmpto, 0);
3045 				}
3046 
3047 				/*
3048 				 * Skip disabled rules, and re-enter
3049 				 * the inner loop with the correct
3050 				 * f_pos, f, l and cmd.
3051 				 * Also clear cmdlen and skip_or
3052 				 */
3053 				for (; f_pos < chain->n_rules - 1 &&
3054 				    (V_set_disable &
3055 				    (1 << chain->map[f_pos]->set)); f_pos++)
3056 					;
3057 				/* Re-enter the inner loop at the dest rule. */
3058 				f = chain->map[f_pos];
3059 				l = f->cmd_len;
3060 				cmd = f->cmd;
3061 				cmdlen = 0;
3062 				skip_or = 0;
3063 				continue;
3064 				break;	/* NOTREACHED */
3065 			}
3066 #undef IS_CALL
3067 #undef IS_RETURN
3068 
3069 			case O_REJECT:
3070 				/*
3071 				 * Drop the packet and send a reject notice
3072 				 * if the packet is not ICMP (or is an ICMP
3073 				 * query), and it is not multicast/broadcast.
3074 				 */
3075 				if (hlen > 0 && is_ipv4 && offset == 0 &&
3076 				    (proto != IPPROTO_ICMP ||
3077 				     is_icmp_query(ICMP(ulp))) &&
3078 				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
3079 				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
3080 					send_reject(args, cmd, iplen, ip);
3081 					m = args->m;
3082 				}
3083 				/* FALLTHROUGH */
3084 #ifdef INET6
3085 			case O_UNREACH6:
3086 				if (hlen > 0 && is_ipv6 &&
3087 				    ((offset & IP6F_OFF_MASK) == 0) &&
3088 				    (proto != IPPROTO_ICMPV6 ||
3089 				     (is_icmp6_query(icmp6_type) == 1)) &&
3090 				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
3091 				    !IN6_IS_ADDR_MULTICAST(
3092 					&args->f_id.dst_ip6)) {
3093 					send_reject6(args,
3094 					    cmd->opcode == O_REJECT ?
3095 					    map_icmp_unreach(cmd->arg1):
3096 					    cmd->arg1, hlen,
3097 					    (struct ip6_hdr *)ip);
3098 					m = args->m;
3099 				}
3100 				/* FALLTHROUGH */
3101 #endif
3102 			case O_DENY:
3103 				retval = IP_FW_DENY;
3104 				l = 0;		/* exit inner loop */
3105 				done = 1;	/* exit outer loop */
3106 				break;
3107 
3108 			case O_FORWARD_IP:
3109 				if (args->flags & IPFW_ARGS_ETHER)
3110 					break;	/* not valid on layer2 pkts */
3111 				if (q != f ||
3112 				    dyn_info.direction == MATCH_FORWARD) {
3113 				    struct sockaddr_in *sa;
3114 
3115 				    sa = &(((ipfw_insn_sa *)cmd)->sa);
3116 				    if (sa->sin_addr.s_addr == INADDR_ANY) {
3117 #ifdef INET6
3118 					/*
3119 					 * We use O_FORWARD_IP opcode for
3120 					 * fwd rule with tablearg, but tables
3121 					 * now support IPv6 addresses. And
3122 					 * when we are inspecting IPv6 packet,
3123 					 * we can use nh6 field from
3124 					 * table_value as next_hop6 address.
3125 					 */
3126 					if (is_ipv6) {
3127 						struct ip_fw_nh6 *nh6;
3128 
3129 						args->flags |= IPFW_ARGS_NH6;
3130 						nh6 = &args->hopstore6;
3131 						nh6->sin6_addr = TARG_VAL(
3132 						    chain, tablearg, nh6);
3133 						nh6->sin6_port = sa->sin_port;
3134 						nh6->sin6_scope_id = TARG_VAL(
3135 						    chain, tablearg, zoneid);
3136 					} else
3137 #endif
3138 					{
3139 						args->flags |= IPFW_ARGS_NH4;
3140 						args->hopstore.sin_port =
3141 						    sa->sin_port;
3142 						sa = &args->hopstore;
3143 						sa->sin_family = AF_INET;
3144 						sa->sin_len = sizeof(*sa);
3145 						sa->sin_addr.s_addr = htonl(
3146 						    TARG_VAL(chain, tablearg,
3147 						    nh4));
3148 					}
3149 				    } else {
3150 					    args->flags |= IPFW_ARGS_NH4PTR;
3151 					    args->next_hop = sa;
3152 				    }
3153 				}
3154 				retval = IP_FW_PASS;
3155 				l = 0;          /* exit inner loop */
3156 				done = 1;       /* exit outer loop */
3157 				break;
3158 
3159 #ifdef INET6
3160 			case O_FORWARD_IP6:
3161 				if (args->flags & IPFW_ARGS_ETHER)
3162 					break;	/* not valid on layer2 pkts */
3163 				if (q != f ||
3164 				    dyn_info.direction == MATCH_FORWARD) {
3165 					struct sockaddr_in6 *sin6;
3166 
3167 					sin6 = &(((ipfw_insn_sa6 *)cmd)->sa);
3168 					args->flags |= IPFW_ARGS_NH6PTR;
3169 					args->next_hop6 = sin6;
3170 				}
3171 				retval = IP_FW_PASS;
3172 				l = 0;		/* exit inner loop */
3173 				done = 1;	/* exit outer loop */
3174 				break;
3175 #endif
3176 
3177 			case O_NETGRAPH:
3178 			case O_NGTEE:
3179 				set_match(args, f_pos, chain);
3180 				args->rule.info = TARG(cmd->arg1, netgraph);
3181 				if (V_fw_one_pass)
3182 					args->rule.info |= IPFW_ONEPASS;
3183 				retval = (cmd->opcode == O_NETGRAPH) ?
3184 				    IP_FW_NETGRAPH : IP_FW_NGTEE;
3185 				l = 0;          /* exit inner loop */
3186 				done = 1;       /* exit outer loop */
3187 				break;
3188 
3189 			case O_SETFIB: {
3190 				uint32_t fib;
3191 
3192 				IPFW_INC_RULE_COUNTER(f, pktlen);
3193 				fib = TARG(cmd->arg1, fib) & 0x7FFF;
3194 				if (fib >= rt_numfibs)
3195 					fib = 0;
3196 				M_SETFIB(m, fib);
3197 				args->f_id.fib = fib; /* XXX */
3198 				l = 0;		/* exit inner loop */
3199 				break;
3200 		        }
3201 
3202 			case O_SETDSCP: {
3203 				uint16_t code;
3204 
3205 				code = TARG(cmd->arg1, dscp) & 0x3F;
3206 				l = 0;		/* exit inner loop */
3207 				if (is_ipv4) {
3208 					uint16_t old;
3209 
3210 					old = *(uint16_t *)ip;
3211 					ip->ip_tos = (code << 2) |
3212 					    (ip->ip_tos & 0x03);
3213 					ip->ip_sum = cksum_adjust(ip->ip_sum,
3214 					    old, *(uint16_t *)ip);
3215 				} else if (is_ipv6) {
3216 					/* update cached value */
3217 					args->f_id.flow_id6 =
3218 					    ntohl(*(uint32_t *)ip) & ~0x0FC00000;
3219 					args->f_id.flow_id6 |= code << 22;
3220 
3221 					*((uint32_t *)ip) =
3222 					    htonl(args->f_id.flow_id6);
3223 				} else
3224 					break;
3225 
3226 				IPFW_INC_RULE_COUNTER(f, pktlen);
3227 				break;
3228 			}
3229 
3230 			case O_NAT:
3231 				l = 0;          /* exit inner loop */
3232 				done = 1;       /* exit outer loop */
3233 				/*
3234 				 * Ensure that we do not invoke NAT handler for
3235 				 * non IPv4 packets. Libalias expects only IPv4.
3236 				 */
3237 				if (!is_ipv4 || !IPFW_NAT_LOADED) {
3238 				    retval = IP_FW_DENY;
3239 				    break;
3240 				}
3241 
3242 				struct cfg_nat *t;
3243 				int nat_id;
3244 
3245 				args->rule.info = 0;
3246 				set_match(args, f_pos, chain);
3247 				/* Check if this is 'global' nat rule */
3248 				if (cmd->arg1 == IP_FW_NAT44_GLOBAL) {
3249 					retval = ipfw_nat_ptr(args, NULL, m);
3250 					break;
3251 				}
3252 				t = ((ipfw_insn_nat *)cmd)->nat;
3253 				if (t == NULL) {
3254 					nat_id = TARG(cmd->arg1, nat);
3255 					t = (*lookup_nat_ptr)(&chain->nat, nat_id);
3256 
3257 					if (t == NULL) {
3258 					    retval = IP_FW_DENY;
3259 					    break;
3260 					}
3261 					if (cmd->arg1 != IP_FW_TARG)
3262 					    ((ipfw_insn_nat *)cmd)->nat = t;
3263 				}
3264 				retval = ipfw_nat_ptr(args, t, m);
3265 				break;
3266 
3267 			case O_REASS: {
3268 				int ip_off;
3269 
3270 				l = 0;	/* in any case exit inner loop */
3271 				if (is_ipv6) /* IPv6 is not supported yet */
3272 					break;
3273 				IPFW_INC_RULE_COUNTER(f, pktlen);
3274 				ip_off = ntohs(ip->ip_off);
3275 
3276 				/* if not fragmented, go to next rule */
3277 				if ((ip_off & (IP_MF | IP_OFFMASK)) == 0)
3278 				    break;
3279 
3280 				args->m = m = ip_reass(m);
3281 
3282 				/*
3283 				 * do IP header checksum fixup.
3284 				 */
3285 				if (m == NULL) { /* fragment got swallowed */
3286 				    retval = IP_FW_DENY;
3287 				} else { /* good, packet complete */
3288 				    int hlen;
3289 
3290 				    ip = mtod(m, struct ip *);
3291 				    hlen = ip->ip_hl << 2;
3292 				    ip->ip_sum = 0;
3293 				    if (hlen == sizeof(struct ip))
3294 					ip->ip_sum = in_cksum_hdr(ip);
3295 				    else
3296 					ip->ip_sum = in_cksum(m, hlen);
3297 				    retval = IP_FW_REASS;
3298 				    args->rule.info = 0;
3299 				    set_match(args, f_pos, chain);
3300 				}
3301 				done = 1;	/* exit outer loop */
3302 				break;
3303 			}
3304 
3305 			case O_SETMARK: {
3306 				l = 0;		/* exit inner loop */
3307 				args->rule.pkt_mark = (
3308 				    (cmd->arg1 == IP_FW_TARG) ?
3309 				    TARG_VAL(chain, tablearg, mark) :
3310 				    ((ipfw_insn_u32 *)cmd)->d[0]);
3311 
3312 				IPFW_INC_RULE_COUNTER(f, pktlen);
3313 				break;
3314 			}
3315 
3316 			case O_EXTERNAL_ACTION:
3317 				l = 0; /* in any case exit inner loop */
3318 				retval = ipfw_run_eaction(chain, args,
3319 				    cmd, &done);
3320 				/*
3321 				 * If both @retval and @done are zero,
3322 				 * consider this as rule matching and
3323 				 * update counters.
3324 				 */
3325 				if (retval == 0 && done == 0) {
3326 					IPFW_INC_RULE_COUNTER(f, pktlen);
3327 					/*
3328 					 * Reset the result of the last
3329 					 * dynamic state lookup.
3330 					 * External action can change
3331 					 * @args content, and it may be
3332 					 * used for new state lookup later.
3333 					 */
3334 					DYN_INFO_INIT(&dyn_info);
3335 				}
3336 				break;
3337 
3338 			default:
3339 				panic("-- unknown opcode %d\n", cmd->opcode);
3340 			} /* end of switch() on opcodes */
3341 			/*
3342 			 * if we get here with l=0, then match is irrelevant.
3343 			 */
3344 
3345 			if (cmd->len & F_NOT)
3346 				match = !match;
3347 
3348 			if (match) {
3349 				if (cmd->len & F_OR)
3350 					skip_or = 1;
3351 			} else {
3352 				if (!(cmd->len & F_OR)) /* not an OR block, */
3353 					break;		/* try next rule    */
3354 			}
3355 
3356 		}	/* end of inner loop, scan opcodes */
3357 #undef PULLUP_LEN
3358 #undef PULLUP_LEN_LOCKED
3359 
3360 		if (done)
3361 			break;
3362 
3363 /* next_rule:; */	/* try next rule		*/
3364 
3365 	}		/* end of outer for, scan rules */
3366 
3367 	if (done) {
3368 		struct ip_fw *rule = chain->map[f_pos];
3369 		/* Update statistics */
3370 		IPFW_INC_RULE_COUNTER(rule, pktlen);
3371 		IPFW_PROBE(rule__matched, retval,
3372 		    is_ipv4 ? AF_INET : AF_INET6,
3373 		    is_ipv4 ? (uintptr_t)&src_ip :
3374 		        (uintptr_t)&args->f_id.src_ip6,
3375 		    is_ipv4 ? (uintptr_t)&dst_ip :
3376 		        (uintptr_t)&args->f_id.dst_ip6,
3377 		    args, rule);
3378 	} else {
3379 		retval = IP_FW_DENY;
3380 		printf("ipfw: ouch!, skip past end of rules, denying packet\n");
3381 	}
3382 	IPFW_PF_RUNLOCK(chain);
3383 #ifdef __FreeBSD__
3384 	if (ucred_cache != NULL)
3385 		crfree(ucred_cache);
3386 #endif
3387 	return (retval);
3388 
3389 pullup_failed:
3390 	if (V_fw_verbose)
3391 		printf("ipfw: pullup failed\n");
3392 	return (IP_FW_DENY);
3393 }
3394 
3395 /*
3396  * Set maximum number of tables that can be used in given VNET ipfw instance.
3397  */
3398 #ifdef SYSCTL_NODE
3399 static int
sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS)3400 sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS)
3401 {
3402 	int error;
3403 	unsigned int ntables;
3404 
3405 	ntables = V_fw_tables_max;
3406 
3407 	error = sysctl_handle_int(oidp, &ntables, 0, req);
3408 	/* Read operation or some error */
3409 	if ((error != 0) || (req->newptr == NULL))
3410 		return (error);
3411 
3412 	return (ipfw_resize_tables(&V_layer3_chain, ntables));
3413 }
3414 
3415 /*
3416  * Switches table namespace between global and per-set.
3417  */
3418 static int
sysctl_ipfw_tables_sets(SYSCTL_HANDLER_ARGS)3419 sysctl_ipfw_tables_sets(SYSCTL_HANDLER_ARGS)
3420 {
3421 	int error;
3422 	unsigned int sets;
3423 
3424 	sets = V_fw_tables_sets;
3425 
3426 	error = sysctl_handle_int(oidp, &sets, 0, req);
3427 	/* Read operation or some error */
3428 	if ((error != 0) || (req->newptr == NULL))
3429 		return (error);
3430 
3431 	return (ipfw_switch_tables_namespace(&V_layer3_chain, sets));
3432 }
3433 #endif
3434 
3435 /*
3436  * Module and VNET glue
3437  */
3438 
3439 /*
3440  * Stuff that must be initialised only on boot or module load
3441  */
3442 static int
ipfw_init(void)3443 ipfw_init(void)
3444 {
3445 	int error = 0;
3446 
3447 	/*
3448  	 * Only print out this stuff the first time around,
3449 	 * when called from the sysinit code.
3450 	 */
3451 	printf("ipfw2 "
3452 #ifdef INET6
3453 		"(+ipv6) "
3454 #endif
3455 		"initialized, divert %s, nat %s, "
3456 		"default to %s, logging ",
3457 #ifdef IPDIVERT
3458 		"enabled",
3459 #else
3460 		"loadable",
3461 #endif
3462 #ifdef IPFIREWALL_NAT
3463 		"enabled",
3464 #else
3465 		"loadable",
3466 #endif
3467 		default_to_accept ? "accept" : "deny");
3468 
3469 	/*
3470 	 * Note: V_xxx variables can be accessed here but the vnet specific
3471 	 * initializer may not have been called yet for the VIMAGE case.
3472 	 * Tuneables will have been processed. We will print out values for
3473 	 * the default vnet.
3474 	 * XXX This should all be rationalized AFTER 8.0
3475 	 */
3476 	if (V_fw_verbose == 0)
3477 		printf("disabled\n");
3478 	else if (V_verbose_limit == 0)
3479 		printf("unlimited\n");
3480 	else
3481 		printf("limited to %d packets/entry by default\n",
3482 		    V_verbose_limit);
3483 
3484 	/* Check user-supplied table count for validness */
3485 	if (default_fw_tables > IPFW_TABLES_MAX)
3486 	  default_fw_tables = IPFW_TABLES_MAX;
3487 
3488 	ipfw_init_sopt_handler();
3489 	ipfw_init_obj_rewriter();
3490 	ipfw_iface_init();
3491 	return (error);
3492 }
3493 
3494 /*
3495  * Called for the removal of the last instance only on module unload.
3496  */
3497 static void
ipfw_destroy(void)3498 ipfw_destroy(void)
3499 {
3500 
3501 	ipfw_iface_destroy();
3502 	ipfw_destroy_sopt_handler();
3503 	ipfw_destroy_obj_rewriter();
3504 	printf("IP firewall unloaded\n");
3505 }
3506 
3507 /*
3508  * Stuff that must be initialized for every instance
3509  * (including the first of course).
3510  */
3511 static int
vnet_ipfw_init(const void * unused)3512 vnet_ipfw_init(const void *unused)
3513 {
3514 	int error, first;
3515 	struct ip_fw *rule = NULL;
3516 	struct ip_fw_chain *chain;
3517 
3518 	chain = &V_layer3_chain;
3519 
3520 	first = IS_DEFAULT_VNET(curvnet) ? 1 : 0;
3521 
3522 	/* First set up some values that are compile time options */
3523 	V_autoinc_step = 100;	/* bounded to 1..1000 in add_rule() */
3524 	V_fw_deny_unknown_exthdrs = 1;
3525 #ifdef IPFIREWALL_VERBOSE
3526 	V_fw_verbose = 1;
3527 #endif
3528 #ifdef IPFIREWALL_VERBOSE_LIMIT
3529 	V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
3530 #endif
3531 #ifdef IPFIREWALL_NAT
3532 	LIST_INIT(&chain->nat);
3533 #endif
3534 
3535 	/* Init shared services hash table */
3536 	ipfw_init_srv(chain);
3537 
3538 	ipfw_init_counters();
3539 	/* Set initial number of tables */
3540 	V_fw_tables_max = default_fw_tables;
3541 	error = ipfw_init_tables(chain, first);
3542 	if (error) {
3543 		printf("ipfw2: setting up tables failed\n");
3544 		free(chain->map, M_IPFW);
3545 		free(rule, M_IPFW);
3546 		return (ENOSPC);
3547 	}
3548 
3549 	IPFW_LOCK_INIT(chain);
3550 
3551 	/* fill and insert the default rule */
3552 	rule = ipfw_alloc_rule(chain, sizeof(struct ip_fw));
3553 	rule->flags |= IPFW_RULE_NOOPT;
3554 	rule->cmd_len = 1;
3555 	rule->cmd[0].len = 1;
3556 	rule->cmd[0].opcode = default_to_accept ? O_ACCEPT : O_DENY;
3557 	chain->default_rule = rule;
3558 	ipfw_add_protected_rule(chain, rule, 0);
3559 
3560 	ipfw_dyn_init(chain);
3561 	ipfw_eaction_init(chain, first);
3562 #ifdef LINEAR_SKIPTO
3563 	ipfw_init_skipto_cache(chain);
3564 #endif
3565 	ipfw_bpf_init(first);
3566 
3567 	/* First set up some values that are compile time options */
3568 	V_ipfw_vnet_ready = 1;		/* Open for business */
3569 
3570 	/*
3571 	 * Hook the sockopt handler and pfil hooks for ipv4 and ipv6.
3572 	 * Even if the latter two fail we still keep the module alive
3573 	 * because the sockopt and layer2 paths are still useful.
3574 	 * ipfw[6]_hook return 0 on success, ENOENT on failure,
3575 	 * so we can ignore the exact return value and just set a flag.
3576 	 *
3577 	 * Note that V_fw[6]_enable are manipulated by a SYSCTL_PROC so
3578 	 * changes in the underlying (per-vnet) variables trigger
3579 	 * immediate hook()/unhook() calls.
3580 	 * In layer2 we have the same behaviour, except that V_ether_ipfw
3581 	 * is checked on each packet because there are no pfil hooks.
3582 	 */
3583 	V_ip_fw_ctl_ptr = ipfw_ctl3;
3584 	error = ipfw_attach_hooks();
3585 	return (error);
3586 }
3587 
3588 /*
3589  * Called for the removal of each instance.
3590  */
3591 static int
vnet_ipfw_uninit(const void * unused)3592 vnet_ipfw_uninit(const void *unused)
3593 {
3594 	struct ip_fw *reap;
3595 	struct ip_fw_chain *chain = &V_layer3_chain;
3596 	int i, last;
3597 
3598 	V_ipfw_vnet_ready = 0; /* tell new callers to go away */
3599 	/*
3600 	 * disconnect from ipv4, ipv6, layer2 and sockopt.
3601 	 * Then grab, release and grab again the WLOCK so we make
3602 	 * sure the update is propagated and nobody will be in.
3603 	 */
3604 	ipfw_detach_hooks();
3605 	V_ip_fw_ctl_ptr = NULL;
3606 
3607 	last = IS_DEFAULT_VNET(curvnet) ? 1 : 0;
3608 
3609 	IPFW_UH_WLOCK(chain);
3610 	IPFW_UH_WUNLOCK(chain);
3611 
3612 	ipfw_dyn_uninit(0);	/* run the callout_drain */
3613 
3614 	IPFW_UH_WLOCK(chain);
3615 
3616 	reap = NULL;
3617 	IPFW_WLOCK(chain);
3618 	for (i = 0; i < chain->n_rules; i++)
3619 		ipfw_reap_add(chain, &reap, chain->map[i]);
3620 	free(chain->map, M_IPFW);
3621 #ifdef LINEAR_SKIPTO
3622 	ipfw_destroy_skipto_cache(chain);
3623 #endif
3624 	IPFW_WUNLOCK(chain);
3625 	IPFW_UH_WUNLOCK(chain);
3626 	ipfw_destroy_tables(chain, last);
3627 	ipfw_eaction_uninit(chain, last);
3628 	if (reap != NULL)
3629 		ipfw_reap_rules(reap);
3630 	vnet_ipfw_iface_destroy(chain);
3631 	ipfw_destroy_srv(chain);
3632 	IPFW_LOCK_DESTROY(chain);
3633 	ipfw_dyn_uninit(1);	/* free the remaining parts */
3634 	ipfw_destroy_counters();
3635 	ipfw_bpf_uninit(last);
3636 	return (0);
3637 }
3638 
3639 /*
3640  * Module event handler.
3641  * In general we have the choice of handling most of these events by the
3642  * event handler or by the (VNET_)SYS(UN)INIT handlers. I have chosen to
3643  * use the SYSINIT handlers as they are more capable of expressing the
3644  * flow of control during module and vnet operations, so this is just
3645  * a skeleton. Note there is no SYSINIT equivalent of the module
3646  * SHUTDOWN handler, but we don't have anything to do in that case anyhow.
3647  */
3648 static int
ipfw_modevent(module_t mod,int type,void * unused)3649 ipfw_modevent(module_t mod, int type, void *unused)
3650 {
3651 	int err = 0;
3652 
3653 	switch (type) {
3654 	case MOD_LOAD:
3655 		/* Called once at module load or
3656 	 	 * system boot if compiled in. */
3657 		break;
3658 	case MOD_QUIESCE:
3659 		/* Called before unload. May veto unloading. */
3660 		break;
3661 	case MOD_UNLOAD:
3662 		/* Called during unload. */
3663 		break;
3664 	case MOD_SHUTDOWN:
3665 		/* Called during system shutdown. */
3666 		break;
3667 	default:
3668 		err = EOPNOTSUPP;
3669 		break;
3670 	}
3671 	return err;
3672 }
3673 
3674 static moduledata_t ipfwmod = {
3675 	"ipfw",
3676 	ipfw_modevent,
3677 	0
3678 };
3679 
3680 /* Define startup order. */
3681 #define	IPFW_SI_SUB_FIREWALL	SI_SUB_PROTO_FIREWALL
3682 #define	IPFW_MODEVENT_ORDER	(SI_ORDER_ANY - 255) /* On boot slot in here. */
3683 #define	IPFW_MODULE_ORDER	(IPFW_MODEVENT_ORDER + 1) /* A little later. */
3684 #define	IPFW_VNET_ORDER		(IPFW_MODEVENT_ORDER + 2) /* Later still. */
3685 
3686 DECLARE_MODULE(ipfw, ipfwmod, IPFW_SI_SUB_FIREWALL, IPFW_MODEVENT_ORDER);
3687 FEATURE(ipfw_ctl3, "ipfw new sockopt calls");
3688 MODULE_VERSION(ipfw, 3);
3689 /* should declare some dependencies here */
3690 
3691 /*
3692  * Starting up. Done in order after ipfwmod() has been called.
3693  * VNET_SYSINIT is also called for each existing vnet and each new vnet.
3694  */
3695 SYSINIT(ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
3696 	    ipfw_init, NULL);
3697 VNET_SYSINIT(vnet_ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
3698 	    vnet_ipfw_init, NULL);
3699 
3700 /*
3701  * Closing up shop. These are done in REVERSE ORDER, but still
3702  * after ipfwmod() has been called. Not called on reboot.
3703  * VNET_SYSUNINIT is also called for each exiting vnet as it exits.
3704  * or when the module is unloaded.
3705  */
3706 SYSUNINIT(ipfw_destroy, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
3707 	    ipfw_destroy, NULL);
3708 VNET_SYSUNINIT(vnet_ipfw_uninit, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
3709 	    vnet_ipfw_uninit, NULL);
3710 /* end of file */
3711