1 /*-
2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991 Regents of the University of California.
5 * All rights reserved.
6 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * The Mach Operating System project at Carnegie-Mellon University.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 */
35
36 /*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
55 * School of Computer Science
56 * Carnegie Mellon University
57 * Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63 /*
64 * Resident memory management module.
65 */
66
67 #include <sys/cdefs.h>
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/counter.h>
73 #include <sys/domainset.h>
74 #include <sys/kernel.h>
75 #include <sys/limits.h>
76 #include <sys/linker.h>
77 #include <sys/lock.h>
78 #include <sys/malloc.h>
79 #include <sys/mman.h>
80 #include <sys/msgbuf.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>
83 #include <sys/rwlock.h>
84 #include <sys/sleepqueue.h>
85 #include <sys/sbuf.h>
86 #include <sys/sched.h>
87 #include <sys/smp.h>
88 #include <sys/sysctl.h>
89 #include <sys/vmmeter.h>
90 #include <sys/vnode.h>
91
92 #include <vm/vm.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_param.h>
95 #include <vm/vm_domainset.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_phys.h>
102 #include <vm/vm_pagequeue.h>
103 #include <vm/vm_pager.h>
104 #include <vm/vm_radix.h>
105 #include <vm/vm_reserv.h>
106 #include <vm/vm_extern.h>
107 #include <vm/vm_dumpset.h>
108 #include <vm/uma.h>
109 #include <vm/uma_int.h>
110
111 #include <machine/md_var.h>
112
113 struct vm_domain vm_dom[MAXMEMDOM];
114
115 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
116
117 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
118
119 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
120 /* The following fields are protected by the domainset lock. */
121 domainset_t __exclusive_cache_line vm_min_domains;
122 domainset_t __exclusive_cache_line vm_severe_domains;
123 static int vm_min_waiters;
124 static int vm_severe_waiters;
125 static int vm_pageproc_waiters;
126
127 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
128 "VM page statistics");
129
130 static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries);
131 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries,
132 CTLFLAG_RD, &pqstate_commit_retries,
133 "Number of failed per-page atomic queue state updates");
134
135 static COUNTER_U64_DEFINE_EARLY(queue_ops);
136 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
137 CTLFLAG_RD, &queue_ops,
138 "Number of batched queue operations");
139
140 static COUNTER_U64_DEFINE_EARLY(queue_nops);
141 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
142 CTLFLAG_RD, &queue_nops,
143 "Number of batched queue operations with no effects");
144
145 /*
146 * bogus page -- for I/O to/from partially complete buffers,
147 * or for paging into sparsely invalid regions.
148 */
149 vm_page_t bogus_page;
150
151 vm_page_t vm_page_array;
152 long vm_page_array_size;
153 long first_page;
154
155 struct bitset *vm_page_dump;
156 long vm_page_dump_pages;
157
158 static TAILQ_HEAD(, vm_page) blacklist_head;
159 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
160 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
161 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
162
163 static uma_zone_t fakepg_zone;
164
165 static vm_page_t vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
166 int req, vm_page_t mpred);
167 static void vm_page_alloc_check(vm_page_t m);
168 static vm_page_t vm_page_alloc_nofree_domain(int domain, int req);
169 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
170 vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked);
171 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
172 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
173 static bool vm_page_free_prep(vm_page_t m);
174 static void vm_page_free_toq(vm_page_t m);
175 static void vm_page_init(void *dummy);
176 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
177 vm_pindex_t pindex, vm_page_t mpred);
178 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
179 vm_page_t mpred);
180 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue,
181 const uint16_t nflag);
182 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
183 vm_page_t m_run, vm_paddr_t high);
184 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse);
185 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
186 int req);
187 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
188 int flags);
189 static void vm_page_zone_release(void *arg, void **store, int cnt);
190
191 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
192
193 static void
vm_page_init(void * dummy)194 vm_page_init(void *dummy)
195 {
196
197 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
198 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
199 bogus_page = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_NOFREE);
200 }
201
202 static int pgcache_zone_max_pcpu;
203 SYSCTL_INT(_vm, OID_AUTO, pgcache_zone_max_pcpu,
204 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pgcache_zone_max_pcpu, 0,
205 "Per-CPU page cache size");
206
207 /*
208 * The cache page zone is initialized later since we need to be able to allocate
209 * pages before UMA is fully initialized.
210 */
211 static void
vm_page_init_cache_zones(void * dummy __unused)212 vm_page_init_cache_zones(void *dummy __unused)
213 {
214 struct vm_domain *vmd;
215 struct vm_pgcache *pgcache;
216 int cache, domain, maxcache, pool;
217
218 TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &pgcache_zone_max_pcpu);
219 maxcache = pgcache_zone_max_pcpu * mp_ncpus;
220 for (domain = 0; domain < vm_ndomains; domain++) {
221 vmd = VM_DOMAIN(domain);
222 for (pool = 0; pool < VM_NFREEPOOL; pool++) {
223 pgcache = &vmd->vmd_pgcache[pool];
224 pgcache->domain = domain;
225 pgcache->pool = pool;
226 pgcache->zone = uma_zcache_create("vm pgcache",
227 PAGE_SIZE, NULL, NULL, NULL, NULL,
228 vm_page_zone_import, vm_page_zone_release, pgcache,
229 UMA_ZONE_VM);
230
231 /*
232 * Limit each pool's zone to 0.1% of the pages in the
233 * domain.
234 */
235 cache = maxcache != 0 ? maxcache :
236 vmd->vmd_page_count / 1000;
237 uma_zone_set_maxcache(pgcache->zone, cache);
238 }
239 }
240 }
241 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
242
243 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
244 #if PAGE_SIZE == 32768
245 #ifdef CTASSERT
246 CTASSERT(sizeof(u_long) >= 8);
247 #endif
248 #endif
249
250 /*
251 * vm_set_page_size:
252 *
253 * Sets the page size, perhaps based upon the memory
254 * size. Must be called before any use of page-size
255 * dependent functions.
256 */
257 void
vm_set_page_size(void)258 vm_set_page_size(void)
259 {
260 if (vm_cnt.v_page_size == 0)
261 vm_cnt.v_page_size = PAGE_SIZE;
262 if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
263 panic("vm_set_page_size: page size not a power of two");
264 }
265
266 /*
267 * vm_page_blacklist_next:
268 *
269 * Find the next entry in the provided string of blacklist
270 * addresses. Entries are separated by space, comma, or newline.
271 * If an invalid integer is encountered then the rest of the
272 * string is skipped. Updates the list pointer to the next
273 * character, or NULL if the string is exhausted or invalid.
274 */
275 static vm_paddr_t
vm_page_blacklist_next(char ** list,char * end)276 vm_page_blacklist_next(char **list, char *end)
277 {
278 vm_paddr_t bad;
279 char *cp, *pos;
280
281 if (list == NULL || *list == NULL)
282 return (0);
283 if (**list =='\0') {
284 *list = NULL;
285 return (0);
286 }
287
288 /*
289 * If there's no end pointer then the buffer is coming from
290 * the kenv and we know it's null-terminated.
291 */
292 if (end == NULL)
293 end = *list + strlen(*list);
294
295 /* Ensure that strtoq() won't walk off the end */
296 if (*end != '\0') {
297 if (*end == '\n' || *end == ' ' || *end == ',')
298 *end = '\0';
299 else {
300 printf("Blacklist not terminated, skipping\n");
301 *list = NULL;
302 return (0);
303 }
304 }
305
306 for (pos = *list; *pos != '\0'; pos = cp) {
307 bad = strtoq(pos, &cp, 0);
308 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
309 if (bad == 0) {
310 if (++cp < end)
311 continue;
312 else
313 break;
314 }
315 } else
316 break;
317 if (*cp == '\0' || ++cp >= end)
318 *list = NULL;
319 else
320 *list = cp;
321 return (trunc_page(bad));
322 }
323 printf("Garbage in RAM blacklist, skipping\n");
324 *list = NULL;
325 return (0);
326 }
327
328 bool
vm_page_blacklist_add(vm_paddr_t pa,bool verbose)329 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
330 {
331 struct vm_domain *vmd;
332 vm_page_t m;
333 bool found;
334
335 m = vm_phys_paddr_to_vm_page(pa);
336 if (m == NULL)
337 return (true); /* page does not exist, no failure */
338
339 vmd = VM_DOMAIN(vm_phys_domain(pa));
340 vm_domain_free_lock(vmd);
341 found = vm_phys_unfree_page(pa);
342 vm_domain_free_unlock(vmd);
343 if (found) {
344 vm_domain_freecnt_inc(vmd, -1);
345 TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
346 if (verbose)
347 printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
348 }
349 return (found);
350 }
351
352 /*
353 * vm_page_blacklist_check:
354 *
355 * Iterate through the provided string of blacklist addresses, pulling
356 * each entry out of the physical allocator free list and putting it
357 * onto a list for reporting via the vm.page_blacklist sysctl.
358 */
359 static void
vm_page_blacklist_check(char * list,char * end)360 vm_page_blacklist_check(char *list, char *end)
361 {
362 vm_paddr_t pa;
363 char *next;
364
365 next = list;
366 while (next != NULL) {
367 if ((pa = vm_page_blacklist_next(&next, end)) == 0)
368 continue;
369 vm_page_blacklist_add(pa, bootverbose);
370 }
371 }
372
373 /*
374 * vm_page_blacklist_load:
375 *
376 * Search for a special module named "ram_blacklist". It'll be a
377 * plain text file provided by the user via the loader directive
378 * of the same name.
379 */
380 static void
vm_page_blacklist_load(char ** list,char ** end)381 vm_page_blacklist_load(char **list, char **end)
382 {
383 void *mod;
384 u_char *ptr;
385 u_int len;
386
387 mod = NULL;
388 ptr = NULL;
389
390 mod = preload_search_by_type("ram_blacklist");
391 if (mod != NULL) {
392 ptr = preload_fetch_addr(mod);
393 len = preload_fetch_size(mod);
394 }
395 *list = ptr;
396 if (ptr != NULL)
397 *end = ptr + len;
398 else
399 *end = NULL;
400 return;
401 }
402
403 static int
sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)404 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
405 {
406 vm_page_t m;
407 struct sbuf sbuf;
408 int error, first;
409
410 first = 1;
411 error = sysctl_wire_old_buffer(req, 0);
412 if (error != 0)
413 return (error);
414 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
415 TAILQ_FOREACH(m, &blacklist_head, listq) {
416 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
417 (uintmax_t)m->phys_addr);
418 first = 0;
419 }
420 error = sbuf_finish(&sbuf);
421 sbuf_delete(&sbuf);
422 return (error);
423 }
424
425 /*
426 * Initialize a dummy page for use in scans of the specified paging queue.
427 * In principle, this function only needs to set the flag PG_MARKER.
428 * Nonetheless, it write busies the page as a safety precaution.
429 */
430 void
vm_page_init_marker(vm_page_t marker,int queue,uint16_t aflags)431 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
432 {
433
434 bzero(marker, sizeof(*marker));
435 marker->flags = PG_MARKER;
436 marker->a.flags = aflags;
437 marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
438 marker->a.queue = queue;
439 }
440
441 static void
vm_page_domain_init(int domain)442 vm_page_domain_init(int domain)
443 {
444 struct vm_domain *vmd;
445 struct vm_pagequeue *pq;
446 int i;
447
448 vmd = VM_DOMAIN(domain);
449 bzero(vmd, sizeof(*vmd));
450 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
451 "vm inactive pagequeue";
452 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
453 "vm active pagequeue";
454 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
455 "vm laundry pagequeue";
456 *__DECONST(const char **,
457 &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
458 "vm unswappable pagequeue";
459 vmd->vmd_domain = domain;
460 vmd->vmd_page_count = 0;
461 vmd->vmd_free_count = 0;
462 vmd->vmd_segs = 0;
463 vmd->vmd_oom = FALSE;
464 for (i = 0; i < PQ_COUNT; i++) {
465 pq = &vmd->vmd_pagequeues[i];
466 TAILQ_INIT(&pq->pq_pl);
467 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
468 MTX_DEF | MTX_DUPOK);
469 pq->pq_pdpages = 0;
470 vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
471 }
472 mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
473 mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
474 snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
475
476 /*
477 * inacthead is used to provide FIFO ordering for LRU-bypassing
478 * insertions.
479 */
480 vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
481 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
482 &vmd->vmd_inacthead, plinks.q);
483
484 /*
485 * The clock pages are used to implement active queue scanning without
486 * requeues. Scans start at clock[0], which is advanced after the scan
487 * ends. When the two clock hands meet, they are reset and scanning
488 * resumes from the head of the queue.
489 */
490 vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
491 vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
492 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
493 &vmd->vmd_clock[0], plinks.q);
494 TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
495 &vmd->vmd_clock[1], plinks.q);
496 }
497
498 /*
499 * Initialize a physical page in preparation for adding it to the free
500 * lists.
501 */
502 void
vm_page_init_page(vm_page_t m,vm_paddr_t pa,int segind,int pool)503 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind, int pool)
504 {
505 m->object = NULL;
506 m->ref_count = 0;
507 m->busy_lock = VPB_FREED;
508 m->flags = m->a.flags = 0;
509 m->phys_addr = pa;
510 m->a.queue = PQ_NONE;
511 m->psind = 0;
512 m->segind = segind;
513 m->order = VM_NFREEORDER;
514 m->pool = pool;
515 m->valid = m->dirty = 0;
516 pmap_page_init(m);
517 }
518
519 #ifndef PMAP_HAS_PAGE_ARRAY
520 static vm_paddr_t
vm_page_array_alloc(vm_offset_t * vaddr,vm_paddr_t end,vm_paddr_t page_range)521 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
522 {
523 vm_paddr_t new_end;
524
525 /*
526 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
527 * However, because this page is allocated from KVM, out-of-bounds
528 * accesses using the direct map will not be trapped.
529 */
530 *vaddr += PAGE_SIZE;
531
532 /*
533 * Allocate physical memory for the page structures, and map it.
534 */
535 new_end = trunc_page(end - page_range * sizeof(struct vm_page));
536 vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
537 VM_PROT_READ | VM_PROT_WRITE);
538 vm_page_array_size = page_range;
539
540 return (new_end);
541 }
542 #endif
543
544 /*
545 * vm_page_startup:
546 *
547 * Initializes the resident memory module. Allocates physical memory for
548 * bootstrapping UMA and some data structures that are used to manage
549 * physical pages. Initializes these structures, and populates the free
550 * page queues.
551 */
552 vm_offset_t
vm_page_startup(vm_offset_t vaddr)553 vm_page_startup(vm_offset_t vaddr)
554 {
555 struct vm_phys_seg *seg;
556 struct vm_domain *vmd;
557 vm_page_t m;
558 char *list, *listend;
559 vm_paddr_t end, high_avail, low_avail, new_end, size;
560 vm_paddr_t page_range __unused;
561 vm_paddr_t last_pa, pa, startp, endp;
562 u_long pagecount;
563 #if MINIDUMP_PAGE_TRACKING
564 u_long vm_page_dump_size;
565 #endif
566 int biggestone, i, segind;
567 #ifdef WITNESS
568 vm_offset_t mapped;
569 int witness_size;
570 #endif
571 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
572 long ii;
573 #endif
574 #ifdef VM_FREEPOOL_LAZYINIT
575 int lazyinit;
576 #endif
577
578 vaddr = round_page(vaddr);
579
580 vm_phys_early_startup();
581 biggestone = vm_phys_avail_largest();
582 end = phys_avail[biggestone+1];
583
584 /*
585 * Initialize the page and queue locks.
586 */
587 mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
588 for (i = 0; i < PA_LOCK_COUNT; i++)
589 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
590 for (i = 0; i < vm_ndomains; i++)
591 vm_page_domain_init(i);
592
593 new_end = end;
594 #ifdef WITNESS
595 witness_size = round_page(witness_startup_count());
596 new_end -= witness_size;
597 mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
598 VM_PROT_READ | VM_PROT_WRITE);
599 bzero((void *)mapped, witness_size);
600 witness_startup((void *)mapped);
601 #endif
602
603 #if MINIDUMP_PAGE_TRACKING
604 /*
605 * Allocate a bitmap to indicate that a random physical page
606 * needs to be included in a minidump.
607 *
608 * The amd64 port needs this to indicate which direct map pages
609 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
610 *
611 * However, i386 still needs this workspace internally within the
612 * minidump code. In theory, they are not needed on i386, but are
613 * included should the sf_buf code decide to use them.
614 */
615 last_pa = 0;
616 vm_page_dump_pages = 0;
617 for (i = 0; dump_avail[i + 1] != 0; i += 2) {
618 vm_page_dump_pages += howmany(dump_avail[i + 1], PAGE_SIZE) -
619 dump_avail[i] / PAGE_SIZE;
620 if (dump_avail[i + 1] > last_pa)
621 last_pa = dump_avail[i + 1];
622 }
623 vm_page_dump_size = round_page(BITSET_SIZE(vm_page_dump_pages));
624 new_end -= vm_page_dump_size;
625 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
626 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
627 bzero((void *)vm_page_dump, vm_page_dump_size);
628 #if MINIDUMP_STARTUP_PAGE_TRACKING
629 /*
630 * Include the UMA bootstrap pages, witness pages and vm_page_dump
631 * in a crash dump. When pmap_map() uses the direct map, they are
632 * not automatically included.
633 */
634 for (pa = new_end; pa < end; pa += PAGE_SIZE)
635 dump_add_page(pa);
636 #endif
637 #else
638 (void)last_pa;
639 #endif
640 phys_avail[biggestone + 1] = new_end;
641 #ifdef __amd64__
642 /*
643 * Request that the physical pages underlying the message buffer be
644 * included in a crash dump. Since the message buffer is accessed
645 * through the direct map, they are not automatically included.
646 */
647 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
648 last_pa = pa + round_page(msgbufsize);
649 while (pa < last_pa) {
650 dump_add_page(pa);
651 pa += PAGE_SIZE;
652 }
653 #endif
654 /*
655 * Compute the number of pages of memory that will be available for
656 * use, taking into account the overhead of a page structure per page.
657 * In other words, solve
658 * "available physical memory" - round_page(page_range *
659 * sizeof(struct vm_page)) = page_range * PAGE_SIZE
660 * for page_range.
661 */
662 low_avail = phys_avail[0];
663 high_avail = phys_avail[1];
664 for (i = 0; i < vm_phys_nsegs; i++) {
665 if (vm_phys_segs[i].start < low_avail)
666 low_avail = vm_phys_segs[i].start;
667 if (vm_phys_segs[i].end > high_avail)
668 high_avail = vm_phys_segs[i].end;
669 }
670 /* Skip the first chunk. It is already accounted for. */
671 for (i = 2; phys_avail[i + 1] != 0; i += 2) {
672 if (phys_avail[i] < low_avail)
673 low_avail = phys_avail[i];
674 if (phys_avail[i + 1] > high_avail)
675 high_avail = phys_avail[i + 1];
676 }
677 first_page = low_avail / PAGE_SIZE;
678 #ifdef VM_PHYSSEG_SPARSE
679 size = 0;
680 for (i = 0; i < vm_phys_nsegs; i++)
681 size += vm_phys_segs[i].end - vm_phys_segs[i].start;
682 for (i = 0; phys_avail[i + 1] != 0; i += 2)
683 size += phys_avail[i + 1] - phys_avail[i];
684 #elif defined(VM_PHYSSEG_DENSE)
685 size = high_avail - low_avail;
686 #else
687 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
688 #endif
689
690 #ifdef PMAP_HAS_PAGE_ARRAY
691 pmap_page_array_startup(size / PAGE_SIZE);
692 biggestone = vm_phys_avail_largest();
693 end = new_end = phys_avail[biggestone + 1];
694 #else
695 #ifdef VM_PHYSSEG_DENSE
696 /*
697 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
698 * the overhead of a page structure per page only if vm_page_array is
699 * allocated from the last physical memory chunk. Otherwise, we must
700 * allocate page structures representing the physical memory
701 * underlying vm_page_array, even though they will not be used.
702 */
703 if (new_end != high_avail)
704 page_range = size / PAGE_SIZE;
705 else
706 #endif
707 {
708 page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
709
710 /*
711 * If the partial bytes remaining are large enough for
712 * a page (PAGE_SIZE) without a corresponding
713 * 'struct vm_page', then new_end will contain an
714 * extra page after subtracting the length of the VM
715 * page array. Compensate by subtracting an extra
716 * page from new_end.
717 */
718 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
719 if (new_end == high_avail)
720 high_avail -= PAGE_SIZE;
721 new_end -= PAGE_SIZE;
722 }
723 }
724 end = new_end;
725 new_end = vm_page_array_alloc(&vaddr, end, page_range);
726 #endif
727
728 #if VM_NRESERVLEVEL > 0
729 /*
730 * Allocate physical memory for the reservation management system's
731 * data structures, and map it.
732 */
733 new_end = vm_reserv_startup(&vaddr, new_end);
734 #endif
735 #if MINIDUMP_PAGE_TRACKING && MINIDUMP_STARTUP_PAGE_TRACKING
736 /*
737 * Include vm_page_array and vm_reserv_array in a crash dump.
738 */
739 for (pa = new_end; pa < end; pa += PAGE_SIZE)
740 dump_add_page(pa);
741 #endif
742 phys_avail[biggestone + 1] = new_end;
743
744 /*
745 * Add physical memory segments corresponding to the available
746 * physical pages.
747 */
748 for (i = 0; phys_avail[i + 1] != 0; i += 2)
749 if (vm_phys_avail_size(i) != 0)
750 vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
751
752 /*
753 * Initialize the physical memory allocator.
754 */
755 vm_phys_init();
756
757 #ifdef VM_FREEPOOL_LAZYINIT
758 lazyinit = 1;
759 TUNABLE_INT_FETCH("debug.vm.lazy_page_init", &lazyinit);
760 #endif
761
762 /*
763 * Initialize the page structures and add every available page to the
764 * physical memory allocator's free lists.
765 */
766 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
767 for (ii = 0; ii < vm_page_array_size; ii++) {
768 m = &vm_page_array[ii];
769 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0,
770 VM_FREEPOOL_DEFAULT);
771 m->flags = PG_FICTITIOUS;
772 }
773 #endif
774 vm_cnt.v_page_count = 0;
775 for (segind = 0; segind < vm_phys_nsegs; segind++) {
776 seg = &vm_phys_segs[segind];
777
778 /*
779 * If lazy vm_page initialization is not enabled, simply
780 * initialize all of the pages in the segment. Otherwise, we
781 * only initialize:
782 * 1. Pages not covered by phys_avail[], since they might be
783 * freed to the allocator at some future point, e.g., by
784 * kmem_bootstrap_free().
785 * 2. The first page of each run of free pages handed to the
786 * vm_phys allocator, which in turn defers initialization
787 * of pages until they are needed.
788 * This avoids blocking the boot process for long periods, which
789 * may be relevant for VMs (which ought to boot as quickly as
790 * possible) and/or systems with large amounts of physical
791 * memory.
792 */
793 #ifdef VM_FREEPOOL_LAZYINIT
794 if (lazyinit) {
795 startp = seg->start;
796 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
797 if (startp >= seg->end)
798 break;
799
800 if (phys_avail[i + 1] < startp)
801 continue;
802 if (phys_avail[i] <= startp) {
803 startp = phys_avail[i + 1];
804 continue;
805 }
806
807 m = vm_phys_seg_paddr_to_vm_page(seg, startp);
808 for (endp = MIN(phys_avail[i], seg->end);
809 startp < endp; startp += PAGE_SIZE, m++) {
810 vm_page_init_page(m, startp, segind,
811 VM_FREEPOOL_DEFAULT);
812 }
813 }
814 } else
815 #endif
816 for (m = seg->first_page, pa = seg->start;
817 pa < seg->end; m++, pa += PAGE_SIZE) {
818 vm_page_init_page(m, pa, segind,
819 VM_FREEPOOL_DEFAULT);
820 }
821
822 /*
823 * Add the segment's pages that are covered by one of
824 * phys_avail's ranges to the free lists.
825 */
826 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
827 if (seg->end <= phys_avail[i] ||
828 seg->start >= phys_avail[i + 1])
829 continue;
830
831 startp = MAX(seg->start, phys_avail[i]);
832 endp = MIN(seg->end, phys_avail[i + 1]);
833 pagecount = (u_long)atop(endp - startp);
834 if (pagecount == 0)
835 continue;
836
837 m = vm_phys_seg_paddr_to_vm_page(seg, startp);
838 #ifdef VM_FREEPOOL_LAZYINIT
839 if (lazyinit) {
840 vm_page_init_page(m, startp, segind,
841 VM_FREEPOOL_LAZYINIT);
842 }
843 #endif
844 vmd = VM_DOMAIN(seg->domain);
845 vm_domain_free_lock(vmd);
846 vm_phys_enqueue_contig(m, pagecount);
847 vm_domain_free_unlock(vmd);
848 vm_domain_freecnt_inc(vmd, pagecount);
849 vm_cnt.v_page_count += (u_int)pagecount;
850 vmd->vmd_page_count += (u_int)pagecount;
851 vmd->vmd_segs |= 1UL << segind;
852 }
853 }
854
855 /*
856 * Remove blacklisted pages from the physical memory allocator.
857 */
858 TAILQ_INIT(&blacklist_head);
859 vm_page_blacklist_load(&list, &listend);
860 vm_page_blacklist_check(list, listend);
861
862 list = kern_getenv("vm.blacklist");
863 vm_page_blacklist_check(list, NULL);
864
865 freeenv(list);
866 #if VM_NRESERVLEVEL > 0
867 /*
868 * Initialize the reservation management system.
869 */
870 vm_reserv_init();
871 #endif
872
873 return (vaddr);
874 }
875
876 void
vm_page_reference(vm_page_t m)877 vm_page_reference(vm_page_t m)
878 {
879
880 vm_page_aflag_set(m, PGA_REFERENCED);
881 }
882
883 /*
884 * vm_page_trybusy
885 *
886 * Helper routine for grab functions to trylock busy.
887 *
888 * Returns true on success and false on failure.
889 */
890 static bool
vm_page_trybusy(vm_page_t m,int allocflags)891 vm_page_trybusy(vm_page_t m, int allocflags)
892 {
893
894 if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
895 return (vm_page_trysbusy(m));
896 else
897 return (vm_page_tryxbusy(m));
898 }
899
900 /*
901 * vm_page_tryacquire
902 *
903 * Helper routine for grab functions to trylock busy and wire.
904 *
905 * Returns true on success and false on failure.
906 */
907 static inline bool
vm_page_tryacquire(vm_page_t m,int allocflags)908 vm_page_tryacquire(vm_page_t m, int allocflags)
909 {
910 bool locked;
911
912 locked = vm_page_trybusy(m, allocflags);
913 if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
914 vm_page_wire(m);
915 return (locked);
916 }
917
918 /*
919 * vm_page_busy_acquire:
920 *
921 * Acquire the busy lock as described by VM_ALLOC_* flags. Will loop
922 * and drop the object lock if necessary.
923 */
924 bool
vm_page_busy_acquire(vm_page_t m,int allocflags)925 vm_page_busy_acquire(vm_page_t m, int allocflags)
926 {
927 vm_object_t obj;
928 bool locked;
929
930 /*
931 * The page-specific object must be cached because page
932 * identity can change during the sleep, causing the
933 * re-lock of a different object.
934 * It is assumed that a reference to the object is already
935 * held by the callers.
936 */
937 obj = atomic_load_ptr(&m->object);
938 for (;;) {
939 if (vm_page_tryacquire(m, allocflags))
940 return (true);
941 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
942 return (false);
943 if (obj != NULL)
944 locked = VM_OBJECT_WOWNED(obj);
945 else
946 locked = false;
947 MPASS(locked || vm_page_wired(m));
948 if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags,
949 locked) && locked)
950 VM_OBJECT_WLOCK(obj);
951 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
952 return (false);
953 KASSERT(m->object == obj || m->object == NULL,
954 ("vm_page_busy_acquire: page %p does not belong to %p",
955 m, obj));
956 }
957 }
958
959 /*
960 * vm_page_busy_downgrade:
961 *
962 * Downgrade an exclusive busy page into a single shared busy page.
963 */
964 void
vm_page_busy_downgrade(vm_page_t m)965 vm_page_busy_downgrade(vm_page_t m)
966 {
967 u_int x;
968
969 vm_page_assert_xbusied(m);
970
971 x = vm_page_busy_fetch(m);
972 for (;;) {
973 if (atomic_fcmpset_rel_int(&m->busy_lock,
974 &x, VPB_SHARERS_WORD(1)))
975 break;
976 }
977 if ((x & VPB_BIT_WAITERS) != 0)
978 wakeup(m);
979 }
980
981 /*
982 *
983 * vm_page_busy_tryupgrade:
984 *
985 * Attempt to upgrade a single shared busy into an exclusive busy.
986 */
987 int
vm_page_busy_tryupgrade(vm_page_t m)988 vm_page_busy_tryupgrade(vm_page_t m)
989 {
990 u_int ce, x;
991
992 vm_page_assert_sbusied(m);
993
994 x = vm_page_busy_fetch(m);
995 ce = VPB_CURTHREAD_EXCLUSIVE;
996 for (;;) {
997 if (VPB_SHARERS(x) > 1)
998 return (0);
999 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
1000 ("vm_page_busy_tryupgrade: invalid lock state"));
1001 if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
1002 ce | (x & VPB_BIT_WAITERS)))
1003 continue;
1004 return (1);
1005 }
1006 }
1007
1008 /*
1009 * vm_page_sbusied:
1010 *
1011 * Return a positive value if the page is shared busied, 0 otherwise.
1012 */
1013 int
vm_page_sbusied(vm_page_t m)1014 vm_page_sbusied(vm_page_t m)
1015 {
1016 u_int x;
1017
1018 x = vm_page_busy_fetch(m);
1019 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
1020 }
1021
1022 /*
1023 * vm_page_sunbusy:
1024 *
1025 * Shared unbusy a page.
1026 */
1027 void
vm_page_sunbusy(vm_page_t m)1028 vm_page_sunbusy(vm_page_t m)
1029 {
1030 u_int x;
1031
1032 vm_page_assert_sbusied(m);
1033
1034 x = vm_page_busy_fetch(m);
1035 for (;;) {
1036 KASSERT(x != VPB_FREED,
1037 ("vm_page_sunbusy: Unlocking freed page."));
1038 if (VPB_SHARERS(x) > 1) {
1039 if (atomic_fcmpset_int(&m->busy_lock, &x,
1040 x - VPB_ONE_SHARER))
1041 break;
1042 continue;
1043 }
1044 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
1045 ("vm_page_sunbusy: invalid lock state"));
1046 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1047 continue;
1048 if ((x & VPB_BIT_WAITERS) == 0)
1049 break;
1050 wakeup(m);
1051 break;
1052 }
1053 }
1054
1055 /*
1056 * vm_page_busy_sleep:
1057 *
1058 * Sleep if the page is busy, using the page pointer as wchan.
1059 * This is used to implement the hard-path of the busying mechanism.
1060 *
1061 * If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1062 * will not sleep if the page is shared-busy.
1063 *
1064 * The object lock must be held on entry.
1065 *
1066 * Returns true if it slept and dropped the object lock, or false
1067 * if there was no sleep and the lock is still held.
1068 */
1069 bool
vm_page_busy_sleep(vm_page_t m,const char * wmesg,int allocflags)1070 vm_page_busy_sleep(vm_page_t m, const char *wmesg, int allocflags)
1071 {
1072 vm_object_t obj;
1073
1074 obj = m->object;
1075 VM_OBJECT_ASSERT_LOCKED(obj);
1076
1077 return (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, allocflags,
1078 true));
1079 }
1080
1081 /*
1082 * vm_page_busy_sleep_unlocked:
1083 *
1084 * Sleep if the page is busy, using the page pointer as wchan.
1085 * This is used to implement the hard-path of busying mechanism.
1086 *
1087 * If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1088 * will not sleep if the page is shared-busy.
1089 *
1090 * The object lock must not be held on entry. The operation will
1091 * return if the page changes identity.
1092 */
1093 void
vm_page_busy_sleep_unlocked(vm_object_t obj,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags)1094 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1095 const char *wmesg, int allocflags)
1096 {
1097 VM_OBJECT_ASSERT_UNLOCKED(obj);
1098
1099 (void)_vm_page_busy_sleep(obj, m, pindex, wmesg, allocflags, false);
1100 }
1101
1102 /*
1103 * _vm_page_busy_sleep:
1104 *
1105 * Internal busy sleep function. Verifies the page identity and
1106 * lockstate against parameters. Returns true if it sleeps and
1107 * false otherwise.
1108 *
1109 * allocflags uses VM_ALLOC_* flags to specify the lock required.
1110 *
1111 * If locked is true the lock will be dropped for any true returns
1112 * and held for any false returns.
1113 */
1114 static bool
_vm_page_busy_sleep(vm_object_t obj,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags,bool locked)1115 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1116 const char *wmesg, int allocflags, bool locked)
1117 {
1118 bool xsleep;
1119 u_int x;
1120
1121 /*
1122 * If the object is busy we must wait for that to drain to zero
1123 * before trying the page again.
1124 */
1125 if (obj != NULL && vm_object_busied(obj)) {
1126 if (locked)
1127 VM_OBJECT_DROP(obj);
1128 vm_object_busy_wait(obj, wmesg);
1129 return (true);
1130 }
1131
1132 if (!vm_page_busied(m))
1133 return (false);
1134
1135 xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0;
1136 sleepq_lock(m);
1137 x = vm_page_busy_fetch(m);
1138 do {
1139 /*
1140 * If the page changes objects or becomes unlocked we can
1141 * simply return.
1142 */
1143 if (x == VPB_UNBUSIED ||
1144 (xsleep && (x & VPB_BIT_SHARED) != 0) ||
1145 m->object != obj || m->pindex != pindex) {
1146 sleepq_release(m);
1147 return (false);
1148 }
1149 if ((x & VPB_BIT_WAITERS) != 0)
1150 break;
1151 } while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS));
1152 if (locked)
1153 VM_OBJECT_DROP(obj);
1154 DROP_GIANT();
1155 sleepq_add(m, NULL, wmesg, 0, 0);
1156 sleepq_wait(m, PVM);
1157 PICKUP_GIANT();
1158 return (true);
1159 }
1160
1161 /*
1162 * vm_page_trysbusy:
1163 *
1164 * Try to shared busy a page.
1165 * If the operation succeeds 1 is returned otherwise 0.
1166 * The operation never sleeps.
1167 */
1168 int
vm_page_trysbusy(vm_page_t m)1169 vm_page_trysbusy(vm_page_t m)
1170 {
1171 vm_object_t obj;
1172 u_int x;
1173
1174 obj = m->object;
1175 x = vm_page_busy_fetch(m);
1176 for (;;) {
1177 if ((x & VPB_BIT_SHARED) == 0)
1178 return (0);
1179 /*
1180 * Reduce the window for transient busies that will trigger
1181 * false negatives in vm_page_ps_test().
1182 */
1183 if (obj != NULL && vm_object_busied(obj))
1184 return (0);
1185 if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1186 x + VPB_ONE_SHARER))
1187 break;
1188 }
1189
1190 /* Refetch the object now that we're guaranteed that it is stable. */
1191 obj = m->object;
1192 if (obj != NULL && vm_object_busied(obj)) {
1193 vm_page_sunbusy(m);
1194 return (0);
1195 }
1196 return (1);
1197 }
1198
1199 /*
1200 * vm_page_tryxbusy:
1201 *
1202 * Try to exclusive busy a page.
1203 * If the operation succeeds 1 is returned otherwise 0.
1204 * The operation never sleeps.
1205 */
1206 int
vm_page_tryxbusy(vm_page_t m)1207 vm_page_tryxbusy(vm_page_t m)
1208 {
1209 vm_object_t obj;
1210
1211 if (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED,
1212 VPB_CURTHREAD_EXCLUSIVE) == 0)
1213 return (0);
1214
1215 obj = m->object;
1216 if (obj != NULL && vm_object_busied(obj)) {
1217 vm_page_xunbusy(m);
1218 return (0);
1219 }
1220 return (1);
1221 }
1222
1223 static void
vm_page_xunbusy_hard_tail(vm_page_t m)1224 vm_page_xunbusy_hard_tail(vm_page_t m)
1225 {
1226 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1227 /* Wake the waiter. */
1228 wakeup(m);
1229 }
1230
1231 /*
1232 * vm_page_xunbusy_hard:
1233 *
1234 * Called when unbusy has failed because there is a waiter.
1235 */
1236 void
vm_page_xunbusy_hard(vm_page_t m)1237 vm_page_xunbusy_hard(vm_page_t m)
1238 {
1239 vm_page_assert_xbusied(m);
1240 vm_page_xunbusy_hard_tail(m);
1241 }
1242
1243 void
vm_page_xunbusy_hard_unchecked(vm_page_t m)1244 vm_page_xunbusy_hard_unchecked(vm_page_t m)
1245 {
1246 vm_page_assert_xbusied_unchecked(m);
1247 vm_page_xunbusy_hard_tail(m);
1248 }
1249
1250 static void
vm_page_busy_free(vm_page_t m)1251 vm_page_busy_free(vm_page_t m)
1252 {
1253 u_int x;
1254
1255 atomic_thread_fence_rel();
1256 x = atomic_swap_int(&m->busy_lock, VPB_FREED);
1257 if ((x & VPB_BIT_WAITERS) != 0)
1258 wakeup(m);
1259 }
1260
1261 /*
1262 * vm_page_unhold_pages:
1263 *
1264 * Unhold each of the pages that is referenced by the given array.
1265 */
1266 void
vm_page_unhold_pages(vm_page_t * ma,int count)1267 vm_page_unhold_pages(vm_page_t *ma, int count)
1268 {
1269
1270 for (; count != 0; count--) {
1271 vm_page_unwire(*ma, PQ_ACTIVE);
1272 ma++;
1273 }
1274 }
1275
1276 vm_page_t
PHYS_TO_VM_PAGE(vm_paddr_t pa)1277 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1278 {
1279 vm_page_t m;
1280
1281 #ifdef VM_PHYSSEG_SPARSE
1282 m = vm_phys_paddr_to_vm_page(pa);
1283 if (m == NULL)
1284 m = vm_phys_fictitious_to_vm_page(pa);
1285 return (m);
1286 #elif defined(VM_PHYSSEG_DENSE)
1287 long pi;
1288
1289 pi = atop(pa);
1290 if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1291 m = &vm_page_array[pi - first_page];
1292 return (m);
1293 }
1294 return (vm_phys_fictitious_to_vm_page(pa));
1295 #else
1296 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1297 #endif
1298 }
1299
1300 /*
1301 * vm_page_getfake:
1302 *
1303 * Create a fictitious page with the specified physical address and
1304 * memory attribute. The memory attribute is the only the machine-
1305 * dependent aspect of a fictitious page that must be initialized.
1306 */
1307 vm_page_t
vm_page_getfake(vm_paddr_t paddr,vm_memattr_t memattr)1308 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1309 {
1310 vm_page_t m;
1311
1312 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1313 vm_page_initfake(m, paddr, memattr);
1314 return (m);
1315 }
1316
1317 void
vm_page_initfake(vm_page_t m,vm_paddr_t paddr,vm_memattr_t memattr)1318 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1319 {
1320
1321 if ((m->flags & PG_FICTITIOUS) != 0) {
1322 /*
1323 * The page's memattr might have changed since the
1324 * previous initialization. Update the pmap to the
1325 * new memattr.
1326 */
1327 goto memattr;
1328 }
1329 m->phys_addr = paddr;
1330 m->a.queue = PQ_NONE;
1331 /* Fictitious pages don't use "segind". */
1332 m->flags = PG_FICTITIOUS;
1333 /* Fictitious pages don't use "order" or "pool". */
1334 m->oflags = VPO_UNMANAGED;
1335 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
1336 /* Fictitious pages are unevictable. */
1337 m->ref_count = 1;
1338 pmap_page_init(m);
1339 memattr:
1340 pmap_page_set_memattr(m, memattr);
1341 }
1342
1343 /*
1344 * vm_page_putfake:
1345 *
1346 * Release a fictitious page.
1347 */
1348 void
vm_page_putfake(vm_page_t m)1349 vm_page_putfake(vm_page_t m)
1350 {
1351
1352 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1353 KASSERT((m->flags & PG_FICTITIOUS) != 0,
1354 ("vm_page_putfake: bad page %p", m));
1355 vm_page_assert_xbusied(m);
1356 vm_page_busy_free(m);
1357 uma_zfree(fakepg_zone, m);
1358 }
1359
1360 /*
1361 * vm_page_updatefake:
1362 *
1363 * Update the given fictitious page to the specified physical address and
1364 * memory attribute.
1365 */
1366 void
vm_page_updatefake(vm_page_t m,vm_paddr_t paddr,vm_memattr_t memattr)1367 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1368 {
1369
1370 KASSERT((m->flags & PG_FICTITIOUS) != 0,
1371 ("vm_page_updatefake: bad page %p", m));
1372 m->phys_addr = paddr;
1373 pmap_page_set_memattr(m, memattr);
1374 }
1375
1376 /*
1377 * vm_page_free:
1378 *
1379 * Free a page.
1380 */
1381 void
vm_page_free(vm_page_t m)1382 vm_page_free(vm_page_t m)
1383 {
1384
1385 m->flags &= ~PG_ZERO;
1386 vm_page_free_toq(m);
1387 }
1388
1389 /*
1390 * vm_page_free_zero:
1391 *
1392 * Free a page to the zerod-pages queue
1393 */
1394 void
vm_page_free_zero(vm_page_t m)1395 vm_page_free_zero(vm_page_t m)
1396 {
1397
1398 m->flags |= PG_ZERO;
1399 vm_page_free_toq(m);
1400 }
1401
1402 /*
1403 * Unbusy and handle the page queueing for a page from a getpages request that
1404 * was optionally read ahead or behind.
1405 */
1406 void
vm_page_readahead_finish(vm_page_t m)1407 vm_page_readahead_finish(vm_page_t m)
1408 {
1409
1410 /* We shouldn't put invalid pages on queues. */
1411 KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1412
1413 /*
1414 * Since the page is not the actually needed one, whether it should
1415 * be activated or deactivated is not obvious. Empirical results
1416 * have shown that deactivating the page is usually the best choice,
1417 * unless the page is wanted by another thread.
1418 */
1419 if ((vm_page_busy_fetch(m) & VPB_BIT_WAITERS) != 0)
1420 vm_page_activate(m);
1421 else
1422 vm_page_deactivate(m);
1423 vm_page_xunbusy_unchecked(m);
1424 }
1425
1426 /*
1427 * Destroy the identity of an invalid page and free it if possible.
1428 * This is intended to be used when reading a page from backing store fails.
1429 */
1430 void
vm_page_free_invalid(vm_page_t m)1431 vm_page_free_invalid(vm_page_t m)
1432 {
1433
1434 KASSERT(vm_page_none_valid(m), ("page %p is valid", m));
1435 KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m));
1436 KASSERT(m->object != NULL, ("page %p has no object", m));
1437 VM_OBJECT_ASSERT_WLOCKED(m->object);
1438
1439 /*
1440 * We may be attempting to free the page as part of the handling for an
1441 * I/O error, in which case the page was xbusied by a different thread.
1442 */
1443 vm_page_xbusy_claim(m);
1444
1445 /*
1446 * If someone has wired this page while the object lock
1447 * was not held, then the thread that unwires is responsible
1448 * for freeing the page. Otherwise just free the page now.
1449 * The wire count of this unmapped page cannot change while
1450 * we have the page xbusy and the page's object wlocked.
1451 */
1452 if (vm_page_remove(m))
1453 vm_page_free(m);
1454 }
1455
1456 /*
1457 * vm_page_dirty_KBI: [ internal use only ]
1458 *
1459 * Set all bits in the page's dirty field.
1460 *
1461 * The object containing the specified page must be locked if the
1462 * call is made from the machine-independent layer.
1463 *
1464 * See vm_page_clear_dirty_mask().
1465 *
1466 * This function should only be called by vm_page_dirty().
1467 */
1468 void
vm_page_dirty_KBI(vm_page_t m)1469 vm_page_dirty_KBI(vm_page_t m)
1470 {
1471
1472 /* Refer to this operation by its public name. */
1473 KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1474 m->dirty = VM_PAGE_BITS_ALL;
1475 }
1476
1477 /*
1478 * Insert the given page into the given object at the given pindex. mpred is
1479 * used for memq linkage. From vm_page_insert, lookup is true, mpred is
1480 * initially NULL, and this procedure looks it up. From vm_page_insert_after
1481 * and vm_page_iter_insert, lookup is false and mpred is known to the caller
1482 * to be valid, and may be NULL if this will be the page with the lowest
1483 * pindex.
1484 *
1485 * The procedure is marked __always_inline to suggest to the compiler to
1486 * eliminate the lookup parameter and the associated alternate branch.
1487 */
1488 static __always_inline int
vm_page_insert_lookup(vm_page_t m,vm_object_t object,vm_pindex_t pindex,struct pctrie_iter * pages,bool iter,vm_page_t mpred,bool lookup)1489 vm_page_insert_lookup(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1490 struct pctrie_iter *pages, bool iter, vm_page_t mpred, bool lookup)
1491 {
1492 int error;
1493
1494 VM_OBJECT_ASSERT_WLOCKED(object);
1495 KASSERT(m->object == NULL,
1496 ("vm_page_insert: page %p already inserted", m));
1497
1498 /*
1499 * Record the object/offset pair in this page.
1500 */
1501 m->object = object;
1502 m->pindex = pindex;
1503 m->ref_count |= VPRC_OBJREF;
1504
1505 /*
1506 * Add this page to the object's radix tree, and look up mpred if
1507 * needed.
1508 */
1509 if (iter) {
1510 KASSERT(!lookup, ("%s: cannot lookup mpred", __func__));
1511 error = vm_radix_iter_insert(pages, m);
1512 } else if (lookup)
1513 error = vm_radix_insert_lookup_lt(&object->rtree, m, &mpred);
1514 else
1515 error = vm_radix_insert(&object->rtree, m);
1516 if (__predict_false(error != 0)) {
1517 m->object = NULL;
1518 m->pindex = 0;
1519 m->ref_count &= ~VPRC_OBJREF;
1520 return (1);
1521 }
1522
1523 /*
1524 * Now link into the object's ordered list of backed pages.
1525 */
1526 vm_page_insert_radixdone(m, object, mpred);
1527 vm_pager_page_inserted(object, m);
1528 return (0);
1529 }
1530
1531 /*
1532 * vm_page_insert: [ internal use only ]
1533 *
1534 * Inserts the given mem entry into the object and object list.
1535 *
1536 * The object must be locked.
1537 */
1538 int
vm_page_insert(vm_page_t m,vm_object_t object,vm_pindex_t pindex)1539 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1540 {
1541 return (vm_page_insert_lookup(m, object, pindex, NULL, false, NULL,
1542 true));
1543 }
1544
1545 /*
1546 * vm_page_insert_after:
1547 *
1548 * Inserts the page "m" into the specified object at offset "pindex".
1549 *
1550 * The page "mpred" must immediately precede the offset "pindex" within
1551 * the specified object.
1552 *
1553 * The object must be locked.
1554 */
1555 static int
vm_page_insert_after(vm_page_t m,vm_object_t object,vm_pindex_t pindex,vm_page_t mpred)1556 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1557 vm_page_t mpred)
1558 {
1559 return (vm_page_insert_lookup(m, object, pindex, NULL, false, mpred,
1560 false));
1561 }
1562
1563 /*
1564 * vm_page_iter_insert:
1565 *
1566 * Tries to insert the page "m" into the specified object at offset
1567 * "pindex" using the iterator "pages". Returns 0 if the insertion was
1568 * successful.
1569 *
1570 * The page "mpred" must immediately precede the offset "pindex" within
1571 * the specified object.
1572 *
1573 * The object must be locked.
1574 */
1575 static int
vm_page_iter_insert(struct pctrie_iter * pages,vm_page_t m,vm_object_t object,vm_pindex_t pindex,vm_page_t mpred)1576 vm_page_iter_insert(struct pctrie_iter *pages, vm_page_t m, vm_object_t object,
1577 vm_pindex_t pindex, vm_page_t mpred)
1578 {
1579 return (vm_page_insert_lookup(m, object, pindex, pages, true, mpred,
1580 false));
1581 }
1582
1583 /*
1584 * vm_page_insert_radixdone:
1585 *
1586 * Complete page "m" insertion into the specified object after the
1587 * radix trie hooking.
1588 *
1589 * The page "mpred" must precede the offset "m->pindex" within the
1590 * specified object.
1591 *
1592 * The object must be locked.
1593 */
1594 static void
vm_page_insert_radixdone(vm_page_t m,vm_object_t object,vm_page_t mpred)1595 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1596 {
1597
1598 VM_OBJECT_ASSERT_WLOCKED(object);
1599 KASSERT(object != NULL && m->object == object,
1600 ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1601 KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1602 ("vm_page_insert_radixdone: page %p is missing object ref", m));
1603 if (mpred != NULL) {
1604 KASSERT(mpred->object == object,
1605 ("vm_page_insert_radixdone: object doesn't contain mpred"));
1606 KASSERT(mpred->pindex < m->pindex,
1607 ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1608 KASSERT(TAILQ_NEXT(mpred, listq) == NULL ||
1609 m->pindex < TAILQ_NEXT(mpred, listq)->pindex,
1610 ("vm_page_insert_radixdone: pindex doesn't precede msucc"));
1611 } else {
1612 KASSERT(TAILQ_EMPTY(&object->memq) ||
1613 m->pindex < TAILQ_FIRST(&object->memq)->pindex,
1614 ("vm_page_insert_radixdone: no mpred but not first page"));
1615 }
1616
1617 if (mpred != NULL)
1618 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1619 else
1620 TAILQ_INSERT_HEAD(&object->memq, m, listq);
1621
1622 /*
1623 * Show that the object has one more resident page.
1624 */
1625 object->resident_page_count++;
1626
1627 /*
1628 * Hold the vnode until the last page is released.
1629 */
1630 if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1631 vhold(object->handle);
1632
1633 /*
1634 * Since we are inserting a new and possibly dirty page,
1635 * update the object's generation count.
1636 */
1637 if (pmap_page_is_write_mapped(m))
1638 vm_object_set_writeable_dirty(object);
1639 }
1640
1641 /*
1642 * vm_page_remove_radixdone
1643 *
1644 * Complete page "m" removal from the specified object after the radix trie
1645 * unhooking.
1646 *
1647 * The caller is responsible for updating the page's fields to reflect this
1648 * removal.
1649 */
1650 static void
vm_page_remove_radixdone(vm_page_t m)1651 vm_page_remove_radixdone(vm_page_t m)
1652 {
1653 vm_object_t object;
1654
1655 vm_page_assert_xbusied(m);
1656 object = m->object;
1657 VM_OBJECT_ASSERT_WLOCKED(object);
1658 KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1659 ("page %p is missing its object ref", m));
1660
1661 /* Deferred free of swap space. */
1662 if ((m->a.flags & PGA_SWAP_FREE) != 0)
1663 vm_pager_page_unswapped(m);
1664
1665 vm_pager_page_removed(object, m);
1666 m->object = NULL;
1667
1668 /*
1669 * Now remove from the object's list of backed pages.
1670 */
1671 TAILQ_REMOVE(&object->memq, m, listq);
1672
1673 /*
1674 * And show that the object has one fewer resident page.
1675 */
1676 object->resident_page_count--;
1677
1678 /*
1679 * The vnode may now be recycled.
1680 */
1681 if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1682 vdrop(object->handle);
1683 }
1684
1685 /*
1686 * vm_page_free_object_prep:
1687 *
1688 * Disassociates the given page from its VM object.
1689 *
1690 * The object must be locked, and the page must be xbusy.
1691 */
1692 static void
vm_page_free_object_prep(vm_page_t m)1693 vm_page_free_object_prep(vm_page_t m)
1694 {
1695 KASSERT(((m->oflags & VPO_UNMANAGED) != 0) ==
1696 ((m->object->flags & OBJ_UNMANAGED) != 0),
1697 ("%s: managed flag mismatch for page %p",
1698 __func__, m));
1699 vm_page_assert_xbusied(m);
1700
1701 /*
1702 * The object reference can be released without an atomic
1703 * operation.
1704 */
1705 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
1706 m->ref_count == VPRC_OBJREF,
1707 ("%s: page %p has unexpected ref_count %u",
1708 __func__, m, m->ref_count));
1709 vm_page_remove_radixdone(m);
1710 m->ref_count -= VPRC_OBJREF;
1711 }
1712
1713 /*
1714 * vm_page_iter_free:
1715 *
1716 * Free the given page, and use the iterator to remove it from the radix
1717 * tree.
1718 */
1719 void
vm_page_iter_free(struct pctrie_iter * pages,vm_page_t m)1720 vm_page_iter_free(struct pctrie_iter *pages, vm_page_t m)
1721 {
1722 vm_radix_iter_remove(pages);
1723 vm_page_free_object_prep(m);
1724 vm_page_xunbusy(m);
1725 m->flags &= ~PG_ZERO;
1726 vm_page_free_toq(m);
1727 }
1728
1729 /*
1730 * vm_page_remove:
1731 *
1732 * Removes the specified page from its containing object, but does not
1733 * invalidate any backing storage. Returns true if the object's reference
1734 * was the last reference to the page, and false otherwise.
1735 *
1736 * The object must be locked and the page must be exclusively busied.
1737 * The exclusive busy will be released on return. If this is not the
1738 * final ref and the caller does not hold a wire reference it may not
1739 * continue to access the page.
1740 */
1741 bool
vm_page_remove(vm_page_t m)1742 vm_page_remove(vm_page_t m)
1743 {
1744 bool dropped;
1745
1746 dropped = vm_page_remove_xbusy(m);
1747 vm_page_xunbusy(m);
1748
1749 return (dropped);
1750 }
1751
1752 /*
1753 * vm_page_iter_remove:
1754 *
1755 * Remove the current page, as identified by iterator, and remove it from the
1756 * radix tree.
1757 */
1758 bool
vm_page_iter_remove(struct pctrie_iter * pages)1759 vm_page_iter_remove(struct pctrie_iter *pages)
1760 {
1761 vm_page_t m;
1762 bool dropped;
1763
1764 m = vm_radix_iter_page(pages);
1765 vm_radix_iter_remove(pages);
1766 vm_page_remove_radixdone(m);
1767 dropped = (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1768 vm_page_xunbusy(m);
1769
1770 return (dropped);
1771 }
1772
1773 /*
1774 * vm_page_radix_remove
1775 *
1776 * Removes the specified page from the radix tree.
1777 */
1778 static void
vm_page_radix_remove(vm_page_t m)1779 vm_page_radix_remove(vm_page_t m)
1780 {
1781 vm_page_t mrem __diagused;
1782
1783 mrem = vm_radix_remove(&m->object->rtree, m->pindex);
1784 KASSERT(mrem == m,
1785 ("removed page %p, expected page %p", mrem, m));
1786 }
1787
1788 /*
1789 * vm_page_remove_xbusy
1790 *
1791 * Removes the page but leaves the xbusy held. Returns true if this
1792 * removed the final ref and false otherwise.
1793 */
1794 bool
vm_page_remove_xbusy(vm_page_t m)1795 vm_page_remove_xbusy(vm_page_t m)
1796 {
1797
1798 vm_page_radix_remove(m);
1799 vm_page_remove_radixdone(m);
1800 return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1801 }
1802
1803 /*
1804 * vm_page_lookup:
1805 *
1806 * Returns the page associated with the object/offset
1807 * pair specified; if none is found, NULL is returned.
1808 *
1809 * The object must be locked.
1810 */
1811 vm_page_t
vm_page_lookup(vm_object_t object,vm_pindex_t pindex)1812 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1813 {
1814
1815 VM_OBJECT_ASSERT_LOCKED(object);
1816 return (vm_radix_lookup(&object->rtree, pindex));
1817 }
1818
1819 /*
1820 * vm_page_iter_init:
1821 *
1822 * Initialize iterator for vm pages.
1823 */
1824 void
vm_page_iter_init(struct pctrie_iter * pages,vm_object_t object)1825 vm_page_iter_init(struct pctrie_iter *pages, vm_object_t object)
1826 {
1827
1828 vm_radix_iter_init(pages, &object->rtree);
1829 }
1830
1831 /*
1832 * vm_page_iter_init:
1833 *
1834 * Initialize iterator for vm pages.
1835 */
1836 void
vm_page_iter_limit_init(struct pctrie_iter * pages,vm_object_t object,vm_pindex_t limit)1837 vm_page_iter_limit_init(struct pctrie_iter *pages, vm_object_t object,
1838 vm_pindex_t limit)
1839 {
1840
1841 vm_radix_iter_limit_init(pages, &object->rtree, limit);
1842 }
1843
1844 /*
1845 * vm_page_iter_lookup:
1846 *
1847 * Returns the page associated with the object/offset pair specified, and
1848 * stores the path to its position; if none is found, NULL is returned.
1849 *
1850 * The iter pctrie must be locked.
1851 */
1852 vm_page_t
vm_page_iter_lookup(struct pctrie_iter * pages,vm_pindex_t pindex)1853 vm_page_iter_lookup(struct pctrie_iter *pages, vm_pindex_t pindex)
1854 {
1855
1856 return (vm_radix_iter_lookup(pages, pindex));
1857 }
1858
1859 /*
1860 * vm_page_lookup_unlocked:
1861 *
1862 * Returns the page associated with the object/offset pair specified;
1863 * if none is found, NULL is returned. The page may be no longer be
1864 * present in the object at the time that this function returns. Only
1865 * useful for opportunistic checks such as inmem().
1866 */
1867 vm_page_t
vm_page_lookup_unlocked(vm_object_t object,vm_pindex_t pindex)1868 vm_page_lookup_unlocked(vm_object_t object, vm_pindex_t pindex)
1869 {
1870
1871 return (vm_radix_lookup_unlocked(&object->rtree, pindex));
1872 }
1873
1874 /*
1875 * vm_page_relookup:
1876 *
1877 * Returns a page that must already have been busied by
1878 * the caller. Used for bogus page replacement.
1879 */
1880 vm_page_t
vm_page_relookup(vm_object_t object,vm_pindex_t pindex)1881 vm_page_relookup(vm_object_t object, vm_pindex_t pindex)
1882 {
1883 vm_page_t m;
1884
1885 m = vm_page_lookup_unlocked(object, pindex);
1886 KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) &&
1887 m->object == object && m->pindex == pindex,
1888 ("vm_page_relookup: Invalid page %p", m));
1889 return (m);
1890 }
1891
1892 /*
1893 * This should only be used by lockless functions for releasing transient
1894 * incorrect acquires. The page may have been freed after we acquired a
1895 * busy lock. In this case busy_lock == VPB_FREED and we have nothing
1896 * further to do.
1897 */
1898 static void
vm_page_busy_release(vm_page_t m)1899 vm_page_busy_release(vm_page_t m)
1900 {
1901 u_int x;
1902
1903 x = vm_page_busy_fetch(m);
1904 for (;;) {
1905 if (x == VPB_FREED)
1906 break;
1907 if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) {
1908 if (atomic_fcmpset_int(&m->busy_lock, &x,
1909 x - VPB_ONE_SHARER))
1910 break;
1911 continue;
1912 }
1913 KASSERT((x & VPB_BIT_SHARED) != 0 ||
1914 (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE,
1915 ("vm_page_busy_release: %p xbusy not owned.", m));
1916 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1917 continue;
1918 if ((x & VPB_BIT_WAITERS) != 0)
1919 wakeup(m);
1920 break;
1921 }
1922 }
1923
1924 /*
1925 * vm_page_find_least:
1926 *
1927 * Returns the page associated with the object with least pindex
1928 * greater than or equal to the parameter pindex, or NULL.
1929 *
1930 * The object must be locked.
1931 */
1932 vm_page_t
vm_page_find_least(vm_object_t object,vm_pindex_t pindex)1933 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1934 {
1935 vm_page_t m;
1936
1937 VM_OBJECT_ASSERT_LOCKED(object);
1938 if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1939 m = vm_radix_lookup_ge(&object->rtree, pindex);
1940 return (m);
1941 }
1942
1943 /*
1944 * vm_page_iter_lookup_ge:
1945 *
1946 * Returns the page associated with the object with least pindex
1947 * greater than or equal to the parameter pindex, or NULL. Initializes the
1948 * iterator to point to that page.
1949 *
1950 * The iter pctrie must be locked.
1951 */
1952 vm_page_t
vm_page_iter_lookup_ge(struct pctrie_iter * pages,vm_pindex_t pindex)1953 vm_page_iter_lookup_ge(struct pctrie_iter *pages, vm_pindex_t pindex)
1954 {
1955
1956 return (vm_radix_iter_lookup_ge(pages, pindex));
1957 }
1958
1959 /*
1960 * Returns the given page's successor (by pindex) within the object if it is
1961 * resident; if none is found, NULL is returned.
1962 *
1963 * The object must be locked.
1964 */
1965 vm_page_t
vm_page_next(vm_page_t m)1966 vm_page_next(vm_page_t m)
1967 {
1968 vm_page_t next;
1969
1970 VM_OBJECT_ASSERT_LOCKED(m->object);
1971 if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1972 MPASS(next->object == m->object);
1973 if (next->pindex != m->pindex + 1)
1974 next = NULL;
1975 }
1976 return (next);
1977 }
1978
1979 /*
1980 * Returns the given page's predecessor (by pindex) within the object if it is
1981 * resident; if none is found, NULL is returned.
1982 *
1983 * The object must be locked.
1984 */
1985 vm_page_t
vm_page_prev(vm_page_t m)1986 vm_page_prev(vm_page_t m)
1987 {
1988 vm_page_t prev;
1989
1990 VM_OBJECT_ASSERT_LOCKED(m->object);
1991 if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1992 MPASS(prev->object == m->object);
1993 if (prev->pindex != m->pindex - 1)
1994 prev = NULL;
1995 }
1996 return (prev);
1997 }
1998
1999 /*
2000 * Uses the page mnew as a replacement for an existing page at index
2001 * pindex which must be already present in the object.
2002 *
2003 * Both pages must be exclusively busied on enter. The old page is
2004 * unbusied on exit.
2005 *
2006 * A return value of true means mold is now free. If this is not the
2007 * final ref and the caller does not hold a wire reference it may not
2008 * continue to access the page.
2009 */
2010 static bool
vm_page_replace_hold(vm_page_t mnew,vm_object_t object,vm_pindex_t pindex,vm_page_t mold)2011 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
2012 vm_page_t mold)
2013 {
2014 vm_page_t mret __diagused;
2015 bool dropped;
2016
2017 VM_OBJECT_ASSERT_WLOCKED(object);
2018 vm_page_assert_xbusied(mold);
2019 KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
2020 ("vm_page_replace: page %p already in object", mnew));
2021
2022 /*
2023 * This function mostly follows vm_page_insert() and
2024 * vm_page_remove() without the radix, object count and vnode
2025 * dance. Double check such functions for more comments.
2026 */
2027
2028 mnew->object = object;
2029 mnew->pindex = pindex;
2030 atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
2031 mret = vm_radix_replace(&object->rtree, mnew);
2032 KASSERT(mret == mold,
2033 ("invalid page replacement, mold=%p, mret=%p", mold, mret));
2034 KASSERT((mold->oflags & VPO_UNMANAGED) ==
2035 (mnew->oflags & VPO_UNMANAGED),
2036 ("vm_page_replace: mismatched VPO_UNMANAGED"));
2037
2038 /* Keep the resident page list in sorted order. */
2039 TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
2040 TAILQ_REMOVE(&object->memq, mold, listq);
2041 mold->object = NULL;
2042
2043 /*
2044 * The object's resident_page_count does not change because we have
2045 * swapped one page for another, but the generation count should
2046 * change if the page is dirty.
2047 */
2048 if (pmap_page_is_write_mapped(mnew))
2049 vm_object_set_writeable_dirty(object);
2050 dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF;
2051 vm_page_xunbusy(mold);
2052
2053 return (dropped);
2054 }
2055
2056 void
vm_page_replace(vm_page_t mnew,vm_object_t object,vm_pindex_t pindex,vm_page_t mold)2057 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
2058 vm_page_t mold)
2059 {
2060
2061 vm_page_assert_xbusied(mnew);
2062
2063 if (vm_page_replace_hold(mnew, object, pindex, mold))
2064 vm_page_free(mold);
2065 }
2066
2067 /*
2068 * vm_page_rename:
2069 *
2070 * Move the current page, as identified by iterator, from its current
2071 * object to the specified target object/offset.
2072 *
2073 * Note: swap associated with the page must be invalidated by the move. We
2074 * have to do this for several reasons: (1) we aren't freeing the
2075 * page, (2) we are dirtying the page, (3) the VM system is probably
2076 * moving the page from object A to B, and will then later move
2077 * the backing store from A to B and we can't have a conflict.
2078 *
2079 * Note: we *always* dirty the page. It is necessary both for the
2080 * fact that we moved it, and because we may be invalidating
2081 * swap.
2082 *
2083 * The objects must be locked.
2084 */
2085 int
vm_page_rename(struct pctrie_iter * pages,vm_object_t new_object,vm_pindex_t new_pindex)2086 vm_page_rename(struct pctrie_iter *pages,
2087 vm_object_t new_object, vm_pindex_t new_pindex)
2088 {
2089 vm_page_t m, mpred;
2090 vm_pindex_t opidx;
2091
2092 VM_OBJECT_ASSERT_WLOCKED(new_object);
2093
2094 m = vm_radix_iter_page(pages);
2095 KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m));
2096
2097 /*
2098 * Create a custom version of vm_page_insert() which does not depend
2099 * by m_prev and can cheat on the implementation aspects of the
2100 * function.
2101 */
2102 opidx = m->pindex;
2103 m->pindex = new_pindex;
2104 if (vm_radix_insert_lookup_lt(&new_object->rtree, m, &mpred) != 0) {
2105 m->pindex = opidx;
2106 return (1);
2107 }
2108
2109 /*
2110 * The operation cannot fail anymore. The removal must happen before
2111 * the listq iterator is tainted.
2112 */
2113 m->pindex = opidx;
2114 vm_radix_iter_remove(pages);
2115 vm_page_remove_radixdone(m);
2116
2117 /* Return back to the new pindex to complete vm_page_insert(). */
2118 m->pindex = new_pindex;
2119 m->object = new_object;
2120
2121 vm_page_insert_radixdone(m, new_object, mpred);
2122 vm_page_dirty(m);
2123 vm_pager_page_inserted(new_object, m);
2124 return (0);
2125 }
2126
2127 /*
2128 * vm_page_mpred:
2129 *
2130 * Return the greatest page of the object with index <= pindex,
2131 * or NULL, if there is none. Assumes object lock is held.
2132 */
2133 vm_page_t
vm_page_mpred(vm_object_t object,vm_pindex_t pindex)2134 vm_page_mpred(vm_object_t object, vm_pindex_t pindex)
2135 {
2136 return (vm_radix_lookup_le(&object->rtree, pindex));
2137 }
2138
2139 /*
2140 * vm_page_alloc:
2141 *
2142 * Allocate and return a page that is associated with the specified
2143 * object and offset pair. By default, this page is exclusive busied.
2144 *
2145 * The caller must always specify an allocation class.
2146 *
2147 * allocation classes:
2148 * VM_ALLOC_NORMAL normal process request
2149 * VM_ALLOC_SYSTEM system *really* needs a page
2150 * VM_ALLOC_INTERRUPT interrupt time request
2151 *
2152 * optional allocation flags:
2153 * VM_ALLOC_COUNT(number) the number of additional pages that the caller
2154 * intends to allocate
2155 * VM_ALLOC_NOBUSY do not exclusive busy the page
2156 * VM_ALLOC_NODUMP do not include the page in a kernel core dump
2157 * VM_ALLOC_SBUSY shared busy the allocated page
2158 * VM_ALLOC_WIRED wire the allocated page
2159 * VM_ALLOC_ZERO prefer a zeroed page
2160 */
2161 vm_page_t
vm_page_alloc(vm_object_t object,vm_pindex_t pindex,int req)2162 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
2163 {
2164
2165 return (vm_page_alloc_after(object, pindex, req,
2166 vm_page_mpred(object, pindex)));
2167 }
2168
2169 /*
2170 * Allocate a page in the specified object with the given page index. To
2171 * optimize insertion of the page into the object, the caller must also specify
2172 * the resident page in the object with largest index smaller than the given
2173 * page index, or NULL if no such page exists.
2174 */
2175 static vm_page_t
vm_page_alloc_after(vm_object_t object,vm_pindex_t pindex,int req,vm_page_t mpred)2176 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
2177 int req, vm_page_t mpred)
2178 {
2179 struct vm_domainset_iter di;
2180 vm_page_t m;
2181 int domain;
2182
2183 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2184 do {
2185 m = vm_page_alloc_domain_after(object, pindex, domain, req,
2186 mpred);
2187 if (m != NULL)
2188 break;
2189 } while (vm_domainset_iter_page(&di, object, &domain) == 0);
2190
2191 return (m);
2192 }
2193
2194 /*
2195 * Returns true if the number of free pages exceeds the minimum
2196 * for the request class and false otherwise.
2197 */
2198 static int
_vm_domain_allocate(struct vm_domain * vmd,int req_class,int npages)2199 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
2200 {
2201 u_int limit, old, new;
2202
2203 if (req_class == VM_ALLOC_INTERRUPT)
2204 limit = 0;
2205 else if (req_class == VM_ALLOC_SYSTEM)
2206 limit = vmd->vmd_interrupt_free_min;
2207 else
2208 limit = vmd->vmd_free_reserved;
2209
2210 /*
2211 * Attempt to reserve the pages. Fail if we're below the limit.
2212 */
2213 limit += npages;
2214 old = atomic_load_int(&vmd->vmd_free_count);
2215 do {
2216 if (old < limit)
2217 return (0);
2218 new = old - npages;
2219 } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
2220
2221 /* Wake the page daemon if we've crossed the threshold. */
2222 if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
2223 pagedaemon_wakeup(vmd->vmd_domain);
2224
2225 /* Only update bitsets on transitions. */
2226 if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
2227 (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
2228 vm_domain_set(vmd);
2229
2230 return (1);
2231 }
2232
2233 int
vm_domain_allocate(struct vm_domain * vmd,int req,int npages)2234 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
2235 {
2236 int req_class;
2237
2238 /*
2239 * The page daemon is allowed to dig deeper into the free page list.
2240 */
2241 req_class = req & VM_ALLOC_CLASS_MASK;
2242 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2243 req_class = VM_ALLOC_SYSTEM;
2244 return (_vm_domain_allocate(vmd, req_class, npages));
2245 }
2246
2247 vm_page_t
vm_page_alloc_domain_after(vm_object_t object,vm_pindex_t pindex,int domain,int req,vm_page_t mpred)2248 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
2249 int req, vm_page_t mpred)
2250 {
2251 struct vm_domain *vmd;
2252 vm_page_t m;
2253 int flags;
2254
2255 #define VPA_FLAGS (VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL | \
2256 VM_ALLOC_NOWAIT | VM_ALLOC_NOBUSY | \
2257 VM_ALLOC_SBUSY | VM_ALLOC_WIRED | \
2258 VM_ALLOC_NODUMP | VM_ALLOC_ZERO | \
2259 VM_ALLOC_NOFREE | VM_ALLOC_COUNT_MASK)
2260 KASSERT((req & ~VPA_FLAGS) == 0,
2261 ("invalid request %#x", req));
2262 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2263 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2264 ("invalid request %#x", req));
2265 KASSERT(mpred == NULL || mpred->pindex < pindex,
2266 ("mpred %p doesn't precede pindex 0x%jx", mpred,
2267 (uintmax_t)pindex));
2268 VM_OBJECT_ASSERT_WLOCKED(object);
2269
2270 flags = 0;
2271 m = NULL;
2272 if (!vm_pager_can_alloc_page(object, pindex))
2273 return (NULL);
2274 again:
2275 if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) {
2276 m = vm_page_alloc_nofree_domain(domain, req);
2277 if (m != NULL)
2278 goto found;
2279 }
2280 #if VM_NRESERVLEVEL > 0
2281 /*
2282 * Can we allocate the page from a reservation?
2283 */
2284 if (vm_object_reserv(object) &&
2285 (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
2286 NULL) {
2287 goto found;
2288 }
2289 #endif
2290 vmd = VM_DOMAIN(domain);
2291 if (vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone != NULL) {
2292 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone,
2293 M_NOWAIT | M_NOVM);
2294 if (m != NULL) {
2295 flags |= PG_PCPU_CACHE;
2296 goto found;
2297 }
2298 }
2299 if (vm_domain_allocate(vmd, req, 1)) {
2300 /*
2301 * If not, allocate it from the free page queues.
2302 */
2303 vm_domain_free_lock(vmd);
2304 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 0);
2305 vm_domain_free_unlock(vmd);
2306 if (m == NULL) {
2307 vm_domain_freecnt_inc(vmd, 1);
2308 #if VM_NRESERVLEVEL > 0
2309 if (vm_reserv_reclaim_inactive(domain))
2310 goto again;
2311 #endif
2312 }
2313 }
2314 if (m == NULL) {
2315 /*
2316 * Not allocatable, give up.
2317 */
2318 if (vm_domain_alloc_fail(vmd, object, req))
2319 goto again;
2320 return (NULL);
2321 }
2322
2323 /*
2324 * At this point we had better have found a good page.
2325 */
2326 found:
2327 vm_page_dequeue(m);
2328 vm_page_alloc_check(m);
2329
2330 /*
2331 * Initialize the page. Only the PG_ZERO flag is inherited.
2332 */
2333 flags |= m->flags & PG_ZERO;
2334 if ((req & VM_ALLOC_NODUMP) != 0)
2335 flags |= PG_NODUMP;
2336 if ((req & VM_ALLOC_NOFREE) != 0)
2337 flags |= PG_NOFREE;
2338 m->flags = flags;
2339 m->a.flags = 0;
2340 m->oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2341 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2342 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2343 else if ((req & VM_ALLOC_SBUSY) != 0)
2344 m->busy_lock = VPB_SHARERS_WORD(1);
2345 else
2346 m->busy_lock = VPB_UNBUSIED;
2347 if (req & VM_ALLOC_WIRED) {
2348 vm_wire_add(1);
2349 m->ref_count = 1;
2350 }
2351 m->a.act_count = 0;
2352
2353 if (vm_page_insert_after(m, object, pindex, mpred)) {
2354 if (req & VM_ALLOC_WIRED) {
2355 vm_wire_sub(1);
2356 m->ref_count = 0;
2357 }
2358 KASSERT(m->object == NULL, ("page %p has object", m));
2359 m->oflags = VPO_UNMANAGED;
2360 m->busy_lock = VPB_UNBUSIED;
2361 /* Don't change PG_ZERO. */
2362 vm_page_free_toq(m);
2363 if (req & VM_ALLOC_WAITFAIL) {
2364 VM_OBJECT_WUNLOCK(object);
2365 vm_radix_wait();
2366 VM_OBJECT_WLOCK(object);
2367 }
2368 return (NULL);
2369 }
2370
2371 /* Ignore device objects; the pager sets "memattr" for them. */
2372 if (object->memattr != VM_MEMATTR_DEFAULT &&
2373 (object->flags & OBJ_FICTITIOUS) == 0)
2374 pmap_page_set_memattr(m, object->memattr);
2375
2376 return (m);
2377 }
2378
2379 /*
2380 * vm_page_alloc_contig:
2381 *
2382 * Allocate a contiguous set of physical pages of the given size "npages"
2383 * from the free lists. All of the physical pages must be at or above
2384 * the given physical address "low" and below the given physical address
2385 * "high". The given value "alignment" determines the alignment of the
2386 * first physical page in the set. If the given value "boundary" is
2387 * non-zero, then the set of physical pages cannot cross any physical
2388 * address boundary that is a multiple of that value. Both "alignment"
2389 * and "boundary" must be a power of two.
2390 *
2391 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2392 * then the memory attribute setting for the physical pages is configured
2393 * to the object's memory attribute setting. Otherwise, the memory
2394 * attribute setting for the physical pages is configured to "memattr",
2395 * overriding the object's memory attribute setting. However, if the
2396 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2397 * memory attribute setting for the physical pages cannot be configured
2398 * to VM_MEMATTR_DEFAULT.
2399 *
2400 * The specified object may not contain fictitious pages.
2401 *
2402 * The caller must always specify an allocation class.
2403 *
2404 * allocation classes:
2405 * VM_ALLOC_NORMAL normal process request
2406 * VM_ALLOC_SYSTEM system *really* needs a page
2407 * VM_ALLOC_INTERRUPT interrupt time request
2408 *
2409 * optional allocation flags:
2410 * VM_ALLOC_NOBUSY do not exclusive busy the page
2411 * VM_ALLOC_NODUMP do not include the page in a kernel core dump
2412 * VM_ALLOC_SBUSY shared busy the allocated page
2413 * VM_ALLOC_WIRED wire the allocated page
2414 * VM_ALLOC_ZERO prefer a zeroed page
2415 */
2416 vm_page_t
vm_page_alloc_contig(vm_object_t object,vm_pindex_t pindex,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2417 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2418 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2419 vm_paddr_t boundary, vm_memattr_t memattr)
2420 {
2421 struct vm_domainset_iter di;
2422 vm_page_t bounds[2];
2423 vm_page_t m;
2424 int domain;
2425 int start_segind;
2426
2427 start_segind = -1;
2428
2429 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2430 do {
2431 m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2432 npages, low, high, alignment, boundary, memattr);
2433 if (m != NULL)
2434 break;
2435 if (start_segind == -1)
2436 start_segind = vm_phys_lookup_segind(low);
2437 if (vm_phys_find_range(bounds, start_segind, domain,
2438 npages, low, high) == -1) {
2439 vm_domainset_iter_ignore(&di, domain);
2440 }
2441 } while (vm_domainset_iter_page(&di, object, &domain) == 0);
2442
2443 return (m);
2444 }
2445
2446 static vm_page_t
vm_page_find_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)2447 vm_page_find_contig_domain(int domain, int req, u_long npages, vm_paddr_t low,
2448 vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2449 {
2450 struct vm_domain *vmd;
2451 vm_page_t m_ret;
2452
2453 /*
2454 * Can we allocate the pages without the number of free pages falling
2455 * below the lower bound for the allocation class?
2456 */
2457 vmd = VM_DOMAIN(domain);
2458 if (!vm_domain_allocate(vmd, req, npages))
2459 return (NULL);
2460 /*
2461 * Try to allocate the pages from the free page queues.
2462 */
2463 vm_domain_free_lock(vmd);
2464 m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2465 alignment, boundary);
2466 vm_domain_free_unlock(vmd);
2467 if (m_ret != NULL)
2468 return (m_ret);
2469 #if VM_NRESERVLEVEL > 0
2470 /*
2471 * Try to break a reservation to allocate the pages.
2472 */
2473 if ((req & VM_ALLOC_NORECLAIM) == 0) {
2474 m_ret = vm_reserv_reclaim_contig(domain, npages, low,
2475 high, alignment, boundary);
2476 if (m_ret != NULL)
2477 return (m_ret);
2478 }
2479 #endif
2480 vm_domain_freecnt_inc(vmd, npages);
2481 return (NULL);
2482 }
2483
2484 vm_page_t
vm_page_alloc_contig_domain(vm_object_t object,vm_pindex_t pindex,int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2485 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2486 int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2487 vm_paddr_t boundary, vm_memattr_t memattr)
2488 {
2489 struct pctrie_iter pages;
2490 vm_page_t m, m_ret, mpred;
2491 u_int busy_lock, flags, oflags;
2492
2493 #define VPAC_FLAGS (VPA_FLAGS | VM_ALLOC_NORECLAIM)
2494 KASSERT((req & ~VPAC_FLAGS) == 0,
2495 ("invalid request %#x", req));
2496 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2497 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2498 ("invalid request %#x", req));
2499 KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
2500 (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
2501 ("invalid request %#x", req));
2502 VM_OBJECT_ASSERT_WLOCKED(object);
2503 KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2504 ("vm_page_alloc_contig: object %p has fictitious pages",
2505 object));
2506 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2507
2508 vm_page_iter_init(&pages, object);
2509 mpred = vm_radix_iter_lookup_le(&pages, pindex);
2510 KASSERT(mpred == NULL || mpred->pindex != pindex,
2511 ("vm_page_alloc_contig: pindex already allocated"));
2512 for (;;) {
2513 #if VM_NRESERVLEVEL > 0
2514 /*
2515 * Can we allocate the pages from a reservation?
2516 */
2517 if (vm_object_reserv(object) &&
2518 (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
2519 mpred, npages, low, high, alignment, boundary)) != NULL) {
2520 break;
2521 }
2522 #endif
2523 if ((m_ret = vm_page_find_contig_domain(domain, req, npages,
2524 low, high, alignment, boundary)) != NULL)
2525 break;
2526 if (!vm_domain_alloc_fail(VM_DOMAIN(domain), object, req))
2527 return (NULL);
2528 }
2529
2530 /*
2531 * Initialize the pages. Only the PG_ZERO flag is inherited.
2532 */
2533 flags = PG_ZERO;
2534 if ((req & VM_ALLOC_NODUMP) != 0)
2535 flags |= PG_NODUMP;
2536 oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2537 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2538 busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2539 else if ((req & VM_ALLOC_SBUSY) != 0)
2540 busy_lock = VPB_SHARERS_WORD(1);
2541 else
2542 busy_lock = VPB_UNBUSIED;
2543 if ((req & VM_ALLOC_WIRED) != 0)
2544 vm_wire_add(npages);
2545 if (object->memattr != VM_MEMATTR_DEFAULT &&
2546 memattr == VM_MEMATTR_DEFAULT)
2547 memattr = object->memattr;
2548 for (m = m_ret; m < &m_ret[npages]; m++) {
2549 vm_page_dequeue(m);
2550 vm_page_alloc_check(m);
2551 m->a.flags = 0;
2552 m->flags = (m->flags | PG_NODUMP) & flags;
2553 m->busy_lock = busy_lock;
2554 if ((req & VM_ALLOC_WIRED) != 0)
2555 m->ref_count = 1;
2556 m->a.act_count = 0;
2557 m->oflags = oflags;
2558 if (vm_page_iter_insert(&pages, m, object, pindex, mpred)) {
2559 if ((req & VM_ALLOC_WIRED) != 0)
2560 vm_wire_sub(npages);
2561 KASSERT(m->object == NULL,
2562 ("page %p has object", m));
2563 mpred = m;
2564 for (m = m_ret; m < &m_ret[npages]; m++) {
2565 if (m <= mpred &&
2566 (req & VM_ALLOC_WIRED) != 0)
2567 m->ref_count = 0;
2568 m->oflags = VPO_UNMANAGED;
2569 m->busy_lock = VPB_UNBUSIED;
2570 /* Don't change PG_ZERO. */
2571 vm_page_free_toq(m);
2572 }
2573 if (req & VM_ALLOC_WAITFAIL) {
2574 VM_OBJECT_WUNLOCK(object);
2575 vm_radix_wait();
2576 VM_OBJECT_WLOCK(object);
2577 }
2578 return (NULL);
2579 }
2580 mpred = m;
2581 if (memattr != VM_MEMATTR_DEFAULT)
2582 pmap_page_set_memattr(m, memattr);
2583 pindex++;
2584 }
2585 return (m_ret);
2586 }
2587
2588 /*
2589 * Allocate a physical page that is not intended to be inserted into a VM
2590 * object.
2591 */
2592 vm_page_t
vm_page_alloc_noobj_domain(int domain,int req)2593 vm_page_alloc_noobj_domain(int domain, int req)
2594 {
2595 struct vm_domain *vmd;
2596 vm_page_t m;
2597 int flags;
2598
2599 #define VPAN_FLAGS (VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL | \
2600 VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | \
2601 VM_ALLOC_NOBUSY | VM_ALLOC_WIRED | \
2602 VM_ALLOC_NODUMP | VM_ALLOC_ZERO | \
2603 VM_ALLOC_NOFREE | VM_ALLOC_COUNT_MASK)
2604 KASSERT((req & ~VPAN_FLAGS) == 0,
2605 ("invalid request %#x", req));
2606
2607 flags = ((req & VM_ALLOC_NODUMP) != 0 ? PG_NODUMP : 0) |
2608 ((req & VM_ALLOC_NOFREE) != 0 ? PG_NOFREE : 0);
2609 vmd = VM_DOMAIN(domain);
2610 again:
2611 if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) {
2612 m = vm_page_alloc_nofree_domain(domain, req);
2613 if (m != NULL)
2614 goto found;
2615 }
2616
2617 if (vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone != NULL) {
2618 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone,
2619 M_NOWAIT | M_NOVM);
2620 if (m != NULL) {
2621 flags |= PG_PCPU_CACHE;
2622 goto found;
2623 }
2624 }
2625
2626 if (vm_domain_allocate(vmd, req, 1)) {
2627 vm_domain_free_lock(vmd);
2628 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DIRECT, 0);
2629 vm_domain_free_unlock(vmd);
2630 if (m == NULL) {
2631 vm_domain_freecnt_inc(vmd, 1);
2632 #if VM_NRESERVLEVEL > 0
2633 if (vm_reserv_reclaim_inactive(domain))
2634 goto again;
2635 #endif
2636 }
2637 }
2638 if (m == NULL) {
2639 if (vm_domain_alloc_fail(vmd, NULL, req))
2640 goto again;
2641 return (NULL);
2642 }
2643
2644 found:
2645 vm_page_dequeue(m);
2646 vm_page_alloc_check(m);
2647
2648 /*
2649 * Consumers should not rely on a useful default pindex value.
2650 */
2651 m->pindex = 0xdeadc0dedeadc0de;
2652 m->flags = (m->flags & PG_ZERO) | flags;
2653 m->a.flags = 0;
2654 m->oflags = VPO_UNMANAGED;
2655 m->busy_lock = VPB_UNBUSIED;
2656 if ((req & VM_ALLOC_WIRED) != 0) {
2657 vm_wire_add(1);
2658 m->ref_count = 1;
2659 }
2660
2661 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2662 pmap_zero_page(m);
2663
2664 return (m);
2665 }
2666
2667 #if VM_NRESERVLEVEL > 1
2668 #define VM_NOFREE_IMPORT_ORDER (VM_LEVEL_1_ORDER + VM_LEVEL_0_ORDER)
2669 #elif VM_NRESERVLEVEL > 0
2670 #define VM_NOFREE_IMPORT_ORDER VM_LEVEL_0_ORDER
2671 #else
2672 #define VM_NOFREE_IMPORT_ORDER 8
2673 #endif
2674
2675 /*
2676 * Allocate a single NOFREE page.
2677 *
2678 * This routine hands out NOFREE pages from higher-order
2679 * physical memory blocks in order to reduce memory fragmentation.
2680 * When a NOFREE for a given domain chunk is used up,
2681 * the routine will try to fetch a new one from the freelists
2682 * and discard the old one.
2683 */
2684 static vm_page_t
vm_page_alloc_nofree_domain(int domain,int req)2685 vm_page_alloc_nofree_domain(int domain, int req)
2686 {
2687 vm_page_t m;
2688 struct vm_domain *vmd;
2689 struct vm_nofreeq *nqp;
2690
2691 KASSERT((req & VM_ALLOC_NOFREE) != 0, ("invalid request %#x", req));
2692
2693 vmd = VM_DOMAIN(domain);
2694 nqp = &vmd->vmd_nofreeq;
2695 vm_domain_free_lock(vmd);
2696 if (nqp->offs >= (1 << VM_NOFREE_IMPORT_ORDER) || nqp->ma == NULL) {
2697 if (!vm_domain_allocate(vmd, req,
2698 1 << VM_NOFREE_IMPORT_ORDER)) {
2699 vm_domain_free_unlock(vmd);
2700 return (NULL);
2701 }
2702 nqp->ma = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT,
2703 VM_NOFREE_IMPORT_ORDER);
2704 if (nqp->ma == NULL) {
2705 vm_domain_freecnt_inc(vmd, 1 << VM_NOFREE_IMPORT_ORDER);
2706 vm_domain_free_unlock(vmd);
2707 return (NULL);
2708 }
2709 nqp->offs = 0;
2710 }
2711 m = &nqp->ma[nqp->offs++];
2712 vm_domain_free_unlock(vmd);
2713 VM_CNT_ADD(v_nofree_count, 1);
2714
2715 return (m);
2716 }
2717
2718 vm_page_t
vm_page_alloc_noobj(int req)2719 vm_page_alloc_noobj(int req)
2720 {
2721 struct vm_domainset_iter di;
2722 vm_page_t m;
2723 int domain;
2724
2725 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2726 do {
2727 m = vm_page_alloc_noobj_domain(domain, req);
2728 if (m != NULL)
2729 break;
2730 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2731
2732 return (m);
2733 }
2734
2735 vm_page_t
vm_page_alloc_noobj_contig(int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2736 vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low,
2737 vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2738 vm_memattr_t memattr)
2739 {
2740 struct vm_domainset_iter di;
2741 vm_page_t m;
2742 int domain;
2743
2744 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2745 do {
2746 m = vm_page_alloc_noobj_contig_domain(domain, req, npages, low,
2747 high, alignment, boundary, memattr);
2748 if (m != NULL)
2749 break;
2750 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2751
2752 return (m);
2753 }
2754
2755 vm_page_t
vm_page_alloc_noobj_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2756 vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages,
2757 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2758 vm_memattr_t memattr)
2759 {
2760 vm_page_t m, m_ret;
2761 u_int flags;
2762
2763 #define VPANC_FLAGS (VPAN_FLAGS | VM_ALLOC_NORECLAIM)
2764 KASSERT((req & ~VPANC_FLAGS) == 0,
2765 ("invalid request %#x", req));
2766 KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
2767 (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
2768 ("invalid request %#x", req));
2769 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2770 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2771 ("invalid request %#x", req));
2772 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2773
2774 while ((m_ret = vm_page_find_contig_domain(domain, req, npages,
2775 low, high, alignment, boundary)) == NULL) {
2776 if (!vm_domain_alloc_fail(VM_DOMAIN(domain), NULL, req))
2777 return (NULL);
2778 }
2779
2780 /*
2781 * Initialize the pages. Only the PG_ZERO flag is inherited.
2782 */
2783 flags = PG_ZERO;
2784 if ((req & VM_ALLOC_NODUMP) != 0)
2785 flags |= PG_NODUMP;
2786 if ((req & VM_ALLOC_WIRED) != 0)
2787 vm_wire_add(npages);
2788 for (m = m_ret; m < &m_ret[npages]; m++) {
2789 vm_page_dequeue(m);
2790 vm_page_alloc_check(m);
2791
2792 /*
2793 * Consumers should not rely on a useful default pindex value.
2794 */
2795 m->pindex = 0xdeadc0dedeadc0de;
2796 m->a.flags = 0;
2797 m->flags = (m->flags | PG_NODUMP) & flags;
2798 m->busy_lock = VPB_UNBUSIED;
2799 if ((req & VM_ALLOC_WIRED) != 0)
2800 m->ref_count = 1;
2801 m->a.act_count = 0;
2802 m->oflags = VPO_UNMANAGED;
2803
2804 /*
2805 * Zero the page before updating any mappings since the page is
2806 * not yet shared with any devices which might require the
2807 * non-default memory attribute. pmap_page_set_memattr()
2808 * flushes data caches before returning.
2809 */
2810 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2811 pmap_zero_page(m);
2812 if (memattr != VM_MEMATTR_DEFAULT)
2813 pmap_page_set_memattr(m, memattr);
2814 }
2815 return (m_ret);
2816 }
2817
2818 /*
2819 * Check a page that has been freshly dequeued from a freelist.
2820 */
2821 static void
vm_page_alloc_check(vm_page_t m)2822 vm_page_alloc_check(vm_page_t m)
2823 {
2824
2825 KASSERT(m->object == NULL, ("page %p has object", m));
2826 KASSERT(m->a.queue == PQ_NONE &&
2827 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
2828 ("page %p has unexpected queue %d, flags %#x",
2829 m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
2830 KASSERT(m->ref_count == 0, ("page %p has references", m));
2831 KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m));
2832 KASSERT(m->dirty == 0, ("page %p is dirty", m));
2833 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2834 ("page %p has unexpected memattr %d",
2835 m, pmap_page_get_memattr(m)));
2836 KASSERT(vm_page_none_valid(m), ("free page %p is valid", m));
2837 pmap_vm_page_alloc_check(m);
2838 }
2839
2840 static int
vm_page_zone_import(void * arg,void ** store,int cnt,int domain,int flags)2841 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2842 {
2843 struct vm_domain *vmd;
2844 struct vm_pgcache *pgcache;
2845 int i;
2846
2847 pgcache = arg;
2848 vmd = VM_DOMAIN(pgcache->domain);
2849
2850 /*
2851 * The page daemon should avoid creating extra memory pressure since its
2852 * main purpose is to replenish the store of free pages.
2853 */
2854 if (vmd->vmd_severeset || curproc == pageproc ||
2855 !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2856 return (0);
2857 domain = vmd->vmd_domain;
2858 vm_domain_free_lock(vmd);
2859 i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2860 (vm_page_t *)store);
2861 vm_domain_free_unlock(vmd);
2862 if (cnt != i)
2863 vm_domain_freecnt_inc(vmd, cnt - i);
2864
2865 return (i);
2866 }
2867
2868 static void
vm_page_zone_release(void * arg,void ** store,int cnt)2869 vm_page_zone_release(void *arg, void **store, int cnt)
2870 {
2871 struct vm_domain *vmd;
2872 struct vm_pgcache *pgcache;
2873 vm_page_t m;
2874 int i;
2875
2876 pgcache = arg;
2877 vmd = VM_DOMAIN(pgcache->domain);
2878 vm_domain_free_lock(vmd);
2879 for (i = 0; i < cnt; i++) {
2880 m = (vm_page_t)store[i];
2881 vm_phys_free_pages(m, 0);
2882 }
2883 vm_domain_free_unlock(vmd);
2884 vm_domain_freecnt_inc(vmd, cnt);
2885 }
2886
2887 #define VPSC_ANY 0 /* No restrictions. */
2888 #define VPSC_NORESERV 1 /* Skip reservations; implies VPSC_NOSUPER. */
2889 #define VPSC_NOSUPER 2 /* Skip superpages. */
2890
2891 /*
2892 * vm_page_scan_contig:
2893 *
2894 * Scan vm_page_array[] between the specified entries "m_start" and
2895 * "m_end" for a run of contiguous physical pages that satisfy the
2896 * specified conditions, and return the lowest page in the run. The
2897 * specified "alignment" determines the alignment of the lowest physical
2898 * page in the run. If the specified "boundary" is non-zero, then the
2899 * run of physical pages cannot span a physical address that is a
2900 * multiple of "boundary".
2901 *
2902 * "m_end" is never dereferenced, so it need not point to a vm_page
2903 * structure within vm_page_array[].
2904 *
2905 * "npages" must be greater than zero. "m_start" and "m_end" must not
2906 * span a hole (or discontiguity) in the physical address space. Both
2907 * "alignment" and "boundary" must be a power of two.
2908 */
2909 static vm_page_t
vm_page_scan_contig(u_long npages,vm_page_t m_start,vm_page_t m_end,u_long alignment,vm_paddr_t boundary,int options)2910 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2911 u_long alignment, vm_paddr_t boundary, int options)
2912 {
2913 vm_object_t object;
2914 vm_paddr_t pa;
2915 vm_page_t m, m_run;
2916 #if VM_NRESERVLEVEL > 0
2917 int level;
2918 #endif
2919 int m_inc, order, run_ext, run_len;
2920
2921 KASSERT(npages > 0, ("npages is 0"));
2922 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2923 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2924 m_run = NULL;
2925 run_len = 0;
2926 for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2927 KASSERT((m->flags & PG_MARKER) == 0,
2928 ("page %p is PG_MARKER", m));
2929 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2930 ("fictitious page %p has invalid ref count", m));
2931
2932 /*
2933 * If the current page would be the start of a run, check its
2934 * physical address against the end, alignment, and boundary
2935 * conditions. If it doesn't satisfy these conditions, either
2936 * terminate the scan or advance to the next page that
2937 * satisfies the failed condition.
2938 */
2939 if (run_len == 0) {
2940 KASSERT(m_run == NULL, ("m_run != NULL"));
2941 if (m + npages > m_end)
2942 break;
2943 pa = VM_PAGE_TO_PHYS(m);
2944 if (!vm_addr_align_ok(pa, alignment)) {
2945 m_inc = atop(roundup2(pa, alignment) - pa);
2946 continue;
2947 }
2948 if (!vm_addr_bound_ok(pa, ptoa(npages), boundary)) {
2949 m_inc = atop(roundup2(pa, boundary) - pa);
2950 continue;
2951 }
2952 } else
2953 KASSERT(m_run != NULL, ("m_run == NULL"));
2954
2955 retry:
2956 m_inc = 1;
2957 if (vm_page_wired(m))
2958 run_ext = 0;
2959 #if VM_NRESERVLEVEL > 0
2960 else if ((level = vm_reserv_level(m)) >= 0 &&
2961 (options & VPSC_NORESERV) != 0) {
2962 run_ext = 0;
2963 /* Advance to the end of the reservation. */
2964 pa = VM_PAGE_TO_PHYS(m);
2965 m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2966 pa);
2967 }
2968 #endif
2969 else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2970 /*
2971 * The page is considered eligible for relocation if
2972 * and only if it could be laundered or reclaimed by
2973 * the page daemon.
2974 */
2975 VM_OBJECT_RLOCK(object);
2976 if (object != m->object) {
2977 VM_OBJECT_RUNLOCK(object);
2978 goto retry;
2979 }
2980 /* Don't care: PG_NODUMP, PG_ZERO. */
2981 if ((object->flags & OBJ_SWAP) == 0 &&
2982 object->type != OBJT_VNODE) {
2983 run_ext = 0;
2984 #if VM_NRESERVLEVEL > 0
2985 } else if ((options & VPSC_NOSUPER) != 0 &&
2986 (level = vm_reserv_level_iffullpop(m)) >= 0) {
2987 run_ext = 0;
2988 /* Advance to the end of the superpage. */
2989 pa = VM_PAGE_TO_PHYS(m);
2990 m_inc = atop(roundup2(pa + 1,
2991 vm_reserv_size(level)) - pa);
2992 #endif
2993 } else if (object->memattr == VM_MEMATTR_DEFAULT &&
2994 vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) {
2995 /*
2996 * The page is allocated but eligible for
2997 * relocation. Extend the current run by one
2998 * page.
2999 */
3000 KASSERT(pmap_page_get_memattr(m) ==
3001 VM_MEMATTR_DEFAULT,
3002 ("page %p has an unexpected memattr", m));
3003 KASSERT((m->oflags & (VPO_SWAPINPROG |
3004 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
3005 ("page %p has unexpected oflags", m));
3006 /* Don't care: PGA_NOSYNC. */
3007 run_ext = 1;
3008 } else
3009 run_ext = 0;
3010 VM_OBJECT_RUNLOCK(object);
3011 #if VM_NRESERVLEVEL > 0
3012 } else if (level >= 0) {
3013 /*
3014 * The page is reserved but not yet allocated. In
3015 * other words, it is still free. Extend the current
3016 * run by one page.
3017 */
3018 run_ext = 1;
3019 #endif
3020 } else if ((order = m->order) < VM_NFREEORDER) {
3021 /*
3022 * The page is enqueued in the physical memory
3023 * allocator's free page queues. Moreover, it is the
3024 * first page in a power-of-two-sized run of
3025 * contiguous free pages. Add these pages to the end
3026 * of the current run, and jump ahead.
3027 */
3028 run_ext = 1 << order;
3029 m_inc = 1 << order;
3030 } else {
3031 /*
3032 * Skip the page for one of the following reasons: (1)
3033 * It is enqueued in the physical memory allocator's
3034 * free page queues. However, it is not the first
3035 * page in a run of contiguous free pages. (This case
3036 * rarely occurs because the scan is performed in
3037 * ascending order.) (2) It is not reserved, and it is
3038 * transitioning from free to allocated. (Conversely,
3039 * the transition from allocated to free for managed
3040 * pages is blocked by the page busy lock.) (3) It is
3041 * allocated but not contained by an object and not
3042 * wired, e.g., allocated by Xen's balloon driver.
3043 */
3044 run_ext = 0;
3045 }
3046
3047 /*
3048 * Extend or reset the current run of pages.
3049 */
3050 if (run_ext > 0) {
3051 if (run_len == 0)
3052 m_run = m;
3053 run_len += run_ext;
3054 } else {
3055 if (run_len > 0) {
3056 m_run = NULL;
3057 run_len = 0;
3058 }
3059 }
3060 }
3061 if (run_len >= npages)
3062 return (m_run);
3063 return (NULL);
3064 }
3065
3066 /*
3067 * vm_page_reclaim_run:
3068 *
3069 * Try to relocate each of the allocated virtual pages within the
3070 * specified run of physical pages to a new physical address. Free the
3071 * physical pages underlying the relocated virtual pages. A virtual page
3072 * is relocatable if and only if it could be laundered or reclaimed by
3073 * the page daemon. Whenever possible, a virtual page is relocated to a
3074 * physical address above "high".
3075 *
3076 * Returns 0 if every physical page within the run was already free or
3077 * just freed by a successful relocation. Otherwise, returns a non-zero
3078 * value indicating why the last attempt to relocate a virtual page was
3079 * unsuccessful.
3080 *
3081 * "req_class" must be an allocation class.
3082 */
3083 static int
vm_page_reclaim_run(int req_class,int domain,u_long npages,vm_page_t m_run,vm_paddr_t high)3084 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
3085 vm_paddr_t high)
3086 {
3087 struct vm_domain *vmd;
3088 struct spglist free;
3089 vm_object_t object;
3090 vm_paddr_t pa;
3091 vm_page_t m, m_end, m_new;
3092 int error, order, req;
3093
3094 KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
3095 ("req_class is not an allocation class"));
3096 SLIST_INIT(&free);
3097 error = 0;
3098 m = m_run;
3099 m_end = m_run + npages;
3100 for (; error == 0 && m < m_end; m++) {
3101 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
3102 ("page %p is PG_FICTITIOUS or PG_MARKER", m));
3103
3104 /*
3105 * Racily check for wirings. Races are handled once the object
3106 * lock is held and the page is unmapped.
3107 */
3108 if (vm_page_wired(m))
3109 error = EBUSY;
3110 else if ((object = atomic_load_ptr(&m->object)) != NULL) {
3111 /*
3112 * The page is relocated if and only if it could be
3113 * laundered or reclaimed by the page daemon.
3114 */
3115 VM_OBJECT_WLOCK(object);
3116 /* Don't care: PG_NODUMP, PG_ZERO. */
3117 if (m->object != object ||
3118 ((object->flags & OBJ_SWAP) == 0 &&
3119 object->type != OBJT_VNODE))
3120 error = EINVAL;
3121 else if (object->memattr != VM_MEMATTR_DEFAULT)
3122 error = EINVAL;
3123 else if (vm_page_queue(m) != PQ_NONE &&
3124 vm_page_tryxbusy(m) != 0) {
3125 if (vm_page_wired(m)) {
3126 vm_page_xunbusy(m);
3127 error = EBUSY;
3128 goto unlock;
3129 }
3130 KASSERT(pmap_page_get_memattr(m) ==
3131 VM_MEMATTR_DEFAULT,
3132 ("page %p has an unexpected memattr", m));
3133 KASSERT(m->oflags == 0,
3134 ("page %p has unexpected oflags", m));
3135 /* Don't care: PGA_NOSYNC. */
3136 if (!vm_page_none_valid(m)) {
3137 /*
3138 * First, try to allocate a new page
3139 * that is above "high". Failing
3140 * that, try to allocate a new page
3141 * that is below "m_run". Allocate
3142 * the new page between the end of
3143 * "m_run" and "high" only as a last
3144 * resort.
3145 */
3146 req = req_class;
3147 if ((m->flags & PG_NODUMP) != 0)
3148 req |= VM_ALLOC_NODUMP;
3149 if (trunc_page(high) !=
3150 ~(vm_paddr_t)PAGE_MASK) {
3151 m_new =
3152 vm_page_alloc_noobj_contig(
3153 req, 1, round_page(high),
3154 ~(vm_paddr_t)0, PAGE_SIZE,
3155 0, VM_MEMATTR_DEFAULT);
3156 } else
3157 m_new = NULL;
3158 if (m_new == NULL) {
3159 pa = VM_PAGE_TO_PHYS(m_run);
3160 m_new =
3161 vm_page_alloc_noobj_contig(
3162 req, 1, 0, pa - 1,
3163 PAGE_SIZE, 0,
3164 VM_MEMATTR_DEFAULT);
3165 }
3166 if (m_new == NULL) {
3167 pa += ptoa(npages);
3168 m_new =
3169 vm_page_alloc_noobj_contig(
3170 req, 1, pa, high, PAGE_SIZE,
3171 0, VM_MEMATTR_DEFAULT);
3172 }
3173 if (m_new == NULL) {
3174 vm_page_xunbusy(m);
3175 error = ENOMEM;
3176 goto unlock;
3177 }
3178
3179 /*
3180 * Unmap the page and check for new
3181 * wirings that may have been acquired
3182 * through a pmap lookup.
3183 */
3184 if (object->ref_count != 0 &&
3185 !vm_page_try_remove_all(m)) {
3186 vm_page_xunbusy(m);
3187 vm_page_free(m_new);
3188 error = EBUSY;
3189 goto unlock;
3190 }
3191
3192 /*
3193 * Replace "m" with the new page. For
3194 * vm_page_replace(), "m" must be busy
3195 * and dequeued. Finally, change "m"
3196 * as if vm_page_free() was called.
3197 */
3198 m_new->a.flags = m->a.flags &
3199 ~PGA_QUEUE_STATE_MASK;
3200 KASSERT(m_new->oflags == VPO_UNMANAGED,
3201 ("page %p is managed", m_new));
3202 m_new->oflags = 0;
3203 pmap_copy_page(m, m_new);
3204 m_new->valid = m->valid;
3205 m_new->dirty = m->dirty;
3206 m->flags &= ~PG_ZERO;
3207 vm_page_dequeue(m);
3208 if (vm_page_replace_hold(m_new, object,
3209 m->pindex, m) &&
3210 vm_page_free_prep(m))
3211 SLIST_INSERT_HEAD(&free, m,
3212 plinks.s.ss);
3213
3214 /*
3215 * The new page must be deactivated
3216 * before the object is unlocked.
3217 */
3218 vm_page_deactivate(m_new);
3219 } else {
3220 m->flags &= ~PG_ZERO;
3221 vm_page_dequeue(m);
3222 if (vm_page_free_prep(m))
3223 SLIST_INSERT_HEAD(&free, m,
3224 plinks.s.ss);
3225 KASSERT(m->dirty == 0,
3226 ("page %p is dirty", m));
3227 }
3228 } else
3229 error = EBUSY;
3230 unlock:
3231 VM_OBJECT_WUNLOCK(object);
3232 } else {
3233 MPASS(vm_page_domain(m) == domain);
3234 vmd = VM_DOMAIN(domain);
3235 vm_domain_free_lock(vmd);
3236 order = m->order;
3237 if (order < VM_NFREEORDER) {
3238 /*
3239 * The page is enqueued in the physical memory
3240 * allocator's free page queues. Moreover, it
3241 * is the first page in a power-of-two-sized
3242 * run of contiguous free pages. Jump ahead
3243 * to the last page within that run, and
3244 * continue from there.
3245 */
3246 m += (1 << order) - 1;
3247 }
3248 #if VM_NRESERVLEVEL > 0
3249 else if (vm_reserv_is_page_free(m))
3250 order = 0;
3251 #endif
3252 vm_domain_free_unlock(vmd);
3253 if (order == VM_NFREEORDER)
3254 error = EINVAL;
3255 }
3256 }
3257 if ((m = SLIST_FIRST(&free)) != NULL) {
3258 int cnt;
3259
3260 vmd = VM_DOMAIN(domain);
3261 cnt = 0;
3262 vm_domain_free_lock(vmd);
3263 do {
3264 MPASS(vm_page_domain(m) == domain);
3265 SLIST_REMOVE_HEAD(&free, plinks.s.ss);
3266 vm_phys_free_pages(m, 0);
3267 cnt++;
3268 } while ((m = SLIST_FIRST(&free)) != NULL);
3269 vm_domain_free_unlock(vmd);
3270 vm_domain_freecnt_inc(vmd, cnt);
3271 }
3272 return (error);
3273 }
3274
3275 #define NRUNS 16
3276
3277 #define RUN_INDEX(count, nruns) ((count) % (nruns))
3278
3279 #define MIN_RECLAIM 8
3280
3281 /*
3282 * vm_page_reclaim_contig:
3283 *
3284 * Reclaim allocated, contiguous physical memory satisfying the specified
3285 * conditions by relocating the virtual pages using that physical memory.
3286 * Returns 0 if reclamation is successful, ERANGE if the specified domain
3287 * can't possibly satisfy the reclamation request, or ENOMEM if not
3288 * currently able to reclaim the requested number of pages. Since
3289 * relocation requires the allocation of physical pages, reclamation may
3290 * fail with ENOMEM due to a shortage of free pages. When reclamation
3291 * fails in this manner, callers are expected to perform vm_wait() before
3292 * retrying a failed allocation operation, e.g., vm_page_alloc_contig().
3293 *
3294 * The caller must always specify an allocation class through "req".
3295 *
3296 * allocation classes:
3297 * VM_ALLOC_NORMAL normal process request
3298 * VM_ALLOC_SYSTEM system *really* needs a page
3299 * VM_ALLOC_INTERRUPT interrupt time request
3300 *
3301 * The optional allocation flags are ignored.
3302 *
3303 * "npages" must be greater than zero. Both "alignment" and "boundary"
3304 * must be a power of two.
3305 */
3306 int
vm_page_reclaim_contig_domain_ext(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,int desired_runs)3307 vm_page_reclaim_contig_domain_ext(int domain, int req, u_long npages,
3308 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
3309 int desired_runs)
3310 {
3311 struct vm_domain *vmd;
3312 vm_page_t bounds[2], m_run, _m_runs[NRUNS], *m_runs;
3313 u_long count, minalign, reclaimed;
3314 int error, i, min_reclaim, nruns, options, req_class;
3315 int segind, start_segind;
3316 int ret;
3317
3318 KASSERT(npages > 0, ("npages is 0"));
3319 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
3320 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
3321
3322 ret = ENOMEM;
3323
3324 /*
3325 * If the caller wants to reclaim multiple runs, try to allocate
3326 * space to store the runs. If that fails, fall back to the old
3327 * behavior of just reclaiming MIN_RECLAIM pages.
3328 */
3329 if (desired_runs > 1)
3330 m_runs = malloc((NRUNS + desired_runs) * sizeof(*m_runs),
3331 M_TEMP, M_NOWAIT);
3332 else
3333 m_runs = NULL;
3334
3335 if (m_runs == NULL) {
3336 m_runs = _m_runs;
3337 nruns = NRUNS;
3338 } else {
3339 nruns = NRUNS + desired_runs - 1;
3340 }
3341 min_reclaim = MAX(desired_runs * npages, MIN_RECLAIM);
3342
3343 /*
3344 * The caller will attempt an allocation after some runs have been
3345 * reclaimed and added to the vm_phys buddy lists. Due to limitations
3346 * of vm_phys_alloc_contig(), round up the requested length to the next
3347 * power of two or maximum chunk size, and ensure that each run is
3348 * suitably aligned.
3349 */
3350 minalign = 1ul << imin(flsl(npages - 1), VM_NFREEORDER - 1);
3351 npages = roundup2(npages, minalign);
3352 if (alignment < ptoa(minalign))
3353 alignment = ptoa(minalign);
3354
3355 /*
3356 * The page daemon is allowed to dig deeper into the free page list.
3357 */
3358 req_class = req & VM_ALLOC_CLASS_MASK;
3359 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
3360 req_class = VM_ALLOC_SYSTEM;
3361
3362 start_segind = vm_phys_lookup_segind(low);
3363
3364 /*
3365 * Return if the number of free pages cannot satisfy the requested
3366 * allocation.
3367 */
3368 vmd = VM_DOMAIN(domain);
3369 count = vmd->vmd_free_count;
3370 if (count < npages + vmd->vmd_free_reserved || (count < npages +
3371 vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
3372 (count < npages && req_class == VM_ALLOC_INTERRUPT))
3373 goto done;
3374
3375 /*
3376 * Scan up to three times, relaxing the restrictions ("options") on
3377 * the reclamation of reservations and superpages each time.
3378 */
3379 for (options = VPSC_NORESERV;;) {
3380 bool phys_range_exists = false;
3381
3382 /*
3383 * Find the highest runs that satisfy the given constraints
3384 * and restrictions, and record them in "m_runs".
3385 */
3386 count = 0;
3387 segind = start_segind;
3388 while ((segind = vm_phys_find_range(bounds, segind, domain,
3389 npages, low, high)) != -1) {
3390 phys_range_exists = true;
3391 while ((m_run = vm_page_scan_contig(npages, bounds[0],
3392 bounds[1], alignment, boundary, options))) {
3393 bounds[0] = m_run + npages;
3394 m_runs[RUN_INDEX(count, nruns)] = m_run;
3395 count++;
3396 }
3397 segind++;
3398 }
3399
3400 if (!phys_range_exists) {
3401 ret = ERANGE;
3402 goto done;
3403 }
3404
3405 /*
3406 * Reclaim the highest runs in LIFO (descending) order until
3407 * the number of reclaimed pages, "reclaimed", is at least
3408 * "min_reclaim". Reset "reclaimed" each time because each
3409 * reclamation is idempotent, and runs will (likely) recur
3410 * from one scan to the next as restrictions are relaxed.
3411 */
3412 reclaimed = 0;
3413 for (i = 0; count > 0 && i < nruns; i++) {
3414 count--;
3415 m_run = m_runs[RUN_INDEX(count, nruns)];
3416 error = vm_page_reclaim_run(req_class, domain, npages,
3417 m_run, high);
3418 if (error == 0) {
3419 reclaimed += npages;
3420 if (reclaimed >= min_reclaim) {
3421 ret = 0;
3422 goto done;
3423 }
3424 }
3425 }
3426
3427 /*
3428 * Either relax the restrictions on the next scan or return if
3429 * the last scan had no restrictions.
3430 */
3431 if (options == VPSC_NORESERV)
3432 options = VPSC_NOSUPER;
3433 else if (options == VPSC_NOSUPER)
3434 options = VPSC_ANY;
3435 else if (options == VPSC_ANY) {
3436 if (reclaimed != 0)
3437 ret = 0;
3438 goto done;
3439 }
3440 }
3441 done:
3442 if (m_runs != _m_runs)
3443 free(m_runs, M_TEMP);
3444 return (ret);
3445 }
3446
3447 int
vm_page_reclaim_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)3448 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
3449 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
3450 {
3451 return (vm_page_reclaim_contig_domain_ext(domain, req, npages, low, high,
3452 alignment, boundary, 1));
3453 }
3454
3455 int
vm_page_reclaim_contig(int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)3456 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
3457 u_long alignment, vm_paddr_t boundary)
3458 {
3459 struct vm_domainset_iter di;
3460 int domain, ret, status;
3461
3462 ret = ERANGE;
3463
3464 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
3465 do {
3466 status = vm_page_reclaim_contig_domain(domain, req, npages, low,
3467 high, alignment, boundary);
3468 if (status == 0)
3469 return (0);
3470 else if (status == ERANGE)
3471 vm_domainset_iter_ignore(&di, domain);
3472 else {
3473 KASSERT(status == ENOMEM, ("Unrecognized error %d "
3474 "from vm_page_reclaim_contig_domain()", status));
3475 ret = ENOMEM;
3476 }
3477 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
3478
3479 return (ret);
3480 }
3481
3482 /*
3483 * Set the domain in the appropriate page level domainset.
3484 */
3485 void
vm_domain_set(struct vm_domain * vmd)3486 vm_domain_set(struct vm_domain *vmd)
3487 {
3488
3489 mtx_lock(&vm_domainset_lock);
3490 if (!vmd->vmd_minset && vm_paging_min(vmd)) {
3491 vmd->vmd_minset = 1;
3492 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
3493 }
3494 if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
3495 vmd->vmd_severeset = 1;
3496 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
3497 }
3498 mtx_unlock(&vm_domainset_lock);
3499 }
3500
3501 /*
3502 * Clear the domain from the appropriate page level domainset.
3503 */
3504 void
vm_domain_clear(struct vm_domain * vmd)3505 vm_domain_clear(struct vm_domain *vmd)
3506 {
3507
3508 mtx_lock(&vm_domainset_lock);
3509 if (vmd->vmd_minset && !vm_paging_min(vmd)) {
3510 vmd->vmd_minset = 0;
3511 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
3512 if (vm_min_waiters != 0) {
3513 vm_min_waiters = 0;
3514 wakeup(&vm_min_domains);
3515 }
3516 }
3517 if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
3518 vmd->vmd_severeset = 0;
3519 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
3520 if (vm_severe_waiters != 0) {
3521 vm_severe_waiters = 0;
3522 wakeup(&vm_severe_domains);
3523 }
3524 }
3525
3526 /*
3527 * If pageout daemon needs pages, then tell it that there are
3528 * some free.
3529 */
3530 if (vmd->vmd_pageout_pages_needed &&
3531 vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
3532 wakeup(&vmd->vmd_pageout_pages_needed);
3533 vmd->vmd_pageout_pages_needed = 0;
3534 }
3535
3536 /* See comments in vm_wait_doms(). */
3537 if (vm_pageproc_waiters) {
3538 vm_pageproc_waiters = 0;
3539 wakeup(&vm_pageproc_waiters);
3540 }
3541 mtx_unlock(&vm_domainset_lock);
3542 }
3543
3544 /*
3545 * Wait for free pages to exceed the min threshold globally.
3546 */
3547 void
vm_wait_min(void)3548 vm_wait_min(void)
3549 {
3550
3551 mtx_lock(&vm_domainset_lock);
3552 while (vm_page_count_min()) {
3553 vm_min_waiters++;
3554 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3555 }
3556 mtx_unlock(&vm_domainset_lock);
3557 }
3558
3559 /*
3560 * Wait for free pages to exceed the severe threshold globally.
3561 */
3562 void
vm_wait_severe(void)3563 vm_wait_severe(void)
3564 {
3565
3566 mtx_lock(&vm_domainset_lock);
3567 while (vm_page_count_severe()) {
3568 vm_severe_waiters++;
3569 msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3570 "vmwait", 0);
3571 }
3572 mtx_unlock(&vm_domainset_lock);
3573 }
3574
3575 u_int
vm_wait_count(void)3576 vm_wait_count(void)
3577 {
3578
3579 return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3580 }
3581
3582 int
vm_wait_doms(const domainset_t * wdoms,int mflags)3583 vm_wait_doms(const domainset_t *wdoms, int mflags)
3584 {
3585 int error;
3586
3587 error = 0;
3588
3589 /*
3590 * We use racey wakeup synchronization to avoid expensive global
3591 * locking for the pageproc when sleeping with a non-specific vm_wait.
3592 * To handle this, we only sleep for one tick in this instance. It
3593 * is expected that most allocations for the pageproc will come from
3594 * kmem or vm_page_grab* which will use the more specific and
3595 * race-free vm_wait_domain().
3596 */
3597 if (curproc == pageproc) {
3598 mtx_lock(&vm_domainset_lock);
3599 vm_pageproc_waiters++;
3600 error = msleep(&vm_pageproc_waiters, &vm_domainset_lock,
3601 PVM | PDROP | mflags, "pageprocwait", 1);
3602 } else {
3603 /*
3604 * XXX Ideally we would wait only until the allocation could
3605 * be satisfied. This condition can cause new allocators to
3606 * consume all freed pages while old allocators wait.
3607 */
3608 mtx_lock(&vm_domainset_lock);
3609 if (vm_page_count_min_set(wdoms)) {
3610 if (pageproc == NULL)
3611 panic("vm_wait in early boot");
3612 vm_min_waiters++;
3613 error = msleep(&vm_min_domains, &vm_domainset_lock,
3614 PVM | PDROP | mflags, "vmwait", 0);
3615 } else
3616 mtx_unlock(&vm_domainset_lock);
3617 }
3618 return (error);
3619 }
3620
3621 /*
3622 * vm_wait_domain:
3623 *
3624 * Sleep until free pages are available for allocation.
3625 * - Called in various places after failed memory allocations.
3626 */
3627 void
vm_wait_domain(int domain)3628 vm_wait_domain(int domain)
3629 {
3630 struct vm_domain *vmd;
3631 domainset_t wdom;
3632
3633 vmd = VM_DOMAIN(domain);
3634 vm_domain_free_assert_unlocked(vmd);
3635
3636 if (curproc == pageproc) {
3637 mtx_lock(&vm_domainset_lock);
3638 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3639 vmd->vmd_pageout_pages_needed = 1;
3640 msleep(&vmd->vmd_pageout_pages_needed,
3641 &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3642 } else
3643 mtx_unlock(&vm_domainset_lock);
3644 } else {
3645 DOMAINSET_ZERO(&wdom);
3646 DOMAINSET_SET(vmd->vmd_domain, &wdom);
3647 vm_wait_doms(&wdom, 0);
3648 }
3649 }
3650
3651 static int
vm_wait_flags(vm_object_t obj,int mflags)3652 vm_wait_flags(vm_object_t obj, int mflags)
3653 {
3654 struct domainset *d;
3655
3656 d = NULL;
3657
3658 /*
3659 * Carefully fetch pointers only once: the struct domainset
3660 * itself is ummutable but the pointer might change.
3661 */
3662 if (obj != NULL)
3663 d = obj->domain.dr_policy;
3664 if (d == NULL)
3665 d = curthread->td_domain.dr_policy;
3666
3667 return (vm_wait_doms(&d->ds_mask, mflags));
3668 }
3669
3670 /*
3671 * vm_wait:
3672 *
3673 * Sleep until free pages are available for allocation in the
3674 * affinity domains of the obj. If obj is NULL, the domain set
3675 * for the calling thread is used.
3676 * Called in various places after failed memory allocations.
3677 */
3678 void
vm_wait(vm_object_t obj)3679 vm_wait(vm_object_t obj)
3680 {
3681 (void)vm_wait_flags(obj, 0);
3682 }
3683
3684 int
vm_wait_intr(vm_object_t obj)3685 vm_wait_intr(vm_object_t obj)
3686 {
3687 return (vm_wait_flags(obj, PCATCH));
3688 }
3689
3690 /*
3691 * vm_domain_alloc_fail:
3692 *
3693 * Called when a page allocation function fails. Informs the
3694 * pagedaemon and performs the requested wait. Requires the
3695 * domain_free and object lock on entry. Returns with the
3696 * object lock held and free lock released. Returns an error when
3697 * retry is necessary.
3698 *
3699 */
3700 static int
vm_domain_alloc_fail(struct vm_domain * vmd,vm_object_t object,int req)3701 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3702 {
3703
3704 vm_domain_free_assert_unlocked(vmd);
3705
3706 atomic_add_int(&vmd->vmd_pageout_deficit,
3707 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3708 if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3709 if (object != NULL)
3710 VM_OBJECT_WUNLOCK(object);
3711 vm_wait_domain(vmd->vmd_domain);
3712 if (object != NULL)
3713 VM_OBJECT_WLOCK(object);
3714 if (req & VM_ALLOC_WAITOK)
3715 return (EAGAIN);
3716 }
3717
3718 return (0);
3719 }
3720
3721 /*
3722 * vm_waitpfault:
3723 *
3724 * Sleep until free pages are available for allocation.
3725 * - Called only in vm_fault so that processes page faulting
3726 * can be easily tracked.
3727 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3728 * processes will be able to grab memory first. Do not change
3729 * this balance without careful testing first.
3730 */
3731 void
vm_waitpfault(struct domainset * dset,int timo)3732 vm_waitpfault(struct domainset *dset, int timo)
3733 {
3734
3735 /*
3736 * XXX Ideally we would wait only until the allocation could
3737 * be satisfied. This condition can cause new allocators to
3738 * consume all freed pages while old allocators wait.
3739 */
3740 mtx_lock(&vm_domainset_lock);
3741 if (vm_page_count_min_set(&dset->ds_mask)) {
3742 vm_min_waiters++;
3743 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3744 "pfault", timo);
3745 } else
3746 mtx_unlock(&vm_domainset_lock);
3747 }
3748
3749 static struct vm_pagequeue *
_vm_page_pagequeue(vm_page_t m,uint8_t queue)3750 _vm_page_pagequeue(vm_page_t m, uint8_t queue)
3751 {
3752
3753 return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3754 }
3755
3756 #ifdef INVARIANTS
3757 static struct vm_pagequeue *
vm_page_pagequeue(vm_page_t m)3758 vm_page_pagequeue(vm_page_t m)
3759 {
3760
3761 return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue));
3762 }
3763 #endif
3764
3765 static __always_inline bool
vm_page_pqstate_fcmpset(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3766 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3767 {
3768 vm_page_astate_t tmp;
3769
3770 tmp = *old;
3771 do {
3772 if (__predict_true(vm_page_astate_fcmpset(m, old, new)))
3773 return (true);
3774 counter_u64_add(pqstate_commit_retries, 1);
3775 } while (old->_bits == tmp._bits);
3776
3777 return (false);
3778 }
3779
3780 /*
3781 * Do the work of committing a queue state update that moves the page out of
3782 * its current queue.
3783 */
3784 static bool
_vm_page_pqstate_commit_dequeue(struct vm_pagequeue * pq,vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3785 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m,
3786 vm_page_astate_t *old, vm_page_astate_t new)
3787 {
3788 vm_page_t next;
3789
3790 vm_pagequeue_assert_locked(pq);
3791 KASSERT(vm_page_pagequeue(m) == pq,
3792 ("%s: queue %p does not match page %p", __func__, pq, m));
3793 KASSERT(old->queue != PQ_NONE && new.queue != old->queue,
3794 ("%s: invalid queue indices %d %d",
3795 __func__, old->queue, new.queue));
3796
3797 /*
3798 * Once the queue index of the page changes there is nothing
3799 * synchronizing with further updates to the page's physical
3800 * queue state. Therefore we must speculatively remove the page
3801 * from the queue now and be prepared to roll back if the queue
3802 * state update fails. If the page is not physically enqueued then
3803 * we just update its queue index.
3804 */
3805 if ((old->flags & PGA_ENQUEUED) != 0) {
3806 new.flags &= ~PGA_ENQUEUED;
3807 next = TAILQ_NEXT(m, plinks.q);
3808 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3809 vm_pagequeue_cnt_dec(pq);
3810 if (!vm_page_pqstate_fcmpset(m, old, new)) {
3811 if (next == NULL)
3812 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3813 else
3814 TAILQ_INSERT_BEFORE(next, m, plinks.q);
3815 vm_pagequeue_cnt_inc(pq);
3816 return (false);
3817 } else {
3818 return (true);
3819 }
3820 } else {
3821 return (vm_page_pqstate_fcmpset(m, old, new));
3822 }
3823 }
3824
3825 static bool
vm_page_pqstate_commit_dequeue(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3826 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old,
3827 vm_page_astate_t new)
3828 {
3829 struct vm_pagequeue *pq;
3830 vm_page_astate_t as;
3831 bool ret;
3832
3833 pq = _vm_page_pagequeue(m, old->queue);
3834
3835 /*
3836 * The queue field and PGA_ENQUEUED flag are stable only so long as the
3837 * corresponding page queue lock is held.
3838 */
3839 vm_pagequeue_lock(pq);
3840 as = vm_page_astate_load(m);
3841 if (__predict_false(as._bits != old->_bits)) {
3842 *old = as;
3843 ret = false;
3844 } else {
3845 ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new);
3846 }
3847 vm_pagequeue_unlock(pq);
3848 return (ret);
3849 }
3850
3851 /*
3852 * Commit a queue state update that enqueues or requeues a page.
3853 */
3854 static bool
_vm_page_pqstate_commit_requeue(struct vm_pagequeue * pq,vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3855 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m,
3856 vm_page_astate_t *old, vm_page_astate_t new)
3857 {
3858 struct vm_domain *vmd;
3859
3860 vm_pagequeue_assert_locked(pq);
3861 KASSERT(old->queue != PQ_NONE && new.queue == old->queue,
3862 ("%s: invalid queue indices %d %d",
3863 __func__, old->queue, new.queue));
3864
3865 new.flags |= PGA_ENQUEUED;
3866 if (!vm_page_pqstate_fcmpset(m, old, new))
3867 return (false);
3868
3869 if ((old->flags & PGA_ENQUEUED) != 0)
3870 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3871 else
3872 vm_pagequeue_cnt_inc(pq);
3873
3874 /*
3875 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE. In particular, if
3876 * both flags are set in close succession, only PGA_REQUEUE_HEAD will be
3877 * applied, even if it was set first.
3878 */
3879 if ((old->flags & PGA_REQUEUE_HEAD) != 0) {
3880 vmd = vm_pagequeue_domain(m);
3881 KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE],
3882 ("%s: invalid page queue for page %p", __func__, m));
3883 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3884 } else {
3885 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3886 }
3887 return (true);
3888 }
3889
3890 /*
3891 * Commit a queue state update that encodes a request for a deferred queue
3892 * operation.
3893 */
3894 static bool
vm_page_pqstate_commit_request(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3895 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old,
3896 vm_page_astate_t new)
3897 {
3898
3899 KASSERT(old->queue == new.queue || new.queue != PQ_NONE,
3900 ("%s: invalid state, queue %d flags %x",
3901 __func__, new.queue, new.flags));
3902
3903 if (old->_bits != new._bits &&
3904 !vm_page_pqstate_fcmpset(m, old, new))
3905 return (false);
3906 vm_page_pqbatch_submit(m, new.queue);
3907 return (true);
3908 }
3909
3910 /*
3911 * A generic queue state update function. This handles more cases than the
3912 * specialized functions above.
3913 */
3914 bool
vm_page_pqstate_commit(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3915 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3916 {
3917
3918 if (old->_bits == new._bits)
3919 return (true);
3920
3921 if (old->queue != PQ_NONE && new.queue != old->queue) {
3922 if (!vm_page_pqstate_commit_dequeue(m, old, new))
3923 return (false);
3924 if (new.queue != PQ_NONE)
3925 vm_page_pqbatch_submit(m, new.queue);
3926 } else {
3927 if (!vm_page_pqstate_fcmpset(m, old, new))
3928 return (false);
3929 if (new.queue != PQ_NONE &&
3930 ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0)
3931 vm_page_pqbatch_submit(m, new.queue);
3932 }
3933 return (true);
3934 }
3935
3936 /*
3937 * Apply deferred queue state updates to a page.
3938 */
3939 static inline void
vm_pqbatch_process_page(struct vm_pagequeue * pq,vm_page_t m,uint8_t queue)3940 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue)
3941 {
3942 vm_page_astate_t new, old;
3943
3944 CRITICAL_ASSERT(curthread);
3945 vm_pagequeue_assert_locked(pq);
3946 KASSERT(queue < PQ_COUNT,
3947 ("%s: invalid queue index %d", __func__, queue));
3948 KASSERT(pq == _vm_page_pagequeue(m, queue),
3949 ("%s: page %p does not belong to queue %p", __func__, m, pq));
3950
3951 for (old = vm_page_astate_load(m);;) {
3952 if (__predict_false(old.queue != queue ||
3953 (old.flags & PGA_QUEUE_OP_MASK) == 0)) {
3954 counter_u64_add(queue_nops, 1);
3955 break;
3956 }
3957 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3958 ("%s: page %p is unmanaged", __func__, m));
3959
3960 new = old;
3961 if ((old.flags & PGA_DEQUEUE) != 0) {
3962 new.flags &= ~PGA_QUEUE_OP_MASK;
3963 new.queue = PQ_NONE;
3964 if (__predict_true(_vm_page_pqstate_commit_dequeue(pq,
3965 m, &old, new))) {
3966 counter_u64_add(queue_ops, 1);
3967 break;
3968 }
3969 } else {
3970 new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD);
3971 if (__predict_true(_vm_page_pqstate_commit_requeue(pq,
3972 m, &old, new))) {
3973 counter_u64_add(queue_ops, 1);
3974 break;
3975 }
3976 }
3977 }
3978 }
3979
3980 static void
vm_pqbatch_process(struct vm_pagequeue * pq,struct vm_batchqueue * bq,uint8_t queue)3981 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3982 uint8_t queue)
3983 {
3984 int i;
3985
3986 for (i = 0; i < bq->bq_cnt; i++)
3987 vm_pqbatch_process_page(pq, bq->bq_pa[i], queue);
3988 vm_batchqueue_init(bq);
3989 }
3990
3991 /*
3992 * vm_page_pqbatch_submit: [ internal use only ]
3993 *
3994 * Enqueue a page in the specified page queue's batched work queue.
3995 * The caller must have encoded the requested operation in the page
3996 * structure's a.flags field.
3997 */
3998 void
vm_page_pqbatch_submit(vm_page_t m,uint8_t queue)3999 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
4000 {
4001 struct vm_batchqueue *bq;
4002 struct vm_pagequeue *pq;
4003 int domain, slots_remaining;
4004
4005 KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
4006
4007 domain = vm_page_domain(m);
4008 critical_enter();
4009 bq = DPCPU_PTR(pqbatch[domain][queue]);
4010 slots_remaining = vm_batchqueue_insert(bq, m);
4011 if (slots_remaining > (VM_BATCHQUEUE_SIZE >> 1)) {
4012 /* keep building the bq */
4013 critical_exit();
4014 return;
4015 } else if (slots_remaining > 0 ) {
4016 /* Try to process the bq if we can get the lock */
4017 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
4018 if (vm_pagequeue_trylock(pq)) {
4019 vm_pqbatch_process(pq, bq, queue);
4020 vm_pagequeue_unlock(pq);
4021 }
4022 critical_exit();
4023 return;
4024 }
4025 critical_exit();
4026
4027 /* if we make it here, the bq is full so wait for the lock */
4028
4029 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
4030 vm_pagequeue_lock(pq);
4031 critical_enter();
4032 bq = DPCPU_PTR(pqbatch[domain][queue]);
4033 vm_pqbatch_process(pq, bq, queue);
4034 vm_pqbatch_process_page(pq, m, queue);
4035 vm_pagequeue_unlock(pq);
4036 critical_exit();
4037 }
4038
4039 /*
4040 * vm_page_pqbatch_drain: [ internal use only ]
4041 *
4042 * Force all per-CPU page queue batch queues to be drained. This is
4043 * intended for use in severe memory shortages, to ensure that pages
4044 * do not remain stuck in the batch queues.
4045 */
4046 void
vm_page_pqbatch_drain(void)4047 vm_page_pqbatch_drain(void)
4048 {
4049 struct thread *td;
4050 struct vm_domain *vmd;
4051 struct vm_pagequeue *pq;
4052 int cpu, domain, queue;
4053
4054 td = curthread;
4055 CPU_FOREACH(cpu) {
4056 thread_lock(td);
4057 sched_bind(td, cpu);
4058 thread_unlock(td);
4059
4060 for (domain = 0; domain < vm_ndomains; domain++) {
4061 vmd = VM_DOMAIN(domain);
4062 for (queue = 0; queue < PQ_COUNT; queue++) {
4063 pq = &vmd->vmd_pagequeues[queue];
4064 vm_pagequeue_lock(pq);
4065 critical_enter();
4066 vm_pqbatch_process(pq,
4067 DPCPU_PTR(pqbatch[domain][queue]), queue);
4068 critical_exit();
4069 vm_pagequeue_unlock(pq);
4070 }
4071 }
4072 }
4073 thread_lock(td);
4074 sched_unbind(td);
4075 thread_unlock(td);
4076 }
4077
4078 /*
4079 * vm_page_dequeue_deferred: [ internal use only ]
4080 *
4081 * Request removal of the given page from its current page
4082 * queue. Physical removal from the queue may be deferred
4083 * indefinitely.
4084 */
4085 void
vm_page_dequeue_deferred(vm_page_t m)4086 vm_page_dequeue_deferred(vm_page_t m)
4087 {
4088 vm_page_astate_t new, old;
4089
4090 old = vm_page_astate_load(m);
4091 do {
4092 if (old.queue == PQ_NONE) {
4093 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
4094 ("%s: page %p has unexpected queue state",
4095 __func__, m));
4096 break;
4097 }
4098 new = old;
4099 new.flags |= PGA_DEQUEUE;
4100 } while (!vm_page_pqstate_commit_request(m, &old, new));
4101 }
4102
4103 /*
4104 * vm_page_dequeue:
4105 *
4106 * Remove the page from whichever page queue it's in, if any, before
4107 * returning.
4108 */
4109 void
vm_page_dequeue(vm_page_t m)4110 vm_page_dequeue(vm_page_t m)
4111 {
4112 vm_page_astate_t new, old;
4113
4114 old = vm_page_astate_load(m);
4115 do {
4116 if (old.queue == PQ_NONE) {
4117 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
4118 ("%s: page %p has unexpected queue state",
4119 __func__, m));
4120 break;
4121 }
4122 new = old;
4123 new.flags &= ~PGA_QUEUE_OP_MASK;
4124 new.queue = PQ_NONE;
4125 } while (!vm_page_pqstate_commit_dequeue(m, &old, new));
4126
4127 }
4128
4129 /*
4130 * Schedule the given page for insertion into the specified page queue.
4131 * Physical insertion of the page may be deferred indefinitely.
4132 */
4133 static void
vm_page_enqueue(vm_page_t m,uint8_t queue)4134 vm_page_enqueue(vm_page_t m, uint8_t queue)
4135 {
4136
4137 KASSERT(m->a.queue == PQ_NONE &&
4138 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
4139 ("%s: page %p is already enqueued", __func__, m));
4140 KASSERT(m->ref_count > 0,
4141 ("%s: page %p does not carry any references", __func__, m));
4142
4143 m->a.queue = queue;
4144 if ((m->a.flags & PGA_REQUEUE) == 0)
4145 vm_page_aflag_set(m, PGA_REQUEUE);
4146 vm_page_pqbatch_submit(m, queue);
4147 }
4148
4149 /*
4150 * vm_page_free_prep:
4151 *
4152 * Prepares the given page to be put on the free list,
4153 * disassociating it from any VM object. The caller may return
4154 * the page to the free list only if this function returns true.
4155 *
4156 * The object, if it exists, must be locked, and then the page must
4157 * be xbusy. Otherwise the page must be not busied. A managed
4158 * page must be unmapped.
4159 */
4160 static bool
vm_page_free_prep(vm_page_t m)4161 vm_page_free_prep(vm_page_t m)
4162 {
4163
4164 /*
4165 * Synchronize with threads that have dropped a reference to this
4166 * page.
4167 */
4168 atomic_thread_fence_acq();
4169
4170 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
4171 if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
4172 uint64_t *p;
4173 int i;
4174 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
4175 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
4176 KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
4177 m, i, (uintmax_t)*p));
4178 }
4179 #endif
4180 KASSERT((m->flags & PG_NOFREE) == 0,
4181 ("%s: attempting to free a PG_NOFREE page", __func__));
4182 if ((m->oflags & VPO_UNMANAGED) == 0) {
4183 KASSERT(!pmap_page_is_mapped(m),
4184 ("vm_page_free_prep: freeing mapped page %p", m));
4185 KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
4186 ("vm_page_free_prep: mapping flags set in page %p", m));
4187 } else {
4188 KASSERT(m->a.queue == PQ_NONE,
4189 ("vm_page_free_prep: unmanaged page %p is queued", m));
4190 }
4191 VM_CNT_INC(v_tfree);
4192
4193 if (m->object != NULL) {
4194 vm_page_radix_remove(m);
4195 vm_page_free_object_prep(m);
4196 } else
4197 vm_page_assert_unbusied(m);
4198
4199 vm_page_busy_free(m);
4200
4201 /*
4202 * If fictitious remove object association and
4203 * return.
4204 */
4205 if ((m->flags & PG_FICTITIOUS) != 0) {
4206 KASSERT(m->ref_count == 1,
4207 ("fictitious page %p is referenced", m));
4208 KASSERT(m->a.queue == PQ_NONE,
4209 ("fictitious page %p is queued", m));
4210 return (false);
4211 }
4212
4213 /*
4214 * Pages need not be dequeued before they are returned to the physical
4215 * memory allocator, but they must at least be marked for a deferred
4216 * dequeue.
4217 */
4218 if ((m->oflags & VPO_UNMANAGED) == 0)
4219 vm_page_dequeue_deferred(m);
4220
4221 m->valid = 0;
4222 vm_page_undirty(m);
4223
4224 if (m->ref_count != 0)
4225 panic("vm_page_free_prep: page %p has references", m);
4226
4227 /*
4228 * Restore the default memory attribute to the page.
4229 */
4230 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
4231 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
4232
4233 #if VM_NRESERVLEVEL > 0
4234 /*
4235 * Determine whether the page belongs to a reservation. If the page was
4236 * allocated from a per-CPU cache, it cannot belong to a reservation, so
4237 * as an optimization, we avoid the check in that case.
4238 */
4239 if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
4240 return (false);
4241 #endif
4242
4243 return (true);
4244 }
4245
4246 /*
4247 * vm_page_free_toq:
4248 *
4249 * Returns the given page to the free list, disassociating it
4250 * from any VM object.
4251 *
4252 * The object must be locked. The page must be exclusively busied if it
4253 * belongs to an object.
4254 */
4255 static void
vm_page_free_toq(vm_page_t m)4256 vm_page_free_toq(vm_page_t m)
4257 {
4258 struct vm_domain *vmd;
4259 uma_zone_t zone;
4260
4261 if (!vm_page_free_prep(m))
4262 return;
4263
4264 vmd = vm_pagequeue_domain(m);
4265 zone = vmd->vmd_pgcache[m->pool].zone;
4266 if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
4267 uma_zfree(zone, m);
4268 return;
4269 }
4270 vm_domain_free_lock(vmd);
4271 vm_phys_free_pages(m, 0);
4272 vm_domain_free_unlock(vmd);
4273 vm_domain_freecnt_inc(vmd, 1);
4274 }
4275
4276 /*
4277 * vm_page_free_pages_toq:
4278 *
4279 * Returns a list of pages to the free list, disassociating it
4280 * from any VM object. In other words, this is equivalent to
4281 * calling vm_page_free_toq() for each page of a list of VM objects.
4282 */
4283 int
vm_page_free_pages_toq(struct spglist * free,bool update_wire_count)4284 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
4285 {
4286 vm_page_t m;
4287 int count;
4288
4289 if (SLIST_EMPTY(free))
4290 return (0);
4291
4292 count = 0;
4293 while ((m = SLIST_FIRST(free)) != NULL) {
4294 count++;
4295 SLIST_REMOVE_HEAD(free, plinks.s.ss);
4296 vm_page_free_toq(m);
4297 }
4298
4299 if (update_wire_count)
4300 vm_wire_sub(count);
4301 return (count);
4302 }
4303
4304 /*
4305 * Mark this page as wired down. For managed pages, this prevents reclamation
4306 * by the page daemon, or when the containing object, if any, is destroyed.
4307 */
4308 void
vm_page_wire(vm_page_t m)4309 vm_page_wire(vm_page_t m)
4310 {
4311 u_int old;
4312
4313 #ifdef INVARIANTS
4314 if (m->object != NULL && !vm_page_busied(m) &&
4315 !vm_object_busied(m->object))
4316 VM_OBJECT_ASSERT_LOCKED(m->object);
4317 #endif
4318 KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
4319 VPRC_WIRE_COUNT(m->ref_count) >= 1,
4320 ("vm_page_wire: fictitious page %p has zero wirings", m));
4321
4322 old = atomic_fetchadd_int(&m->ref_count, 1);
4323 KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
4324 ("vm_page_wire: counter overflow for page %p", m));
4325 if (VPRC_WIRE_COUNT(old) == 0) {
4326 if ((m->oflags & VPO_UNMANAGED) == 0)
4327 vm_page_aflag_set(m, PGA_DEQUEUE);
4328 vm_wire_add(1);
4329 }
4330 }
4331
4332 /*
4333 * Attempt to wire a mapped page following a pmap lookup of that page.
4334 * This may fail if a thread is concurrently tearing down mappings of the page.
4335 * The transient failure is acceptable because it translates to the
4336 * failure of the caller pmap_extract_and_hold(), which should be then
4337 * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
4338 */
4339 bool
vm_page_wire_mapped(vm_page_t m)4340 vm_page_wire_mapped(vm_page_t m)
4341 {
4342 u_int old;
4343
4344 old = atomic_load_int(&m->ref_count);
4345 do {
4346 KASSERT(old > 0,
4347 ("vm_page_wire_mapped: wiring unreferenced page %p", m));
4348 if ((old & VPRC_BLOCKED) != 0)
4349 return (false);
4350 } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
4351
4352 if (VPRC_WIRE_COUNT(old) == 0) {
4353 if ((m->oflags & VPO_UNMANAGED) == 0)
4354 vm_page_aflag_set(m, PGA_DEQUEUE);
4355 vm_wire_add(1);
4356 }
4357 return (true);
4358 }
4359
4360 /*
4361 * Release a wiring reference to a managed page. If the page still belongs to
4362 * an object, update its position in the page queues to reflect the reference.
4363 * If the wiring was the last reference to the page, free the page.
4364 */
4365 static void
vm_page_unwire_managed(vm_page_t m,uint8_t nqueue,bool noreuse)4366 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse)
4367 {
4368 u_int old;
4369
4370 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4371 ("%s: page %p is unmanaged", __func__, m));
4372
4373 /*
4374 * Update LRU state before releasing the wiring reference.
4375 * Use a release store when updating the reference count to
4376 * synchronize with vm_page_free_prep().
4377 */
4378 old = atomic_load_int(&m->ref_count);
4379 do {
4380 u_int count;
4381
4382 KASSERT(VPRC_WIRE_COUNT(old) > 0,
4383 ("vm_page_unwire: wire count underflow for page %p", m));
4384
4385 count = old & ~VPRC_BLOCKED;
4386 if (count > VPRC_OBJREF + 1) {
4387 /*
4388 * The page has at least one other wiring reference. An
4389 * earlier iteration of this loop may have called
4390 * vm_page_release_toq() and cleared PGA_DEQUEUE, so
4391 * re-set it if necessary.
4392 */
4393 if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0)
4394 vm_page_aflag_set(m, PGA_DEQUEUE);
4395 } else if (count == VPRC_OBJREF + 1) {
4396 /*
4397 * This is the last wiring. Clear PGA_DEQUEUE and
4398 * update the page's queue state to reflect the
4399 * reference. If the page does not belong to an object
4400 * (i.e., the VPRC_OBJREF bit is clear), we only need to
4401 * clear leftover queue state.
4402 */
4403 vm_page_release_toq(m, nqueue, noreuse);
4404 } else if (count == 1) {
4405 vm_page_aflag_clear(m, PGA_DEQUEUE);
4406 }
4407 } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
4408
4409 if (VPRC_WIRE_COUNT(old) == 1) {
4410 vm_wire_sub(1);
4411 if (old == 1)
4412 vm_page_free(m);
4413 }
4414 }
4415
4416 /*
4417 * Release one wiring of the specified page, potentially allowing it to be
4418 * paged out.
4419 *
4420 * Only managed pages belonging to an object can be paged out. If the number
4421 * of wirings transitions to zero and the page is eligible for page out, then
4422 * the page is added to the specified paging queue. If the released wiring
4423 * represented the last reference to the page, the page is freed.
4424 */
4425 void
vm_page_unwire(vm_page_t m,uint8_t nqueue)4426 vm_page_unwire(vm_page_t m, uint8_t nqueue)
4427 {
4428
4429 KASSERT(nqueue < PQ_COUNT,
4430 ("vm_page_unwire: invalid queue %u request for page %p",
4431 nqueue, m));
4432
4433 if ((m->oflags & VPO_UNMANAGED) != 0) {
4434 if (vm_page_unwire_noq(m) && m->ref_count == 0)
4435 vm_page_free(m);
4436 return;
4437 }
4438 vm_page_unwire_managed(m, nqueue, false);
4439 }
4440
4441 /*
4442 * Unwire a page without (re-)inserting it into a page queue. It is up
4443 * to the caller to enqueue, requeue, or free the page as appropriate.
4444 * In most cases involving managed pages, vm_page_unwire() should be used
4445 * instead.
4446 */
4447 bool
vm_page_unwire_noq(vm_page_t m)4448 vm_page_unwire_noq(vm_page_t m)
4449 {
4450 u_int old;
4451
4452 old = vm_page_drop(m, 1);
4453 KASSERT(VPRC_WIRE_COUNT(old) != 0,
4454 ("%s: counter underflow for page %p", __func__, m));
4455 KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
4456 ("%s: missing ref on fictitious page %p", __func__, m));
4457
4458 if (VPRC_WIRE_COUNT(old) > 1)
4459 return (false);
4460 if ((m->oflags & VPO_UNMANAGED) == 0)
4461 vm_page_aflag_clear(m, PGA_DEQUEUE);
4462 vm_wire_sub(1);
4463 return (true);
4464 }
4465
4466 /*
4467 * Ensure that the page ends up in the specified page queue. If the page is
4468 * active or being moved to the active queue, ensure that its act_count is
4469 * at least ACT_INIT but do not otherwise mess with it.
4470 */
4471 static __always_inline void
vm_page_mvqueue(vm_page_t m,const uint8_t nqueue,const uint16_t nflag)4472 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag)
4473 {
4474 vm_page_astate_t old, new;
4475
4476 KASSERT(m->ref_count > 0,
4477 ("%s: page %p does not carry any references", __func__, m));
4478 KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD,
4479 ("%s: invalid flags %x", __func__, nflag));
4480
4481 if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
4482 return;
4483
4484 old = vm_page_astate_load(m);
4485 do {
4486 if ((old.flags & PGA_DEQUEUE) != 0)
4487 break;
4488 new = old;
4489 new.flags &= ~PGA_QUEUE_OP_MASK;
4490 if (nqueue == PQ_ACTIVE)
4491 new.act_count = max(old.act_count, ACT_INIT);
4492 if (old.queue == nqueue) {
4493 /*
4494 * There is no need to requeue pages already in the
4495 * active queue.
4496 */
4497 if (nqueue != PQ_ACTIVE ||
4498 (old.flags & PGA_ENQUEUED) == 0)
4499 new.flags |= nflag;
4500 } else {
4501 new.flags |= nflag;
4502 new.queue = nqueue;
4503 }
4504 } while (!vm_page_pqstate_commit(m, &old, new));
4505 }
4506
4507 /*
4508 * Put the specified page on the active list (if appropriate).
4509 */
4510 void
vm_page_activate(vm_page_t m)4511 vm_page_activate(vm_page_t m)
4512 {
4513
4514 vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE);
4515 }
4516
4517 /*
4518 * Move the specified page to the tail of the inactive queue, or requeue
4519 * the page if it is already in the inactive queue.
4520 */
4521 void
vm_page_deactivate(vm_page_t m)4522 vm_page_deactivate(vm_page_t m)
4523 {
4524
4525 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE);
4526 }
4527
4528 void
vm_page_deactivate_noreuse(vm_page_t m)4529 vm_page_deactivate_noreuse(vm_page_t m)
4530 {
4531
4532 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD);
4533 }
4534
4535 /*
4536 * Put a page in the laundry, or requeue it if it is already there.
4537 */
4538 void
vm_page_launder(vm_page_t m)4539 vm_page_launder(vm_page_t m)
4540 {
4541
4542 vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE);
4543 }
4544
4545 /*
4546 * Put a page in the PQ_UNSWAPPABLE holding queue.
4547 */
4548 void
vm_page_unswappable(vm_page_t m)4549 vm_page_unswappable(vm_page_t m)
4550 {
4551
4552 VM_OBJECT_ASSERT_LOCKED(m->object);
4553 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4554 ("page %p already unswappable", m));
4555
4556 vm_page_dequeue(m);
4557 vm_page_enqueue(m, PQ_UNSWAPPABLE);
4558 }
4559
4560 /*
4561 * Release a page back to the page queues in preparation for unwiring.
4562 */
4563 static void
vm_page_release_toq(vm_page_t m,uint8_t nqueue,const bool noreuse)4564 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse)
4565 {
4566 vm_page_astate_t old, new;
4567 uint16_t nflag;
4568
4569 /*
4570 * Use a check of the valid bits to determine whether we should
4571 * accelerate reclamation of the page. The object lock might not be
4572 * held here, in which case the check is racy. At worst we will either
4573 * accelerate reclamation of a valid page and violate LRU, or
4574 * unnecessarily defer reclamation of an invalid page.
4575 *
4576 * If we were asked to not cache the page, place it near the head of the
4577 * inactive queue so that is reclaimed sooner.
4578 */
4579 if (noreuse || vm_page_none_valid(m)) {
4580 nqueue = PQ_INACTIVE;
4581 nflag = PGA_REQUEUE_HEAD;
4582 } else {
4583 nflag = PGA_REQUEUE;
4584 }
4585
4586 old = vm_page_astate_load(m);
4587 do {
4588 new = old;
4589
4590 /*
4591 * If the page is already in the active queue and we are not
4592 * trying to accelerate reclamation, simply mark it as
4593 * referenced and avoid any queue operations.
4594 */
4595 new.flags &= ~PGA_QUEUE_OP_MASK;
4596 if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE &&
4597 (old.flags & PGA_ENQUEUED) != 0)
4598 new.flags |= PGA_REFERENCED;
4599 else {
4600 new.flags |= nflag;
4601 new.queue = nqueue;
4602 }
4603 } while (!vm_page_pqstate_commit(m, &old, new));
4604 }
4605
4606 /*
4607 * Unwire a page and either attempt to free it or re-add it to the page queues.
4608 */
4609 void
vm_page_release(vm_page_t m,int flags)4610 vm_page_release(vm_page_t m, int flags)
4611 {
4612 vm_object_t object;
4613
4614 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4615 ("vm_page_release: page %p is unmanaged", m));
4616
4617 if ((flags & VPR_TRYFREE) != 0) {
4618 for (;;) {
4619 object = atomic_load_ptr(&m->object);
4620 if (object == NULL)
4621 break;
4622 /* Depends on type-stability. */
4623 if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object))
4624 break;
4625 if (object == m->object) {
4626 vm_page_release_locked(m, flags);
4627 VM_OBJECT_WUNLOCK(object);
4628 return;
4629 }
4630 VM_OBJECT_WUNLOCK(object);
4631 }
4632 }
4633 vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0);
4634 }
4635
4636 /* See vm_page_release(). */
4637 void
vm_page_release_locked(vm_page_t m,int flags)4638 vm_page_release_locked(vm_page_t m, int flags)
4639 {
4640
4641 VM_OBJECT_ASSERT_WLOCKED(m->object);
4642 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4643 ("vm_page_release_locked: page %p is unmanaged", m));
4644
4645 if (vm_page_unwire_noq(m)) {
4646 if ((flags & VPR_TRYFREE) != 0 &&
4647 (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4648 m->dirty == 0 && vm_page_tryxbusy(m)) {
4649 /*
4650 * An unlocked lookup may have wired the page before the
4651 * busy lock was acquired, in which case the page must
4652 * not be freed.
4653 */
4654 if (__predict_true(!vm_page_wired(m))) {
4655 vm_page_free(m);
4656 return;
4657 }
4658 vm_page_xunbusy(m);
4659 } else {
4660 vm_page_release_toq(m, PQ_INACTIVE, flags != 0);
4661 }
4662 }
4663 }
4664
4665 static bool
vm_page_try_blocked_op(vm_page_t m,void (* op)(vm_page_t))4666 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4667 {
4668 u_int old;
4669
4670 KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4671 ("vm_page_try_blocked_op: page %p has no object", m));
4672 KASSERT(vm_page_busied(m),
4673 ("vm_page_try_blocked_op: page %p is not busy", m));
4674 VM_OBJECT_ASSERT_LOCKED(m->object);
4675
4676 old = atomic_load_int(&m->ref_count);
4677 do {
4678 KASSERT(old != 0,
4679 ("vm_page_try_blocked_op: page %p has no references", m));
4680 KASSERT((old & VPRC_BLOCKED) == 0,
4681 ("vm_page_try_blocked_op: page %p blocks wirings", m));
4682 if (VPRC_WIRE_COUNT(old) != 0)
4683 return (false);
4684 } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4685
4686 (op)(m);
4687
4688 /*
4689 * If the object is read-locked, new wirings may be created via an
4690 * object lookup.
4691 */
4692 old = vm_page_drop(m, VPRC_BLOCKED);
4693 KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4694 old == (VPRC_BLOCKED | VPRC_OBJREF),
4695 ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4696 old, m));
4697 return (true);
4698 }
4699
4700 /*
4701 * Atomically check for wirings and remove all mappings of the page.
4702 */
4703 bool
vm_page_try_remove_all(vm_page_t m)4704 vm_page_try_remove_all(vm_page_t m)
4705 {
4706
4707 return (vm_page_try_blocked_op(m, pmap_remove_all));
4708 }
4709
4710 /*
4711 * Atomically check for wirings and remove all writeable mappings of the page.
4712 */
4713 bool
vm_page_try_remove_write(vm_page_t m)4714 vm_page_try_remove_write(vm_page_t m)
4715 {
4716
4717 return (vm_page_try_blocked_op(m, pmap_remove_write));
4718 }
4719
4720 /*
4721 * vm_page_advise
4722 *
4723 * Apply the specified advice to the given page.
4724 */
4725 void
vm_page_advise(vm_page_t m,int advice)4726 vm_page_advise(vm_page_t m, int advice)
4727 {
4728
4729 VM_OBJECT_ASSERT_WLOCKED(m->object);
4730 vm_page_assert_xbusied(m);
4731
4732 if (advice == MADV_FREE)
4733 /*
4734 * Mark the page clean. This will allow the page to be freed
4735 * without first paging it out. MADV_FREE pages are often
4736 * quickly reused by malloc(3), so we do not do anything that
4737 * would result in a page fault on a later access.
4738 */
4739 vm_page_undirty(m);
4740 else if (advice != MADV_DONTNEED) {
4741 if (advice == MADV_WILLNEED)
4742 vm_page_activate(m);
4743 return;
4744 }
4745
4746 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4747 vm_page_dirty(m);
4748
4749 /*
4750 * Clear any references to the page. Otherwise, the page daemon will
4751 * immediately reactivate the page.
4752 */
4753 vm_page_aflag_clear(m, PGA_REFERENCED);
4754
4755 /*
4756 * Place clean pages near the head of the inactive queue rather than
4757 * the tail, thus defeating the queue's LRU operation and ensuring that
4758 * the page will be reused quickly. Dirty pages not already in the
4759 * laundry are moved there.
4760 */
4761 if (m->dirty == 0)
4762 vm_page_deactivate_noreuse(m);
4763 else if (!vm_page_in_laundry(m))
4764 vm_page_launder(m);
4765 }
4766
4767 /*
4768 * vm_page_grab_release
4769 *
4770 * Helper routine for grab functions to release busy on return.
4771 */
4772 static inline void
vm_page_grab_release(vm_page_t m,int allocflags)4773 vm_page_grab_release(vm_page_t m, int allocflags)
4774 {
4775
4776 if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4777 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4778 vm_page_sunbusy(m);
4779 else
4780 vm_page_xunbusy(m);
4781 }
4782 }
4783
4784 /*
4785 * vm_page_grab_sleep
4786 *
4787 * Sleep for busy according to VM_ALLOC_ parameters. Returns true
4788 * if the caller should retry and false otherwise.
4789 *
4790 * If the object is locked on entry the object will be unlocked with
4791 * false returns and still locked but possibly having been dropped
4792 * with true returns.
4793 */
4794 static bool
vm_page_grab_sleep(vm_object_t object,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags,bool locked)4795 vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex,
4796 const char *wmesg, int allocflags, bool locked)
4797 {
4798
4799 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4800 return (false);
4801
4802 /*
4803 * Reference the page before unlocking and sleeping so that
4804 * the page daemon is less likely to reclaim it.
4805 */
4806 if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0)
4807 vm_page_reference(m);
4808
4809 if (_vm_page_busy_sleep(object, m, pindex, wmesg, allocflags, locked) &&
4810 locked)
4811 VM_OBJECT_WLOCK(object);
4812 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
4813 return (false);
4814
4815 return (true);
4816 }
4817
4818 /*
4819 * Assert that the grab flags are valid.
4820 */
4821 static inline void
vm_page_grab_check(int allocflags)4822 vm_page_grab_check(int allocflags)
4823 {
4824
4825 KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4826 (allocflags & VM_ALLOC_WIRED) != 0,
4827 ("vm_page_grab*: the pages must be busied or wired"));
4828
4829 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4830 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4831 ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4832 }
4833
4834 /*
4835 * Calculate the page allocation flags for grab.
4836 */
4837 static inline int
vm_page_grab_pflags(int allocflags)4838 vm_page_grab_pflags(int allocflags)
4839 {
4840 int pflags;
4841
4842 pflags = allocflags &
4843 ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4844 VM_ALLOC_NOBUSY | VM_ALLOC_IGN_SBUSY);
4845 if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4846 pflags |= VM_ALLOC_WAITFAIL;
4847 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4848 pflags |= VM_ALLOC_SBUSY;
4849
4850 return (pflags);
4851 }
4852
4853 /*
4854 * Grab a page, waiting until we are waken up due to the page
4855 * changing state. We keep on waiting, if the page continues
4856 * to be in the object. If the page doesn't exist, first allocate it
4857 * and then conditionally zero it.
4858 *
4859 * This routine may sleep.
4860 *
4861 * The object must be locked on entry. The lock will, however, be released
4862 * and reacquired if the routine sleeps.
4863 */
4864 vm_page_t
vm_page_grab(vm_object_t object,vm_pindex_t pindex,int allocflags)4865 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4866 {
4867 vm_page_t m;
4868
4869 VM_OBJECT_ASSERT_WLOCKED(object);
4870 vm_page_grab_check(allocflags);
4871
4872 retrylookup:
4873 if ((m = vm_page_lookup(object, pindex)) != NULL) {
4874 if (!vm_page_tryacquire(m, allocflags)) {
4875 if (vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4876 allocflags, true))
4877 goto retrylookup;
4878 return (NULL);
4879 }
4880 goto out;
4881 }
4882 if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4883 return (NULL);
4884 m = vm_page_alloc(object, pindex, vm_page_grab_pflags(allocflags));
4885 if (m == NULL) {
4886 if ((allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4887 return (NULL);
4888 goto retrylookup;
4889 }
4890 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
4891 pmap_zero_page(m);
4892
4893 out:
4894 vm_page_grab_release(m, allocflags);
4895
4896 return (m);
4897 }
4898
4899 /*
4900 * Attempt to validate a page, locklessly acquiring it if necessary, given a
4901 * (object, pindex) tuple and either an invalided page or NULL. The resulting
4902 * page will be validated against the identity tuple, and busied or wired as
4903 * requested. A NULL page returned guarantees that the page was not in radix at
4904 * the time of the call but callers must perform higher level synchronization or
4905 * retry the operation under a lock if they require an atomic answer. This is
4906 * the only lock free validation routine, other routines can depend on the
4907 * resulting page state.
4908 *
4909 * The return value PAGE_NOT_ACQUIRED indicates that the operation failed due to
4910 * caller flags.
4911 */
4912 #define PAGE_NOT_ACQUIRED ((vm_page_t)1)
4913 static vm_page_t
vm_page_acquire_unlocked(vm_object_t object,vm_pindex_t pindex,vm_page_t m,int allocflags)4914 vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex, vm_page_t m,
4915 int allocflags)
4916 {
4917 if (m == NULL)
4918 m = vm_page_lookup_unlocked(object, pindex);
4919 for (; m != NULL; m = vm_page_lookup_unlocked(object, pindex)) {
4920 if (vm_page_trybusy(m, allocflags)) {
4921 if (m->object == object && m->pindex == pindex) {
4922 if ((allocflags & VM_ALLOC_WIRED) != 0)
4923 vm_page_wire(m);
4924 vm_page_grab_release(m, allocflags);
4925 break;
4926 }
4927 /* relookup. */
4928 vm_page_busy_release(m);
4929 cpu_spinwait();
4930 continue;
4931 }
4932 if (!vm_page_grab_sleep(object, m, pindex, "pgnslp",
4933 allocflags, false))
4934 return (PAGE_NOT_ACQUIRED);
4935 }
4936 return (m);
4937 }
4938
4939 /*
4940 * Try to locklessly grab a page and fall back to the object lock if NOCREAT
4941 * is not set.
4942 */
4943 vm_page_t
vm_page_grab_unlocked(vm_object_t object,vm_pindex_t pindex,int allocflags)4944 vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags)
4945 {
4946 vm_page_t m;
4947
4948 vm_page_grab_check(allocflags);
4949 m = vm_page_acquire_unlocked(object, pindex, NULL, allocflags);
4950 if (m == PAGE_NOT_ACQUIRED)
4951 return (NULL);
4952 if (m != NULL)
4953 return (m);
4954
4955 /*
4956 * The radix lockless lookup should never return a false negative
4957 * errors. If the user specifies NOCREAT they are guaranteed there
4958 * was no page present at the instant of the call. A NOCREAT caller
4959 * must handle create races gracefully.
4960 */
4961 if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4962 return (NULL);
4963
4964 VM_OBJECT_WLOCK(object);
4965 m = vm_page_grab(object, pindex, allocflags);
4966 VM_OBJECT_WUNLOCK(object);
4967
4968 return (m);
4969 }
4970
4971 /*
4972 * Grab a page and make it valid, paging in if necessary. Pages missing from
4973 * their pager are zero filled and validated. If a VM_ALLOC_COUNT is supplied
4974 * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
4975 * in simultaneously. Additional pages will be left on a paging queue but
4976 * will neither be wired nor busy regardless of allocflags.
4977 */
4978 int
vm_page_grab_valid(vm_page_t * mp,vm_object_t object,vm_pindex_t pindex,int allocflags)4979 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
4980 {
4981 vm_page_t m;
4982 vm_page_t ma[VM_INITIAL_PAGEIN];
4983 int after, i, pflags, rv;
4984
4985 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4986 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4987 ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4988 KASSERT((allocflags &
4989 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4990 ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4991 VM_OBJECT_ASSERT_WLOCKED(object);
4992 pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY |
4993 VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY);
4994 pflags |= VM_ALLOC_WAITFAIL;
4995
4996 retrylookup:
4997 if ((m = vm_page_lookup(object, pindex)) != NULL) {
4998 /*
4999 * If the page is fully valid it can only become invalid
5000 * with the object lock held. If it is not valid it can
5001 * become valid with the busy lock held. Therefore, we
5002 * may unnecessarily lock the exclusive busy here if we
5003 * race with I/O completion not using the object lock.
5004 * However, we will not end up with an invalid page and a
5005 * shared lock.
5006 */
5007 if (!vm_page_trybusy(m,
5008 vm_page_all_valid(m) ? allocflags : 0)) {
5009 (void)vm_page_grab_sleep(object, m, pindex, "pgrbwt",
5010 allocflags, true);
5011 goto retrylookup;
5012 }
5013 if (vm_page_all_valid(m))
5014 goto out;
5015 if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
5016 vm_page_busy_release(m);
5017 *mp = NULL;
5018 return (VM_PAGER_FAIL);
5019 }
5020 } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
5021 *mp = NULL;
5022 return (VM_PAGER_FAIL);
5023 } else if ((m = vm_page_alloc(object, pindex, pflags)) == NULL) {
5024 if (!vm_pager_can_alloc_page(object, pindex)) {
5025 *mp = NULL;
5026 return (VM_PAGER_AGAIN);
5027 }
5028 goto retrylookup;
5029 }
5030
5031 vm_page_assert_xbusied(m);
5032 if (vm_pager_has_page(object, pindex, NULL, &after)) {
5033 after = MIN(after, VM_INITIAL_PAGEIN);
5034 after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
5035 after = MAX(after, 1);
5036 ma[0] = m;
5037 for (i = 1; i < after; i++) {
5038 if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) {
5039 if (vm_page_any_valid(ma[i]) ||
5040 !vm_page_tryxbusy(ma[i]))
5041 break;
5042 } else {
5043 ma[i] = vm_page_alloc(object, m->pindex + i,
5044 VM_ALLOC_NORMAL);
5045 if (ma[i] == NULL)
5046 break;
5047 }
5048 }
5049 after = i;
5050 vm_object_pip_add(object, after);
5051 VM_OBJECT_WUNLOCK(object);
5052 rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
5053 VM_OBJECT_WLOCK(object);
5054 vm_object_pip_wakeupn(object, after);
5055 /* Pager may have replaced a page. */
5056 m = ma[0];
5057 if (rv != VM_PAGER_OK) {
5058 for (i = 0; i < after; i++) {
5059 if (!vm_page_wired(ma[i]))
5060 vm_page_free(ma[i]);
5061 else
5062 vm_page_xunbusy(ma[i]);
5063 }
5064 *mp = NULL;
5065 return (rv);
5066 }
5067 for (i = 1; i < after; i++)
5068 vm_page_readahead_finish(ma[i]);
5069 MPASS(vm_page_all_valid(m));
5070 } else {
5071 vm_page_zero_invalid(m, TRUE);
5072 }
5073 out:
5074 if ((allocflags & VM_ALLOC_WIRED) != 0)
5075 vm_page_wire(m);
5076 if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m))
5077 vm_page_busy_downgrade(m);
5078 else if ((allocflags & VM_ALLOC_NOBUSY) != 0)
5079 vm_page_busy_release(m);
5080 *mp = m;
5081 return (VM_PAGER_OK);
5082 }
5083
5084 /*
5085 * Locklessly grab a valid page. If the page is not valid or not yet
5086 * allocated this will fall back to the object lock method.
5087 */
5088 int
vm_page_grab_valid_unlocked(vm_page_t * mp,vm_object_t object,vm_pindex_t pindex,int allocflags)5089 vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object,
5090 vm_pindex_t pindex, int allocflags)
5091 {
5092 vm_page_t m;
5093 int flags;
5094 int error;
5095
5096 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
5097 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
5098 ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
5099 "mismatch"));
5100 KASSERT((allocflags &
5101 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
5102 ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags));
5103
5104 /*
5105 * Attempt a lockless lookup and busy. We need at least an sbusy
5106 * before we can inspect the valid field and return a wired page.
5107 */
5108 flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
5109 vm_page_grab_check(flags);
5110 m = vm_page_acquire_unlocked(object, pindex, NULL, flags);
5111 if (m == PAGE_NOT_ACQUIRED)
5112 return (VM_PAGER_FAIL);
5113 if (m != NULL) {
5114 if (vm_page_all_valid(m)) {
5115 if ((allocflags & VM_ALLOC_WIRED) != 0)
5116 vm_page_wire(m);
5117 vm_page_grab_release(m, allocflags);
5118 *mp = m;
5119 return (VM_PAGER_OK);
5120 }
5121 vm_page_busy_release(m);
5122 }
5123 if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
5124 *mp = NULL;
5125 return (VM_PAGER_FAIL);
5126 }
5127 VM_OBJECT_WLOCK(object);
5128 error = vm_page_grab_valid(mp, object, pindex, allocflags);
5129 VM_OBJECT_WUNLOCK(object);
5130
5131 return (error);
5132 }
5133
5134 /*
5135 * Return the specified range of pages from the given object. For each
5136 * page offset within the range, if a page already exists within the object
5137 * at that offset and it is busy, then wait for it to change state. If,
5138 * instead, the page doesn't exist, then allocate it.
5139 *
5140 * The caller must always specify an allocation class.
5141 *
5142 * allocation classes:
5143 * VM_ALLOC_NORMAL normal process request
5144 * VM_ALLOC_SYSTEM system *really* needs the pages
5145 *
5146 * The caller must always specify that the pages are to be busied and/or
5147 * wired.
5148 *
5149 * optional allocation flags:
5150 * VM_ALLOC_IGN_SBUSY do not sleep on soft busy pages
5151 * VM_ALLOC_NOBUSY do not exclusive busy the page
5152 * VM_ALLOC_NOWAIT do not sleep
5153 * VM_ALLOC_SBUSY set page to sbusy state
5154 * VM_ALLOC_WIRED wire the pages
5155 * VM_ALLOC_ZERO zero and validate any invalid pages
5156 *
5157 * If VM_ALLOC_NOWAIT is not specified, this routine may sleep. Otherwise, it
5158 * may return a partial prefix of the requested range.
5159 */
5160 int
vm_page_grab_pages(vm_object_t object,vm_pindex_t pindex,int allocflags,vm_page_t * ma,int count)5161 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
5162 vm_page_t *ma, int count)
5163 {
5164 vm_page_t m, mpred;
5165 int pflags;
5166 int i;
5167
5168 VM_OBJECT_ASSERT_WLOCKED(object);
5169 KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
5170 ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
5171 KASSERT(count > 0,
5172 ("vm_page_grab_pages: invalid page count %d", count));
5173 vm_page_grab_check(allocflags);
5174
5175 pflags = vm_page_grab_pflags(allocflags);
5176 i = 0;
5177 retrylookup:
5178 m = vm_page_mpred(object, pindex + i);
5179 if (m == NULL || m->pindex != pindex + i) {
5180 mpred = m;
5181 m = NULL;
5182 } else
5183 mpred = TAILQ_PREV(m, pglist, listq);
5184 for (; i < count; i++) {
5185 if (m != NULL) {
5186 if (!vm_page_tryacquire(m, allocflags)) {
5187 if (vm_page_grab_sleep(object, m, pindex + i,
5188 "grbmaw", allocflags, true))
5189 goto retrylookup;
5190 break;
5191 }
5192 } else {
5193 if ((allocflags & VM_ALLOC_NOCREAT) != 0)
5194 break;
5195 m = vm_page_alloc_after(object, pindex + i,
5196 pflags | VM_ALLOC_COUNT(count - i), mpred);
5197 if (m == NULL) {
5198 if ((allocflags & (VM_ALLOC_NOWAIT |
5199 VM_ALLOC_WAITFAIL)) != 0)
5200 break;
5201 goto retrylookup;
5202 }
5203 }
5204 if (vm_page_none_valid(m) &&
5205 (allocflags & VM_ALLOC_ZERO) != 0) {
5206 if ((m->flags & PG_ZERO) == 0)
5207 pmap_zero_page(m);
5208 vm_page_valid(m);
5209 }
5210 vm_page_grab_release(m, allocflags);
5211 ma[i] = mpred = m;
5212 m = vm_page_next(m);
5213 }
5214 return (i);
5215 }
5216
5217 /*
5218 * Unlocked variant of vm_page_grab_pages(). This accepts the same flags
5219 * and will fall back to the locked variant to handle allocation.
5220 */
5221 int
vm_page_grab_pages_unlocked(vm_object_t object,vm_pindex_t pindex,int allocflags,vm_page_t * ma,int count)5222 vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex,
5223 int allocflags, vm_page_t *ma, int count)
5224 {
5225 vm_page_t m;
5226 int flags;
5227 int i;
5228
5229 KASSERT(count > 0,
5230 ("vm_page_grab_pages_unlocked: invalid page count %d", count));
5231 vm_page_grab_check(allocflags);
5232
5233 /*
5234 * Modify flags for lockless acquire to hold the page until we
5235 * set it valid if necessary.
5236 */
5237 flags = allocflags & ~VM_ALLOC_NOBUSY;
5238 vm_page_grab_check(flags);
5239 m = NULL;
5240 for (i = 0; i < count; i++, pindex++) {
5241 /*
5242 * We may see a false NULL here because the previous page has
5243 * been removed or just inserted and the list is loaded without
5244 * barriers. Switch to radix to verify.
5245 */
5246 if (m == NULL || QMD_IS_TRASHED(m) || m->pindex != pindex ||
5247 atomic_load_ptr(&m->object) != object) {
5248 /*
5249 * This guarantees the result is instantaneously
5250 * correct.
5251 */
5252 m = NULL;
5253 }
5254 m = vm_page_acquire_unlocked(object, pindex, m, flags);
5255 if (m == PAGE_NOT_ACQUIRED)
5256 return (i);
5257 if (m == NULL)
5258 break;
5259 if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) {
5260 if ((m->flags & PG_ZERO) == 0)
5261 pmap_zero_page(m);
5262 vm_page_valid(m);
5263 }
5264 /* m will still be wired or busy according to flags. */
5265 vm_page_grab_release(m, allocflags);
5266 ma[i] = m;
5267 m = TAILQ_NEXT(m, listq);
5268 }
5269 if (i == count || (allocflags & VM_ALLOC_NOCREAT) != 0)
5270 return (i);
5271 count -= i;
5272 VM_OBJECT_WLOCK(object);
5273 i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count);
5274 VM_OBJECT_WUNLOCK(object);
5275
5276 return (i);
5277 }
5278
5279 /*
5280 * Mapping function for valid or dirty bits in a page.
5281 *
5282 * Inputs are required to range within a page.
5283 */
5284 vm_page_bits_t
vm_page_bits(int base,int size)5285 vm_page_bits(int base, int size)
5286 {
5287 int first_bit;
5288 int last_bit;
5289
5290 KASSERT(
5291 base + size <= PAGE_SIZE,
5292 ("vm_page_bits: illegal base/size %d/%d", base, size)
5293 );
5294
5295 if (size == 0) /* handle degenerate case */
5296 return (0);
5297
5298 first_bit = base >> DEV_BSHIFT;
5299 last_bit = (base + size - 1) >> DEV_BSHIFT;
5300
5301 return (((vm_page_bits_t)2 << last_bit) -
5302 ((vm_page_bits_t)1 << first_bit));
5303 }
5304
5305 void
vm_page_bits_set(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t set)5306 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
5307 {
5308
5309 #if PAGE_SIZE == 32768
5310 atomic_set_64((uint64_t *)bits, set);
5311 #elif PAGE_SIZE == 16384
5312 atomic_set_32((uint32_t *)bits, set);
5313 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
5314 atomic_set_16((uint16_t *)bits, set);
5315 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
5316 atomic_set_8((uint8_t *)bits, set);
5317 #else /* PAGE_SIZE <= 8192 */
5318 uintptr_t addr;
5319 int shift;
5320
5321 addr = (uintptr_t)bits;
5322 /*
5323 * Use a trick to perform a 32-bit atomic on the
5324 * containing aligned word, to not depend on the existence
5325 * of atomic_{set, clear}_{8, 16}.
5326 */
5327 shift = addr & (sizeof(uint32_t) - 1);
5328 #if BYTE_ORDER == BIG_ENDIAN
5329 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5330 #else
5331 shift *= NBBY;
5332 #endif
5333 addr &= ~(sizeof(uint32_t) - 1);
5334 atomic_set_32((uint32_t *)addr, set << shift);
5335 #endif /* PAGE_SIZE */
5336 }
5337
5338 static inline void
vm_page_bits_clear(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t clear)5339 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
5340 {
5341
5342 #if PAGE_SIZE == 32768
5343 atomic_clear_64((uint64_t *)bits, clear);
5344 #elif PAGE_SIZE == 16384
5345 atomic_clear_32((uint32_t *)bits, clear);
5346 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
5347 atomic_clear_16((uint16_t *)bits, clear);
5348 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
5349 atomic_clear_8((uint8_t *)bits, clear);
5350 #else /* PAGE_SIZE <= 8192 */
5351 uintptr_t addr;
5352 int shift;
5353
5354 addr = (uintptr_t)bits;
5355 /*
5356 * Use a trick to perform a 32-bit atomic on the
5357 * containing aligned word, to not depend on the existence
5358 * of atomic_{set, clear}_{8, 16}.
5359 */
5360 shift = addr & (sizeof(uint32_t) - 1);
5361 #if BYTE_ORDER == BIG_ENDIAN
5362 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5363 #else
5364 shift *= NBBY;
5365 #endif
5366 addr &= ~(sizeof(uint32_t) - 1);
5367 atomic_clear_32((uint32_t *)addr, clear << shift);
5368 #endif /* PAGE_SIZE */
5369 }
5370
5371 static inline vm_page_bits_t
vm_page_bits_swap(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t newbits)5372 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
5373 {
5374 #if PAGE_SIZE == 32768
5375 uint64_t old;
5376
5377 old = *bits;
5378 while (atomic_fcmpset_64(bits, &old, newbits) == 0);
5379 return (old);
5380 #elif PAGE_SIZE == 16384
5381 uint32_t old;
5382
5383 old = *bits;
5384 while (atomic_fcmpset_32(bits, &old, newbits) == 0);
5385 return (old);
5386 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
5387 uint16_t old;
5388
5389 old = *bits;
5390 while (atomic_fcmpset_16(bits, &old, newbits) == 0);
5391 return (old);
5392 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
5393 uint8_t old;
5394
5395 old = *bits;
5396 while (atomic_fcmpset_8(bits, &old, newbits) == 0);
5397 return (old);
5398 #else /* PAGE_SIZE <= 4096*/
5399 uintptr_t addr;
5400 uint32_t old, new, mask;
5401 int shift;
5402
5403 addr = (uintptr_t)bits;
5404 /*
5405 * Use a trick to perform a 32-bit atomic on the
5406 * containing aligned word, to not depend on the existence
5407 * of atomic_{set, swap, clear}_{8, 16}.
5408 */
5409 shift = addr & (sizeof(uint32_t) - 1);
5410 #if BYTE_ORDER == BIG_ENDIAN
5411 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5412 #else
5413 shift *= NBBY;
5414 #endif
5415 addr &= ~(sizeof(uint32_t) - 1);
5416 mask = VM_PAGE_BITS_ALL << shift;
5417
5418 old = *bits;
5419 do {
5420 new = old & ~mask;
5421 new |= newbits << shift;
5422 } while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
5423 return (old >> shift);
5424 #endif /* PAGE_SIZE */
5425 }
5426
5427 /*
5428 * vm_page_set_valid_range:
5429 *
5430 * Sets portions of a page valid. The arguments are expected
5431 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5432 * of any partial chunks touched by the range. The invalid portion of
5433 * such chunks will be zeroed.
5434 *
5435 * (base + size) must be less then or equal to PAGE_SIZE.
5436 */
5437 void
vm_page_set_valid_range(vm_page_t m,int base,int size)5438 vm_page_set_valid_range(vm_page_t m, int base, int size)
5439 {
5440 int endoff, frag;
5441 vm_page_bits_t pagebits;
5442
5443 vm_page_assert_busied(m);
5444 if (size == 0) /* handle degenerate case */
5445 return;
5446
5447 /*
5448 * If the base is not DEV_BSIZE aligned and the valid
5449 * bit is clear, we have to zero out a portion of the
5450 * first block.
5451 */
5452 if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5453 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
5454 pmap_zero_page_area(m, frag, base - frag);
5455
5456 /*
5457 * If the ending offset is not DEV_BSIZE aligned and the
5458 * valid bit is clear, we have to zero out a portion of
5459 * the last block.
5460 */
5461 endoff = base + size;
5462 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5463 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
5464 pmap_zero_page_area(m, endoff,
5465 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5466
5467 /*
5468 * Assert that no previously invalid block that is now being validated
5469 * is already dirty.
5470 */
5471 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
5472 ("vm_page_set_valid_range: page %p is dirty", m));
5473
5474 /*
5475 * Set valid bits inclusive of any overlap.
5476 */
5477 pagebits = vm_page_bits(base, size);
5478 if (vm_page_xbusied(m))
5479 m->valid |= pagebits;
5480 else
5481 vm_page_bits_set(m, &m->valid, pagebits);
5482 }
5483
5484 /*
5485 * Set the page dirty bits and free the invalid swap space if
5486 * present. Returns the previous dirty bits.
5487 */
5488 vm_page_bits_t
vm_page_set_dirty(vm_page_t m)5489 vm_page_set_dirty(vm_page_t m)
5490 {
5491 vm_page_bits_t old;
5492
5493 VM_PAGE_OBJECT_BUSY_ASSERT(m);
5494
5495 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
5496 old = m->dirty;
5497 m->dirty = VM_PAGE_BITS_ALL;
5498 } else
5499 old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
5500 if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
5501 vm_pager_page_unswapped(m);
5502
5503 return (old);
5504 }
5505
5506 /*
5507 * Clear the given bits from the specified page's dirty field.
5508 */
5509 static __inline void
vm_page_clear_dirty_mask(vm_page_t m,vm_page_bits_t pagebits)5510 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
5511 {
5512
5513 vm_page_assert_busied(m);
5514
5515 /*
5516 * If the page is xbusied and not write mapped we are the
5517 * only thread that can modify dirty bits. Otherwise, The pmap
5518 * layer can call vm_page_dirty() without holding a distinguished
5519 * lock. The combination of page busy and atomic operations
5520 * suffice to guarantee consistency of the page dirty field.
5521 */
5522 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
5523 m->dirty &= ~pagebits;
5524 else
5525 vm_page_bits_clear(m, &m->dirty, pagebits);
5526 }
5527
5528 /*
5529 * vm_page_set_validclean:
5530 *
5531 * Sets portions of a page valid and clean. The arguments are expected
5532 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5533 * of any partial chunks touched by the range. The invalid portion of
5534 * such chunks will be zero'd.
5535 *
5536 * (base + size) must be less then or equal to PAGE_SIZE.
5537 */
5538 void
vm_page_set_validclean(vm_page_t m,int base,int size)5539 vm_page_set_validclean(vm_page_t m, int base, int size)
5540 {
5541 vm_page_bits_t oldvalid, pagebits;
5542 int endoff, frag;
5543
5544 vm_page_assert_busied(m);
5545 if (size == 0) /* handle degenerate case */
5546 return;
5547
5548 /*
5549 * If the base is not DEV_BSIZE aligned and the valid
5550 * bit is clear, we have to zero out a portion of the
5551 * first block.
5552 */
5553 if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5554 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
5555 pmap_zero_page_area(m, frag, base - frag);
5556
5557 /*
5558 * If the ending offset is not DEV_BSIZE aligned and the
5559 * valid bit is clear, we have to zero out a portion of
5560 * the last block.
5561 */
5562 endoff = base + size;
5563 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5564 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
5565 pmap_zero_page_area(m, endoff,
5566 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5567
5568 /*
5569 * Set valid, clear dirty bits. If validating the entire
5570 * page we can safely clear the pmap modify bit. We also
5571 * use this opportunity to clear the PGA_NOSYNC flag. If a process
5572 * takes a write fault on a MAP_NOSYNC memory area the flag will
5573 * be set again.
5574 *
5575 * We set valid bits inclusive of any overlap, but we can only
5576 * clear dirty bits for DEV_BSIZE chunks that are fully within
5577 * the range.
5578 */
5579 oldvalid = m->valid;
5580 pagebits = vm_page_bits(base, size);
5581 if (vm_page_xbusied(m))
5582 m->valid |= pagebits;
5583 else
5584 vm_page_bits_set(m, &m->valid, pagebits);
5585 #if 0 /* NOT YET */
5586 if ((frag = base & (DEV_BSIZE - 1)) != 0) {
5587 frag = DEV_BSIZE - frag;
5588 base += frag;
5589 size -= frag;
5590 if (size < 0)
5591 size = 0;
5592 }
5593 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
5594 #endif
5595 if (base == 0 && size == PAGE_SIZE) {
5596 /*
5597 * The page can only be modified within the pmap if it is
5598 * mapped, and it can only be mapped if it was previously
5599 * fully valid.
5600 */
5601 if (oldvalid == VM_PAGE_BITS_ALL)
5602 /*
5603 * Perform the pmap_clear_modify() first. Otherwise,
5604 * a concurrent pmap operation, such as
5605 * pmap_protect(), could clear a modification in the
5606 * pmap and set the dirty field on the page before
5607 * pmap_clear_modify() had begun and after the dirty
5608 * field was cleared here.
5609 */
5610 pmap_clear_modify(m);
5611 m->dirty = 0;
5612 vm_page_aflag_clear(m, PGA_NOSYNC);
5613 } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
5614 m->dirty &= ~pagebits;
5615 else
5616 vm_page_clear_dirty_mask(m, pagebits);
5617 }
5618
5619 void
vm_page_clear_dirty(vm_page_t m,int base,int size)5620 vm_page_clear_dirty(vm_page_t m, int base, int size)
5621 {
5622
5623 vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
5624 }
5625
5626 /*
5627 * vm_page_set_invalid:
5628 *
5629 * Invalidates DEV_BSIZE'd chunks within a page. Both the
5630 * valid and dirty bits for the effected areas are cleared.
5631 */
5632 void
vm_page_set_invalid(vm_page_t m,int base,int size)5633 vm_page_set_invalid(vm_page_t m, int base, int size)
5634 {
5635 vm_page_bits_t bits;
5636 vm_object_t object;
5637
5638 /*
5639 * The object lock is required so that pages can't be mapped
5640 * read-only while we're in the process of invalidating them.
5641 */
5642 object = m->object;
5643 VM_OBJECT_ASSERT_WLOCKED(object);
5644 vm_page_assert_busied(m);
5645
5646 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
5647 size >= object->un_pager.vnp.vnp_size)
5648 bits = VM_PAGE_BITS_ALL;
5649 else
5650 bits = vm_page_bits(base, size);
5651 if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
5652 pmap_remove_all(m);
5653 KASSERT((bits == 0 && vm_page_all_valid(m)) ||
5654 !pmap_page_is_mapped(m),
5655 ("vm_page_set_invalid: page %p is mapped", m));
5656 if (vm_page_xbusied(m)) {
5657 m->valid &= ~bits;
5658 m->dirty &= ~bits;
5659 } else {
5660 vm_page_bits_clear(m, &m->valid, bits);
5661 vm_page_bits_clear(m, &m->dirty, bits);
5662 }
5663 }
5664
5665 /*
5666 * vm_page_invalid:
5667 *
5668 * Invalidates the entire page. The page must be busy, unmapped, and
5669 * the enclosing object must be locked. The object locks protects
5670 * against concurrent read-only pmap enter which is done without
5671 * busy.
5672 */
5673 void
vm_page_invalid(vm_page_t m)5674 vm_page_invalid(vm_page_t m)
5675 {
5676
5677 vm_page_assert_busied(m);
5678 VM_OBJECT_ASSERT_WLOCKED(m->object);
5679 MPASS(!pmap_page_is_mapped(m));
5680
5681 if (vm_page_xbusied(m))
5682 m->valid = 0;
5683 else
5684 vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
5685 }
5686
5687 /*
5688 * vm_page_zero_invalid()
5689 *
5690 * The kernel assumes that the invalid portions of a page contain
5691 * garbage, but such pages can be mapped into memory by user code.
5692 * When this occurs, we must zero out the non-valid portions of the
5693 * page so user code sees what it expects.
5694 *
5695 * Pages are most often semi-valid when the end of a file is mapped
5696 * into memory and the file's size is not page aligned.
5697 */
5698 void
vm_page_zero_invalid(vm_page_t m,boolean_t setvalid)5699 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
5700 {
5701 int b;
5702 int i;
5703
5704 /*
5705 * Scan the valid bits looking for invalid sections that
5706 * must be zeroed. Invalid sub-DEV_BSIZE'd areas ( where the
5707 * valid bit may be set ) have already been zeroed by
5708 * vm_page_set_validclean().
5709 */
5710 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
5711 if (i == (PAGE_SIZE / DEV_BSIZE) ||
5712 (m->valid & ((vm_page_bits_t)1 << i))) {
5713 if (i > b) {
5714 pmap_zero_page_area(m,
5715 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
5716 }
5717 b = i + 1;
5718 }
5719 }
5720
5721 /*
5722 * setvalid is TRUE when we can safely set the zero'd areas
5723 * as being valid. We can do this if there are no cache consistency
5724 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
5725 */
5726 if (setvalid)
5727 vm_page_valid(m);
5728 }
5729
5730 /*
5731 * vm_page_is_valid:
5732 *
5733 * Is (partial) page valid? Note that the case where size == 0
5734 * will return FALSE in the degenerate case where the page is
5735 * entirely invalid, and TRUE otherwise.
5736 *
5737 * Some callers envoke this routine without the busy lock held and
5738 * handle races via higher level locks. Typical callers should
5739 * hold a busy lock to prevent invalidation.
5740 */
5741 int
vm_page_is_valid(vm_page_t m,int base,int size)5742 vm_page_is_valid(vm_page_t m, int base, int size)
5743 {
5744 vm_page_bits_t bits;
5745
5746 bits = vm_page_bits(base, size);
5747 return (vm_page_any_valid(m) && (m->valid & bits) == bits);
5748 }
5749
5750 /*
5751 * Returns true if all of the specified predicates are true for the entire
5752 * (super)page and false otherwise.
5753 */
5754 bool
vm_page_ps_test(vm_page_t m,int psind,int flags,vm_page_t skip_m)5755 vm_page_ps_test(vm_page_t m, int psind, int flags, vm_page_t skip_m)
5756 {
5757 vm_object_t object;
5758 int i, npages;
5759
5760 object = m->object;
5761 if (skip_m != NULL && skip_m->object != object)
5762 return (false);
5763 VM_OBJECT_ASSERT_LOCKED(object);
5764 KASSERT(psind <= m->psind,
5765 ("psind %d > psind %d of m %p", psind, m->psind, m));
5766 npages = atop(pagesizes[psind]);
5767
5768 /*
5769 * The physically contiguous pages that make up a superpage, i.e., a
5770 * page with a page size index ("psind") greater than zero, will
5771 * occupy adjacent entries in vm_page_array[].
5772 */
5773 for (i = 0; i < npages; i++) {
5774 /* Always test object consistency, including "skip_m". */
5775 if (m[i].object != object)
5776 return (false);
5777 if (&m[i] == skip_m)
5778 continue;
5779 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
5780 return (false);
5781 if ((flags & PS_ALL_DIRTY) != 0) {
5782 /*
5783 * Calling vm_page_test_dirty() or pmap_is_modified()
5784 * might stop this case from spuriously returning
5785 * "false". However, that would require a write lock
5786 * on the object containing "m[i]".
5787 */
5788 if (m[i].dirty != VM_PAGE_BITS_ALL)
5789 return (false);
5790 }
5791 if ((flags & PS_ALL_VALID) != 0 &&
5792 m[i].valid != VM_PAGE_BITS_ALL)
5793 return (false);
5794 }
5795 return (true);
5796 }
5797
5798 /*
5799 * Set the page's dirty bits if the page is modified.
5800 */
5801 void
vm_page_test_dirty(vm_page_t m)5802 vm_page_test_dirty(vm_page_t m)
5803 {
5804
5805 vm_page_assert_busied(m);
5806 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
5807 vm_page_dirty(m);
5808 }
5809
5810 void
vm_page_valid(vm_page_t m)5811 vm_page_valid(vm_page_t m)
5812 {
5813
5814 vm_page_assert_busied(m);
5815 if (vm_page_xbusied(m))
5816 m->valid = VM_PAGE_BITS_ALL;
5817 else
5818 vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
5819 }
5820
5821 void
vm_page_lock_KBI(vm_page_t m,const char * file,int line)5822 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
5823 {
5824
5825 mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
5826 }
5827
5828 void
vm_page_unlock_KBI(vm_page_t m,const char * file,int line)5829 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
5830 {
5831
5832 mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
5833 }
5834
5835 int
vm_page_trylock_KBI(vm_page_t m,const char * file,int line)5836 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
5837 {
5838
5839 return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
5840 }
5841
5842 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
5843 void
vm_page_assert_locked_KBI(vm_page_t m,const char * file,int line)5844 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
5845 {
5846
5847 vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
5848 }
5849
5850 void
vm_page_lock_assert_KBI(vm_page_t m,int a,const char * file,int line)5851 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
5852 {
5853
5854 mtx_assert_(vm_page_lockptr(m), a, file, line);
5855 }
5856 #endif
5857
5858 #ifdef INVARIANTS
5859 void
vm_page_object_busy_assert(vm_page_t m)5860 vm_page_object_busy_assert(vm_page_t m)
5861 {
5862
5863 /*
5864 * Certain of the page's fields may only be modified by the
5865 * holder of a page or object busy.
5866 */
5867 if (m->object != NULL && !vm_page_busied(m))
5868 VM_OBJECT_ASSERT_BUSY(m->object);
5869 }
5870
5871 void
vm_page_assert_pga_writeable(vm_page_t m,uint16_t bits)5872 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
5873 {
5874
5875 if ((bits & PGA_WRITEABLE) == 0)
5876 return;
5877
5878 /*
5879 * The PGA_WRITEABLE flag can only be set if the page is
5880 * managed, is exclusively busied or the object is locked.
5881 * Currently, this flag is only set by pmap_enter().
5882 */
5883 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5884 ("PGA_WRITEABLE on unmanaged page"));
5885 if (!vm_page_xbusied(m))
5886 VM_OBJECT_ASSERT_BUSY(m->object);
5887 }
5888 #endif
5889
5890 #include "opt_ddb.h"
5891 #ifdef DDB
5892 #include <sys/kernel.h>
5893
5894 #include <ddb/ddb.h>
5895
DB_SHOW_COMMAND_FLAGS(page,vm_page_print_page_info,DB_CMD_MEMSAFE)5896 DB_SHOW_COMMAND_FLAGS(page, vm_page_print_page_info, DB_CMD_MEMSAFE)
5897 {
5898
5899 db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5900 db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5901 db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5902 db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5903 db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5904 db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5905 db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5906 db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5907 db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5908 }
5909
DB_SHOW_COMMAND_FLAGS(pageq,vm_page_print_pageq_info,DB_CMD_MEMSAFE)5910 DB_SHOW_COMMAND_FLAGS(pageq, vm_page_print_pageq_info, DB_CMD_MEMSAFE)
5911 {
5912 int dom;
5913
5914 db_printf("pq_free %d\n", vm_free_count());
5915 for (dom = 0; dom < vm_ndomains; dom++) {
5916 db_printf(
5917 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5918 dom,
5919 vm_dom[dom].vmd_page_count,
5920 vm_dom[dom].vmd_free_count,
5921 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5922 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5923 vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5924 vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5925 }
5926 }
5927
DB_SHOW_COMMAND(pginfo,vm_page_print_pginfo)5928 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5929 {
5930 vm_page_t m;
5931 boolean_t phys, virt;
5932
5933 if (!have_addr) {
5934 db_printf("show pginfo addr\n");
5935 return;
5936 }
5937
5938 phys = strchr(modif, 'p') != NULL;
5939 virt = strchr(modif, 'v') != NULL;
5940 if (virt)
5941 m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5942 else if (phys)
5943 m = PHYS_TO_VM_PAGE(addr);
5944 else
5945 m = (vm_page_t)addr;
5946 db_printf(
5947 "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n"
5948 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5949 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5950 m->a.queue, m->ref_count, m->a.flags, m->oflags,
5951 m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
5952 }
5953 #endif /* DDB */
5954