xref: /freebsd/sys/compat/linuxkpi/common/src/linux_pci.c (revision ed29ffd396e522a45ab1980c12a75b3409b51712)
1 /*-
2  * Copyright (c) 2015-2016 Mellanox Technologies, Ltd.
3  * All rights reserved.
4  * Copyright (c) 2020-2025 The FreeBSD Foundation
5  *
6  * Portions of this software were developed by Björn Zeeb
7  * under sponsorship from the FreeBSD Foundation.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice unmodified, this list of conditions, and the following
14  *    disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/bus.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/sysctl.h>
37 #include <sys/lock.h>
38 #include <sys/mutex.h>
39 #include <sys/fcntl.h>
40 #include <sys/file.h>
41 #include <sys/filio.h>
42 #include <sys/pciio.h>
43 #include <sys/pctrie.h>
44 #include <sys/rman.h>
45 #include <sys/rwlock.h>
46 #include <sys/stdarg.h>
47 
48 #include <vm/vm.h>
49 #include <vm/pmap.h>
50 
51 #include <machine/bus.h>
52 #include <machine/resource.h>
53 
54 #include <dev/pci/pcivar.h>
55 #include <dev/pci/pci_private.h>
56 #include <dev/pci/pci_iov.h>
57 #include <dev/backlight/backlight.h>
58 
59 #include <linux/kernel.h>
60 #include <linux/kobject.h>
61 #include <linux/device.h>
62 #include <linux/slab.h>
63 #include <linux/module.h>
64 #include <linux/cdev.h>
65 #include <linux/file.h>
66 #include <linux/sysfs.h>
67 #include <linux/mm.h>
68 #include <linux/io.h>
69 #include <linux/vmalloc.h>
70 #define	WANT_NATIVE_PCI_GET_SLOT
71 #include <linux/pci.h>
72 #include <linux/compat.h>
73 
74 #include <linux/backlight.h>
75 
76 #include "backlight_if.h"
77 #include "pcib_if.h"
78 
79 /* Undef the linux function macro defined in linux/pci.h */
80 #undef pci_get_class
81 
82 extern int linuxkpi_debug;
83 
84 SYSCTL_DECL(_compat_linuxkpi);
85 
86 static counter_u64_t lkpi_pci_nseg1_fail;
87 SYSCTL_COUNTER_U64(_compat_linuxkpi, OID_AUTO, lkpi_pci_nseg1_fail, CTLFLAG_RD,
88     &lkpi_pci_nseg1_fail, "Count of busdma mapping failures of single-segment");
89 
90 static device_probe_t linux_pci_probe;
91 static device_attach_t linux_pci_attach;
92 static device_detach_t linux_pci_detach;
93 static device_suspend_t linux_pci_suspend;
94 static device_resume_t linux_pci_resume;
95 static device_shutdown_t linux_pci_shutdown;
96 static pci_iov_init_t linux_pci_iov_init;
97 static pci_iov_uninit_t linux_pci_iov_uninit;
98 static pci_iov_add_vf_t linux_pci_iov_add_vf;
99 static int linux_backlight_get_status(device_t dev, struct backlight_props *props);
100 static int linux_backlight_update_status(device_t dev, struct backlight_props *props);
101 static int linux_backlight_get_info(device_t dev, struct backlight_info *info);
102 static void lkpi_pcim_iomap_table_release(struct device *, void *);
103 
104 static device_method_t pci_methods[] = {
105 	DEVMETHOD(device_probe, linux_pci_probe),
106 	DEVMETHOD(device_attach, linux_pci_attach),
107 	DEVMETHOD(device_detach, linux_pci_detach),
108 	DEVMETHOD(device_suspend, linux_pci_suspend),
109 	DEVMETHOD(device_resume, linux_pci_resume),
110 	DEVMETHOD(device_shutdown, linux_pci_shutdown),
111 	DEVMETHOD(pci_iov_init, linux_pci_iov_init),
112 	DEVMETHOD(pci_iov_uninit, linux_pci_iov_uninit),
113 	DEVMETHOD(pci_iov_add_vf, linux_pci_iov_add_vf),
114 
115 	/* Bus interface. */
116 	DEVMETHOD(bus_add_child, bus_generic_add_child),
117 
118 	/* backlight interface */
119 	DEVMETHOD(backlight_update_status, linux_backlight_update_status),
120 	DEVMETHOD(backlight_get_status, linux_backlight_get_status),
121 	DEVMETHOD(backlight_get_info, linux_backlight_get_info),
122 	DEVMETHOD_END
123 };
124 
125 const char *pci_power_names[] = {
126 	"UNKNOWN", "D0", "D1", "D2", "D3hot", "D3cold"
127 };
128 
129 /* We need some meta-struct to keep track of these for devres. */
130 struct pci_devres {
131 	bool		enable_io;
132 	/* PCIR_MAX_BAR_0 + 1 = 6 => BIT(0..5). */
133 	uint8_t		region_mask;
134 	struct resource	*region_table[PCIR_MAX_BAR_0 + 1]; /* Not needed. */
135 };
136 struct pcim_iomap_devres {
137 	void		*mmio_table[PCIR_MAX_BAR_0 + 1];
138 	struct resource	*res_table[PCIR_MAX_BAR_0 + 1];
139 };
140 
141 struct linux_dma_priv {
142 	uint64_t	dma_mask;
143 	bus_dma_tag_t	dmat;
144 	uint64_t	dma_coherent_mask;
145 	bus_dma_tag_t	dmat_coherent;
146 	struct mtx	lock;
147 	struct pctrie	ptree;
148 };
149 #define	DMA_PRIV_LOCK(priv) mtx_lock(&(priv)->lock)
150 #define	DMA_PRIV_UNLOCK(priv) mtx_unlock(&(priv)->lock)
151 
152 static void
lkpi_set_pcim_iomap_devres(struct pcim_iomap_devres * dr,int bar,void * res)153 lkpi_set_pcim_iomap_devres(struct pcim_iomap_devres *dr, int bar,
154     void *res)
155 {
156 	dr->mmio_table[bar] = (void *)rman_get_bushandle(res);
157 	dr->res_table[bar] = res;
158 }
159 
160 static bool
lkpi_pci_bar_id_valid(int bar)161 lkpi_pci_bar_id_valid(int bar)
162 {
163 	if (bar < 0 || bar > PCIR_MAX_BAR_0)
164 		return (false);
165 
166 	return (true);
167 }
168 
169 static int
linux_pdev_dma_uninit(struct pci_dev * pdev)170 linux_pdev_dma_uninit(struct pci_dev *pdev)
171 {
172 	struct linux_dma_priv *priv;
173 
174 	priv = pdev->dev.dma_priv;
175 	if (priv->dmat)
176 		bus_dma_tag_destroy(priv->dmat);
177 	if (priv->dmat_coherent)
178 		bus_dma_tag_destroy(priv->dmat_coherent);
179 	mtx_destroy(&priv->lock);
180 	pdev->dev.dma_priv = NULL;
181 	free(priv, M_DEVBUF);
182 	return (0);
183 }
184 
185 static int
linux_pdev_dma_init(struct pci_dev * pdev)186 linux_pdev_dma_init(struct pci_dev *pdev)
187 {
188 	struct linux_dma_priv *priv;
189 	int error;
190 
191 	priv = malloc(sizeof(*priv), M_DEVBUF, M_WAITOK | M_ZERO);
192 
193 	mtx_init(&priv->lock, "lkpi-priv-dma", NULL, MTX_DEF);
194 	pctrie_init(&priv->ptree);
195 
196 	pdev->dev.dma_priv = priv;
197 
198 	/* Create a default DMA tags. */
199 	error = linux_dma_tag_init(&pdev->dev, DMA_BIT_MASK(64));
200 	if (error != 0)
201 		goto err;
202 	/* Coherent is lower 32bit only by default in Linux. */
203 	error = linux_dma_tag_init_coherent(&pdev->dev, DMA_BIT_MASK(32));
204 	if (error != 0)
205 		goto err;
206 
207 	return (error);
208 
209 err:
210 	linux_pdev_dma_uninit(pdev);
211 	return (error);
212 }
213 
214 int
linux_dma_tag_init(struct device * dev,u64 dma_mask)215 linux_dma_tag_init(struct device *dev, u64 dma_mask)
216 {
217 	struct linux_dma_priv *priv;
218 	int error;
219 
220 	priv = dev->dma_priv;
221 
222 	if (priv->dmat) {
223 		if (priv->dma_mask == dma_mask)
224 			return (0);
225 
226 		bus_dma_tag_destroy(priv->dmat);
227 	}
228 
229 	priv->dma_mask = dma_mask;
230 
231 	error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
232 	    1, 0,			/* alignment, boundary */
233 	    dma_mask,			/* lowaddr */
234 	    BUS_SPACE_MAXADDR,		/* highaddr */
235 	    NULL, NULL,			/* filtfunc, filtfuncarg */
236 	    BUS_SPACE_MAXSIZE,		/* maxsize */
237 	    1,				/* nsegments */
238 	    BUS_SPACE_MAXSIZE,		/* maxsegsz */
239 	    0,				/* flags */
240 	    NULL, NULL,			/* lockfunc, lockfuncarg */
241 	    &priv->dmat);
242 	return (-error);
243 }
244 
245 int
linux_dma_tag_init_coherent(struct device * dev,u64 dma_mask)246 linux_dma_tag_init_coherent(struct device *dev, u64 dma_mask)
247 {
248 	struct linux_dma_priv *priv;
249 	int error;
250 
251 	priv = dev->dma_priv;
252 
253 	if (priv->dmat_coherent) {
254 		if (priv->dma_coherent_mask == dma_mask)
255 			return (0);
256 
257 		bus_dma_tag_destroy(priv->dmat_coherent);
258 	}
259 
260 	priv->dma_coherent_mask = dma_mask;
261 
262 	error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
263 	    1, 0,			/* alignment, boundary */
264 	    dma_mask,			/* lowaddr */
265 	    BUS_SPACE_MAXADDR,		/* highaddr */
266 	    NULL, NULL,			/* filtfunc, filtfuncarg */
267 	    BUS_SPACE_MAXSIZE,		/* maxsize */
268 	    1,				/* nsegments */
269 	    BUS_SPACE_MAXSIZE,		/* maxsegsz */
270 	    0,				/* flags */
271 	    NULL, NULL,			/* lockfunc, lockfuncarg */
272 	    &priv->dmat_coherent);
273 	return (-error);
274 }
275 
276 static struct pci_driver *
linux_pci_find(device_t dev,const struct pci_device_id ** idp)277 linux_pci_find(device_t dev, const struct pci_device_id **idp)
278 {
279 	const struct pci_device_id *id;
280 	struct pci_driver *pdrv;
281 	uint16_t vendor;
282 	uint16_t device;
283 	uint16_t subvendor;
284 	uint16_t subdevice;
285 
286 	vendor = pci_get_vendor(dev);
287 	device = pci_get_device(dev);
288 	subvendor = pci_get_subvendor(dev);
289 	subdevice = pci_get_subdevice(dev);
290 
291 	spin_lock(&pci_lock);
292 	list_for_each_entry(pdrv, &pci_drivers, node) {
293 		for (id = pdrv->id_table; id->vendor != 0; id++) {
294 			if (vendor == id->vendor &&
295 			    (PCI_ANY_ID == id->device || device == id->device) &&
296 			    (PCI_ANY_ID == id->subvendor || subvendor == id->subvendor) &&
297 			    (PCI_ANY_ID == id->subdevice || subdevice == id->subdevice)) {
298 				*idp = id;
299 				spin_unlock(&pci_lock);
300 				return (pdrv);
301 			}
302 		}
303 	}
304 	spin_unlock(&pci_lock);
305 	return (NULL);
306 }
307 
308 struct pci_dev *
lkpi_pci_get_device(uint32_t vendor,uint32_t device,struct pci_dev * odev)309 lkpi_pci_get_device(uint32_t vendor, uint32_t device, struct pci_dev *odev)
310 {
311 	struct pci_dev *pdev, *found;
312 
313 	found = NULL;
314 	spin_lock(&pci_lock);
315 	list_for_each_entry(pdev, &pci_devices, links) {
316 		/* Walk until we find odev. */
317 		if (odev != NULL) {
318 			if (pdev == odev)
319 				odev = NULL;
320 			continue;
321 		}
322 
323 		if ((pdev->vendor == vendor || vendor == PCI_ANY_ID) &&
324 		    (pdev->device == device || device == PCI_ANY_ID)) {
325 			found = pdev;
326 			break;
327 		}
328 	}
329 	pci_dev_get(found);
330 	spin_unlock(&pci_lock);
331 
332 	return (found);
333 }
334 
335 static void
lkpi_pci_dev_release(struct device * dev)336 lkpi_pci_dev_release(struct device *dev)
337 {
338 
339 	lkpi_devres_release_free_list(dev);
340 	spin_lock_destroy(&dev->devres_lock);
341 }
342 
343 static int
lkpifill_pci_dev(device_t dev,struct pci_dev * pdev)344 lkpifill_pci_dev(device_t dev, struct pci_dev *pdev)
345 {
346 	struct pci_devinfo *dinfo;
347 	int error;
348 
349 	error = kobject_init_and_add(&pdev->dev.kobj, &linux_dev_ktype,
350 	    &linux_root_device.kobj, device_get_nameunit(dev));
351 	if (error != 0) {
352 		printf("%s:%d: kobject_init_and_add returned %d\n",
353 		    __func__, __LINE__, error);
354 		return (error);
355 	}
356 
357 	pdev->devfn = PCI_DEVFN(pci_get_slot(dev), pci_get_function(dev));
358 	pdev->vendor = pci_get_vendor(dev);
359 	pdev->device = pci_get_device(dev);
360 	pdev->subsystem_vendor = pci_get_subvendor(dev);
361 	pdev->subsystem_device = pci_get_subdevice(dev);
362 	pdev->class = pci_get_class(dev);
363 	pdev->revision = pci_get_revid(dev);
364 	pdev->path_name = kasprintf(GFP_KERNEL, "%04d:%02d:%02d.%d",
365 	    pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev),
366 	    pci_get_function(dev));
367 
368 	pdev->bus = malloc(sizeof(*pdev->bus), M_DEVBUF, M_WAITOK | M_ZERO);
369 	pdev->bus->number = pci_get_bus(dev);
370 	pdev->bus->domain = pci_get_domain(dev);
371 
372 	/* Check if we have reached the root to satisfy pci_is_root_bus() */
373 	dinfo = device_get_ivars(dev);
374 	if (dinfo->cfg.pcie.pcie_location != 0 &&
375 	    dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT) {
376 		pdev->bus->self = NULL;
377 	} else {
378 		/*
379 		 * This should be the upstream bridge; pci_upstream_bridge()
380 		 * handles that case on demand as otherwise we'll shadow the
381 		 * entire PCI hierarchy.
382 		 */
383 		pdev->bus->self = pdev;
384 	}
385 	pdev->dev.bsddev = dev;
386 	pdev->dev.parent = &linux_root_device;
387 	pdev->dev.release = lkpi_pci_dev_release;
388 	INIT_LIST_HEAD(&pdev->dev.irqents);
389 
390 	if (pci_msi_count(dev) > 0)
391 		pdev->msi_desc = malloc(pci_msi_count(dev) *
392 		    sizeof(*pdev->msi_desc), M_DEVBUF, M_WAITOK | M_ZERO);
393 
394 	spin_lock_init(&pdev->dev.devres_lock);
395 	INIT_LIST_HEAD(&pdev->dev.devres_head);
396 
397 	return (0);
398 }
399 
400 static void
lkpinew_pci_dev_release(struct device * dev)401 lkpinew_pci_dev_release(struct device *dev)
402 {
403 	struct pci_dev *pdev;
404 	int i;
405 
406 	pdev = to_pci_dev(dev);
407 	if (pdev->root != NULL)
408 		pci_dev_put(pdev->root);
409 	if (pdev->bus->self != pdev && pdev->bus->self != NULL)
410 		pci_dev_put(pdev->bus->self);
411 	free(pdev->bus, M_DEVBUF);
412 	if (pdev->msi_desc != NULL) {
413 		for (i = pci_msi_count(pdev->dev.bsddev) - 1; i >= 0; i--)
414 			free(pdev->msi_desc[i], M_DEVBUF);
415 		free(pdev->msi_desc, M_DEVBUF);
416 	}
417 	kfree(pdev->path_name);
418 	free(pdev, M_DEVBUF);
419 }
420 
421 struct pci_dev *
lkpinew_pci_dev(device_t dev)422 lkpinew_pci_dev(device_t dev)
423 {
424 	struct pci_dev *pdev;
425 	int error;
426 
427 	pdev = malloc(sizeof(*pdev), M_DEVBUF, M_WAITOK|M_ZERO);
428 	error = lkpifill_pci_dev(dev, pdev);
429 	if (error != 0) {
430 		free(pdev, M_DEVBUF);
431 		return (NULL);
432 	}
433 	pdev->dev.release = lkpinew_pci_dev_release;
434 
435 	return (pdev);
436 }
437 
438 struct pci_dev *
lkpi_pci_get_class(unsigned int class,struct pci_dev * from)439 lkpi_pci_get_class(unsigned int class, struct pci_dev *from)
440 {
441 	device_t dev;
442 	device_t devfrom = NULL;
443 	struct pci_dev *pdev;
444 
445 	if (from != NULL)
446 		devfrom = from->dev.bsddev;
447 
448 	dev = pci_find_class_from(class >> 16, (class >> 8) & 0xFF, devfrom);
449 	if (dev == NULL)
450 		return (NULL);
451 
452 	pdev = lkpinew_pci_dev(dev);
453 	return (pdev);
454 }
455 
456 struct pci_dev *
lkpi_pci_get_base_class(unsigned int baseclass,struct pci_dev * from)457 lkpi_pci_get_base_class(unsigned int baseclass, struct pci_dev *from)
458 {
459 	device_t dev;
460 	device_t devfrom = NULL;
461 	struct pci_dev *pdev;
462 
463 	if (from != NULL)
464 		devfrom = from->dev.bsddev;
465 
466 	dev = pci_find_base_class_from(baseclass, devfrom);
467 	if (dev == NULL)
468 		return (NULL);
469 
470 	pdev = lkpinew_pci_dev(dev);
471 	return (pdev);
472 }
473 
474 struct pci_dev *
lkpi_pci_get_domain_bus_and_slot(int domain,unsigned int bus,unsigned int devfn)475 lkpi_pci_get_domain_bus_and_slot(int domain, unsigned int bus,
476     unsigned int devfn)
477 {
478 	device_t dev;
479 	struct pci_dev *pdev;
480 
481 	dev = pci_find_dbsf(domain, bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
482 	if (dev == NULL)
483 		return (NULL);
484 
485 	pdev = lkpinew_pci_dev(dev);
486 	return (pdev);
487 }
488 
489 struct pci_dev *
lkpi_pci_get_slot(struct pci_bus * pbus,unsigned int devfn)490 lkpi_pci_get_slot(struct pci_bus *pbus, unsigned int devfn)
491 {
492 	device_t dev;
493 	struct pci_dev *pdev;
494 
495 	dev = pci_find_bsf(pbus->number, PCI_SLOT(devfn), PCI_FUNC(devfn));
496 	if (dev == NULL)
497 		return (NULL);
498 
499 	pdev = lkpinew_pci_dev(dev);
500 	return (pdev);
501 }
502 
503 static int
linux_pci_probe(device_t dev)504 linux_pci_probe(device_t dev)
505 {
506 	const struct pci_device_id *id;
507 	struct pci_driver *pdrv;
508 
509 	if ((pdrv = linux_pci_find(dev, &id)) == NULL)
510 		return (ENXIO);
511 	if (device_get_driver(dev) != &pdrv->bsddriver)
512 		return (ENXIO);
513 	device_set_desc(dev, pdrv->name);
514 
515 	/* Assume BSS initialized (should never return BUS_PROBE_SPECIFIC). */
516 	if (pdrv->bsd_probe_return == 0)
517 		return (BUS_PROBE_DEFAULT);
518 	else
519 		return (pdrv->bsd_probe_return);
520 }
521 
522 static int
linux_pci_attach(device_t dev)523 linux_pci_attach(device_t dev)
524 {
525 	const struct pci_device_id *id;
526 	struct pci_driver *pdrv;
527 	struct pci_dev *pdev;
528 
529 	pdrv = linux_pci_find(dev, &id);
530 	pdev = device_get_softc(dev);
531 
532 	MPASS(pdrv != NULL);
533 	MPASS(pdev != NULL);
534 
535 	return (linux_pci_attach_device(dev, pdrv, id, pdev));
536 }
537 
538 static struct resource_list_entry *
linux_pci_reserve_bar(struct pci_dev * pdev,struct resource_list * rl,int type,int rid)539 linux_pci_reserve_bar(struct pci_dev *pdev, struct resource_list *rl,
540     int type, int rid)
541 {
542 	device_t dev;
543 	struct resource *res;
544 
545 	KASSERT(type == SYS_RES_IOPORT || type == SYS_RES_MEMORY,
546 	    ("trying to reserve non-BAR type %d", type));
547 
548 	dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ?
549 	    device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev;
550 	res = pci_reserve_map(device_get_parent(dev), dev, type, &rid, 0, ~0,
551 	    1, 1, 0);
552 	if (res == NULL)
553 		return (NULL);
554 	return (resource_list_find(rl, type, rid));
555 }
556 
557 static struct resource_list_entry *
linux_pci_get_rle(struct pci_dev * pdev,int type,int rid,bool reserve_bar)558 linux_pci_get_rle(struct pci_dev *pdev, int type, int rid, bool reserve_bar)
559 {
560 	struct pci_devinfo *dinfo;
561 	struct resource_list *rl;
562 	struct resource_list_entry *rle;
563 
564 	dinfo = device_get_ivars(pdev->dev.bsddev);
565 	rl = &dinfo->resources;
566 	rle = resource_list_find(rl, type, rid);
567 	/* Reserve resources for this BAR if needed. */
568 	if (rle == NULL && reserve_bar)
569 		rle = linux_pci_reserve_bar(pdev, rl, type, rid);
570 	return (rle);
571 }
572 
573 int
linux_pci_attach_device(device_t dev,struct pci_driver * pdrv,const struct pci_device_id * id,struct pci_dev * pdev)574 linux_pci_attach_device(device_t dev, struct pci_driver *pdrv,
575     const struct pci_device_id *id, struct pci_dev *pdev)
576 {
577 	struct resource_list_entry *rle;
578 	device_t parent;
579 	struct pci_dev *pbus, *ppbus;
580 	uintptr_t rid;
581 	int error;
582 	bool isdrm;
583 
584 	linux_set_current(curthread);
585 
586 	parent = device_get_parent(dev);
587 	isdrm = pdrv != NULL && pdrv->isdrm;
588 
589 	if (isdrm) {
590 		struct pci_devinfo *dinfo;
591 
592 		dinfo = device_get_ivars(parent);
593 		device_set_ivars(dev, dinfo);
594 	}
595 
596 	error = lkpifill_pci_dev(dev, pdev);
597 	if (error != 0)
598 		return (error);
599 
600 	if (isdrm)
601 		PCI_GET_ID(device_get_parent(parent), parent, PCI_ID_RID, &rid);
602 	else
603 		PCI_GET_ID(parent, dev, PCI_ID_RID, &rid);
604 	pdev->devfn = rid;
605 	pdev->pdrv = pdrv;
606 	rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 0, false);
607 	if (rle != NULL)
608 		pdev->dev.irq = rle->start;
609 	else
610 		pdev->dev.irq = LINUX_IRQ_INVALID;
611 	pdev->irq = pdev->dev.irq;
612 	error = linux_pdev_dma_init(pdev);
613 	if (error)
614 		goto out_dma_init;
615 
616 	TAILQ_INIT(&pdev->mmio);
617 	spin_lock_init(&pdev->pcie_cap_lock);
618 
619 	spin_lock(&pci_lock);
620 	list_add(&pdev->links, &pci_devices);
621 	spin_unlock(&pci_lock);
622 
623 	/*
624 	 * Create the hierarchy now as we cannot on demand later.
625 	 * Take special care of DRM as there is a non-PCI device in the chain.
626 	 */
627 	pbus = pdev;
628 	if (isdrm) {
629 		pbus = lkpinew_pci_dev(parent);
630 		if (pbus == NULL) {
631 			error = ENXIO;
632 			goto out_dma_init;
633 		}
634 	}
635 	pcie_find_root_port(pbus);
636 	if (isdrm)
637 		pdev->root = pbus->root;
638 	ppbus = pci_upstream_bridge(pbus);
639 	while (ppbus != NULL && ppbus != pbus) {
640 		pbus = ppbus;
641 		ppbus = pci_upstream_bridge(pbus);
642 	}
643 
644 	if (pdrv != NULL) {
645 		error = pdrv->probe(pdev, id);
646 		if (error)
647 			goto out_probe;
648 	}
649 	return (0);
650 
651 /* XXX the cleanup does not match the allocation up there. */
652 out_probe:
653 	free(pdev->bus, M_DEVBUF);
654 	spin_lock_destroy(&pdev->pcie_cap_lock);
655 	linux_pdev_dma_uninit(pdev);
656 out_dma_init:
657 	spin_lock(&pci_lock);
658 	list_del(&pdev->links);
659 	spin_unlock(&pci_lock);
660 	put_device(&pdev->dev);
661 	return (-error);
662 }
663 
664 static int
linux_pci_detach(device_t dev)665 linux_pci_detach(device_t dev)
666 {
667 	struct pci_dev *pdev;
668 
669 	pdev = device_get_softc(dev);
670 
671 	MPASS(pdev != NULL);
672 
673 	device_set_desc(dev, NULL);
674 
675 	return (linux_pci_detach_device(pdev));
676 }
677 
678 int
linux_pci_detach_device(struct pci_dev * pdev)679 linux_pci_detach_device(struct pci_dev *pdev)
680 {
681 
682 	linux_set_current(curthread);
683 
684 	if (pdev->pdrv != NULL)
685 		pdev->pdrv->remove(pdev);
686 
687 	if (pdev->root != NULL)
688 		pci_dev_put(pdev->root);
689 	free(pdev->bus, M_DEVBUF);
690 	linux_pdev_dma_uninit(pdev);
691 
692 	spin_lock(&pci_lock);
693 	list_del(&pdev->links);
694 	spin_unlock(&pci_lock);
695 	spin_lock_destroy(&pdev->pcie_cap_lock);
696 	put_device(&pdev->dev);
697 
698 	return (0);
699 }
700 
701 static int
lkpi_pci_disable_dev(struct device * dev)702 lkpi_pci_disable_dev(struct device *dev)
703 {
704 
705 	(void) pci_disable_io(dev->bsddev, SYS_RES_MEMORY);
706 	(void) pci_disable_io(dev->bsddev, SYS_RES_IOPORT);
707 	return (0);
708 }
709 
710 static struct pci_devres *
lkpi_pci_devres_get_alloc(struct pci_dev * pdev)711 lkpi_pci_devres_get_alloc(struct pci_dev *pdev)
712 {
713 	struct pci_devres *dr;
714 
715 	dr = lkpi_devres_find(&pdev->dev, lkpi_pci_devres_release, NULL, NULL);
716 	if (dr == NULL) {
717 		dr = lkpi_devres_alloc(lkpi_pci_devres_release, sizeof(*dr),
718 		    GFP_KERNEL | __GFP_ZERO);
719 		if (dr != NULL)
720 			lkpi_devres_add(&pdev->dev, dr);
721 	}
722 
723 	return (dr);
724 }
725 
726 static struct pci_devres *
lkpi_pci_devres_find(struct pci_dev * pdev)727 lkpi_pci_devres_find(struct pci_dev *pdev)
728 {
729 	if (!pdev->managed)
730 		return (NULL);
731 
732 	return (lkpi_pci_devres_get_alloc(pdev));
733 }
734 
735 void
lkpi_pci_devres_release(struct device * dev,void * p)736 lkpi_pci_devres_release(struct device *dev, void *p)
737 {
738 	struct pci_devres *dr;
739 	struct pci_dev *pdev;
740 	int bar;
741 
742 	pdev = to_pci_dev(dev);
743 	dr = p;
744 
745 	if (pdev->msix_enabled)
746 		lkpi_pci_disable_msix(pdev);
747         if (pdev->msi_enabled)
748 		lkpi_pci_disable_msi(pdev);
749 
750 	if (dr->enable_io && lkpi_pci_disable_dev(dev) == 0)
751 		dr->enable_io = false;
752 
753 	if (dr->region_mask == 0)
754 		return;
755 	for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
756 
757 		if ((dr->region_mask & (1 << bar)) == 0)
758 			continue;
759 		pci_release_region(pdev, bar);
760 	}
761 }
762 
763 int
linuxkpi_pcim_enable_device(struct pci_dev * pdev)764 linuxkpi_pcim_enable_device(struct pci_dev *pdev)
765 {
766 	struct pci_devres *dr;
767 	int error;
768 
769 	/* Here we cannot run through the pdev->managed check. */
770 	dr = lkpi_pci_devres_get_alloc(pdev);
771 	if (dr == NULL)
772 		return (-ENOMEM);
773 
774 	/* If resources were enabled before do not do it again. */
775 	if (dr->enable_io)
776 		return (0);
777 
778 	error = pci_enable_device(pdev);
779 	if (error == 0)
780 		dr->enable_io = true;
781 
782 	/* This device is not managed. */
783 	pdev->managed = true;
784 
785 	return (error);
786 }
787 
788 static struct pcim_iomap_devres *
lkpi_pcim_iomap_devres_find(struct pci_dev * pdev)789 lkpi_pcim_iomap_devres_find(struct pci_dev *pdev)
790 {
791 	struct pcim_iomap_devres *dr;
792 
793 	dr = lkpi_devres_find(&pdev->dev, lkpi_pcim_iomap_table_release,
794 	    NULL, NULL);
795 	if (dr == NULL) {
796 		dr = lkpi_devres_alloc(lkpi_pcim_iomap_table_release,
797 		    sizeof(*dr), GFP_KERNEL | __GFP_ZERO);
798 		if (dr != NULL)
799 			lkpi_devres_add(&pdev->dev, dr);
800 	}
801 
802 	if (dr == NULL)
803 		device_printf(pdev->dev.bsddev, "%s: NULL\n", __func__);
804 
805 	return (dr);
806 }
807 
808 void __iomem **
linuxkpi_pcim_iomap_table(struct pci_dev * pdev)809 linuxkpi_pcim_iomap_table(struct pci_dev *pdev)
810 {
811 	struct pcim_iomap_devres *dr;
812 
813 	dr = lkpi_pcim_iomap_devres_find(pdev);
814 	if (dr == NULL)
815 		return (NULL);
816 
817 	/*
818 	 * If the driver has manually set a flag to be able to request the
819 	 * resource to use bus_read/write_<n>, return the shadow table.
820 	 */
821 	if (pdev->want_iomap_res)
822 		return ((void **)dr->res_table);
823 
824 	/* This is the Linux default. */
825 	return (dr->mmio_table);
826 }
827 
828 static struct resource *
_lkpi_pci_iomap(struct pci_dev * pdev,int bar,unsigned long maxlen __unused)829 _lkpi_pci_iomap(struct pci_dev *pdev, int bar, unsigned long maxlen __unused)
830 {
831 	struct pci_mmio_region *mmio, *p;
832 	int type;
833 
834 	if (!lkpi_pci_bar_id_valid(bar))
835 		return (NULL);
836 
837 	type = pci_resource_type(pdev, bar);
838 	if (type < 0) {
839 		device_printf(pdev->dev.bsddev, "%s: bar %d type %d\n",
840 		     __func__, bar, type);
841 		return (NULL);
842 	}
843 
844 	/*
845 	 * Check for duplicate mappings.
846 	 * This can happen if a driver calls pci_request_region() first.
847 	 */
848 	TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) {
849 		if (mmio->type == type && mmio->rid == PCIR_BAR(bar)) {
850 			return (mmio->res);
851 		}
852 	}
853 
854 	mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO);
855 	mmio->rid = PCIR_BAR(bar);
856 	mmio->type = type;
857 	mmio->res = bus_alloc_resource_any(pdev->dev.bsddev, mmio->type,
858 	    &mmio->rid, RF_ACTIVE|RF_SHAREABLE);
859 	if (mmio->res == NULL) {
860 		device_printf(pdev->dev.bsddev, "%s: failed to alloc "
861 		    "bar %d type %d rid %d\n",
862 		    __func__, bar, type, PCIR_BAR(bar));
863 		free(mmio, M_DEVBUF);
864 		return (NULL);
865 	}
866 	TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next);
867 
868 	return (mmio->res);
869 }
870 
871 void *
linuxkpi_pci_iomap_range(struct pci_dev * pdev,int bar,unsigned long off,unsigned long maxlen)872 linuxkpi_pci_iomap_range(struct pci_dev *pdev, int bar,
873     unsigned long off, unsigned long maxlen)
874 {
875 	struct resource *res;
876 
877 	if (!lkpi_pci_bar_id_valid(bar))
878 		return (NULL);
879 
880 	res = _lkpi_pci_iomap(pdev, bar, maxlen);
881 	if (res == NULL)
882 		return (NULL);
883 	/* This is a FreeBSD extension so we can use bus_*(). */
884 	if (pdev->want_iomap_res)
885 		return (res);
886 	MPASS(off < rman_get_size(res));
887 	return ((void *)(rman_get_bushandle(res) + off));
888 }
889 
890 void *
linuxkpi_pci_iomap(struct pci_dev * pdev,int bar,unsigned long maxlen)891 linuxkpi_pci_iomap(struct pci_dev *pdev, int bar, unsigned long maxlen)
892 {
893 	if (!lkpi_pci_bar_id_valid(bar))
894 		return (NULL);
895 
896 	return (linuxkpi_pci_iomap_range(pdev, bar, 0, maxlen));
897 }
898 
899 void *
linuxkpi_pcim_iomap(struct pci_dev * pdev,int bar,unsigned long maxlen)900 linuxkpi_pcim_iomap(struct pci_dev *pdev, int bar, unsigned long maxlen)
901 {
902 	struct pcim_iomap_devres *dr;
903 	void *res;
904 
905 	if (!lkpi_pci_bar_id_valid(bar))
906 		return (NULL);
907 
908 	dr = lkpi_pcim_iomap_devres_find(pdev);
909 	if (dr == NULL)
910 		return (NULL);
911 
912 	if (dr->res_table[bar] != NULL)
913 		return (dr->res_table[bar]);
914 
915 	res = linuxkpi_pci_iomap(pdev, bar, maxlen);
916 	if (res == NULL) {
917 		/*
918 		 * Do not free the devres in case there were
919 		 * other valid mappings before already.
920 		 */
921 		return (NULL);
922 	}
923 	lkpi_set_pcim_iomap_devres(dr, bar, res);
924 
925 	return (res);
926 }
927 
928 void
linuxkpi_pci_iounmap(struct pci_dev * pdev,void * res)929 linuxkpi_pci_iounmap(struct pci_dev *pdev, void *res)
930 {
931 	struct pci_mmio_region *mmio, *p;
932 	bus_space_handle_t bh = (bus_space_handle_t)res;
933 
934 	TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) {
935 		if (pdev->want_iomap_res) {
936 			if (res != mmio->res)
937 				continue;
938 		} else {
939 			if (bh <  rman_get_bushandle(mmio->res) ||
940 			    bh >= rman_get_bushandle(mmio->res) +
941 				  rman_get_size(mmio->res))
942 				continue;
943 		}
944 		bus_release_resource(pdev->dev.bsddev,
945 		    mmio->type, mmio->rid, mmio->res);
946 		TAILQ_REMOVE(&pdev->mmio, mmio, next);
947 		free(mmio, M_DEVBUF);
948 		return;
949 	}
950 }
951 
952 int
linuxkpi_pcim_iomap_regions(struct pci_dev * pdev,uint32_t mask,const char * name)953 linuxkpi_pcim_iomap_regions(struct pci_dev *pdev, uint32_t mask, const char *name)
954 {
955 	struct pcim_iomap_devres *dr;
956 	void *res;
957 	uint32_t mappings;
958 	int bar;
959 
960 	dr = lkpi_pcim_iomap_devres_find(pdev);
961 	if (dr == NULL)
962 		return (-ENOMEM);
963 
964 	/* Now iomap all the requested (by "mask") ones. */
965 	for (bar = mappings = 0; mappings != mask; bar++) {
966 		if ((mask & (1 << bar)) == 0)
967 			continue;
968 
969 		/* Request double is not allowed. */
970 		if (dr->mmio_table[bar] != NULL) {
971 			device_printf(pdev->dev.bsddev, "%s: bar %d %p\n",
972 			    __func__, bar, dr->mmio_table[bar]);
973 			goto err;
974 		}
975 
976 		res = _lkpi_pci_iomap(pdev, bar, 0);
977 		if (res == NULL)
978 			goto err;
979 		lkpi_set_pcim_iomap_devres(dr, bar, res);
980 
981 		mappings |= (1 << bar);
982 	}
983 
984 	return (0);
985 err:
986 	for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
987 		if ((mappings & (1 << bar)) != 0) {
988 			res = dr->mmio_table[bar];
989 			if (res == NULL)
990 				continue;
991 			pci_iounmap(pdev, res);
992 		}
993 	}
994 
995 	return (-EINVAL);
996 }
997 
998 static void
lkpi_pcim_iomap_table_release(struct device * dev,void * p)999 lkpi_pcim_iomap_table_release(struct device *dev, void *p)
1000 {
1001 	struct pcim_iomap_devres *dr;
1002 	struct pci_dev *pdev;
1003 	int bar;
1004 
1005 	dr = p;
1006 	pdev = to_pci_dev(dev);
1007 	for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
1008 
1009 		if (dr->mmio_table[bar] == NULL)
1010 			continue;
1011 
1012 		pci_iounmap(pdev, dr->mmio_table[bar]);
1013 	}
1014 }
1015 
1016 static int
linux_pci_suspend(device_t dev)1017 linux_pci_suspend(device_t dev)
1018 {
1019 	const struct dev_pm_ops *pmops;
1020 	struct pm_message pm = { };
1021 	struct pci_dev *pdev;
1022 	int error;
1023 
1024 	error = 0;
1025 	linux_set_current(curthread);
1026 	pdev = device_get_softc(dev);
1027 	pmops = pdev->pdrv->driver.pm;
1028 
1029 	if (pdev->pdrv->suspend != NULL)
1030 		error = -pdev->pdrv->suspend(pdev, pm);
1031 	else if (pmops != NULL && pmops->suspend != NULL) {
1032 		error = -pmops->suspend(&pdev->dev);
1033 		if (error == 0 && pmops->suspend_late != NULL)
1034 			error = -pmops->suspend_late(&pdev->dev);
1035 		if (error == 0 && pmops->suspend_noirq != NULL)
1036 			error = -pmops->suspend_noirq(&pdev->dev);
1037 	}
1038 	return (error);
1039 }
1040 
1041 static int
linux_pci_resume(device_t dev)1042 linux_pci_resume(device_t dev)
1043 {
1044 	const struct dev_pm_ops *pmops;
1045 	struct pci_dev *pdev;
1046 	int error;
1047 
1048 	error = 0;
1049 	linux_set_current(curthread);
1050 	pdev = device_get_softc(dev);
1051 	pmops = pdev->pdrv->driver.pm;
1052 
1053 	if (pdev->pdrv->resume != NULL)
1054 		error = -pdev->pdrv->resume(pdev);
1055 	else if (pmops != NULL && pmops->resume != NULL) {
1056 		if (pmops->resume_early != NULL)
1057 			error = -pmops->resume_early(&pdev->dev);
1058 		if (error == 0 && pmops->resume != NULL)
1059 			error = -pmops->resume(&pdev->dev);
1060 	}
1061 	return (error);
1062 }
1063 
1064 static int
linux_pci_shutdown(device_t dev)1065 linux_pci_shutdown(device_t dev)
1066 {
1067 	struct pci_dev *pdev;
1068 
1069 	linux_set_current(curthread);
1070 	pdev = device_get_softc(dev);
1071 	if (pdev->pdrv->shutdown != NULL)
1072 		pdev->pdrv->shutdown(pdev);
1073 	return (0);
1074 }
1075 
1076 static int
linux_pci_iov_init(device_t dev,uint16_t num_vfs,const nvlist_t * pf_config)1077 linux_pci_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *pf_config)
1078 {
1079 	struct pci_dev *pdev;
1080 	int error;
1081 
1082 	linux_set_current(curthread);
1083 	pdev = device_get_softc(dev);
1084 	if (pdev->pdrv->bsd_iov_init != NULL)
1085 		error = pdev->pdrv->bsd_iov_init(dev, num_vfs, pf_config);
1086 	else
1087 		error = EINVAL;
1088 	return (error);
1089 }
1090 
1091 static void
linux_pci_iov_uninit(device_t dev)1092 linux_pci_iov_uninit(device_t dev)
1093 {
1094 	struct pci_dev *pdev;
1095 
1096 	linux_set_current(curthread);
1097 	pdev = device_get_softc(dev);
1098 	if (pdev->pdrv->bsd_iov_uninit != NULL)
1099 		pdev->pdrv->bsd_iov_uninit(dev);
1100 }
1101 
1102 static int
linux_pci_iov_add_vf(device_t dev,uint16_t vfnum,const nvlist_t * vf_config)1103 linux_pci_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *vf_config)
1104 {
1105 	struct pci_dev *pdev;
1106 	int error;
1107 
1108 	linux_set_current(curthread);
1109 	pdev = device_get_softc(dev);
1110 	if (pdev->pdrv->bsd_iov_add_vf != NULL)
1111 		error = pdev->pdrv->bsd_iov_add_vf(dev, vfnum, vf_config);
1112 	else
1113 		error = EINVAL;
1114 	return (error);
1115 }
1116 
1117 static int
_linux_pci_register_driver(struct pci_driver * pdrv,devclass_t dc)1118 _linux_pci_register_driver(struct pci_driver *pdrv, devclass_t dc)
1119 {
1120 	int error;
1121 
1122 	linux_set_current(curthread);
1123 	spin_lock(&pci_lock);
1124 	list_add(&pdrv->node, &pci_drivers);
1125 	spin_unlock(&pci_lock);
1126 	if (pdrv->bsddriver.name == NULL)
1127 		pdrv->bsddriver.name = pdrv->name;
1128 	pdrv->bsddriver.methods = pci_methods;
1129 	pdrv->bsddriver.size = sizeof(struct pci_dev);
1130 
1131 	bus_topo_lock();
1132 	error = devclass_add_driver(dc, &pdrv->bsddriver,
1133 	    BUS_PASS_DEFAULT, &pdrv->bsdclass);
1134 	bus_topo_unlock();
1135 	return (-error);
1136 }
1137 
1138 int
linux_pci_register_driver(struct pci_driver * pdrv)1139 linux_pci_register_driver(struct pci_driver *pdrv)
1140 {
1141 	devclass_t dc;
1142 
1143 	pdrv->isdrm = strcmp(pdrv->name, "drmn") == 0;
1144 	dc = pdrv->isdrm ? devclass_create("vgapci") : devclass_find("pci");
1145 	if (dc == NULL)
1146 		return (-ENXIO);
1147 	return (_linux_pci_register_driver(pdrv, dc));
1148 }
1149 
1150 static struct resource_list_entry *
lkpi_pci_get_bar(struct pci_dev * pdev,int bar,bool reserve)1151 lkpi_pci_get_bar(struct pci_dev *pdev, int bar, bool reserve)
1152 {
1153 	int type;
1154 
1155 	type = pci_resource_type(pdev, bar);
1156 	if (type < 0)
1157 		return (NULL);
1158 	bar = PCIR_BAR(bar);
1159 	return (linux_pci_get_rle(pdev, type, bar, reserve));
1160 }
1161 
1162 struct device *
lkpi_pci_find_irq_dev(unsigned int irq)1163 lkpi_pci_find_irq_dev(unsigned int irq)
1164 {
1165 	struct pci_dev *pdev;
1166 	struct device *found;
1167 
1168 	found = NULL;
1169 	spin_lock(&pci_lock);
1170 	list_for_each_entry(pdev, &pci_devices, links) {
1171 		if (irq == pdev->dev.irq ||
1172 		    (irq >= pdev->dev.irq_start && irq < pdev->dev.irq_end)) {
1173 			found = &pdev->dev;
1174 			break;
1175 		}
1176 	}
1177 	spin_unlock(&pci_lock);
1178 	return (found);
1179 }
1180 
1181 unsigned long
pci_resource_start(struct pci_dev * pdev,int bar)1182 pci_resource_start(struct pci_dev *pdev, int bar)
1183 {
1184 	struct resource_list_entry *rle;
1185 	rman_res_t newstart;
1186 	device_t dev;
1187 	int error;
1188 
1189 	if ((rle = lkpi_pci_get_bar(pdev, bar, true)) == NULL)
1190 		return (0);
1191 	dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ?
1192 	    device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev;
1193 	error = bus_translate_resource(dev, rle->type, rle->start, &newstart);
1194 	if (error != 0) {
1195 		device_printf(pdev->dev.bsddev,
1196 		    "translate of %#jx failed: %d\n",
1197 		    (uintmax_t)rle->start, error);
1198 		return (0);
1199 	}
1200 	return (newstart);
1201 }
1202 
1203 unsigned long
pci_resource_len(struct pci_dev * pdev,int bar)1204 pci_resource_len(struct pci_dev *pdev, int bar)
1205 {
1206 	struct resource_list_entry *rle;
1207 
1208 	if ((rle = lkpi_pci_get_bar(pdev, bar, true)) == NULL)
1209 		return (0);
1210 	return (rle->count);
1211 }
1212 
1213 static int
lkpi_pci_request_region(struct pci_dev * pdev,int bar,const char * res_name,bool managed)1214 lkpi_pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1215     bool managed)
1216 {
1217 	struct resource *res;
1218 	struct pci_devres *dr;
1219 	struct pci_mmio_region *mmio;
1220 	int rid;
1221 	int type;
1222 
1223 	if (!lkpi_pci_bar_id_valid(bar))
1224 		return (-EINVAL);
1225 
1226 	type = pci_resource_type(pdev, bar);
1227 	if (type < 0)
1228 		return (0);
1229 
1230 	rid = PCIR_BAR(bar);
1231 	res = bus_alloc_resource_any(pdev->dev.bsddev, type, &rid,
1232 	    RF_ACTIVE|RF_SHAREABLE);
1233 	if (res == NULL) {
1234 		device_printf(pdev->dev.bsddev, "%s: failed to alloc "
1235 		    "bar %d type %d rid %d\n",
1236 		    __func__, bar, type, PCIR_BAR(bar));
1237 		return (-EBUSY);
1238 	}
1239 
1240 	/*
1241 	 * It seems there is an implicit devres tracking on these if the device
1242 	 * is managed (lkpi_pci_devres_find() case); otherwise the resources are
1243 	 * not automatically freed on FreeBSD/LinuxKPI though they should be/are
1244 	 * expected to be by Linux drivers.
1245 	 * Otherwise if we are called from a pcim-function with the managed
1246 	 * argument set, we need to track devres independent of pdev->managed.
1247 	 */
1248 	if (managed)
1249 		dr = lkpi_pci_devres_get_alloc(pdev);
1250 	else
1251 		dr = lkpi_pci_devres_find(pdev);
1252 	if (dr != NULL) {
1253 		dr->region_mask |= (1 << bar);
1254 		dr->region_table[bar] = res;
1255 	}
1256 
1257 	/* Even if the device is not managed we need to track it for iomap. */
1258 	mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO);
1259 	mmio->rid = PCIR_BAR(bar);
1260 	mmio->type = type;
1261 	mmio->res = res;
1262 	TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next);
1263 
1264 	return (0);
1265 }
1266 
1267 int
linuxkpi_pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)1268 linuxkpi_pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1269 {
1270 	return (lkpi_pci_request_region(pdev, bar, res_name, false));
1271 }
1272 
1273 int
linuxkpi_pci_request_regions(struct pci_dev * pdev,const char * res_name)1274 linuxkpi_pci_request_regions(struct pci_dev *pdev, const char *res_name)
1275 {
1276 	int error;
1277 	int i;
1278 
1279 	for (i = 0; i <= PCIR_MAX_BAR_0; i++) {
1280 		error = pci_request_region(pdev, i, res_name);
1281 		if (error && error != -EBUSY) {
1282 			pci_release_regions(pdev);
1283 			return (error);
1284 		}
1285 	}
1286 	return (0);
1287 }
1288 
1289 int
linuxkpi_pcim_request_all_regions(struct pci_dev * pdev,const char * res_name)1290 linuxkpi_pcim_request_all_regions(struct pci_dev *pdev, const char *res_name)
1291 {
1292 	int bar, error;
1293 
1294 	for (bar = 0; bar <= PCIR_MAX_BAR_0; bar++) {
1295 		error = lkpi_pci_request_region(pdev, bar, res_name, true);
1296 		if (error != 0 && error != -EBUSY) {
1297 			device_printf(pdev->dev.bsddev, "%s: bar %d res_name '%s': "
1298 			    "lkpi_pci_request_region returned %d\n", __func__,
1299 			    bar, res_name, error);
1300 			pci_release_regions(pdev);
1301 			return (error);
1302 		}
1303 	}
1304 	return (0);
1305 }
1306 
1307 void
linuxkpi_pci_release_region(struct pci_dev * pdev,int bar)1308 linuxkpi_pci_release_region(struct pci_dev *pdev, int bar)
1309 {
1310 	struct resource_list_entry *rle;
1311 	struct pci_devres *dr;
1312 	struct pci_mmio_region *mmio, *p;
1313 
1314 	if ((rle = lkpi_pci_get_bar(pdev, bar, false)) == NULL)
1315 		return;
1316 
1317 	/*
1318 	 * As we implicitly track the requests we also need to clear them on
1319 	 * release.  Do clear before resource release.
1320 	 */
1321 	dr = lkpi_pci_devres_find(pdev);
1322 	if (dr != NULL) {
1323 		KASSERT(dr->region_table[bar] == rle->res, ("%s: pdev %p bar %d"
1324 		    " region_table res %p != rel->res %p\n", __func__, pdev,
1325 		    bar, dr->region_table[bar], rle->res));
1326 		dr->region_table[bar] = NULL;
1327 		dr->region_mask &= ~(1 << bar);
1328 	}
1329 
1330 	TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) {
1331 		if (rle->res != (void *)rman_get_bushandle(mmio->res))
1332 			continue;
1333 		TAILQ_REMOVE(&pdev->mmio, mmio, next);
1334 		free(mmio, M_DEVBUF);
1335 	}
1336 
1337 	bus_release_resource(pdev->dev.bsddev, rle->type, rle->rid, rle->res);
1338 }
1339 
1340 void
linuxkpi_pci_release_regions(struct pci_dev * pdev)1341 linuxkpi_pci_release_regions(struct pci_dev *pdev)
1342 {
1343 	int i;
1344 
1345 	for (i = 0; i <= PCIR_MAX_BAR_0; i++)
1346 		pci_release_region(pdev, i);
1347 }
1348 
1349 int
linux_pci_register_drm_driver(struct pci_driver * pdrv)1350 linux_pci_register_drm_driver(struct pci_driver *pdrv)
1351 {
1352 	devclass_t dc;
1353 
1354 	dc = devclass_create("vgapci");
1355 	if (dc == NULL)
1356 		return (-ENXIO);
1357 	pdrv->isdrm = true;
1358 	pdrv->name = "drmn";
1359 	return (_linux_pci_register_driver(pdrv, dc));
1360 }
1361 
1362 void
linux_pci_unregister_driver(struct pci_driver * pdrv)1363 linux_pci_unregister_driver(struct pci_driver *pdrv)
1364 {
1365 	devclass_t bus;
1366 
1367 	bus = devclass_find(pdrv->isdrm ? "vgapci" : "pci");
1368 
1369 	spin_lock(&pci_lock);
1370 	list_del(&pdrv->node);
1371 	spin_unlock(&pci_lock);
1372 	bus_topo_lock();
1373 	if (bus != NULL)
1374 		devclass_delete_driver(bus, &pdrv->bsddriver);
1375 	bus_topo_unlock();
1376 }
1377 
1378 void
linux_pci_unregister_drm_driver(struct pci_driver * pdrv)1379 linux_pci_unregister_drm_driver(struct pci_driver *pdrv)
1380 {
1381 	devclass_t bus;
1382 
1383 	bus = devclass_find("vgapci");
1384 
1385 	spin_lock(&pci_lock);
1386 	list_del(&pdrv->node);
1387 	spin_unlock(&pci_lock);
1388 	bus_topo_lock();
1389 	if (bus != NULL)
1390 		devclass_delete_driver(bus, &pdrv->bsddriver);
1391 	bus_topo_unlock();
1392 }
1393 
1394 int
linuxkpi_pci_enable_msix(struct pci_dev * pdev,struct msix_entry * entries,int nreq)1395 linuxkpi_pci_enable_msix(struct pci_dev *pdev, struct msix_entry *entries,
1396     int nreq)
1397 {
1398 	struct resource_list_entry *rle;
1399 	int error;
1400 	int avail;
1401 	int i;
1402 
1403 	avail = pci_msix_count(pdev->dev.bsddev);
1404 	if (avail < nreq) {
1405 		if (avail == 0)
1406 			return -EINVAL;
1407 		return avail;
1408 	}
1409 	avail = nreq;
1410 	if ((error = -pci_alloc_msix(pdev->dev.bsddev, &avail)) != 0)
1411 		return error;
1412 	/*
1413 	* Handle case where "pci_alloc_msix()" may allocate less
1414 	* interrupts than available and return with no error:
1415 	*/
1416 	if (avail < nreq) {
1417 		pci_release_msi(pdev->dev.bsddev);
1418 		return avail;
1419 	}
1420 	rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 1, false);
1421 	pdev->dev.irq_start = rle->start;
1422 	pdev->dev.irq_end = rle->start + avail;
1423 	for (i = 0; i < nreq; i++)
1424 		entries[i].vector = pdev->dev.irq_start + i;
1425 	pdev->msix_enabled = true;
1426 	return (0);
1427 }
1428 
1429 int
_lkpi_pci_enable_msi_range(struct pci_dev * pdev,int minvec,int maxvec)1430 _lkpi_pci_enable_msi_range(struct pci_dev *pdev, int minvec, int maxvec)
1431 {
1432 	struct resource_list_entry *rle;
1433 	int error;
1434 	int nvec;
1435 
1436 	if (maxvec < minvec)
1437 		return (-EINVAL);
1438 
1439 	nvec = pci_msi_count(pdev->dev.bsddev);
1440 	if (nvec < 1 || nvec < minvec)
1441 		return (-ENOSPC);
1442 
1443 	nvec = min(nvec, maxvec);
1444 	if ((error = -pci_alloc_msi(pdev->dev.bsddev, &nvec)) != 0)
1445 		return error;
1446 
1447 	/* Native PCI might only ever ask for 32 vectors. */
1448 	if (nvec < minvec) {
1449 		pci_release_msi(pdev->dev.bsddev);
1450 		return (-ENOSPC);
1451 	}
1452 
1453 	rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 1, false);
1454 	pdev->dev.irq_start = rle->start;
1455 	pdev->dev.irq_end = rle->start + nvec;
1456 	pdev->irq = rle->start;
1457 	pdev->msi_enabled = true;
1458 	return (0);
1459 }
1460 
1461 int
pci_alloc_irq_vectors(struct pci_dev * pdev,int minv,int maxv,unsigned int flags)1462 pci_alloc_irq_vectors(struct pci_dev *pdev, int minv, int maxv,
1463     unsigned int flags)
1464 {
1465 	int error;
1466 
1467 	if (flags & PCI_IRQ_MSIX) {
1468 		struct msix_entry *entries;
1469 		int i;
1470 
1471 		entries = kcalloc(maxv, sizeof(*entries), GFP_KERNEL);
1472 		if (entries == NULL) {
1473 			error = -ENOMEM;
1474 			goto out;
1475 		}
1476 		for (i = 0; i < maxv; ++i)
1477 			entries[i].entry = i;
1478 		error = pci_enable_msix(pdev, entries, maxv);
1479 out:
1480 		kfree(entries);
1481 		if (error == 0 && pdev->msix_enabled)
1482 			return (pdev->dev.irq_end - pdev->dev.irq_start);
1483 	}
1484 	if (flags & PCI_IRQ_MSI) {
1485 		if (pci_msi_count(pdev->dev.bsddev) < minv)
1486 			return (-ENOSPC);
1487 		error = _lkpi_pci_enable_msi_range(pdev, minv, maxv);
1488 		if (error == 0 && pdev->msi_enabled)
1489 			return (pdev->dev.irq_end - pdev->dev.irq_start);
1490 	}
1491 	if (flags & PCI_IRQ_INTX) {
1492 		if (pdev->irq)
1493 			return (1);
1494 	}
1495 
1496 	return (-EINVAL);
1497 }
1498 
1499 struct msi_desc *
lkpi_pci_msi_desc_alloc(int irq)1500 lkpi_pci_msi_desc_alloc(int irq)
1501 {
1502 	struct device *dev;
1503 	struct pci_dev *pdev;
1504 	struct msi_desc *desc;
1505 	struct pci_devinfo *dinfo;
1506 	struct pcicfg_msi *msi;
1507 	int vec;
1508 
1509 	dev = lkpi_pci_find_irq_dev(irq);
1510 	if (dev == NULL)
1511 		return (NULL);
1512 
1513 	pdev = to_pci_dev(dev);
1514 
1515 	if (pdev->msi_desc == NULL)
1516 		return (NULL);
1517 
1518 	if (irq < pdev->dev.irq_start || irq >= pdev->dev.irq_end)
1519 		return (NULL);
1520 
1521 	vec = pdev->dev.irq_start - irq;
1522 
1523 	if (pdev->msi_desc[vec] != NULL)
1524 		return (pdev->msi_desc[vec]);
1525 
1526 	dinfo = device_get_ivars(dev->bsddev);
1527 	msi = &dinfo->cfg.msi;
1528 
1529 	desc = malloc(sizeof(*desc), M_DEVBUF, M_WAITOK | M_ZERO);
1530 
1531 	desc->pci.msi_attrib.is_64 =
1532 	   (msi->msi_ctrl & PCIM_MSICTRL_64BIT) ? true : false;
1533 	desc->msg.data = msi->msi_data;
1534 
1535 	pdev->msi_desc[vec] = desc;
1536 
1537 	return (desc);
1538 }
1539 
1540 bool
pci_device_is_present(struct pci_dev * pdev)1541 pci_device_is_present(struct pci_dev *pdev)
1542 {
1543 	device_t dev;
1544 
1545 	dev = pdev->dev.bsddev;
1546 
1547 	return (bus_child_present(dev));
1548 }
1549 
1550 CTASSERT(sizeof(dma_addr_t) <= sizeof(uint64_t));
1551 
1552 struct linux_dma_obj {
1553 	void		*vaddr;
1554 	uint64_t	dma_addr;
1555 	bus_dmamap_t	dmamap;
1556 	bus_dma_tag_t	dmat;
1557 };
1558 
1559 static uma_zone_t linux_dma_trie_zone;
1560 static uma_zone_t linux_dma_obj_zone;
1561 
1562 static void
linux_dma_init(void * arg)1563 linux_dma_init(void *arg)
1564 {
1565 
1566 	linux_dma_trie_zone = uma_zcreate("linux_dma_pctrie",
1567 	    pctrie_node_size(), NULL, NULL, pctrie_zone_init, NULL,
1568 	    UMA_ALIGN_PTR, 0);
1569 	linux_dma_obj_zone = uma_zcreate("linux_dma_object",
1570 	    sizeof(struct linux_dma_obj), NULL, NULL, NULL, NULL,
1571 	    UMA_ALIGN_PTR, 0);
1572 	lkpi_pci_nseg1_fail = counter_u64_alloc(M_WAITOK);
1573 }
1574 SYSINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_init, NULL);
1575 
1576 static void
linux_dma_uninit(void * arg)1577 linux_dma_uninit(void *arg)
1578 {
1579 
1580 	counter_u64_free(lkpi_pci_nseg1_fail);
1581 	uma_zdestroy(linux_dma_obj_zone);
1582 	uma_zdestroy(linux_dma_trie_zone);
1583 }
1584 SYSUNINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_uninit, NULL);
1585 
1586 static void *
linux_dma_trie_alloc(struct pctrie * ptree)1587 linux_dma_trie_alloc(struct pctrie *ptree)
1588 {
1589 
1590 	return (uma_zalloc(linux_dma_trie_zone, M_NOWAIT));
1591 }
1592 
1593 static void
linux_dma_trie_free(struct pctrie * ptree,void * node)1594 linux_dma_trie_free(struct pctrie *ptree, void *node)
1595 {
1596 
1597 	uma_zfree(linux_dma_trie_zone, node);
1598 }
1599 
1600 PCTRIE_DEFINE(LINUX_DMA, linux_dma_obj, dma_addr, linux_dma_trie_alloc,
1601     linux_dma_trie_free);
1602 
1603 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1604 static dma_addr_t
linux_dma_map_phys_common(struct device * dev,vm_paddr_t phys,size_t len,bus_dma_tag_t dmat)1605 linux_dma_map_phys_common(struct device *dev, vm_paddr_t phys, size_t len,
1606     bus_dma_tag_t dmat)
1607 {
1608 	struct linux_dma_priv *priv;
1609 	struct linux_dma_obj *obj;
1610 	int error, nseg;
1611 	bus_dma_segment_t seg;
1612 
1613 	priv = dev->dma_priv;
1614 
1615 	/*
1616 	 * If the resultant mapping will be entirely 1:1 with the
1617 	 * physical address, short-circuit the remainder of the
1618 	 * bus_dma API.  This avoids tracking collisions in the pctrie
1619 	 * with the additional benefit of reducing overhead.
1620 	 */
1621 	if (bus_dma_id_mapped(dmat, phys, len))
1622 		return (phys);
1623 
1624 	obj = uma_zalloc(linux_dma_obj_zone, M_NOWAIT);
1625 	if (obj == NULL) {
1626 		return (0);
1627 	}
1628 	obj->dmat = dmat;
1629 
1630 	DMA_PRIV_LOCK(priv);
1631 	if (bus_dmamap_create(obj->dmat, 0, &obj->dmamap) != 0) {
1632 		DMA_PRIV_UNLOCK(priv);
1633 		uma_zfree(linux_dma_obj_zone, obj);
1634 		return (0);
1635 	}
1636 
1637 	nseg = -1;
1638 	error = _bus_dmamap_load_phys(obj->dmat, obj->dmamap, phys, len,
1639 	    BUS_DMA_NOWAIT, &seg, &nseg);
1640 	if (error != 0) {
1641 		bus_dmamap_destroy(obj->dmat, obj->dmamap);
1642 		DMA_PRIV_UNLOCK(priv);
1643 		uma_zfree(linux_dma_obj_zone, obj);
1644 		counter_u64_add(lkpi_pci_nseg1_fail, 1);
1645 		if (linuxkpi_debug) {
1646 			device_printf(dev->bsddev, "%s: _bus_dmamap_load_phys "
1647 			    "error %d, phys %#018jx len %zu\n", __func__,
1648 			    error, (uintmax_t)phys, len);
1649 			dump_stack();
1650 		}
1651 		return (0);
1652 	}
1653 
1654 	KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
1655 	obj->dma_addr = seg.ds_addr;
1656 
1657 	error = LINUX_DMA_PCTRIE_INSERT(&priv->ptree, obj);
1658 	if (error != 0) {
1659 		bus_dmamap_unload(obj->dmat, obj->dmamap);
1660 		bus_dmamap_destroy(obj->dmat, obj->dmamap);
1661 		DMA_PRIV_UNLOCK(priv);
1662 		uma_zfree(linux_dma_obj_zone, obj);
1663 		return (0);
1664 	}
1665 	DMA_PRIV_UNLOCK(priv);
1666 	return (obj->dma_addr);
1667 }
1668 #else
1669 static dma_addr_t
linux_dma_map_phys_common(struct device * dev __unused,vm_paddr_t phys,size_t len __unused,bus_dma_tag_t dmat __unused)1670 linux_dma_map_phys_common(struct device *dev __unused, vm_paddr_t phys,
1671     size_t len __unused, bus_dma_tag_t dmat __unused)
1672 {
1673 	return (phys);
1674 }
1675 #endif
1676 
1677 dma_addr_t
lkpi_dma_map_phys(struct device * dev,vm_paddr_t phys,size_t len,enum dma_data_direction direction,unsigned long attrs)1678 lkpi_dma_map_phys(struct device *dev, vm_paddr_t phys, size_t len,
1679     enum dma_data_direction direction, unsigned long attrs)
1680 {
1681 	struct linux_dma_priv *priv;
1682 	dma_addr_t dma;
1683 
1684 	priv = dev->dma_priv;
1685 	dma = linux_dma_map_phys_common(dev, phys, len, priv->dmat);
1686 	if (dma_mapping_error(dev, dma))
1687 		return (dma);
1688 
1689 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1690 		dma_sync_single_for_device(dev, dma, len, direction);
1691 
1692 	return (dma);
1693 }
1694 
1695 /* For backward compat only so we can MFC this. Remove before 15. */
1696 dma_addr_t
linux_dma_map_phys(struct device * dev,vm_paddr_t phys,size_t len)1697 linux_dma_map_phys(struct device *dev, vm_paddr_t phys, size_t len)
1698 {
1699 	return (lkpi_dma_map_phys(dev, phys, len, DMA_NONE, 0));
1700 }
1701 
1702 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1703 void
lkpi_dma_unmap(struct device * dev,dma_addr_t dma_addr,size_t len,enum dma_data_direction direction,unsigned long attrs)1704 lkpi_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len,
1705     enum dma_data_direction direction, unsigned long attrs)
1706 {
1707 	struct linux_dma_priv *priv;
1708 	struct linux_dma_obj *obj;
1709 
1710 	priv = dev->dma_priv;
1711 
1712 	if (pctrie_is_empty(&priv->ptree))
1713 		return;
1714 
1715 	DMA_PRIV_LOCK(priv);
1716 	obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr);
1717 	if (obj == NULL) {
1718 		DMA_PRIV_UNLOCK(priv);
1719 		return;
1720 	}
1721 	LINUX_DMA_PCTRIE_REMOVE(&priv->ptree, dma_addr);
1722 
1723 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1724 		dma_sync_single_for_cpu(dev, dma_addr, len, direction);
1725 
1726 	bus_dmamap_unload(obj->dmat, obj->dmamap);
1727 	bus_dmamap_destroy(obj->dmat, obj->dmamap);
1728 	DMA_PRIV_UNLOCK(priv);
1729 
1730 	uma_zfree(linux_dma_obj_zone, obj);
1731 }
1732 #else
1733 void
lkpi_dma_unmap(struct device * dev,dma_addr_t dma_addr,size_t len,enum dma_data_direction direction,unsigned long attrs)1734 lkpi_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len,
1735     enum dma_data_direction direction, unsigned long attrs)
1736 {
1737 }
1738 #endif
1739 
1740 /* For backward compat only so we can MFC this. Remove before 15. */
1741 void
linux_dma_unmap(struct device * dev,dma_addr_t dma_addr,size_t len)1742 linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len)
1743 {
1744 	lkpi_dma_unmap(dev, dma_addr, len, DMA_NONE, 0);
1745 }
1746 
1747 void *
linux_dma_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flag)1748 linux_dma_alloc_coherent(struct device *dev, size_t size,
1749     dma_addr_t *dma_handle, gfp_t flag)
1750 {
1751 	struct linux_dma_priv *priv;
1752 	vm_paddr_t high;
1753 	size_t align;
1754 	void *mem;
1755 
1756 	if (dev == NULL || dev->dma_priv == NULL) {
1757 		*dma_handle = 0;
1758 		return (NULL);
1759 	}
1760 	priv = dev->dma_priv;
1761 	if (priv->dma_coherent_mask)
1762 		high = priv->dma_coherent_mask;
1763 	else
1764 		/* Coherent is lower 32bit only by default in Linux. */
1765 		high = BUS_SPACE_MAXADDR_32BIT;
1766 	align = PAGE_SIZE << get_order(size);
1767 	/* Always zero the allocation. */
1768 	flag |= M_ZERO;
1769 	mem = kmem_alloc_contig(size, flag & GFP_NATIVE_MASK, 0, high,
1770 	    align, 0, VM_MEMATTR_DEFAULT);
1771 	if (mem != NULL) {
1772 		*dma_handle = linux_dma_map_phys_common(dev, vtophys(mem), size,
1773 		    priv->dmat_coherent);
1774 		if (*dma_handle == 0) {
1775 			kmem_free(mem, size);
1776 			mem = NULL;
1777 		}
1778 	} else {
1779 		*dma_handle = 0;
1780 	}
1781 	return (mem);
1782 }
1783 
1784 struct lkpi_devres_dmam_coherent {
1785 	size_t size;
1786 	dma_addr_t *handle;
1787 	void *mem;
1788 };
1789 
1790 static void
lkpi_dmam_free_coherent(struct device * dev,void * p)1791 lkpi_dmam_free_coherent(struct device *dev, void *p)
1792 {
1793 	struct lkpi_devres_dmam_coherent *dr;
1794 
1795 	dr = p;
1796 	dma_free_coherent(dev, dr->size, dr->mem, *dr->handle);
1797 }
1798 
1799 void *
linuxkpi_dmam_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flag)1800 linuxkpi_dmam_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
1801     gfp_t flag)
1802 {
1803 	struct lkpi_devres_dmam_coherent *dr;
1804 
1805 	dr = lkpi_devres_alloc(lkpi_dmam_free_coherent,
1806 	    sizeof(*dr), GFP_KERNEL | __GFP_ZERO);
1807 
1808 	if (dr == NULL)
1809 		return (NULL);
1810 
1811 	dr->size = size;
1812 	dr->mem = linux_dma_alloc_coherent(dev, size, dma_handle, flag);
1813 	dr->handle = dma_handle;
1814 	if (dr->mem == NULL) {
1815 		lkpi_devres_free(dr);
1816 		return (NULL);
1817 	}
1818 
1819 	lkpi_devres_add(dev, dr);
1820 	return (dr->mem);
1821 }
1822 
1823 void
linuxkpi_dma_sync(struct device * dev,dma_addr_t dma_addr,size_t size,bus_dmasync_op_t op)1824 linuxkpi_dma_sync(struct device *dev, dma_addr_t dma_addr, size_t size,
1825     bus_dmasync_op_t op)
1826 {
1827 	struct linux_dma_priv *priv;
1828 	struct linux_dma_obj *obj;
1829 
1830 	priv = dev->dma_priv;
1831 
1832 	if (pctrie_is_empty(&priv->ptree))
1833 		return;
1834 
1835 	DMA_PRIV_LOCK(priv);
1836 	obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr);
1837 	if (obj == NULL) {
1838 		DMA_PRIV_UNLOCK(priv);
1839 		return;
1840 	}
1841 
1842 	bus_dmamap_sync(obj->dmat, obj->dmamap, op);
1843 	DMA_PRIV_UNLOCK(priv);
1844 }
1845 
1846 int
linux_dma_map_sg_attrs(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction direction,unsigned long attrs)1847 linux_dma_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nents,
1848     enum dma_data_direction direction, unsigned long attrs)
1849 {
1850 	struct linux_dma_priv *priv;
1851 	struct scatterlist *sg;
1852 	int i, nseg;
1853 	bus_dma_segment_t seg;
1854 
1855 	priv = dev->dma_priv;
1856 
1857 	DMA_PRIV_LOCK(priv);
1858 
1859 	/* create common DMA map in the first S/G entry */
1860 	if (bus_dmamap_create(priv->dmat, 0, &sgl->dma_map) != 0) {
1861 		DMA_PRIV_UNLOCK(priv);
1862 		return (0);
1863 	}
1864 
1865 	/* load all S/G list entries */
1866 	for_each_sg(sgl, sg, nents, i) {
1867 		nseg = -1;
1868 		if (_bus_dmamap_load_phys(priv->dmat, sgl->dma_map,
1869 		    sg_phys(sg), sg->length, BUS_DMA_NOWAIT,
1870 		    &seg, &nseg) != 0) {
1871 			bus_dmamap_unload(priv->dmat, sgl->dma_map);
1872 			bus_dmamap_destroy(priv->dmat, sgl->dma_map);
1873 			DMA_PRIV_UNLOCK(priv);
1874 			return (0);
1875 		}
1876 		KASSERT(nseg == 0,
1877 		    ("More than one segment (nseg=%d)", nseg + 1));
1878 
1879 		sg_dma_address(sg) = seg.ds_addr;
1880 	}
1881 
1882 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) != 0)
1883 		goto skip_sync;
1884 
1885 	switch (direction) {
1886 	case DMA_BIDIRECTIONAL:
1887 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE);
1888 		break;
1889 	case DMA_TO_DEVICE:
1890 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD);
1891 		break;
1892 	case DMA_FROM_DEVICE:
1893 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE);
1894 		break;
1895 	default:
1896 		break;
1897 	}
1898 skip_sync:
1899 
1900 	DMA_PRIV_UNLOCK(priv);
1901 
1902 	return (nents);
1903 }
1904 
1905 void
linux_dma_unmap_sg_attrs(struct device * dev,struct scatterlist * sgl,int nents __unused,enum dma_data_direction direction,unsigned long attrs)1906 linux_dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sgl,
1907     int nents __unused, enum dma_data_direction direction,
1908     unsigned long attrs)
1909 {
1910 	struct linux_dma_priv *priv;
1911 
1912 	priv = dev->dma_priv;
1913 
1914 	DMA_PRIV_LOCK(priv);
1915 
1916 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) != 0)
1917 		goto skip_sync;
1918 
1919 	switch (direction) {
1920 	case DMA_BIDIRECTIONAL:
1921 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD);
1922 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD);
1923 		break;
1924 	case DMA_TO_DEVICE:
1925 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTWRITE);
1926 		break;
1927 	case DMA_FROM_DEVICE:
1928 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD);
1929 		break;
1930 	default:
1931 		break;
1932 	}
1933 skip_sync:
1934 
1935 	bus_dmamap_unload(priv->dmat, sgl->dma_map);
1936 	bus_dmamap_destroy(priv->dmat, sgl->dma_map);
1937 	DMA_PRIV_UNLOCK(priv);
1938 }
1939 
1940 struct dma_pool {
1941 	struct device  *pool_device;
1942 	uma_zone_t	pool_zone;
1943 	struct mtx	pool_lock;
1944 	bus_dma_tag_t	pool_dmat;
1945 	size_t		pool_entry_size;
1946 	struct pctrie	pool_ptree;
1947 };
1948 
1949 #define	DMA_POOL_LOCK(pool) mtx_lock(&(pool)->pool_lock)
1950 #define	DMA_POOL_UNLOCK(pool) mtx_unlock(&(pool)->pool_lock)
1951 
1952 static inline int
dma_pool_obj_ctor(void * mem,int size,void * arg,int flags)1953 dma_pool_obj_ctor(void *mem, int size, void *arg, int flags)
1954 {
1955 	struct linux_dma_obj *obj = mem;
1956 	struct dma_pool *pool = arg;
1957 	int error, nseg;
1958 	bus_dma_segment_t seg;
1959 
1960 	nseg = -1;
1961 	DMA_POOL_LOCK(pool);
1962 	error = _bus_dmamap_load_phys(pool->pool_dmat, obj->dmamap,
1963 	    vtophys(obj->vaddr), pool->pool_entry_size, BUS_DMA_NOWAIT,
1964 	    &seg, &nseg);
1965 	DMA_POOL_UNLOCK(pool);
1966 	if (error != 0) {
1967 		return (error);
1968 	}
1969 	KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
1970 	obj->dma_addr = seg.ds_addr;
1971 
1972 	return (0);
1973 }
1974 
1975 static void
dma_pool_obj_dtor(void * mem,int size,void * arg)1976 dma_pool_obj_dtor(void *mem, int size, void *arg)
1977 {
1978 	struct linux_dma_obj *obj = mem;
1979 	struct dma_pool *pool = arg;
1980 
1981 	DMA_POOL_LOCK(pool);
1982 	bus_dmamap_unload(pool->pool_dmat, obj->dmamap);
1983 	DMA_POOL_UNLOCK(pool);
1984 }
1985 
1986 static int
dma_pool_obj_import(void * arg,void ** store,int count,int domain __unused,int flags)1987 dma_pool_obj_import(void *arg, void **store, int count, int domain __unused,
1988     int flags)
1989 {
1990 	struct dma_pool *pool = arg;
1991 	struct linux_dma_obj *obj;
1992 	int error, i;
1993 
1994 	for (i = 0; i < count; i++) {
1995 		obj = uma_zalloc(linux_dma_obj_zone, flags);
1996 		if (obj == NULL)
1997 			break;
1998 
1999 		error = bus_dmamem_alloc(pool->pool_dmat, &obj->vaddr,
2000 		    BUS_DMA_NOWAIT, &obj->dmamap);
2001 		if (error!= 0) {
2002 			uma_zfree(linux_dma_obj_zone, obj);
2003 			break;
2004 		}
2005 
2006 		store[i] = obj;
2007 	}
2008 
2009 	return (i);
2010 }
2011 
2012 static void
dma_pool_obj_release(void * arg,void ** store,int count)2013 dma_pool_obj_release(void *arg, void **store, int count)
2014 {
2015 	struct dma_pool *pool = arg;
2016 	struct linux_dma_obj *obj;
2017 	int i;
2018 
2019 	for (i = 0; i < count; i++) {
2020 		obj = store[i];
2021 		bus_dmamem_free(pool->pool_dmat, obj->vaddr, obj->dmamap);
2022 		uma_zfree(linux_dma_obj_zone, obj);
2023 	}
2024 }
2025 
2026 struct dma_pool *
linux_dma_pool_create(char * name,struct device * dev,size_t size,size_t align,size_t boundary)2027 linux_dma_pool_create(char *name, struct device *dev, size_t size,
2028     size_t align, size_t boundary)
2029 {
2030 	struct linux_dma_priv *priv;
2031 	struct dma_pool *pool;
2032 
2033 	priv = dev->dma_priv;
2034 
2035 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2036 	pool->pool_device = dev;
2037 	pool->pool_entry_size = size;
2038 
2039 	if (bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
2040 	    align, boundary,		/* alignment, boundary */
2041 	    priv->dma_mask,		/* lowaddr */
2042 	    BUS_SPACE_MAXADDR,		/* highaddr */
2043 	    NULL, NULL,			/* filtfunc, filtfuncarg */
2044 	    size,			/* maxsize */
2045 	    1,				/* nsegments */
2046 	    size,			/* maxsegsz */
2047 	    0,				/* flags */
2048 	    NULL, NULL,			/* lockfunc, lockfuncarg */
2049 	    &pool->pool_dmat)) {
2050 		kfree(pool);
2051 		return (NULL);
2052 	}
2053 
2054 	pool->pool_zone = uma_zcache_create(name, -1, dma_pool_obj_ctor,
2055 	    dma_pool_obj_dtor, NULL, NULL, dma_pool_obj_import,
2056 	    dma_pool_obj_release, pool, 0);
2057 
2058 	mtx_init(&pool->pool_lock, "lkpi-dma-pool", NULL, MTX_DEF);
2059 	pctrie_init(&pool->pool_ptree);
2060 
2061 	return (pool);
2062 }
2063 
2064 void
linux_dma_pool_destroy(struct dma_pool * pool)2065 linux_dma_pool_destroy(struct dma_pool *pool)
2066 {
2067 
2068 	uma_zdestroy(pool->pool_zone);
2069 	bus_dma_tag_destroy(pool->pool_dmat);
2070 	mtx_destroy(&pool->pool_lock);
2071 	kfree(pool);
2072 }
2073 
2074 void
lkpi_dmam_pool_destroy(struct device * dev,void * p)2075 lkpi_dmam_pool_destroy(struct device *dev, void *p)
2076 {
2077 	struct dma_pool *pool;
2078 
2079 	pool = *(struct dma_pool **)p;
2080 	LINUX_DMA_PCTRIE_RECLAIM(&pool->pool_ptree);
2081 	linux_dma_pool_destroy(pool);
2082 }
2083 
2084 void *
linux_dma_pool_alloc(struct dma_pool * pool,gfp_t mem_flags,dma_addr_t * handle)2085 linux_dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
2086     dma_addr_t *handle)
2087 {
2088 	struct linux_dma_obj *obj;
2089 
2090 	obj = uma_zalloc_arg(pool->pool_zone, pool, mem_flags & GFP_NATIVE_MASK);
2091 	if (obj == NULL)
2092 		return (NULL);
2093 
2094 	DMA_POOL_LOCK(pool);
2095 	if (LINUX_DMA_PCTRIE_INSERT(&pool->pool_ptree, obj) != 0) {
2096 		DMA_POOL_UNLOCK(pool);
2097 		uma_zfree_arg(pool->pool_zone, obj, pool);
2098 		return (NULL);
2099 	}
2100 	DMA_POOL_UNLOCK(pool);
2101 
2102 	*handle = obj->dma_addr;
2103 	return (obj->vaddr);
2104 }
2105 
2106 void
linux_dma_pool_free(struct dma_pool * pool,void * vaddr,dma_addr_t dma_addr)2107 linux_dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma_addr)
2108 {
2109 	struct linux_dma_obj *obj;
2110 
2111 	DMA_POOL_LOCK(pool);
2112 	obj = LINUX_DMA_PCTRIE_LOOKUP(&pool->pool_ptree, dma_addr);
2113 	if (obj == NULL) {
2114 		DMA_POOL_UNLOCK(pool);
2115 		return;
2116 	}
2117 	LINUX_DMA_PCTRIE_REMOVE(&pool->pool_ptree, dma_addr);
2118 	DMA_POOL_UNLOCK(pool);
2119 
2120 	uma_zfree_arg(pool->pool_zone, obj, pool);
2121 }
2122 
2123 static int
linux_backlight_get_status(device_t dev,struct backlight_props * props)2124 linux_backlight_get_status(device_t dev, struct backlight_props *props)
2125 {
2126 	struct pci_dev *pdev;
2127 
2128 	linux_set_current(curthread);
2129 	pdev = device_get_softc(dev);
2130 
2131 	props->brightness = pdev->dev.bd->props.brightness;
2132 	props->brightness = props->brightness * 100 / pdev->dev.bd->props.max_brightness;
2133 	props->nlevels = 0;
2134 
2135 	return (0);
2136 }
2137 
2138 static int
linux_backlight_get_info(device_t dev,struct backlight_info * info)2139 linux_backlight_get_info(device_t dev, struct backlight_info *info)
2140 {
2141 	struct pci_dev *pdev;
2142 
2143 	linux_set_current(curthread);
2144 	pdev = device_get_softc(dev);
2145 
2146 	info->type = BACKLIGHT_TYPE_PANEL;
2147 	strlcpy(info->name, pdev->dev.bd->name, BACKLIGHTMAXNAMELENGTH);
2148 	return (0);
2149 }
2150 
2151 static int
linux_backlight_update_status(device_t dev,struct backlight_props * props)2152 linux_backlight_update_status(device_t dev, struct backlight_props *props)
2153 {
2154 	struct pci_dev *pdev;
2155 
2156 	linux_set_current(curthread);
2157 	pdev = device_get_softc(dev);
2158 
2159 	pdev->dev.bd->props.brightness = pdev->dev.bd->props.max_brightness *
2160 		props->brightness / 100;
2161 	pdev->dev.bd->props.power = props->brightness == 0 ?
2162 		4/* FB_BLANK_POWERDOWN */ : 0/* FB_BLANK_UNBLANK */;
2163 	return (pdev->dev.bd->ops->update_status(pdev->dev.bd));
2164 }
2165 
2166 struct backlight_device *
linux_backlight_device_register(const char * name,struct device * dev,void * data,const struct backlight_ops * ops,struct backlight_properties * props)2167 linux_backlight_device_register(const char *name, struct device *dev,
2168     void *data, const struct backlight_ops *ops, struct backlight_properties *props)
2169 {
2170 
2171 	dev->bd = malloc(sizeof(*dev->bd), M_DEVBUF, M_WAITOK | M_ZERO);
2172 	dev->bd->ops = ops;
2173 	dev->bd->props.type = props->type;
2174 	dev->bd->props.max_brightness = props->max_brightness;
2175 	dev->bd->props.brightness = props->brightness;
2176 	dev->bd->props.power = props->power;
2177 	dev->bd->data = data;
2178 	dev->bd->dev = dev;
2179 	dev->bd->name = strdup(name, M_DEVBUF);
2180 
2181 	dev->backlight_dev = backlight_register(name, dev->bsddev);
2182 
2183 	return (dev->bd);
2184 }
2185 
2186 void
linux_backlight_device_unregister(struct backlight_device * bd)2187 linux_backlight_device_unregister(struct backlight_device *bd)
2188 {
2189 
2190 	backlight_destroy(bd->dev->backlight_dev);
2191 	free(bd->name, M_DEVBUF);
2192 	free(bd, M_DEVBUF);
2193 }
2194