1 /*-
2 * Copyright (c) 2015-2016 Mellanox Technologies, Ltd.
3 * All rights reserved.
4 * Copyright (c) 2020-2022 The FreeBSD Foundation
5 *
6 * Portions of this software were developed by Björn Zeeb
7 * under sponsorship from the FreeBSD Foundation.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice unmodified, this list of conditions, and the following
14 * disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/bus.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/sysctl.h>
37 #include <sys/lock.h>
38 #include <sys/mutex.h>
39 #include <sys/fcntl.h>
40 #include <sys/file.h>
41 #include <sys/filio.h>
42 #include <sys/pciio.h>
43 #include <sys/pctrie.h>
44 #include <sys/rman.h>
45 #include <sys/rwlock.h>
46
47 #include <vm/vm.h>
48 #include <vm/pmap.h>
49
50 #include <machine/bus.h>
51 #include <machine/resource.h>
52 #include <machine/stdarg.h>
53
54 #include <dev/pci/pcivar.h>
55 #include <dev/pci/pci_private.h>
56 #include <dev/pci/pci_iov.h>
57 #include <dev/backlight/backlight.h>
58
59 #include <linux/kernel.h>
60 #include <linux/kobject.h>
61 #include <linux/device.h>
62 #include <linux/slab.h>
63 #include <linux/module.h>
64 #include <linux/cdev.h>
65 #include <linux/file.h>
66 #include <linux/sysfs.h>
67 #include <linux/mm.h>
68 #include <linux/io.h>
69 #include <linux/vmalloc.h>
70 #include <linux/pci.h>
71 #include <linux/compat.h>
72
73 #include <linux/backlight.h>
74
75 #include "backlight_if.h"
76 #include "pcib_if.h"
77
78 /* Undef the linux function macro defined in linux/pci.h */
79 #undef pci_get_class
80
81 extern int linuxkpi_debug;
82
83 SYSCTL_DECL(_compat_linuxkpi);
84
85 static counter_u64_t lkpi_pci_nseg1_fail;
86 SYSCTL_COUNTER_U64(_compat_linuxkpi, OID_AUTO, lkpi_pci_nseg1_fail, CTLFLAG_RD,
87 &lkpi_pci_nseg1_fail, "Count of busdma mapping failures of single-segment");
88
89 static device_probe_t linux_pci_probe;
90 static device_attach_t linux_pci_attach;
91 static device_detach_t linux_pci_detach;
92 static device_suspend_t linux_pci_suspend;
93 static device_resume_t linux_pci_resume;
94 static device_shutdown_t linux_pci_shutdown;
95 static pci_iov_init_t linux_pci_iov_init;
96 static pci_iov_uninit_t linux_pci_iov_uninit;
97 static pci_iov_add_vf_t linux_pci_iov_add_vf;
98 static int linux_backlight_get_status(device_t dev, struct backlight_props *props);
99 static int linux_backlight_update_status(device_t dev, struct backlight_props *props);
100 static int linux_backlight_get_info(device_t dev, struct backlight_info *info);
101 static void lkpi_pcim_iomap_table_release(struct device *, void *);
102
103 static device_method_t pci_methods[] = {
104 DEVMETHOD(device_probe, linux_pci_probe),
105 DEVMETHOD(device_attach, linux_pci_attach),
106 DEVMETHOD(device_detach, linux_pci_detach),
107 DEVMETHOD(device_suspend, linux_pci_suspend),
108 DEVMETHOD(device_resume, linux_pci_resume),
109 DEVMETHOD(device_shutdown, linux_pci_shutdown),
110 DEVMETHOD(pci_iov_init, linux_pci_iov_init),
111 DEVMETHOD(pci_iov_uninit, linux_pci_iov_uninit),
112 DEVMETHOD(pci_iov_add_vf, linux_pci_iov_add_vf),
113
114 /* backlight interface */
115 DEVMETHOD(backlight_update_status, linux_backlight_update_status),
116 DEVMETHOD(backlight_get_status, linux_backlight_get_status),
117 DEVMETHOD(backlight_get_info, linux_backlight_get_info),
118 DEVMETHOD_END
119 };
120
121 const char *pci_power_names[] = {
122 "UNKNOWN", "D0", "D1", "D2", "D3hot", "D3cold"
123 };
124
125 /* We need some meta-struct to keep track of these for devres. */
126 struct pci_devres {
127 bool enable_io;
128 /* PCIR_MAX_BAR_0 + 1 = 6 => BIT(0..5). */
129 uint8_t region_mask;
130 struct resource *region_table[PCIR_MAX_BAR_0 + 1]; /* Not needed. */
131 };
132 struct pcim_iomap_devres {
133 void *mmio_table[PCIR_MAX_BAR_0 + 1];
134 struct resource *res_table[PCIR_MAX_BAR_0 + 1];
135 };
136
137 struct linux_dma_priv {
138 uint64_t dma_mask;
139 bus_dma_tag_t dmat;
140 uint64_t dma_coherent_mask;
141 bus_dma_tag_t dmat_coherent;
142 struct mtx lock;
143 struct pctrie ptree;
144 };
145 #define DMA_PRIV_LOCK(priv) mtx_lock(&(priv)->lock)
146 #define DMA_PRIV_UNLOCK(priv) mtx_unlock(&(priv)->lock)
147
148 static int
linux_pdev_dma_uninit(struct pci_dev * pdev)149 linux_pdev_dma_uninit(struct pci_dev *pdev)
150 {
151 struct linux_dma_priv *priv;
152
153 priv = pdev->dev.dma_priv;
154 if (priv->dmat)
155 bus_dma_tag_destroy(priv->dmat);
156 if (priv->dmat_coherent)
157 bus_dma_tag_destroy(priv->dmat_coherent);
158 mtx_destroy(&priv->lock);
159 pdev->dev.dma_priv = NULL;
160 free(priv, M_DEVBUF);
161 return (0);
162 }
163
164 static int
linux_pdev_dma_init(struct pci_dev * pdev)165 linux_pdev_dma_init(struct pci_dev *pdev)
166 {
167 struct linux_dma_priv *priv;
168 int error;
169
170 priv = malloc(sizeof(*priv), M_DEVBUF, M_WAITOK | M_ZERO);
171
172 mtx_init(&priv->lock, "lkpi-priv-dma", NULL, MTX_DEF);
173 pctrie_init(&priv->ptree);
174
175 pdev->dev.dma_priv = priv;
176
177 /* Create a default DMA tags. */
178 error = linux_dma_tag_init(&pdev->dev, DMA_BIT_MASK(64));
179 if (error != 0)
180 goto err;
181 /* Coherent is lower 32bit only by default in Linux. */
182 error = linux_dma_tag_init_coherent(&pdev->dev, DMA_BIT_MASK(32));
183 if (error != 0)
184 goto err;
185
186 return (error);
187
188 err:
189 linux_pdev_dma_uninit(pdev);
190 return (error);
191 }
192
193 int
linux_dma_tag_init(struct device * dev,u64 dma_mask)194 linux_dma_tag_init(struct device *dev, u64 dma_mask)
195 {
196 struct linux_dma_priv *priv;
197 int error;
198
199 priv = dev->dma_priv;
200
201 if (priv->dmat) {
202 if (priv->dma_mask == dma_mask)
203 return (0);
204
205 bus_dma_tag_destroy(priv->dmat);
206 }
207
208 priv->dma_mask = dma_mask;
209
210 error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
211 1, 0, /* alignment, boundary */
212 dma_mask, /* lowaddr */
213 BUS_SPACE_MAXADDR, /* highaddr */
214 NULL, NULL, /* filtfunc, filtfuncarg */
215 BUS_SPACE_MAXSIZE, /* maxsize */
216 1, /* nsegments */
217 BUS_SPACE_MAXSIZE, /* maxsegsz */
218 0, /* flags */
219 NULL, NULL, /* lockfunc, lockfuncarg */
220 &priv->dmat);
221 return (-error);
222 }
223
224 int
linux_dma_tag_init_coherent(struct device * dev,u64 dma_mask)225 linux_dma_tag_init_coherent(struct device *dev, u64 dma_mask)
226 {
227 struct linux_dma_priv *priv;
228 int error;
229
230 priv = dev->dma_priv;
231
232 if (priv->dmat_coherent) {
233 if (priv->dma_coherent_mask == dma_mask)
234 return (0);
235
236 bus_dma_tag_destroy(priv->dmat_coherent);
237 }
238
239 priv->dma_coherent_mask = dma_mask;
240
241 error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
242 1, 0, /* alignment, boundary */
243 dma_mask, /* lowaddr */
244 BUS_SPACE_MAXADDR, /* highaddr */
245 NULL, NULL, /* filtfunc, filtfuncarg */
246 BUS_SPACE_MAXSIZE, /* maxsize */
247 1, /* nsegments */
248 BUS_SPACE_MAXSIZE, /* maxsegsz */
249 0, /* flags */
250 NULL, NULL, /* lockfunc, lockfuncarg */
251 &priv->dmat_coherent);
252 return (-error);
253 }
254
255 static struct pci_driver *
linux_pci_find(device_t dev,const struct pci_device_id ** idp)256 linux_pci_find(device_t dev, const struct pci_device_id **idp)
257 {
258 const struct pci_device_id *id;
259 struct pci_driver *pdrv;
260 uint16_t vendor;
261 uint16_t device;
262 uint16_t subvendor;
263 uint16_t subdevice;
264
265 vendor = pci_get_vendor(dev);
266 device = pci_get_device(dev);
267 subvendor = pci_get_subvendor(dev);
268 subdevice = pci_get_subdevice(dev);
269
270 spin_lock(&pci_lock);
271 list_for_each_entry(pdrv, &pci_drivers, node) {
272 for (id = pdrv->id_table; id->vendor != 0; id++) {
273 if (vendor == id->vendor &&
274 (PCI_ANY_ID == id->device || device == id->device) &&
275 (PCI_ANY_ID == id->subvendor || subvendor == id->subvendor) &&
276 (PCI_ANY_ID == id->subdevice || subdevice == id->subdevice)) {
277 *idp = id;
278 spin_unlock(&pci_lock);
279 return (pdrv);
280 }
281 }
282 }
283 spin_unlock(&pci_lock);
284 return (NULL);
285 }
286
287 struct pci_dev *
lkpi_pci_get_device(uint16_t vendor,uint16_t device,struct pci_dev * odev)288 lkpi_pci_get_device(uint16_t vendor, uint16_t device, struct pci_dev *odev)
289 {
290 struct pci_dev *pdev;
291
292 KASSERT(odev == NULL, ("%s: odev argument not yet supported\n", __func__));
293
294 spin_lock(&pci_lock);
295 list_for_each_entry(pdev, &pci_devices, links) {
296 if (pdev->vendor == vendor && pdev->device == device)
297 break;
298 }
299 spin_unlock(&pci_lock);
300
301 return (pdev);
302 }
303
304 static void
lkpi_pci_dev_release(struct device * dev)305 lkpi_pci_dev_release(struct device *dev)
306 {
307
308 lkpi_devres_release_free_list(dev);
309 spin_lock_destroy(&dev->devres_lock);
310 }
311
312 static void
lkpifill_pci_dev(device_t dev,struct pci_dev * pdev)313 lkpifill_pci_dev(device_t dev, struct pci_dev *pdev)
314 {
315
316 pdev->devfn = PCI_DEVFN(pci_get_slot(dev), pci_get_function(dev));
317 pdev->vendor = pci_get_vendor(dev);
318 pdev->device = pci_get_device(dev);
319 pdev->subsystem_vendor = pci_get_subvendor(dev);
320 pdev->subsystem_device = pci_get_subdevice(dev);
321 pdev->class = pci_get_class(dev);
322 pdev->revision = pci_get_revid(dev);
323 pdev->path_name = kasprintf(GFP_KERNEL, "%04d:%02d:%02d.%d",
324 pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev),
325 pci_get_function(dev));
326 pdev->bus = malloc(sizeof(*pdev->bus), M_DEVBUF, M_WAITOK | M_ZERO);
327 /*
328 * This should be the upstream bridge; pci_upstream_bridge()
329 * handles that case on demand as otherwise we'll shadow the
330 * entire PCI hierarchy.
331 */
332 pdev->bus->self = pdev;
333 pdev->bus->number = pci_get_bus(dev);
334 pdev->bus->domain = pci_get_domain(dev);
335 pdev->dev.bsddev = dev;
336 pdev->dev.parent = &linux_root_device;
337 pdev->dev.release = lkpi_pci_dev_release;
338 INIT_LIST_HEAD(&pdev->dev.irqents);
339
340 if (pci_msi_count(dev) > 0)
341 pdev->msi_desc = malloc(pci_msi_count(dev) *
342 sizeof(*pdev->msi_desc), M_DEVBUF, M_WAITOK | M_ZERO);
343
344 kobject_init(&pdev->dev.kobj, &linux_dev_ktype);
345 kobject_set_name(&pdev->dev.kobj, device_get_nameunit(dev));
346 kobject_add(&pdev->dev.kobj, &linux_root_device.kobj,
347 kobject_name(&pdev->dev.kobj));
348 spin_lock_init(&pdev->dev.devres_lock);
349 INIT_LIST_HEAD(&pdev->dev.devres_head);
350 }
351
352 static void
lkpinew_pci_dev_release(struct device * dev)353 lkpinew_pci_dev_release(struct device *dev)
354 {
355 struct pci_dev *pdev;
356 int i;
357
358 pdev = to_pci_dev(dev);
359 if (pdev->root != NULL)
360 pci_dev_put(pdev->root);
361 if (pdev->bus->self != pdev)
362 pci_dev_put(pdev->bus->self);
363 free(pdev->bus, M_DEVBUF);
364 if (pdev->msi_desc != NULL) {
365 for (i = pci_msi_count(pdev->dev.bsddev) - 1; i >= 0; i--)
366 free(pdev->msi_desc[i], M_DEVBUF);
367 free(pdev->msi_desc, M_DEVBUF);
368 }
369 kfree(pdev->path_name);
370 free(pdev, M_DEVBUF);
371 }
372
373 struct pci_dev *
lkpinew_pci_dev(device_t dev)374 lkpinew_pci_dev(device_t dev)
375 {
376 struct pci_dev *pdev;
377
378 pdev = malloc(sizeof(*pdev), M_DEVBUF, M_WAITOK|M_ZERO);
379 lkpifill_pci_dev(dev, pdev);
380 pdev->dev.release = lkpinew_pci_dev_release;
381
382 return (pdev);
383 }
384
385 struct pci_dev *
lkpi_pci_get_class(unsigned int class,struct pci_dev * from)386 lkpi_pci_get_class(unsigned int class, struct pci_dev *from)
387 {
388 device_t dev;
389 device_t devfrom = NULL;
390 struct pci_dev *pdev;
391
392 if (from != NULL)
393 devfrom = from->dev.bsddev;
394
395 dev = pci_find_class_from(class >> 16, (class >> 8) & 0xFF, devfrom);
396 if (dev == NULL)
397 return (NULL);
398
399 pdev = lkpinew_pci_dev(dev);
400 return (pdev);
401 }
402
403 struct pci_dev *
lkpi_pci_get_domain_bus_and_slot(int domain,unsigned int bus,unsigned int devfn)404 lkpi_pci_get_domain_bus_and_slot(int domain, unsigned int bus,
405 unsigned int devfn)
406 {
407 device_t dev;
408 struct pci_dev *pdev;
409
410 dev = pci_find_dbsf(domain, bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
411 if (dev == NULL)
412 return (NULL);
413
414 pdev = lkpinew_pci_dev(dev);
415 return (pdev);
416 }
417
418 static int
linux_pci_probe(device_t dev)419 linux_pci_probe(device_t dev)
420 {
421 const struct pci_device_id *id;
422 struct pci_driver *pdrv;
423
424 if ((pdrv = linux_pci_find(dev, &id)) == NULL)
425 return (ENXIO);
426 if (device_get_driver(dev) != &pdrv->bsddriver)
427 return (ENXIO);
428 device_set_desc(dev, pdrv->name);
429
430 /* Assume BSS initialized (should never return BUS_PROBE_SPECIFIC). */
431 if (pdrv->bsd_probe_return == 0)
432 return (BUS_PROBE_DEFAULT);
433 else
434 return (pdrv->bsd_probe_return);
435 }
436
437 static int
linux_pci_attach(device_t dev)438 linux_pci_attach(device_t dev)
439 {
440 const struct pci_device_id *id;
441 struct pci_driver *pdrv;
442 struct pci_dev *pdev;
443
444 pdrv = linux_pci_find(dev, &id);
445 pdev = device_get_softc(dev);
446
447 MPASS(pdrv != NULL);
448 MPASS(pdev != NULL);
449
450 return (linux_pci_attach_device(dev, pdrv, id, pdev));
451 }
452
453 static struct resource_list_entry *
linux_pci_reserve_bar(struct pci_dev * pdev,struct resource_list * rl,int type,int rid)454 linux_pci_reserve_bar(struct pci_dev *pdev, struct resource_list *rl,
455 int type, int rid)
456 {
457 device_t dev;
458 struct resource *res;
459
460 KASSERT(type == SYS_RES_IOPORT || type == SYS_RES_MEMORY,
461 ("trying to reserve non-BAR type %d", type));
462
463 dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ?
464 device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev;
465 res = pci_reserve_map(device_get_parent(dev), dev, type, &rid, 0, ~0,
466 1, 1, 0);
467 if (res == NULL)
468 return (NULL);
469 return (resource_list_find(rl, type, rid));
470 }
471
472 static struct resource_list_entry *
linux_pci_get_rle(struct pci_dev * pdev,int type,int rid,bool reserve_bar)473 linux_pci_get_rle(struct pci_dev *pdev, int type, int rid, bool reserve_bar)
474 {
475 struct pci_devinfo *dinfo;
476 struct resource_list *rl;
477 struct resource_list_entry *rle;
478
479 dinfo = device_get_ivars(pdev->dev.bsddev);
480 rl = &dinfo->resources;
481 rle = resource_list_find(rl, type, rid);
482 /* Reserve resources for this BAR if needed. */
483 if (rle == NULL && reserve_bar)
484 rle = linux_pci_reserve_bar(pdev, rl, type, rid);
485 return (rle);
486 }
487
488 int
linux_pci_attach_device(device_t dev,struct pci_driver * pdrv,const struct pci_device_id * id,struct pci_dev * pdev)489 linux_pci_attach_device(device_t dev, struct pci_driver *pdrv,
490 const struct pci_device_id *id, struct pci_dev *pdev)
491 {
492 struct resource_list_entry *rle;
493 device_t parent;
494 uintptr_t rid;
495 int error;
496 bool isdrm;
497
498 linux_set_current(curthread);
499
500 parent = device_get_parent(dev);
501 isdrm = pdrv != NULL && pdrv->isdrm;
502
503 if (isdrm) {
504 struct pci_devinfo *dinfo;
505
506 dinfo = device_get_ivars(parent);
507 device_set_ivars(dev, dinfo);
508 }
509
510 lkpifill_pci_dev(dev, pdev);
511 if (isdrm)
512 PCI_GET_ID(device_get_parent(parent), parent, PCI_ID_RID, &rid);
513 else
514 PCI_GET_ID(parent, dev, PCI_ID_RID, &rid);
515 pdev->devfn = rid;
516 pdev->pdrv = pdrv;
517 rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 0, false);
518 if (rle != NULL)
519 pdev->dev.irq = rle->start;
520 else
521 pdev->dev.irq = LINUX_IRQ_INVALID;
522 pdev->irq = pdev->dev.irq;
523 error = linux_pdev_dma_init(pdev);
524 if (error)
525 goto out_dma_init;
526
527 TAILQ_INIT(&pdev->mmio);
528 spin_lock_init(&pdev->pcie_cap_lock);
529
530 spin_lock(&pci_lock);
531 list_add(&pdev->links, &pci_devices);
532 spin_unlock(&pci_lock);
533
534 if (pdrv != NULL) {
535 error = pdrv->probe(pdev, id);
536 if (error)
537 goto out_probe;
538 }
539 return (0);
540
541 out_probe:
542 free(pdev->bus, M_DEVBUF);
543 spin_lock_destroy(&pdev->pcie_cap_lock);
544 linux_pdev_dma_uninit(pdev);
545 out_dma_init:
546 spin_lock(&pci_lock);
547 list_del(&pdev->links);
548 spin_unlock(&pci_lock);
549 put_device(&pdev->dev);
550 return (-error);
551 }
552
553 static int
linux_pci_detach(device_t dev)554 linux_pci_detach(device_t dev)
555 {
556 struct pci_dev *pdev;
557
558 pdev = device_get_softc(dev);
559
560 MPASS(pdev != NULL);
561
562 device_set_desc(dev, NULL);
563
564 return (linux_pci_detach_device(pdev));
565 }
566
567 int
linux_pci_detach_device(struct pci_dev * pdev)568 linux_pci_detach_device(struct pci_dev *pdev)
569 {
570
571 linux_set_current(curthread);
572
573 if (pdev->pdrv != NULL)
574 pdev->pdrv->remove(pdev);
575
576 if (pdev->root != NULL)
577 pci_dev_put(pdev->root);
578 free(pdev->bus, M_DEVBUF);
579 linux_pdev_dma_uninit(pdev);
580
581 spin_lock(&pci_lock);
582 list_del(&pdev->links);
583 spin_unlock(&pci_lock);
584 spin_lock_destroy(&pdev->pcie_cap_lock);
585 put_device(&pdev->dev);
586
587 return (0);
588 }
589
590 static int
lkpi_pci_disable_dev(struct device * dev)591 lkpi_pci_disable_dev(struct device *dev)
592 {
593
594 (void) pci_disable_io(dev->bsddev, SYS_RES_MEMORY);
595 (void) pci_disable_io(dev->bsddev, SYS_RES_IOPORT);
596 return (0);
597 }
598
599 static struct pci_devres *
lkpi_pci_devres_get_alloc(struct pci_dev * pdev)600 lkpi_pci_devres_get_alloc(struct pci_dev *pdev)
601 {
602 struct pci_devres *dr;
603
604 dr = lkpi_devres_find(&pdev->dev, lkpi_pci_devres_release, NULL, NULL);
605 if (dr == NULL) {
606 dr = lkpi_devres_alloc(lkpi_pci_devres_release, sizeof(*dr),
607 GFP_KERNEL | __GFP_ZERO);
608 if (dr != NULL)
609 lkpi_devres_add(&pdev->dev, dr);
610 }
611
612 return (dr);
613 }
614
615 static struct pci_devres *
lkpi_pci_devres_find(struct pci_dev * pdev)616 lkpi_pci_devres_find(struct pci_dev *pdev)
617 {
618 if (!pdev->managed)
619 return (NULL);
620
621 return (lkpi_pci_devres_get_alloc(pdev));
622 }
623
624 void
lkpi_pci_devres_release(struct device * dev,void * p)625 lkpi_pci_devres_release(struct device *dev, void *p)
626 {
627 struct pci_devres *dr;
628 struct pci_dev *pdev;
629 int bar;
630
631 pdev = to_pci_dev(dev);
632 dr = p;
633
634 if (pdev->msix_enabled)
635 lkpi_pci_disable_msix(pdev);
636 if (pdev->msi_enabled)
637 lkpi_pci_disable_msi(pdev);
638
639 if (dr->enable_io && lkpi_pci_disable_dev(dev) == 0)
640 dr->enable_io = false;
641
642 if (dr->region_mask == 0)
643 return;
644 for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
645
646 if ((dr->region_mask & (1 << bar)) == 0)
647 continue;
648 pci_release_region(pdev, bar);
649 }
650 }
651
652 int
linuxkpi_pcim_enable_device(struct pci_dev * pdev)653 linuxkpi_pcim_enable_device(struct pci_dev *pdev)
654 {
655 struct pci_devres *dr;
656 int error;
657
658 /* Here we cannot run through the pdev->managed check. */
659 dr = lkpi_pci_devres_get_alloc(pdev);
660 if (dr == NULL)
661 return (-ENOMEM);
662
663 /* If resources were enabled before do not do it again. */
664 if (dr->enable_io)
665 return (0);
666
667 error = pci_enable_device(pdev);
668 if (error == 0)
669 dr->enable_io = true;
670
671 /* This device is not managed. */
672 pdev->managed = true;
673
674 return (error);
675 }
676
677 static struct pcim_iomap_devres *
lkpi_pcim_iomap_devres_find(struct pci_dev * pdev)678 lkpi_pcim_iomap_devres_find(struct pci_dev *pdev)
679 {
680 struct pcim_iomap_devres *dr;
681
682 dr = lkpi_devres_find(&pdev->dev, lkpi_pcim_iomap_table_release,
683 NULL, NULL);
684 if (dr == NULL) {
685 dr = lkpi_devres_alloc(lkpi_pcim_iomap_table_release,
686 sizeof(*dr), GFP_KERNEL | __GFP_ZERO);
687 if (dr != NULL)
688 lkpi_devres_add(&pdev->dev, dr);
689 }
690
691 if (dr == NULL)
692 device_printf(pdev->dev.bsddev, "%s: NULL\n", __func__);
693
694 return (dr);
695 }
696
697 void __iomem **
linuxkpi_pcim_iomap_table(struct pci_dev * pdev)698 linuxkpi_pcim_iomap_table(struct pci_dev *pdev)
699 {
700 struct pcim_iomap_devres *dr;
701
702 dr = lkpi_pcim_iomap_devres_find(pdev);
703 if (dr == NULL)
704 return (NULL);
705
706 /*
707 * If the driver has manually set a flag to be able to request the
708 * resource to use bus_read/write_<n>, return the shadow table.
709 */
710 if (pdev->want_iomap_res)
711 return ((void **)dr->res_table);
712
713 /* This is the Linux default. */
714 return (dr->mmio_table);
715 }
716
717 static struct resource *
_lkpi_pci_iomap(struct pci_dev * pdev,int bar,int mmio_size __unused)718 _lkpi_pci_iomap(struct pci_dev *pdev, int bar, int mmio_size __unused)
719 {
720 struct pci_mmio_region *mmio, *p;
721 int type;
722
723 type = pci_resource_type(pdev, bar);
724 if (type < 0) {
725 device_printf(pdev->dev.bsddev, "%s: bar %d type %d\n",
726 __func__, bar, type);
727 return (NULL);
728 }
729
730 /*
731 * Check for duplicate mappings.
732 * This can happen if a driver calls pci_request_region() first.
733 */
734 TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) {
735 if (mmio->type == type && mmio->rid == PCIR_BAR(bar)) {
736 return (mmio->res);
737 }
738 }
739
740 mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO);
741 mmio->rid = PCIR_BAR(bar);
742 mmio->type = type;
743 mmio->res = bus_alloc_resource_any(pdev->dev.bsddev, mmio->type,
744 &mmio->rid, RF_ACTIVE|RF_SHAREABLE);
745 if (mmio->res == NULL) {
746 device_printf(pdev->dev.bsddev, "%s: failed to alloc "
747 "bar %d type %d rid %d\n",
748 __func__, bar, type, PCIR_BAR(bar));
749 free(mmio, M_DEVBUF);
750 return (NULL);
751 }
752 TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next);
753
754 return (mmio->res);
755 }
756
757 void *
linuxkpi_pci_iomap_range(struct pci_dev * pdev,int mmio_bar,unsigned long mmio_off,unsigned long mmio_size)758 linuxkpi_pci_iomap_range(struct pci_dev *pdev, int mmio_bar,
759 unsigned long mmio_off, unsigned long mmio_size)
760 {
761 struct resource *res;
762
763 res = _lkpi_pci_iomap(pdev, mmio_bar, mmio_size);
764 if (res == NULL)
765 return (NULL);
766 /* This is a FreeBSD extension so we can use bus_*(). */
767 if (pdev->want_iomap_res)
768 return (res);
769 MPASS(mmio_off < rman_get_size(res));
770 return ((void *)(rman_get_bushandle(res) + mmio_off));
771 }
772
773 void *
linuxkpi_pci_iomap(struct pci_dev * pdev,int mmio_bar,int mmio_size)774 linuxkpi_pci_iomap(struct pci_dev *pdev, int mmio_bar, int mmio_size)
775 {
776 return (linuxkpi_pci_iomap_range(pdev, mmio_bar, 0, mmio_size));
777 }
778
779 void
linuxkpi_pci_iounmap(struct pci_dev * pdev,void * res)780 linuxkpi_pci_iounmap(struct pci_dev *pdev, void *res)
781 {
782 struct pci_mmio_region *mmio, *p;
783 bus_space_handle_t bh = (bus_space_handle_t)res;
784
785 TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) {
786 if (pdev->want_iomap_res) {
787 if (res != mmio->res)
788 continue;
789 } else {
790 if (bh < rman_get_bushandle(mmio->res) ||
791 bh >= rman_get_bushandle(mmio->res) +
792 rman_get_size(mmio->res))
793 continue;
794 }
795 bus_release_resource(pdev->dev.bsddev,
796 mmio->type, mmio->rid, mmio->res);
797 TAILQ_REMOVE(&pdev->mmio, mmio, next);
798 free(mmio, M_DEVBUF);
799 return;
800 }
801 }
802
803 int
linuxkpi_pcim_iomap_regions(struct pci_dev * pdev,uint32_t mask,const char * name)804 linuxkpi_pcim_iomap_regions(struct pci_dev *pdev, uint32_t mask, const char *name)
805 {
806 struct pcim_iomap_devres *dr;
807 void *res;
808 uint32_t mappings;
809 int bar;
810
811 dr = lkpi_pcim_iomap_devres_find(pdev);
812 if (dr == NULL)
813 return (-ENOMEM);
814
815 /* Now iomap all the requested (by "mask") ones. */
816 for (bar = mappings = 0; mappings != mask; bar++) {
817 if ((mask & (1 << bar)) == 0)
818 continue;
819
820 /* Request double is not allowed. */
821 if (dr->mmio_table[bar] != NULL) {
822 device_printf(pdev->dev.bsddev, "%s: bar %d %p\n",
823 __func__, bar, dr->mmio_table[bar]);
824 goto err;
825 }
826
827 res = _lkpi_pci_iomap(pdev, bar, 0);
828 if (res == NULL)
829 goto err;
830 dr->mmio_table[bar] = (void *)rman_get_bushandle(res);
831 dr->res_table[bar] = res;
832
833 mappings |= (1 << bar);
834 }
835
836 return (0);
837 err:
838 for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
839 if ((mappings & (1 << bar)) != 0) {
840 res = dr->mmio_table[bar];
841 if (res == NULL)
842 continue;
843 pci_iounmap(pdev, res);
844 }
845 }
846
847 return (-EINVAL);
848 }
849
850 static void
lkpi_pcim_iomap_table_release(struct device * dev,void * p)851 lkpi_pcim_iomap_table_release(struct device *dev, void *p)
852 {
853 struct pcim_iomap_devres *dr;
854 struct pci_dev *pdev;
855 int bar;
856
857 dr = p;
858 pdev = to_pci_dev(dev);
859 for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
860
861 if (dr->mmio_table[bar] == NULL)
862 continue;
863
864 pci_iounmap(pdev, dr->mmio_table[bar]);
865 }
866 }
867
868 static int
linux_pci_suspend(device_t dev)869 linux_pci_suspend(device_t dev)
870 {
871 const struct dev_pm_ops *pmops;
872 struct pm_message pm = { };
873 struct pci_dev *pdev;
874 int error;
875
876 error = 0;
877 linux_set_current(curthread);
878 pdev = device_get_softc(dev);
879 pmops = pdev->pdrv->driver.pm;
880
881 if (pdev->pdrv->suspend != NULL)
882 error = -pdev->pdrv->suspend(pdev, pm);
883 else if (pmops != NULL && pmops->suspend != NULL) {
884 error = -pmops->suspend(&pdev->dev);
885 if (error == 0 && pmops->suspend_late != NULL)
886 error = -pmops->suspend_late(&pdev->dev);
887 if (error == 0 && pmops->suspend_noirq != NULL)
888 error = -pmops->suspend_noirq(&pdev->dev);
889 }
890 return (error);
891 }
892
893 static int
linux_pci_resume(device_t dev)894 linux_pci_resume(device_t dev)
895 {
896 const struct dev_pm_ops *pmops;
897 struct pci_dev *pdev;
898 int error;
899
900 error = 0;
901 linux_set_current(curthread);
902 pdev = device_get_softc(dev);
903 pmops = pdev->pdrv->driver.pm;
904
905 if (pdev->pdrv->resume != NULL)
906 error = -pdev->pdrv->resume(pdev);
907 else if (pmops != NULL && pmops->resume != NULL) {
908 if (pmops->resume_early != NULL)
909 error = -pmops->resume_early(&pdev->dev);
910 if (error == 0 && pmops->resume != NULL)
911 error = -pmops->resume(&pdev->dev);
912 }
913 return (error);
914 }
915
916 static int
linux_pci_shutdown(device_t dev)917 linux_pci_shutdown(device_t dev)
918 {
919 struct pci_dev *pdev;
920
921 linux_set_current(curthread);
922 pdev = device_get_softc(dev);
923 if (pdev->pdrv->shutdown != NULL)
924 pdev->pdrv->shutdown(pdev);
925 return (0);
926 }
927
928 static int
linux_pci_iov_init(device_t dev,uint16_t num_vfs,const nvlist_t * pf_config)929 linux_pci_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *pf_config)
930 {
931 struct pci_dev *pdev;
932 int error;
933
934 linux_set_current(curthread);
935 pdev = device_get_softc(dev);
936 if (pdev->pdrv->bsd_iov_init != NULL)
937 error = pdev->pdrv->bsd_iov_init(dev, num_vfs, pf_config);
938 else
939 error = EINVAL;
940 return (error);
941 }
942
943 static void
linux_pci_iov_uninit(device_t dev)944 linux_pci_iov_uninit(device_t dev)
945 {
946 struct pci_dev *pdev;
947
948 linux_set_current(curthread);
949 pdev = device_get_softc(dev);
950 if (pdev->pdrv->bsd_iov_uninit != NULL)
951 pdev->pdrv->bsd_iov_uninit(dev);
952 }
953
954 static int
linux_pci_iov_add_vf(device_t dev,uint16_t vfnum,const nvlist_t * vf_config)955 linux_pci_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *vf_config)
956 {
957 struct pci_dev *pdev;
958 int error;
959
960 linux_set_current(curthread);
961 pdev = device_get_softc(dev);
962 if (pdev->pdrv->bsd_iov_add_vf != NULL)
963 error = pdev->pdrv->bsd_iov_add_vf(dev, vfnum, vf_config);
964 else
965 error = EINVAL;
966 return (error);
967 }
968
969 static int
_linux_pci_register_driver(struct pci_driver * pdrv,devclass_t dc)970 _linux_pci_register_driver(struct pci_driver *pdrv, devclass_t dc)
971 {
972 int error;
973
974 linux_set_current(curthread);
975 spin_lock(&pci_lock);
976 list_add(&pdrv->node, &pci_drivers);
977 spin_unlock(&pci_lock);
978 if (pdrv->bsddriver.name == NULL)
979 pdrv->bsddriver.name = pdrv->name;
980 pdrv->bsddriver.methods = pci_methods;
981 pdrv->bsddriver.size = sizeof(struct pci_dev);
982
983 bus_topo_lock();
984 error = devclass_add_driver(dc, &pdrv->bsddriver,
985 BUS_PASS_DEFAULT, &pdrv->bsdclass);
986 bus_topo_unlock();
987 return (-error);
988 }
989
990 int
linux_pci_register_driver(struct pci_driver * pdrv)991 linux_pci_register_driver(struct pci_driver *pdrv)
992 {
993 devclass_t dc;
994
995 pdrv->isdrm = strcmp(pdrv->name, "drmn") == 0;
996 dc = pdrv->isdrm ? devclass_create("vgapci") : devclass_find("pci");
997 if (dc == NULL)
998 return (-ENXIO);
999 return (_linux_pci_register_driver(pdrv, dc));
1000 }
1001
1002 static struct resource_list_entry *
lkpi_pci_get_bar(struct pci_dev * pdev,int bar,bool reserve)1003 lkpi_pci_get_bar(struct pci_dev *pdev, int bar, bool reserve)
1004 {
1005 int type;
1006
1007 type = pci_resource_type(pdev, bar);
1008 if (type < 0)
1009 return (NULL);
1010 bar = PCIR_BAR(bar);
1011 return (linux_pci_get_rle(pdev, type, bar, reserve));
1012 }
1013
1014 struct device *
lkpi_pci_find_irq_dev(unsigned int irq)1015 lkpi_pci_find_irq_dev(unsigned int irq)
1016 {
1017 struct pci_dev *pdev;
1018 struct device *found;
1019
1020 found = NULL;
1021 spin_lock(&pci_lock);
1022 list_for_each_entry(pdev, &pci_devices, links) {
1023 if (irq == pdev->dev.irq ||
1024 (irq >= pdev->dev.irq_start && irq < pdev->dev.irq_end)) {
1025 found = &pdev->dev;
1026 break;
1027 }
1028 }
1029 spin_unlock(&pci_lock);
1030 return (found);
1031 }
1032
1033 unsigned long
pci_resource_start(struct pci_dev * pdev,int bar)1034 pci_resource_start(struct pci_dev *pdev, int bar)
1035 {
1036 struct resource_list_entry *rle;
1037 rman_res_t newstart;
1038 device_t dev;
1039 int error;
1040
1041 if ((rle = lkpi_pci_get_bar(pdev, bar, true)) == NULL)
1042 return (0);
1043 dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ?
1044 device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev;
1045 error = bus_translate_resource(dev, rle->type, rle->start, &newstart);
1046 if (error != 0) {
1047 device_printf(pdev->dev.bsddev,
1048 "translate of %#jx failed: %d\n",
1049 (uintmax_t)rle->start, error);
1050 return (0);
1051 }
1052 return (newstart);
1053 }
1054
1055 unsigned long
pci_resource_len(struct pci_dev * pdev,int bar)1056 pci_resource_len(struct pci_dev *pdev, int bar)
1057 {
1058 struct resource_list_entry *rle;
1059
1060 if ((rle = lkpi_pci_get_bar(pdev, bar, true)) == NULL)
1061 return (0);
1062 return (rle->count);
1063 }
1064
1065 int
pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)1066 pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1067 {
1068 struct resource *res;
1069 struct pci_devres *dr;
1070 struct pci_mmio_region *mmio;
1071 int rid;
1072 int type;
1073
1074 type = pci_resource_type(pdev, bar);
1075 if (type < 0)
1076 return (-ENODEV);
1077 rid = PCIR_BAR(bar);
1078 res = bus_alloc_resource_any(pdev->dev.bsddev, type, &rid,
1079 RF_ACTIVE|RF_SHAREABLE);
1080 if (res == NULL) {
1081 device_printf(pdev->dev.bsddev, "%s: failed to alloc "
1082 "bar %d type %d rid %d\n",
1083 __func__, bar, type, PCIR_BAR(bar));
1084 return (-ENODEV);
1085 }
1086
1087 /*
1088 * It seems there is an implicit devres tracking on these if the device
1089 * is managed; otherwise the resources are not automatiaclly freed on
1090 * FreeBSD/LinuxKPI tough they should be/are expected to be by Linux
1091 * drivers.
1092 */
1093 dr = lkpi_pci_devres_find(pdev);
1094 if (dr != NULL) {
1095 dr->region_mask |= (1 << bar);
1096 dr->region_table[bar] = res;
1097 }
1098
1099 /* Even if the device is not managed we need to track it for iomap. */
1100 mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO);
1101 mmio->rid = PCIR_BAR(bar);
1102 mmio->type = type;
1103 mmio->res = res;
1104 TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next);
1105
1106 return (0);
1107 }
1108
1109 int
linuxkpi_pci_request_regions(struct pci_dev * pdev,const char * res_name)1110 linuxkpi_pci_request_regions(struct pci_dev *pdev, const char *res_name)
1111 {
1112 int error;
1113 int i;
1114
1115 for (i = 0; i <= PCIR_MAX_BAR_0; i++) {
1116 error = pci_request_region(pdev, i, res_name);
1117 if (error && error != -ENODEV) {
1118 pci_release_regions(pdev);
1119 return (error);
1120 }
1121 }
1122 return (0);
1123 }
1124
1125 void
linuxkpi_pci_release_region(struct pci_dev * pdev,int bar)1126 linuxkpi_pci_release_region(struct pci_dev *pdev, int bar)
1127 {
1128 struct resource_list_entry *rle;
1129 struct pci_devres *dr;
1130 struct pci_mmio_region *mmio, *p;
1131
1132 if ((rle = lkpi_pci_get_bar(pdev, bar, false)) == NULL)
1133 return;
1134
1135 /*
1136 * As we implicitly track the requests we also need to clear them on
1137 * release. Do clear before resource release.
1138 */
1139 dr = lkpi_pci_devres_find(pdev);
1140 if (dr != NULL) {
1141 KASSERT(dr->region_table[bar] == rle->res, ("%s: pdev %p bar %d"
1142 " region_table res %p != rel->res %p\n", __func__, pdev,
1143 bar, dr->region_table[bar], rle->res));
1144 dr->region_table[bar] = NULL;
1145 dr->region_mask &= ~(1 << bar);
1146 }
1147
1148 TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) {
1149 if (rle->res != (void *)rman_get_bushandle(mmio->res))
1150 continue;
1151 TAILQ_REMOVE(&pdev->mmio, mmio, next);
1152 free(mmio, M_DEVBUF);
1153 }
1154
1155 bus_release_resource(pdev->dev.bsddev, rle->type, rle->rid, rle->res);
1156 }
1157
1158 void
linuxkpi_pci_release_regions(struct pci_dev * pdev)1159 linuxkpi_pci_release_regions(struct pci_dev *pdev)
1160 {
1161 int i;
1162
1163 for (i = 0; i <= PCIR_MAX_BAR_0; i++)
1164 pci_release_region(pdev, i);
1165 }
1166
1167 int
linux_pci_register_drm_driver(struct pci_driver * pdrv)1168 linux_pci_register_drm_driver(struct pci_driver *pdrv)
1169 {
1170 devclass_t dc;
1171
1172 dc = devclass_create("vgapci");
1173 if (dc == NULL)
1174 return (-ENXIO);
1175 pdrv->isdrm = true;
1176 pdrv->name = "drmn";
1177 return (_linux_pci_register_driver(pdrv, dc));
1178 }
1179
1180 void
linux_pci_unregister_driver(struct pci_driver * pdrv)1181 linux_pci_unregister_driver(struct pci_driver *pdrv)
1182 {
1183 devclass_t bus;
1184
1185 bus = devclass_find(pdrv->isdrm ? "vgapci" : "pci");
1186
1187 spin_lock(&pci_lock);
1188 list_del(&pdrv->node);
1189 spin_unlock(&pci_lock);
1190 bus_topo_lock();
1191 if (bus != NULL)
1192 devclass_delete_driver(bus, &pdrv->bsddriver);
1193 bus_topo_unlock();
1194 }
1195
1196 void
linux_pci_unregister_drm_driver(struct pci_driver * pdrv)1197 linux_pci_unregister_drm_driver(struct pci_driver *pdrv)
1198 {
1199 devclass_t bus;
1200
1201 bus = devclass_find("vgapci");
1202
1203 spin_lock(&pci_lock);
1204 list_del(&pdrv->node);
1205 spin_unlock(&pci_lock);
1206 bus_topo_lock();
1207 if (bus != NULL)
1208 devclass_delete_driver(bus, &pdrv->bsddriver);
1209 bus_topo_unlock();
1210 }
1211
1212 int
linuxkpi_pci_enable_msix(struct pci_dev * pdev,struct msix_entry * entries,int nreq)1213 linuxkpi_pci_enable_msix(struct pci_dev *pdev, struct msix_entry *entries,
1214 int nreq)
1215 {
1216 struct resource_list_entry *rle;
1217 int error;
1218 int avail;
1219 int i;
1220
1221 avail = pci_msix_count(pdev->dev.bsddev);
1222 if (avail < nreq) {
1223 if (avail == 0)
1224 return -EINVAL;
1225 return avail;
1226 }
1227 avail = nreq;
1228 if ((error = -pci_alloc_msix(pdev->dev.bsddev, &avail)) != 0)
1229 return error;
1230 /*
1231 * Handle case where "pci_alloc_msix()" may allocate less
1232 * interrupts than available and return with no error:
1233 */
1234 if (avail < nreq) {
1235 pci_release_msi(pdev->dev.bsddev);
1236 return avail;
1237 }
1238 rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 1, false);
1239 pdev->dev.irq_start = rle->start;
1240 pdev->dev.irq_end = rle->start + avail;
1241 for (i = 0; i < nreq; i++)
1242 entries[i].vector = pdev->dev.irq_start + i;
1243 pdev->msix_enabled = true;
1244 return (0);
1245 }
1246
1247 int
_lkpi_pci_enable_msi_range(struct pci_dev * pdev,int minvec,int maxvec)1248 _lkpi_pci_enable_msi_range(struct pci_dev *pdev, int minvec, int maxvec)
1249 {
1250 struct resource_list_entry *rle;
1251 int error;
1252 int nvec;
1253
1254 if (maxvec < minvec)
1255 return (-EINVAL);
1256
1257 nvec = pci_msi_count(pdev->dev.bsddev);
1258 if (nvec < 1 || nvec < minvec)
1259 return (-ENOSPC);
1260
1261 nvec = min(nvec, maxvec);
1262 if ((error = -pci_alloc_msi(pdev->dev.bsddev, &nvec)) != 0)
1263 return error;
1264
1265 /* Native PCI might only ever ask for 32 vectors. */
1266 if (nvec < minvec) {
1267 pci_release_msi(pdev->dev.bsddev);
1268 return (-ENOSPC);
1269 }
1270
1271 rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 1, false);
1272 pdev->dev.irq_start = rle->start;
1273 pdev->dev.irq_end = rle->start + nvec;
1274 pdev->irq = rle->start;
1275 pdev->msi_enabled = true;
1276 return (0);
1277 }
1278
1279 int
pci_alloc_irq_vectors(struct pci_dev * pdev,int minv,int maxv,unsigned int flags)1280 pci_alloc_irq_vectors(struct pci_dev *pdev, int minv, int maxv,
1281 unsigned int flags)
1282 {
1283 int error;
1284
1285 if (flags & PCI_IRQ_MSIX) {
1286 struct msix_entry *entries;
1287 int i;
1288
1289 entries = kcalloc(maxv, sizeof(*entries), GFP_KERNEL);
1290 if (entries == NULL) {
1291 error = -ENOMEM;
1292 goto out;
1293 }
1294 for (i = 0; i < maxv; ++i)
1295 entries[i].entry = i;
1296 error = pci_enable_msix(pdev, entries, maxv);
1297 out:
1298 kfree(entries);
1299 if (error == 0 && pdev->msix_enabled)
1300 return (pdev->dev.irq_end - pdev->dev.irq_start);
1301 }
1302 if (flags & PCI_IRQ_MSI) {
1303 if (pci_msi_count(pdev->dev.bsddev) < minv)
1304 return (-ENOSPC);
1305 error = _lkpi_pci_enable_msi_range(pdev, minv, maxv);
1306 if (error == 0 && pdev->msi_enabled)
1307 return (pdev->dev.irq_end - pdev->dev.irq_start);
1308 }
1309 if (flags & PCI_IRQ_INTX) {
1310 if (pdev->irq)
1311 return (1);
1312 }
1313
1314 return (-EINVAL);
1315 }
1316
1317 struct msi_desc *
lkpi_pci_msi_desc_alloc(int irq)1318 lkpi_pci_msi_desc_alloc(int irq)
1319 {
1320 struct device *dev;
1321 struct pci_dev *pdev;
1322 struct msi_desc *desc;
1323 struct pci_devinfo *dinfo;
1324 struct pcicfg_msi *msi;
1325 int vec;
1326
1327 dev = lkpi_pci_find_irq_dev(irq);
1328 if (dev == NULL)
1329 return (NULL);
1330
1331 pdev = to_pci_dev(dev);
1332
1333 if (pdev->msi_desc == NULL)
1334 return (NULL);
1335
1336 if (irq < pdev->dev.irq_start || irq >= pdev->dev.irq_end)
1337 return (NULL);
1338
1339 vec = pdev->dev.irq_start - irq;
1340
1341 if (pdev->msi_desc[vec] != NULL)
1342 return (pdev->msi_desc[vec]);
1343
1344 dinfo = device_get_ivars(dev->bsddev);
1345 msi = &dinfo->cfg.msi;
1346
1347 desc = malloc(sizeof(*desc), M_DEVBUF, M_WAITOK | M_ZERO);
1348
1349 desc->pci.msi_attrib.is_64 =
1350 (msi->msi_ctrl & PCIM_MSICTRL_64BIT) ? true : false;
1351 desc->msg.data = msi->msi_data;
1352
1353 pdev->msi_desc[vec] = desc;
1354
1355 return (desc);
1356 }
1357
1358 bool
pci_device_is_present(struct pci_dev * pdev)1359 pci_device_is_present(struct pci_dev *pdev)
1360 {
1361 device_t dev;
1362
1363 dev = pdev->dev.bsddev;
1364
1365 return (bus_child_present(dev));
1366 }
1367
1368 CTASSERT(sizeof(dma_addr_t) <= sizeof(uint64_t));
1369
1370 struct linux_dma_obj {
1371 void *vaddr;
1372 uint64_t dma_addr;
1373 bus_dmamap_t dmamap;
1374 bus_dma_tag_t dmat;
1375 };
1376
1377 static uma_zone_t linux_dma_trie_zone;
1378 static uma_zone_t linux_dma_obj_zone;
1379
1380 static void
linux_dma_init(void * arg)1381 linux_dma_init(void *arg)
1382 {
1383
1384 linux_dma_trie_zone = uma_zcreate("linux_dma_pctrie",
1385 pctrie_node_size(), NULL, NULL, pctrie_zone_init, NULL,
1386 UMA_ALIGN_PTR, 0);
1387 linux_dma_obj_zone = uma_zcreate("linux_dma_object",
1388 sizeof(struct linux_dma_obj), NULL, NULL, NULL, NULL,
1389 UMA_ALIGN_PTR, 0);
1390 lkpi_pci_nseg1_fail = counter_u64_alloc(M_WAITOK);
1391 }
1392 SYSINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_init, NULL);
1393
1394 static void
linux_dma_uninit(void * arg)1395 linux_dma_uninit(void *arg)
1396 {
1397
1398 counter_u64_free(lkpi_pci_nseg1_fail);
1399 uma_zdestroy(linux_dma_obj_zone);
1400 uma_zdestroy(linux_dma_trie_zone);
1401 }
1402 SYSUNINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_uninit, NULL);
1403
1404 static void *
linux_dma_trie_alloc(struct pctrie * ptree)1405 linux_dma_trie_alloc(struct pctrie *ptree)
1406 {
1407
1408 return (uma_zalloc(linux_dma_trie_zone, M_NOWAIT));
1409 }
1410
1411 static void
linux_dma_trie_free(struct pctrie * ptree,void * node)1412 linux_dma_trie_free(struct pctrie *ptree, void *node)
1413 {
1414
1415 uma_zfree(linux_dma_trie_zone, node);
1416 }
1417
1418 PCTRIE_DEFINE(LINUX_DMA, linux_dma_obj, dma_addr, linux_dma_trie_alloc,
1419 linux_dma_trie_free);
1420
1421 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1422 static dma_addr_t
linux_dma_map_phys_common(struct device * dev,vm_paddr_t phys,size_t len,bus_dma_tag_t dmat)1423 linux_dma_map_phys_common(struct device *dev, vm_paddr_t phys, size_t len,
1424 bus_dma_tag_t dmat)
1425 {
1426 struct linux_dma_priv *priv;
1427 struct linux_dma_obj *obj;
1428 int error, nseg;
1429 bus_dma_segment_t seg;
1430
1431 priv = dev->dma_priv;
1432
1433 /*
1434 * If the resultant mapping will be entirely 1:1 with the
1435 * physical address, short-circuit the remainder of the
1436 * bus_dma API. This avoids tracking collisions in the pctrie
1437 * with the additional benefit of reducing overhead.
1438 */
1439 if (bus_dma_id_mapped(dmat, phys, len))
1440 return (phys);
1441
1442 obj = uma_zalloc(linux_dma_obj_zone, M_NOWAIT);
1443 if (obj == NULL) {
1444 return (0);
1445 }
1446 obj->dmat = dmat;
1447
1448 DMA_PRIV_LOCK(priv);
1449 if (bus_dmamap_create(obj->dmat, 0, &obj->dmamap) != 0) {
1450 DMA_PRIV_UNLOCK(priv);
1451 uma_zfree(linux_dma_obj_zone, obj);
1452 return (0);
1453 }
1454
1455 nseg = -1;
1456 if (_bus_dmamap_load_phys(obj->dmat, obj->dmamap, phys, len,
1457 BUS_DMA_NOWAIT, &seg, &nseg) != 0) {
1458 bus_dmamap_destroy(obj->dmat, obj->dmamap);
1459 DMA_PRIV_UNLOCK(priv);
1460 uma_zfree(linux_dma_obj_zone, obj);
1461 counter_u64_add(lkpi_pci_nseg1_fail, 1);
1462 if (linuxkpi_debug)
1463 dump_stack();
1464 return (0);
1465 }
1466
1467 KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
1468 obj->dma_addr = seg.ds_addr;
1469
1470 error = LINUX_DMA_PCTRIE_INSERT(&priv->ptree, obj);
1471 if (error != 0) {
1472 bus_dmamap_unload(obj->dmat, obj->dmamap);
1473 bus_dmamap_destroy(obj->dmat, obj->dmamap);
1474 DMA_PRIV_UNLOCK(priv);
1475 uma_zfree(linux_dma_obj_zone, obj);
1476 return (0);
1477 }
1478 DMA_PRIV_UNLOCK(priv);
1479 return (obj->dma_addr);
1480 }
1481 #else
1482 static dma_addr_t
linux_dma_map_phys_common(struct device * dev __unused,vm_paddr_t phys,size_t len __unused,bus_dma_tag_t dmat __unused)1483 linux_dma_map_phys_common(struct device *dev __unused, vm_paddr_t phys,
1484 size_t len __unused, bus_dma_tag_t dmat __unused)
1485 {
1486 return (phys);
1487 }
1488 #endif
1489
1490 dma_addr_t
linux_dma_map_phys(struct device * dev,vm_paddr_t phys,size_t len)1491 linux_dma_map_phys(struct device *dev, vm_paddr_t phys, size_t len)
1492 {
1493 struct linux_dma_priv *priv;
1494
1495 priv = dev->dma_priv;
1496 return (linux_dma_map_phys_common(dev, phys, len, priv->dmat));
1497 }
1498
1499 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1500 void
linux_dma_unmap(struct device * dev,dma_addr_t dma_addr,size_t len)1501 linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len)
1502 {
1503 struct linux_dma_priv *priv;
1504 struct linux_dma_obj *obj;
1505
1506 priv = dev->dma_priv;
1507
1508 if (pctrie_is_empty(&priv->ptree))
1509 return;
1510
1511 DMA_PRIV_LOCK(priv);
1512 obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr);
1513 if (obj == NULL) {
1514 DMA_PRIV_UNLOCK(priv);
1515 return;
1516 }
1517 LINUX_DMA_PCTRIE_REMOVE(&priv->ptree, dma_addr);
1518 bus_dmamap_unload(obj->dmat, obj->dmamap);
1519 bus_dmamap_destroy(obj->dmat, obj->dmamap);
1520 DMA_PRIV_UNLOCK(priv);
1521
1522 uma_zfree(linux_dma_obj_zone, obj);
1523 }
1524 #else
1525 void
linux_dma_unmap(struct device * dev,dma_addr_t dma_addr,size_t len)1526 linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len)
1527 {
1528 }
1529 #endif
1530
1531 void *
linux_dma_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flag)1532 linux_dma_alloc_coherent(struct device *dev, size_t size,
1533 dma_addr_t *dma_handle, gfp_t flag)
1534 {
1535 struct linux_dma_priv *priv;
1536 vm_paddr_t high;
1537 size_t align;
1538 void *mem;
1539
1540 if (dev == NULL || dev->dma_priv == NULL) {
1541 *dma_handle = 0;
1542 return (NULL);
1543 }
1544 priv = dev->dma_priv;
1545 if (priv->dma_coherent_mask)
1546 high = priv->dma_coherent_mask;
1547 else
1548 /* Coherent is lower 32bit only by default in Linux. */
1549 high = BUS_SPACE_MAXADDR_32BIT;
1550 align = PAGE_SIZE << get_order(size);
1551 /* Always zero the allocation. */
1552 flag |= M_ZERO;
1553 mem = kmem_alloc_contig(size, flag & GFP_NATIVE_MASK, 0, high,
1554 align, 0, VM_MEMATTR_DEFAULT);
1555 if (mem != NULL) {
1556 *dma_handle = linux_dma_map_phys_common(dev, vtophys(mem), size,
1557 priv->dmat_coherent);
1558 if (*dma_handle == 0) {
1559 kmem_free(mem, size);
1560 mem = NULL;
1561 }
1562 } else {
1563 *dma_handle = 0;
1564 }
1565 return (mem);
1566 }
1567
1568 struct lkpi_devres_dmam_coherent {
1569 size_t size;
1570 dma_addr_t *handle;
1571 void *mem;
1572 };
1573
1574 static void
lkpi_dmam_free_coherent(struct device * dev,void * p)1575 lkpi_dmam_free_coherent(struct device *dev, void *p)
1576 {
1577 struct lkpi_devres_dmam_coherent *dr;
1578
1579 dr = p;
1580 dma_free_coherent(dev, dr->size, dr->mem, *dr->handle);
1581 }
1582
1583 void *
linuxkpi_dmam_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flag)1584 linuxkpi_dmam_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
1585 gfp_t flag)
1586 {
1587 struct lkpi_devres_dmam_coherent *dr;
1588
1589 dr = lkpi_devres_alloc(lkpi_dmam_free_coherent,
1590 sizeof(*dr), GFP_KERNEL | __GFP_ZERO);
1591
1592 if (dr == NULL)
1593 return (NULL);
1594
1595 dr->size = size;
1596 dr->mem = linux_dma_alloc_coherent(dev, size, dma_handle, flag);
1597 dr->handle = dma_handle;
1598 if (dr->mem == NULL) {
1599 lkpi_devres_free(dr);
1600 return (NULL);
1601 }
1602
1603 lkpi_devres_add(dev, dr);
1604 return (dr->mem);
1605 }
1606
1607 void
linuxkpi_dma_sync(struct device * dev,dma_addr_t dma_addr,size_t size,bus_dmasync_op_t op)1608 linuxkpi_dma_sync(struct device *dev, dma_addr_t dma_addr, size_t size,
1609 bus_dmasync_op_t op)
1610 {
1611 struct linux_dma_priv *priv;
1612 struct linux_dma_obj *obj;
1613
1614 priv = dev->dma_priv;
1615
1616 if (pctrie_is_empty(&priv->ptree))
1617 return;
1618
1619 DMA_PRIV_LOCK(priv);
1620 obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr);
1621 if (obj == NULL) {
1622 DMA_PRIV_UNLOCK(priv);
1623 return;
1624 }
1625
1626 bus_dmamap_sync(obj->dmat, obj->dmamap, op);
1627 DMA_PRIV_UNLOCK(priv);
1628 }
1629
1630 int
linux_dma_map_sg_attrs(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction direction,unsigned long attrs __unused)1631 linux_dma_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nents,
1632 enum dma_data_direction direction, unsigned long attrs __unused)
1633 {
1634 struct linux_dma_priv *priv;
1635 struct scatterlist *sg;
1636 int i, nseg;
1637 bus_dma_segment_t seg;
1638
1639 priv = dev->dma_priv;
1640
1641 DMA_PRIV_LOCK(priv);
1642
1643 /* create common DMA map in the first S/G entry */
1644 if (bus_dmamap_create(priv->dmat, 0, &sgl->dma_map) != 0) {
1645 DMA_PRIV_UNLOCK(priv);
1646 return (0);
1647 }
1648
1649 /* load all S/G list entries */
1650 for_each_sg(sgl, sg, nents, i) {
1651 nseg = -1;
1652 if (_bus_dmamap_load_phys(priv->dmat, sgl->dma_map,
1653 sg_phys(sg), sg->length, BUS_DMA_NOWAIT,
1654 &seg, &nseg) != 0) {
1655 bus_dmamap_unload(priv->dmat, sgl->dma_map);
1656 bus_dmamap_destroy(priv->dmat, sgl->dma_map);
1657 DMA_PRIV_UNLOCK(priv);
1658 return (0);
1659 }
1660 KASSERT(nseg == 0,
1661 ("More than one segment (nseg=%d)", nseg + 1));
1662
1663 sg_dma_address(sg) = seg.ds_addr;
1664 }
1665
1666 switch (direction) {
1667 case DMA_BIDIRECTIONAL:
1668 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE);
1669 break;
1670 case DMA_TO_DEVICE:
1671 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD);
1672 break;
1673 case DMA_FROM_DEVICE:
1674 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE);
1675 break;
1676 default:
1677 break;
1678 }
1679
1680 DMA_PRIV_UNLOCK(priv);
1681
1682 return (nents);
1683 }
1684
1685 void
linux_dma_unmap_sg_attrs(struct device * dev,struct scatterlist * sgl,int nents __unused,enum dma_data_direction direction,unsigned long attrs __unused)1686 linux_dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sgl,
1687 int nents __unused, enum dma_data_direction direction,
1688 unsigned long attrs __unused)
1689 {
1690 struct linux_dma_priv *priv;
1691
1692 priv = dev->dma_priv;
1693
1694 DMA_PRIV_LOCK(priv);
1695
1696 switch (direction) {
1697 case DMA_BIDIRECTIONAL:
1698 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD);
1699 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD);
1700 break;
1701 case DMA_TO_DEVICE:
1702 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTWRITE);
1703 break;
1704 case DMA_FROM_DEVICE:
1705 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD);
1706 break;
1707 default:
1708 break;
1709 }
1710
1711 bus_dmamap_unload(priv->dmat, sgl->dma_map);
1712 bus_dmamap_destroy(priv->dmat, sgl->dma_map);
1713 DMA_PRIV_UNLOCK(priv);
1714 }
1715
1716 struct dma_pool {
1717 struct device *pool_device;
1718 uma_zone_t pool_zone;
1719 struct mtx pool_lock;
1720 bus_dma_tag_t pool_dmat;
1721 size_t pool_entry_size;
1722 struct pctrie pool_ptree;
1723 };
1724
1725 #define DMA_POOL_LOCK(pool) mtx_lock(&(pool)->pool_lock)
1726 #define DMA_POOL_UNLOCK(pool) mtx_unlock(&(pool)->pool_lock)
1727
1728 static inline int
dma_pool_obj_ctor(void * mem,int size,void * arg,int flags)1729 dma_pool_obj_ctor(void *mem, int size, void *arg, int flags)
1730 {
1731 struct linux_dma_obj *obj = mem;
1732 struct dma_pool *pool = arg;
1733 int error, nseg;
1734 bus_dma_segment_t seg;
1735
1736 nseg = -1;
1737 DMA_POOL_LOCK(pool);
1738 error = _bus_dmamap_load_phys(pool->pool_dmat, obj->dmamap,
1739 vtophys(obj->vaddr), pool->pool_entry_size, BUS_DMA_NOWAIT,
1740 &seg, &nseg);
1741 DMA_POOL_UNLOCK(pool);
1742 if (error != 0) {
1743 return (error);
1744 }
1745 KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
1746 obj->dma_addr = seg.ds_addr;
1747
1748 return (0);
1749 }
1750
1751 static void
dma_pool_obj_dtor(void * mem,int size,void * arg)1752 dma_pool_obj_dtor(void *mem, int size, void *arg)
1753 {
1754 struct linux_dma_obj *obj = mem;
1755 struct dma_pool *pool = arg;
1756
1757 DMA_POOL_LOCK(pool);
1758 bus_dmamap_unload(pool->pool_dmat, obj->dmamap);
1759 DMA_POOL_UNLOCK(pool);
1760 }
1761
1762 static int
dma_pool_obj_import(void * arg,void ** store,int count,int domain __unused,int flags)1763 dma_pool_obj_import(void *arg, void **store, int count, int domain __unused,
1764 int flags)
1765 {
1766 struct dma_pool *pool = arg;
1767 struct linux_dma_obj *obj;
1768 int error, i;
1769
1770 for (i = 0; i < count; i++) {
1771 obj = uma_zalloc(linux_dma_obj_zone, flags);
1772 if (obj == NULL)
1773 break;
1774
1775 error = bus_dmamem_alloc(pool->pool_dmat, &obj->vaddr,
1776 BUS_DMA_NOWAIT, &obj->dmamap);
1777 if (error!= 0) {
1778 uma_zfree(linux_dma_obj_zone, obj);
1779 break;
1780 }
1781
1782 store[i] = obj;
1783 }
1784
1785 return (i);
1786 }
1787
1788 static void
dma_pool_obj_release(void * arg,void ** store,int count)1789 dma_pool_obj_release(void *arg, void **store, int count)
1790 {
1791 struct dma_pool *pool = arg;
1792 struct linux_dma_obj *obj;
1793 int i;
1794
1795 for (i = 0; i < count; i++) {
1796 obj = store[i];
1797 bus_dmamem_free(pool->pool_dmat, obj->vaddr, obj->dmamap);
1798 uma_zfree(linux_dma_obj_zone, obj);
1799 }
1800 }
1801
1802 struct dma_pool *
linux_dma_pool_create(char * name,struct device * dev,size_t size,size_t align,size_t boundary)1803 linux_dma_pool_create(char *name, struct device *dev, size_t size,
1804 size_t align, size_t boundary)
1805 {
1806 struct linux_dma_priv *priv;
1807 struct dma_pool *pool;
1808
1809 priv = dev->dma_priv;
1810
1811 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1812 pool->pool_device = dev;
1813 pool->pool_entry_size = size;
1814
1815 if (bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
1816 align, boundary, /* alignment, boundary */
1817 priv->dma_mask, /* lowaddr */
1818 BUS_SPACE_MAXADDR, /* highaddr */
1819 NULL, NULL, /* filtfunc, filtfuncarg */
1820 size, /* maxsize */
1821 1, /* nsegments */
1822 size, /* maxsegsz */
1823 0, /* flags */
1824 NULL, NULL, /* lockfunc, lockfuncarg */
1825 &pool->pool_dmat)) {
1826 kfree(pool);
1827 return (NULL);
1828 }
1829
1830 pool->pool_zone = uma_zcache_create(name, -1, dma_pool_obj_ctor,
1831 dma_pool_obj_dtor, NULL, NULL, dma_pool_obj_import,
1832 dma_pool_obj_release, pool, 0);
1833
1834 mtx_init(&pool->pool_lock, "lkpi-dma-pool", NULL, MTX_DEF);
1835 pctrie_init(&pool->pool_ptree);
1836
1837 return (pool);
1838 }
1839
1840 void
linux_dma_pool_destroy(struct dma_pool * pool)1841 linux_dma_pool_destroy(struct dma_pool *pool)
1842 {
1843
1844 uma_zdestroy(pool->pool_zone);
1845 bus_dma_tag_destroy(pool->pool_dmat);
1846 mtx_destroy(&pool->pool_lock);
1847 kfree(pool);
1848 }
1849
1850 void
lkpi_dmam_pool_destroy(struct device * dev,void * p)1851 lkpi_dmam_pool_destroy(struct device *dev, void *p)
1852 {
1853 struct dma_pool *pool;
1854
1855 pool = *(struct dma_pool **)p;
1856 LINUX_DMA_PCTRIE_RECLAIM(&pool->pool_ptree);
1857 linux_dma_pool_destroy(pool);
1858 }
1859
1860 void *
linux_dma_pool_alloc(struct dma_pool * pool,gfp_t mem_flags,dma_addr_t * handle)1861 linux_dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
1862 dma_addr_t *handle)
1863 {
1864 struct linux_dma_obj *obj;
1865
1866 obj = uma_zalloc_arg(pool->pool_zone, pool, mem_flags & GFP_NATIVE_MASK);
1867 if (obj == NULL)
1868 return (NULL);
1869
1870 DMA_POOL_LOCK(pool);
1871 if (LINUX_DMA_PCTRIE_INSERT(&pool->pool_ptree, obj) != 0) {
1872 DMA_POOL_UNLOCK(pool);
1873 uma_zfree_arg(pool->pool_zone, obj, pool);
1874 return (NULL);
1875 }
1876 DMA_POOL_UNLOCK(pool);
1877
1878 *handle = obj->dma_addr;
1879 return (obj->vaddr);
1880 }
1881
1882 void
linux_dma_pool_free(struct dma_pool * pool,void * vaddr,dma_addr_t dma_addr)1883 linux_dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma_addr)
1884 {
1885 struct linux_dma_obj *obj;
1886
1887 DMA_POOL_LOCK(pool);
1888 obj = LINUX_DMA_PCTRIE_LOOKUP(&pool->pool_ptree, dma_addr);
1889 if (obj == NULL) {
1890 DMA_POOL_UNLOCK(pool);
1891 return;
1892 }
1893 LINUX_DMA_PCTRIE_REMOVE(&pool->pool_ptree, dma_addr);
1894 DMA_POOL_UNLOCK(pool);
1895
1896 uma_zfree_arg(pool->pool_zone, obj, pool);
1897 }
1898
1899 static int
linux_backlight_get_status(device_t dev,struct backlight_props * props)1900 linux_backlight_get_status(device_t dev, struct backlight_props *props)
1901 {
1902 struct pci_dev *pdev;
1903
1904 linux_set_current(curthread);
1905 pdev = device_get_softc(dev);
1906
1907 props->brightness = pdev->dev.bd->props.brightness;
1908 props->brightness = props->brightness * 100 / pdev->dev.bd->props.max_brightness;
1909 props->nlevels = 0;
1910
1911 return (0);
1912 }
1913
1914 static int
linux_backlight_get_info(device_t dev,struct backlight_info * info)1915 linux_backlight_get_info(device_t dev, struct backlight_info *info)
1916 {
1917 struct pci_dev *pdev;
1918
1919 linux_set_current(curthread);
1920 pdev = device_get_softc(dev);
1921
1922 info->type = BACKLIGHT_TYPE_PANEL;
1923 strlcpy(info->name, pdev->dev.bd->name, BACKLIGHTMAXNAMELENGTH);
1924 return (0);
1925 }
1926
1927 static int
linux_backlight_update_status(device_t dev,struct backlight_props * props)1928 linux_backlight_update_status(device_t dev, struct backlight_props *props)
1929 {
1930 struct pci_dev *pdev;
1931
1932 linux_set_current(curthread);
1933 pdev = device_get_softc(dev);
1934
1935 pdev->dev.bd->props.brightness = pdev->dev.bd->props.max_brightness *
1936 props->brightness / 100;
1937 pdev->dev.bd->props.power = props->brightness == 0 ?
1938 4/* FB_BLANK_POWERDOWN */ : 0/* FB_BLANK_UNBLANK */;
1939 return (pdev->dev.bd->ops->update_status(pdev->dev.bd));
1940 }
1941
1942 struct backlight_device *
linux_backlight_device_register(const char * name,struct device * dev,void * data,const struct backlight_ops * ops,struct backlight_properties * props)1943 linux_backlight_device_register(const char *name, struct device *dev,
1944 void *data, const struct backlight_ops *ops, struct backlight_properties *props)
1945 {
1946
1947 dev->bd = malloc(sizeof(*dev->bd), M_DEVBUF, M_WAITOK | M_ZERO);
1948 dev->bd->ops = ops;
1949 dev->bd->props.type = props->type;
1950 dev->bd->props.max_brightness = props->max_brightness;
1951 dev->bd->props.brightness = props->brightness;
1952 dev->bd->props.power = props->power;
1953 dev->bd->data = data;
1954 dev->bd->dev = dev;
1955 dev->bd->name = strdup(name, M_DEVBUF);
1956
1957 dev->backlight_dev = backlight_register(name, dev->bsddev);
1958
1959 return (dev->bd);
1960 }
1961
1962 void
linux_backlight_device_unregister(struct backlight_device * bd)1963 linux_backlight_device_unregister(struct backlight_device *bd)
1964 {
1965
1966 backlight_destroy(bd->dev->backlight_dev);
1967 free(bd->name, M_DEVBUF);
1968 free(bd, M_DEVBUF);
1969 }
1970