xref: /freebsd/sys/vm/vm_page.c (revision ff4c19bb5427ca8e90f7354ff5601b985edf3f9e)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 
36 /*-
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Resident memory management module.
65  */
66 
67 #include <sys/cdefs.h>
68 #include "opt_vm.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/counter.h>
73 #include <sys/domainset.h>
74 #include <sys/kernel.h>
75 #include <sys/limits.h>
76 #include <sys/linker.h>
77 #include <sys/lock.h>
78 #include <sys/malloc.h>
79 #include <sys/mman.h>
80 #include <sys/msgbuf.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>
83 #include <sys/rwlock.h>
84 #include <sys/sleepqueue.h>
85 #include <sys/sbuf.h>
86 #include <sys/sched.h>
87 #include <sys/smp.h>
88 #include <sys/sysctl.h>
89 #include <sys/vmmeter.h>
90 #include <sys/vnode.h>
91 
92 #include <vm/vm.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_param.h>
95 #include <vm/vm_domainset.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_phys.h>
102 #include <vm/vm_pagequeue.h>
103 #include <vm/vm_pager.h>
104 #include <vm/vm_radix.h>
105 #include <vm/vm_reserv.h>
106 #include <vm/vm_extern.h>
107 #include <vm/vm_dumpset.h>
108 #include <vm/uma.h>
109 #include <vm/uma_int.h>
110 
111 #include <machine/md_var.h>
112 
113 struct vm_domain vm_dom[MAXMEMDOM];
114 
115 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
116 
117 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
118 
119 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
120 /* The following fields are protected by the domainset lock. */
121 domainset_t __exclusive_cache_line vm_min_domains;
122 domainset_t __exclusive_cache_line vm_severe_domains;
123 static int vm_min_waiters;
124 static int vm_severe_waiters;
125 static int vm_pageproc_waiters;
126 
127 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
128     "VM page statistics");
129 
130 static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries);
131 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries,
132     CTLFLAG_RD, &pqstate_commit_retries,
133     "Number of failed per-page atomic queue state updates");
134 
135 static COUNTER_U64_DEFINE_EARLY(queue_ops);
136 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
137     CTLFLAG_RD, &queue_ops,
138     "Number of batched queue operations");
139 
140 static COUNTER_U64_DEFINE_EARLY(queue_nops);
141 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
142     CTLFLAG_RD, &queue_nops,
143     "Number of batched queue operations with no effects");
144 
145 /*
146  * bogus page -- for I/O to/from partially complete buffers,
147  * or for paging into sparsely invalid regions.
148  */
149 vm_page_t bogus_page;
150 
151 vm_page_t vm_page_array;
152 long vm_page_array_size;
153 long first_page;
154 
155 struct bitset *vm_page_dump;
156 long vm_page_dump_pages;
157 
158 static TAILQ_HEAD(, vm_page) blacklist_head;
159 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
160 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
161     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
162 
163 static uma_zone_t fakepg_zone;
164 
165 static vm_page_t vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
166     int req, vm_page_t mpred);
167 static void vm_page_alloc_check(vm_page_t m);
168 static vm_page_t vm_page_alloc_nofree_domain(int domain, int req);
169 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
170     vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked);
171 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
172 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
173 static bool vm_page_free_prep(vm_page_t m);
174 static void vm_page_free_toq(vm_page_t m);
175 static void vm_page_init(void *dummy);
176 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
177     vm_pindex_t pindex, vm_page_t mpred);
178 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
179     vm_page_t mpred);
180 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue,
181     const uint16_t nflag);
182 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
183     vm_page_t m_run, vm_paddr_t high);
184 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse);
185 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
186     int req);
187 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
188     int flags);
189 static void vm_page_zone_release(void *arg, void **store, int cnt);
190 
191 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
192 
193 static void
vm_page_init(void * dummy)194 vm_page_init(void *dummy)
195 {
196 
197 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
198 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
199 	bogus_page = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_NOFREE);
200 }
201 
202 static int pgcache_zone_max_pcpu;
203 SYSCTL_INT(_vm, OID_AUTO, pgcache_zone_max_pcpu,
204     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pgcache_zone_max_pcpu, 0,
205     "Per-CPU page cache size");
206 
207 /*
208  * The cache page zone is initialized later since we need to be able to allocate
209  * pages before UMA is fully initialized.
210  */
211 static void
vm_page_init_cache_zones(void * dummy __unused)212 vm_page_init_cache_zones(void *dummy __unused)
213 {
214 	struct vm_domain *vmd;
215 	struct vm_pgcache *pgcache;
216 	int cache, domain, maxcache, pool;
217 
218 	TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &pgcache_zone_max_pcpu);
219 	maxcache = pgcache_zone_max_pcpu * mp_ncpus;
220 	for (domain = 0; domain < vm_ndomains; domain++) {
221 		vmd = VM_DOMAIN(domain);
222 		for (pool = 0; pool < VM_NFREEPOOL; pool++) {
223 			pgcache = &vmd->vmd_pgcache[pool];
224 			pgcache->domain = domain;
225 			pgcache->pool = pool;
226 			pgcache->zone = uma_zcache_create("vm pgcache",
227 			    PAGE_SIZE, NULL, NULL, NULL, NULL,
228 			    vm_page_zone_import, vm_page_zone_release, pgcache,
229 			    UMA_ZONE_VM);
230 
231 			/*
232 			 * Limit each pool's zone to 0.1% of the pages in the
233 			 * domain.
234 			 */
235 			cache = maxcache != 0 ? maxcache :
236 			    vmd->vmd_page_count / 1000;
237 			uma_zone_set_maxcache(pgcache->zone, cache);
238 		}
239 	}
240 }
241 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
242 
243 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
244 #if PAGE_SIZE == 32768
245 #ifdef CTASSERT
246 CTASSERT(sizeof(u_long) >= 8);
247 #endif
248 #endif
249 
250 /*
251  *	vm_set_page_size:
252  *
253  *	Sets the page size, perhaps based upon the memory
254  *	size.  Must be called before any use of page-size
255  *	dependent functions.
256  */
257 void
vm_set_page_size(void)258 vm_set_page_size(void)
259 {
260 	if (vm_cnt.v_page_size == 0)
261 		vm_cnt.v_page_size = PAGE_SIZE;
262 	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
263 		panic("vm_set_page_size: page size not a power of two");
264 }
265 
266 /*
267  *	vm_page_blacklist_next:
268  *
269  *	Find the next entry in the provided string of blacklist
270  *	addresses.  Entries are separated by space, comma, or newline.
271  *	If an invalid integer is encountered then the rest of the
272  *	string is skipped.  Updates the list pointer to the next
273  *	character, or NULL if the string is exhausted or invalid.
274  */
275 static vm_paddr_t
vm_page_blacklist_next(char ** list,char * end)276 vm_page_blacklist_next(char **list, char *end)
277 {
278 	vm_paddr_t bad;
279 	char *cp, *pos;
280 
281 	if (list == NULL || *list == NULL)
282 		return (0);
283 	if (**list =='\0') {
284 		*list = NULL;
285 		return (0);
286 	}
287 
288 	/*
289 	 * If there's no end pointer then the buffer is coming from
290 	 * the kenv and we know it's null-terminated.
291 	 */
292 	if (end == NULL)
293 		end = *list + strlen(*list);
294 
295 	/* Ensure that strtoq() won't walk off the end */
296 	if (*end != '\0') {
297 		if (*end == '\n' || *end == ' ' || *end  == ',')
298 			*end = '\0';
299 		else {
300 			printf("Blacklist not terminated, skipping\n");
301 			*list = NULL;
302 			return (0);
303 		}
304 	}
305 
306 	for (pos = *list; *pos != '\0'; pos = cp) {
307 		bad = strtoq(pos, &cp, 0);
308 		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
309 			if (bad == 0) {
310 				if (++cp < end)
311 					continue;
312 				else
313 					break;
314 			}
315 		} else
316 			break;
317 		if (*cp == '\0' || ++cp >= end)
318 			*list = NULL;
319 		else
320 			*list = cp;
321 		return (trunc_page(bad));
322 	}
323 	printf("Garbage in RAM blacklist, skipping\n");
324 	*list = NULL;
325 	return (0);
326 }
327 
328 bool
vm_page_blacklist_add(vm_paddr_t pa,bool verbose)329 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
330 {
331 	struct vm_domain *vmd;
332 	vm_page_t m;
333 	bool found;
334 
335 	m = vm_phys_paddr_to_vm_page(pa);
336 	if (m == NULL)
337 		return (true); /* page does not exist, no failure */
338 
339 	vmd = VM_DOMAIN(vm_phys_domain(pa));
340 	vm_domain_free_lock(vmd);
341 	found = vm_phys_unfree_page(pa);
342 	vm_domain_free_unlock(vmd);
343 	if (found) {
344 		vm_domain_freecnt_inc(vmd, -1);
345 		TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
346 		if (verbose)
347 			printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
348 	}
349 	return (found);
350 }
351 
352 /*
353  *	vm_page_blacklist_check:
354  *
355  *	Iterate through the provided string of blacklist addresses, pulling
356  *	each entry out of the physical allocator free list and putting it
357  *	onto a list for reporting via the vm.page_blacklist sysctl.
358  */
359 static void
vm_page_blacklist_check(char * list,char * end)360 vm_page_blacklist_check(char *list, char *end)
361 {
362 	vm_paddr_t pa;
363 	char *next;
364 
365 	next = list;
366 	while (next != NULL) {
367 		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
368 			continue;
369 		vm_page_blacklist_add(pa, bootverbose);
370 	}
371 }
372 
373 /*
374  *	vm_page_blacklist_load:
375  *
376  *	Search for a special module named "ram_blacklist".  It'll be a
377  *	plain text file provided by the user via the loader directive
378  *	of the same name.
379  */
380 static void
vm_page_blacklist_load(char ** list,char ** end)381 vm_page_blacklist_load(char **list, char **end)
382 {
383 	void *mod;
384 	u_char *ptr;
385 	u_int len;
386 
387 	mod = NULL;
388 	ptr = NULL;
389 
390 	mod = preload_search_by_type("ram_blacklist");
391 	if (mod != NULL) {
392 		ptr = preload_fetch_addr(mod);
393 		len = preload_fetch_size(mod);
394         }
395 	*list = ptr;
396 	if (ptr != NULL)
397 		*end = ptr + len;
398 	else
399 		*end = NULL;
400 	return;
401 }
402 
403 static int
sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)404 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
405 {
406 	vm_page_t m;
407 	struct sbuf sbuf;
408 	int error, first;
409 
410 	first = 1;
411 	error = sysctl_wire_old_buffer(req, 0);
412 	if (error != 0)
413 		return (error);
414 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
415 	TAILQ_FOREACH(m, &blacklist_head, listq) {
416 		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
417 		    (uintmax_t)m->phys_addr);
418 		first = 0;
419 	}
420 	error = sbuf_finish(&sbuf);
421 	sbuf_delete(&sbuf);
422 	return (error);
423 }
424 
425 /*
426  * Initialize a dummy page for use in scans of the specified paging queue.
427  * In principle, this function only needs to set the flag PG_MARKER.
428  * Nonetheless, it write busies the page as a safety precaution.
429  */
430 void
vm_page_init_marker(vm_page_t marker,int queue,uint16_t aflags)431 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
432 {
433 
434 	bzero(marker, sizeof(*marker));
435 	marker->flags = PG_MARKER;
436 	marker->a.flags = aflags;
437 	marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
438 	marker->a.queue = queue;
439 }
440 
441 static void
vm_page_domain_init(int domain)442 vm_page_domain_init(int domain)
443 {
444 	struct vm_domain *vmd;
445 	struct vm_pagequeue *pq;
446 	int i;
447 
448 	vmd = VM_DOMAIN(domain);
449 	bzero(vmd, sizeof(*vmd));
450 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
451 	    "vm inactive pagequeue";
452 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
453 	    "vm active pagequeue";
454 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
455 	    "vm laundry pagequeue";
456 	*__DECONST(const char **,
457 	    &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
458 	    "vm unswappable pagequeue";
459 	vmd->vmd_domain = domain;
460 	vmd->vmd_page_count = 0;
461 	vmd->vmd_free_count = 0;
462 	vmd->vmd_segs = 0;
463 	vmd->vmd_oom = FALSE;
464 	for (i = 0; i < PQ_COUNT; i++) {
465 		pq = &vmd->vmd_pagequeues[i];
466 		TAILQ_INIT(&pq->pq_pl);
467 		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
468 		    MTX_DEF | MTX_DUPOK);
469 		pq->pq_pdpages = 0;
470 		vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
471 	}
472 	mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
473 	mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
474 	snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
475 
476 	/*
477 	 * inacthead is used to provide FIFO ordering for LRU-bypassing
478 	 * insertions.
479 	 */
480 	vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
481 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
482 	    &vmd->vmd_inacthead, plinks.q);
483 
484 	/*
485 	 * The clock pages are used to implement active queue scanning without
486 	 * requeues.  Scans start at clock[0], which is advanced after the scan
487 	 * ends.  When the two clock hands meet, they are reset and scanning
488 	 * resumes from the head of the queue.
489 	 */
490 	vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
491 	vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
492 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
493 	    &vmd->vmd_clock[0], plinks.q);
494 	TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
495 	    &vmd->vmd_clock[1], plinks.q);
496 }
497 
498 /*
499  * Initialize a physical page in preparation for adding it to the free
500  * lists.
501  */
502 void
vm_page_init_page(vm_page_t m,vm_paddr_t pa,int segind,int pool)503 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind, int pool)
504 {
505 	m->object = NULL;
506 	m->ref_count = 0;
507 	m->busy_lock = VPB_FREED;
508 	m->flags = m->a.flags = 0;
509 	m->phys_addr = pa;
510 	m->a.queue = PQ_NONE;
511 	m->psind = 0;
512 	m->segind = segind;
513 	m->order = VM_NFREEORDER;
514 	m->pool = pool;
515 	m->valid = m->dirty = 0;
516 	pmap_page_init(m);
517 }
518 
519 #ifndef PMAP_HAS_PAGE_ARRAY
520 static vm_paddr_t
vm_page_array_alloc(vm_offset_t * vaddr,vm_paddr_t end,vm_paddr_t page_range)521 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
522 {
523 	vm_paddr_t new_end;
524 
525 	/*
526 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
527 	 * However, because this page is allocated from KVM, out-of-bounds
528 	 * accesses using the direct map will not be trapped.
529 	 */
530 	*vaddr += PAGE_SIZE;
531 
532 	/*
533 	 * Allocate physical memory for the page structures, and map it.
534 	 */
535 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
536 	vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
537 	    VM_PROT_READ | VM_PROT_WRITE);
538 	vm_page_array_size = page_range;
539 
540 	return (new_end);
541 }
542 #endif
543 
544 /*
545  *	vm_page_startup:
546  *
547  *	Initializes the resident memory module.  Allocates physical memory for
548  *	bootstrapping UMA and some data structures that are used to manage
549  *	physical pages.  Initializes these structures, and populates the free
550  *	page queues.
551  */
552 vm_offset_t
vm_page_startup(vm_offset_t vaddr)553 vm_page_startup(vm_offset_t vaddr)
554 {
555 	struct vm_phys_seg *seg;
556 	struct vm_domain *vmd;
557 	vm_page_t m;
558 	char *list, *listend;
559 	vm_paddr_t end, high_avail, low_avail, new_end, size;
560 	vm_paddr_t page_range __unused;
561 	vm_paddr_t last_pa, pa, startp, endp;
562 	u_long pagecount;
563 #if MINIDUMP_PAGE_TRACKING
564 	u_long vm_page_dump_size;
565 #endif
566 	int biggestone, i, segind;
567 #ifdef WITNESS
568 	vm_offset_t mapped;
569 	int witness_size;
570 #endif
571 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
572 	long ii;
573 #endif
574 #ifdef VM_FREEPOOL_LAZYINIT
575 	int lazyinit;
576 #endif
577 
578 	vaddr = round_page(vaddr);
579 
580 	vm_phys_early_startup();
581 	biggestone = vm_phys_avail_largest();
582 	end = phys_avail[biggestone+1];
583 
584 	/*
585 	 * Initialize the page and queue locks.
586 	 */
587 	mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
588 	for (i = 0; i < PA_LOCK_COUNT; i++)
589 		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
590 	for (i = 0; i < vm_ndomains; i++)
591 		vm_page_domain_init(i);
592 
593 	new_end = end;
594 #ifdef WITNESS
595 	witness_size = round_page(witness_startup_count());
596 	new_end -= witness_size;
597 	mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
598 	    VM_PROT_READ | VM_PROT_WRITE);
599 	bzero((void *)mapped, witness_size);
600 	witness_startup((void *)mapped);
601 #endif
602 
603 #if MINIDUMP_PAGE_TRACKING
604 	/*
605 	 * Allocate a bitmap to indicate that a random physical page
606 	 * needs to be included in a minidump.
607 	 *
608 	 * The amd64 port needs this to indicate which direct map pages
609 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
610 	 *
611 	 * However, i386 still needs this workspace internally within the
612 	 * minidump code.  In theory, they are not needed on i386, but are
613 	 * included should the sf_buf code decide to use them.
614 	 */
615 	last_pa = 0;
616 	vm_page_dump_pages = 0;
617 	for (i = 0; dump_avail[i + 1] != 0; i += 2) {
618 		vm_page_dump_pages += howmany(dump_avail[i + 1], PAGE_SIZE) -
619 		    dump_avail[i] / PAGE_SIZE;
620 		if (dump_avail[i + 1] > last_pa)
621 			last_pa = dump_avail[i + 1];
622 	}
623 	vm_page_dump_size = round_page(BITSET_SIZE(vm_page_dump_pages));
624 	new_end -= vm_page_dump_size;
625 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
626 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
627 	bzero((void *)vm_page_dump, vm_page_dump_size);
628 #if MINIDUMP_STARTUP_PAGE_TRACKING
629 	/*
630 	 * Include the UMA bootstrap pages, witness pages and vm_page_dump
631 	 * in a crash dump.  When pmap_map() uses the direct map, they are
632 	 * not automatically included.
633 	 */
634 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
635 		dump_add_page(pa);
636 #endif
637 #else
638 	(void)last_pa;
639 #endif
640 	phys_avail[biggestone + 1] = new_end;
641 #ifdef __amd64__
642 	/*
643 	 * Request that the physical pages underlying the message buffer be
644 	 * included in a crash dump.  Since the message buffer is accessed
645 	 * through the direct map, they are not automatically included.
646 	 */
647 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
648 	last_pa = pa + round_page(msgbufsize);
649 	while (pa < last_pa) {
650 		dump_add_page(pa);
651 		pa += PAGE_SIZE;
652 	}
653 #endif
654 	/*
655 	 * Compute the number of pages of memory that will be available for
656 	 * use, taking into account the overhead of a page structure per page.
657 	 * In other words, solve
658 	 *	"available physical memory" - round_page(page_range *
659 	 *	    sizeof(struct vm_page)) = page_range * PAGE_SIZE
660 	 * for page_range.
661 	 */
662 	low_avail = phys_avail[0];
663 	high_avail = phys_avail[1];
664 	for (i = 0; i < vm_phys_nsegs; i++) {
665 		if (vm_phys_segs[i].start < low_avail)
666 			low_avail = vm_phys_segs[i].start;
667 		if (vm_phys_segs[i].end > high_avail)
668 			high_avail = vm_phys_segs[i].end;
669 	}
670 	/* Skip the first chunk.  It is already accounted for. */
671 	for (i = 2; phys_avail[i + 1] != 0; i += 2) {
672 		if (phys_avail[i] < low_avail)
673 			low_avail = phys_avail[i];
674 		if (phys_avail[i + 1] > high_avail)
675 			high_avail = phys_avail[i + 1];
676 	}
677 	first_page = low_avail / PAGE_SIZE;
678 #ifdef VM_PHYSSEG_SPARSE
679 	size = 0;
680 	for (i = 0; i < vm_phys_nsegs; i++)
681 		size += vm_phys_segs[i].end - vm_phys_segs[i].start;
682 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
683 		size += phys_avail[i + 1] - phys_avail[i];
684 #elif defined(VM_PHYSSEG_DENSE)
685 	size = high_avail - low_avail;
686 #else
687 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
688 #endif
689 
690 #ifdef PMAP_HAS_PAGE_ARRAY
691 	pmap_page_array_startup(size / PAGE_SIZE);
692 	biggestone = vm_phys_avail_largest();
693 	end = new_end = phys_avail[biggestone + 1];
694 #else
695 #ifdef VM_PHYSSEG_DENSE
696 	/*
697 	 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
698 	 * the overhead of a page structure per page only if vm_page_array is
699 	 * allocated from the last physical memory chunk.  Otherwise, we must
700 	 * allocate page structures representing the physical memory
701 	 * underlying vm_page_array, even though they will not be used.
702 	 */
703 	if (new_end != high_avail)
704 		page_range = size / PAGE_SIZE;
705 	else
706 #endif
707 	{
708 		page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
709 
710 		/*
711 		 * If the partial bytes remaining are large enough for
712 		 * a page (PAGE_SIZE) without a corresponding
713 		 * 'struct vm_page', then new_end will contain an
714 		 * extra page after subtracting the length of the VM
715 		 * page array.  Compensate by subtracting an extra
716 		 * page from new_end.
717 		 */
718 		if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
719 			if (new_end == high_avail)
720 				high_avail -= PAGE_SIZE;
721 			new_end -= PAGE_SIZE;
722 		}
723 	}
724 	end = new_end;
725 	new_end = vm_page_array_alloc(&vaddr, end, page_range);
726 #endif
727 
728 #if VM_NRESERVLEVEL > 0
729 	/*
730 	 * Allocate physical memory for the reservation management system's
731 	 * data structures, and map it.
732 	 */
733 	new_end = vm_reserv_startup(&vaddr, new_end);
734 #endif
735 #if MINIDUMP_PAGE_TRACKING && MINIDUMP_STARTUP_PAGE_TRACKING
736 	/*
737 	 * Include vm_page_array and vm_reserv_array in a crash dump.
738 	 */
739 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
740 		dump_add_page(pa);
741 #endif
742 	phys_avail[biggestone + 1] = new_end;
743 
744 	/*
745 	 * Add physical memory segments corresponding to the available
746 	 * physical pages.
747 	 */
748 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
749 		if (vm_phys_avail_size(i) != 0)
750 			vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
751 
752 	/*
753 	 * Initialize the physical memory allocator.
754 	 */
755 	vm_phys_init();
756 
757 #ifdef VM_FREEPOOL_LAZYINIT
758 	lazyinit = 1;
759 	TUNABLE_INT_FETCH("debug.vm.lazy_page_init", &lazyinit);
760 #endif
761 
762 	/*
763 	 * Initialize the page structures and add every available page to the
764 	 * physical memory allocator's free lists.
765 	 */
766 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
767 	for (ii = 0; ii < vm_page_array_size; ii++) {
768 		m = &vm_page_array[ii];
769 		vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0,
770 		    VM_FREEPOOL_DEFAULT);
771 		m->flags = PG_FICTITIOUS;
772 	}
773 #endif
774 	vm_cnt.v_page_count = 0;
775 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
776 		seg = &vm_phys_segs[segind];
777 
778 		/*
779 		 * If lazy vm_page initialization is not enabled, simply
780 		 * initialize all of the pages in the segment.  Otherwise, we
781 		 * only initialize:
782 		 * 1. Pages not covered by phys_avail[], since they might be
783 		 *    freed to the allocator at some future point, e.g., by
784 		 *    kmem_bootstrap_free().
785 		 * 2. The first page of each run of free pages handed to the
786 		 *    vm_phys allocator, which in turn defers initialization
787 		 *    of pages until they are needed.
788 		 * This avoids blocking the boot process for long periods, which
789 		 * may be relevant for VMs (which ought to boot as quickly as
790 		 * possible) and/or systems with large amounts of physical
791 		 * memory.
792 		 */
793 #ifdef VM_FREEPOOL_LAZYINIT
794 		if (lazyinit) {
795 			startp = seg->start;
796 			for (i = 0; phys_avail[i + 1] != 0; i += 2) {
797 				if (startp >= seg->end)
798 					break;
799 
800 				if (phys_avail[i + 1] < startp)
801 					continue;
802 				if (phys_avail[i] <= startp) {
803 					startp = phys_avail[i + 1];
804 					continue;
805 				}
806 
807 				m = vm_phys_seg_paddr_to_vm_page(seg, startp);
808 				for (endp = MIN(phys_avail[i], seg->end);
809 				    startp < endp; startp += PAGE_SIZE, m++) {
810 					vm_page_init_page(m, startp, segind,
811 					    VM_FREEPOOL_DEFAULT);
812 				}
813 			}
814 		} else
815 #endif
816 			for (m = seg->first_page, pa = seg->start;
817 			    pa < seg->end; m++, pa += PAGE_SIZE) {
818 				vm_page_init_page(m, pa, segind,
819 				    VM_FREEPOOL_DEFAULT);
820 			}
821 
822 		/*
823 		 * Add the segment's pages that are covered by one of
824 		 * phys_avail's ranges to the free lists.
825 		 */
826 		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
827 			if (seg->end <= phys_avail[i] ||
828 			    seg->start >= phys_avail[i + 1])
829 				continue;
830 
831 			startp = MAX(seg->start, phys_avail[i]);
832 			endp = MIN(seg->end, phys_avail[i + 1]);
833 			pagecount = (u_long)atop(endp - startp);
834 			if (pagecount == 0)
835 				continue;
836 
837 			m = vm_phys_seg_paddr_to_vm_page(seg, startp);
838 #ifdef VM_FREEPOOL_LAZYINIT
839 			if (lazyinit) {
840 				vm_page_init_page(m, startp, segind,
841 				    VM_FREEPOOL_LAZYINIT);
842 			}
843 #endif
844 			vmd = VM_DOMAIN(seg->domain);
845 			vm_domain_free_lock(vmd);
846 			vm_phys_enqueue_contig(m, pagecount);
847 			vm_domain_free_unlock(vmd);
848 			vm_domain_freecnt_inc(vmd, pagecount);
849 			vm_cnt.v_page_count += (u_int)pagecount;
850 			vmd->vmd_page_count += (u_int)pagecount;
851 			vmd->vmd_segs |= 1UL << segind;
852 		}
853 	}
854 
855 	/*
856 	 * Remove blacklisted pages from the physical memory allocator.
857 	 */
858 	TAILQ_INIT(&blacklist_head);
859 	vm_page_blacklist_load(&list, &listend);
860 	vm_page_blacklist_check(list, listend);
861 
862 	list = kern_getenv("vm.blacklist");
863 	vm_page_blacklist_check(list, NULL);
864 
865 	freeenv(list);
866 #if VM_NRESERVLEVEL > 0
867 	/*
868 	 * Initialize the reservation management system.
869 	 */
870 	vm_reserv_init();
871 #endif
872 
873 	return (vaddr);
874 }
875 
876 void
vm_page_reference(vm_page_t m)877 vm_page_reference(vm_page_t m)
878 {
879 
880 	vm_page_aflag_set(m, PGA_REFERENCED);
881 }
882 
883 /*
884  *	vm_page_trybusy
885  *
886  *	Helper routine for grab functions to trylock busy.
887  *
888  *	Returns true on success and false on failure.
889  */
890 static bool
vm_page_trybusy(vm_page_t m,int allocflags)891 vm_page_trybusy(vm_page_t m, int allocflags)
892 {
893 
894 	if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
895 		return (vm_page_trysbusy(m));
896 	else
897 		return (vm_page_tryxbusy(m));
898 }
899 
900 /*
901  *	vm_page_tryacquire
902  *
903  *	Helper routine for grab functions to trylock busy and wire.
904  *
905  *	Returns true on success and false on failure.
906  */
907 static inline bool
vm_page_tryacquire(vm_page_t m,int allocflags)908 vm_page_tryacquire(vm_page_t m, int allocflags)
909 {
910 	bool locked;
911 
912 	locked = vm_page_trybusy(m, allocflags);
913 	if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
914 		vm_page_wire(m);
915 	return (locked);
916 }
917 
918 /*
919  *	vm_page_busy_acquire:
920  *
921  *	Acquire the busy lock as described by VM_ALLOC_* flags.  Will loop
922  *	and drop the object lock if necessary.
923  */
924 bool
vm_page_busy_acquire(vm_page_t m,int allocflags)925 vm_page_busy_acquire(vm_page_t m, int allocflags)
926 {
927 	vm_object_t obj;
928 	bool locked;
929 
930 	/*
931 	 * The page-specific object must be cached because page
932 	 * identity can change during the sleep, causing the
933 	 * re-lock of a different object.
934 	 * It is assumed that a reference to the object is already
935 	 * held by the callers.
936 	 */
937 	obj = atomic_load_ptr(&m->object);
938 	for (;;) {
939 		if (vm_page_tryacquire(m, allocflags))
940 			return (true);
941 		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
942 			return (false);
943 		if (obj != NULL)
944 			locked = VM_OBJECT_WOWNED(obj);
945 		else
946 			locked = false;
947 		MPASS(locked || vm_page_wired(m));
948 		if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags,
949 		    locked) && locked)
950 			VM_OBJECT_WLOCK(obj);
951 		if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
952 			return (false);
953 		KASSERT(m->object == obj || m->object == NULL,
954 		    ("vm_page_busy_acquire: page %p does not belong to %p",
955 		    m, obj));
956 	}
957 }
958 
959 /*
960  *	vm_page_busy_downgrade:
961  *
962  *	Downgrade an exclusive busy page into a single shared busy page.
963  */
964 void
vm_page_busy_downgrade(vm_page_t m)965 vm_page_busy_downgrade(vm_page_t m)
966 {
967 	u_int x;
968 
969 	vm_page_assert_xbusied(m);
970 
971 	x = vm_page_busy_fetch(m);
972 	for (;;) {
973 		if (atomic_fcmpset_rel_int(&m->busy_lock,
974 		    &x, VPB_SHARERS_WORD(1)))
975 			break;
976 	}
977 	if ((x & VPB_BIT_WAITERS) != 0)
978 		wakeup(m);
979 }
980 
981 /*
982  *
983  *	vm_page_busy_tryupgrade:
984  *
985  *	Attempt to upgrade a single shared busy into an exclusive busy.
986  */
987 int
vm_page_busy_tryupgrade(vm_page_t m)988 vm_page_busy_tryupgrade(vm_page_t m)
989 {
990 	u_int ce, x;
991 
992 	vm_page_assert_sbusied(m);
993 
994 	x = vm_page_busy_fetch(m);
995 	ce = VPB_CURTHREAD_EXCLUSIVE;
996 	for (;;) {
997 		if (VPB_SHARERS(x) > 1)
998 			return (0);
999 		KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
1000 		    ("vm_page_busy_tryupgrade: invalid lock state"));
1001 		if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
1002 		    ce | (x & VPB_BIT_WAITERS)))
1003 			continue;
1004 		return (1);
1005 	}
1006 }
1007 
1008 /*
1009  *	vm_page_sbusied:
1010  *
1011  *	Return a positive value if the page is shared busied, 0 otherwise.
1012  */
1013 int
vm_page_sbusied(vm_page_t m)1014 vm_page_sbusied(vm_page_t m)
1015 {
1016 	u_int x;
1017 
1018 	x = vm_page_busy_fetch(m);
1019 	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
1020 }
1021 
1022 /*
1023  *	vm_page_sunbusy:
1024  *
1025  *	Shared unbusy a page.
1026  */
1027 void
vm_page_sunbusy(vm_page_t m)1028 vm_page_sunbusy(vm_page_t m)
1029 {
1030 	u_int x;
1031 
1032 	vm_page_assert_sbusied(m);
1033 
1034 	x = vm_page_busy_fetch(m);
1035 	for (;;) {
1036 		KASSERT(x != VPB_FREED,
1037 		    ("vm_page_sunbusy: Unlocking freed page."));
1038 		if (VPB_SHARERS(x) > 1) {
1039 			if (atomic_fcmpset_int(&m->busy_lock, &x,
1040 			    x - VPB_ONE_SHARER))
1041 				break;
1042 			continue;
1043 		}
1044 		KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
1045 		    ("vm_page_sunbusy: invalid lock state"));
1046 		if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1047 			continue;
1048 		if ((x & VPB_BIT_WAITERS) == 0)
1049 			break;
1050 		wakeup(m);
1051 		break;
1052 	}
1053 }
1054 
1055 /*
1056  *	vm_page_busy_sleep:
1057  *
1058  *	Sleep if the page is busy, using the page pointer as wchan.
1059  *	This is used to implement the hard-path of the busying mechanism.
1060  *
1061  *	If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1062  *	will not sleep if the page is shared-busy.
1063  *
1064  *	The object lock must be held on entry.
1065  *
1066  *	Returns true if it slept and dropped the object lock, or false
1067  *	if there was no sleep and the lock is still held.
1068  */
1069 bool
vm_page_busy_sleep(vm_page_t m,const char * wmesg,int allocflags)1070 vm_page_busy_sleep(vm_page_t m, const char *wmesg, int allocflags)
1071 {
1072 	vm_object_t obj;
1073 
1074 	obj = m->object;
1075 	VM_OBJECT_ASSERT_LOCKED(obj);
1076 
1077 	return (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, allocflags,
1078 	    true));
1079 }
1080 
1081 /*
1082  *	vm_page_busy_sleep_unlocked:
1083  *
1084  *	Sleep if the page is busy, using the page pointer as wchan.
1085  *	This is used to implement the hard-path of busying mechanism.
1086  *
1087  *	If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1088  *	will not sleep if the page is shared-busy.
1089  *
1090  *	The object lock must not be held on entry.  The operation will
1091  *	return if the page changes identity.
1092  */
1093 void
vm_page_busy_sleep_unlocked(vm_object_t obj,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags)1094 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1095     const char *wmesg, int allocflags)
1096 {
1097 	VM_OBJECT_ASSERT_UNLOCKED(obj);
1098 
1099 	(void)_vm_page_busy_sleep(obj, m, pindex, wmesg, allocflags, false);
1100 }
1101 
1102 /*
1103  *	_vm_page_busy_sleep:
1104  *
1105  *	Internal busy sleep function.  Verifies the page identity and
1106  *	lockstate against parameters.  Returns true if it sleeps and
1107  *	false otherwise.
1108  *
1109  *	allocflags uses VM_ALLOC_* flags to specify the lock required.
1110  *
1111  *	If locked is true the lock will be dropped for any true returns
1112  *	and held for any false returns.
1113  */
1114 static bool
_vm_page_busy_sleep(vm_object_t obj,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags,bool locked)1115 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1116     const char *wmesg, int allocflags, bool locked)
1117 {
1118 	bool xsleep;
1119 	u_int x;
1120 
1121 	/*
1122 	 * If the object is busy we must wait for that to drain to zero
1123 	 * before trying the page again.
1124 	 */
1125 	if (obj != NULL && vm_object_busied(obj)) {
1126 		if (locked)
1127 			VM_OBJECT_DROP(obj);
1128 		vm_object_busy_wait(obj, wmesg);
1129 		return (true);
1130 	}
1131 
1132 	if (!vm_page_busied(m))
1133 		return (false);
1134 
1135 	xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0;
1136 	sleepq_lock(m);
1137 	x = vm_page_busy_fetch(m);
1138 	do {
1139 		/*
1140 		 * If the page changes objects or becomes unlocked we can
1141 		 * simply return.
1142 		 */
1143 		if (x == VPB_UNBUSIED ||
1144 		    (xsleep && (x & VPB_BIT_SHARED) != 0) ||
1145 		    m->object != obj || m->pindex != pindex) {
1146 			sleepq_release(m);
1147 			return (false);
1148 		}
1149 		if ((x & VPB_BIT_WAITERS) != 0)
1150 			break;
1151 	} while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS));
1152 	if (locked)
1153 		VM_OBJECT_DROP(obj);
1154 	DROP_GIANT();
1155 	sleepq_add(m, NULL, wmesg, 0, 0);
1156 	sleepq_wait(m, PVM);
1157 	PICKUP_GIANT();
1158 	return (true);
1159 }
1160 
1161 /*
1162  *	vm_page_trysbusy:
1163  *
1164  *	Try to shared busy a page.
1165  *	If the operation succeeds 1 is returned otherwise 0.
1166  *	The operation never sleeps.
1167  */
1168 int
vm_page_trysbusy(vm_page_t m)1169 vm_page_trysbusy(vm_page_t m)
1170 {
1171 	vm_object_t obj;
1172 	u_int x;
1173 
1174 	obj = m->object;
1175 	x = vm_page_busy_fetch(m);
1176 	for (;;) {
1177 		if ((x & VPB_BIT_SHARED) == 0)
1178 			return (0);
1179 		/*
1180 		 * Reduce the window for transient busies that will trigger
1181 		 * false negatives in vm_page_ps_test().
1182 		 */
1183 		if (obj != NULL && vm_object_busied(obj))
1184 			return (0);
1185 		if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1186 		    x + VPB_ONE_SHARER))
1187 			break;
1188 	}
1189 
1190 	/* Refetch the object now that we're guaranteed that it is stable. */
1191 	obj = m->object;
1192 	if (obj != NULL && vm_object_busied(obj)) {
1193 		vm_page_sunbusy(m);
1194 		return (0);
1195 	}
1196 	return (1);
1197 }
1198 
1199 /*
1200  *	vm_page_tryxbusy:
1201  *
1202  *	Try to exclusive busy a page.
1203  *	If the operation succeeds 1 is returned otherwise 0.
1204  *	The operation never sleeps.
1205  */
1206 int
vm_page_tryxbusy(vm_page_t m)1207 vm_page_tryxbusy(vm_page_t m)
1208 {
1209 	vm_object_t obj;
1210 
1211         if (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED,
1212             VPB_CURTHREAD_EXCLUSIVE) == 0)
1213 		return (0);
1214 
1215 	obj = m->object;
1216 	if (obj != NULL && vm_object_busied(obj)) {
1217 		vm_page_xunbusy(m);
1218 		return (0);
1219 	}
1220 	return (1);
1221 }
1222 
1223 static void
vm_page_xunbusy_hard_tail(vm_page_t m)1224 vm_page_xunbusy_hard_tail(vm_page_t m)
1225 {
1226 	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1227 	/* Wake the waiter. */
1228 	wakeup(m);
1229 }
1230 
1231 /*
1232  *	vm_page_xunbusy_hard:
1233  *
1234  *	Called when unbusy has failed because there is a waiter.
1235  */
1236 void
vm_page_xunbusy_hard(vm_page_t m)1237 vm_page_xunbusy_hard(vm_page_t m)
1238 {
1239 	vm_page_assert_xbusied(m);
1240 	vm_page_xunbusy_hard_tail(m);
1241 }
1242 
1243 void
vm_page_xunbusy_hard_unchecked(vm_page_t m)1244 vm_page_xunbusy_hard_unchecked(vm_page_t m)
1245 {
1246 	vm_page_assert_xbusied_unchecked(m);
1247 	vm_page_xunbusy_hard_tail(m);
1248 }
1249 
1250 static void
vm_page_busy_free(vm_page_t m)1251 vm_page_busy_free(vm_page_t m)
1252 {
1253 	u_int x;
1254 
1255 	atomic_thread_fence_rel();
1256 	x = atomic_swap_int(&m->busy_lock, VPB_FREED);
1257 	if ((x & VPB_BIT_WAITERS) != 0)
1258 		wakeup(m);
1259 }
1260 
1261 /*
1262  *	vm_page_unhold_pages:
1263  *
1264  *	Unhold each of the pages that is referenced by the given array.
1265  */
1266 void
vm_page_unhold_pages(vm_page_t * ma,int count)1267 vm_page_unhold_pages(vm_page_t *ma, int count)
1268 {
1269 
1270 	for (; count != 0; count--) {
1271 		vm_page_unwire(*ma, PQ_ACTIVE);
1272 		ma++;
1273 	}
1274 }
1275 
1276 vm_page_t
PHYS_TO_VM_PAGE(vm_paddr_t pa)1277 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1278 {
1279 	vm_page_t m;
1280 
1281 #ifdef VM_PHYSSEG_SPARSE
1282 	m = vm_phys_paddr_to_vm_page(pa);
1283 	if (m == NULL)
1284 		m = vm_phys_fictitious_to_vm_page(pa);
1285 	return (m);
1286 #elif defined(VM_PHYSSEG_DENSE)
1287 	long pi;
1288 
1289 	pi = atop(pa);
1290 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1291 		m = &vm_page_array[pi - first_page];
1292 		return (m);
1293 	}
1294 	return (vm_phys_fictitious_to_vm_page(pa));
1295 #else
1296 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1297 #endif
1298 }
1299 
1300 /*
1301  *	vm_page_getfake:
1302  *
1303  *	Create a fictitious page with the specified physical address and
1304  *	memory attribute.  The memory attribute is the only the machine-
1305  *	dependent aspect of a fictitious page that must be initialized.
1306  */
1307 vm_page_t
vm_page_getfake(vm_paddr_t paddr,vm_memattr_t memattr)1308 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1309 {
1310 	vm_page_t m;
1311 
1312 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1313 	vm_page_initfake(m, paddr, memattr);
1314 	return (m);
1315 }
1316 
1317 void
vm_page_initfake(vm_page_t m,vm_paddr_t paddr,vm_memattr_t memattr)1318 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1319 {
1320 
1321 	if ((m->flags & PG_FICTITIOUS) != 0) {
1322 		/*
1323 		 * The page's memattr might have changed since the
1324 		 * previous initialization.  Update the pmap to the
1325 		 * new memattr.
1326 		 */
1327 		goto memattr;
1328 	}
1329 	m->phys_addr = paddr;
1330 	m->a.queue = PQ_NONE;
1331 	/* Fictitious pages don't use "segind". */
1332 	m->flags = PG_FICTITIOUS;
1333 	/* Fictitious pages don't use "order" or "pool". */
1334 	m->oflags = VPO_UNMANAGED;
1335 	m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
1336 	/* Fictitious pages are unevictable. */
1337 	m->ref_count = 1;
1338 	pmap_page_init(m);
1339 memattr:
1340 	pmap_page_set_memattr(m, memattr);
1341 }
1342 
1343 /*
1344  *	vm_page_putfake:
1345  *
1346  *	Release a fictitious page.
1347  */
1348 void
vm_page_putfake(vm_page_t m)1349 vm_page_putfake(vm_page_t m)
1350 {
1351 
1352 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1353 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1354 	    ("vm_page_putfake: bad page %p", m));
1355 	vm_page_assert_xbusied(m);
1356 	vm_page_busy_free(m);
1357 	uma_zfree(fakepg_zone, m);
1358 }
1359 
1360 /*
1361  *	vm_page_updatefake:
1362  *
1363  *	Update the given fictitious page to the specified physical address and
1364  *	memory attribute.
1365  */
1366 void
vm_page_updatefake(vm_page_t m,vm_paddr_t paddr,vm_memattr_t memattr)1367 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1368 {
1369 
1370 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1371 	    ("vm_page_updatefake: bad page %p", m));
1372 	m->phys_addr = paddr;
1373 	pmap_page_set_memattr(m, memattr);
1374 }
1375 
1376 /*
1377  *	vm_page_free:
1378  *
1379  *	Free a page.
1380  */
1381 void
vm_page_free(vm_page_t m)1382 vm_page_free(vm_page_t m)
1383 {
1384 
1385 	m->flags &= ~PG_ZERO;
1386 	vm_page_free_toq(m);
1387 }
1388 
1389 /*
1390  *	vm_page_free_zero:
1391  *
1392  *	Free a page to the zerod-pages queue
1393  */
1394 void
vm_page_free_zero(vm_page_t m)1395 vm_page_free_zero(vm_page_t m)
1396 {
1397 
1398 	m->flags |= PG_ZERO;
1399 	vm_page_free_toq(m);
1400 }
1401 
1402 /*
1403  * Unbusy and handle the page queueing for a page from a getpages request that
1404  * was optionally read ahead or behind.
1405  */
1406 void
vm_page_readahead_finish(vm_page_t m)1407 vm_page_readahead_finish(vm_page_t m)
1408 {
1409 
1410 	/* We shouldn't put invalid pages on queues. */
1411 	KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1412 
1413 	/*
1414 	 * Since the page is not the actually needed one, whether it should
1415 	 * be activated or deactivated is not obvious.  Empirical results
1416 	 * have shown that deactivating the page is usually the best choice,
1417 	 * unless the page is wanted by another thread.
1418 	 */
1419 	if ((vm_page_busy_fetch(m) & VPB_BIT_WAITERS) != 0)
1420 		vm_page_activate(m);
1421 	else
1422 		vm_page_deactivate(m);
1423 	vm_page_xunbusy_unchecked(m);
1424 }
1425 
1426 /*
1427  * Destroy the identity of an invalid page and free it if possible.
1428  * This is intended to be used when reading a page from backing store fails.
1429  */
1430 void
vm_page_free_invalid(vm_page_t m)1431 vm_page_free_invalid(vm_page_t m)
1432 {
1433 
1434 	KASSERT(vm_page_none_valid(m), ("page %p is valid", m));
1435 	KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m));
1436 	KASSERT(m->object != NULL, ("page %p has no object", m));
1437 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1438 
1439 	/*
1440 	 * We may be attempting to free the page as part of the handling for an
1441 	 * I/O error, in which case the page was xbusied by a different thread.
1442 	 */
1443 	vm_page_xbusy_claim(m);
1444 
1445 	/*
1446 	 * If someone has wired this page while the object lock
1447 	 * was not held, then the thread that unwires is responsible
1448 	 * for freeing the page.  Otherwise just free the page now.
1449 	 * The wire count of this unmapped page cannot change while
1450 	 * we have the page xbusy and the page's object wlocked.
1451 	 */
1452 	if (vm_page_remove(m))
1453 		vm_page_free(m);
1454 }
1455 
1456 /*
1457  *	vm_page_dirty_KBI:		[ internal use only ]
1458  *
1459  *	Set all bits in the page's dirty field.
1460  *
1461  *	The object containing the specified page must be locked if the
1462  *	call is made from the machine-independent layer.
1463  *
1464  *	See vm_page_clear_dirty_mask().
1465  *
1466  *	This function should only be called by vm_page_dirty().
1467  */
1468 void
vm_page_dirty_KBI(vm_page_t m)1469 vm_page_dirty_KBI(vm_page_t m)
1470 {
1471 
1472 	/* Refer to this operation by its public name. */
1473 	KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1474 	m->dirty = VM_PAGE_BITS_ALL;
1475 }
1476 
1477 /*
1478  * Insert the given page into the given object at the given pindex.  mpred is
1479  * used for memq linkage.  From vm_page_insert, lookup is true, mpred is
1480  * initially NULL, and this procedure looks it up.  From vm_page_insert_after
1481  * and vm_page_iter_insert, lookup is false and mpred is known to the caller
1482  * to be valid, and may be NULL if this will be the page with the lowest
1483  * pindex.
1484  *
1485  * The procedure is marked __always_inline to suggest to the compiler to
1486  * eliminate the lookup parameter and the associated alternate branch.
1487  */
1488 static __always_inline int
vm_page_insert_lookup(vm_page_t m,vm_object_t object,vm_pindex_t pindex,struct pctrie_iter * pages,bool iter,vm_page_t mpred,bool lookup)1489 vm_page_insert_lookup(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1490     struct pctrie_iter *pages, bool iter, vm_page_t mpred, bool lookup)
1491 {
1492 	int error;
1493 
1494 	VM_OBJECT_ASSERT_WLOCKED(object);
1495 	KASSERT(m->object == NULL,
1496 	    ("vm_page_insert: page %p already inserted", m));
1497 
1498 	/*
1499 	 * Record the object/offset pair in this page.
1500 	 */
1501 	m->object = object;
1502 	m->pindex = pindex;
1503 	m->ref_count |= VPRC_OBJREF;
1504 
1505 	/*
1506 	 * Add this page to the object's radix tree, and look up mpred if
1507 	 * needed.
1508 	 */
1509 	if (iter) {
1510 		KASSERT(!lookup, ("%s: cannot lookup mpred", __func__));
1511 		error = vm_radix_iter_insert(pages, m);
1512 	} else if (lookup)
1513 		error = vm_radix_insert_lookup_lt(&object->rtree, m, &mpred);
1514 	else
1515 		error = vm_radix_insert(&object->rtree, m);
1516 	if (__predict_false(error != 0)) {
1517 		m->object = NULL;
1518 		m->pindex = 0;
1519 		m->ref_count &= ~VPRC_OBJREF;
1520 		return (1);
1521 	}
1522 
1523 	/*
1524 	 * Now link into the object's ordered list of backed pages.
1525 	 */
1526 	vm_page_insert_radixdone(m, object, mpred);
1527 	vm_pager_page_inserted(object, m);
1528 	return (0);
1529 }
1530 
1531 /*
1532  *	vm_page_insert:		[ internal use only ]
1533  *
1534  *	Inserts the given mem entry into the object and object list.
1535  *
1536  *	The object must be locked.
1537  */
1538 int
vm_page_insert(vm_page_t m,vm_object_t object,vm_pindex_t pindex)1539 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1540 {
1541 	return (vm_page_insert_lookup(m, object, pindex, NULL, false, NULL,
1542 	    true));
1543 }
1544 
1545 /*
1546  *	vm_page_insert_after:
1547  *
1548  *	Inserts the page "m" into the specified object at offset "pindex".
1549  *
1550  *	The page "mpred" must immediately precede the offset "pindex" within
1551  *	the specified object.
1552  *
1553  *	The object must be locked.
1554  */
1555 static int
vm_page_insert_after(vm_page_t m,vm_object_t object,vm_pindex_t pindex,vm_page_t mpred)1556 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1557     vm_page_t mpred)
1558 {
1559 	return (vm_page_insert_lookup(m, object, pindex, NULL, false, mpred,
1560 	    false));
1561 }
1562 
1563 /*
1564  *	vm_page_iter_insert:
1565  *
1566  *	Tries to insert the page "m" into the specified object at offset
1567  *	"pindex" using the iterator "pages".  Returns 0 if the insertion was
1568  *	successful.
1569  *
1570  *	The page "mpred" must immediately precede the offset "pindex" within
1571  *	the specified object.
1572  *
1573  *	The object must be locked.
1574  */
1575 static int
vm_page_iter_insert(struct pctrie_iter * pages,vm_page_t m,vm_object_t object,vm_pindex_t pindex,vm_page_t mpred)1576 vm_page_iter_insert(struct pctrie_iter *pages, vm_page_t m, vm_object_t object,
1577     vm_pindex_t pindex, vm_page_t mpred)
1578 {
1579 	return (vm_page_insert_lookup(m, object, pindex, pages, true, mpred,
1580 	    false));
1581 }
1582 
1583 /*
1584  *	vm_page_insert_radixdone:
1585  *
1586  *	Complete page "m" insertion into the specified object after the
1587  *	radix trie hooking.
1588  *
1589  *	The page "mpred" must precede the offset "m->pindex" within the
1590  *	specified object.
1591  *
1592  *	The object must be locked.
1593  */
1594 static void
vm_page_insert_radixdone(vm_page_t m,vm_object_t object,vm_page_t mpred)1595 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1596 {
1597 
1598 	VM_OBJECT_ASSERT_WLOCKED(object);
1599 	KASSERT(object != NULL && m->object == object,
1600 	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1601 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1602 	    ("vm_page_insert_radixdone: page %p is missing object ref", m));
1603 	if (mpred != NULL) {
1604 		KASSERT(mpred->object == object,
1605 		    ("vm_page_insert_radixdone: object doesn't contain mpred"));
1606 		KASSERT(mpred->pindex < m->pindex,
1607 		    ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1608 		KASSERT(TAILQ_NEXT(mpred, listq) == NULL ||
1609 		    m->pindex < TAILQ_NEXT(mpred, listq)->pindex,
1610 		    ("vm_page_insert_radixdone: pindex doesn't precede msucc"));
1611 	} else {
1612 		KASSERT(TAILQ_EMPTY(&object->memq) ||
1613 		    m->pindex < TAILQ_FIRST(&object->memq)->pindex,
1614 		    ("vm_page_insert_radixdone: no mpred but not first page"));
1615 	}
1616 
1617 	if (mpred != NULL)
1618 		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1619 	else
1620 		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1621 
1622 	/*
1623 	 * Show that the object has one more resident page.
1624 	 */
1625 	object->resident_page_count++;
1626 
1627 	/*
1628 	 * Hold the vnode until the last page is released.
1629 	 */
1630 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1631 		vhold(object->handle);
1632 
1633 	/*
1634 	 * Since we are inserting a new and possibly dirty page,
1635 	 * update the object's generation count.
1636 	 */
1637 	if (pmap_page_is_write_mapped(m))
1638 		vm_object_set_writeable_dirty(object);
1639 }
1640 
1641 /*
1642  *	vm_page_remove_radixdone
1643  *
1644  *	Complete page "m" removal from the specified object after the radix trie
1645  *	unhooking.
1646  *
1647  *	The caller is responsible for updating the page's fields to reflect this
1648  *	removal.
1649  */
1650 static void
vm_page_remove_radixdone(vm_page_t m)1651 vm_page_remove_radixdone(vm_page_t m)
1652 {
1653 	vm_object_t object;
1654 
1655 	vm_page_assert_xbusied(m);
1656 	object = m->object;
1657 	VM_OBJECT_ASSERT_WLOCKED(object);
1658 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1659 	    ("page %p is missing its object ref", m));
1660 
1661 	/* Deferred free of swap space. */
1662 	if ((m->a.flags & PGA_SWAP_FREE) != 0)
1663 		vm_pager_page_unswapped(m);
1664 
1665 	vm_pager_page_removed(object, m);
1666 	m->object = NULL;
1667 
1668 	/*
1669 	 * Now remove from the object's list of backed pages.
1670 	 */
1671 	TAILQ_REMOVE(&object->memq, m, listq);
1672 
1673 	/*
1674 	 * And show that the object has one fewer resident page.
1675 	 */
1676 	object->resident_page_count--;
1677 
1678 	/*
1679 	 * The vnode may now be recycled.
1680 	 */
1681 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1682 		vdrop(object->handle);
1683 }
1684 
1685 /*
1686  *	vm_page_free_object_prep:
1687  *
1688  *	Disassociates the given page from its VM object.
1689  *
1690  *	The object must be locked, and the page must be xbusy.
1691  */
1692 static void
vm_page_free_object_prep(vm_page_t m)1693 vm_page_free_object_prep(vm_page_t m)
1694 {
1695 	KASSERT(((m->oflags & VPO_UNMANAGED) != 0) ==
1696 	    ((m->object->flags & OBJ_UNMANAGED) != 0),
1697 	    ("%s: managed flag mismatch for page %p",
1698 	     __func__, m));
1699 	vm_page_assert_xbusied(m);
1700 
1701 	/*
1702 	 * The object reference can be released without an atomic
1703 	 * operation.
1704 	 */
1705 	KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
1706 	    m->ref_count == VPRC_OBJREF,
1707 	    ("%s: page %p has unexpected ref_count %u",
1708 	    __func__, m, m->ref_count));
1709 	vm_page_remove_radixdone(m);
1710 	m->ref_count -= VPRC_OBJREF;
1711 }
1712 
1713 /*
1714  *	vm_page_iter_free:
1715  *
1716  *	Free the given page, and use the iterator to remove it from the radix
1717  *	tree.
1718  */
1719 void
vm_page_iter_free(struct pctrie_iter * pages,vm_page_t m)1720 vm_page_iter_free(struct pctrie_iter *pages, vm_page_t m)
1721 {
1722 	vm_radix_iter_remove(pages);
1723 	vm_page_free_object_prep(m);
1724 	vm_page_xunbusy(m);
1725 	m->flags &= ~PG_ZERO;
1726 	vm_page_free_toq(m);
1727 }
1728 
1729 /*
1730  *	vm_page_remove:
1731  *
1732  *	Removes the specified page from its containing object, but does not
1733  *	invalidate any backing storage.  Returns true if the object's reference
1734  *	was the last reference to the page, and false otherwise.
1735  *
1736  *	The object must be locked and the page must be exclusively busied.
1737  *	The exclusive busy will be released on return.  If this is not the
1738  *	final ref and the caller does not hold a wire reference it may not
1739  *	continue to access the page.
1740  */
1741 bool
vm_page_remove(vm_page_t m)1742 vm_page_remove(vm_page_t m)
1743 {
1744 	bool dropped;
1745 
1746 	dropped = vm_page_remove_xbusy(m);
1747 	vm_page_xunbusy(m);
1748 
1749 	return (dropped);
1750 }
1751 
1752 /*
1753  *	vm_page_iter_remove:
1754  *
1755  *	Remove the current page, as identified by iterator, and remove it from the
1756  *	radix tree.
1757  */
1758 bool
vm_page_iter_remove(struct pctrie_iter * pages)1759 vm_page_iter_remove(struct pctrie_iter *pages)
1760 {
1761 	vm_page_t m;
1762 	bool dropped;
1763 
1764 	m = vm_radix_iter_page(pages);
1765 	vm_radix_iter_remove(pages);
1766 	vm_page_remove_radixdone(m);
1767 	dropped = (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1768 	vm_page_xunbusy(m);
1769 
1770 	return (dropped);
1771 }
1772 
1773 /*
1774  *	vm_page_radix_remove
1775  *
1776  *	Removes the specified page from the radix tree.
1777  */
1778 static void
vm_page_radix_remove(vm_page_t m)1779 vm_page_radix_remove(vm_page_t m)
1780 {
1781 	vm_page_t mrem __diagused;
1782 
1783 	mrem = vm_radix_remove(&m->object->rtree, m->pindex);
1784 	KASSERT(mrem == m,
1785 	    ("removed page %p, expected page %p", mrem, m));
1786 }
1787 
1788 /*
1789  *	vm_page_remove_xbusy
1790  *
1791  *	Removes the page but leaves the xbusy held.  Returns true if this
1792  *	removed the final ref and false otherwise.
1793  */
1794 bool
vm_page_remove_xbusy(vm_page_t m)1795 vm_page_remove_xbusy(vm_page_t m)
1796 {
1797 
1798 	vm_page_radix_remove(m);
1799 	vm_page_remove_radixdone(m);
1800 	return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1801 }
1802 
1803 /*
1804  *	vm_page_lookup:
1805  *
1806  *	Returns the page associated with the object/offset
1807  *	pair specified; if none is found, NULL is returned.
1808  *
1809  *	The object must be locked.
1810  */
1811 vm_page_t
vm_page_lookup(vm_object_t object,vm_pindex_t pindex)1812 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1813 {
1814 
1815 	VM_OBJECT_ASSERT_LOCKED(object);
1816 	return (vm_radix_lookup(&object->rtree, pindex));
1817 }
1818 
1819 /*
1820  *	vm_page_iter_init:
1821  *
1822  *	Initialize iterator for vm pages.
1823  */
1824 void
vm_page_iter_init(struct pctrie_iter * pages,vm_object_t object)1825 vm_page_iter_init(struct pctrie_iter *pages, vm_object_t object)
1826 {
1827 
1828 	vm_radix_iter_init(pages, &object->rtree);
1829 }
1830 
1831 /*
1832  *	vm_page_iter_init:
1833  *
1834  *	Initialize iterator for vm pages.
1835  */
1836 void
vm_page_iter_limit_init(struct pctrie_iter * pages,vm_object_t object,vm_pindex_t limit)1837 vm_page_iter_limit_init(struct pctrie_iter *pages, vm_object_t object,
1838     vm_pindex_t limit)
1839 {
1840 
1841 	vm_radix_iter_limit_init(pages, &object->rtree, limit);
1842 }
1843 
1844 /*
1845  *	vm_page_iter_lookup:
1846  *
1847  *	Returns the page associated with the object/offset pair specified, and
1848  *	stores the path to its position; if none is found, NULL is returned.
1849  *
1850  *	The iter pctrie must be locked.
1851  */
1852 vm_page_t
vm_page_iter_lookup(struct pctrie_iter * pages,vm_pindex_t pindex)1853 vm_page_iter_lookup(struct pctrie_iter *pages, vm_pindex_t pindex)
1854 {
1855 
1856 	return (vm_radix_iter_lookup(pages, pindex));
1857 }
1858 
1859 /*
1860  *	vm_page_lookup_unlocked:
1861  *
1862  *	Returns the page associated with the object/offset pair specified;
1863  *	if none is found, NULL is returned.  The page may be no longer be
1864  *	present in the object at the time that this function returns.  Only
1865  *	useful for opportunistic checks such as inmem().
1866  */
1867 vm_page_t
vm_page_lookup_unlocked(vm_object_t object,vm_pindex_t pindex)1868 vm_page_lookup_unlocked(vm_object_t object, vm_pindex_t pindex)
1869 {
1870 
1871 	return (vm_radix_lookup_unlocked(&object->rtree, pindex));
1872 }
1873 
1874 /*
1875  *	vm_page_relookup:
1876  *
1877  *	Returns a page that must already have been busied by
1878  *	the caller.  Used for bogus page replacement.
1879  */
1880 vm_page_t
vm_page_relookup(vm_object_t object,vm_pindex_t pindex)1881 vm_page_relookup(vm_object_t object, vm_pindex_t pindex)
1882 {
1883 	vm_page_t m;
1884 
1885 	m = vm_page_lookup_unlocked(object, pindex);
1886 	KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) &&
1887 	    m->object == object && m->pindex == pindex,
1888 	    ("vm_page_relookup: Invalid page %p", m));
1889 	return (m);
1890 }
1891 
1892 /*
1893  * This should only be used by lockless functions for releasing transient
1894  * incorrect acquires.  The page may have been freed after we acquired a
1895  * busy lock.  In this case busy_lock == VPB_FREED and we have nothing
1896  * further to do.
1897  */
1898 static void
vm_page_busy_release(vm_page_t m)1899 vm_page_busy_release(vm_page_t m)
1900 {
1901 	u_int x;
1902 
1903 	x = vm_page_busy_fetch(m);
1904 	for (;;) {
1905 		if (x == VPB_FREED)
1906 			break;
1907 		if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) {
1908 			if (atomic_fcmpset_int(&m->busy_lock, &x,
1909 			    x - VPB_ONE_SHARER))
1910 				break;
1911 			continue;
1912 		}
1913 		KASSERT((x & VPB_BIT_SHARED) != 0 ||
1914 		    (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE,
1915 		    ("vm_page_busy_release: %p xbusy not owned.", m));
1916 		if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1917 			continue;
1918 		if ((x & VPB_BIT_WAITERS) != 0)
1919 			wakeup(m);
1920 		break;
1921 	}
1922 }
1923 
1924 /*
1925  *	vm_page_find_least:
1926  *
1927  *	Returns the page associated with the object with least pindex
1928  *	greater than or equal to the parameter pindex, or NULL.
1929  *
1930  *	The object must be locked.
1931  */
1932 vm_page_t
vm_page_find_least(vm_object_t object,vm_pindex_t pindex)1933 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1934 {
1935 	vm_page_t m;
1936 
1937 	VM_OBJECT_ASSERT_LOCKED(object);
1938 	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1939 		m = vm_radix_lookup_ge(&object->rtree, pindex);
1940 	return (m);
1941 }
1942 
1943 /*
1944  *	vm_page_iter_lookup_ge:
1945  *
1946  *	Returns the page associated with the object with least pindex
1947  *	greater than or equal to the parameter pindex, or NULL.  Initializes the
1948  *	iterator to point to that page.
1949  *
1950  *	The iter pctrie must be locked.
1951  */
1952 vm_page_t
vm_page_iter_lookup_ge(struct pctrie_iter * pages,vm_pindex_t pindex)1953 vm_page_iter_lookup_ge(struct pctrie_iter *pages, vm_pindex_t pindex)
1954 {
1955 
1956 	return (vm_radix_iter_lookup_ge(pages, pindex));
1957 }
1958 
1959 /*
1960  * Returns the given page's successor (by pindex) within the object if it is
1961  * resident; if none is found, NULL is returned.
1962  *
1963  * The object must be locked.
1964  */
1965 vm_page_t
vm_page_next(vm_page_t m)1966 vm_page_next(vm_page_t m)
1967 {
1968 	vm_page_t next;
1969 
1970 	VM_OBJECT_ASSERT_LOCKED(m->object);
1971 	if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1972 		MPASS(next->object == m->object);
1973 		if (next->pindex != m->pindex + 1)
1974 			next = NULL;
1975 	}
1976 	return (next);
1977 }
1978 
1979 /*
1980  * Returns the given page's predecessor (by pindex) within the object if it is
1981  * resident; if none is found, NULL is returned.
1982  *
1983  * The object must be locked.
1984  */
1985 vm_page_t
vm_page_prev(vm_page_t m)1986 vm_page_prev(vm_page_t m)
1987 {
1988 	vm_page_t prev;
1989 
1990 	VM_OBJECT_ASSERT_LOCKED(m->object);
1991 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1992 		MPASS(prev->object == m->object);
1993 		if (prev->pindex != m->pindex - 1)
1994 			prev = NULL;
1995 	}
1996 	return (prev);
1997 }
1998 
1999 /*
2000  * Uses the page mnew as a replacement for an existing page at index
2001  * pindex which must be already present in the object.
2002  *
2003  * Both pages must be exclusively busied on enter.  The old page is
2004  * unbusied on exit.
2005  *
2006  * A return value of true means mold is now free.  If this is not the
2007  * final ref and the caller does not hold a wire reference it may not
2008  * continue to access the page.
2009  */
2010 static bool
vm_page_replace_hold(vm_page_t mnew,vm_object_t object,vm_pindex_t pindex,vm_page_t mold)2011 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
2012     vm_page_t mold)
2013 {
2014 	vm_page_t mret __diagused;
2015 	bool dropped;
2016 
2017 	VM_OBJECT_ASSERT_WLOCKED(object);
2018 	vm_page_assert_xbusied(mold);
2019 	KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
2020 	    ("vm_page_replace: page %p already in object", mnew));
2021 
2022 	/*
2023 	 * This function mostly follows vm_page_insert() and
2024 	 * vm_page_remove() without the radix, object count and vnode
2025 	 * dance.  Double check such functions for more comments.
2026 	 */
2027 
2028 	mnew->object = object;
2029 	mnew->pindex = pindex;
2030 	atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
2031 	mret = vm_radix_replace(&object->rtree, mnew);
2032 	KASSERT(mret == mold,
2033 	    ("invalid page replacement, mold=%p, mret=%p", mold, mret));
2034 	KASSERT((mold->oflags & VPO_UNMANAGED) ==
2035 	    (mnew->oflags & VPO_UNMANAGED),
2036 	    ("vm_page_replace: mismatched VPO_UNMANAGED"));
2037 
2038 	/* Keep the resident page list in sorted order. */
2039 	TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
2040 	TAILQ_REMOVE(&object->memq, mold, listq);
2041 	mold->object = NULL;
2042 
2043 	/*
2044 	 * The object's resident_page_count does not change because we have
2045 	 * swapped one page for another, but the generation count should
2046 	 * change if the page is dirty.
2047 	 */
2048 	if (pmap_page_is_write_mapped(mnew))
2049 		vm_object_set_writeable_dirty(object);
2050 	dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF;
2051 	vm_page_xunbusy(mold);
2052 
2053 	return (dropped);
2054 }
2055 
2056 void
vm_page_replace(vm_page_t mnew,vm_object_t object,vm_pindex_t pindex,vm_page_t mold)2057 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
2058     vm_page_t mold)
2059 {
2060 
2061 	vm_page_assert_xbusied(mnew);
2062 
2063 	if (vm_page_replace_hold(mnew, object, pindex, mold))
2064 		vm_page_free(mold);
2065 }
2066 
2067 /*
2068  *	vm_page_rename:
2069  *
2070  *	Move the current page, as identified by iterator, from its current
2071  *	object to the specified target object/offset.
2072  *
2073  *	Note: swap associated with the page must be invalidated by the move.  We
2074  *	      have to do this for several reasons:  (1) we aren't freeing the
2075  *	      page, (2) we are dirtying the page, (3) the VM system is probably
2076  *	      moving the page from object A to B, and will then later move
2077  *	      the backing store from A to B and we can't have a conflict.
2078  *
2079  *	Note: we *always* dirty the page.  It is necessary both for the
2080  *	      fact that we moved it, and because we may be invalidating
2081  *	      swap.
2082  *
2083  *	The objects must be locked.
2084  */
2085 int
vm_page_rename(struct pctrie_iter * pages,vm_object_t new_object,vm_pindex_t new_pindex)2086 vm_page_rename(struct pctrie_iter *pages,
2087     vm_object_t new_object, vm_pindex_t new_pindex)
2088 {
2089 	vm_page_t m, mpred;
2090 	vm_pindex_t opidx;
2091 
2092 	VM_OBJECT_ASSERT_WLOCKED(new_object);
2093 
2094 	m = vm_radix_iter_page(pages);
2095 	KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m));
2096 
2097 	/*
2098 	 * Create a custom version of vm_page_insert() which does not depend
2099 	 * by m_prev and can cheat on the implementation aspects of the
2100 	 * function.
2101 	 */
2102 	opidx = m->pindex;
2103 	m->pindex = new_pindex;
2104 	if (vm_radix_insert_lookup_lt(&new_object->rtree, m, &mpred) != 0) {
2105 		m->pindex = opidx;
2106 		return (1);
2107 	}
2108 
2109 	/*
2110 	 * The operation cannot fail anymore.  The removal must happen before
2111 	 * the listq iterator is tainted.
2112 	 */
2113 	m->pindex = opidx;
2114 	vm_radix_iter_remove(pages);
2115 	vm_page_remove_radixdone(m);
2116 
2117 	/* Return back to the new pindex to complete vm_page_insert(). */
2118 	m->pindex = new_pindex;
2119 	m->object = new_object;
2120 
2121 	vm_page_insert_radixdone(m, new_object, mpred);
2122 	vm_page_dirty(m);
2123 	vm_pager_page_inserted(new_object, m);
2124 	return (0);
2125 }
2126 
2127 /*
2128  *	vm_page_mpred:
2129  *
2130  *	Return the greatest page of the object with index <= pindex,
2131  *	or NULL, if there is none.  Assumes object lock is held.
2132  */
2133 vm_page_t
vm_page_mpred(vm_object_t object,vm_pindex_t pindex)2134 vm_page_mpred(vm_object_t object, vm_pindex_t pindex)
2135 {
2136 	return (vm_radix_lookup_le(&object->rtree, pindex));
2137 }
2138 
2139 /*
2140  *	vm_page_alloc:
2141  *
2142  *	Allocate and return a page that is associated with the specified
2143  *	object and offset pair.  By default, this page is exclusive busied.
2144  *
2145  *	The caller must always specify an allocation class.
2146  *
2147  *	allocation classes:
2148  *	VM_ALLOC_NORMAL		normal process request
2149  *	VM_ALLOC_SYSTEM		system *really* needs a page
2150  *	VM_ALLOC_INTERRUPT	interrupt time request
2151  *
2152  *	optional allocation flags:
2153  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
2154  *				intends to allocate
2155  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
2156  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
2157  *	VM_ALLOC_SBUSY		shared busy the allocated page
2158  *	VM_ALLOC_WIRED		wire the allocated page
2159  *	VM_ALLOC_ZERO		prefer a zeroed page
2160  */
2161 vm_page_t
vm_page_alloc(vm_object_t object,vm_pindex_t pindex,int req)2162 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
2163 {
2164 
2165 	return (vm_page_alloc_after(object, pindex, req,
2166 	    vm_page_mpred(object, pindex)));
2167 }
2168 
2169 /*
2170  * Allocate a page in the specified object with the given page index.  To
2171  * optimize insertion of the page into the object, the caller must also specify
2172  * the resident page in the object with largest index smaller than the given
2173  * page index, or NULL if no such page exists.
2174  */
2175 static vm_page_t
vm_page_alloc_after(vm_object_t object,vm_pindex_t pindex,int req,vm_page_t mpred)2176 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
2177     int req, vm_page_t mpred)
2178 {
2179 	struct vm_domainset_iter di;
2180 	vm_page_t m;
2181 	int domain;
2182 
2183 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2184 	do {
2185 		m = vm_page_alloc_domain_after(object, pindex, domain, req,
2186 		    mpred);
2187 		if (m != NULL)
2188 			break;
2189 	} while (vm_domainset_iter_page(&di, object, &domain) == 0);
2190 
2191 	return (m);
2192 }
2193 
2194 /*
2195  * Returns true if the number of free pages exceeds the minimum
2196  * for the request class and false otherwise.
2197  */
2198 static int
_vm_domain_allocate(struct vm_domain * vmd,int req_class,int npages)2199 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
2200 {
2201 	u_int limit, old, new;
2202 
2203 	if (req_class == VM_ALLOC_INTERRUPT)
2204 		limit = 0;
2205 	else if (req_class == VM_ALLOC_SYSTEM)
2206 		limit = vmd->vmd_interrupt_free_min;
2207 	else
2208 		limit = vmd->vmd_free_reserved;
2209 
2210 	/*
2211 	 * Attempt to reserve the pages.  Fail if we're below the limit.
2212 	 */
2213 	limit += npages;
2214 	old = atomic_load_int(&vmd->vmd_free_count);
2215 	do {
2216 		if (old < limit)
2217 			return (0);
2218 		new = old - npages;
2219 	} while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
2220 
2221 	/* Wake the page daemon if we've crossed the threshold. */
2222 	if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
2223 		pagedaemon_wakeup(vmd->vmd_domain);
2224 
2225 	/* Only update bitsets on transitions. */
2226 	if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
2227 	    (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
2228 		vm_domain_set(vmd);
2229 
2230 	return (1);
2231 }
2232 
2233 int
vm_domain_allocate(struct vm_domain * vmd,int req,int npages)2234 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
2235 {
2236 	int req_class;
2237 
2238 	/*
2239 	 * The page daemon is allowed to dig deeper into the free page list.
2240 	 */
2241 	req_class = req & VM_ALLOC_CLASS_MASK;
2242 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2243 		req_class = VM_ALLOC_SYSTEM;
2244 	return (_vm_domain_allocate(vmd, req_class, npages));
2245 }
2246 
2247 vm_page_t
vm_page_alloc_domain_after(vm_object_t object,vm_pindex_t pindex,int domain,int req,vm_page_t mpred)2248 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
2249     int req, vm_page_t mpred)
2250 {
2251 	struct vm_domain *vmd;
2252 	vm_page_t m;
2253 	int flags;
2254 
2255 #define	VPA_FLAGS	(VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL |	\
2256 			 VM_ALLOC_NOWAIT | VM_ALLOC_NOBUSY |		\
2257 			 VM_ALLOC_SBUSY | VM_ALLOC_WIRED |		\
2258 			 VM_ALLOC_NODUMP | VM_ALLOC_ZERO |		\
2259 			 VM_ALLOC_NOFREE | VM_ALLOC_COUNT_MASK)
2260 	KASSERT((req & ~VPA_FLAGS) == 0,
2261 	    ("invalid request %#x", req));
2262 	KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2263 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2264 	    ("invalid request %#x", req));
2265 	KASSERT(mpred == NULL || mpred->pindex < pindex,
2266 	    ("mpred %p doesn't precede pindex 0x%jx", mpred,
2267 	    (uintmax_t)pindex));
2268 	VM_OBJECT_ASSERT_WLOCKED(object);
2269 
2270 	flags = 0;
2271 	m = NULL;
2272 	if (!vm_pager_can_alloc_page(object, pindex))
2273 		return (NULL);
2274 again:
2275 	if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) {
2276 		m = vm_page_alloc_nofree_domain(domain, req);
2277 		if (m != NULL)
2278 			goto found;
2279 	}
2280 #if VM_NRESERVLEVEL > 0
2281 	/*
2282 	 * Can we allocate the page from a reservation?
2283 	 */
2284 	if (vm_object_reserv(object) &&
2285 	    (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
2286 	    NULL) {
2287 		goto found;
2288 	}
2289 #endif
2290 	vmd = VM_DOMAIN(domain);
2291 	if (vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone != NULL) {
2292 		m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone,
2293 		    M_NOWAIT | M_NOVM);
2294 		if (m != NULL) {
2295 			flags |= PG_PCPU_CACHE;
2296 			goto found;
2297 		}
2298 	}
2299 	if (vm_domain_allocate(vmd, req, 1)) {
2300 		/*
2301 		 * If not, allocate it from the free page queues.
2302 		 */
2303 		vm_domain_free_lock(vmd);
2304 		m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 0);
2305 		vm_domain_free_unlock(vmd);
2306 		if (m == NULL) {
2307 			vm_domain_freecnt_inc(vmd, 1);
2308 #if VM_NRESERVLEVEL > 0
2309 			if (vm_reserv_reclaim_inactive(domain))
2310 				goto again;
2311 #endif
2312 		}
2313 	}
2314 	if (m == NULL) {
2315 		/*
2316 		 * Not allocatable, give up.
2317 		 */
2318 		if (vm_domain_alloc_fail(vmd, object, req))
2319 			goto again;
2320 		return (NULL);
2321 	}
2322 
2323 	/*
2324 	 * At this point we had better have found a good page.
2325 	 */
2326 found:
2327 	vm_page_dequeue(m);
2328 	vm_page_alloc_check(m);
2329 
2330 	/*
2331 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2332 	 */
2333 	flags |= m->flags & PG_ZERO;
2334 	if ((req & VM_ALLOC_NODUMP) != 0)
2335 		flags |= PG_NODUMP;
2336 	if ((req & VM_ALLOC_NOFREE) != 0)
2337 		flags |= PG_NOFREE;
2338 	m->flags = flags;
2339 	m->a.flags = 0;
2340 	m->oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2341 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2342 		m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2343 	else if ((req & VM_ALLOC_SBUSY) != 0)
2344 		m->busy_lock = VPB_SHARERS_WORD(1);
2345 	else
2346 		m->busy_lock = VPB_UNBUSIED;
2347 	if (req & VM_ALLOC_WIRED) {
2348 		vm_wire_add(1);
2349 		m->ref_count = 1;
2350 	}
2351 	m->a.act_count = 0;
2352 
2353 	if (vm_page_insert_after(m, object, pindex, mpred)) {
2354 		if (req & VM_ALLOC_WIRED) {
2355 			vm_wire_sub(1);
2356 			m->ref_count = 0;
2357 		}
2358 		KASSERT(m->object == NULL, ("page %p has object", m));
2359 		m->oflags = VPO_UNMANAGED;
2360 		m->busy_lock = VPB_UNBUSIED;
2361 		/* Don't change PG_ZERO. */
2362 		vm_page_free_toq(m);
2363 		if (req & VM_ALLOC_WAITFAIL) {
2364 			VM_OBJECT_WUNLOCK(object);
2365 			vm_radix_wait();
2366 			VM_OBJECT_WLOCK(object);
2367 		}
2368 		return (NULL);
2369 	}
2370 
2371 	/* Ignore device objects; the pager sets "memattr" for them. */
2372 	if (object->memattr != VM_MEMATTR_DEFAULT &&
2373 	    (object->flags & OBJ_FICTITIOUS) == 0)
2374 		pmap_page_set_memattr(m, object->memattr);
2375 
2376 	return (m);
2377 }
2378 
2379 /*
2380  *	vm_page_alloc_contig:
2381  *
2382  *	Allocate a contiguous set of physical pages of the given size "npages"
2383  *	from the free lists.  All of the physical pages must be at or above
2384  *	the given physical address "low" and below the given physical address
2385  *	"high".  The given value "alignment" determines the alignment of the
2386  *	first physical page in the set.  If the given value "boundary" is
2387  *	non-zero, then the set of physical pages cannot cross any physical
2388  *	address boundary that is a multiple of that value.  Both "alignment"
2389  *	and "boundary" must be a power of two.
2390  *
2391  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2392  *	then the memory attribute setting for the physical pages is configured
2393  *	to the object's memory attribute setting.  Otherwise, the memory
2394  *	attribute setting for the physical pages is configured to "memattr",
2395  *	overriding the object's memory attribute setting.  However, if the
2396  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2397  *	memory attribute setting for the physical pages cannot be configured
2398  *	to VM_MEMATTR_DEFAULT.
2399  *
2400  *	The specified object may not contain fictitious pages.
2401  *
2402  *	The caller must always specify an allocation class.
2403  *
2404  *	allocation classes:
2405  *	VM_ALLOC_NORMAL		normal process request
2406  *	VM_ALLOC_SYSTEM		system *really* needs a page
2407  *	VM_ALLOC_INTERRUPT	interrupt time request
2408  *
2409  *	optional allocation flags:
2410  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
2411  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
2412  *	VM_ALLOC_SBUSY		shared busy the allocated page
2413  *	VM_ALLOC_WIRED		wire the allocated page
2414  *	VM_ALLOC_ZERO		prefer a zeroed page
2415  */
2416 vm_page_t
vm_page_alloc_contig(vm_object_t object,vm_pindex_t pindex,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2417 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2418     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2419     vm_paddr_t boundary, vm_memattr_t memattr)
2420 {
2421 	struct vm_domainset_iter di;
2422 	vm_page_t bounds[2];
2423 	vm_page_t m;
2424 	int domain;
2425 	int start_segind;
2426 
2427 	start_segind = -1;
2428 
2429 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2430 	do {
2431 		m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2432 		    npages, low, high, alignment, boundary, memattr);
2433 		if (m != NULL)
2434 			break;
2435 		if (start_segind == -1)
2436 			start_segind = vm_phys_lookup_segind(low);
2437 		if (vm_phys_find_range(bounds, start_segind, domain,
2438 		    npages, low, high) == -1) {
2439 			vm_domainset_iter_ignore(&di, domain);
2440 		}
2441 	} while (vm_domainset_iter_page(&di, object, &domain) == 0);
2442 
2443 	return (m);
2444 }
2445 
2446 static vm_page_t
vm_page_find_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)2447 vm_page_find_contig_domain(int domain, int req, u_long npages, vm_paddr_t low,
2448     vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2449 {
2450 	struct vm_domain *vmd;
2451 	vm_page_t m_ret;
2452 
2453 	/*
2454 	 * Can we allocate the pages without the number of free pages falling
2455 	 * below the lower bound for the allocation class?
2456 	 */
2457 	vmd = VM_DOMAIN(domain);
2458 	if (!vm_domain_allocate(vmd, req, npages))
2459 		return (NULL);
2460 	/*
2461 	 * Try to allocate the pages from the free page queues.
2462 	 */
2463 	vm_domain_free_lock(vmd);
2464 	m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2465 	    alignment, boundary);
2466 	vm_domain_free_unlock(vmd);
2467 	if (m_ret != NULL)
2468 		return (m_ret);
2469 #if VM_NRESERVLEVEL > 0
2470 	/*
2471 	 * Try to break a reservation to allocate the pages.
2472 	 */
2473 	if ((req & VM_ALLOC_NORECLAIM) == 0) {
2474 		m_ret = vm_reserv_reclaim_contig(domain, npages, low,
2475 	            high, alignment, boundary);
2476 		if (m_ret != NULL)
2477 			return (m_ret);
2478 	}
2479 #endif
2480 	vm_domain_freecnt_inc(vmd, npages);
2481 	return (NULL);
2482 }
2483 
2484 vm_page_t
vm_page_alloc_contig_domain(vm_object_t object,vm_pindex_t pindex,int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2485 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2486     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2487     vm_paddr_t boundary, vm_memattr_t memattr)
2488 {
2489 	struct pctrie_iter pages;
2490 	vm_page_t m, m_ret, mpred;
2491 	u_int busy_lock, flags, oflags;
2492 
2493 #define	VPAC_FLAGS	(VPA_FLAGS | VM_ALLOC_NORECLAIM)
2494 	KASSERT((req & ~VPAC_FLAGS) == 0,
2495 	    ("invalid request %#x", req));
2496 	KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2497 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2498 	    ("invalid request %#x", req));
2499 	KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
2500 	    (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
2501 	    ("invalid request %#x", req));
2502 	VM_OBJECT_ASSERT_WLOCKED(object);
2503 	KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2504 	    ("vm_page_alloc_contig: object %p has fictitious pages",
2505 	    object));
2506 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2507 
2508 	vm_page_iter_init(&pages, object);
2509 	mpred = vm_radix_iter_lookup_le(&pages, pindex);
2510 	KASSERT(mpred == NULL || mpred->pindex != pindex,
2511 	    ("vm_page_alloc_contig: pindex already allocated"));
2512 	for (;;) {
2513 #if VM_NRESERVLEVEL > 0
2514 		/*
2515 		 * Can we allocate the pages from a reservation?
2516 		 */
2517 		if (vm_object_reserv(object) &&
2518 		    (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
2519 		    mpred, npages, low, high, alignment, boundary)) != NULL) {
2520 			break;
2521 		}
2522 #endif
2523 		if ((m_ret = vm_page_find_contig_domain(domain, req, npages,
2524 		    low, high, alignment, boundary)) != NULL)
2525 			break;
2526 		if (!vm_domain_alloc_fail(VM_DOMAIN(domain), object, req))
2527 			return (NULL);
2528 	}
2529 
2530 	/*
2531 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
2532 	 */
2533 	flags = PG_ZERO;
2534 	if ((req & VM_ALLOC_NODUMP) != 0)
2535 		flags |= PG_NODUMP;
2536 	oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2537 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2538 		busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2539 	else if ((req & VM_ALLOC_SBUSY) != 0)
2540 		busy_lock = VPB_SHARERS_WORD(1);
2541 	else
2542 		busy_lock = VPB_UNBUSIED;
2543 	if ((req & VM_ALLOC_WIRED) != 0)
2544 		vm_wire_add(npages);
2545 	if (object->memattr != VM_MEMATTR_DEFAULT &&
2546 	    memattr == VM_MEMATTR_DEFAULT)
2547 		memattr = object->memattr;
2548 	for (m = m_ret; m < &m_ret[npages]; m++) {
2549 		vm_page_dequeue(m);
2550 		vm_page_alloc_check(m);
2551 		m->a.flags = 0;
2552 		m->flags = (m->flags | PG_NODUMP) & flags;
2553 		m->busy_lock = busy_lock;
2554 		if ((req & VM_ALLOC_WIRED) != 0)
2555 			m->ref_count = 1;
2556 		m->a.act_count = 0;
2557 		m->oflags = oflags;
2558 		if (vm_page_iter_insert(&pages, m, object, pindex, mpred)) {
2559 			if ((req & VM_ALLOC_WIRED) != 0)
2560 				vm_wire_sub(npages);
2561 			KASSERT(m->object == NULL,
2562 			    ("page %p has object", m));
2563 			mpred = m;
2564 			for (m = m_ret; m < &m_ret[npages]; m++) {
2565 				if (m <= mpred &&
2566 				    (req & VM_ALLOC_WIRED) != 0)
2567 					m->ref_count = 0;
2568 				m->oflags = VPO_UNMANAGED;
2569 				m->busy_lock = VPB_UNBUSIED;
2570 				/* Don't change PG_ZERO. */
2571 				vm_page_free_toq(m);
2572 			}
2573 			if (req & VM_ALLOC_WAITFAIL) {
2574 				VM_OBJECT_WUNLOCK(object);
2575 				vm_radix_wait();
2576 				VM_OBJECT_WLOCK(object);
2577 			}
2578 			return (NULL);
2579 		}
2580 		mpred = m;
2581 		if (memattr != VM_MEMATTR_DEFAULT)
2582 			pmap_page_set_memattr(m, memattr);
2583 		pindex++;
2584 	}
2585 	return (m_ret);
2586 }
2587 
2588 /*
2589  * Allocate a physical page that is not intended to be inserted into a VM
2590  * object.
2591  */
2592 vm_page_t
vm_page_alloc_noobj_domain(int domain,int req)2593 vm_page_alloc_noobj_domain(int domain, int req)
2594 {
2595 	struct vm_domain *vmd;
2596 	vm_page_t m;
2597 	int flags;
2598 
2599 #define	VPAN_FLAGS	(VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL |      \
2600 			 VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK |		\
2601 			 VM_ALLOC_NOBUSY | VM_ALLOC_WIRED |		\
2602 			 VM_ALLOC_NODUMP | VM_ALLOC_ZERO |		\
2603 			 VM_ALLOC_NOFREE | VM_ALLOC_COUNT_MASK)
2604 	KASSERT((req & ~VPAN_FLAGS) == 0,
2605 	    ("invalid request %#x", req));
2606 
2607 	flags = ((req & VM_ALLOC_NODUMP) != 0 ? PG_NODUMP : 0) |
2608 	    ((req & VM_ALLOC_NOFREE) != 0 ? PG_NOFREE : 0);
2609 	vmd = VM_DOMAIN(domain);
2610 again:
2611 	if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) {
2612 		m = vm_page_alloc_nofree_domain(domain, req);
2613 		if (m != NULL)
2614 			goto found;
2615 	}
2616 
2617 	if (vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone != NULL) {
2618 		m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone,
2619 		    M_NOWAIT | M_NOVM);
2620 		if (m != NULL) {
2621 			flags |= PG_PCPU_CACHE;
2622 			goto found;
2623 		}
2624 	}
2625 
2626 	if (vm_domain_allocate(vmd, req, 1)) {
2627 		vm_domain_free_lock(vmd);
2628 		m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DIRECT, 0);
2629 		vm_domain_free_unlock(vmd);
2630 		if (m == NULL) {
2631 			vm_domain_freecnt_inc(vmd, 1);
2632 #if VM_NRESERVLEVEL > 0
2633 			if (vm_reserv_reclaim_inactive(domain))
2634 				goto again;
2635 #endif
2636 		}
2637 	}
2638 	if (m == NULL) {
2639 		if (vm_domain_alloc_fail(vmd, NULL, req))
2640 			goto again;
2641 		return (NULL);
2642 	}
2643 
2644 found:
2645 	vm_page_dequeue(m);
2646 	vm_page_alloc_check(m);
2647 
2648 	/*
2649 	 * Consumers should not rely on a useful default pindex value.
2650 	 */
2651 	m->pindex = 0xdeadc0dedeadc0de;
2652 	m->flags = (m->flags & PG_ZERO) | flags;
2653 	m->a.flags = 0;
2654 	m->oflags = VPO_UNMANAGED;
2655 	m->busy_lock = VPB_UNBUSIED;
2656 	if ((req & VM_ALLOC_WIRED) != 0) {
2657 		vm_wire_add(1);
2658 		m->ref_count = 1;
2659 	}
2660 
2661 	if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2662 		pmap_zero_page(m);
2663 
2664 	return (m);
2665 }
2666 
2667 #if VM_NRESERVLEVEL > 1
2668 #define	VM_NOFREE_IMPORT_ORDER	(VM_LEVEL_1_ORDER + VM_LEVEL_0_ORDER)
2669 #elif VM_NRESERVLEVEL > 0
2670 #define	VM_NOFREE_IMPORT_ORDER	VM_LEVEL_0_ORDER
2671 #else
2672 #define	VM_NOFREE_IMPORT_ORDER	8
2673 #endif
2674 
2675 /*
2676  * Allocate a single NOFREE page.
2677  *
2678  * This routine hands out NOFREE pages from higher-order
2679  * physical memory blocks in order to reduce memory fragmentation.
2680  * When a NOFREE for a given domain chunk is used up,
2681  * the routine will try to fetch a new one from the freelists
2682  * and discard the old one.
2683  */
2684 static vm_page_t
vm_page_alloc_nofree_domain(int domain,int req)2685 vm_page_alloc_nofree_domain(int domain, int req)
2686 {
2687 	vm_page_t m;
2688 	struct vm_domain *vmd;
2689 	struct vm_nofreeq *nqp;
2690 
2691 	KASSERT((req & VM_ALLOC_NOFREE) != 0, ("invalid request %#x", req));
2692 
2693 	vmd = VM_DOMAIN(domain);
2694 	nqp = &vmd->vmd_nofreeq;
2695 	vm_domain_free_lock(vmd);
2696 	if (nqp->offs >= (1 << VM_NOFREE_IMPORT_ORDER) || nqp->ma == NULL) {
2697 		if (!vm_domain_allocate(vmd, req,
2698 		    1 << VM_NOFREE_IMPORT_ORDER)) {
2699 			vm_domain_free_unlock(vmd);
2700 			return (NULL);
2701 		}
2702 		nqp->ma = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT,
2703 		    VM_NOFREE_IMPORT_ORDER);
2704 		if (nqp->ma == NULL) {
2705 			vm_domain_freecnt_inc(vmd, 1 << VM_NOFREE_IMPORT_ORDER);
2706 			vm_domain_free_unlock(vmd);
2707 			return (NULL);
2708 		}
2709 		nqp->offs = 0;
2710 	}
2711 	m = &nqp->ma[nqp->offs++];
2712 	vm_domain_free_unlock(vmd);
2713 	VM_CNT_ADD(v_nofree_count, 1);
2714 
2715 	return (m);
2716 }
2717 
2718 vm_page_t
vm_page_alloc_noobj(int req)2719 vm_page_alloc_noobj(int req)
2720 {
2721 	struct vm_domainset_iter di;
2722 	vm_page_t m;
2723 	int domain;
2724 
2725 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2726 	do {
2727 		m = vm_page_alloc_noobj_domain(domain, req);
2728 		if (m != NULL)
2729 			break;
2730 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2731 
2732 	return (m);
2733 }
2734 
2735 vm_page_t
vm_page_alloc_noobj_contig(int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2736 vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low,
2737     vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2738     vm_memattr_t memattr)
2739 {
2740 	struct vm_domainset_iter di;
2741 	vm_page_t m;
2742 	int domain;
2743 
2744 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2745 	do {
2746 		m = vm_page_alloc_noobj_contig_domain(domain, req, npages, low,
2747 		    high, alignment, boundary, memattr);
2748 		if (m != NULL)
2749 			break;
2750 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2751 
2752 	return (m);
2753 }
2754 
2755 vm_page_t
vm_page_alloc_noobj_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2756 vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages,
2757     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2758     vm_memattr_t memattr)
2759 {
2760 	vm_page_t m, m_ret;
2761 	u_int flags;
2762 
2763 #define	VPANC_FLAGS	(VPAN_FLAGS | VM_ALLOC_NORECLAIM)
2764 	KASSERT((req & ~VPANC_FLAGS) == 0,
2765 	    ("invalid request %#x", req));
2766 	KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
2767 	    (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
2768 	    ("invalid request %#x", req));
2769 	KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2770 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2771 	    ("invalid request %#x", req));
2772 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2773 
2774 	while ((m_ret = vm_page_find_contig_domain(domain, req, npages,
2775 	    low, high, alignment, boundary)) == NULL) {
2776 		if (!vm_domain_alloc_fail(VM_DOMAIN(domain), NULL, req))
2777 			return (NULL);
2778 	}
2779 
2780 	/*
2781 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
2782 	 */
2783 	flags = PG_ZERO;
2784 	if ((req & VM_ALLOC_NODUMP) != 0)
2785 		flags |= PG_NODUMP;
2786 	if ((req & VM_ALLOC_WIRED) != 0)
2787 		vm_wire_add(npages);
2788 	for (m = m_ret; m < &m_ret[npages]; m++) {
2789 		vm_page_dequeue(m);
2790 		vm_page_alloc_check(m);
2791 
2792 		/*
2793 		 * Consumers should not rely on a useful default pindex value.
2794 		 */
2795 		m->pindex = 0xdeadc0dedeadc0de;
2796 		m->a.flags = 0;
2797 		m->flags = (m->flags | PG_NODUMP) & flags;
2798 		m->busy_lock = VPB_UNBUSIED;
2799 		if ((req & VM_ALLOC_WIRED) != 0)
2800 			m->ref_count = 1;
2801 		m->a.act_count = 0;
2802 		m->oflags = VPO_UNMANAGED;
2803 
2804 		/*
2805 		 * Zero the page before updating any mappings since the page is
2806 		 * not yet shared with any devices which might require the
2807 		 * non-default memory attribute.  pmap_page_set_memattr()
2808 		 * flushes data caches before returning.
2809 		 */
2810 		if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2811 			pmap_zero_page(m);
2812 		if (memattr != VM_MEMATTR_DEFAULT)
2813 			pmap_page_set_memattr(m, memattr);
2814 	}
2815 	return (m_ret);
2816 }
2817 
2818 /*
2819  * Check a page that has been freshly dequeued from a freelist.
2820  */
2821 static void
vm_page_alloc_check(vm_page_t m)2822 vm_page_alloc_check(vm_page_t m)
2823 {
2824 
2825 	KASSERT(m->object == NULL, ("page %p has object", m));
2826 	KASSERT(m->a.queue == PQ_NONE &&
2827 	    (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
2828 	    ("page %p has unexpected queue %d, flags %#x",
2829 	    m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
2830 	KASSERT(m->ref_count == 0, ("page %p has references", m));
2831 	KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m));
2832 	KASSERT(m->dirty == 0, ("page %p is dirty", m));
2833 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2834 	    ("page %p has unexpected memattr %d",
2835 	    m, pmap_page_get_memattr(m)));
2836 	KASSERT(vm_page_none_valid(m), ("free page %p is valid", m));
2837 	pmap_vm_page_alloc_check(m);
2838 }
2839 
2840 static int
vm_page_zone_import(void * arg,void ** store,int cnt,int domain,int flags)2841 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2842 {
2843 	struct vm_domain *vmd;
2844 	struct vm_pgcache *pgcache;
2845 	int i;
2846 
2847 	pgcache = arg;
2848 	vmd = VM_DOMAIN(pgcache->domain);
2849 
2850 	/*
2851 	 * The page daemon should avoid creating extra memory pressure since its
2852 	 * main purpose is to replenish the store of free pages.
2853 	 */
2854 	if (vmd->vmd_severeset || curproc == pageproc ||
2855 	    !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2856 		return (0);
2857 	domain = vmd->vmd_domain;
2858 	vm_domain_free_lock(vmd);
2859 	i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2860 	    (vm_page_t *)store);
2861 	vm_domain_free_unlock(vmd);
2862 	if (cnt != i)
2863 		vm_domain_freecnt_inc(vmd, cnt - i);
2864 
2865 	return (i);
2866 }
2867 
2868 static void
vm_page_zone_release(void * arg,void ** store,int cnt)2869 vm_page_zone_release(void *arg, void **store, int cnt)
2870 {
2871 	struct vm_domain *vmd;
2872 	struct vm_pgcache *pgcache;
2873 	vm_page_t m;
2874 	int i;
2875 
2876 	pgcache = arg;
2877 	vmd = VM_DOMAIN(pgcache->domain);
2878 	vm_domain_free_lock(vmd);
2879 	for (i = 0; i < cnt; i++) {
2880 		m = (vm_page_t)store[i];
2881 		vm_phys_free_pages(m, 0);
2882 	}
2883 	vm_domain_free_unlock(vmd);
2884 	vm_domain_freecnt_inc(vmd, cnt);
2885 }
2886 
2887 #define	VPSC_ANY	0	/* No restrictions. */
2888 #define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
2889 #define	VPSC_NOSUPER	2	/* Skip superpages. */
2890 
2891 /*
2892  *	vm_page_scan_contig:
2893  *
2894  *	Scan vm_page_array[] between the specified entries "m_start" and
2895  *	"m_end" for a run of contiguous physical pages that satisfy the
2896  *	specified conditions, and return the lowest page in the run.  The
2897  *	specified "alignment" determines the alignment of the lowest physical
2898  *	page in the run.  If the specified "boundary" is non-zero, then the
2899  *	run of physical pages cannot span a physical address that is a
2900  *	multiple of "boundary".
2901  *
2902  *	"m_end" is never dereferenced, so it need not point to a vm_page
2903  *	structure within vm_page_array[].
2904  *
2905  *	"npages" must be greater than zero.  "m_start" and "m_end" must not
2906  *	span a hole (or discontiguity) in the physical address space.  Both
2907  *	"alignment" and "boundary" must be a power of two.
2908  */
2909 static vm_page_t
vm_page_scan_contig(u_long npages,vm_page_t m_start,vm_page_t m_end,u_long alignment,vm_paddr_t boundary,int options)2910 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2911     u_long alignment, vm_paddr_t boundary, int options)
2912 {
2913 	vm_object_t object;
2914 	vm_paddr_t pa;
2915 	vm_page_t m, m_run;
2916 #if VM_NRESERVLEVEL > 0
2917 	int level;
2918 #endif
2919 	int m_inc, order, run_ext, run_len;
2920 
2921 	KASSERT(npages > 0, ("npages is 0"));
2922 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2923 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2924 	m_run = NULL;
2925 	run_len = 0;
2926 	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2927 		KASSERT((m->flags & PG_MARKER) == 0,
2928 		    ("page %p is PG_MARKER", m));
2929 		KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2930 		    ("fictitious page %p has invalid ref count", m));
2931 
2932 		/*
2933 		 * If the current page would be the start of a run, check its
2934 		 * physical address against the end, alignment, and boundary
2935 		 * conditions.  If it doesn't satisfy these conditions, either
2936 		 * terminate the scan or advance to the next page that
2937 		 * satisfies the failed condition.
2938 		 */
2939 		if (run_len == 0) {
2940 			KASSERT(m_run == NULL, ("m_run != NULL"));
2941 			if (m + npages > m_end)
2942 				break;
2943 			pa = VM_PAGE_TO_PHYS(m);
2944 			if (!vm_addr_align_ok(pa, alignment)) {
2945 				m_inc = atop(roundup2(pa, alignment) - pa);
2946 				continue;
2947 			}
2948 			if (!vm_addr_bound_ok(pa, ptoa(npages), boundary)) {
2949 				m_inc = atop(roundup2(pa, boundary) - pa);
2950 				continue;
2951 			}
2952 		} else
2953 			KASSERT(m_run != NULL, ("m_run == NULL"));
2954 
2955 retry:
2956 		m_inc = 1;
2957 		if (vm_page_wired(m))
2958 			run_ext = 0;
2959 #if VM_NRESERVLEVEL > 0
2960 		else if ((level = vm_reserv_level(m)) >= 0 &&
2961 		    (options & VPSC_NORESERV) != 0) {
2962 			run_ext = 0;
2963 			/* Advance to the end of the reservation. */
2964 			pa = VM_PAGE_TO_PHYS(m);
2965 			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2966 			    pa);
2967 		}
2968 #endif
2969 		else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2970 			/*
2971 			 * The page is considered eligible for relocation if
2972 			 * and only if it could be laundered or reclaimed by
2973 			 * the page daemon.
2974 			 */
2975 			VM_OBJECT_RLOCK(object);
2976 			if (object != m->object) {
2977 				VM_OBJECT_RUNLOCK(object);
2978 				goto retry;
2979 			}
2980 			/* Don't care: PG_NODUMP, PG_ZERO. */
2981 			if ((object->flags & OBJ_SWAP) == 0 &&
2982 			    object->type != OBJT_VNODE) {
2983 				run_ext = 0;
2984 #if VM_NRESERVLEVEL > 0
2985 			} else if ((options & VPSC_NOSUPER) != 0 &&
2986 			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
2987 				run_ext = 0;
2988 				/* Advance to the end of the superpage. */
2989 				pa = VM_PAGE_TO_PHYS(m);
2990 				m_inc = atop(roundup2(pa + 1,
2991 				    vm_reserv_size(level)) - pa);
2992 #endif
2993 			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
2994 			    vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) {
2995 				/*
2996 				 * The page is allocated but eligible for
2997 				 * relocation.  Extend the current run by one
2998 				 * page.
2999 				 */
3000 				KASSERT(pmap_page_get_memattr(m) ==
3001 				    VM_MEMATTR_DEFAULT,
3002 				    ("page %p has an unexpected memattr", m));
3003 				KASSERT((m->oflags & (VPO_SWAPINPROG |
3004 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
3005 				    ("page %p has unexpected oflags", m));
3006 				/* Don't care: PGA_NOSYNC. */
3007 				run_ext = 1;
3008 			} else
3009 				run_ext = 0;
3010 			VM_OBJECT_RUNLOCK(object);
3011 #if VM_NRESERVLEVEL > 0
3012 		} else if (level >= 0) {
3013 			/*
3014 			 * The page is reserved but not yet allocated.  In
3015 			 * other words, it is still free.  Extend the current
3016 			 * run by one page.
3017 			 */
3018 			run_ext = 1;
3019 #endif
3020 		} else if ((order = m->order) < VM_NFREEORDER) {
3021 			/*
3022 			 * The page is enqueued in the physical memory
3023 			 * allocator's free page queues.  Moreover, it is the
3024 			 * first page in a power-of-two-sized run of
3025 			 * contiguous free pages.  Add these pages to the end
3026 			 * of the current run, and jump ahead.
3027 			 */
3028 			run_ext = 1 << order;
3029 			m_inc = 1 << order;
3030 		} else {
3031 			/*
3032 			 * Skip the page for one of the following reasons: (1)
3033 			 * It is enqueued in the physical memory allocator's
3034 			 * free page queues.  However, it is not the first
3035 			 * page in a run of contiguous free pages.  (This case
3036 			 * rarely occurs because the scan is performed in
3037 			 * ascending order.) (2) It is not reserved, and it is
3038 			 * transitioning from free to allocated.  (Conversely,
3039 			 * the transition from allocated to free for managed
3040 			 * pages is blocked by the page busy lock.) (3) It is
3041 			 * allocated but not contained by an object and not
3042 			 * wired, e.g., allocated by Xen's balloon driver.
3043 			 */
3044 			run_ext = 0;
3045 		}
3046 
3047 		/*
3048 		 * Extend or reset the current run of pages.
3049 		 */
3050 		if (run_ext > 0) {
3051 			if (run_len == 0)
3052 				m_run = m;
3053 			run_len += run_ext;
3054 		} else {
3055 			if (run_len > 0) {
3056 				m_run = NULL;
3057 				run_len = 0;
3058 			}
3059 		}
3060 	}
3061 	if (run_len >= npages)
3062 		return (m_run);
3063 	return (NULL);
3064 }
3065 
3066 /*
3067  *	vm_page_reclaim_run:
3068  *
3069  *	Try to relocate each of the allocated virtual pages within the
3070  *	specified run of physical pages to a new physical address.  Free the
3071  *	physical pages underlying the relocated virtual pages.  A virtual page
3072  *	is relocatable if and only if it could be laundered or reclaimed by
3073  *	the page daemon.  Whenever possible, a virtual page is relocated to a
3074  *	physical address above "high".
3075  *
3076  *	Returns 0 if every physical page within the run was already free or
3077  *	just freed by a successful relocation.  Otherwise, returns a non-zero
3078  *	value indicating why the last attempt to relocate a virtual page was
3079  *	unsuccessful.
3080  *
3081  *	"req_class" must be an allocation class.
3082  */
3083 static int
vm_page_reclaim_run(int req_class,int domain,u_long npages,vm_page_t m_run,vm_paddr_t high)3084 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
3085     vm_paddr_t high)
3086 {
3087 	struct vm_domain *vmd;
3088 	struct spglist free;
3089 	vm_object_t object;
3090 	vm_paddr_t pa;
3091 	vm_page_t m, m_end, m_new;
3092 	int error, order, req;
3093 
3094 	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
3095 	    ("req_class is not an allocation class"));
3096 	SLIST_INIT(&free);
3097 	error = 0;
3098 	m = m_run;
3099 	m_end = m_run + npages;
3100 	for (; error == 0 && m < m_end; m++) {
3101 		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
3102 		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
3103 
3104 		/*
3105 		 * Racily check for wirings.  Races are handled once the object
3106 		 * lock is held and the page is unmapped.
3107 		 */
3108 		if (vm_page_wired(m))
3109 			error = EBUSY;
3110 		else if ((object = atomic_load_ptr(&m->object)) != NULL) {
3111 			/*
3112 			 * The page is relocated if and only if it could be
3113 			 * laundered or reclaimed by the page daemon.
3114 			 */
3115 			VM_OBJECT_WLOCK(object);
3116 			/* Don't care: PG_NODUMP, PG_ZERO. */
3117 			if (m->object != object ||
3118 			    ((object->flags & OBJ_SWAP) == 0 &&
3119 			    object->type != OBJT_VNODE))
3120 				error = EINVAL;
3121 			else if (object->memattr != VM_MEMATTR_DEFAULT)
3122 				error = EINVAL;
3123 			else if (vm_page_queue(m) != PQ_NONE &&
3124 			    vm_page_tryxbusy(m) != 0) {
3125 				if (vm_page_wired(m)) {
3126 					vm_page_xunbusy(m);
3127 					error = EBUSY;
3128 					goto unlock;
3129 				}
3130 				KASSERT(pmap_page_get_memattr(m) ==
3131 				    VM_MEMATTR_DEFAULT,
3132 				    ("page %p has an unexpected memattr", m));
3133 				KASSERT(m->oflags == 0,
3134 				    ("page %p has unexpected oflags", m));
3135 				/* Don't care: PGA_NOSYNC. */
3136 				if (!vm_page_none_valid(m)) {
3137 					/*
3138 					 * First, try to allocate a new page
3139 					 * that is above "high".  Failing
3140 					 * that, try to allocate a new page
3141 					 * that is below "m_run".  Allocate
3142 					 * the new page between the end of
3143 					 * "m_run" and "high" only as a last
3144 					 * resort.
3145 					 */
3146 					req = req_class;
3147 					if ((m->flags & PG_NODUMP) != 0)
3148 						req |= VM_ALLOC_NODUMP;
3149 					if (trunc_page(high) !=
3150 					    ~(vm_paddr_t)PAGE_MASK) {
3151 						m_new =
3152 						    vm_page_alloc_noobj_contig(
3153 						    req, 1, round_page(high),
3154 						    ~(vm_paddr_t)0, PAGE_SIZE,
3155 						    0, VM_MEMATTR_DEFAULT);
3156 					} else
3157 						m_new = NULL;
3158 					if (m_new == NULL) {
3159 						pa = VM_PAGE_TO_PHYS(m_run);
3160 						m_new =
3161 						    vm_page_alloc_noobj_contig(
3162 						    req, 1, 0, pa - 1,
3163 						    PAGE_SIZE, 0,
3164 						    VM_MEMATTR_DEFAULT);
3165 					}
3166 					if (m_new == NULL) {
3167 						pa += ptoa(npages);
3168 						m_new =
3169 						    vm_page_alloc_noobj_contig(
3170 						    req, 1, pa, high, PAGE_SIZE,
3171 						    0, VM_MEMATTR_DEFAULT);
3172 					}
3173 					if (m_new == NULL) {
3174 						vm_page_xunbusy(m);
3175 						error = ENOMEM;
3176 						goto unlock;
3177 					}
3178 
3179 					/*
3180 					 * Unmap the page and check for new
3181 					 * wirings that may have been acquired
3182 					 * through a pmap lookup.
3183 					 */
3184 					if (object->ref_count != 0 &&
3185 					    !vm_page_try_remove_all(m)) {
3186 						vm_page_xunbusy(m);
3187 						vm_page_free(m_new);
3188 						error = EBUSY;
3189 						goto unlock;
3190 					}
3191 
3192 					/*
3193 					 * Replace "m" with the new page.  For
3194 					 * vm_page_replace(), "m" must be busy
3195 					 * and dequeued.  Finally, change "m"
3196 					 * as if vm_page_free() was called.
3197 					 */
3198 					m_new->a.flags = m->a.flags &
3199 					    ~PGA_QUEUE_STATE_MASK;
3200 					KASSERT(m_new->oflags == VPO_UNMANAGED,
3201 					    ("page %p is managed", m_new));
3202 					m_new->oflags = 0;
3203 					pmap_copy_page(m, m_new);
3204 					m_new->valid = m->valid;
3205 					m_new->dirty = m->dirty;
3206 					m->flags &= ~PG_ZERO;
3207 					vm_page_dequeue(m);
3208 					if (vm_page_replace_hold(m_new, object,
3209 					    m->pindex, m) &&
3210 					    vm_page_free_prep(m))
3211 						SLIST_INSERT_HEAD(&free, m,
3212 						    plinks.s.ss);
3213 
3214 					/*
3215 					 * The new page must be deactivated
3216 					 * before the object is unlocked.
3217 					 */
3218 					vm_page_deactivate(m_new);
3219 				} else {
3220 					m->flags &= ~PG_ZERO;
3221 					vm_page_dequeue(m);
3222 					if (vm_page_free_prep(m))
3223 						SLIST_INSERT_HEAD(&free, m,
3224 						    plinks.s.ss);
3225 					KASSERT(m->dirty == 0,
3226 					    ("page %p is dirty", m));
3227 				}
3228 			} else
3229 				error = EBUSY;
3230 unlock:
3231 			VM_OBJECT_WUNLOCK(object);
3232 		} else {
3233 			MPASS(vm_page_domain(m) == domain);
3234 			vmd = VM_DOMAIN(domain);
3235 			vm_domain_free_lock(vmd);
3236 			order = m->order;
3237 			if (order < VM_NFREEORDER) {
3238 				/*
3239 				 * The page is enqueued in the physical memory
3240 				 * allocator's free page queues.  Moreover, it
3241 				 * is the first page in a power-of-two-sized
3242 				 * run of contiguous free pages.  Jump ahead
3243 				 * to the last page within that run, and
3244 				 * continue from there.
3245 				 */
3246 				m += (1 << order) - 1;
3247 			}
3248 #if VM_NRESERVLEVEL > 0
3249 			else if (vm_reserv_is_page_free(m))
3250 				order = 0;
3251 #endif
3252 			vm_domain_free_unlock(vmd);
3253 			if (order == VM_NFREEORDER)
3254 				error = EINVAL;
3255 		}
3256 	}
3257 	if ((m = SLIST_FIRST(&free)) != NULL) {
3258 		int cnt;
3259 
3260 		vmd = VM_DOMAIN(domain);
3261 		cnt = 0;
3262 		vm_domain_free_lock(vmd);
3263 		do {
3264 			MPASS(vm_page_domain(m) == domain);
3265 			SLIST_REMOVE_HEAD(&free, plinks.s.ss);
3266 			vm_phys_free_pages(m, 0);
3267 			cnt++;
3268 		} while ((m = SLIST_FIRST(&free)) != NULL);
3269 		vm_domain_free_unlock(vmd);
3270 		vm_domain_freecnt_inc(vmd, cnt);
3271 	}
3272 	return (error);
3273 }
3274 
3275 #define	NRUNS	16
3276 
3277 #define	RUN_INDEX(count, nruns)	((count) % (nruns))
3278 
3279 #define	MIN_RECLAIM	8
3280 
3281 /*
3282  *	vm_page_reclaim_contig:
3283  *
3284  *	Reclaim allocated, contiguous physical memory satisfying the specified
3285  *	conditions by relocating the virtual pages using that physical memory.
3286  *	Returns 0 if reclamation is successful, ERANGE if the specified domain
3287  *	can't possibly satisfy the reclamation request, or ENOMEM if not
3288  *	currently able to reclaim the requested number of pages.  Since
3289  *	relocation requires the allocation of physical pages, reclamation may
3290  *	fail with ENOMEM due to a shortage of free pages.  When reclamation
3291  *	fails in this manner, callers are expected to perform vm_wait() before
3292  *	retrying a failed allocation operation, e.g., vm_page_alloc_contig().
3293  *
3294  *	The caller must always specify an allocation class through "req".
3295  *
3296  *	allocation classes:
3297  *	VM_ALLOC_NORMAL		normal process request
3298  *	VM_ALLOC_SYSTEM		system *really* needs a page
3299  *	VM_ALLOC_INTERRUPT	interrupt time request
3300  *
3301  *	The optional allocation flags are ignored.
3302  *
3303  *	"npages" must be greater than zero.  Both "alignment" and "boundary"
3304  *	must be a power of two.
3305  */
3306 int
vm_page_reclaim_contig_domain_ext(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,int desired_runs)3307 vm_page_reclaim_contig_domain_ext(int domain, int req, u_long npages,
3308     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
3309     int desired_runs)
3310 {
3311 	struct vm_domain *vmd;
3312 	vm_page_t bounds[2], m_run, _m_runs[NRUNS], *m_runs;
3313 	u_long count, minalign, reclaimed;
3314 	int error, i, min_reclaim, nruns, options, req_class;
3315 	int segind, start_segind;
3316 	int ret;
3317 
3318 	KASSERT(npages > 0, ("npages is 0"));
3319 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
3320 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
3321 
3322 	ret = ENOMEM;
3323 
3324 	/*
3325 	 * If the caller wants to reclaim multiple runs, try to allocate
3326 	 * space to store the runs.  If that fails, fall back to the old
3327 	 * behavior of just reclaiming MIN_RECLAIM pages.
3328 	 */
3329 	if (desired_runs > 1)
3330 		m_runs = malloc((NRUNS + desired_runs) * sizeof(*m_runs),
3331 		    M_TEMP, M_NOWAIT);
3332 	else
3333 		m_runs = NULL;
3334 
3335 	if (m_runs == NULL) {
3336 		m_runs = _m_runs;
3337 		nruns = NRUNS;
3338 	} else {
3339 		nruns = NRUNS + desired_runs - 1;
3340 	}
3341 	min_reclaim = MAX(desired_runs * npages, MIN_RECLAIM);
3342 
3343 	/*
3344 	 * The caller will attempt an allocation after some runs have been
3345 	 * reclaimed and added to the vm_phys buddy lists.  Due to limitations
3346 	 * of vm_phys_alloc_contig(), round up the requested length to the next
3347 	 * power of two or maximum chunk size, and ensure that each run is
3348 	 * suitably aligned.
3349 	 */
3350 	minalign = 1ul << imin(flsl(npages - 1), VM_NFREEORDER - 1);
3351 	npages = roundup2(npages, minalign);
3352 	if (alignment < ptoa(minalign))
3353 		alignment = ptoa(minalign);
3354 
3355 	/*
3356 	 * The page daemon is allowed to dig deeper into the free page list.
3357 	 */
3358 	req_class = req & VM_ALLOC_CLASS_MASK;
3359 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
3360 		req_class = VM_ALLOC_SYSTEM;
3361 
3362 	start_segind = vm_phys_lookup_segind(low);
3363 
3364 	/*
3365 	 * Return if the number of free pages cannot satisfy the requested
3366 	 * allocation.
3367 	 */
3368 	vmd = VM_DOMAIN(domain);
3369 	count = vmd->vmd_free_count;
3370 	if (count < npages + vmd->vmd_free_reserved || (count < npages +
3371 	    vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
3372 	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
3373 		goto done;
3374 
3375 	/*
3376 	 * Scan up to three times, relaxing the restrictions ("options") on
3377 	 * the reclamation of reservations and superpages each time.
3378 	 */
3379 	for (options = VPSC_NORESERV;;) {
3380 		bool phys_range_exists = false;
3381 
3382 		/*
3383 		 * Find the highest runs that satisfy the given constraints
3384 		 * and restrictions, and record them in "m_runs".
3385 		 */
3386 		count = 0;
3387 		segind = start_segind;
3388 		while ((segind = vm_phys_find_range(bounds, segind, domain,
3389 		    npages, low, high)) != -1) {
3390 			phys_range_exists = true;
3391 			while ((m_run = vm_page_scan_contig(npages, bounds[0],
3392 			    bounds[1], alignment, boundary, options))) {
3393 				bounds[0] = m_run + npages;
3394 				m_runs[RUN_INDEX(count, nruns)] = m_run;
3395 				count++;
3396 			}
3397 			segind++;
3398 		}
3399 
3400 		if (!phys_range_exists) {
3401 			ret = ERANGE;
3402 			goto done;
3403 		}
3404 
3405 		/*
3406 		 * Reclaim the highest runs in LIFO (descending) order until
3407 		 * the number of reclaimed pages, "reclaimed", is at least
3408 		 * "min_reclaim".  Reset "reclaimed" each time because each
3409 		 * reclamation is idempotent, and runs will (likely) recur
3410 		 * from one scan to the next as restrictions are relaxed.
3411 		 */
3412 		reclaimed = 0;
3413 		for (i = 0; count > 0 && i < nruns; i++) {
3414 			count--;
3415 			m_run = m_runs[RUN_INDEX(count, nruns)];
3416 			error = vm_page_reclaim_run(req_class, domain, npages,
3417 			    m_run, high);
3418 			if (error == 0) {
3419 				reclaimed += npages;
3420 				if (reclaimed >= min_reclaim) {
3421 					ret = 0;
3422 					goto done;
3423 				}
3424 			}
3425 		}
3426 
3427 		/*
3428 		 * Either relax the restrictions on the next scan or return if
3429 		 * the last scan had no restrictions.
3430 		 */
3431 		if (options == VPSC_NORESERV)
3432 			options = VPSC_NOSUPER;
3433 		else if (options == VPSC_NOSUPER)
3434 			options = VPSC_ANY;
3435 		else if (options == VPSC_ANY) {
3436 			if (reclaimed != 0)
3437 				ret = 0;
3438 			goto done;
3439 		}
3440 	}
3441 done:
3442 	if (m_runs != _m_runs)
3443 		free(m_runs, M_TEMP);
3444 	return (ret);
3445 }
3446 
3447 int
vm_page_reclaim_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)3448 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
3449     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
3450 {
3451 	return (vm_page_reclaim_contig_domain_ext(domain, req, npages, low, high,
3452 	    alignment, boundary, 1));
3453 }
3454 
3455 int
vm_page_reclaim_contig(int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)3456 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
3457     u_long alignment, vm_paddr_t boundary)
3458 {
3459 	struct vm_domainset_iter di;
3460 	int domain, ret, status;
3461 
3462 	ret = ERANGE;
3463 
3464 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
3465 	do {
3466 		status = vm_page_reclaim_contig_domain(domain, req, npages, low,
3467 		    high, alignment, boundary);
3468 		if (status == 0)
3469 			return (0);
3470 		else if (status == ERANGE)
3471 			vm_domainset_iter_ignore(&di, domain);
3472 		else {
3473 			KASSERT(status == ENOMEM, ("Unrecognized error %d "
3474 			    "from vm_page_reclaim_contig_domain()", status));
3475 			ret = ENOMEM;
3476 		}
3477 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
3478 
3479 	return (ret);
3480 }
3481 
3482 /*
3483  * Set the domain in the appropriate page level domainset.
3484  */
3485 void
vm_domain_set(struct vm_domain * vmd)3486 vm_domain_set(struct vm_domain *vmd)
3487 {
3488 
3489 	mtx_lock(&vm_domainset_lock);
3490 	if (!vmd->vmd_minset && vm_paging_min(vmd)) {
3491 		vmd->vmd_minset = 1;
3492 		DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
3493 	}
3494 	if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
3495 		vmd->vmd_severeset = 1;
3496 		DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
3497 	}
3498 	mtx_unlock(&vm_domainset_lock);
3499 }
3500 
3501 /*
3502  * Clear the domain from the appropriate page level domainset.
3503  */
3504 void
vm_domain_clear(struct vm_domain * vmd)3505 vm_domain_clear(struct vm_domain *vmd)
3506 {
3507 
3508 	mtx_lock(&vm_domainset_lock);
3509 	if (vmd->vmd_minset && !vm_paging_min(vmd)) {
3510 		vmd->vmd_minset = 0;
3511 		DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
3512 		if (vm_min_waiters != 0) {
3513 			vm_min_waiters = 0;
3514 			wakeup(&vm_min_domains);
3515 		}
3516 	}
3517 	if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
3518 		vmd->vmd_severeset = 0;
3519 		DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
3520 		if (vm_severe_waiters != 0) {
3521 			vm_severe_waiters = 0;
3522 			wakeup(&vm_severe_domains);
3523 		}
3524 	}
3525 
3526 	/*
3527 	 * If pageout daemon needs pages, then tell it that there are
3528 	 * some free.
3529 	 */
3530 	if (vmd->vmd_pageout_pages_needed &&
3531 	    vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
3532 		wakeup(&vmd->vmd_pageout_pages_needed);
3533 		vmd->vmd_pageout_pages_needed = 0;
3534 	}
3535 
3536 	/* See comments in vm_wait_doms(). */
3537 	if (vm_pageproc_waiters) {
3538 		vm_pageproc_waiters = 0;
3539 		wakeup(&vm_pageproc_waiters);
3540 	}
3541 	mtx_unlock(&vm_domainset_lock);
3542 }
3543 
3544 /*
3545  * Wait for free pages to exceed the min threshold globally.
3546  */
3547 void
vm_wait_min(void)3548 vm_wait_min(void)
3549 {
3550 
3551 	mtx_lock(&vm_domainset_lock);
3552 	while (vm_page_count_min()) {
3553 		vm_min_waiters++;
3554 		msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3555 	}
3556 	mtx_unlock(&vm_domainset_lock);
3557 }
3558 
3559 /*
3560  * Wait for free pages to exceed the severe threshold globally.
3561  */
3562 void
vm_wait_severe(void)3563 vm_wait_severe(void)
3564 {
3565 
3566 	mtx_lock(&vm_domainset_lock);
3567 	while (vm_page_count_severe()) {
3568 		vm_severe_waiters++;
3569 		msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3570 		    "vmwait", 0);
3571 	}
3572 	mtx_unlock(&vm_domainset_lock);
3573 }
3574 
3575 u_int
vm_wait_count(void)3576 vm_wait_count(void)
3577 {
3578 
3579 	return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3580 }
3581 
3582 int
vm_wait_doms(const domainset_t * wdoms,int mflags)3583 vm_wait_doms(const domainset_t *wdoms, int mflags)
3584 {
3585 	int error;
3586 
3587 	error = 0;
3588 
3589 	/*
3590 	 * We use racey wakeup synchronization to avoid expensive global
3591 	 * locking for the pageproc when sleeping with a non-specific vm_wait.
3592 	 * To handle this, we only sleep for one tick in this instance.  It
3593 	 * is expected that most allocations for the pageproc will come from
3594 	 * kmem or vm_page_grab* which will use the more specific and
3595 	 * race-free vm_wait_domain().
3596 	 */
3597 	if (curproc == pageproc) {
3598 		mtx_lock(&vm_domainset_lock);
3599 		vm_pageproc_waiters++;
3600 		error = msleep(&vm_pageproc_waiters, &vm_domainset_lock,
3601 		    PVM | PDROP | mflags, "pageprocwait", 1);
3602 	} else {
3603 		/*
3604 		 * XXX Ideally we would wait only until the allocation could
3605 		 * be satisfied.  This condition can cause new allocators to
3606 		 * consume all freed pages while old allocators wait.
3607 		 */
3608 		mtx_lock(&vm_domainset_lock);
3609 		if (vm_page_count_min_set(wdoms)) {
3610 			if (pageproc == NULL)
3611 				panic("vm_wait in early boot");
3612 			vm_min_waiters++;
3613 			error = msleep(&vm_min_domains, &vm_domainset_lock,
3614 			    PVM | PDROP | mflags, "vmwait", 0);
3615 		} else
3616 			mtx_unlock(&vm_domainset_lock);
3617 	}
3618 	return (error);
3619 }
3620 
3621 /*
3622  *	vm_wait_domain:
3623  *
3624  *	Sleep until free pages are available for allocation.
3625  *	- Called in various places after failed memory allocations.
3626  */
3627 void
vm_wait_domain(int domain)3628 vm_wait_domain(int domain)
3629 {
3630 	struct vm_domain *vmd;
3631 	domainset_t wdom;
3632 
3633 	vmd = VM_DOMAIN(domain);
3634 	vm_domain_free_assert_unlocked(vmd);
3635 
3636 	if (curproc == pageproc) {
3637 		mtx_lock(&vm_domainset_lock);
3638 		if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3639 			vmd->vmd_pageout_pages_needed = 1;
3640 			msleep(&vmd->vmd_pageout_pages_needed,
3641 			    &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3642 		} else
3643 			mtx_unlock(&vm_domainset_lock);
3644 	} else {
3645 		DOMAINSET_ZERO(&wdom);
3646 		DOMAINSET_SET(vmd->vmd_domain, &wdom);
3647 		vm_wait_doms(&wdom, 0);
3648 	}
3649 }
3650 
3651 static int
vm_wait_flags(vm_object_t obj,int mflags)3652 vm_wait_flags(vm_object_t obj, int mflags)
3653 {
3654 	struct domainset *d;
3655 
3656 	d = NULL;
3657 
3658 	/*
3659 	 * Carefully fetch pointers only once: the struct domainset
3660 	 * itself is ummutable but the pointer might change.
3661 	 */
3662 	if (obj != NULL)
3663 		d = obj->domain.dr_policy;
3664 	if (d == NULL)
3665 		d = curthread->td_domain.dr_policy;
3666 
3667 	return (vm_wait_doms(&d->ds_mask, mflags));
3668 }
3669 
3670 /*
3671  *	vm_wait:
3672  *
3673  *	Sleep until free pages are available for allocation in the
3674  *	affinity domains of the obj.  If obj is NULL, the domain set
3675  *	for the calling thread is used.
3676  *	Called in various places after failed memory allocations.
3677  */
3678 void
vm_wait(vm_object_t obj)3679 vm_wait(vm_object_t obj)
3680 {
3681 	(void)vm_wait_flags(obj, 0);
3682 }
3683 
3684 int
vm_wait_intr(vm_object_t obj)3685 vm_wait_intr(vm_object_t obj)
3686 {
3687 	return (vm_wait_flags(obj, PCATCH));
3688 }
3689 
3690 /*
3691  *	vm_domain_alloc_fail:
3692  *
3693  *	Called when a page allocation function fails.  Informs the
3694  *	pagedaemon and performs the requested wait.  Requires the
3695  *	domain_free and object lock on entry.  Returns with the
3696  *	object lock held and free lock released.  Returns an error when
3697  *	retry is necessary.
3698  *
3699  */
3700 static int
vm_domain_alloc_fail(struct vm_domain * vmd,vm_object_t object,int req)3701 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3702 {
3703 
3704 	vm_domain_free_assert_unlocked(vmd);
3705 
3706 	atomic_add_int(&vmd->vmd_pageout_deficit,
3707 	    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3708 	if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3709 		if (object != NULL)
3710 			VM_OBJECT_WUNLOCK(object);
3711 		vm_wait_domain(vmd->vmd_domain);
3712 		if (object != NULL)
3713 			VM_OBJECT_WLOCK(object);
3714 		if (req & VM_ALLOC_WAITOK)
3715 			return (EAGAIN);
3716 	}
3717 
3718 	return (0);
3719 }
3720 
3721 /*
3722  *	vm_waitpfault:
3723  *
3724  *	Sleep until free pages are available for allocation.
3725  *	- Called only in vm_fault so that processes page faulting
3726  *	  can be easily tracked.
3727  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3728  *	  processes will be able to grab memory first.  Do not change
3729  *	  this balance without careful testing first.
3730  */
3731 void
vm_waitpfault(struct domainset * dset,int timo)3732 vm_waitpfault(struct domainset *dset, int timo)
3733 {
3734 
3735 	/*
3736 	 * XXX Ideally we would wait only until the allocation could
3737 	 * be satisfied.  This condition can cause new allocators to
3738 	 * consume all freed pages while old allocators wait.
3739 	 */
3740 	mtx_lock(&vm_domainset_lock);
3741 	if (vm_page_count_min_set(&dset->ds_mask)) {
3742 		vm_min_waiters++;
3743 		msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3744 		    "pfault", timo);
3745 	} else
3746 		mtx_unlock(&vm_domainset_lock);
3747 }
3748 
3749 static struct vm_pagequeue *
_vm_page_pagequeue(vm_page_t m,uint8_t queue)3750 _vm_page_pagequeue(vm_page_t m, uint8_t queue)
3751 {
3752 
3753 	return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3754 }
3755 
3756 #ifdef INVARIANTS
3757 static struct vm_pagequeue *
vm_page_pagequeue(vm_page_t m)3758 vm_page_pagequeue(vm_page_t m)
3759 {
3760 
3761 	return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue));
3762 }
3763 #endif
3764 
3765 static __always_inline bool
vm_page_pqstate_fcmpset(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3766 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3767 {
3768 	vm_page_astate_t tmp;
3769 
3770 	tmp = *old;
3771 	do {
3772 		if (__predict_true(vm_page_astate_fcmpset(m, old, new)))
3773 			return (true);
3774 		counter_u64_add(pqstate_commit_retries, 1);
3775 	} while (old->_bits == tmp._bits);
3776 
3777 	return (false);
3778 }
3779 
3780 /*
3781  * Do the work of committing a queue state update that moves the page out of
3782  * its current queue.
3783  */
3784 static bool
_vm_page_pqstate_commit_dequeue(struct vm_pagequeue * pq,vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3785 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m,
3786     vm_page_astate_t *old, vm_page_astate_t new)
3787 {
3788 	vm_page_t next;
3789 
3790 	vm_pagequeue_assert_locked(pq);
3791 	KASSERT(vm_page_pagequeue(m) == pq,
3792 	    ("%s: queue %p does not match page %p", __func__, pq, m));
3793 	KASSERT(old->queue != PQ_NONE && new.queue != old->queue,
3794 	    ("%s: invalid queue indices %d %d",
3795 	    __func__, old->queue, new.queue));
3796 
3797 	/*
3798 	 * Once the queue index of the page changes there is nothing
3799 	 * synchronizing with further updates to the page's physical
3800 	 * queue state.  Therefore we must speculatively remove the page
3801 	 * from the queue now and be prepared to roll back if the queue
3802 	 * state update fails.  If the page is not physically enqueued then
3803 	 * we just update its queue index.
3804 	 */
3805 	if ((old->flags & PGA_ENQUEUED) != 0) {
3806 		new.flags &= ~PGA_ENQUEUED;
3807 		next = TAILQ_NEXT(m, plinks.q);
3808 		TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3809 		vm_pagequeue_cnt_dec(pq);
3810 		if (!vm_page_pqstate_fcmpset(m, old, new)) {
3811 			if (next == NULL)
3812 				TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3813 			else
3814 				TAILQ_INSERT_BEFORE(next, m, plinks.q);
3815 			vm_pagequeue_cnt_inc(pq);
3816 			return (false);
3817 		} else {
3818 			return (true);
3819 		}
3820 	} else {
3821 		return (vm_page_pqstate_fcmpset(m, old, new));
3822 	}
3823 }
3824 
3825 static bool
vm_page_pqstate_commit_dequeue(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3826 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old,
3827     vm_page_astate_t new)
3828 {
3829 	struct vm_pagequeue *pq;
3830 	vm_page_astate_t as;
3831 	bool ret;
3832 
3833 	pq = _vm_page_pagequeue(m, old->queue);
3834 
3835 	/*
3836 	 * The queue field and PGA_ENQUEUED flag are stable only so long as the
3837 	 * corresponding page queue lock is held.
3838 	 */
3839 	vm_pagequeue_lock(pq);
3840 	as = vm_page_astate_load(m);
3841 	if (__predict_false(as._bits != old->_bits)) {
3842 		*old = as;
3843 		ret = false;
3844 	} else {
3845 		ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new);
3846 	}
3847 	vm_pagequeue_unlock(pq);
3848 	return (ret);
3849 }
3850 
3851 /*
3852  * Commit a queue state update that enqueues or requeues a page.
3853  */
3854 static bool
_vm_page_pqstate_commit_requeue(struct vm_pagequeue * pq,vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3855 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m,
3856     vm_page_astate_t *old, vm_page_astate_t new)
3857 {
3858 	struct vm_domain *vmd;
3859 
3860 	vm_pagequeue_assert_locked(pq);
3861 	KASSERT(old->queue != PQ_NONE && new.queue == old->queue,
3862 	    ("%s: invalid queue indices %d %d",
3863 	    __func__, old->queue, new.queue));
3864 
3865 	new.flags |= PGA_ENQUEUED;
3866 	if (!vm_page_pqstate_fcmpset(m, old, new))
3867 		return (false);
3868 
3869 	if ((old->flags & PGA_ENQUEUED) != 0)
3870 		TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3871 	else
3872 		vm_pagequeue_cnt_inc(pq);
3873 
3874 	/*
3875 	 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE.  In particular, if
3876 	 * both flags are set in close succession, only PGA_REQUEUE_HEAD will be
3877 	 * applied, even if it was set first.
3878 	 */
3879 	if ((old->flags & PGA_REQUEUE_HEAD) != 0) {
3880 		vmd = vm_pagequeue_domain(m);
3881 		KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE],
3882 		    ("%s: invalid page queue for page %p", __func__, m));
3883 		TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3884 	} else {
3885 		TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3886 	}
3887 	return (true);
3888 }
3889 
3890 /*
3891  * Commit a queue state update that encodes a request for a deferred queue
3892  * operation.
3893  */
3894 static bool
vm_page_pqstate_commit_request(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3895 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old,
3896     vm_page_astate_t new)
3897 {
3898 
3899 	KASSERT(old->queue == new.queue || new.queue != PQ_NONE,
3900 	    ("%s: invalid state, queue %d flags %x",
3901 	    __func__, new.queue, new.flags));
3902 
3903 	if (old->_bits != new._bits &&
3904 	    !vm_page_pqstate_fcmpset(m, old, new))
3905 		return (false);
3906 	vm_page_pqbatch_submit(m, new.queue);
3907 	return (true);
3908 }
3909 
3910 /*
3911  * A generic queue state update function.  This handles more cases than the
3912  * specialized functions above.
3913  */
3914 bool
vm_page_pqstate_commit(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3915 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3916 {
3917 
3918 	if (old->_bits == new._bits)
3919 		return (true);
3920 
3921 	if (old->queue != PQ_NONE && new.queue != old->queue) {
3922 		if (!vm_page_pqstate_commit_dequeue(m, old, new))
3923 			return (false);
3924 		if (new.queue != PQ_NONE)
3925 			vm_page_pqbatch_submit(m, new.queue);
3926 	} else {
3927 		if (!vm_page_pqstate_fcmpset(m, old, new))
3928 			return (false);
3929 		if (new.queue != PQ_NONE &&
3930 		    ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0)
3931 			vm_page_pqbatch_submit(m, new.queue);
3932 	}
3933 	return (true);
3934 }
3935 
3936 /*
3937  * Apply deferred queue state updates to a page.
3938  */
3939 static inline void
vm_pqbatch_process_page(struct vm_pagequeue * pq,vm_page_t m,uint8_t queue)3940 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue)
3941 {
3942 	vm_page_astate_t new, old;
3943 
3944 	CRITICAL_ASSERT(curthread);
3945 	vm_pagequeue_assert_locked(pq);
3946 	KASSERT(queue < PQ_COUNT,
3947 	    ("%s: invalid queue index %d", __func__, queue));
3948 	KASSERT(pq == _vm_page_pagequeue(m, queue),
3949 	    ("%s: page %p does not belong to queue %p", __func__, m, pq));
3950 
3951 	for (old = vm_page_astate_load(m);;) {
3952 		if (__predict_false(old.queue != queue ||
3953 		    (old.flags & PGA_QUEUE_OP_MASK) == 0)) {
3954 			counter_u64_add(queue_nops, 1);
3955 			break;
3956 		}
3957 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3958 		    ("%s: page %p is unmanaged", __func__, m));
3959 
3960 		new = old;
3961 		if ((old.flags & PGA_DEQUEUE) != 0) {
3962 			new.flags &= ~PGA_QUEUE_OP_MASK;
3963 			new.queue = PQ_NONE;
3964 			if (__predict_true(_vm_page_pqstate_commit_dequeue(pq,
3965 			    m, &old, new))) {
3966 				counter_u64_add(queue_ops, 1);
3967 				break;
3968 			}
3969 		} else {
3970 			new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD);
3971 			if (__predict_true(_vm_page_pqstate_commit_requeue(pq,
3972 			    m, &old, new))) {
3973 				counter_u64_add(queue_ops, 1);
3974 				break;
3975 			}
3976 		}
3977 	}
3978 }
3979 
3980 static void
vm_pqbatch_process(struct vm_pagequeue * pq,struct vm_batchqueue * bq,uint8_t queue)3981 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3982     uint8_t queue)
3983 {
3984 	int i;
3985 
3986 	for (i = 0; i < bq->bq_cnt; i++)
3987 		vm_pqbatch_process_page(pq, bq->bq_pa[i], queue);
3988 	vm_batchqueue_init(bq);
3989 }
3990 
3991 /*
3992  *	vm_page_pqbatch_submit:		[ internal use only ]
3993  *
3994  *	Enqueue a page in the specified page queue's batched work queue.
3995  *	The caller must have encoded the requested operation in the page
3996  *	structure's a.flags field.
3997  */
3998 void
vm_page_pqbatch_submit(vm_page_t m,uint8_t queue)3999 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
4000 {
4001 	struct vm_batchqueue *bq;
4002 	struct vm_pagequeue *pq;
4003 	int domain, slots_remaining;
4004 
4005 	KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
4006 
4007 	domain = vm_page_domain(m);
4008 	critical_enter();
4009 	bq = DPCPU_PTR(pqbatch[domain][queue]);
4010 	slots_remaining = vm_batchqueue_insert(bq, m);
4011 	if (slots_remaining > (VM_BATCHQUEUE_SIZE >> 1)) {
4012 		/* keep building the bq */
4013 		critical_exit();
4014 		return;
4015 	} else if (slots_remaining > 0 ) {
4016 		/* Try to process the bq if we can get the lock */
4017 		pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
4018 		if (vm_pagequeue_trylock(pq)) {
4019 			vm_pqbatch_process(pq, bq, queue);
4020 			vm_pagequeue_unlock(pq);
4021 		}
4022 		critical_exit();
4023 		return;
4024 	}
4025 	critical_exit();
4026 
4027 	/* if we make it here, the bq is full so wait for the lock */
4028 
4029 	pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
4030 	vm_pagequeue_lock(pq);
4031 	critical_enter();
4032 	bq = DPCPU_PTR(pqbatch[domain][queue]);
4033 	vm_pqbatch_process(pq, bq, queue);
4034 	vm_pqbatch_process_page(pq, m, queue);
4035 	vm_pagequeue_unlock(pq);
4036 	critical_exit();
4037 }
4038 
4039 /*
4040  *	vm_page_pqbatch_drain:		[ internal use only ]
4041  *
4042  *	Force all per-CPU page queue batch queues to be drained.  This is
4043  *	intended for use in severe memory shortages, to ensure that pages
4044  *	do not remain stuck in the batch queues.
4045  */
4046 void
vm_page_pqbatch_drain(void)4047 vm_page_pqbatch_drain(void)
4048 {
4049 	struct thread *td;
4050 	struct vm_domain *vmd;
4051 	struct vm_pagequeue *pq;
4052 	int cpu, domain, queue;
4053 
4054 	td = curthread;
4055 	CPU_FOREACH(cpu) {
4056 		thread_lock(td);
4057 		sched_bind(td, cpu);
4058 		thread_unlock(td);
4059 
4060 		for (domain = 0; domain < vm_ndomains; domain++) {
4061 			vmd = VM_DOMAIN(domain);
4062 			for (queue = 0; queue < PQ_COUNT; queue++) {
4063 				pq = &vmd->vmd_pagequeues[queue];
4064 				vm_pagequeue_lock(pq);
4065 				critical_enter();
4066 				vm_pqbatch_process(pq,
4067 				    DPCPU_PTR(pqbatch[domain][queue]), queue);
4068 				critical_exit();
4069 				vm_pagequeue_unlock(pq);
4070 			}
4071 		}
4072 	}
4073 	thread_lock(td);
4074 	sched_unbind(td);
4075 	thread_unlock(td);
4076 }
4077 
4078 /*
4079  *	vm_page_dequeue_deferred:	[ internal use only ]
4080  *
4081  *	Request removal of the given page from its current page
4082  *	queue.  Physical removal from the queue may be deferred
4083  *	indefinitely.
4084  */
4085 void
vm_page_dequeue_deferred(vm_page_t m)4086 vm_page_dequeue_deferred(vm_page_t m)
4087 {
4088 	vm_page_astate_t new, old;
4089 
4090 	old = vm_page_astate_load(m);
4091 	do {
4092 		if (old.queue == PQ_NONE) {
4093 			KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
4094 			    ("%s: page %p has unexpected queue state",
4095 			    __func__, m));
4096 			break;
4097 		}
4098 		new = old;
4099 		new.flags |= PGA_DEQUEUE;
4100 	} while (!vm_page_pqstate_commit_request(m, &old, new));
4101 }
4102 
4103 /*
4104  *	vm_page_dequeue:
4105  *
4106  *	Remove the page from whichever page queue it's in, if any, before
4107  *	returning.
4108  */
4109 void
vm_page_dequeue(vm_page_t m)4110 vm_page_dequeue(vm_page_t m)
4111 {
4112 	vm_page_astate_t new, old;
4113 
4114 	old = vm_page_astate_load(m);
4115 	do {
4116 		if (old.queue == PQ_NONE) {
4117 			KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
4118 			    ("%s: page %p has unexpected queue state",
4119 			    __func__, m));
4120 			break;
4121 		}
4122 		new = old;
4123 		new.flags &= ~PGA_QUEUE_OP_MASK;
4124 		new.queue = PQ_NONE;
4125 	} while (!vm_page_pqstate_commit_dequeue(m, &old, new));
4126 
4127 }
4128 
4129 /*
4130  * Schedule the given page for insertion into the specified page queue.
4131  * Physical insertion of the page may be deferred indefinitely.
4132  */
4133 static void
vm_page_enqueue(vm_page_t m,uint8_t queue)4134 vm_page_enqueue(vm_page_t m, uint8_t queue)
4135 {
4136 
4137 	KASSERT(m->a.queue == PQ_NONE &&
4138 	    (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
4139 	    ("%s: page %p is already enqueued", __func__, m));
4140 	KASSERT(m->ref_count > 0,
4141 	    ("%s: page %p does not carry any references", __func__, m));
4142 
4143 	m->a.queue = queue;
4144 	if ((m->a.flags & PGA_REQUEUE) == 0)
4145 		vm_page_aflag_set(m, PGA_REQUEUE);
4146 	vm_page_pqbatch_submit(m, queue);
4147 }
4148 
4149 /*
4150  *	vm_page_free_prep:
4151  *
4152  *	Prepares the given page to be put on the free list,
4153  *	disassociating it from any VM object. The caller may return
4154  *	the page to the free list only if this function returns true.
4155  *
4156  *	The object, if it exists, must be locked, and then the page must
4157  *	be xbusy.  Otherwise the page must be not busied.  A managed
4158  *	page must be unmapped.
4159  */
4160 static bool
vm_page_free_prep(vm_page_t m)4161 vm_page_free_prep(vm_page_t m)
4162 {
4163 
4164 	/*
4165 	 * Synchronize with threads that have dropped a reference to this
4166 	 * page.
4167 	 */
4168 	atomic_thread_fence_acq();
4169 
4170 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
4171 	if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
4172 		uint64_t *p;
4173 		int i;
4174 		p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
4175 		for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
4176 			KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
4177 			    m, i, (uintmax_t)*p));
4178 	}
4179 #endif
4180 	KASSERT((m->flags & PG_NOFREE) == 0,
4181 	    ("%s: attempting to free a PG_NOFREE page", __func__));
4182 	if ((m->oflags & VPO_UNMANAGED) == 0) {
4183 		KASSERT(!pmap_page_is_mapped(m),
4184 		    ("vm_page_free_prep: freeing mapped page %p", m));
4185 		KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
4186 		    ("vm_page_free_prep: mapping flags set in page %p", m));
4187 	} else {
4188 		KASSERT(m->a.queue == PQ_NONE,
4189 		    ("vm_page_free_prep: unmanaged page %p is queued", m));
4190 	}
4191 	VM_CNT_INC(v_tfree);
4192 
4193 	if (m->object != NULL) {
4194 		vm_page_radix_remove(m);
4195 		vm_page_free_object_prep(m);
4196 	} else
4197 		vm_page_assert_unbusied(m);
4198 
4199 	vm_page_busy_free(m);
4200 
4201 	/*
4202 	 * If fictitious remove object association and
4203 	 * return.
4204 	 */
4205 	if ((m->flags & PG_FICTITIOUS) != 0) {
4206 		KASSERT(m->ref_count == 1,
4207 		    ("fictitious page %p is referenced", m));
4208 		KASSERT(m->a.queue == PQ_NONE,
4209 		    ("fictitious page %p is queued", m));
4210 		return (false);
4211 	}
4212 
4213 	/*
4214 	 * Pages need not be dequeued before they are returned to the physical
4215 	 * memory allocator, but they must at least be marked for a deferred
4216 	 * dequeue.
4217 	 */
4218 	if ((m->oflags & VPO_UNMANAGED) == 0)
4219 		vm_page_dequeue_deferred(m);
4220 
4221 	m->valid = 0;
4222 	vm_page_undirty(m);
4223 
4224 	if (m->ref_count != 0)
4225 		panic("vm_page_free_prep: page %p has references", m);
4226 
4227 	/*
4228 	 * Restore the default memory attribute to the page.
4229 	 */
4230 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
4231 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
4232 
4233 #if VM_NRESERVLEVEL > 0
4234 	/*
4235 	 * Determine whether the page belongs to a reservation.  If the page was
4236 	 * allocated from a per-CPU cache, it cannot belong to a reservation, so
4237 	 * as an optimization, we avoid the check in that case.
4238 	 */
4239 	if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
4240 		return (false);
4241 #endif
4242 
4243 	return (true);
4244 }
4245 
4246 /*
4247  *	vm_page_free_toq:
4248  *
4249  *	Returns the given page to the free list, disassociating it
4250  *	from any VM object.
4251  *
4252  *	The object must be locked.  The page must be exclusively busied if it
4253  *	belongs to an object.
4254  */
4255 static void
vm_page_free_toq(vm_page_t m)4256 vm_page_free_toq(vm_page_t m)
4257 {
4258 	struct vm_domain *vmd;
4259 	uma_zone_t zone;
4260 
4261 	if (!vm_page_free_prep(m))
4262 		return;
4263 
4264 	vmd = vm_pagequeue_domain(m);
4265 	zone = vmd->vmd_pgcache[m->pool].zone;
4266 	if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
4267 		uma_zfree(zone, m);
4268 		return;
4269 	}
4270 	vm_domain_free_lock(vmd);
4271 	vm_phys_free_pages(m, 0);
4272 	vm_domain_free_unlock(vmd);
4273 	vm_domain_freecnt_inc(vmd, 1);
4274 }
4275 
4276 /*
4277  *	vm_page_free_pages_toq:
4278  *
4279  *	Returns a list of pages to the free list, disassociating it
4280  *	from any VM object.  In other words, this is equivalent to
4281  *	calling vm_page_free_toq() for each page of a list of VM objects.
4282  */
4283 int
vm_page_free_pages_toq(struct spglist * free,bool update_wire_count)4284 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
4285 {
4286 	vm_page_t m;
4287 	int count;
4288 
4289 	if (SLIST_EMPTY(free))
4290 		return (0);
4291 
4292 	count = 0;
4293 	while ((m = SLIST_FIRST(free)) != NULL) {
4294 		count++;
4295 		SLIST_REMOVE_HEAD(free, plinks.s.ss);
4296 		vm_page_free_toq(m);
4297 	}
4298 
4299 	if (update_wire_count)
4300 		vm_wire_sub(count);
4301 	return (count);
4302 }
4303 
4304 /*
4305  * Mark this page as wired down.  For managed pages, this prevents reclamation
4306  * by the page daemon, or when the containing object, if any, is destroyed.
4307  */
4308 void
vm_page_wire(vm_page_t m)4309 vm_page_wire(vm_page_t m)
4310 {
4311 	u_int old;
4312 
4313 #ifdef INVARIANTS
4314 	if (m->object != NULL && !vm_page_busied(m) &&
4315 	    !vm_object_busied(m->object))
4316 		VM_OBJECT_ASSERT_LOCKED(m->object);
4317 #endif
4318 	KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
4319 	    VPRC_WIRE_COUNT(m->ref_count) >= 1,
4320 	    ("vm_page_wire: fictitious page %p has zero wirings", m));
4321 
4322 	old = atomic_fetchadd_int(&m->ref_count, 1);
4323 	KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
4324 	    ("vm_page_wire: counter overflow for page %p", m));
4325 	if (VPRC_WIRE_COUNT(old) == 0) {
4326 		if ((m->oflags & VPO_UNMANAGED) == 0)
4327 			vm_page_aflag_set(m, PGA_DEQUEUE);
4328 		vm_wire_add(1);
4329 	}
4330 }
4331 
4332 /*
4333  * Attempt to wire a mapped page following a pmap lookup of that page.
4334  * This may fail if a thread is concurrently tearing down mappings of the page.
4335  * The transient failure is acceptable because it translates to the
4336  * failure of the caller pmap_extract_and_hold(), which should be then
4337  * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
4338  */
4339 bool
vm_page_wire_mapped(vm_page_t m)4340 vm_page_wire_mapped(vm_page_t m)
4341 {
4342 	u_int old;
4343 
4344 	old = atomic_load_int(&m->ref_count);
4345 	do {
4346 		KASSERT(old > 0,
4347 		    ("vm_page_wire_mapped: wiring unreferenced page %p", m));
4348 		if ((old & VPRC_BLOCKED) != 0)
4349 			return (false);
4350 	} while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
4351 
4352 	if (VPRC_WIRE_COUNT(old) == 0) {
4353 		if ((m->oflags & VPO_UNMANAGED) == 0)
4354 			vm_page_aflag_set(m, PGA_DEQUEUE);
4355 		vm_wire_add(1);
4356 	}
4357 	return (true);
4358 }
4359 
4360 /*
4361  * Release a wiring reference to a managed page.  If the page still belongs to
4362  * an object, update its position in the page queues to reflect the reference.
4363  * If the wiring was the last reference to the page, free the page.
4364  */
4365 static void
vm_page_unwire_managed(vm_page_t m,uint8_t nqueue,bool noreuse)4366 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse)
4367 {
4368 	u_int old;
4369 
4370 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4371 	    ("%s: page %p is unmanaged", __func__, m));
4372 
4373 	/*
4374 	 * Update LRU state before releasing the wiring reference.
4375 	 * Use a release store when updating the reference count to
4376 	 * synchronize with vm_page_free_prep().
4377 	 */
4378 	old = atomic_load_int(&m->ref_count);
4379 	do {
4380 		u_int count;
4381 
4382 		KASSERT(VPRC_WIRE_COUNT(old) > 0,
4383 		    ("vm_page_unwire: wire count underflow for page %p", m));
4384 
4385 		count = old & ~VPRC_BLOCKED;
4386 		if (count > VPRC_OBJREF + 1) {
4387 			/*
4388 			 * The page has at least one other wiring reference.  An
4389 			 * earlier iteration of this loop may have called
4390 			 * vm_page_release_toq() and cleared PGA_DEQUEUE, so
4391 			 * re-set it if necessary.
4392 			 */
4393 			if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0)
4394 				vm_page_aflag_set(m, PGA_DEQUEUE);
4395 		} else if (count == VPRC_OBJREF + 1) {
4396 			/*
4397 			 * This is the last wiring.  Clear PGA_DEQUEUE and
4398 			 * update the page's queue state to reflect the
4399 			 * reference.  If the page does not belong to an object
4400 			 * (i.e., the VPRC_OBJREF bit is clear), we only need to
4401 			 * clear leftover queue state.
4402 			 */
4403 			vm_page_release_toq(m, nqueue, noreuse);
4404 		} else if (count == 1) {
4405 			vm_page_aflag_clear(m, PGA_DEQUEUE);
4406 		}
4407 	} while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
4408 
4409 	if (VPRC_WIRE_COUNT(old) == 1) {
4410 		vm_wire_sub(1);
4411 		if (old == 1)
4412 			vm_page_free(m);
4413 	}
4414 }
4415 
4416 /*
4417  * Release one wiring of the specified page, potentially allowing it to be
4418  * paged out.
4419  *
4420  * Only managed pages belonging to an object can be paged out.  If the number
4421  * of wirings transitions to zero and the page is eligible for page out, then
4422  * the page is added to the specified paging queue.  If the released wiring
4423  * represented the last reference to the page, the page is freed.
4424  */
4425 void
vm_page_unwire(vm_page_t m,uint8_t nqueue)4426 vm_page_unwire(vm_page_t m, uint8_t nqueue)
4427 {
4428 
4429 	KASSERT(nqueue < PQ_COUNT,
4430 	    ("vm_page_unwire: invalid queue %u request for page %p",
4431 	    nqueue, m));
4432 
4433 	if ((m->oflags & VPO_UNMANAGED) != 0) {
4434 		if (vm_page_unwire_noq(m) && m->ref_count == 0)
4435 			vm_page_free(m);
4436 		return;
4437 	}
4438 	vm_page_unwire_managed(m, nqueue, false);
4439 }
4440 
4441 /*
4442  * Unwire a page without (re-)inserting it into a page queue.  It is up
4443  * to the caller to enqueue, requeue, or free the page as appropriate.
4444  * In most cases involving managed pages, vm_page_unwire() should be used
4445  * instead.
4446  */
4447 bool
vm_page_unwire_noq(vm_page_t m)4448 vm_page_unwire_noq(vm_page_t m)
4449 {
4450 	u_int old;
4451 
4452 	old = vm_page_drop(m, 1);
4453 	KASSERT(VPRC_WIRE_COUNT(old) != 0,
4454 	    ("%s: counter underflow for page %p", __func__,  m));
4455 	KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
4456 	    ("%s: missing ref on fictitious page %p", __func__, m));
4457 
4458 	if (VPRC_WIRE_COUNT(old) > 1)
4459 		return (false);
4460 	if ((m->oflags & VPO_UNMANAGED) == 0)
4461 		vm_page_aflag_clear(m, PGA_DEQUEUE);
4462 	vm_wire_sub(1);
4463 	return (true);
4464 }
4465 
4466 /*
4467  * Ensure that the page ends up in the specified page queue.  If the page is
4468  * active or being moved to the active queue, ensure that its act_count is
4469  * at least ACT_INIT but do not otherwise mess with it.
4470  */
4471 static __always_inline void
vm_page_mvqueue(vm_page_t m,const uint8_t nqueue,const uint16_t nflag)4472 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag)
4473 {
4474 	vm_page_astate_t old, new;
4475 
4476 	KASSERT(m->ref_count > 0,
4477 	    ("%s: page %p does not carry any references", __func__, m));
4478 	KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD,
4479 	    ("%s: invalid flags %x", __func__, nflag));
4480 
4481 	if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
4482 		return;
4483 
4484 	old = vm_page_astate_load(m);
4485 	do {
4486 		if ((old.flags & PGA_DEQUEUE) != 0)
4487 			break;
4488 		new = old;
4489 		new.flags &= ~PGA_QUEUE_OP_MASK;
4490 		if (nqueue == PQ_ACTIVE)
4491 			new.act_count = max(old.act_count, ACT_INIT);
4492 		if (old.queue == nqueue) {
4493 			/*
4494 			 * There is no need to requeue pages already in the
4495 			 * active queue.
4496 			 */
4497 			if (nqueue != PQ_ACTIVE ||
4498 			    (old.flags & PGA_ENQUEUED) == 0)
4499 				new.flags |= nflag;
4500 		} else {
4501 			new.flags |= nflag;
4502 			new.queue = nqueue;
4503 		}
4504 	} while (!vm_page_pqstate_commit(m, &old, new));
4505 }
4506 
4507 /*
4508  * Put the specified page on the active list (if appropriate).
4509  */
4510 void
vm_page_activate(vm_page_t m)4511 vm_page_activate(vm_page_t m)
4512 {
4513 
4514 	vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE);
4515 }
4516 
4517 /*
4518  * Move the specified page to the tail of the inactive queue, or requeue
4519  * the page if it is already in the inactive queue.
4520  */
4521 void
vm_page_deactivate(vm_page_t m)4522 vm_page_deactivate(vm_page_t m)
4523 {
4524 
4525 	vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE);
4526 }
4527 
4528 void
vm_page_deactivate_noreuse(vm_page_t m)4529 vm_page_deactivate_noreuse(vm_page_t m)
4530 {
4531 
4532 	vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD);
4533 }
4534 
4535 /*
4536  * Put a page in the laundry, or requeue it if it is already there.
4537  */
4538 void
vm_page_launder(vm_page_t m)4539 vm_page_launder(vm_page_t m)
4540 {
4541 
4542 	vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE);
4543 }
4544 
4545 /*
4546  * Put a page in the PQ_UNSWAPPABLE holding queue.
4547  */
4548 void
vm_page_unswappable(vm_page_t m)4549 vm_page_unswappable(vm_page_t m)
4550 {
4551 
4552 	VM_OBJECT_ASSERT_LOCKED(m->object);
4553 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4554 	    ("page %p already unswappable", m));
4555 
4556 	vm_page_dequeue(m);
4557 	vm_page_enqueue(m, PQ_UNSWAPPABLE);
4558 }
4559 
4560 /*
4561  * Release a page back to the page queues in preparation for unwiring.
4562  */
4563 static void
vm_page_release_toq(vm_page_t m,uint8_t nqueue,const bool noreuse)4564 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse)
4565 {
4566 	vm_page_astate_t old, new;
4567 	uint16_t nflag;
4568 
4569 	/*
4570 	 * Use a check of the valid bits to determine whether we should
4571 	 * accelerate reclamation of the page.  The object lock might not be
4572 	 * held here, in which case the check is racy.  At worst we will either
4573 	 * accelerate reclamation of a valid page and violate LRU, or
4574 	 * unnecessarily defer reclamation of an invalid page.
4575 	 *
4576 	 * If we were asked to not cache the page, place it near the head of the
4577 	 * inactive queue so that is reclaimed sooner.
4578 	 */
4579 	if (noreuse || vm_page_none_valid(m)) {
4580 		nqueue = PQ_INACTIVE;
4581 		nflag = PGA_REQUEUE_HEAD;
4582 	} else {
4583 		nflag = PGA_REQUEUE;
4584 	}
4585 
4586 	old = vm_page_astate_load(m);
4587 	do {
4588 		new = old;
4589 
4590 		/*
4591 		 * If the page is already in the active queue and we are not
4592 		 * trying to accelerate reclamation, simply mark it as
4593 		 * referenced and avoid any queue operations.
4594 		 */
4595 		new.flags &= ~PGA_QUEUE_OP_MASK;
4596 		if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE &&
4597 		    (old.flags & PGA_ENQUEUED) != 0)
4598 			new.flags |= PGA_REFERENCED;
4599 		else {
4600 			new.flags |= nflag;
4601 			new.queue = nqueue;
4602 		}
4603 	} while (!vm_page_pqstate_commit(m, &old, new));
4604 }
4605 
4606 /*
4607  * Unwire a page and either attempt to free it or re-add it to the page queues.
4608  */
4609 void
vm_page_release(vm_page_t m,int flags)4610 vm_page_release(vm_page_t m, int flags)
4611 {
4612 	vm_object_t object;
4613 
4614 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4615 	    ("vm_page_release: page %p is unmanaged", m));
4616 
4617 	if ((flags & VPR_TRYFREE) != 0) {
4618 		for (;;) {
4619 			object = atomic_load_ptr(&m->object);
4620 			if (object == NULL)
4621 				break;
4622 			/* Depends on type-stability. */
4623 			if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object))
4624 				break;
4625 			if (object == m->object) {
4626 				vm_page_release_locked(m, flags);
4627 				VM_OBJECT_WUNLOCK(object);
4628 				return;
4629 			}
4630 			VM_OBJECT_WUNLOCK(object);
4631 		}
4632 	}
4633 	vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0);
4634 }
4635 
4636 /* See vm_page_release(). */
4637 void
vm_page_release_locked(vm_page_t m,int flags)4638 vm_page_release_locked(vm_page_t m, int flags)
4639 {
4640 
4641 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4642 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4643 	    ("vm_page_release_locked: page %p is unmanaged", m));
4644 
4645 	if (vm_page_unwire_noq(m)) {
4646 		if ((flags & VPR_TRYFREE) != 0 &&
4647 		    (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4648 		    m->dirty == 0 && vm_page_tryxbusy(m)) {
4649 			/*
4650 			 * An unlocked lookup may have wired the page before the
4651 			 * busy lock was acquired, in which case the page must
4652 			 * not be freed.
4653 			 */
4654 			if (__predict_true(!vm_page_wired(m))) {
4655 				vm_page_free(m);
4656 				return;
4657 			}
4658 			vm_page_xunbusy(m);
4659 		} else {
4660 			vm_page_release_toq(m, PQ_INACTIVE, flags != 0);
4661 		}
4662 	}
4663 }
4664 
4665 static bool
vm_page_try_blocked_op(vm_page_t m,void (* op)(vm_page_t))4666 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4667 {
4668 	u_int old;
4669 
4670 	KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4671 	    ("vm_page_try_blocked_op: page %p has no object", m));
4672 	KASSERT(vm_page_busied(m),
4673 	    ("vm_page_try_blocked_op: page %p is not busy", m));
4674 	VM_OBJECT_ASSERT_LOCKED(m->object);
4675 
4676 	old = atomic_load_int(&m->ref_count);
4677 	do {
4678 		KASSERT(old != 0,
4679 		    ("vm_page_try_blocked_op: page %p has no references", m));
4680 		KASSERT((old & VPRC_BLOCKED) == 0,
4681 		    ("vm_page_try_blocked_op: page %p blocks wirings", m));
4682 		if (VPRC_WIRE_COUNT(old) != 0)
4683 			return (false);
4684 	} while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4685 
4686 	(op)(m);
4687 
4688 	/*
4689 	 * If the object is read-locked, new wirings may be created via an
4690 	 * object lookup.
4691 	 */
4692 	old = vm_page_drop(m, VPRC_BLOCKED);
4693 	KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4694 	    old == (VPRC_BLOCKED | VPRC_OBJREF),
4695 	    ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4696 	    old, m));
4697 	return (true);
4698 }
4699 
4700 /*
4701  * Atomically check for wirings and remove all mappings of the page.
4702  */
4703 bool
vm_page_try_remove_all(vm_page_t m)4704 vm_page_try_remove_all(vm_page_t m)
4705 {
4706 
4707 	return (vm_page_try_blocked_op(m, pmap_remove_all));
4708 }
4709 
4710 /*
4711  * Atomically check for wirings and remove all writeable mappings of the page.
4712  */
4713 bool
vm_page_try_remove_write(vm_page_t m)4714 vm_page_try_remove_write(vm_page_t m)
4715 {
4716 
4717 	return (vm_page_try_blocked_op(m, pmap_remove_write));
4718 }
4719 
4720 /*
4721  * vm_page_advise
4722  *
4723  * 	Apply the specified advice to the given page.
4724  */
4725 void
vm_page_advise(vm_page_t m,int advice)4726 vm_page_advise(vm_page_t m, int advice)
4727 {
4728 
4729 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4730 	vm_page_assert_xbusied(m);
4731 
4732 	if (advice == MADV_FREE)
4733 		/*
4734 		 * Mark the page clean.  This will allow the page to be freed
4735 		 * without first paging it out.  MADV_FREE pages are often
4736 		 * quickly reused by malloc(3), so we do not do anything that
4737 		 * would result in a page fault on a later access.
4738 		 */
4739 		vm_page_undirty(m);
4740 	else if (advice != MADV_DONTNEED) {
4741 		if (advice == MADV_WILLNEED)
4742 			vm_page_activate(m);
4743 		return;
4744 	}
4745 
4746 	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4747 		vm_page_dirty(m);
4748 
4749 	/*
4750 	 * Clear any references to the page.  Otherwise, the page daemon will
4751 	 * immediately reactivate the page.
4752 	 */
4753 	vm_page_aflag_clear(m, PGA_REFERENCED);
4754 
4755 	/*
4756 	 * Place clean pages near the head of the inactive queue rather than
4757 	 * the tail, thus defeating the queue's LRU operation and ensuring that
4758 	 * the page will be reused quickly.  Dirty pages not already in the
4759 	 * laundry are moved there.
4760 	 */
4761 	if (m->dirty == 0)
4762 		vm_page_deactivate_noreuse(m);
4763 	else if (!vm_page_in_laundry(m))
4764 		vm_page_launder(m);
4765 }
4766 
4767 /*
4768  *	vm_page_grab_release
4769  *
4770  *	Helper routine for grab functions to release busy on return.
4771  */
4772 static inline void
vm_page_grab_release(vm_page_t m,int allocflags)4773 vm_page_grab_release(vm_page_t m, int allocflags)
4774 {
4775 
4776 	if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4777 		if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4778 			vm_page_sunbusy(m);
4779 		else
4780 			vm_page_xunbusy(m);
4781 	}
4782 }
4783 
4784 /*
4785  *	vm_page_grab_sleep
4786  *
4787  *	Sleep for busy according to VM_ALLOC_ parameters.  Returns true
4788  *	if the caller should retry and false otherwise.
4789  *
4790  *	If the object is locked on entry the object will be unlocked with
4791  *	false returns and still locked but possibly having been dropped
4792  *	with true returns.
4793  */
4794 static bool
vm_page_grab_sleep(vm_object_t object,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags,bool locked)4795 vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex,
4796     const char *wmesg, int allocflags, bool locked)
4797 {
4798 
4799 	if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4800 		return (false);
4801 
4802 	/*
4803 	 * Reference the page before unlocking and sleeping so that
4804 	 * the page daemon is less likely to reclaim it.
4805 	 */
4806 	if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0)
4807 		vm_page_reference(m);
4808 
4809 	if (_vm_page_busy_sleep(object, m, pindex, wmesg, allocflags, locked) &&
4810 	    locked)
4811 		VM_OBJECT_WLOCK(object);
4812 	if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
4813 		return (false);
4814 
4815 	return (true);
4816 }
4817 
4818 /*
4819  * Assert that the grab flags are valid.
4820  */
4821 static inline void
vm_page_grab_check(int allocflags)4822 vm_page_grab_check(int allocflags)
4823 {
4824 
4825 	KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4826 	    (allocflags & VM_ALLOC_WIRED) != 0,
4827 	    ("vm_page_grab*: the pages must be busied or wired"));
4828 
4829 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4830 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4831 	    ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4832 }
4833 
4834 /*
4835  * Calculate the page allocation flags for grab.
4836  */
4837 static inline int
vm_page_grab_pflags(int allocflags)4838 vm_page_grab_pflags(int allocflags)
4839 {
4840 	int pflags;
4841 
4842 	pflags = allocflags &
4843 	    ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4844 	    VM_ALLOC_NOBUSY | VM_ALLOC_IGN_SBUSY);
4845 	if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4846 		pflags |= VM_ALLOC_WAITFAIL;
4847 	if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4848 		pflags |= VM_ALLOC_SBUSY;
4849 
4850 	return (pflags);
4851 }
4852 
4853 /*
4854  * Grab a page, waiting until we are waken up due to the page
4855  * changing state.  We keep on waiting, if the page continues
4856  * to be in the object.  If the page doesn't exist, first allocate it
4857  * and then conditionally zero it.
4858  *
4859  * This routine may sleep.
4860  *
4861  * The object must be locked on entry.  The lock will, however, be released
4862  * and reacquired if the routine sleeps.
4863  */
4864 vm_page_t
vm_page_grab(vm_object_t object,vm_pindex_t pindex,int allocflags)4865 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4866 {
4867 	vm_page_t m;
4868 
4869 	VM_OBJECT_ASSERT_WLOCKED(object);
4870 	vm_page_grab_check(allocflags);
4871 
4872 retrylookup:
4873 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
4874 		if (!vm_page_tryacquire(m, allocflags)) {
4875 			if (vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4876 			    allocflags, true))
4877 				goto retrylookup;
4878 			return (NULL);
4879 		}
4880 		goto out;
4881 	}
4882 	if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4883 		return (NULL);
4884 	m = vm_page_alloc(object, pindex, vm_page_grab_pflags(allocflags));
4885 	if (m == NULL) {
4886 		if ((allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4887 			return (NULL);
4888 		goto retrylookup;
4889 	}
4890 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
4891 		pmap_zero_page(m);
4892 
4893 out:
4894 	vm_page_grab_release(m, allocflags);
4895 
4896 	return (m);
4897 }
4898 
4899 /*
4900  * Attempt to validate a page, locklessly acquiring it if necessary, given a
4901  * (object, pindex) tuple and either an invalided page or NULL.  The resulting
4902  * page will be validated against the identity tuple, and busied or wired as
4903  * requested.  A NULL page returned guarantees that the page was not in radix at
4904  * the time of the call but callers must perform higher level synchronization or
4905  * retry the operation under a lock if they require an atomic answer.  This is
4906  * the only lock free validation routine, other routines can depend on the
4907  * resulting page state.
4908  *
4909  * The return value PAGE_NOT_ACQUIRED indicates that the operation failed due to
4910  * caller flags.
4911  */
4912 #define PAGE_NOT_ACQUIRED ((vm_page_t)1)
4913 static vm_page_t
vm_page_acquire_unlocked(vm_object_t object,vm_pindex_t pindex,vm_page_t m,int allocflags)4914 vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex, vm_page_t m,
4915     int allocflags)
4916 {
4917 	if (m == NULL)
4918 		m = vm_page_lookup_unlocked(object, pindex);
4919 	for (; m != NULL; m = vm_page_lookup_unlocked(object, pindex)) {
4920 		if (vm_page_trybusy(m, allocflags)) {
4921 			if (m->object == object && m->pindex == pindex) {
4922 				if ((allocflags & VM_ALLOC_WIRED) != 0)
4923 					vm_page_wire(m);
4924 				vm_page_grab_release(m, allocflags);
4925 				break;
4926 			}
4927 			/* relookup. */
4928 			vm_page_busy_release(m);
4929 			cpu_spinwait();
4930 			continue;
4931 		}
4932 		if (!vm_page_grab_sleep(object, m, pindex, "pgnslp",
4933 		    allocflags, false))
4934 			return (PAGE_NOT_ACQUIRED);
4935 	}
4936 	return (m);
4937 }
4938 
4939 /*
4940  * Try to locklessly grab a page and fall back to the object lock if NOCREAT
4941  * is not set.
4942  */
4943 vm_page_t
vm_page_grab_unlocked(vm_object_t object,vm_pindex_t pindex,int allocflags)4944 vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags)
4945 {
4946 	vm_page_t m;
4947 
4948 	vm_page_grab_check(allocflags);
4949 	m = vm_page_acquire_unlocked(object, pindex, NULL, allocflags);
4950 	if (m == PAGE_NOT_ACQUIRED)
4951 		return (NULL);
4952 	if (m != NULL)
4953 		return (m);
4954 
4955 	/*
4956 	 * The radix lockless lookup should never return a false negative
4957 	 * errors.  If the user specifies NOCREAT they are guaranteed there
4958 	 * was no page present at the instant of the call.  A NOCREAT caller
4959 	 * must handle create races gracefully.
4960 	 */
4961 	if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4962 		return (NULL);
4963 
4964 	VM_OBJECT_WLOCK(object);
4965 	m = vm_page_grab(object, pindex, allocflags);
4966 	VM_OBJECT_WUNLOCK(object);
4967 
4968 	return (m);
4969 }
4970 
4971 /*
4972  * Grab a page and make it valid, paging in if necessary.  Pages missing from
4973  * their pager are zero filled and validated.  If a VM_ALLOC_COUNT is supplied
4974  * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
4975  * in simultaneously.  Additional pages will be left on a paging queue but
4976  * will neither be wired nor busy regardless of allocflags.
4977  */
4978 int
vm_page_grab_valid(vm_page_t * mp,vm_object_t object,vm_pindex_t pindex,int allocflags)4979 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
4980 {
4981 	vm_page_t m;
4982 	vm_page_t ma[VM_INITIAL_PAGEIN];
4983 	int after, i, pflags, rv;
4984 
4985 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4986 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4987 	    ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4988 	KASSERT((allocflags &
4989 	    (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4990 	    ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4991 	VM_OBJECT_ASSERT_WLOCKED(object);
4992 	pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY |
4993 	    VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY);
4994 	pflags |= VM_ALLOC_WAITFAIL;
4995 
4996 retrylookup:
4997 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
4998 		/*
4999 		 * If the page is fully valid it can only become invalid
5000 		 * with the object lock held.  If it is not valid it can
5001 		 * become valid with the busy lock held.  Therefore, we
5002 		 * may unnecessarily lock the exclusive busy here if we
5003 		 * race with I/O completion not using the object lock.
5004 		 * However, we will not end up with an invalid page and a
5005 		 * shared lock.
5006 		 */
5007 		if (!vm_page_trybusy(m,
5008 		    vm_page_all_valid(m) ? allocflags : 0)) {
5009 			(void)vm_page_grab_sleep(object, m, pindex, "pgrbwt",
5010 			    allocflags, true);
5011 			goto retrylookup;
5012 		}
5013 		if (vm_page_all_valid(m))
5014 			goto out;
5015 		if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
5016 			vm_page_busy_release(m);
5017 			*mp = NULL;
5018 			return (VM_PAGER_FAIL);
5019 		}
5020 	} else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
5021 		*mp = NULL;
5022 		return (VM_PAGER_FAIL);
5023 	} else if ((m = vm_page_alloc(object, pindex, pflags)) == NULL) {
5024 		if (!vm_pager_can_alloc_page(object, pindex)) {
5025 			*mp = NULL;
5026 			return (VM_PAGER_AGAIN);
5027 		}
5028 		goto retrylookup;
5029 	}
5030 
5031 	vm_page_assert_xbusied(m);
5032 	if (vm_pager_has_page(object, pindex, NULL, &after)) {
5033 		after = MIN(after, VM_INITIAL_PAGEIN);
5034 		after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
5035 		after = MAX(after, 1);
5036 		ma[0] = m;
5037 		for (i = 1; i < after; i++) {
5038 			if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) {
5039 				if (vm_page_any_valid(ma[i]) ||
5040 				    !vm_page_tryxbusy(ma[i]))
5041 					break;
5042 			} else {
5043 				ma[i] = vm_page_alloc(object, m->pindex + i,
5044 				    VM_ALLOC_NORMAL);
5045 				if (ma[i] == NULL)
5046 					break;
5047 			}
5048 		}
5049 		after = i;
5050 		vm_object_pip_add(object, after);
5051 		VM_OBJECT_WUNLOCK(object);
5052 		rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
5053 		VM_OBJECT_WLOCK(object);
5054 		vm_object_pip_wakeupn(object, after);
5055 		/* Pager may have replaced a page. */
5056 		m = ma[0];
5057 		if (rv != VM_PAGER_OK) {
5058 			for (i = 0; i < after; i++) {
5059 				if (!vm_page_wired(ma[i]))
5060 					vm_page_free(ma[i]);
5061 				else
5062 					vm_page_xunbusy(ma[i]);
5063 			}
5064 			*mp = NULL;
5065 			return (rv);
5066 		}
5067 		for (i = 1; i < after; i++)
5068 			vm_page_readahead_finish(ma[i]);
5069 		MPASS(vm_page_all_valid(m));
5070 	} else {
5071 		vm_page_zero_invalid(m, TRUE);
5072 	}
5073 out:
5074 	if ((allocflags & VM_ALLOC_WIRED) != 0)
5075 		vm_page_wire(m);
5076 	if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m))
5077 		vm_page_busy_downgrade(m);
5078 	else if ((allocflags & VM_ALLOC_NOBUSY) != 0)
5079 		vm_page_busy_release(m);
5080 	*mp = m;
5081 	return (VM_PAGER_OK);
5082 }
5083 
5084 /*
5085  * Locklessly grab a valid page.  If the page is not valid or not yet
5086  * allocated this will fall back to the object lock method.
5087  */
5088 int
vm_page_grab_valid_unlocked(vm_page_t * mp,vm_object_t object,vm_pindex_t pindex,int allocflags)5089 vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object,
5090     vm_pindex_t pindex, int allocflags)
5091 {
5092 	vm_page_t m;
5093 	int flags;
5094 	int error;
5095 
5096 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
5097 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
5098 	    ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
5099 	    "mismatch"));
5100 	KASSERT((allocflags &
5101 	    (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
5102 	    ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags));
5103 
5104 	/*
5105 	 * Attempt a lockless lookup and busy.  We need at least an sbusy
5106 	 * before we can inspect the valid field and return a wired page.
5107 	 */
5108 	flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
5109 	vm_page_grab_check(flags);
5110 	m = vm_page_acquire_unlocked(object, pindex, NULL, flags);
5111 	if (m == PAGE_NOT_ACQUIRED)
5112 		return (VM_PAGER_FAIL);
5113 	if (m != NULL) {
5114 		if (vm_page_all_valid(m)) {
5115 			if ((allocflags & VM_ALLOC_WIRED) != 0)
5116 				vm_page_wire(m);
5117 			vm_page_grab_release(m, allocflags);
5118 			*mp = m;
5119 			return (VM_PAGER_OK);
5120 		}
5121 		vm_page_busy_release(m);
5122 	}
5123 	if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
5124 		*mp = NULL;
5125 		return (VM_PAGER_FAIL);
5126 	}
5127 	VM_OBJECT_WLOCK(object);
5128 	error = vm_page_grab_valid(mp, object, pindex, allocflags);
5129 	VM_OBJECT_WUNLOCK(object);
5130 
5131 	return (error);
5132 }
5133 
5134 /*
5135  * Return the specified range of pages from the given object.  For each
5136  * page offset within the range, if a page already exists within the object
5137  * at that offset and it is busy, then wait for it to change state.  If,
5138  * instead, the page doesn't exist, then allocate it.
5139  *
5140  * The caller must always specify an allocation class.
5141  *
5142  * allocation classes:
5143  *	VM_ALLOC_NORMAL		normal process request
5144  *	VM_ALLOC_SYSTEM		system *really* needs the pages
5145  *
5146  * The caller must always specify that the pages are to be busied and/or
5147  * wired.
5148  *
5149  * optional allocation flags:
5150  *	VM_ALLOC_IGN_SBUSY	do not sleep on soft busy pages
5151  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
5152  *	VM_ALLOC_NOWAIT		do not sleep
5153  *	VM_ALLOC_SBUSY		set page to sbusy state
5154  *	VM_ALLOC_WIRED		wire the pages
5155  *	VM_ALLOC_ZERO		zero and validate any invalid pages
5156  *
5157  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
5158  * may return a partial prefix of the requested range.
5159  */
5160 int
vm_page_grab_pages(vm_object_t object,vm_pindex_t pindex,int allocflags,vm_page_t * ma,int count)5161 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
5162     vm_page_t *ma, int count)
5163 {
5164 	vm_page_t m, mpred;
5165 	int pflags;
5166 	int i;
5167 
5168 	VM_OBJECT_ASSERT_WLOCKED(object);
5169 	KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
5170 	    ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
5171 	KASSERT(count > 0,
5172 	    ("vm_page_grab_pages: invalid page count %d", count));
5173 	vm_page_grab_check(allocflags);
5174 
5175 	pflags = vm_page_grab_pflags(allocflags);
5176 	i = 0;
5177 retrylookup:
5178 	m = vm_page_mpred(object, pindex + i);
5179 	if (m == NULL || m->pindex != pindex + i) {
5180 		mpred = m;
5181 		m = NULL;
5182 	} else
5183 		mpred = TAILQ_PREV(m, pglist, listq);
5184 	for (; i < count; i++) {
5185 		if (m != NULL) {
5186 			if (!vm_page_tryacquire(m, allocflags)) {
5187 				if (vm_page_grab_sleep(object, m, pindex + i,
5188 				    "grbmaw", allocflags, true))
5189 					goto retrylookup;
5190 				break;
5191 			}
5192 		} else {
5193 			if ((allocflags & VM_ALLOC_NOCREAT) != 0)
5194 				break;
5195 			m = vm_page_alloc_after(object, pindex + i,
5196 			    pflags | VM_ALLOC_COUNT(count - i), mpred);
5197 			if (m == NULL) {
5198 				if ((allocflags & (VM_ALLOC_NOWAIT |
5199 				    VM_ALLOC_WAITFAIL)) != 0)
5200 					break;
5201 				goto retrylookup;
5202 			}
5203 		}
5204 		if (vm_page_none_valid(m) &&
5205 		    (allocflags & VM_ALLOC_ZERO) != 0) {
5206 			if ((m->flags & PG_ZERO) == 0)
5207 				pmap_zero_page(m);
5208 			vm_page_valid(m);
5209 		}
5210 		vm_page_grab_release(m, allocflags);
5211 		ma[i] = mpred = m;
5212 		m = vm_page_next(m);
5213 	}
5214 	return (i);
5215 }
5216 
5217 /*
5218  * Unlocked variant of vm_page_grab_pages().  This accepts the same flags
5219  * and will fall back to the locked variant to handle allocation.
5220  */
5221 int
vm_page_grab_pages_unlocked(vm_object_t object,vm_pindex_t pindex,int allocflags,vm_page_t * ma,int count)5222 vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex,
5223     int allocflags, vm_page_t *ma, int count)
5224 {
5225 	vm_page_t m;
5226 	int flags;
5227 	int i;
5228 
5229 	KASSERT(count > 0,
5230 	    ("vm_page_grab_pages_unlocked: invalid page count %d", count));
5231 	vm_page_grab_check(allocflags);
5232 
5233 	/*
5234 	 * Modify flags for lockless acquire to hold the page until we
5235 	 * set it valid if necessary.
5236 	 */
5237 	flags = allocflags & ~VM_ALLOC_NOBUSY;
5238 	vm_page_grab_check(flags);
5239 	m = NULL;
5240 	for (i = 0; i < count; i++, pindex++) {
5241 		/*
5242 		 * We may see a false NULL here because the previous page has
5243 		 * been removed or just inserted and the list is loaded without
5244 		 * barriers.  Switch to radix to verify.
5245 		 */
5246 		if (m == NULL || QMD_IS_TRASHED(m) || m->pindex != pindex ||
5247 		    atomic_load_ptr(&m->object) != object) {
5248 			/*
5249 			 * This guarantees the result is instantaneously
5250 			 * correct.
5251 			 */
5252 			m = NULL;
5253 		}
5254 		m = vm_page_acquire_unlocked(object, pindex, m, flags);
5255 		if (m == PAGE_NOT_ACQUIRED)
5256 			return (i);
5257 		if (m == NULL)
5258 			break;
5259 		if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) {
5260 			if ((m->flags & PG_ZERO) == 0)
5261 				pmap_zero_page(m);
5262 			vm_page_valid(m);
5263 		}
5264 		/* m will still be wired or busy according to flags. */
5265 		vm_page_grab_release(m, allocflags);
5266 		ma[i] = m;
5267 		m = TAILQ_NEXT(m, listq);
5268 	}
5269 	if (i == count || (allocflags & VM_ALLOC_NOCREAT) != 0)
5270 		return (i);
5271 	count -= i;
5272 	VM_OBJECT_WLOCK(object);
5273 	i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count);
5274 	VM_OBJECT_WUNLOCK(object);
5275 
5276 	return (i);
5277 }
5278 
5279 /*
5280  * Mapping function for valid or dirty bits in a page.
5281  *
5282  * Inputs are required to range within a page.
5283  */
5284 vm_page_bits_t
vm_page_bits(int base,int size)5285 vm_page_bits(int base, int size)
5286 {
5287 	int first_bit;
5288 	int last_bit;
5289 
5290 	KASSERT(
5291 	    base + size <= PAGE_SIZE,
5292 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
5293 	);
5294 
5295 	if (size == 0)		/* handle degenerate case */
5296 		return (0);
5297 
5298 	first_bit = base >> DEV_BSHIFT;
5299 	last_bit = (base + size - 1) >> DEV_BSHIFT;
5300 
5301 	return (((vm_page_bits_t)2 << last_bit) -
5302 	    ((vm_page_bits_t)1 << first_bit));
5303 }
5304 
5305 void
vm_page_bits_set(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t set)5306 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
5307 {
5308 
5309 #if PAGE_SIZE == 32768
5310 	atomic_set_64((uint64_t *)bits, set);
5311 #elif PAGE_SIZE == 16384
5312 	atomic_set_32((uint32_t *)bits, set);
5313 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
5314 	atomic_set_16((uint16_t *)bits, set);
5315 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
5316 	atomic_set_8((uint8_t *)bits, set);
5317 #else		/* PAGE_SIZE <= 8192 */
5318 	uintptr_t addr;
5319 	int shift;
5320 
5321 	addr = (uintptr_t)bits;
5322 	/*
5323 	 * Use a trick to perform a 32-bit atomic on the
5324 	 * containing aligned word, to not depend on the existence
5325 	 * of atomic_{set, clear}_{8, 16}.
5326 	 */
5327 	shift = addr & (sizeof(uint32_t) - 1);
5328 #if BYTE_ORDER == BIG_ENDIAN
5329 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5330 #else
5331 	shift *= NBBY;
5332 #endif
5333 	addr &= ~(sizeof(uint32_t) - 1);
5334 	atomic_set_32((uint32_t *)addr, set << shift);
5335 #endif		/* PAGE_SIZE */
5336 }
5337 
5338 static inline void
vm_page_bits_clear(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t clear)5339 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
5340 {
5341 
5342 #if PAGE_SIZE == 32768
5343 	atomic_clear_64((uint64_t *)bits, clear);
5344 #elif PAGE_SIZE == 16384
5345 	atomic_clear_32((uint32_t *)bits, clear);
5346 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
5347 	atomic_clear_16((uint16_t *)bits, clear);
5348 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
5349 	atomic_clear_8((uint8_t *)bits, clear);
5350 #else		/* PAGE_SIZE <= 8192 */
5351 	uintptr_t addr;
5352 	int shift;
5353 
5354 	addr = (uintptr_t)bits;
5355 	/*
5356 	 * Use a trick to perform a 32-bit atomic on the
5357 	 * containing aligned word, to not depend on the existence
5358 	 * of atomic_{set, clear}_{8, 16}.
5359 	 */
5360 	shift = addr & (sizeof(uint32_t) - 1);
5361 #if BYTE_ORDER == BIG_ENDIAN
5362 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5363 #else
5364 	shift *= NBBY;
5365 #endif
5366 	addr &= ~(sizeof(uint32_t) - 1);
5367 	atomic_clear_32((uint32_t *)addr, clear << shift);
5368 #endif		/* PAGE_SIZE */
5369 }
5370 
5371 static inline vm_page_bits_t
vm_page_bits_swap(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t newbits)5372 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
5373 {
5374 #if PAGE_SIZE == 32768
5375 	uint64_t old;
5376 
5377 	old = *bits;
5378 	while (atomic_fcmpset_64(bits, &old, newbits) == 0);
5379 	return (old);
5380 #elif PAGE_SIZE == 16384
5381 	uint32_t old;
5382 
5383 	old = *bits;
5384 	while (atomic_fcmpset_32(bits, &old, newbits) == 0);
5385 	return (old);
5386 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
5387 	uint16_t old;
5388 
5389 	old = *bits;
5390 	while (atomic_fcmpset_16(bits, &old, newbits) == 0);
5391 	return (old);
5392 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
5393 	uint8_t old;
5394 
5395 	old = *bits;
5396 	while (atomic_fcmpset_8(bits, &old, newbits) == 0);
5397 	return (old);
5398 #else		/* PAGE_SIZE <= 4096*/
5399 	uintptr_t addr;
5400 	uint32_t old, new, mask;
5401 	int shift;
5402 
5403 	addr = (uintptr_t)bits;
5404 	/*
5405 	 * Use a trick to perform a 32-bit atomic on the
5406 	 * containing aligned word, to not depend on the existence
5407 	 * of atomic_{set, swap, clear}_{8, 16}.
5408 	 */
5409 	shift = addr & (sizeof(uint32_t) - 1);
5410 #if BYTE_ORDER == BIG_ENDIAN
5411 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5412 #else
5413 	shift *= NBBY;
5414 #endif
5415 	addr &= ~(sizeof(uint32_t) - 1);
5416 	mask = VM_PAGE_BITS_ALL << shift;
5417 
5418 	old = *bits;
5419 	do {
5420 		new = old & ~mask;
5421 		new |= newbits << shift;
5422 	} while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
5423 	return (old >> shift);
5424 #endif		/* PAGE_SIZE */
5425 }
5426 
5427 /*
5428  *	vm_page_set_valid_range:
5429  *
5430  *	Sets portions of a page valid.  The arguments are expected
5431  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5432  *	of any partial chunks touched by the range.  The invalid portion of
5433  *	such chunks will be zeroed.
5434  *
5435  *	(base + size) must be less then or equal to PAGE_SIZE.
5436  */
5437 void
vm_page_set_valid_range(vm_page_t m,int base,int size)5438 vm_page_set_valid_range(vm_page_t m, int base, int size)
5439 {
5440 	int endoff, frag;
5441 	vm_page_bits_t pagebits;
5442 
5443 	vm_page_assert_busied(m);
5444 	if (size == 0)	/* handle degenerate case */
5445 		return;
5446 
5447 	/*
5448 	 * If the base is not DEV_BSIZE aligned and the valid
5449 	 * bit is clear, we have to zero out a portion of the
5450 	 * first block.
5451 	 */
5452 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5453 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
5454 		pmap_zero_page_area(m, frag, base - frag);
5455 
5456 	/*
5457 	 * If the ending offset is not DEV_BSIZE aligned and the
5458 	 * valid bit is clear, we have to zero out a portion of
5459 	 * the last block.
5460 	 */
5461 	endoff = base + size;
5462 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5463 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
5464 		pmap_zero_page_area(m, endoff,
5465 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5466 
5467 	/*
5468 	 * Assert that no previously invalid block that is now being validated
5469 	 * is already dirty.
5470 	 */
5471 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
5472 	    ("vm_page_set_valid_range: page %p is dirty", m));
5473 
5474 	/*
5475 	 * Set valid bits inclusive of any overlap.
5476 	 */
5477 	pagebits = vm_page_bits(base, size);
5478 	if (vm_page_xbusied(m))
5479 		m->valid |= pagebits;
5480 	else
5481 		vm_page_bits_set(m, &m->valid, pagebits);
5482 }
5483 
5484 /*
5485  * Set the page dirty bits and free the invalid swap space if
5486  * present.  Returns the previous dirty bits.
5487  */
5488 vm_page_bits_t
vm_page_set_dirty(vm_page_t m)5489 vm_page_set_dirty(vm_page_t m)
5490 {
5491 	vm_page_bits_t old;
5492 
5493 	VM_PAGE_OBJECT_BUSY_ASSERT(m);
5494 
5495 	if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
5496 		old = m->dirty;
5497 		m->dirty = VM_PAGE_BITS_ALL;
5498 	} else
5499 		old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
5500 	if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
5501 		vm_pager_page_unswapped(m);
5502 
5503 	return (old);
5504 }
5505 
5506 /*
5507  * Clear the given bits from the specified page's dirty field.
5508  */
5509 static __inline void
vm_page_clear_dirty_mask(vm_page_t m,vm_page_bits_t pagebits)5510 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
5511 {
5512 
5513 	vm_page_assert_busied(m);
5514 
5515 	/*
5516 	 * If the page is xbusied and not write mapped we are the
5517 	 * only thread that can modify dirty bits.  Otherwise, The pmap
5518 	 * layer can call vm_page_dirty() without holding a distinguished
5519 	 * lock.  The combination of page busy and atomic operations
5520 	 * suffice to guarantee consistency of the page dirty field.
5521 	 */
5522 	if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
5523 		m->dirty &= ~pagebits;
5524 	else
5525 		vm_page_bits_clear(m, &m->dirty, pagebits);
5526 }
5527 
5528 /*
5529  *	vm_page_set_validclean:
5530  *
5531  *	Sets portions of a page valid and clean.  The arguments are expected
5532  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5533  *	of any partial chunks touched by the range.  The invalid portion of
5534  *	such chunks will be zero'd.
5535  *
5536  *	(base + size) must be less then or equal to PAGE_SIZE.
5537  */
5538 void
vm_page_set_validclean(vm_page_t m,int base,int size)5539 vm_page_set_validclean(vm_page_t m, int base, int size)
5540 {
5541 	vm_page_bits_t oldvalid, pagebits;
5542 	int endoff, frag;
5543 
5544 	vm_page_assert_busied(m);
5545 	if (size == 0)	/* handle degenerate case */
5546 		return;
5547 
5548 	/*
5549 	 * If the base is not DEV_BSIZE aligned and the valid
5550 	 * bit is clear, we have to zero out a portion of the
5551 	 * first block.
5552 	 */
5553 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5554 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
5555 		pmap_zero_page_area(m, frag, base - frag);
5556 
5557 	/*
5558 	 * If the ending offset is not DEV_BSIZE aligned and the
5559 	 * valid bit is clear, we have to zero out a portion of
5560 	 * the last block.
5561 	 */
5562 	endoff = base + size;
5563 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5564 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
5565 		pmap_zero_page_area(m, endoff,
5566 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5567 
5568 	/*
5569 	 * Set valid, clear dirty bits.  If validating the entire
5570 	 * page we can safely clear the pmap modify bit.  We also
5571 	 * use this opportunity to clear the PGA_NOSYNC flag.  If a process
5572 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
5573 	 * be set again.
5574 	 *
5575 	 * We set valid bits inclusive of any overlap, but we can only
5576 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
5577 	 * the range.
5578 	 */
5579 	oldvalid = m->valid;
5580 	pagebits = vm_page_bits(base, size);
5581 	if (vm_page_xbusied(m))
5582 		m->valid |= pagebits;
5583 	else
5584 		vm_page_bits_set(m, &m->valid, pagebits);
5585 #if 0	/* NOT YET */
5586 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
5587 		frag = DEV_BSIZE - frag;
5588 		base += frag;
5589 		size -= frag;
5590 		if (size < 0)
5591 			size = 0;
5592 	}
5593 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
5594 #endif
5595 	if (base == 0 && size == PAGE_SIZE) {
5596 		/*
5597 		 * The page can only be modified within the pmap if it is
5598 		 * mapped, and it can only be mapped if it was previously
5599 		 * fully valid.
5600 		 */
5601 		if (oldvalid == VM_PAGE_BITS_ALL)
5602 			/*
5603 			 * Perform the pmap_clear_modify() first.  Otherwise,
5604 			 * a concurrent pmap operation, such as
5605 			 * pmap_protect(), could clear a modification in the
5606 			 * pmap and set the dirty field on the page before
5607 			 * pmap_clear_modify() had begun and after the dirty
5608 			 * field was cleared here.
5609 			 */
5610 			pmap_clear_modify(m);
5611 		m->dirty = 0;
5612 		vm_page_aflag_clear(m, PGA_NOSYNC);
5613 	} else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
5614 		m->dirty &= ~pagebits;
5615 	else
5616 		vm_page_clear_dirty_mask(m, pagebits);
5617 }
5618 
5619 void
vm_page_clear_dirty(vm_page_t m,int base,int size)5620 vm_page_clear_dirty(vm_page_t m, int base, int size)
5621 {
5622 
5623 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
5624 }
5625 
5626 /*
5627  *	vm_page_set_invalid:
5628  *
5629  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
5630  *	valid and dirty bits for the effected areas are cleared.
5631  */
5632 void
vm_page_set_invalid(vm_page_t m,int base,int size)5633 vm_page_set_invalid(vm_page_t m, int base, int size)
5634 {
5635 	vm_page_bits_t bits;
5636 	vm_object_t object;
5637 
5638 	/*
5639 	 * The object lock is required so that pages can't be mapped
5640 	 * read-only while we're in the process of invalidating them.
5641 	 */
5642 	object = m->object;
5643 	VM_OBJECT_ASSERT_WLOCKED(object);
5644 	vm_page_assert_busied(m);
5645 
5646 	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
5647 	    size >= object->un_pager.vnp.vnp_size)
5648 		bits = VM_PAGE_BITS_ALL;
5649 	else
5650 		bits = vm_page_bits(base, size);
5651 	if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
5652 		pmap_remove_all(m);
5653 	KASSERT((bits == 0 && vm_page_all_valid(m)) ||
5654 	    !pmap_page_is_mapped(m),
5655 	    ("vm_page_set_invalid: page %p is mapped", m));
5656 	if (vm_page_xbusied(m)) {
5657 		m->valid &= ~bits;
5658 		m->dirty &= ~bits;
5659 	} else {
5660 		vm_page_bits_clear(m, &m->valid, bits);
5661 		vm_page_bits_clear(m, &m->dirty, bits);
5662 	}
5663 }
5664 
5665 /*
5666  *	vm_page_invalid:
5667  *
5668  *	Invalidates the entire page.  The page must be busy, unmapped, and
5669  *	the enclosing object must be locked.  The object locks protects
5670  *	against concurrent read-only pmap enter which is done without
5671  *	busy.
5672  */
5673 void
vm_page_invalid(vm_page_t m)5674 vm_page_invalid(vm_page_t m)
5675 {
5676 
5677 	vm_page_assert_busied(m);
5678 	VM_OBJECT_ASSERT_WLOCKED(m->object);
5679 	MPASS(!pmap_page_is_mapped(m));
5680 
5681 	if (vm_page_xbusied(m))
5682 		m->valid = 0;
5683 	else
5684 		vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
5685 }
5686 
5687 /*
5688  * vm_page_zero_invalid()
5689  *
5690  *	The kernel assumes that the invalid portions of a page contain
5691  *	garbage, but such pages can be mapped into memory by user code.
5692  *	When this occurs, we must zero out the non-valid portions of the
5693  *	page so user code sees what it expects.
5694  *
5695  *	Pages are most often semi-valid when the end of a file is mapped
5696  *	into memory and the file's size is not page aligned.
5697  */
5698 void
vm_page_zero_invalid(vm_page_t m,boolean_t setvalid)5699 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
5700 {
5701 	int b;
5702 	int i;
5703 
5704 	/*
5705 	 * Scan the valid bits looking for invalid sections that
5706 	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
5707 	 * valid bit may be set ) have already been zeroed by
5708 	 * vm_page_set_validclean().
5709 	 */
5710 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
5711 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
5712 		    (m->valid & ((vm_page_bits_t)1 << i))) {
5713 			if (i > b) {
5714 				pmap_zero_page_area(m,
5715 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
5716 			}
5717 			b = i + 1;
5718 		}
5719 	}
5720 
5721 	/*
5722 	 * setvalid is TRUE when we can safely set the zero'd areas
5723 	 * as being valid.  We can do this if there are no cache consistency
5724 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
5725 	 */
5726 	if (setvalid)
5727 		vm_page_valid(m);
5728 }
5729 
5730 /*
5731  *	vm_page_is_valid:
5732  *
5733  *	Is (partial) page valid?  Note that the case where size == 0
5734  *	will return FALSE in the degenerate case where the page is
5735  *	entirely invalid, and TRUE otherwise.
5736  *
5737  *	Some callers envoke this routine without the busy lock held and
5738  *	handle races via higher level locks.  Typical callers should
5739  *	hold a busy lock to prevent invalidation.
5740  */
5741 int
vm_page_is_valid(vm_page_t m,int base,int size)5742 vm_page_is_valid(vm_page_t m, int base, int size)
5743 {
5744 	vm_page_bits_t bits;
5745 
5746 	bits = vm_page_bits(base, size);
5747 	return (vm_page_any_valid(m) && (m->valid & bits) == bits);
5748 }
5749 
5750 /*
5751  * Returns true if all of the specified predicates are true for the entire
5752  * (super)page and false otherwise.
5753  */
5754 bool
vm_page_ps_test(vm_page_t m,int psind,int flags,vm_page_t skip_m)5755 vm_page_ps_test(vm_page_t m, int psind, int flags, vm_page_t skip_m)
5756 {
5757 	vm_object_t object;
5758 	int i, npages;
5759 
5760 	object = m->object;
5761 	if (skip_m != NULL && skip_m->object != object)
5762 		return (false);
5763 	VM_OBJECT_ASSERT_LOCKED(object);
5764 	KASSERT(psind <= m->psind,
5765 	    ("psind %d > psind %d of m %p", psind, m->psind, m));
5766 	npages = atop(pagesizes[psind]);
5767 
5768 	/*
5769 	 * The physically contiguous pages that make up a superpage, i.e., a
5770 	 * page with a page size index ("psind") greater than zero, will
5771 	 * occupy adjacent entries in vm_page_array[].
5772 	 */
5773 	for (i = 0; i < npages; i++) {
5774 		/* Always test object consistency, including "skip_m". */
5775 		if (m[i].object != object)
5776 			return (false);
5777 		if (&m[i] == skip_m)
5778 			continue;
5779 		if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
5780 			return (false);
5781 		if ((flags & PS_ALL_DIRTY) != 0) {
5782 			/*
5783 			 * Calling vm_page_test_dirty() or pmap_is_modified()
5784 			 * might stop this case from spuriously returning
5785 			 * "false".  However, that would require a write lock
5786 			 * on the object containing "m[i]".
5787 			 */
5788 			if (m[i].dirty != VM_PAGE_BITS_ALL)
5789 				return (false);
5790 		}
5791 		if ((flags & PS_ALL_VALID) != 0 &&
5792 		    m[i].valid != VM_PAGE_BITS_ALL)
5793 			return (false);
5794 	}
5795 	return (true);
5796 }
5797 
5798 /*
5799  * Set the page's dirty bits if the page is modified.
5800  */
5801 void
vm_page_test_dirty(vm_page_t m)5802 vm_page_test_dirty(vm_page_t m)
5803 {
5804 
5805 	vm_page_assert_busied(m);
5806 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
5807 		vm_page_dirty(m);
5808 }
5809 
5810 void
vm_page_valid(vm_page_t m)5811 vm_page_valid(vm_page_t m)
5812 {
5813 
5814 	vm_page_assert_busied(m);
5815 	if (vm_page_xbusied(m))
5816 		m->valid = VM_PAGE_BITS_ALL;
5817 	else
5818 		vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
5819 }
5820 
5821 void
vm_page_lock_KBI(vm_page_t m,const char * file,int line)5822 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
5823 {
5824 
5825 	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
5826 }
5827 
5828 void
vm_page_unlock_KBI(vm_page_t m,const char * file,int line)5829 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
5830 {
5831 
5832 	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
5833 }
5834 
5835 int
vm_page_trylock_KBI(vm_page_t m,const char * file,int line)5836 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
5837 {
5838 
5839 	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
5840 }
5841 
5842 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
5843 void
vm_page_assert_locked_KBI(vm_page_t m,const char * file,int line)5844 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
5845 {
5846 
5847 	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
5848 }
5849 
5850 void
vm_page_lock_assert_KBI(vm_page_t m,int a,const char * file,int line)5851 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
5852 {
5853 
5854 	mtx_assert_(vm_page_lockptr(m), a, file, line);
5855 }
5856 #endif
5857 
5858 #ifdef INVARIANTS
5859 void
vm_page_object_busy_assert(vm_page_t m)5860 vm_page_object_busy_assert(vm_page_t m)
5861 {
5862 
5863 	/*
5864 	 * Certain of the page's fields may only be modified by the
5865 	 * holder of a page or object busy.
5866 	 */
5867 	if (m->object != NULL && !vm_page_busied(m))
5868 		VM_OBJECT_ASSERT_BUSY(m->object);
5869 }
5870 
5871 void
vm_page_assert_pga_writeable(vm_page_t m,uint16_t bits)5872 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
5873 {
5874 
5875 	if ((bits & PGA_WRITEABLE) == 0)
5876 		return;
5877 
5878 	/*
5879 	 * The PGA_WRITEABLE flag can only be set if the page is
5880 	 * managed, is exclusively busied or the object is locked.
5881 	 * Currently, this flag is only set by pmap_enter().
5882 	 */
5883 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5884 	    ("PGA_WRITEABLE on unmanaged page"));
5885 	if (!vm_page_xbusied(m))
5886 		VM_OBJECT_ASSERT_BUSY(m->object);
5887 }
5888 #endif
5889 
5890 #include "opt_ddb.h"
5891 #ifdef DDB
5892 #include <sys/kernel.h>
5893 
5894 #include <ddb/ddb.h>
5895 
DB_SHOW_COMMAND_FLAGS(page,vm_page_print_page_info,DB_CMD_MEMSAFE)5896 DB_SHOW_COMMAND_FLAGS(page, vm_page_print_page_info, DB_CMD_MEMSAFE)
5897 {
5898 
5899 	db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5900 	db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5901 	db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5902 	db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5903 	db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5904 	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5905 	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5906 	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5907 	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5908 }
5909 
DB_SHOW_COMMAND_FLAGS(pageq,vm_page_print_pageq_info,DB_CMD_MEMSAFE)5910 DB_SHOW_COMMAND_FLAGS(pageq, vm_page_print_pageq_info, DB_CMD_MEMSAFE)
5911 {
5912 	int dom;
5913 
5914 	db_printf("pq_free %d\n", vm_free_count());
5915 	for (dom = 0; dom < vm_ndomains; dom++) {
5916 		db_printf(
5917     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5918 		    dom,
5919 		    vm_dom[dom].vmd_page_count,
5920 		    vm_dom[dom].vmd_free_count,
5921 		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5922 		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5923 		    vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5924 		    vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5925 	}
5926 }
5927 
DB_SHOW_COMMAND(pginfo,vm_page_print_pginfo)5928 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5929 {
5930 	vm_page_t m;
5931 	boolean_t phys, virt;
5932 
5933 	if (!have_addr) {
5934 		db_printf("show pginfo addr\n");
5935 		return;
5936 	}
5937 
5938 	phys = strchr(modif, 'p') != NULL;
5939 	virt = strchr(modif, 'v') != NULL;
5940 	if (virt)
5941 		m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5942 	else if (phys)
5943 		m = PHYS_TO_VM_PAGE(addr);
5944 	else
5945 		m = (vm_page_t)addr;
5946 	db_printf(
5947     "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n"
5948     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5949 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5950 	    m->a.queue, m->ref_count, m->a.flags, m->oflags,
5951 	    m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
5952 }
5953 #endif /* DDB */
5954