1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions related to segment and merge handling
4 */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/scatterlist.h>
11 #include <linux/part_stat.h>
12 #include <linux/blk-cgroup.h>
13
14 #include <trace/events/block.h>
15
16 #include "blk.h"
17 #include "blk-mq-sched.h"
18 #include "blk-rq-qos.h"
19 #include "blk-throttle.h"
20
bio_get_first_bvec(struct bio * bio,struct bio_vec * bv)21 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv)
22 {
23 *bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
24 }
25
bio_get_last_bvec(struct bio * bio,struct bio_vec * bv)26 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv)
27 {
28 struct bvec_iter iter = bio->bi_iter;
29 int idx;
30
31 bio_get_first_bvec(bio, bv);
32 if (bv->bv_len == bio->bi_iter.bi_size)
33 return; /* this bio only has a single bvec */
34
35 bio_advance_iter(bio, &iter, iter.bi_size);
36
37 if (!iter.bi_bvec_done)
38 idx = iter.bi_idx - 1;
39 else /* in the middle of bvec */
40 idx = iter.bi_idx;
41
42 *bv = bio->bi_io_vec[idx];
43
44 /*
45 * iter.bi_bvec_done records actual length of the last bvec
46 * if this bio ends in the middle of one io vector
47 */
48 if (iter.bi_bvec_done)
49 bv->bv_len = iter.bi_bvec_done;
50 }
51
bio_will_gap(struct request_queue * q,struct request * prev_rq,struct bio * prev,struct bio * next)52 static inline bool bio_will_gap(struct request_queue *q,
53 struct request *prev_rq, struct bio *prev, struct bio *next)
54 {
55 struct bio_vec pb, nb;
56
57 if (!bio_has_data(prev) || !queue_virt_boundary(q))
58 return false;
59
60 /*
61 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
62 * is quite difficult to respect the sg gap limit. We work hard to
63 * merge a huge number of small single bios in case of mkfs.
64 */
65 if (prev_rq)
66 bio_get_first_bvec(prev_rq->bio, &pb);
67 else
68 bio_get_first_bvec(prev, &pb);
69 if (pb.bv_offset & queue_virt_boundary(q))
70 return true;
71
72 /*
73 * We don't need to worry about the situation that the merged segment
74 * ends in unaligned virt boundary:
75 *
76 * - if 'pb' ends aligned, the merged segment ends aligned
77 * - if 'pb' ends unaligned, the next bio must include
78 * one single bvec of 'nb', otherwise the 'nb' can't
79 * merge with 'pb'
80 */
81 bio_get_last_bvec(prev, &pb);
82 bio_get_first_bvec(next, &nb);
83 if (biovec_phys_mergeable(q, &pb, &nb))
84 return false;
85 return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset);
86 }
87
req_gap_back_merge(struct request * req,struct bio * bio)88 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
89 {
90 return bio_will_gap(req->q, req, req->biotail, bio);
91 }
92
req_gap_front_merge(struct request * req,struct bio * bio)93 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
94 {
95 return bio_will_gap(req->q, NULL, bio, req->bio);
96 }
97
98 /*
99 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
100 * is defined as 'unsigned int', meantime it has to be aligned to with the
101 * logical block size, which is the minimum accepted unit by hardware.
102 */
bio_allowed_max_sectors(const struct queue_limits * lim)103 static unsigned int bio_allowed_max_sectors(const struct queue_limits *lim)
104 {
105 return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT;
106 }
107
bio_submit_split(struct bio * bio,int split_sectors)108 static struct bio *bio_submit_split(struct bio *bio, int split_sectors)
109 {
110 if (unlikely(split_sectors < 0)) {
111 bio->bi_status = errno_to_blk_status(split_sectors);
112 bio_endio(bio);
113 return NULL;
114 }
115
116 if (split_sectors) {
117 struct bio *split;
118
119 split = bio_split(bio, split_sectors, GFP_NOIO,
120 &bio->bi_bdev->bd_disk->bio_split);
121 split->bi_opf |= REQ_NOMERGE;
122 blkcg_bio_issue_init(split);
123 bio_chain(split, bio);
124 trace_block_split(split, bio->bi_iter.bi_sector);
125 WARN_ON_ONCE(bio_zone_write_plugging(bio));
126 submit_bio_noacct(bio);
127 return split;
128 }
129
130 return bio;
131 }
132
bio_split_discard(struct bio * bio,const struct queue_limits * lim,unsigned * nsegs)133 struct bio *bio_split_discard(struct bio *bio, const struct queue_limits *lim,
134 unsigned *nsegs)
135 {
136 unsigned int max_discard_sectors, granularity;
137 sector_t tmp;
138 unsigned split_sectors;
139
140 *nsegs = 1;
141
142 granularity = max(lim->discard_granularity >> 9, 1U);
143
144 max_discard_sectors =
145 min(lim->max_discard_sectors, bio_allowed_max_sectors(lim));
146 max_discard_sectors -= max_discard_sectors % granularity;
147 if (unlikely(!max_discard_sectors))
148 return bio;
149
150 if (bio_sectors(bio) <= max_discard_sectors)
151 return bio;
152
153 split_sectors = max_discard_sectors;
154
155 /*
156 * If the next starting sector would be misaligned, stop the discard at
157 * the previous aligned sector.
158 */
159 tmp = bio->bi_iter.bi_sector + split_sectors -
160 ((lim->discard_alignment >> 9) % granularity);
161 tmp = sector_div(tmp, granularity);
162
163 if (split_sectors > tmp)
164 split_sectors -= tmp;
165
166 return bio_submit_split(bio, split_sectors);
167 }
168
bio_split_write_zeroes(struct bio * bio,const struct queue_limits * lim,unsigned * nsegs)169 struct bio *bio_split_write_zeroes(struct bio *bio,
170 const struct queue_limits *lim, unsigned *nsegs)
171 {
172 *nsegs = 0;
173 if (!lim->max_write_zeroes_sectors)
174 return bio;
175 if (bio_sectors(bio) <= lim->max_write_zeroes_sectors)
176 return bio;
177 return bio_submit_split(bio, lim->max_write_zeroes_sectors);
178 }
179
blk_boundary_sectors(const struct queue_limits * lim,bool is_atomic)180 static inline unsigned int blk_boundary_sectors(const struct queue_limits *lim,
181 bool is_atomic)
182 {
183 /*
184 * chunk_sectors must be a multiple of atomic_write_boundary_sectors if
185 * both non-zero.
186 */
187 if (is_atomic && lim->atomic_write_boundary_sectors)
188 return lim->atomic_write_boundary_sectors;
189
190 return lim->chunk_sectors;
191 }
192
193 /*
194 * Return the maximum number of sectors from the start of a bio that may be
195 * submitted as a single request to a block device. If enough sectors remain,
196 * align the end to the physical block size. Otherwise align the end to the
197 * logical block size. This approach minimizes the number of non-aligned
198 * requests that are submitted to a block device if the start of a bio is not
199 * aligned to a physical block boundary.
200 */
get_max_io_size(struct bio * bio,const struct queue_limits * lim)201 static inline unsigned get_max_io_size(struct bio *bio,
202 const struct queue_limits *lim)
203 {
204 unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT;
205 unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT;
206 bool is_atomic = bio->bi_opf & REQ_ATOMIC;
207 unsigned boundary_sectors = blk_boundary_sectors(lim, is_atomic);
208 unsigned max_sectors, start, end;
209
210 /*
211 * We ignore lim->max_sectors for atomic writes because it may less
212 * than the actual bio size, which we cannot tolerate.
213 */
214 if (is_atomic)
215 max_sectors = lim->atomic_write_max_sectors;
216 else
217 max_sectors = lim->max_sectors;
218
219 if (boundary_sectors) {
220 max_sectors = min(max_sectors,
221 blk_boundary_sectors_left(bio->bi_iter.bi_sector,
222 boundary_sectors));
223 }
224
225 start = bio->bi_iter.bi_sector & (pbs - 1);
226 end = (start + max_sectors) & ~(pbs - 1);
227 if (end > start)
228 return end - start;
229 return max_sectors & ~(lbs - 1);
230 }
231
232 /**
233 * get_max_segment_size() - maximum number of bytes to add as a single segment
234 * @lim: Request queue limits.
235 * @paddr: address of the range to add
236 * @len: maximum length available to add at @paddr
237 *
238 * Returns the maximum number of bytes of the range starting at @paddr that can
239 * be added to a single segment.
240 */
get_max_segment_size(const struct queue_limits * lim,phys_addr_t paddr,unsigned int len)241 static inline unsigned get_max_segment_size(const struct queue_limits *lim,
242 phys_addr_t paddr, unsigned int len)
243 {
244 /*
245 * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1
246 * after having calculated the minimum.
247 */
248 return min_t(unsigned long, len,
249 min(lim->seg_boundary_mask - (lim->seg_boundary_mask & paddr),
250 (unsigned long)lim->max_segment_size - 1) + 1);
251 }
252
253 /**
254 * bvec_split_segs - verify whether or not a bvec should be split in the middle
255 * @lim: [in] queue limits to split based on
256 * @bv: [in] bvec to examine
257 * @nsegs: [in,out] Number of segments in the bio being built. Incremented
258 * by the number of segments from @bv that may be appended to that
259 * bio without exceeding @max_segs
260 * @bytes: [in,out] Number of bytes in the bio being built. Incremented
261 * by the number of bytes from @bv that may be appended to that
262 * bio without exceeding @max_bytes
263 * @max_segs: [in] upper bound for *@nsegs
264 * @max_bytes: [in] upper bound for *@bytes
265 *
266 * When splitting a bio, it can happen that a bvec is encountered that is too
267 * big to fit in a single segment and hence that it has to be split in the
268 * middle. This function verifies whether or not that should happen. The value
269 * %true is returned if and only if appending the entire @bv to a bio with
270 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
271 * the block driver.
272 */
bvec_split_segs(const struct queue_limits * lim,const struct bio_vec * bv,unsigned * nsegs,unsigned * bytes,unsigned max_segs,unsigned max_bytes)273 static bool bvec_split_segs(const struct queue_limits *lim,
274 const struct bio_vec *bv, unsigned *nsegs, unsigned *bytes,
275 unsigned max_segs, unsigned max_bytes)
276 {
277 unsigned max_len = min(max_bytes, UINT_MAX) - *bytes;
278 unsigned len = min(bv->bv_len, max_len);
279 unsigned total_len = 0;
280 unsigned seg_size = 0;
281
282 while (len && *nsegs < max_segs) {
283 seg_size = get_max_segment_size(lim, bvec_phys(bv) + total_len, len);
284
285 (*nsegs)++;
286 total_len += seg_size;
287 len -= seg_size;
288
289 if ((bv->bv_offset + total_len) & lim->virt_boundary_mask)
290 break;
291 }
292
293 *bytes += total_len;
294
295 /* tell the caller to split the bvec if it is too big to fit */
296 return len > 0 || bv->bv_len > max_len;
297 }
298
299 /**
300 * bio_split_rw_at - check if and where to split a read/write bio
301 * @bio: [in] bio to be split
302 * @lim: [in] queue limits to split based on
303 * @segs: [out] number of segments in the bio with the first half of the sectors
304 * @max_bytes: [in] maximum number of bytes per bio
305 *
306 * Find out if @bio needs to be split to fit the queue limits in @lim and a
307 * maximum size of @max_bytes. Returns a negative error number if @bio can't be
308 * split, 0 if the bio doesn't have to be split, or a positive sector offset if
309 * @bio needs to be split.
310 */
bio_split_rw_at(struct bio * bio,const struct queue_limits * lim,unsigned * segs,unsigned max_bytes)311 int bio_split_rw_at(struct bio *bio, const struct queue_limits *lim,
312 unsigned *segs, unsigned max_bytes)
313 {
314 struct bio_vec bv, bvprv, *bvprvp = NULL;
315 struct bvec_iter iter;
316 unsigned nsegs = 0, bytes = 0;
317
318 bio_for_each_bvec(bv, bio, iter) {
319 /*
320 * If the queue doesn't support SG gaps and adding this
321 * offset would create a gap, disallow it.
322 */
323 if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv.bv_offset))
324 goto split;
325
326 if (nsegs < lim->max_segments &&
327 bytes + bv.bv_len <= max_bytes &&
328 bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
329 nsegs++;
330 bytes += bv.bv_len;
331 } else {
332 if (bvec_split_segs(lim, &bv, &nsegs, &bytes,
333 lim->max_segments, max_bytes))
334 goto split;
335 }
336
337 bvprv = bv;
338 bvprvp = &bvprv;
339 }
340
341 *segs = nsegs;
342 return 0;
343 split:
344 if (bio->bi_opf & REQ_ATOMIC)
345 return -EINVAL;
346
347 /*
348 * We can't sanely support splitting for a REQ_NOWAIT bio. End it
349 * with EAGAIN if splitting is required and return an error pointer.
350 */
351 if (bio->bi_opf & REQ_NOWAIT)
352 return -EAGAIN;
353
354 *segs = nsegs;
355
356 /*
357 * Individual bvecs might not be logical block aligned. Round down the
358 * split size so that each bio is properly block size aligned, even if
359 * we do not use the full hardware limits.
360 */
361 bytes = ALIGN_DOWN(bytes, lim->logical_block_size);
362
363 /*
364 * Bio splitting may cause subtle trouble such as hang when doing sync
365 * iopoll in direct IO routine. Given performance gain of iopoll for
366 * big IO can be trival, disable iopoll when split needed.
367 */
368 bio_clear_polled(bio);
369 return bytes >> SECTOR_SHIFT;
370 }
371 EXPORT_SYMBOL_GPL(bio_split_rw_at);
372
bio_split_rw(struct bio * bio,const struct queue_limits * lim,unsigned * nr_segs)373 struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
374 unsigned *nr_segs)
375 {
376 return bio_submit_split(bio,
377 bio_split_rw_at(bio, lim, nr_segs,
378 get_max_io_size(bio, lim) << SECTOR_SHIFT));
379 }
380
381 /*
382 * REQ_OP_ZONE_APPEND bios must never be split by the block layer.
383 *
384 * But we want the nr_segs calculation provided by bio_split_rw_at, and having
385 * a good sanity check that the submitter built the bio correctly is nice to
386 * have as well.
387 */
bio_split_zone_append(struct bio * bio,const struct queue_limits * lim,unsigned * nr_segs)388 struct bio *bio_split_zone_append(struct bio *bio,
389 const struct queue_limits *lim, unsigned *nr_segs)
390 {
391 unsigned int max_sectors = queue_limits_max_zone_append_sectors(lim);
392 int split_sectors;
393
394 split_sectors = bio_split_rw_at(bio, lim, nr_segs,
395 max_sectors << SECTOR_SHIFT);
396 if (WARN_ON_ONCE(split_sectors > 0))
397 split_sectors = -EINVAL;
398 return bio_submit_split(bio, split_sectors);
399 }
400
401 /**
402 * bio_split_to_limits - split a bio to fit the queue limits
403 * @bio: bio to be split
404 *
405 * Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and
406 * if so split off a bio fitting the limits from the beginning of @bio and
407 * return it. @bio is shortened to the remainder and re-submitted.
408 *
409 * The split bio is allocated from @q->bio_split, which is provided by the
410 * block layer.
411 */
bio_split_to_limits(struct bio * bio)412 struct bio *bio_split_to_limits(struct bio *bio)
413 {
414 const struct queue_limits *lim = &bdev_get_queue(bio->bi_bdev)->limits;
415 unsigned int nr_segs;
416
417 return __bio_split_to_limits(bio, lim, &nr_segs);
418 }
419 EXPORT_SYMBOL(bio_split_to_limits);
420
blk_recalc_rq_segments(struct request * rq)421 unsigned int blk_recalc_rq_segments(struct request *rq)
422 {
423 unsigned int nr_phys_segs = 0;
424 unsigned int bytes = 0;
425 struct req_iterator iter;
426 struct bio_vec bv;
427
428 if (!rq->bio)
429 return 0;
430
431 switch (bio_op(rq->bio)) {
432 case REQ_OP_DISCARD:
433 case REQ_OP_SECURE_ERASE:
434 if (queue_max_discard_segments(rq->q) > 1) {
435 struct bio *bio = rq->bio;
436
437 for_each_bio(bio)
438 nr_phys_segs++;
439 return nr_phys_segs;
440 }
441 return 1;
442 case REQ_OP_WRITE_ZEROES:
443 return 0;
444 default:
445 break;
446 }
447
448 rq_for_each_bvec(bv, rq, iter)
449 bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes,
450 UINT_MAX, UINT_MAX);
451 return nr_phys_segs;
452 }
453
blk_next_sg(struct scatterlist ** sg,struct scatterlist * sglist)454 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
455 struct scatterlist *sglist)
456 {
457 if (!*sg)
458 return sglist;
459
460 /*
461 * If the driver previously mapped a shorter list, we could see a
462 * termination bit prematurely unless it fully inits the sg table
463 * on each mapping. We KNOW that there must be more entries here
464 * or the driver would be buggy, so force clear the termination bit
465 * to avoid doing a full sg_init_table() in drivers for each command.
466 */
467 sg_unmark_end(*sg);
468 return sg_next(*sg);
469 }
470
blk_bvec_map_sg(struct request_queue * q,struct bio_vec * bvec,struct scatterlist * sglist,struct scatterlist ** sg)471 static unsigned blk_bvec_map_sg(struct request_queue *q,
472 struct bio_vec *bvec, struct scatterlist *sglist,
473 struct scatterlist **sg)
474 {
475 unsigned nbytes = bvec->bv_len;
476 unsigned nsegs = 0, total = 0;
477
478 while (nbytes > 0) {
479 unsigned offset = bvec->bv_offset + total;
480 unsigned len = get_max_segment_size(&q->limits,
481 bvec_phys(bvec) + total, nbytes);
482 struct page *page = bvec->bv_page;
483
484 /*
485 * Unfortunately a fair number of drivers barf on scatterlists
486 * that have an offset larger than PAGE_SIZE, despite other
487 * subsystems dealing with that invariant just fine. For now
488 * stick to the legacy format where we never present those from
489 * the block layer, but the code below should be removed once
490 * these offenders (mostly MMC/SD drivers) are fixed.
491 */
492 page += (offset >> PAGE_SHIFT);
493 offset &= ~PAGE_MASK;
494
495 *sg = blk_next_sg(sg, sglist);
496 sg_set_page(*sg, page, len, offset);
497
498 total += len;
499 nbytes -= len;
500 nsegs++;
501 }
502
503 return nsegs;
504 }
505
__blk_bvec_map_sg(struct bio_vec bv,struct scatterlist * sglist,struct scatterlist ** sg)506 static inline int __blk_bvec_map_sg(struct bio_vec bv,
507 struct scatterlist *sglist, struct scatterlist **sg)
508 {
509 *sg = blk_next_sg(sg, sglist);
510 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
511 return 1;
512 }
513
514 /* only try to merge bvecs into one sg if they are from two bios */
515 static inline bool
__blk_segment_map_sg_merge(struct request_queue * q,struct bio_vec * bvec,struct bio_vec * bvprv,struct scatterlist ** sg)516 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
517 struct bio_vec *bvprv, struct scatterlist **sg)
518 {
519
520 int nbytes = bvec->bv_len;
521
522 if (!*sg)
523 return false;
524
525 if ((*sg)->length + nbytes > queue_max_segment_size(q))
526 return false;
527
528 if (!biovec_phys_mergeable(q, bvprv, bvec))
529 return false;
530
531 (*sg)->length += nbytes;
532
533 return true;
534 }
535
__blk_bios_map_sg(struct request_queue * q,struct bio * bio,struct scatterlist * sglist,struct scatterlist ** sg)536 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
537 struct scatterlist *sglist,
538 struct scatterlist **sg)
539 {
540 struct bio_vec bvec, bvprv = { NULL };
541 struct bvec_iter iter;
542 int nsegs = 0;
543 bool new_bio = false;
544
545 for_each_bio(bio) {
546 bio_for_each_bvec(bvec, bio, iter) {
547 /*
548 * Only try to merge bvecs from two bios given we
549 * have done bio internal merge when adding pages
550 * to bio
551 */
552 if (new_bio &&
553 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
554 goto next_bvec;
555
556 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
557 nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
558 else
559 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
560 next_bvec:
561 new_bio = false;
562 }
563 if (likely(bio->bi_iter.bi_size)) {
564 bvprv = bvec;
565 new_bio = true;
566 }
567 }
568
569 return nsegs;
570 }
571
572 /*
573 * map a request to scatterlist, return number of sg entries setup. Caller
574 * must make sure sg can hold rq->nr_phys_segments entries
575 */
__blk_rq_map_sg(struct request_queue * q,struct request * rq,struct scatterlist * sglist,struct scatterlist ** last_sg)576 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
577 struct scatterlist *sglist, struct scatterlist **last_sg)
578 {
579 int nsegs = 0;
580
581 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
582 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
583 else if (rq->bio)
584 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
585
586 if (*last_sg)
587 sg_mark_end(*last_sg);
588
589 /*
590 * Something must have been wrong if the figured number of
591 * segment is bigger than number of req's physical segments
592 */
593 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
594
595 return nsegs;
596 }
597 EXPORT_SYMBOL(__blk_rq_map_sg);
598
blk_rq_get_max_sectors(struct request * rq,sector_t offset)599 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
600 sector_t offset)
601 {
602 struct request_queue *q = rq->q;
603 struct queue_limits *lim = &q->limits;
604 unsigned int max_sectors, boundary_sectors;
605 bool is_atomic = rq->cmd_flags & REQ_ATOMIC;
606
607 if (blk_rq_is_passthrough(rq))
608 return q->limits.max_hw_sectors;
609
610 boundary_sectors = blk_boundary_sectors(lim, is_atomic);
611 max_sectors = blk_queue_get_max_sectors(rq);
612
613 if (!boundary_sectors ||
614 req_op(rq) == REQ_OP_DISCARD ||
615 req_op(rq) == REQ_OP_SECURE_ERASE)
616 return max_sectors;
617 return min(max_sectors,
618 blk_boundary_sectors_left(offset, boundary_sectors));
619 }
620
ll_new_hw_segment(struct request * req,struct bio * bio,unsigned int nr_phys_segs)621 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
622 unsigned int nr_phys_segs)
623 {
624 if (!blk_cgroup_mergeable(req, bio))
625 goto no_merge;
626
627 if (blk_integrity_merge_bio(req->q, req, bio) == false)
628 goto no_merge;
629
630 /* discard request merge won't add new segment */
631 if (req_op(req) == REQ_OP_DISCARD)
632 return 1;
633
634 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
635 goto no_merge;
636
637 /*
638 * This will form the start of a new hw segment. Bump both
639 * counters.
640 */
641 req->nr_phys_segments += nr_phys_segs;
642 if (bio_integrity(bio))
643 req->nr_integrity_segments += blk_rq_count_integrity_sg(req->q,
644 bio);
645 return 1;
646
647 no_merge:
648 req_set_nomerge(req->q, req);
649 return 0;
650 }
651
ll_back_merge_fn(struct request * req,struct bio * bio,unsigned int nr_segs)652 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
653 {
654 if (req_gap_back_merge(req, bio))
655 return 0;
656 if (blk_integrity_rq(req) &&
657 integrity_req_gap_back_merge(req, bio))
658 return 0;
659 if (!bio_crypt_ctx_back_mergeable(req, bio))
660 return 0;
661 if (blk_rq_sectors(req) + bio_sectors(bio) >
662 blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
663 req_set_nomerge(req->q, req);
664 return 0;
665 }
666
667 return ll_new_hw_segment(req, bio, nr_segs);
668 }
669
ll_front_merge_fn(struct request * req,struct bio * bio,unsigned int nr_segs)670 static int ll_front_merge_fn(struct request *req, struct bio *bio,
671 unsigned int nr_segs)
672 {
673 if (req_gap_front_merge(req, bio))
674 return 0;
675 if (blk_integrity_rq(req) &&
676 integrity_req_gap_front_merge(req, bio))
677 return 0;
678 if (!bio_crypt_ctx_front_mergeable(req, bio))
679 return 0;
680 if (blk_rq_sectors(req) + bio_sectors(bio) >
681 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
682 req_set_nomerge(req->q, req);
683 return 0;
684 }
685
686 return ll_new_hw_segment(req, bio, nr_segs);
687 }
688
req_attempt_discard_merge(struct request_queue * q,struct request * req,struct request * next)689 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
690 struct request *next)
691 {
692 unsigned short segments = blk_rq_nr_discard_segments(req);
693
694 if (segments >= queue_max_discard_segments(q))
695 goto no_merge;
696 if (blk_rq_sectors(req) + bio_sectors(next->bio) >
697 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
698 goto no_merge;
699
700 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
701 return true;
702 no_merge:
703 req_set_nomerge(q, req);
704 return false;
705 }
706
ll_merge_requests_fn(struct request_queue * q,struct request * req,struct request * next)707 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
708 struct request *next)
709 {
710 int total_phys_segments;
711
712 if (req_gap_back_merge(req, next->bio))
713 return 0;
714
715 /*
716 * Will it become too large?
717 */
718 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
719 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
720 return 0;
721
722 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
723 if (total_phys_segments > blk_rq_get_max_segments(req))
724 return 0;
725
726 if (!blk_cgroup_mergeable(req, next->bio))
727 return 0;
728
729 if (blk_integrity_merge_rq(q, req, next) == false)
730 return 0;
731
732 if (!bio_crypt_ctx_merge_rq(req, next))
733 return 0;
734
735 /* Merge is OK... */
736 req->nr_phys_segments = total_phys_segments;
737 req->nr_integrity_segments += next->nr_integrity_segments;
738 return 1;
739 }
740
741 /**
742 * blk_rq_set_mixed_merge - mark a request as mixed merge
743 * @rq: request to mark as mixed merge
744 *
745 * Description:
746 * @rq is about to be mixed merged. Make sure the attributes
747 * which can be mixed are set in each bio and mark @rq as mixed
748 * merged.
749 */
blk_rq_set_mixed_merge(struct request * rq)750 static void blk_rq_set_mixed_merge(struct request *rq)
751 {
752 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
753 struct bio *bio;
754
755 if (rq->rq_flags & RQF_MIXED_MERGE)
756 return;
757
758 /*
759 * @rq will no longer represent mixable attributes for all the
760 * contained bios. It will just track those of the first one.
761 * Distributes the attributs to each bio.
762 */
763 for (bio = rq->bio; bio; bio = bio->bi_next) {
764 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
765 (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
766 bio->bi_opf |= ff;
767 }
768 rq->rq_flags |= RQF_MIXED_MERGE;
769 }
770
bio_failfast(const struct bio * bio)771 static inline blk_opf_t bio_failfast(const struct bio *bio)
772 {
773 if (bio->bi_opf & REQ_RAHEAD)
774 return REQ_FAILFAST_MASK;
775
776 return bio->bi_opf & REQ_FAILFAST_MASK;
777 }
778
779 /*
780 * After we are marked as MIXED_MERGE, any new RA bio has to be updated
781 * as failfast, and request's failfast has to be updated in case of
782 * front merge.
783 */
blk_update_mixed_merge(struct request * req,struct bio * bio,bool front_merge)784 static inline void blk_update_mixed_merge(struct request *req,
785 struct bio *bio, bool front_merge)
786 {
787 if (req->rq_flags & RQF_MIXED_MERGE) {
788 if (bio->bi_opf & REQ_RAHEAD)
789 bio->bi_opf |= REQ_FAILFAST_MASK;
790
791 if (front_merge) {
792 req->cmd_flags &= ~REQ_FAILFAST_MASK;
793 req->cmd_flags |= bio->bi_opf & REQ_FAILFAST_MASK;
794 }
795 }
796 }
797
blk_account_io_merge_request(struct request * req)798 static void blk_account_io_merge_request(struct request *req)
799 {
800 if (blk_do_io_stat(req)) {
801 part_stat_lock();
802 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
803 part_stat_local_dec(req->part,
804 in_flight[op_is_write(req_op(req))]);
805 part_stat_unlock();
806 }
807 }
808
blk_try_req_merge(struct request * req,struct request * next)809 static enum elv_merge blk_try_req_merge(struct request *req,
810 struct request *next)
811 {
812 if (blk_discard_mergable(req))
813 return ELEVATOR_DISCARD_MERGE;
814 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
815 return ELEVATOR_BACK_MERGE;
816
817 return ELEVATOR_NO_MERGE;
818 }
819
blk_atomic_write_mergeable_rq_bio(struct request * rq,struct bio * bio)820 static bool blk_atomic_write_mergeable_rq_bio(struct request *rq,
821 struct bio *bio)
822 {
823 return (rq->cmd_flags & REQ_ATOMIC) == (bio->bi_opf & REQ_ATOMIC);
824 }
825
blk_atomic_write_mergeable_rqs(struct request * rq,struct request * next)826 static bool blk_atomic_write_mergeable_rqs(struct request *rq,
827 struct request *next)
828 {
829 return (rq->cmd_flags & REQ_ATOMIC) == (next->cmd_flags & REQ_ATOMIC);
830 }
831
832 /*
833 * For non-mq, this has to be called with the request spinlock acquired.
834 * For mq with scheduling, the appropriate queue wide lock should be held.
835 */
attempt_merge(struct request_queue * q,struct request * req,struct request * next)836 static struct request *attempt_merge(struct request_queue *q,
837 struct request *req, struct request *next)
838 {
839 if (!rq_mergeable(req) || !rq_mergeable(next))
840 return NULL;
841
842 if (req_op(req) != req_op(next))
843 return NULL;
844
845 if (rq_data_dir(req) != rq_data_dir(next))
846 return NULL;
847
848 /* Don't merge requests with different write hints. */
849 if (req->write_hint != next->write_hint)
850 return NULL;
851
852 if (req->ioprio != next->ioprio)
853 return NULL;
854
855 if (!blk_atomic_write_mergeable_rqs(req, next))
856 return NULL;
857
858 /*
859 * If we are allowed to merge, then append bio list
860 * from next to rq and release next. merge_requests_fn
861 * will have updated segment counts, update sector
862 * counts here. Handle DISCARDs separately, as they
863 * have separate settings.
864 */
865
866 switch (blk_try_req_merge(req, next)) {
867 case ELEVATOR_DISCARD_MERGE:
868 if (!req_attempt_discard_merge(q, req, next))
869 return NULL;
870 break;
871 case ELEVATOR_BACK_MERGE:
872 if (!ll_merge_requests_fn(q, req, next))
873 return NULL;
874 break;
875 default:
876 return NULL;
877 }
878
879 /*
880 * If failfast settings disagree or any of the two is already
881 * a mixed merge, mark both as mixed before proceeding. This
882 * makes sure that all involved bios have mixable attributes
883 * set properly.
884 */
885 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
886 (req->cmd_flags & REQ_FAILFAST_MASK) !=
887 (next->cmd_flags & REQ_FAILFAST_MASK)) {
888 blk_rq_set_mixed_merge(req);
889 blk_rq_set_mixed_merge(next);
890 }
891
892 /*
893 * At this point we have either done a back merge or front merge. We
894 * need the smaller start_time_ns of the merged requests to be the
895 * current request for accounting purposes.
896 */
897 if (next->start_time_ns < req->start_time_ns)
898 req->start_time_ns = next->start_time_ns;
899
900 req->biotail->bi_next = next->bio;
901 req->biotail = next->biotail;
902
903 req->__data_len += blk_rq_bytes(next);
904
905 if (!blk_discard_mergable(req))
906 elv_merge_requests(q, req, next);
907
908 blk_crypto_rq_put_keyslot(next);
909
910 /*
911 * 'next' is going away, so update stats accordingly
912 */
913 blk_account_io_merge_request(next);
914
915 trace_block_rq_merge(next);
916
917 /*
918 * ownership of bio passed from next to req, return 'next' for
919 * the caller to free
920 */
921 next->bio = NULL;
922 return next;
923 }
924
attempt_back_merge(struct request_queue * q,struct request * rq)925 static struct request *attempt_back_merge(struct request_queue *q,
926 struct request *rq)
927 {
928 struct request *next = elv_latter_request(q, rq);
929
930 if (next)
931 return attempt_merge(q, rq, next);
932
933 return NULL;
934 }
935
attempt_front_merge(struct request_queue * q,struct request * rq)936 static struct request *attempt_front_merge(struct request_queue *q,
937 struct request *rq)
938 {
939 struct request *prev = elv_former_request(q, rq);
940
941 if (prev)
942 return attempt_merge(q, prev, rq);
943
944 return NULL;
945 }
946
947 /*
948 * Try to merge 'next' into 'rq'. Return true if the merge happened, false
949 * otherwise. The caller is responsible for freeing 'next' if the merge
950 * happened.
951 */
blk_attempt_req_merge(struct request_queue * q,struct request * rq,struct request * next)952 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
953 struct request *next)
954 {
955 return attempt_merge(q, rq, next);
956 }
957
blk_rq_merge_ok(struct request * rq,struct bio * bio)958 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
959 {
960 if (!rq_mergeable(rq) || !bio_mergeable(bio))
961 return false;
962
963 if (req_op(rq) != bio_op(bio))
964 return false;
965
966 /* different data direction or already started, don't merge */
967 if (bio_data_dir(bio) != rq_data_dir(rq))
968 return false;
969
970 /* don't merge across cgroup boundaries */
971 if (!blk_cgroup_mergeable(rq, bio))
972 return false;
973
974 /* only merge integrity protected bio into ditto rq */
975 if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
976 return false;
977
978 /* Only merge if the crypt contexts are compatible */
979 if (!bio_crypt_rq_ctx_compatible(rq, bio))
980 return false;
981
982 /* Don't merge requests with different write hints. */
983 if (rq->write_hint != bio->bi_write_hint)
984 return false;
985
986 if (rq->ioprio != bio_prio(bio))
987 return false;
988
989 if (blk_atomic_write_mergeable_rq_bio(rq, bio) == false)
990 return false;
991
992 return true;
993 }
994
blk_try_merge(struct request * rq,struct bio * bio)995 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
996 {
997 if (blk_discard_mergable(rq))
998 return ELEVATOR_DISCARD_MERGE;
999 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
1000 return ELEVATOR_BACK_MERGE;
1001 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
1002 return ELEVATOR_FRONT_MERGE;
1003 return ELEVATOR_NO_MERGE;
1004 }
1005
blk_account_io_merge_bio(struct request * req)1006 static void blk_account_io_merge_bio(struct request *req)
1007 {
1008 if (!blk_do_io_stat(req))
1009 return;
1010
1011 part_stat_lock();
1012 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
1013 part_stat_unlock();
1014 }
1015
bio_attempt_back_merge(struct request * req,struct bio * bio,unsigned int nr_segs)1016 enum bio_merge_status bio_attempt_back_merge(struct request *req,
1017 struct bio *bio, unsigned int nr_segs)
1018 {
1019 const blk_opf_t ff = bio_failfast(bio);
1020
1021 if (!ll_back_merge_fn(req, bio, nr_segs))
1022 return BIO_MERGE_FAILED;
1023
1024 trace_block_bio_backmerge(bio);
1025 rq_qos_merge(req->q, req, bio);
1026
1027 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1028 blk_rq_set_mixed_merge(req);
1029
1030 blk_update_mixed_merge(req, bio, false);
1031
1032 if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING)
1033 blk_zone_write_plug_bio_merged(bio);
1034
1035 req->biotail->bi_next = bio;
1036 req->biotail = bio;
1037 req->__data_len += bio->bi_iter.bi_size;
1038
1039 bio_crypt_free_ctx(bio);
1040
1041 blk_account_io_merge_bio(req);
1042 return BIO_MERGE_OK;
1043 }
1044
bio_attempt_front_merge(struct request * req,struct bio * bio,unsigned int nr_segs)1045 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
1046 struct bio *bio, unsigned int nr_segs)
1047 {
1048 const blk_opf_t ff = bio_failfast(bio);
1049
1050 /*
1051 * A front merge for writes to sequential zones of a zoned block device
1052 * can happen only if the user submitted writes out of order. Do not
1053 * merge such write to let it fail.
1054 */
1055 if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING)
1056 return BIO_MERGE_FAILED;
1057
1058 if (!ll_front_merge_fn(req, bio, nr_segs))
1059 return BIO_MERGE_FAILED;
1060
1061 trace_block_bio_frontmerge(bio);
1062 rq_qos_merge(req->q, req, bio);
1063
1064 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1065 blk_rq_set_mixed_merge(req);
1066
1067 blk_update_mixed_merge(req, bio, true);
1068
1069 bio->bi_next = req->bio;
1070 req->bio = bio;
1071
1072 req->__sector = bio->bi_iter.bi_sector;
1073 req->__data_len += bio->bi_iter.bi_size;
1074
1075 bio_crypt_do_front_merge(req, bio);
1076
1077 blk_account_io_merge_bio(req);
1078 return BIO_MERGE_OK;
1079 }
1080
bio_attempt_discard_merge(struct request_queue * q,struct request * req,struct bio * bio)1081 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
1082 struct request *req, struct bio *bio)
1083 {
1084 unsigned short segments = blk_rq_nr_discard_segments(req);
1085
1086 if (segments >= queue_max_discard_segments(q))
1087 goto no_merge;
1088 if (blk_rq_sectors(req) + bio_sectors(bio) >
1089 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1090 goto no_merge;
1091
1092 rq_qos_merge(q, req, bio);
1093
1094 req->biotail->bi_next = bio;
1095 req->biotail = bio;
1096 req->__data_len += bio->bi_iter.bi_size;
1097 req->nr_phys_segments = segments + 1;
1098
1099 blk_account_io_merge_bio(req);
1100 return BIO_MERGE_OK;
1101 no_merge:
1102 req_set_nomerge(q, req);
1103 return BIO_MERGE_FAILED;
1104 }
1105
blk_attempt_bio_merge(struct request_queue * q,struct request * rq,struct bio * bio,unsigned int nr_segs,bool sched_allow_merge)1106 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1107 struct request *rq,
1108 struct bio *bio,
1109 unsigned int nr_segs,
1110 bool sched_allow_merge)
1111 {
1112 if (!blk_rq_merge_ok(rq, bio))
1113 return BIO_MERGE_NONE;
1114
1115 switch (blk_try_merge(rq, bio)) {
1116 case ELEVATOR_BACK_MERGE:
1117 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1118 return bio_attempt_back_merge(rq, bio, nr_segs);
1119 break;
1120 case ELEVATOR_FRONT_MERGE:
1121 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1122 return bio_attempt_front_merge(rq, bio, nr_segs);
1123 break;
1124 case ELEVATOR_DISCARD_MERGE:
1125 return bio_attempt_discard_merge(q, rq, bio);
1126 default:
1127 return BIO_MERGE_NONE;
1128 }
1129
1130 return BIO_MERGE_FAILED;
1131 }
1132
1133 /**
1134 * blk_attempt_plug_merge - try to merge with %current's plugged list
1135 * @q: request_queue new bio is being queued at
1136 * @bio: new bio being queued
1137 * @nr_segs: number of segments in @bio
1138 * from the passed in @q already in the plug list
1139 *
1140 * Determine whether @bio being queued on @q can be merged with the previous
1141 * request on %current's plugged list. Returns %true if merge was successful,
1142 * otherwise %false.
1143 *
1144 * Plugging coalesces IOs from the same issuer for the same purpose without
1145 * going through @q->queue_lock. As such it's more of an issuing mechanism
1146 * than scheduling, and the request, while may have elvpriv data, is not
1147 * added on the elevator at this point. In addition, we don't have
1148 * reliable access to the elevator outside queue lock. Only check basic
1149 * merging parameters without querying the elevator.
1150 *
1151 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1152 */
blk_attempt_plug_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)1153 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1154 unsigned int nr_segs)
1155 {
1156 struct blk_plug *plug = current->plug;
1157 struct request *rq;
1158
1159 if (!plug || rq_list_empty(plug->mq_list))
1160 return false;
1161
1162 rq_list_for_each(&plug->mq_list, rq) {
1163 if (rq->q == q) {
1164 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1165 BIO_MERGE_OK)
1166 return true;
1167 break;
1168 }
1169
1170 /*
1171 * Only keep iterating plug list for merges if we have multiple
1172 * queues
1173 */
1174 if (!plug->multiple_queues)
1175 break;
1176 }
1177 return false;
1178 }
1179
1180 /*
1181 * Iterate list of requests and see if we can merge this bio with any
1182 * of them.
1183 */
blk_bio_list_merge(struct request_queue * q,struct list_head * list,struct bio * bio,unsigned int nr_segs)1184 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1185 struct bio *bio, unsigned int nr_segs)
1186 {
1187 struct request *rq;
1188 int checked = 8;
1189
1190 list_for_each_entry_reverse(rq, list, queuelist) {
1191 if (!checked--)
1192 break;
1193
1194 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1195 case BIO_MERGE_NONE:
1196 continue;
1197 case BIO_MERGE_OK:
1198 return true;
1199 case BIO_MERGE_FAILED:
1200 return false;
1201 }
1202
1203 }
1204
1205 return false;
1206 }
1207 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1208
blk_mq_sched_try_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs,struct request ** merged_request)1209 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1210 unsigned int nr_segs, struct request **merged_request)
1211 {
1212 struct request *rq;
1213
1214 switch (elv_merge(q, &rq, bio)) {
1215 case ELEVATOR_BACK_MERGE:
1216 if (!blk_mq_sched_allow_merge(q, rq, bio))
1217 return false;
1218 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1219 return false;
1220 *merged_request = attempt_back_merge(q, rq);
1221 if (!*merged_request)
1222 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1223 return true;
1224 case ELEVATOR_FRONT_MERGE:
1225 if (!blk_mq_sched_allow_merge(q, rq, bio))
1226 return false;
1227 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1228 return false;
1229 *merged_request = attempt_front_merge(q, rq);
1230 if (!*merged_request)
1231 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1232 return true;
1233 case ELEVATOR_DISCARD_MERGE:
1234 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1235 default:
1236 return false;
1237 }
1238 }
1239 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
1240