1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 2008 Isilon Systems, Inc.
5 * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
6 * Copyright (c) 1998 Berkeley Software Design, Inc.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Berkeley Software Design Inc's name may not be used to endorse or
18 * promote products derived from this software without specific prior
19 * written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
34 * and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
35 */
36
37 /*
38 * Implementation of the `witness' lock verifier. Originally implemented for
39 * mutexes in BSD/OS. Extended to handle generic lock objects and lock
40 * classes in FreeBSD.
41 */
42
43 /*
44 * Main Entry: witness
45 * Pronunciation: 'wit-n&s
46 * Function: noun
47 * Etymology: Middle English witnesse, from Old English witnes knowledge,
48 * testimony, witness, from 2wit
49 * Date: before 12th century
50 * 1 : attestation of a fact or event : TESTIMONY
51 * 2 : one that gives evidence; specifically : one who testifies in
52 * a cause or before a judicial tribunal
53 * 3 : one asked to be present at a transaction so as to be able to
54 * testify to its having taken place
55 * 4 : one who has personal knowledge of something
56 * 5 a : something serving as evidence or proof : SIGN
57 * b : public affirmation by word or example of usually
58 * religious faith or conviction <the heroic witness to divine
59 * life -- Pilot>
60 * 6 capitalized : a member of the Jehovah's Witnesses
61 */
62
63 /*
64 * Special rules concerning Giant and lock orders:
65 *
66 * 1) Giant must be acquired before any other mutexes. Stated another way,
67 * no other mutex may be held when Giant is acquired.
68 *
69 * 2) Giant must be released when blocking on a sleepable lock.
70 *
71 * This rule is less obvious, but is a result of Giant providing the same
72 * semantics as spl(). Basically, when a thread sleeps, it must release
73 * Giant. When a thread blocks on a sleepable lock, it sleeps. Hence rule
74 * 2).
75 *
76 * 3) Giant may be acquired before or after sleepable locks.
77 *
78 * This rule is also not quite as obvious. Giant may be acquired after
79 * a sleepable lock because it is a non-sleepable lock and non-sleepable
80 * locks may always be acquired while holding a sleepable lock. The second
81 * case, Giant before a sleepable lock, follows from rule 2) above. Suppose
82 * you have two threads T1 and T2 and a sleepable lock X. Suppose that T1
83 * acquires X and blocks on Giant. Then suppose that T2 acquires Giant and
84 * blocks on X. When T2 blocks on X, T2 will release Giant allowing T1 to
85 * execute. Thus, acquiring Giant both before and after a sleepable lock
86 * will not result in a lock order reversal.
87 */
88
89 #include <sys/cdefs.h>
90 #include "opt_ddb.h"
91 #include "opt_hwpmc_hooks.h"
92 #include "opt_stack.h"
93 #include "opt_witness.h"
94
95 #include <sys/param.h>
96 #include <sys/bus.h>
97 #include <sys/kdb.h>
98 #include <sys/kernel.h>
99 #include <sys/ktr.h>
100 #include <sys/lock.h>
101 #include <sys/malloc.h>
102 #include <sys/mutex.h>
103 #include <sys/priv.h>
104 #include <sys/proc.h>
105 #include <sys/sbuf.h>
106 #include <sys/sched.h>
107 #include <sys/stack.h>
108 #include <sys/stdarg.h>
109 #include <sys/sysctl.h>
110 #include <sys/syslog.h>
111 #include <sys/systm.h>
112
113 #ifdef DDB
114 #include <ddb/ddb.h>
115 #endif
116
117 #if !defined(DDB) && !defined(STACK)
118 #error "DDB or STACK options are required for WITNESS"
119 #endif
120
121 /* Note that these traces do not work with KTR_ALQ. */
122 #if 0
123 #define KTR_WITNESS KTR_SUBSYS
124 #else
125 #define KTR_WITNESS 0
126 #endif
127
128 #define LI_RECURSEMASK 0x0000ffff /* Recursion depth of lock instance. */
129 #define LI_EXCLUSIVE 0x00010000 /* Exclusive lock instance. */
130 #define LI_NORELEASE 0x00020000 /* Lock not allowed to be released. */
131 #define LI_SLEEPABLE 0x00040000 /* Lock may be held while sleeping. */
132
133 #ifndef WITNESS_COUNT
134 #define WITNESS_COUNT 1536
135 #endif
136 #define WITNESS_HASH_SIZE 251 /* Prime, gives load factor < 2 */
137 #define WITNESS_PENDLIST (512 + (MAXCPU * 4))
138
139 /* Allocate 256 KB of stack data space */
140 #define WITNESS_LO_DATA_COUNT 2048
141
142 /* Prime, gives load factor of ~2 at full load */
143 #define WITNESS_LO_HASH_SIZE 1021
144
145 /*
146 * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
147 * will hold LOCK_NCHILDREN locks. We handle failure ok, and we should
148 * probably be safe for the most part, but it's still a SWAG.
149 */
150 #define LOCK_NCHILDREN 5
151 #define LOCK_CHILDCOUNT 2048
152
153 #define MAX_W_NAME 64
154
155 #define FULLGRAPH_SBUF_SIZE 512
156
157 /*
158 * These flags go in the witness relationship matrix and describe the
159 * relationship between any two struct witness objects.
160 */
161 #define WITNESS_UNRELATED 0x00 /* No lock order relation. */
162 #define WITNESS_PARENT 0x01 /* Parent, aka direct ancestor. */
163 #define WITNESS_ANCESTOR 0x02 /* Direct or indirect ancestor. */
164 #define WITNESS_CHILD 0x04 /* Child, aka direct descendant. */
165 #define WITNESS_DESCENDANT 0x08 /* Direct or indirect descendant. */
166 #define WITNESS_ANCESTOR_MASK (WITNESS_PARENT | WITNESS_ANCESTOR)
167 #define WITNESS_DESCENDANT_MASK (WITNESS_CHILD | WITNESS_DESCENDANT)
168 #define WITNESS_RELATED_MASK (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
169 #define WITNESS_REVERSAL 0x10 /* A lock order reversal has been observed. */
170 #define WITNESS_RESERVED1 0x20 /* Unused flag, reserved. */
171 #define WITNESS_RESERVED2 0x40 /* Unused flag, reserved. */
172 #define WITNESS_LOCK_ORDER_KNOWN 0x80 /* This lock order is known. */
173
174 /* Descendant to ancestor flags */
175 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
176
177 /* Ancestor to descendant flags */
178 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
179
180 #define WITNESS_INDEX_ASSERT(i) \
181 MPASS((i) > 0 && (i) <= w_max_used_index && (i) < witness_count)
182
183 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
184
185 /*
186 * Lock instances. A lock instance is the data associated with a lock while
187 * it is held by witness. For example, a lock instance will hold the
188 * recursion count of a lock. Lock instances are held in lists. Spin locks
189 * are held in a per-cpu list while sleep locks are held in per-thread list.
190 */
191 struct lock_instance {
192 struct lock_object *li_lock;
193 const char *li_file;
194 int li_line;
195 u_int li_flags;
196 };
197
198 /*
199 * A simple list type used to build the list of locks held by a thread
200 * or CPU. We can't simply embed the list in struct lock_object since a
201 * lock may be held by more than one thread if it is a shared lock. Locks
202 * are added to the head of the list, so we fill up each list entry from
203 * "the back" logically. To ease some of the arithmetic, we actually fill
204 * in each list entry the normal way (children[0] then children[1], etc.) but
205 * when we traverse the list we read children[count-1] as the first entry
206 * down to children[0] as the final entry.
207 */
208 struct lock_list_entry {
209 struct lock_list_entry *ll_next;
210 struct lock_instance ll_children[LOCK_NCHILDREN];
211 u_int ll_count;
212 };
213
214 /*
215 * The main witness structure. One of these per named lock type in the system
216 * (for example, "vnode interlock").
217 */
218 struct witness {
219 char w_name[MAX_W_NAME];
220 uint32_t w_index; /* Index in the relationship matrix */
221 struct lock_class *w_class;
222 STAILQ_ENTRY(witness) w_list; /* List of all witnesses. */
223 STAILQ_ENTRY(witness) w_typelist; /* Witnesses of a type. */
224 struct witness *w_hash_next; /* Linked list in hash buckets. */
225 const char *w_file; /* File where last acquired */
226 uint32_t w_line; /* Line where last acquired */
227 uint32_t w_refcount;
228 uint16_t w_num_ancestors; /* direct/indirect ancestor count */
229 uint16_t w_num_descendants; /* direct/indirect descendant count */
230 int16_t w_ddb_level;
231 unsigned w_displayed:1;
232 unsigned w_reversed:1;
233 };
234
235 STAILQ_HEAD(witness_list, witness);
236
237 /*
238 * The witness hash table. Keys are witness names (const char *), elements are
239 * witness objects (struct witness *).
240 */
241 struct witness_hash {
242 struct witness *wh_array[WITNESS_HASH_SIZE];
243 uint32_t wh_size;
244 uint32_t wh_count;
245 };
246
247 /*
248 * Key type for the lock order data hash table.
249 */
250 struct witness_lock_order_key {
251 uint16_t from;
252 uint16_t to;
253 };
254
255 struct witness_lock_order_data {
256 struct stack wlod_stack;
257 struct witness_lock_order_key wlod_key;
258 struct witness_lock_order_data *wlod_next;
259 };
260
261 /*
262 * The witness lock order data hash table. Keys are witness index tuples
263 * (struct witness_lock_order_key), elements are lock order data objects
264 * (struct witness_lock_order_data).
265 */
266 struct witness_lock_order_hash {
267 struct witness_lock_order_data *wloh_array[WITNESS_LO_HASH_SIZE];
268 u_int wloh_size;
269 u_int wloh_count;
270 };
271
272 struct witness_blessed {
273 const char *b_lock1;
274 const char *b_lock2;
275 };
276
277 struct witness_pendhelp {
278 const char *wh_type;
279 struct lock_object *wh_lock;
280 };
281
282 struct witness_order_list_entry {
283 const char *w_name;
284 struct lock_class *w_class;
285 };
286
287 /*
288 * Returns 0 if one of the locks is a spin lock and the other is not.
289 * Returns 1 otherwise.
290 */
291 static __inline int
witness_lock_type_equal(struct witness * w1,struct witness * w2)292 witness_lock_type_equal(struct witness *w1, struct witness *w2)
293 {
294 return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
295 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
296 }
297
298 static __inline int
witness_lock_order_key_equal(const struct witness_lock_order_key * a,const struct witness_lock_order_key * b)299 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
300 const struct witness_lock_order_key *b)
301 {
302 return (a->from == b->from && a->to == b->to);
303 }
304
305 static int _isitmyx(struct witness *w1, struct witness *w2, int rmask,
306 const char *fname);
307 static void adopt(struct witness *parent, struct witness *child);
308 static int blessed(struct witness *, struct witness *);
309 static void depart(struct witness *w);
310 static struct witness *enroll(const char *description,
311 struct lock_class *lock_class);
312 static struct lock_instance *find_instance(struct lock_list_entry *list,
313 const struct lock_object *lock);
314 static int isitmychild(struct witness *parent, struct witness *child);
315 static int isitmydescendant(struct witness *parent, struct witness *child);
316 static void itismychild(struct witness *parent, struct witness *child);
317 static int sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
318 static int sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
319 static int sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
320 static int sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS);
321 static void witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
322 #ifdef DDB
323 static void witness_ddb_compute_levels(void);
324 static void witness_ddb_display(int(*)(const char *fmt, ...));
325 static void witness_ddb_display_descendants(int(*)(const char *fmt, ...),
326 struct witness *, int indent);
327 static void witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
328 struct witness_list *list);
329 static void witness_ddb_level_descendants(struct witness *parent, int l);
330 static void witness_ddb_list(struct thread *td);
331 #endif
332 static void witness_enter_debugger(const char *msg);
333 static void witness_debugger(int cond, const char *msg);
334 static void witness_free(struct witness *m);
335 static struct witness *witness_get(void);
336 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
337 static struct witness *witness_hash_get(const char *key);
338 static void witness_hash_put(struct witness *w);
339 static void witness_init_hash_tables(void);
340 static void witness_increment_graph_generation(void);
341 static void witness_lock_list_free(struct lock_list_entry *lle);
342 static struct lock_list_entry *witness_lock_list_get(void);
343 static int witness_lock_order_add(struct witness *parent,
344 struct witness *child);
345 static int witness_lock_order_check(struct witness *parent,
346 struct witness *child);
347 static struct witness_lock_order_data *witness_lock_order_get(
348 struct witness *parent,
349 struct witness *child);
350 static void witness_list_lock(struct lock_instance *instance,
351 int (*prnt)(const char *fmt, ...));
352 static int witness_output(const char *fmt, ...) __printflike(1, 2);
353 static int witness_output_drain(void *arg __unused, const char *data,
354 int len);
355 static int witness_voutput(const char *fmt, va_list ap) __printflike(1, 0);
356 static void witness_setflag(struct lock_object *lock, int flag, int set);
357
358 FEATURE(witness, "kernel has witness(9) support");
359
360 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
361 "Witness Locking");
362
363 /*
364 * If set to 0, lock order checking is disabled. If set to -1,
365 * witness is completely disabled. Otherwise witness performs full
366 * lock order checking for all locks. At runtime, lock order checking
367 * may be toggled. However, witness cannot be reenabled once it is
368 * completely disabled.
369 */
370 static int witness_watch = 1;
371 SYSCTL_PROC(_debug_witness, OID_AUTO, watch,
372 CTLFLAG_RWTUN | CTLTYPE_INT | CTLFLAG_MPSAFE, NULL, 0,
373 sysctl_debug_witness_watch, "I",
374 "witness is watching lock operations");
375
376 #ifdef KDB
377 /*
378 * When KDB is enabled and witness_kdb is 1, it will cause the system
379 * to drop into kdebug() when:
380 * - a lock hierarchy violation occurs
381 * - locks are held when going to sleep.
382 */
383 #ifdef WITNESS_KDB
384 int witness_kdb = 1;
385 #else
386 int witness_kdb = 0;
387 #endif
388 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, "");
389 #endif /* KDB */
390
391 #if defined(DDB) || defined(KDB)
392 /*
393 * When DDB or KDB is enabled and witness_trace is 1, it will cause the system
394 * to print a stack trace:
395 * - a lock hierarchy violation occurs
396 * - locks are held when going to sleep.
397 */
398 int witness_trace = 1;
399 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, "");
400 #endif /* DDB || KDB */
401
402 #ifdef WITNESS_SKIPSPIN
403 int witness_skipspin = 1;
404 #else
405 int witness_skipspin = 0;
406 #endif
407 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, "");
408
409 int badstack_sbuf_size;
410
411 int witness_count = WITNESS_COUNT;
412 SYSCTL_INT(_debug_witness, OID_AUTO, witness_count, CTLFLAG_RDTUN,
413 &witness_count, 0, "");
414
415 /*
416 * Output channel for witness messages. By default we print to the console.
417 */
418 enum witness_channel {
419 WITNESS_CONSOLE,
420 WITNESS_LOG,
421 WITNESS_NONE,
422 };
423
424 static enum witness_channel witness_channel = WITNESS_CONSOLE;
425 SYSCTL_PROC(_debug_witness, OID_AUTO, output_channel,
426 CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, NULL, 0,
427 sysctl_debug_witness_channel, "A",
428 "Output channel for warnings");
429
430 /*
431 * Call this to print out the relations between locks.
432 */
433 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph,
434 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
435 sysctl_debug_witness_fullgraph, "A",
436 "Show locks relation graphs");
437
438 /*
439 * Call this to print out the witness faulty stacks.
440 */
441 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks,
442 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
443 sysctl_debug_witness_badstacks, "A",
444 "Show bad witness stacks");
445
446 static struct mtx w_mtx;
447
448 /* w_list */
449 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
450 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
451
452 /* w_typelist */
453 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
454 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
455
456 /* lock list */
457 static struct lock_list_entry *w_lock_list_free = NULL;
458 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
459 static u_int pending_cnt;
460
461 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
462 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
463 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
464 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
465 "");
466
467 static struct witness *w_data;
468 static uint8_t **w_rmatrix;
469 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
470 static struct witness_hash w_hash; /* The witness hash table. */
471
472 /* The lock order data hash */
473 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
474 static struct witness_lock_order_data *w_lofree = NULL;
475 static struct witness_lock_order_hash w_lohash;
476 static int w_max_used_index = 0;
477 static unsigned int w_generation = 0;
478 static const char w_notrunning[] = "Witness not running\n";
479 static const char w_stillcold[] = "Witness is still cold\n";
480 #ifdef __i386__
481 static const char w_notallowed[] = "The sysctl is disabled on the arch\n";
482 #endif
483
484 static struct witness_order_list_entry order_lists[] = {
485 /*
486 * sx locks
487 */
488 { "proctree", &lock_class_sx },
489 { "allproc", &lock_class_sx },
490 { "allprison", &lock_class_sx },
491 { NULL, NULL },
492 /*
493 * Various mutexes
494 */
495 { "Giant", &lock_class_mtx_sleep },
496 { "pipe mutex", &lock_class_mtx_sleep },
497 { "sigio lock", &lock_class_mtx_sleep },
498 { "process group", &lock_class_mtx_sleep },
499 #ifdef HWPMC_HOOKS
500 { "pmc-sleep", &lock_class_mtx_sleep },
501 #endif
502 { "process lock", &lock_class_mtx_sleep },
503 { "session", &lock_class_mtx_sleep },
504 { "uidinfo hash", &lock_class_rw },
505 { "time lock", &lock_class_mtx_sleep },
506 { NULL, NULL },
507 /*
508 * umtx
509 */
510 { "umtx lock", &lock_class_mtx_sleep },
511 { NULL, NULL },
512 /*
513 * Sockets
514 */
515 { "accept", &lock_class_mtx_sleep },
516 { "so_snd", &lock_class_mtx_sleep },
517 { "so_rcv", &lock_class_mtx_sleep },
518 { "sellck", &lock_class_mtx_sleep },
519 { NULL, NULL },
520 /*
521 * Routing
522 */
523 { "so_rcv", &lock_class_mtx_sleep },
524 { "radix node head", &lock_class_rm },
525 { "ifaddr", &lock_class_mtx_sleep },
526 { NULL, NULL },
527 /*
528 * IPv4 multicast:
529 * protocol locks before interface locks, after UDP locks.
530 */
531 { "in_multi_sx", &lock_class_sx },
532 { "udpinp", &lock_class_rw },
533 { "in_multi_list_mtx", &lock_class_mtx_sleep },
534 { "igmp_mtx", &lock_class_mtx_sleep },
535 { "if_addr_lock", &lock_class_mtx_sleep },
536 { NULL, NULL },
537 /*
538 * IPv6 multicast:
539 * protocol locks before interface locks, after UDP locks.
540 */
541 { "in6_multi_sx", &lock_class_sx },
542 { "udpinp", &lock_class_rw },
543 { "in6_multi_list_mtx", &lock_class_mtx_sleep },
544 { "mld_mtx", &lock_class_mtx_sleep },
545 { "if_addr_lock", &lock_class_mtx_sleep },
546 { NULL, NULL },
547 /*
548 * UNIX Domain Sockets
549 */
550 { "unp_link_rwlock", &lock_class_rw },
551 { "unp_list_lock", &lock_class_mtx_sleep },
552 { "unp", &lock_class_mtx_sleep },
553 { "so_snd", &lock_class_mtx_sleep },
554 { NULL, NULL },
555 /*
556 * UDP/IP
557 */
558 { "udpinp", &lock_class_rw },
559 { "udp", &lock_class_mtx_sleep },
560 { "so_snd", &lock_class_mtx_sleep },
561 { NULL, NULL },
562 /*
563 * TCP/IP
564 */
565 { "tcpinp", &lock_class_rw },
566 { "tcp", &lock_class_mtx_sleep },
567 { "so_snd", &lock_class_mtx_sleep },
568 { NULL, NULL },
569 /*
570 * IPv6 Addr
571 */
572 { "tcphash", &lock_class_mtx_sleep },
573 { "in6_ifaddr_lock", &lock_class_rm },
574 { NULL, NULL },
575 /*
576 * BPF
577 */
578 { "bpf global lock", &lock_class_sx },
579 { "bpf cdev lock", &lock_class_mtx_sleep },
580 { NULL, NULL },
581 /*
582 * NFS server
583 */
584 { "nfsd_mtx", &lock_class_mtx_sleep },
585 { "so_snd", &lock_class_mtx_sleep },
586 { NULL, NULL },
587
588 /*
589 * IEEE 802.11
590 */
591 { "802.11 com lock", &lock_class_mtx_sleep},
592 { NULL, NULL },
593 /*
594 * Network drivers
595 */
596 { "network driver", &lock_class_mtx_sleep},
597 { NULL, NULL },
598
599 /*
600 * Netgraph
601 */
602 { "ng_node", &lock_class_mtx_sleep },
603 { "ng_worklist", &lock_class_mtx_sleep },
604 { NULL, NULL },
605 /*
606 * CDEV
607 */
608 { "vm map (system)", &lock_class_mtx_sleep },
609 { "vnode interlock", &lock_class_mtx_sleep },
610 { "cdev", &lock_class_mtx_sleep },
611 { "devthrd", &lock_class_mtx_sleep },
612 { NULL, NULL },
613 /*
614 * VM
615 */
616 { "vm map (user)", &lock_class_sx },
617 { "vm object", &lock_class_rw },
618 { "vm page", &lock_class_mtx_sleep },
619 { "pmap pv global", &lock_class_rw },
620 { "pmap", &lock_class_mtx_sleep },
621 { "pmap pv list", &lock_class_rw },
622 { "vm page free queue", &lock_class_mtx_sleep },
623 { "vm pagequeue", &lock_class_mtx_sleep },
624 { NULL, NULL },
625 /*
626 * kqueue/VFS interaction
627 */
628 { "kqueue", &lock_class_mtx_sleep },
629 { "struct mount mtx", &lock_class_mtx_sleep },
630 { "vnode interlock", &lock_class_mtx_sleep },
631 { NULL, NULL },
632 /*
633 * VFS namecache
634 */
635 { "ncvn", &lock_class_mtx_sleep },
636 { "ncbuc", &lock_class_mtx_sleep },
637 { "vnode interlock", &lock_class_mtx_sleep },
638 { "ncneg", &lock_class_mtx_sleep },
639 { NULL, NULL },
640 /*
641 * ZFS locking
642 */
643 { "dn->dn_mtx", &lock_class_sx },
644 { "dr->dt.di.dr_mtx", &lock_class_sx },
645 { "db->db_mtx", &lock_class_sx },
646 { NULL, NULL },
647 /*
648 * TCP log locks
649 */
650 { "TCP ID tree", &lock_class_rw },
651 { "tcp log id bucket", &lock_class_mtx_sleep },
652 { "tcpinp", &lock_class_rw },
653 { "TCP log expireq", &lock_class_mtx_sleep },
654 { NULL, NULL },
655 /*
656 * spin locks
657 */
658 #ifdef SMP
659 { "ap boot", &lock_class_mtx_spin },
660 #endif
661 { "rm.mutex_mtx", &lock_class_mtx_spin },
662 #ifdef __i386__
663 { "cy", &lock_class_mtx_spin },
664 #endif
665 { "scc_hwmtx", &lock_class_mtx_spin },
666 { "uart_hwmtx", &lock_class_mtx_spin },
667 { "fast_taskqueue", &lock_class_mtx_spin },
668 { "intr table", &lock_class_mtx_spin },
669 { "process slock", &lock_class_mtx_spin },
670 { "syscons video lock", &lock_class_mtx_spin },
671 { "sleepq chain", &lock_class_mtx_spin },
672 { "rm_spinlock", &lock_class_mtx_spin },
673 { "turnstile chain", &lock_class_mtx_spin },
674 { "turnstile lock", &lock_class_mtx_spin },
675 { "sched lock", &lock_class_mtx_spin },
676 { "td_contested", &lock_class_mtx_spin },
677 { "callout", &lock_class_mtx_spin },
678 { "entropy harvest mutex", &lock_class_mtx_spin },
679 #ifdef SMP
680 { "smp rendezvous", &lock_class_mtx_spin },
681 #endif
682 #ifdef __powerpc__
683 { "tlb0", &lock_class_mtx_spin },
684 #endif
685 { NULL, NULL },
686 { "sched lock", &lock_class_mtx_spin },
687 #ifdef HWPMC_HOOKS
688 { "pmc-per-proc", &lock_class_mtx_spin },
689 #endif
690 { NULL, NULL },
691 /*
692 * leaf locks
693 */
694 { "intrcnt", &lock_class_mtx_spin },
695 { "icu", &lock_class_mtx_spin },
696 #ifdef __i386__
697 { "allpmaps", &lock_class_mtx_spin },
698 { "descriptor tables", &lock_class_mtx_spin },
699 #endif
700 { "clk", &lock_class_mtx_spin },
701 { "cpuset", &lock_class_mtx_spin },
702 { "mprof lock", &lock_class_mtx_spin },
703 { "zombie lock", &lock_class_mtx_spin },
704 { "ALD Queue", &lock_class_mtx_spin },
705 #if defined(__i386__) || defined(__amd64__)
706 { "pcicfg", &lock_class_mtx_spin },
707 { "NDIS thread lock", &lock_class_mtx_spin },
708 #endif
709 { "tw_osl_io_lock", &lock_class_mtx_spin },
710 { "tw_osl_q_lock", &lock_class_mtx_spin },
711 { "tw_cl_io_lock", &lock_class_mtx_spin },
712 { "tw_cl_intr_lock", &lock_class_mtx_spin },
713 { "tw_cl_gen_lock", &lock_class_mtx_spin },
714 #ifdef HWPMC_HOOKS
715 { "pmc-leaf", &lock_class_mtx_spin },
716 #endif
717 { "blocked lock", &lock_class_mtx_spin },
718 { NULL, NULL },
719 { NULL, NULL }
720 };
721
722 /*
723 * Pairs of locks which have been blessed. Witness does not complain about
724 * order problems with blessed lock pairs. Please do not add an entry to the
725 * table without an explanatory comment.
726 */
727 static struct witness_blessed blessed_list[] = {
728 /*
729 * See the comment in ufs_dirhash.c. Basically, a vnode lock serializes
730 * both lock orders, so a deadlock cannot happen as a result of this
731 * LOR.
732 */
733 { "dirhash", "bufwait" },
734
735 /*
736 * A UFS vnode may be locked in vget() while a buffer belonging to the
737 * parent directory vnode is locked.
738 */
739 { "ufs", "bufwait" },
740
741 /*
742 * The tarfs decompression stream vnode may be locked while a
743 * buffer belonging to a tarfs data vnode is locked.
744 */
745 { "tarfs", "bufwait" },
746 };
747
748 /*
749 * This global is set to 0 once it becomes safe to use the witness code.
750 */
751 static int witness_cold = 1;
752
753 /*
754 * This global is set to 1 once the static lock orders have been enrolled
755 * so that a warning can be issued for any spin locks enrolled later.
756 */
757 static int witness_spin_warn = 0;
758
759 /* Trim useless garbage from filenames. */
760 static const char *
fixup_filename(const char * file)761 fixup_filename(const char *file)
762 {
763 if (file == NULL)
764 return (NULL);
765 while (strncmp(file, "../", 3) == 0)
766 file += 3;
767 return (file);
768 }
769
770 /*
771 * Calculate the size of early witness structures.
772 */
773 int
witness_startup_count(void)774 witness_startup_count(void)
775 {
776 int sz;
777
778 sz = sizeof(struct witness) * witness_count;
779 sz += sizeof(*w_rmatrix) * (witness_count + 1);
780 sz += sizeof(*w_rmatrix[0]) * (witness_count + 1) *
781 (witness_count + 1);
782
783 return (sz);
784 }
785
786 /*
787 * The WITNESS-enabled diagnostic code. Note that the witness code does
788 * assume that the early boot is single-threaded at least until after this
789 * routine is completed.
790 */
791 void
witness_startup(void * mem)792 witness_startup(void *mem)
793 {
794 struct lock_object *lock;
795 struct witness_order_list_entry *order;
796 struct witness *w, *w1;
797 uintptr_t p;
798 int i;
799
800 p = (uintptr_t)mem;
801 w_data = (void *)p;
802 p += sizeof(struct witness) * witness_count;
803
804 w_rmatrix = (void *)p;
805 p += sizeof(*w_rmatrix) * (witness_count + 1);
806
807 for (i = 0; i < witness_count + 1; i++) {
808 w_rmatrix[i] = (void *)p;
809 p += sizeof(*w_rmatrix[i]) * (witness_count + 1);
810 }
811 badstack_sbuf_size = witness_count * 256;
812
813 /*
814 * We have to release Giant before initializing its witness
815 * structure so that WITNESS doesn't get confused.
816 */
817 mtx_unlock(&Giant);
818 mtx_assert(&Giant, MA_NOTOWNED);
819
820 CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
821 mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
822 MTX_NOWITNESS | MTX_NOPROFILE);
823 for (i = witness_count - 1; i >= 0; i--) {
824 w = &w_data[i];
825 memset(w, 0, sizeof(*w));
826 w_data[i].w_index = i; /* Witness index never changes. */
827 witness_free(w);
828 }
829 KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
830 ("%s: Invalid list of free witness objects", __func__));
831
832 /* Witness with index 0 is not used to aid in debugging. */
833 STAILQ_REMOVE_HEAD(&w_free, w_list);
834 w_free_cnt--;
835
836 for (i = 0; i < witness_count; i++) {
837 memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) *
838 (witness_count + 1));
839 }
840
841 for (i = 0; i < LOCK_CHILDCOUNT; i++)
842 witness_lock_list_free(&w_locklistdata[i]);
843 witness_init_hash_tables();
844
845 /* First add in all the specified order lists. */
846 for (order = order_lists; order->w_name != NULL; order++) {
847 w = enroll(order->w_name, order->w_class);
848 if (w == NULL)
849 continue;
850 w->w_file = "order list";
851 for (order++; order->w_name != NULL; order++) {
852 w1 = enroll(order->w_name, order->w_class);
853 if (w1 == NULL)
854 continue;
855 w1->w_file = "order list";
856 itismychild(w, w1);
857 w = w1;
858 }
859 }
860 witness_spin_warn = 1;
861
862 /* Iterate through all locks and add them to witness. */
863 for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
864 lock = pending_locks[i].wh_lock;
865 KASSERT(lock->lo_flags & LO_WITNESS,
866 ("%s: lock %s is on pending list but not LO_WITNESS",
867 __func__, lock->lo_name));
868 lock->lo_witness = enroll(pending_locks[i].wh_type,
869 LOCK_CLASS(lock));
870 }
871
872 /* Mark the witness code as being ready for use. */
873 witness_cold = 0;
874
875 mtx_lock(&Giant);
876 }
877
878 void
witness_init(struct lock_object * lock,const char * type)879 witness_init(struct lock_object *lock, const char *type)
880 {
881 struct lock_class *class;
882
883 /* Various sanity checks. */
884 class = LOCK_CLASS(lock);
885 if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
886 (class->lc_flags & LC_RECURSABLE) == 0)
887 kassert_panic("%s: lock (%s) %s can not be recursable",
888 __func__, class->lc_name, lock->lo_name);
889 if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
890 (class->lc_flags & LC_SLEEPABLE) == 0)
891 kassert_panic("%s: lock (%s) %s can not be sleepable",
892 __func__, class->lc_name, lock->lo_name);
893 if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
894 (class->lc_flags & LC_UPGRADABLE) == 0)
895 kassert_panic("%s: lock (%s) %s can not be upgradable",
896 __func__, class->lc_name, lock->lo_name);
897
898 /*
899 * If we shouldn't watch this lock, then just clear lo_witness.
900 * Otherwise, if witness_cold is set, then it is too early to
901 * enroll this lock, so defer it to witness_initialize() by adding
902 * it to the pending_locks list. If it is not too early, then enroll
903 * the lock now.
904 */
905 if (witness_watch < 1 || KERNEL_PANICKED() ||
906 (lock->lo_flags & LO_WITNESS) == 0)
907 lock->lo_witness = NULL;
908 else if (witness_cold) {
909 pending_locks[pending_cnt].wh_lock = lock;
910 pending_locks[pending_cnt++].wh_type = type;
911 if (pending_cnt > WITNESS_PENDLIST)
912 panic("%s: pending locks list is too small, "
913 "increase WITNESS_PENDLIST\n",
914 __func__);
915 } else
916 lock->lo_witness = enroll(type, class);
917 }
918
919 void
witness_destroy(struct lock_object * lock)920 witness_destroy(struct lock_object *lock)
921 {
922 struct lock_class *class;
923 struct witness *w;
924
925 class = LOCK_CLASS(lock);
926
927 if (witness_cold)
928 panic("lock (%s) %s destroyed while witness_cold",
929 class->lc_name, lock->lo_name);
930
931 /* XXX: need to verify that no one holds the lock */
932 if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
933 return;
934 w = lock->lo_witness;
935
936 mtx_lock_spin(&w_mtx);
937 MPASS(w->w_refcount > 0);
938 w->w_refcount--;
939
940 if (w->w_refcount == 0)
941 depart(w);
942 mtx_unlock_spin(&w_mtx);
943 }
944
945 #ifdef DDB
946 static void
witness_ddb_compute_levels(void)947 witness_ddb_compute_levels(void)
948 {
949 struct witness *w;
950
951 /*
952 * First clear all levels.
953 */
954 STAILQ_FOREACH(w, &w_all, w_list)
955 w->w_ddb_level = -1;
956
957 /*
958 * Look for locks with no parents and level all their descendants.
959 */
960 STAILQ_FOREACH(w, &w_all, w_list) {
961 /* If the witness has ancestors (is not a root), skip it. */
962 if (w->w_num_ancestors > 0)
963 continue;
964 witness_ddb_level_descendants(w, 0);
965 }
966 }
967
968 static void
witness_ddb_level_descendants(struct witness * w,int l)969 witness_ddb_level_descendants(struct witness *w, int l)
970 {
971 int i;
972
973 if (w->w_ddb_level >= l)
974 return;
975
976 w->w_ddb_level = l;
977 l++;
978
979 for (i = 1; i <= w_max_used_index; i++) {
980 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
981 witness_ddb_level_descendants(&w_data[i], l);
982 }
983 }
984
985 static void
witness_ddb_display_descendants(int (* prnt)(const char * fmt,...),struct witness * w,int indent)986 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
987 struct witness *w, int indent)
988 {
989 int i;
990
991 for (i = 0; i < indent; i++)
992 prnt(" ");
993 prnt("%s (type: %s, depth: %d, active refs: %d)",
994 w->w_name, w->w_class->lc_name,
995 w->w_ddb_level, w->w_refcount);
996 if (w->w_displayed) {
997 prnt(" -- (already displayed)\n");
998 return;
999 }
1000 w->w_displayed = 1;
1001 if (w->w_file != NULL && w->w_line != 0)
1002 prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
1003 w->w_line);
1004 else
1005 prnt(" -- never acquired\n");
1006 indent++;
1007 WITNESS_INDEX_ASSERT(w->w_index);
1008 for (i = 1; i <= w_max_used_index; i++) {
1009 if (db_pager_quit)
1010 return;
1011 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
1012 witness_ddb_display_descendants(prnt, &w_data[i],
1013 indent);
1014 }
1015 }
1016
1017 static void
witness_ddb_display_list(int (* prnt)(const char * fmt,...),struct witness_list * list)1018 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
1019 struct witness_list *list)
1020 {
1021 struct witness *w;
1022
1023 STAILQ_FOREACH(w, list, w_typelist) {
1024 if (w->w_file == NULL || w->w_ddb_level > 0)
1025 continue;
1026
1027 /* This lock has no anscestors - display its descendants. */
1028 witness_ddb_display_descendants(prnt, w, 0);
1029 if (db_pager_quit)
1030 return;
1031 }
1032 }
1033
1034 static void
witness_ddb_display(int (* prnt)(const char * fmt,...))1035 witness_ddb_display(int(*prnt)(const char *fmt, ...))
1036 {
1037 struct witness *w;
1038
1039 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1040 witness_ddb_compute_levels();
1041
1042 /* Clear all the displayed flags. */
1043 STAILQ_FOREACH(w, &w_all, w_list)
1044 w->w_displayed = 0;
1045
1046 /*
1047 * First, handle sleep locks which have been acquired at least
1048 * once.
1049 */
1050 prnt("Sleep locks:\n");
1051 witness_ddb_display_list(prnt, &w_sleep);
1052 if (db_pager_quit)
1053 return;
1054
1055 /*
1056 * Now do spin locks which have been acquired at least once.
1057 */
1058 prnt("\nSpin locks:\n");
1059 witness_ddb_display_list(prnt, &w_spin);
1060 if (db_pager_quit)
1061 return;
1062
1063 /*
1064 * Finally, any locks which have not been acquired yet.
1065 */
1066 prnt("\nLocks which were never acquired:\n");
1067 STAILQ_FOREACH(w, &w_all, w_list) {
1068 if (w->w_file != NULL || w->w_refcount == 0)
1069 continue;
1070 prnt("%s (type: %s, depth: %d)\n", w->w_name,
1071 w->w_class->lc_name, w->w_ddb_level);
1072 if (db_pager_quit)
1073 return;
1074 }
1075 }
1076 #endif /* DDB */
1077
1078 int
witness_defineorder(struct lock_object * lock1,struct lock_object * lock2)1079 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1080 {
1081 if (witness_watch == -1 || KERNEL_PANICKED())
1082 return (0);
1083
1084 /* Require locks that witness knows about. */
1085 if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1086 lock2->lo_witness == NULL)
1087 return (EINVAL);
1088
1089 mtx_assert(&w_mtx, MA_NOTOWNED);
1090 mtx_lock_spin(&w_mtx);
1091
1092 /*
1093 * If we already have either an explicit or implied lock order that
1094 * is the other way around, then return an error.
1095 */
1096 if (witness_watch &&
1097 isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1098 mtx_unlock_spin(&w_mtx);
1099 return (EDOOFUS);
1100 }
1101
1102 /* Try to add the new order. */
1103 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1104 lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1105 itismychild(lock1->lo_witness, lock2->lo_witness);
1106 mtx_unlock_spin(&w_mtx);
1107 return (0);
1108 }
1109
1110 void
witness_checkorder(struct lock_object * lock,int flags,const char * file,int line,struct lock_object * interlock)1111 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1112 int line, struct lock_object *interlock)
1113 {
1114 struct lock_list_entry *lock_list, *lle;
1115 struct lock_instance *lock1, *lock2, *plock;
1116 struct lock_class *class, *iclass;
1117 struct witness *w, *w1;
1118 struct thread *td;
1119 int i, j;
1120
1121 if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1122 KERNEL_PANICKED())
1123 return;
1124
1125 w = lock->lo_witness;
1126 class = LOCK_CLASS(lock);
1127 td = curthread;
1128
1129 if (class->lc_flags & LC_SLEEPLOCK) {
1130 /*
1131 * Since spin locks include a critical section, this check
1132 * implicitly enforces a lock order of all sleep locks before
1133 * all spin locks.
1134 */
1135 if (td->td_critnest != 0 && !kdb_active)
1136 kassert_panic("acquiring blockable sleep lock with "
1137 "spinlock or critical section held (%s) %s @ %s:%d",
1138 class->lc_name, lock->lo_name,
1139 fixup_filename(file), line);
1140
1141 /*
1142 * If this is the first lock acquired then just return as
1143 * no order checking is needed.
1144 */
1145 lock_list = td->td_sleeplocks;
1146 if (lock_list == NULL || lock_list->ll_count == 0)
1147 return;
1148 } else {
1149 /*
1150 * If this is the first lock, just return as no order
1151 * checking is needed. Avoid problems with thread
1152 * migration pinning the thread while checking if
1153 * spinlocks are held. If at least one spinlock is held
1154 * the thread is in a safe path and it is allowed to
1155 * unpin it.
1156 */
1157 sched_pin();
1158 lock_list = PCPU_GET(spinlocks);
1159 if (lock_list == NULL || lock_list->ll_count == 0) {
1160 sched_unpin();
1161 return;
1162 }
1163 sched_unpin();
1164 }
1165
1166 /*
1167 * Check to see if we are recursing on a lock we already own. If
1168 * so, make sure that we don't mismatch exclusive and shared lock
1169 * acquires.
1170 */
1171 lock1 = find_instance(lock_list, lock);
1172 if (lock1 != NULL) {
1173 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1174 (flags & LOP_EXCLUSIVE) == 0) {
1175 witness_output("shared lock of (%s) %s @ %s:%d\n",
1176 class->lc_name, lock->lo_name,
1177 fixup_filename(file), line);
1178 witness_output("while exclusively locked from %s:%d\n",
1179 fixup_filename(lock1->li_file), lock1->li_line);
1180 kassert_panic("excl->share");
1181 }
1182 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1183 (flags & LOP_EXCLUSIVE) != 0) {
1184 witness_output("exclusive lock of (%s) %s @ %s:%d\n",
1185 class->lc_name, lock->lo_name,
1186 fixup_filename(file), line);
1187 witness_output("while share locked from %s:%d\n",
1188 fixup_filename(lock1->li_file), lock1->li_line);
1189 kassert_panic("share->excl");
1190 }
1191 return;
1192 }
1193
1194 /* Warn if the interlock is not locked exactly once. */
1195 if (interlock != NULL) {
1196 iclass = LOCK_CLASS(interlock);
1197 lock1 = find_instance(lock_list, interlock);
1198 if (lock1 == NULL)
1199 kassert_panic("interlock (%s) %s not locked @ %s:%d",
1200 iclass->lc_name, interlock->lo_name,
1201 fixup_filename(file), line);
1202 else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
1203 kassert_panic("interlock (%s) %s recursed @ %s:%d",
1204 iclass->lc_name, interlock->lo_name,
1205 fixup_filename(file), line);
1206 }
1207
1208 /*
1209 * Find the previously acquired lock, but ignore interlocks.
1210 */
1211 plock = &lock_list->ll_children[lock_list->ll_count - 1];
1212 if (interlock != NULL && plock->li_lock == interlock) {
1213 if (lock_list->ll_count > 1)
1214 plock =
1215 &lock_list->ll_children[lock_list->ll_count - 2];
1216 else {
1217 lle = lock_list->ll_next;
1218
1219 /*
1220 * The interlock is the only lock we hold, so
1221 * simply return.
1222 */
1223 if (lle == NULL)
1224 return;
1225 plock = &lle->ll_children[lle->ll_count - 1];
1226 }
1227 }
1228
1229 /*
1230 * Try to perform most checks without a lock. If this succeeds we
1231 * can skip acquiring the lock and return success. Otherwise we redo
1232 * the check with the lock held to handle races with concurrent updates.
1233 */
1234 w1 = plock->li_lock->lo_witness;
1235 if (witness_lock_order_check(w1, w))
1236 return;
1237
1238 mtx_lock_spin(&w_mtx);
1239 if (witness_lock_order_check(w1, w)) {
1240 mtx_unlock_spin(&w_mtx);
1241 return;
1242 }
1243 witness_lock_order_add(w1, w);
1244
1245 /*
1246 * Check for duplicate locks of the same type. Note that we only
1247 * have to check for this on the last lock we just acquired. Any
1248 * other cases will be caught as lock order violations.
1249 */
1250 if (w1 == w) {
1251 i = w->w_index;
1252 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1253 !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1254 w_rmatrix[i][i] |= WITNESS_REVERSAL;
1255 w->w_reversed = 1;
1256 mtx_unlock_spin(&w_mtx);
1257 witness_output(
1258 "acquiring duplicate lock of same type: \"%s\"\n",
1259 w->w_name);
1260 witness_output(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1261 fixup_filename(plock->li_file), plock->li_line);
1262 witness_output(" 2nd %s @ %s:%d\n", lock->lo_name,
1263 fixup_filename(file), line);
1264 witness_debugger(1, __func__);
1265 } else
1266 mtx_unlock_spin(&w_mtx);
1267 return;
1268 }
1269 mtx_assert(&w_mtx, MA_OWNED);
1270
1271 /*
1272 * If we know that the lock we are acquiring comes after
1273 * the lock we most recently acquired in the lock order tree,
1274 * then there is no need for any further checks.
1275 */
1276 if (isitmychild(w1, w))
1277 goto out;
1278
1279 for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1280 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1281 struct stack pstack;
1282 bool pstackv, trace;
1283
1284 MPASS(j < LOCK_CHILDCOUNT * LOCK_NCHILDREN);
1285 lock1 = &lle->ll_children[i];
1286
1287 /*
1288 * Ignore the interlock.
1289 */
1290 if (interlock == lock1->li_lock)
1291 continue;
1292
1293 /*
1294 * If this lock doesn't undergo witness checking,
1295 * then skip it.
1296 */
1297 w1 = lock1->li_lock->lo_witness;
1298 if (w1 == NULL) {
1299 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1300 ("lock missing witness structure"));
1301 continue;
1302 }
1303
1304 /*
1305 * If we are locking Giant and this is a sleepable
1306 * lock, then skip it.
1307 */
1308 if ((lock1->li_flags & LI_SLEEPABLE) != 0 &&
1309 lock == &Giant.lock_object)
1310 continue;
1311
1312 /*
1313 * If we are locking a sleepable lock and this lock
1314 * is Giant, then skip it.
1315 */
1316 if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1317 (flags & LOP_NOSLEEP) == 0 &&
1318 lock1->li_lock == &Giant.lock_object)
1319 continue;
1320
1321 /*
1322 * If we are locking a sleepable lock and this lock
1323 * isn't sleepable, we want to treat it as a lock
1324 * order violation to enfore a general lock order of
1325 * sleepable locks before non-sleepable locks.
1326 */
1327 if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1328 (flags & LOP_NOSLEEP) == 0 &&
1329 (lock1->li_flags & LI_SLEEPABLE) == 0)
1330 goto reversal;
1331
1332 /*
1333 * If we are locking Giant and this is a non-sleepable
1334 * lock, then treat it as a reversal.
1335 */
1336 if ((lock1->li_flags & LI_SLEEPABLE) == 0 &&
1337 lock == &Giant.lock_object)
1338 goto reversal;
1339
1340 /*
1341 * Check the lock order hierarchy for a reveresal.
1342 */
1343 if (!isitmydescendant(w, w1))
1344 continue;
1345 reversal:
1346
1347 /*
1348 * We have a lock order violation, check to see if it
1349 * is allowed or has already been yelled about.
1350 */
1351
1352 /* Bail if this violation is known */
1353 if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1354 goto out;
1355
1356 /* Record this as a violation */
1357 w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1358 w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1359 w->w_reversed = w1->w_reversed = 1;
1360 witness_increment_graph_generation();
1361
1362 /*
1363 * If the lock order is blessed, bail before logging
1364 * anything. We don't look for other lock order
1365 * violations though, which may be a bug.
1366 */
1367 if (blessed(w, w1))
1368 goto out;
1369
1370 trace = atomic_load_int(&witness_trace);
1371 if (trace) {
1372 struct witness_lock_order_data *data;
1373
1374 pstackv = false;
1375 data = witness_lock_order_get(w, w1);
1376 if (data != NULL) {
1377 stack_copy(&data->wlod_stack,
1378 &pstack);
1379 pstackv = true;
1380 }
1381 }
1382 mtx_unlock_spin(&w_mtx);
1383
1384 #ifdef WITNESS_NO_VNODE
1385 /*
1386 * There are known LORs between VNODE locks. They are
1387 * not an indication of a bug. VNODE locks are flagged
1388 * as such (LO_IS_VNODE) and we don't yell if the LOR
1389 * is between 2 VNODE locks.
1390 */
1391 if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
1392 (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
1393 return;
1394 #endif
1395
1396 /*
1397 * Ok, yell about it.
1398 */
1399 if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1400 (flags & LOP_NOSLEEP) == 0 &&
1401 (lock1->li_flags & LI_SLEEPABLE) == 0)
1402 witness_output(
1403 "lock order reversal: (sleepable after non-sleepable)\n");
1404 else if ((lock1->li_flags & LI_SLEEPABLE) == 0
1405 && lock == &Giant.lock_object)
1406 witness_output(
1407 "lock order reversal: (Giant after non-sleepable)\n");
1408 else
1409 witness_output("lock order reversal:\n");
1410
1411 /*
1412 * Try to locate an earlier lock with
1413 * witness w in our list.
1414 */
1415 do {
1416 lock2 = &lle->ll_children[i];
1417 MPASS(lock2->li_lock != NULL);
1418 if (lock2->li_lock->lo_witness == w)
1419 break;
1420 if (i == 0 && lle->ll_next != NULL) {
1421 lle = lle->ll_next;
1422 i = lle->ll_count - 1;
1423 MPASS(i >= 0 && i < LOCK_NCHILDREN);
1424 } else
1425 i--;
1426 } while (i >= 0);
1427 if (i < 0) {
1428 witness_output(" 1st %p %s (%s, %s) @ %s:%d\n",
1429 lock1->li_lock, lock1->li_lock->lo_name,
1430 w1->w_name, w1->w_class->lc_name,
1431 fixup_filename(lock1->li_file),
1432 lock1->li_line);
1433 witness_output(" 2nd %p %s (%s, %s) @ %s:%d\n",
1434 lock, lock->lo_name, w->w_name,
1435 w->w_class->lc_name, fixup_filename(file),
1436 line);
1437 } else {
1438 struct witness *w2 = lock2->li_lock->lo_witness;
1439
1440 witness_output(" 1st %p %s (%s, %s) @ %s:%d\n",
1441 lock2->li_lock, lock2->li_lock->lo_name,
1442 w2->w_name, w2->w_class->lc_name,
1443 fixup_filename(lock2->li_file),
1444 lock2->li_line);
1445 witness_output(" 2nd %p %s (%s, %s) @ %s:%d\n",
1446 lock1->li_lock, lock1->li_lock->lo_name,
1447 w1->w_name, w1->w_class->lc_name,
1448 fixup_filename(lock1->li_file),
1449 lock1->li_line);
1450 witness_output(" 3rd %p %s (%s, %s) @ %s:%d\n", lock,
1451 lock->lo_name, w->w_name,
1452 w->w_class->lc_name, fixup_filename(file),
1453 line);
1454 }
1455 if (trace) {
1456 char buf[64];
1457 struct sbuf sb;
1458
1459 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1460 sbuf_set_drain(&sb, witness_output_drain,
1461 NULL);
1462
1463 if (pstackv) {
1464 sbuf_printf(&sb,
1465 "lock order %s -> %s established at:\n",
1466 w->w_name, w1->w_name);
1467 stack_sbuf_print_flags(&sb, &pstack,
1468 M_NOWAIT, STACK_SBUF_FMT_LONG);
1469 }
1470
1471 sbuf_printf(&sb,
1472 "lock order %s -> %s attempted at:\n",
1473 w1->w_name, w->w_name);
1474 stack_save(&pstack);
1475 stack_sbuf_print_flags(&sb, &pstack, M_NOWAIT,
1476 STACK_SBUF_FMT_LONG);
1477
1478 sbuf_finish(&sb);
1479 sbuf_delete(&sb);
1480 }
1481 witness_enter_debugger(__func__);
1482 return;
1483 }
1484 }
1485
1486 /*
1487 * If requested, build a new lock order. However, don't build a new
1488 * relationship between a sleepable lock and Giant if it is in the
1489 * wrong direction. The correct lock order is that sleepable locks
1490 * always come before Giant.
1491 */
1492 if (flags & LOP_NEWORDER &&
1493 !(plock->li_lock == &Giant.lock_object &&
1494 (lock->lo_flags & LO_SLEEPABLE) != 0 &&
1495 (flags & LOP_NOSLEEP) == 0)) {
1496 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1497 w->w_name, plock->li_lock->lo_witness->w_name);
1498 itismychild(plock->li_lock->lo_witness, w);
1499 }
1500 out:
1501 mtx_unlock_spin(&w_mtx);
1502 }
1503
1504 void
witness_lock(struct lock_object * lock,int flags,const char * file,int line)1505 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1506 {
1507 struct lock_list_entry **lock_list, *lle;
1508 struct lock_instance *instance;
1509 struct witness *w;
1510 struct thread *td;
1511
1512 if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1513 KERNEL_PANICKED())
1514 return;
1515 w = lock->lo_witness;
1516 td = curthread;
1517
1518 /* Determine lock list for this lock. */
1519 if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1520 lock_list = &td->td_sleeplocks;
1521 else
1522 lock_list = PCPU_PTR(spinlocks);
1523
1524 /* Update per-witness last file and line acquire. */
1525 w->w_file = file;
1526 w->w_line = line;
1527
1528 /* Check to see if we are recursing on a lock we already own. */
1529 instance = find_instance(*lock_list, lock);
1530 if (instance != NULL) {
1531 instance->li_flags++;
1532 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1533 td->td_proc->p_pid, lock->lo_name,
1534 instance->li_flags & LI_RECURSEMASK);
1535 return;
1536 }
1537
1538 /* Find the next open lock instance in the list and fill it. */
1539 lle = *lock_list;
1540 if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1541 lle = witness_lock_list_get();
1542 if (lle == NULL)
1543 return;
1544 lle->ll_next = *lock_list;
1545 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1546 td->td_proc->p_pid, lle);
1547 *lock_list = lle;
1548 }
1549 instance = &lle->ll_children[lle->ll_count++];
1550 instance->li_lock = lock;
1551 instance->li_line = line;
1552 instance->li_file = file;
1553 instance->li_flags = 0;
1554 if ((flags & LOP_EXCLUSIVE) != 0)
1555 instance->li_flags |= LI_EXCLUSIVE;
1556 if ((lock->lo_flags & LO_SLEEPABLE) != 0 && (flags & LOP_NOSLEEP) == 0)
1557 instance->li_flags |= LI_SLEEPABLE;
1558 CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1559 td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1560 }
1561
1562 void
witness_upgrade(struct lock_object * lock,int flags,const char * file,int line)1563 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1564 {
1565 struct lock_instance *instance;
1566 struct lock_class *class;
1567
1568 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1569 if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
1570 return;
1571 class = LOCK_CLASS(lock);
1572 if (witness_watch) {
1573 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1574 kassert_panic(
1575 "upgrade of non-upgradable lock (%s) %s @ %s:%d",
1576 class->lc_name, lock->lo_name,
1577 fixup_filename(file), line);
1578 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1579 kassert_panic(
1580 "upgrade of non-sleep lock (%s) %s @ %s:%d",
1581 class->lc_name, lock->lo_name,
1582 fixup_filename(file), line);
1583 }
1584 instance = find_instance(curthread->td_sleeplocks, lock);
1585 if (instance == NULL) {
1586 kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1587 class->lc_name, lock->lo_name,
1588 fixup_filename(file), line);
1589 return;
1590 }
1591 if (witness_watch) {
1592 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1593 kassert_panic(
1594 "upgrade of exclusive lock (%s) %s @ %s:%d",
1595 class->lc_name, lock->lo_name,
1596 fixup_filename(file), line);
1597 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1598 kassert_panic(
1599 "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1600 class->lc_name, lock->lo_name,
1601 instance->li_flags & LI_RECURSEMASK,
1602 fixup_filename(file), line);
1603 }
1604 instance->li_flags |= LI_EXCLUSIVE;
1605 }
1606
1607 void
witness_downgrade(struct lock_object * lock,int flags,const char * file,int line)1608 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1609 int line)
1610 {
1611 struct lock_instance *instance;
1612 struct lock_class *class;
1613
1614 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1615 if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
1616 return;
1617 class = LOCK_CLASS(lock);
1618 if (witness_watch) {
1619 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1620 kassert_panic(
1621 "downgrade of non-upgradable lock (%s) %s @ %s:%d",
1622 class->lc_name, lock->lo_name,
1623 fixup_filename(file), line);
1624 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1625 kassert_panic(
1626 "downgrade of non-sleep lock (%s) %s @ %s:%d",
1627 class->lc_name, lock->lo_name,
1628 fixup_filename(file), line);
1629 }
1630 instance = find_instance(curthread->td_sleeplocks, lock);
1631 if (instance == NULL) {
1632 kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1633 class->lc_name, lock->lo_name,
1634 fixup_filename(file), line);
1635 return;
1636 }
1637 if (witness_watch) {
1638 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1639 kassert_panic(
1640 "downgrade of shared lock (%s) %s @ %s:%d",
1641 class->lc_name, lock->lo_name,
1642 fixup_filename(file), line);
1643 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1644 kassert_panic(
1645 "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1646 class->lc_name, lock->lo_name,
1647 instance->li_flags & LI_RECURSEMASK,
1648 fixup_filename(file), line);
1649 }
1650 instance->li_flags &= ~LI_EXCLUSIVE;
1651 }
1652
1653 void
witness_unlock(struct lock_object * lock,int flags,const char * file,int line)1654 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1655 {
1656 struct lock_list_entry **lock_list, *lle;
1657 struct lock_instance *instance;
1658 struct lock_class *class;
1659 struct thread *td;
1660 register_t s;
1661 int i, j;
1662
1663 if (witness_cold || lock->lo_witness == NULL || KERNEL_PANICKED())
1664 return;
1665 td = curthread;
1666 class = LOCK_CLASS(lock);
1667
1668 /* Find lock instance associated with this lock. */
1669 if (class->lc_flags & LC_SLEEPLOCK)
1670 lock_list = &td->td_sleeplocks;
1671 else
1672 lock_list = PCPU_PTR(spinlocks);
1673 lle = *lock_list;
1674 for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1675 for (i = 0; i < (*lock_list)->ll_count; i++) {
1676 instance = &(*lock_list)->ll_children[i];
1677 if (instance->li_lock == lock)
1678 goto found;
1679 }
1680
1681 /*
1682 * When disabling WITNESS through witness_watch we could end up in
1683 * having registered locks in the td_sleeplocks queue.
1684 * We have to make sure we flush these queues, so just search for
1685 * eventual register locks and remove them.
1686 */
1687 if (witness_watch > 0) {
1688 kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1689 lock->lo_name, fixup_filename(file), line);
1690 return;
1691 } else {
1692 return;
1693 }
1694 found:
1695
1696 /* First, check for shared/exclusive mismatches. */
1697 if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1698 (flags & LOP_EXCLUSIVE) == 0) {
1699 witness_output("shared unlock of (%s) %s @ %s:%d\n",
1700 class->lc_name, lock->lo_name, fixup_filename(file), line);
1701 witness_output("while exclusively locked from %s:%d\n",
1702 fixup_filename(instance->li_file), instance->li_line);
1703 kassert_panic("excl->ushare");
1704 }
1705 if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1706 (flags & LOP_EXCLUSIVE) != 0) {
1707 witness_output("exclusive unlock of (%s) %s @ %s:%d\n",
1708 class->lc_name, lock->lo_name, fixup_filename(file), line);
1709 witness_output("while share locked from %s:%d\n",
1710 fixup_filename(instance->li_file),
1711 instance->li_line);
1712 kassert_panic("share->uexcl");
1713 }
1714 /* If we are recursed, unrecurse. */
1715 if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1716 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1717 td->td_proc->p_pid, instance->li_lock->lo_name,
1718 instance->li_flags);
1719 instance->li_flags--;
1720 return;
1721 }
1722 /* The lock is now being dropped, check for NORELEASE flag */
1723 if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1724 witness_output("forbidden unlock of (%s) %s @ %s:%d\n",
1725 class->lc_name, lock->lo_name, fixup_filename(file), line);
1726 kassert_panic("lock marked norelease");
1727 }
1728
1729 /* Otherwise, remove this item from the list. */
1730 s = intr_disable();
1731 CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1732 td->td_proc->p_pid, instance->li_lock->lo_name,
1733 (*lock_list)->ll_count - 1);
1734 for (j = i; j < (*lock_list)->ll_count - 1; j++)
1735 (*lock_list)->ll_children[j] =
1736 (*lock_list)->ll_children[j + 1];
1737 (*lock_list)->ll_count--;
1738 intr_restore(s);
1739
1740 /*
1741 * In order to reduce contention on w_mtx, we want to keep always an
1742 * head object into lists so that frequent allocation from the
1743 * free witness pool (and subsequent locking) is avoided.
1744 * In order to maintain the current code simple, when the head
1745 * object is totally unloaded it means also that we do not have
1746 * further objects in the list, so the list ownership needs to be
1747 * hand over to another object if the current head needs to be freed.
1748 */
1749 if ((*lock_list)->ll_count == 0) {
1750 if (*lock_list == lle) {
1751 if (lle->ll_next == NULL)
1752 return;
1753 } else
1754 lle = *lock_list;
1755 *lock_list = lle->ll_next;
1756 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1757 td->td_proc->p_pid, lle);
1758 witness_lock_list_free(lle);
1759 }
1760 }
1761
1762 void
witness_thread_exit(struct thread * td)1763 witness_thread_exit(struct thread *td)
1764 {
1765 struct lock_list_entry *lle;
1766 int i, n;
1767
1768 lle = td->td_sleeplocks;
1769 if (lle == NULL || KERNEL_PANICKED())
1770 return;
1771 if (lle->ll_count != 0) {
1772 for (n = 0; lle != NULL; lle = lle->ll_next)
1773 for (i = lle->ll_count - 1; i >= 0; i--) {
1774 if (n == 0)
1775 witness_output(
1776 "Thread %p exiting with the following locks held:\n", td);
1777 n++;
1778 witness_list_lock(&lle->ll_children[i],
1779 witness_output);
1780
1781 }
1782 kassert_panic(
1783 "Thread %p cannot exit while holding sleeplocks\n", td);
1784 }
1785 witness_lock_list_free(lle);
1786 }
1787
1788 /*
1789 * Warn if any locks other than 'lock' are held. Flags can be passed in to
1790 * exempt Giant and sleepable locks from the checks as well. If any
1791 * non-exempt locks are held, then a supplied message is printed to the
1792 * output channel along with a list of the offending locks. If indicated in the
1793 * flags then a failure results in a panic as well.
1794 */
1795 int
witness_warn(int flags,struct lock_object * lock,const char * fmt,...)1796 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1797 {
1798 struct lock_list_entry *lock_list, *lle;
1799 struct lock_instance *lock1;
1800 struct thread *td;
1801 va_list ap;
1802 int i, n;
1803
1804 if (witness_cold || witness_watch < 1 || KERNEL_PANICKED())
1805 return (0);
1806 n = 0;
1807 td = curthread;
1808 for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1809 for (i = lle->ll_count - 1; i >= 0; i--) {
1810 lock1 = &lle->ll_children[i];
1811 if (lock1->li_lock == lock)
1812 continue;
1813 if (flags & WARN_GIANTOK &&
1814 lock1->li_lock == &Giant.lock_object)
1815 continue;
1816 if (flags & WARN_SLEEPOK &&
1817 (lock1->li_flags & LI_SLEEPABLE) != 0)
1818 continue;
1819 if (n == 0) {
1820 va_start(ap, fmt);
1821 vprintf(fmt, ap);
1822 va_end(ap);
1823 printf(" with the following %slocks held:\n",
1824 (flags & WARN_SLEEPOK) != 0 ?
1825 "non-sleepable " : "");
1826 }
1827 n++;
1828 witness_list_lock(lock1, printf);
1829 }
1830
1831 /*
1832 * Pin the thread in order to avoid problems with thread migration.
1833 * Once that all verifies are passed about spinlocks ownership,
1834 * the thread is in a safe path and it can be unpinned.
1835 */
1836 sched_pin();
1837 lock_list = PCPU_GET(spinlocks);
1838 if (lock_list != NULL && lock_list->ll_count != 0) {
1839 sched_unpin();
1840
1841 /*
1842 * We should only have one spinlock and as long as
1843 * the flags cannot match for this locks class,
1844 * check if the first spinlock is the one curthread
1845 * should hold.
1846 */
1847 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1848 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1849 lock1->li_lock == lock && n == 0)
1850 return (0);
1851
1852 va_start(ap, fmt);
1853 vprintf(fmt, ap);
1854 va_end(ap);
1855 printf(" with the following %slocks held:\n",
1856 (flags & WARN_SLEEPOK) != 0 ? "non-sleepable " : "");
1857 n += witness_list_locks(&lock_list, printf);
1858 } else
1859 sched_unpin();
1860 if (flags & WARN_PANIC && n)
1861 kassert_panic("%s", __func__);
1862 else
1863 witness_debugger(n, __func__);
1864 return (n);
1865 }
1866
1867 const char *
witness_file(struct lock_object * lock)1868 witness_file(struct lock_object *lock)
1869 {
1870 struct witness *w;
1871
1872 if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1873 return ("?");
1874 w = lock->lo_witness;
1875 return (w->w_file);
1876 }
1877
1878 int
witness_line(struct lock_object * lock)1879 witness_line(struct lock_object *lock)
1880 {
1881 struct witness *w;
1882
1883 if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1884 return (0);
1885 w = lock->lo_witness;
1886 return (w->w_line);
1887 }
1888
1889 static struct witness *
enroll(const char * description,struct lock_class * lock_class)1890 enroll(const char *description, struct lock_class *lock_class)
1891 {
1892 struct witness *w;
1893
1894 MPASS(description != NULL);
1895
1896 if (witness_watch == -1 || KERNEL_PANICKED())
1897 return (NULL);
1898 if ((lock_class->lc_flags & LC_SPINLOCK)) {
1899 if (witness_skipspin)
1900 return (NULL);
1901 } else if ((lock_class->lc_flags & LC_SLEEPLOCK) == 0) {
1902 kassert_panic("lock class %s is not sleep or spin",
1903 lock_class->lc_name);
1904 return (NULL);
1905 }
1906
1907 mtx_lock_spin(&w_mtx);
1908 w = witness_hash_get(description);
1909 if (w)
1910 goto found;
1911 if ((w = witness_get()) == NULL)
1912 return (NULL);
1913 MPASS(strlen(description) < MAX_W_NAME);
1914 strcpy(w->w_name, description);
1915 w->w_class = lock_class;
1916 w->w_refcount = 1;
1917 STAILQ_INSERT_HEAD(&w_all, w, w_list);
1918 if (lock_class->lc_flags & LC_SPINLOCK) {
1919 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1920 w_spin_cnt++;
1921 } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1922 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1923 w_sleep_cnt++;
1924 }
1925
1926 /* Insert new witness into the hash */
1927 witness_hash_put(w);
1928 witness_increment_graph_generation();
1929 mtx_unlock_spin(&w_mtx);
1930 return (w);
1931 found:
1932 w->w_refcount++;
1933 if (w->w_refcount == 1)
1934 w->w_class = lock_class;
1935 mtx_unlock_spin(&w_mtx);
1936 if (lock_class != w->w_class)
1937 kassert_panic(
1938 "lock (%s) %s does not match earlier (%s) lock",
1939 description, lock_class->lc_name,
1940 w->w_class->lc_name);
1941 return (w);
1942 }
1943
1944 static void
depart(struct witness * w)1945 depart(struct witness *w)
1946 {
1947 MPASS(w->w_refcount == 0);
1948 if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1949 w_sleep_cnt--;
1950 } else {
1951 w_spin_cnt--;
1952 }
1953 /*
1954 * Set file to NULL as it may point into a loadable module.
1955 */
1956 w->w_file = NULL;
1957 w->w_line = 0;
1958 witness_increment_graph_generation();
1959 }
1960
1961 static void
adopt(struct witness * parent,struct witness * child)1962 adopt(struct witness *parent, struct witness *child)
1963 {
1964 int pi, ci, i, j;
1965
1966 if (witness_cold == 0)
1967 mtx_assert(&w_mtx, MA_OWNED);
1968
1969 /* If the relationship is already known, there's no work to be done. */
1970 if (isitmychild(parent, child))
1971 return;
1972
1973 /* When the structure of the graph changes, bump up the generation. */
1974 witness_increment_graph_generation();
1975
1976 /*
1977 * The hard part ... create the direct relationship, then propagate all
1978 * indirect relationships.
1979 */
1980 pi = parent->w_index;
1981 ci = child->w_index;
1982 WITNESS_INDEX_ASSERT(pi);
1983 WITNESS_INDEX_ASSERT(ci);
1984 MPASS(pi != ci);
1985 w_rmatrix[pi][ci] |= WITNESS_PARENT;
1986 w_rmatrix[ci][pi] |= WITNESS_CHILD;
1987
1988 /*
1989 * If parent was not already an ancestor of child,
1990 * then we increment the descendant and ancestor counters.
1991 */
1992 if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1993 parent->w_num_descendants++;
1994 child->w_num_ancestors++;
1995 }
1996
1997 /*
1998 * Find each ancestor of 'pi'. Note that 'pi' itself is counted as
1999 * an ancestor of 'pi' during this loop.
2000 */
2001 for (i = 1; i <= w_max_used_index; i++) {
2002 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 &&
2003 (i != pi))
2004 continue;
2005
2006 /* Find each descendant of 'i' and mark it as a descendant. */
2007 for (j = 1; j <= w_max_used_index; j++) {
2008 /*
2009 * Skip children that are already marked as
2010 * descendants of 'i'.
2011 */
2012 if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
2013 continue;
2014
2015 /*
2016 * We are only interested in descendants of 'ci'. Note
2017 * that 'ci' itself is counted as a descendant of 'ci'.
2018 */
2019 if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 &&
2020 (j != ci))
2021 continue;
2022 w_rmatrix[i][j] |= WITNESS_ANCESTOR;
2023 w_rmatrix[j][i] |= WITNESS_DESCENDANT;
2024 w_data[i].w_num_descendants++;
2025 w_data[j].w_num_ancestors++;
2026
2027 /*
2028 * Make sure we aren't marking a node as both an
2029 * ancestor and descendant. We should have caught
2030 * this as a lock order reversal earlier.
2031 */
2032 if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
2033 (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
2034 printf("witness rmatrix paradox! [%d][%d]=%d "
2035 "both ancestor and descendant\n",
2036 i, j, w_rmatrix[i][j]);
2037 kdb_backtrace();
2038 printf("Witness disabled.\n");
2039 witness_watch = -1;
2040 }
2041 if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
2042 (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
2043 printf("witness rmatrix paradox! [%d][%d]=%d "
2044 "both ancestor and descendant\n",
2045 j, i, w_rmatrix[j][i]);
2046 kdb_backtrace();
2047 printf("Witness disabled.\n");
2048 witness_watch = -1;
2049 }
2050 }
2051 }
2052 }
2053
2054 static void
itismychild(struct witness * parent,struct witness * child)2055 itismychild(struct witness *parent, struct witness *child)
2056 {
2057 int unlocked;
2058
2059 MPASS(child != NULL && parent != NULL);
2060 if (witness_cold == 0)
2061 mtx_assert(&w_mtx, MA_OWNED);
2062
2063 if (!witness_lock_type_equal(parent, child)) {
2064 if (witness_cold == 0) {
2065 unlocked = 1;
2066 mtx_unlock_spin(&w_mtx);
2067 } else {
2068 unlocked = 0;
2069 }
2070 kassert_panic(
2071 "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
2072 "the same lock type", __func__, parent->w_name,
2073 parent->w_class->lc_name, child->w_name,
2074 child->w_class->lc_name);
2075 if (unlocked)
2076 mtx_lock_spin(&w_mtx);
2077 }
2078 adopt(parent, child);
2079 }
2080
2081 /*
2082 * Generic code for the isitmy*() functions. The rmask parameter is the
2083 * expected relationship of w1 to w2.
2084 */
2085 static int
_isitmyx(struct witness * w1,struct witness * w2,int rmask,const char * fname)2086 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
2087 {
2088 unsigned char r1, r2;
2089 int i1, i2;
2090
2091 i1 = w1->w_index;
2092 i2 = w2->w_index;
2093 WITNESS_INDEX_ASSERT(i1);
2094 WITNESS_INDEX_ASSERT(i2);
2095 r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
2096 r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
2097
2098 /* The flags on one better be the inverse of the flags on the other */
2099 if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
2100 (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
2101 /* Don't squawk if we're potentially racing with an update. */
2102 if (!mtx_owned(&w_mtx))
2103 return (0);
2104 printf("%s: rmatrix mismatch between %s (index %d) and %s "
2105 "(index %d): w_rmatrix[%d][%d] == %hhx but "
2106 "w_rmatrix[%d][%d] == %hhx\n",
2107 fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
2108 i2, i1, r2);
2109 kdb_backtrace();
2110 printf("Witness disabled.\n");
2111 witness_watch = -1;
2112 }
2113 return (r1 & rmask);
2114 }
2115
2116 /*
2117 * Checks if @child is a direct child of @parent.
2118 */
2119 static int
isitmychild(struct witness * parent,struct witness * child)2120 isitmychild(struct witness *parent, struct witness *child)
2121 {
2122 return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
2123 }
2124
2125 /*
2126 * Checks if @descendant is a direct or inderect descendant of @ancestor.
2127 */
2128 static int
isitmydescendant(struct witness * ancestor,struct witness * descendant)2129 isitmydescendant(struct witness *ancestor, struct witness *descendant)
2130 {
2131 return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
2132 __func__));
2133 }
2134
2135 static int
blessed(struct witness * w1,struct witness * w2)2136 blessed(struct witness *w1, struct witness *w2)
2137 {
2138 int i;
2139 struct witness_blessed *b;
2140
2141 for (i = 0; i < nitems(blessed_list); i++) {
2142 b = &blessed_list[i];
2143 if (strcmp(w1->w_name, b->b_lock1) == 0) {
2144 if (strcmp(w2->w_name, b->b_lock2) == 0)
2145 return (1);
2146 continue;
2147 }
2148 if (strcmp(w1->w_name, b->b_lock2) == 0)
2149 if (strcmp(w2->w_name, b->b_lock1) == 0)
2150 return (1);
2151 }
2152 return (0);
2153 }
2154
2155 static struct witness *
witness_get(void)2156 witness_get(void)
2157 {
2158 struct witness *w;
2159 int index;
2160
2161 if (witness_cold == 0)
2162 mtx_assert(&w_mtx, MA_OWNED);
2163
2164 if (witness_watch == -1) {
2165 mtx_unlock_spin(&w_mtx);
2166 return (NULL);
2167 }
2168 if (STAILQ_EMPTY(&w_free)) {
2169 witness_watch = -1;
2170 mtx_unlock_spin(&w_mtx);
2171 printf("WITNESS: unable to allocate a new witness object\n");
2172 return (NULL);
2173 }
2174 w = STAILQ_FIRST(&w_free);
2175 STAILQ_REMOVE_HEAD(&w_free, w_list);
2176 w_free_cnt--;
2177 index = w->w_index;
2178 MPASS(index > 0 && index == w_max_used_index + 1 &&
2179 index < witness_count);
2180 bzero(w, sizeof(*w));
2181 w->w_index = index;
2182 if (index > w_max_used_index)
2183 w_max_used_index = index;
2184 return (w);
2185 }
2186
2187 static void
witness_free(struct witness * w)2188 witness_free(struct witness *w)
2189 {
2190 STAILQ_INSERT_HEAD(&w_free, w, w_list);
2191 w_free_cnt++;
2192 }
2193
2194 static struct lock_list_entry *
witness_lock_list_get(void)2195 witness_lock_list_get(void)
2196 {
2197 struct lock_list_entry *lle;
2198
2199 if (witness_watch == -1)
2200 return (NULL);
2201 mtx_lock_spin(&w_mtx);
2202 lle = w_lock_list_free;
2203 if (lle == NULL) {
2204 witness_watch = -1;
2205 mtx_unlock_spin(&w_mtx);
2206 printf("%s: witness exhausted\n", __func__);
2207 return (NULL);
2208 }
2209 w_lock_list_free = lle->ll_next;
2210 mtx_unlock_spin(&w_mtx);
2211 bzero(lle, sizeof(*lle));
2212 return (lle);
2213 }
2214
2215 static void
witness_lock_list_free(struct lock_list_entry * lle)2216 witness_lock_list_free(struct lock_list_entry *lle)
2217 {
2218 mtx_lock_spin(&w_mtx);
2219 lle->ll_next = w_lock_list_free;
2220 w_lock_list_free = lle;
2221 mtx_unlock_spin(&w_mtx);
2222 }
2223
2224 static struct lock_instance *
find_instance(struct lock_list_entry * list,const struct lock_object * lock)2225 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2226 {
2227 struct lock_list_entry *lle;
2228 struct lock_instance *instance;
2229 int i;
2230
2231 for (lle = list; lle != NULL; lle = lle->ll_next)
2232 for (i = lle->ll_count - 1; i >= 0; i--) {
2233 instance = &lle->ll_children[i];
2234 if (instance->li_lock == lock)
2235 return (instance);
2236 }
2237 return (NULL);
2238 }
2239
2240 static void
witness_list_lock(struct lock_instance * instance,int (* prnt)(const char * fmt,...))2241 witness_list_lock(struct lock_instance *instance,
2242 int (*prnt)(const char *fmt, ...))
2243 {
2244 struct lock_object *lock;
2245
2246 lock = instance->li_lock;
2247 prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2248 "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2249 if (lock->lo_witness->w_name != lock->lo_name)
2250 prnt(" (%s)", lock->lo_witness->w_name);
2251 prnt(" r = %d (%p) locked @ %s:%d\n",
2252 instance->li_flags & LI_RECURSEMASK, lock,
2253 fixup_filename(instance->li_file), instance->li_line);
2254 }
2255
2256 static int
witness_output(const char * fmt,...)2257 witness_output(const char *fmt, ...)
2258 {
2259 va_list ap;
2260 int ret;
2261
2262 va_start(ap, fmt);
2263 ret = witness_voutput(fmt, ap);
2264 va_end(ap);
2265 return (ret);
2266 }
2267
2268 static int
witness_voutput(const char * fmt,va_list ap)2269 witness_voutput(const char *fmt, va_list ap)
2270 {
2271 int ret;
2272
2273 ret = 0;
2274 switch (witness_channel) {
2275 case WITNESS_CONSOLE:
2276 ret = vprintf(fmt, ap);
2277 break;
2278 case WITNESS_LOG:
2279 vlog(LOG_NOTICE, fmt, ap);
2280 break;
2281 case WITNESS_NONE:
2282 break;
2283 }
2284 return (ret);
2285 }
2286
2287 #ifdef DDB
2288 static int
witness_thread_has_locks(struct thread * td)2289 witness_thread_has_locks(struct thread *td)
2290 {
2291 if (td->td_sleeplocks == NULL)
2292 return (0);
2293 return (td->td_sleeplocks->ll_count != 0);
2294 }
2295
2296 static int
witness_proc_has_locks(struct proc * p)2297 witness_proc_has_locks(struct proc *p)
2298 {
2299 struct thread *td;
2300
2301 FOREACH_THREAD_IN_PROC(p, td) {
2302 if (witness_thread_has_locks(td))
2303 return (1);
2304 }
2305 return (0);
2306 }
2307 #endif
2308
2309 int
witness_list_locks(struct lock_list_entry ** lock_list,int (* prnt)(const char * fmt,...))2310 witness_list_locks(struct lock_list_entry **lock_list,
2311 int (*prnt)(const char *fmt, ...))
2312 {
2313 struct lock_list_entry *lle;
2314 int i, nheld;
2315
2316 nheld = 0;
2317 for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2318 for (i = lle->ll_count - 1; i >= 0; i--) {
2319 witness_list_lock(&lle->ll_children[i], prnt);
2320 nheld++;
2321 }
2322 return (nheld);
2323 }
2324
2325 /*
2326 * This is a bit risky at best. We call this function when we have timed
2327 * out acquiring a spin lock, and we assume that the other CPU is stuck
2328 * with this lock held. So, we go groveling around in the other CPU's
2329 * per-cpu data to try to find the lock instance for this spin lock to
2330 * see when it was last acquired.
2331 */
2332 void
witness_display_spinlock(struct lock_object * lock,struct thread * owner,int (* prnt)(const char * fmt,...))2333 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2334 int (*prnt)(const char *fmt, ...))
2335 {
2336 struct lock_instance *instance;
2337 struct pcpu *pc;
2338
2339 if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2340 return;
2341 pc = pcpu_find(owner->td_oncpu);
2342 instance = find_instance(pc->pc_spinlocks, lock);
2343 if (instance != NULL)
2344 witness_list_lock(instance, prnt);
2345 }
2346
2347 void
witness_save(struct lock_object * lock,const char ** filep,int * linep)2348 witness_save(struct lock_object *lock, const char **filep, int *linep)
2349 {
2350 struct lock_list_entry *lock_list;
2351 struct lock_instance *instance;
2352 struct lock_class *class;
2353
2354 /* Initialize for KMSAN's benefit. */
2355 *filep = NULL;
2356 *linep = 0;
2357
2358 /*
2359 * This function is used independently in locking code to deal with
2360 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2361 * is gone.
2362 */
2363 if (SCHEDULER_STOPPED())
2364 return;
2365 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2366 if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
2367 return;
2368 class = LOCK_CLASS(lock);
2369 if (class->lc_flags & LC_SLEEPLOCK)
2370 lock_list = curthread->td_sleeplocks;
2371 else {
2372 if (witness_skipspin)
2373 return;
2374 lock_list = PCPU_GET(spinlocks);
2375 }
2376 instance = find_instance(lock_list, lock);
2377 if (instance == NULL) {
2378 kassert_panic("%s: lock (%s) %s not locked", __func__,
2379 class->lc_name, lock->lo_name);
2380 return;
2381 }
2382 *filep = instance->li_file;
2383 *linep = instance->li_line;
2384 }
2385
2386 void
witness_restore(struct lock_object * lock,const char * file,int line)2387 witness_restore(struct lock_object *lock, const char *file, int line)
2388 {
2389 struct lock_list_entry *lock_list;
2390 struct lock_instance *instance;
2391 struct lock_class *class;
2392
2393 /*
2394 * This function is used independently in locking code to deal with
2395 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2396 * is gone.
2397 */
2398 if (SCHEDULER_STOPPED())
2399 return;
2400 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2401 if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
2402 return;
2403 class = LOCK_CLASS(lock);
2404 if (class->lc_flags & LC_SLEEPLOCK)
2405 lock_list = curthread->td_sleeplocks;
2406 else {
2407 if (witness_skipspin)
2408 return;
2409 lock_list = PCPU_GET(spinlocks);
2410 }
2411 instance = find_instance(lock_list, lock);
2412 if (instance == NULL)
2413 kassert_panic("%s: lock (%s) %s not locked", __func__,
2414 class->lc_name, lock->lo_name);
2415 lock->lo_witness->w_file = file;
2416 lock->lo_witness->w_line = line;
2417 if (instance == NULL)
2418 return;
2419 instance->li_file = file;
2420 instance->li_line = line;
2421 }
2422
2423 static bool
witness_find_instance(const struct lock_object * lock,struct lock_instance ** instance)2424 witness_find_instance(const struct lock_object *lock,
2425 struct lock_instance **instance)
2426 {
2427 #ifdef INVARIANT_SUPPORT
2428 struct lock_class *class;
2429
2430 if (lock->lo_witness == NULL || witness_watch < 1 || KERNEL_PANICKED())
2431 return (false);
2432 class = LOCK_CLASS(lock);
2433 if ((class->lc_flags & LC_SLEEPLOCK) != 0) {
2434 *instance = find_instance(curthread->td_sleeplocks, lock);
2435 return (true);
2436 } else if ((class->lc_flags & LC_SPINLOCK) != 0) {
2437 *instance = find_instance(PCPU_GET(spinlocks), lock);
2438 return (true);
2439 } else {
2440 kassert_panic("Lock (%s) %s is not sleep or spin!",
2441 class->lc_name, lock->lo_name);
2442 return (false);
2443 }
2444 #else
2445 return (false);
2446 #endif
2447 }
2448
2449 void
witness_assert(const struct lock_object * lock,int flags,const char * file,int line)2450 witness_assert(const struct lock_object *lock, int flags, const char *file,
2451 int line)
2452 {
2453 #ifdef INVARIANT_SUPPORT
2454 struct lock_instance *instance;
2455 struct lock_class *class;
2456
2457 if (!witness_find_instance(lock, &instance))
2458 return;
2459 class = LOCK_CLASS(lock);
2460 switch (flags) {
2461 case LA_UNLOCKED:
2462 if (instance != NULL)
2463 kassert_panic("Lock (%s) %s locked @ %s:%d.",
2464 class->lc_name, lock->lo_name,
2465 fixup_filename(file), line);
2466 break;
2467 case LA_LOCKED:
2468 case LA_LOCKED | LA_RECURSED:
2469 case LA_LOCKED | LA_NOTRECURSED:
2470 case LA_SLOCKED:
2471 case LA_SLOCKED | LA_RECURSED:
2472 case LA_SLOCKED | LA_NOTRECURSED:
2473 case LA_XLOCKED:
2474 case LA_XLOCKED | LA_RECURSED:
2475 case LA_XLOCKED | LA_NOTRECURSED:
2476 if (instance == NULL) {
2477 kassert_panic("Lock (%s) %s not locked @ %s:%d.",
2478 class->lc_name, lock->lo_name,
2479 fixup_filename(file), line);
2480 break;
2481 }
2482 if ((flags & LA_XLOCKED) != 0 &&
2483 (instance->li_flags & LI_EXCLUSIVE) == 0)
2484 kassert_panic(
2485 "Lock (%s) %s not exclusively locked @ %s:%d.",
2486 class->lc_name, lock->lo_name,
2487 fixup_filename(file), line);
2488 if ((flags & LA_SLOCKED) != 0 &&
2489 (instance->li_flags & LI_EXCLUSIVE) != 0)
2490 kassert_panic(
2491 "Lock (%s) %s exclusively locked @ %s:%d.",
2492 class->lc_name, lock->lo_name,
2493 fixup_filename(file), line);
2494 if ((flags & LA_RECURSED) != 0 &&
2495 (instance->li_flags & LI_RECURSEMASK) == 0)
2496 kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
2497 class->lc_name, lock->lo_name,
2498 fixup_filename(file), line);
2499 if ((flags & LA_NOTRECURSED) != 0 &&
2500 (instance->li_flags & LI_RECURSEMASK) != 0)
2501 kassert_panic("Lock (%s) %s recursed @ %s:%d.",
2502 class->lc_name, lock->lo_name,
2503 fixup_filename(file), line);
2504 break;
2505 default:
2506 kassert_panic("Invalid lock assertion at %s:%d.",
2507 fixup_filename(file), line);
2508 }
2509 #endif /* INVARIANT_SUPPORT */
2510 }
2511
2512 /*
2513 * Checks the ownership of the lock by curthread, consulting the witness list.
2514 * Returns:
2515 * 0 if witness is disabled or did not work
2516 * -1 if not owned
2517 * 1 if owned
2518 */
2519 int
witness_is_owned(const struct lock_object * lock)2520 witness_is_owned(const struct lock_object *lock)
2521 {
2522 #ifdef INVARIANT_SUPPORT
2523 struct lock_instance *instance;
2524
2525 if (!witness_find_instance(lock, &instance))
2526 return (0);
2527 return (instance == NULL ? -1 : 1);
2528 #else
2529 return (0);
2530 #endif
2531 }
2532
2533 static void
witness_setflag(struct lock_object * lock,int flag,int set)2534 witness_setflag(struct lock_object *lock, int flag, int set)
2535 {
2536 struct lock_list_entry *lock_list;
2537 struct lock_instance *instance;
2538 struct lock_class *class;
2539
2540 if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
2541 return;
2542 class = LOCK_CLASS(lock);
2543 if (class->lc_flags & LC_SLEEPLOCK)
2544 lock_list = curthread->td_sleeplocks;
2545 else {
2546 if (witness_skipspin)
2547 return;
2548 lock_list = PCPU_GET(spinlocks);
2549 }
2550 instance = find_instance(lock_list, lock);
2551 if (instance == NULL) {
2552 kassert_panic("%s: lock (%s) %s not locked", __func__,
2553 class->lc_name, lock->lo_name);
2554 return;
2555 }
2556
2557 if (set)
2558 instance->li_flags |= flag;
2559 else
2560 instance->li_flags &= ~flag;
2561 }
2562
2563 void
witness_norelease(struct lock_object * lock)2564 witness_norelease(struct lock_object *lock)
2565 {
2566 witness_setflag(lock, LI_NORELEASE, 1);
2567 }
2568
2569 void
witness_releaseok(struct lock_object * lock)2570 witness_releaseok(struct lock_object *lock)
2571 {
2572 witness_setflag(lock, LI_NORELEASE, 0);
2573 }
2574
2575 #ifdef DDB
2576 static void
witness_ddb_list(struct thread * td)2577 witness_ddb_list(struct thread *td)
2578 {
2579 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2580 KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2581
2582 if (witness_watch < 1)
2583 return;
2584
2585 witness_list_locks(&td->td_sleeplocks, db_printf);
2586
2587 /*
2588 * We only handle spinlocks if td == curthread. This is somewhat broken
2589 * if td is currently executing on some other CPU and holds spin locks
2590 * as we won't display those locks. If we had a MI way of getting
2591 * the per-cpu data for a given cpu then we could use
2592 * td->td_oncpu to get the list of spinlocks for this thread
2593 * and "fix" this.
2594 *
2595 * That still wouldn't really fix this unless we locked the scheduler
2596 * lock or stopped the other CPU to make sure it wasn't changing the
2597 * list out from under us. It is probably best to just not try to
2598 * handle threads on other CPU's for now.
2599 */
2600 if (td == curthread && PCPU_GET(spinlocks) != NULL)
2601 witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2602 }
2603
DB_SHOW_COMMAND(locks,db_witness_list)2604 DB_SHOW_COMMAND(locks, db_witness_list)
2605 {
2606 struct thread *td;
2607
2608 if (have_addr)
2609 td = db_lookup_thread(addr, true);
2610 else
2611 td = kdb_thread;
2612 witness_ddb_list(td);
2613 }
2614
DB_SHOW_ALL_COMMAND(locks,db_witness_list_all)2615 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2616 {
2617 struct thread *td;
2618 struct proc *p;
2619
2620 /*
2621 * It would be nice to list only threads and processes that actually
2622 * held sleep locks, but that information is currently not exported
2623 * by WITNESS.
2624 */
2625 FOREACH_PROC_IN_SYSTEM(p) {
2626 if (!witness_proc_has_locks(p))
2627 continue;
2628 FOREACH_THREAD_IN_PROC(p, td) {
2629 if (!witness_thread_has_locks(td))
2630 continue;
2631 db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2632 p->p_comm, td, td->td_tid);
2633 witness_ddb_list(td);
2634 if (db_pager_quit)
2635 return;
2636 }
2637 }
2638 }
2639 DB_SHOW_ALIAS_FLAGS(alllocks, db_witness_list_all, DB_CMD_MEMSAFE);
2640
DB_SHOW_COMMAND_FLAGS(witness,db_witness_display,DB_CMD_MEMSAFE)2641 DB_SHOW_COMMAND_FLAGS(witness, db_witness_display, DB_CMD_MEMSAFE)
2642 {
2643 witness_ddb_display(db_printf);
2644 }
2645 #endif
2646
2647 static void
sbuf_print_witness_badstacks(struct sbuf * sb,size_t * oldidx)2648 sbuf_print_witness_badstacks(struct sbuf *sb, size_t *oldidx)
2649 {
2650 struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2651 struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2652 int generation, i, j;
2653
2654 tmp_data1 = NULL;
2655 tmp_data2 = NULL;
2656 tmp_w1 = NULL;
2657 tmp_w2 = NULL;
2658
2659 /* Allocate and init temporary storage space. */
2660 tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2661 tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2662 tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2663 M_WAITOK | M_ZERO);
2664 tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2665 M_WAITOK | M_ZERO);
2666 stack_zero(&tmp_data1->wlod_stack);
2667 stack_zero(&tmp_data2->wlod_stack);
2668
2669 restart:
2670 mtx_lock_spin(&w_mtx);
2671 generation = w_generation;
2672 mtx_unlock_spin(&w_mtx);
2673 sbuf_printf(sb, "Number of known direct relationships is %d\n",
2674 w_lohash.wloh_count);
2675 for (i = 1; i < w_max_used_index; i++) {
2676 mtx_lock_spin(&w_mtx);
2677 if (generation != w_generation) {
2678 mtx_unlock_spin(&w_mtx);
2679
2680 /* The graph has changed, try again. */
2681 *oldidx = 0;
2682 sbuf_clear(sb);
2683 goto restart;
2684 }
2685
2686 w1 = &w_data[i];
2687 if (w1->w_reversed == 0) {
2688 mtx_unlock_spin(&w_mtx);
2689 continue;
2690 }
2691
2692 /* Copy w1 locally so we can release the spin lock. */
2693 *tmp_w1 = *w1;
2694 mtx_unlock_spin(&w_mtx);
2695
2696 if (tmp_w1->w_reversed == 0)
2697 continue;
2698 for (j = 1; j < w_max_used_index; j++) {
2699 if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2700 continue;
2701
2702 mtx_lock_spin(&w_mtx);
2703 if (generation != w_generation) {
2704 mtx_unlock_spin(&w_mtx);
2705
2706 /* The graph has changed, try again. */
2707 *oldidx = 0;
2708 sbuf_clear(sb);
2709 goto restart;
2710 }
2711
2712 w2 = &w_data[j];
2713 data1 = witness_lock_order_get(w1, w2);
2714 data2 = witness_lock_order_get(w2, w1);
2715
2716 /*
2717 * Copy information locally so we can release the
2718 * spin lock.
2719 */
2720 *tmp_w2 = *w2;
2721
2722 if (data1) {
2723 stack_zero(&tmp_data1->wlod_stack);
2724 stack_copy(&data1->wlod_stack,
2725 &tmp_data1->wlod_stack);
2726 }
2727 if (data2 && data2 != data1) {
2728 stack_zero(&tmp_data2->wlod_stack);
2729 stack_copy(&data2->wlod_stack,
2730 &tmp_data2->wlod_stack);
2731 }
2732 mtx_unlock_spin(&w_mtx);
2733
2734 if (blessed(tmp_w1, tmp_w2))
2735 continue;
2736
2737 sbuf_printf(sb,
2738 "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2739 tmp_w1->w_name, tmp_w1->w_class->lc_name,
2740 tmp_w2->w_name, tmp_w2->w_class->lc_name);
2741 if (data1) {
2742 sbuf_printf(sb,
2743 "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2744 tmp_w1->w_name, tmp_w1->w_class->lc_name,
2745 tmp_w2->w_name, tmp_w2->w_class->lc_name);
2746 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2747 sbuf_putc(sb, '\n');
2748 }
2749 if (data2 && data2 != data1) {
2750 sbuf_printf(sb,
2751 "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2752 tmp_w2->w_name, tmp_w2->w_class->lc_name,
2753 tmp_w1->w_name, tmp_w1->w_class->lc_name);
2754 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2755 sbuf_putc(sb, '\n');
2756 }
2757 }
2758 }
2759 mtx_lock_spin(&w_mtx);
2760 if (generation != w_generation) {
2761 mtx_unlock_spin(&w_mtx);
2762
2763 /*
2764 * The graph changed while we were printing stack data,
2765 * try again.
2766 */
2767 *oldidx = 0;
2768 sbuf_clear(sb);
2769 goto restart;
2770 }
2771 mtx_unlock_spin(&w_mtx);
2772
2773 /* Free temporary storage space. */
2774 free(tmp_data1, M_TEMP);
2775 free(tmp_data2, M_TEMP);
2776 free(tmp_w1, M_TEMP);
2777 free(tmp_w2, M_TEMP);
2778 }
2779
2780 static int
sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)2781 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2782 {
2783 struct sbuf *sb;
2784 int error;
2785
2786 if (witness_watch < 1) {
2787 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2788 return (error);
2789 }
2790 if (witness_cold) {
2791 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2792 return (error);
2793 }
2794 error = 0;
2795 sb = sbuf_new(NULL, NULL, badstack_sbuf_size, SBUF_AUTOEXTEND);
2796 if (sb == NULL)
2797 return (ENOMEM);
2798
2799 sbuf_print_witness_badstacks(sb, &req->oldidx);
2800
2801 sbuf_finish(sb);
2802 error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2803 sbuf_delete(sb);
2804
2805 return (error);
2806 }
2807
2808 #ifdef DDB
2809 static int
sbuf_db_printf_drain(void * arg __unused,const char * data,int len)2810 sbuf_db_printf_drain(void *arg __unused, const char *data, int len)
2811 {
2812 return (db_printf("%.*s", len, data));
2813 }
2814
DB_SHOW_COMMAND_FLAGS(badstacks,db_witness_badstacks,DB_CMD_MEMSAFE)2815 DB_SHOW_COMMAND_FLAGS(badstacks, db_witness_badstacks, DB_CMD_MEMSAFE)
2816 {
2817 struct sbuf sb;
2818 char buffer[128];
2819 size_t dummy;
2820
2821 sbuf_new(&sb, buffer, sizeof(buffer), SBUF_FIXEDLEN);
2822 sbuf_set_drain(&sb, sbuf_db_printf_drain, NULL);
2823 sbuf_print_witness_badstacks(&sb, &dummy);
2824 sbuf_finish(&sb);
2825 }
2826 #endif
2827
2828 static int
sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS)2829 sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS)
2830 {
2831 static const struct {
2832 enum witness_channel channel;
2833 const char *name;
2834 } channels[] = {
2835 { WITNESS_CONSOLE, "console" },
2836 { WITNESS_LOG, "log" },
2837 { WITNESS_NONE, "none" },
2838 };
2839 char buf[16];
2840 u_int i;
2841 int error;
2842
2843 buf[0] = '\0';
2844 for (i = 0; i < nitems(channels); i++)
2845 if (witness_channel == channels[i].channel) {
2846 snprintf(buf, sizeof(buf), "%s", channels[i].name);
2847 break;
2848 }
2849
2850 error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
2851 if (error != 0 || req->newptr == NULL)
2852 return (error);
2853
2854 error = EINVAL;
2855 for (i = 0; i < nitems(channels); i++)
2856 if (strcmp(channels[i].name, buf) == 0) {
2857 witness_channel = channels[i].channel;
2858 error = 0;
2859 break;
2860 }
2861 return (error);
2862 }
2863
2864 static int
sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)2865 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2866 {
2867 struct witness *w;
2868 struct sbuf *sb;
2869 int error;
2870
2871 #ifdef __i386__
2872 error = SYSCTL_OUT(req, w_notallowed, sizeof(w_notallowed));
2873 return (error);
2874 #endif
2875
2876 if (witness_watch < 1) {
2877 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2878 return (error);
2879 }
2880 if (witness_cold) {
2881 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2882 return (error);
2883 }
2884 error = 0;
2885
2886 error = sysctl_wire_old_buffer(req, 0);
2887 if (error != 0)
2888 return (error);
2889 sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2890 if (sb == NULL)
2891 return (ENOMEM);
2892 sbuf_putc(sb, '\n');
2893
2894 mtx_lock_spin(&w_mtx);
2895 STAILQ_FOREACH(w, &w_all, w_list)
2896 w->w_displayed = 0;
2897 STAILQ_FOREACH(w, &w_all, w_list)
2898 witness_add_fullgraph(sb, w);
2899 mtx_unlock_spin(&w_mtx);
2900
2901 /*
2902 * Close the sbuf and return to userland.
2903 */
2904 error = sbuf_finish(sb);
2905 sbuf_delete(sb);
2906
2907 return (error);
2908 }
2909
2910 static int
sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)2911 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2912 {
2913 int error, value;
2914
2915 value = witness_watch;
2916 error = sysctl_handle_int(oidp, &value, 0, req);
2917 if (error != 0 || req->newptr == NULL)
2918 return (error);
2919 if (value > 1 || value < -1 ||
2920 (witness_watch == -1 && value != witness_watch))
2921 return (EINVAL);
2922 witness_watch = value;
2923 return (0);
2924 }
2925
2926 static void
witness_add_fullgraph(struct sbuf * sb,struct witness * w)2927 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2928 {
2929 int i;
2930
2931 if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2932 return;
2933 w->w_displayed = 1;
2934
2935 WITNESS_INDEX_ASSERT(w->w_index);
2936 for (i = 1; i <= w_max_used_index; i++) {
2937 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2938 sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2939 w_data[i].w_name);
2940 witness_add_fullgraph(sb, &w_data[i]);
2941 }
2942 }
2943 }
2944
2945 /*
2946 * A simple hash function. Takes a key pointer and a key size. If size == 0,
2947 * interprets the key as a string and reads until the null
2948 * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2949 * hash value computed from the key.
2950 */
2951 static uint32_t
witness_hash_djb2(const uint8_t * key,uint32_t size)2952 witness_hash_djb2(const uint8_t *key, uint32_t size)
2953 {
2954 unsigned int hash = 5381;
2955 int i;
2956
2957 /* hash = hash * 33 + key[i] */
2958 if (size)
2959 for (i = 0; i < size; i++)
2960 hash = ((hash << 5) + hash) + (unsigned int)key[i];
2961 else
2962 for (i = 0; key[i] != 0; i++)
2963 hash = ((hash << 5) + hash) + (unsigned int)key[i];
2964
2965 return (hash);
2966 }
2967
2968 /*
2969 * Initializes the two witness hash tables. Called exactly once from
2970 * witness_initialize().
2971 */
2972 static void
witness_init_hash_tables(void)2973 witness_init_hash_tables(void)
2974 {
2975 int i;
2976
2977 MPASS(witness_cold);
2978
2979 /* Initialize the hash tables. */
2980 for (i = 0; i < WITNESS_HASH_SIZE; i++)
2981 w_hash.wh_array[i] = NULL;
2982
2983 w_hash.wh_size = WITNESS_HASH_SIZE;
2984 w_hash.wh_count = 0;
2985
2986 /* Initialize the lock order data hash. */
2987 w_lofree = NULL;
2988 for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2989 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2990 w_lodata[i].wlod_next = w_lofree;
2991 w_lofree = &w_lodata[i];
2992 }
2993 w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2994 w_lohash.wloh_count = 0;
2995 for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2996 w_lohash.wloh_array[i] = NULL;
2997 }
2998
2999 static struct witness *
witness_hash_get(const char * key)3000 witness_hash_get(const char *key)
3001 {
3002 struct witness *w;
3003 uint32_t hash;
3004
3005 MPASS(key != NULL);
3006 if (witness_cold == 0)
3007 mtx_assert(&w_mtx, MA_OWNED);
3008 hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
3009 w = w_hash.wh_array[hash];
3010 while (w != NULL) {
3011 if (strcmp(w->w_name, key) == 0)
3012 goto out;
3013 w = w->w_hash_next;
3014 }
3015
3016 out:
3017 return (w);
3018 }
3019
3020 static void
witness_hash_put(struct witness * w)3021 witness_hash_put(struct witness *w)
3022 {
3023 uint32_t hash;
3024
3025 MPASS(w != NULL);
3026 MPASS(w->w_name != NULL);
3027 if (witness_cold == 0)
3028 mtx_assert(&w_mtx, MA_OWNED);
3029 KASSERT(witness_hash_get(w->w_name) == NULL,
3030 ("%s: trying to add a hash entry that already exists!", __func__));
3031 KASSERT(w->w_hash_next == NULL,
3032 ("%s: w->w_hash_next != NULL", __func__));
3033
3034 hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
3035 w->w_hash_next = w_hash.wh_array[hash];
3036 w_hash.wh_array[hash] = w;
3037 w_hash.wh_count++;
3038 }
3039
3040 static struct witness_lock_order_data *
witness_lock_order_get(struct witness * parent,struct witness * child)3041 witness_lock_order_get(struct witness *parent, struct witness *child)
3042 {
3043 struct witness_lock_order_data *data = NULL;
3044 struct witness_lock_order_key key;
3045 unsigned int hash;
3046
3047 MPASS(parent != NULL && child != NULL);
3048 key.from = parent->w_index;
3049 key.to = child->w_index;
3050 WITNESS_INDEX_ASSERT(key.from);
3051 WITNESS_INDEX_ASSERT(key.to);
3052 if ((w_rmatrix[parent->w_index][child->w_index]
3053 & WITNESS_LOCK_ORDER_KNOWN) == 0)
3054 goto out;
3055
3056 hash = witness_hash_djb2((const char *)&key,
3057 sizeof(key)) % w_lohash.wloh_size;
3058 data = w_lohash.wloh_array[hash];
3059 while (data != NULL) {
3060 if (witness_lock_order_key_equal(&data->wlod_key, &key))
3061 break;
3062 data = data->wlod_next;
3063 }
3064
3065 out:
3066 return (data);
3067 }
3068
3069 /*
3070 * Verify that parent and child have a known relationship, are not the same,
3071 * and child is actually a child of parent. This is done without w_mtx
3072 * to avoid contention in the common case.
3073 */
3074 static int
witness_lock_order_check(struct witness * parent,struct witness * child)3075 witness_lock_order_check(struct witness *parent, struct witness *child)
3076 {
3077 if (parent != child &&
3078 w_rmatrix[parent->w_index][child->w_index]
3079 & WITNESS_LOCK_ORDER_KNOWN &&
3080 isitmychild(parent, child))
3081 return (1);
3082
3083 return (0);
3084 }
3085
3086 static int
witness_lock_order_add(struct witness * parent,struct witness * child)3087 witness_lock_order_add(struct witness *parent, struct witness *child)
3088 {
3089 struct witness_lock_order_data *data = NULL;
3090 struct witness_lock_order_key key;
3091 unsigned int hash;
3092
3093 MPASS(parent != NULL && child != NULL);
3094 key.from = parent->w_index;
3095 key.to = child->w_index;
3096 WITNESS_INDEX_ASSERT(key.from);
3097 WITNESS_INDEX_ASSERT(key.to);
3098 if (w_rmatrix[parent->w_index][child->w_index]
3099 & WITNESS_LOCK_ORDER_KNOWN)
3100 return (1);
3101
3102 hash = witness_hash_djb2((const char *)&key,
3103 sizeof(key)) % w_lohash.wloh_size;
3104 w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
3105 data = w_lofree;
3106 if (data == NULL)
3107 return (0);
3108 w_lofree = data->wlod_next;
3109 data->wlod_next = w_lohash.wloh_array[hash];
3110 data->wlod_key = key;
3111 w_lohash.wloh_array[hash] = data;
3112 w_lohash.wloh_count++;
3113 stack_save(&data->wlod_stack);
3114 return (1);
3115 }
3116
3117 /* Call this whenever the structure of the witness graph changes. */
3118 static void
witness_increment_graph_generation(void)3119 witness_increment_graph_generation(void)
3120 {
3121 if (witness_cold == 0)
3122 mtx_assert(&w_mtx, MA_OWNED);
3123 w_generation++;
3124 }
3125
3126 static int
witness_output_drain(void * arg __unused,const char * data,int len)3127 witness_output_drain(void *arg __unused, const char *data, int len)
3128 {
3129 witness_output("%.*s", len, data);
3130 return (len);
3131 }
3132
3133 static void
witness_debugger(int cond,const char * msg)3134 witness_debugger(int cond, const char *msg)
3135 {
3136 char buf[32];
3137 struct sbuf sb;
3138 struct stack st;
3139
3140 if (!cond)
3141 return;
3142
3143 if (witness_trace) {
3144 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
3145 sbuf_set_drain(&sb, witness_output_drain, NULL);
3146
3147 stack_save(&st);
3148 witness_output("stack backtrace:\n");
3149 stack_sbuf_print_ddb(&sb, &st);
3150
3151 sbuf_finish(&sb);
3152 }
3153
3154 witness_enter_debugger(msg);
3155 }
3156
3157 static void
witness_enter_debugger(const char * msg)3158 witness_enter_debugger(const char *msg)
3159 {
3160 #ifdef KDB
3161 if (witness_kdb)
3162 kdb_enter(KDB_WHY_WITNESS, msg);
3163 #endif
3164 }
3165