1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 2002 Doug Rabson
5 * Copyright (c) 1994-1995 Søren Schmidt
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer
13 * in this position and unchanged.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. The name of the author may not be used to endorse or promote products
18 * derived from this software without specific prior written permission
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/param.h>
33 #include <sys/fcntl.h>
34 #include <sys/jail.h>
35 #include <sys/imgact.h>
36 #include <sys/limits.h>
37 #include <sys/lock.h>
38 #include <sys/msgbuf.h>
39 #include <sys/mqueue.h>
40 #include <sys/mutex.h>
41 #include <sys/poll.h>
42 #include <sys/priv.h>
43 #include <sys/proc.h>
44 #include <sys/procctl.h>
45 #include <sys/reboot.h>
46 #include <sys/random.h>
47 #include <sys/resourcevar.h>
48 #include <sys/rtprio.h>
49 #include <sys/sched.h>
50 #include <sys/smp.h>
51 #include <sys/stat.h>
52 #include <sys/syscallsubr.h>
53 #include <sys/sysctl.h>
54 #include <sys/sysent.h>
55 #include <sys/sysproto.h>
56 #include <sys/time.h>
57 #include <sys/vmmeter.h>
58 #include <sys/vnode.h>
59
60 #include <security/audit/audit.h>
61 #include <security/mac/mac_framework.h>
62
63 #include <vm/pmap.h>
64 #include <vm/vm_map.h>
65 #include <vm/swap_pager.h>
66
67 #ifdef COMPAT_LINUX32
68 #include <machine/../linux32/linux.h>
69 #include <machine/../linux32/linux32_proto.h>
70 #else
71 #include <machine/../linux/linux.h>
72 #include <machine/../linux/linux_proto.h>
73 #endif
74
75 #include <compat/linux/linux_common.h>
76 #include <compat/linux/linux_dtrace.h>
77 #include <compat/linux/linux_file.h>
78 #include <compat/linux/linux_mib.h>
79 #include <compat/linux/linux_mmap.h>
80 #include <compat/linux/linux_signal.h>
81 #include <compat/linux/linux_time.h>
82 #include <compat/linux/linux_util.h>
83 #include <compat/linux/linux_emul.h>
84 #include <compat/linux/linux_misc.h>
85
86 int stclohz; /* Statistics clock frequency */
87
88 static unsigned int linux_to_bsd_resource[LINUX_RLIM_NLIMITS] = {
89 RLIMIT_CPU, RLIMIT_FSIZE, RLIMIT_DATA, RLIMIT_STACK,
90 RLIMIT_CORE, RLIMIT_RSS, RLIMIT_NPROC, RLIMIT_NOFILE,
91 RLIMIT_MEMLOCK, RLIMIT_AS
92 };
93
94 struct l_sysinfo {
95 l_long uptime; /* Seconds since boot */
96 l_ulong loads[3]; /* 1, 5, and 15 minute load averages */
97 #define LINUX_SYSINFO_LOADS_SCALE 65536
98 l_ulong totalram; /* Total usable main memory size */
99 l_ulong freeram; /* Available memory size */
100 l_ulong sharedram; /* Amount of shared memory */
101 l_ulong bufferram; /* Memory used by buffers */
102 l_ulong totalswap; /* Total swap space size */
103 l_ulong freeswap; /* swap space still available */
104 l_ushort procs; /* Number of current processes */
105 l_ushort pads;
106 l_ulong totalhigh;
107 l_ulong freehigh;
108 l_uint mem_unit;
109 char _f[20-2*sizeof(l_long)-sizeof(l_int)]; /* padding */
110 };
111
112 struct l_pselect6arg {
113 l_uintptr_t ss;
114 l_size_t ss_len;
115 };
116
117 static int linux_utimensat_lts_to_ts(struct l_timespec *,
118 struct timespec *);
119 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
120 static int linux_utimensat_lts64_to_ts(struct l_timespec64 *,
121 struct timespec *);
122 #endif
123 static int linux_common_utimensat(struct thread *, int,
124 const char *, struct timespec *, int);
125 static int linux_common_pselect6(struct thread *, l_int,
126 l_fd_set *, l_fd_set *, l_fd_set *,
127 struct timespec *, l_uintptr_t *);
128 static int linux_common_ppoll(struct thread *, struct pollfd *,
129 uint32_t, struct timespec *, l_sigset_t *,
130 l_size_t);
131 static int linux_pollin(struct thread *, struct pollfd *,
132 struct pollfd *, u_int);
133 static int linux_pollout(struct thread *, struct pollfd *,
134 struct pollfd *, u_int);
135
136 int
linux_sysinfo(struct thread * td,struct linux_sysinfo_args * args)137 linux_sysinfo(struct thread *td, struct linux_sysinfo_args *args)
138 {
139 struct l_sysinfo sysinfo;
140 int i, j;
141 struct timespec ts;
142
143 bzero(&sysinfo, sizeof(sysinfo));
144 getnanouptime(&ts);
145 if (ts.tv_nsec != 0)
146 ts.tv_sec++;
147 sysinfo.uptime = ts.tv_sec;
148
149 /* Use the information from the mib to get our load averages */
150 for (i = 0; i < 3; i++)
151 sysinfo.loads[i] = averunnable.ldavg[i] *
152 LINUX_SYSINFO_LOADS_SCALE / averunnable.fscale;
153
154 sysinfo.totalram = physmem * PAGE_SIZE;
155 sysinfo.freeram = (u_long)vm_free_count() * PAGE_SIZE;
156
157 /*
158 * sharedram counts pages allocated to named, swap-backed objects such
159 * as shared memory segments and tmpfs files. There is no cheap way to
160 * compute this, so just leave the field unpopulated. Linux itself only
161 * started setting this field in the 3.x timeframe.
162 */
163 sysinfo.sharedram = 0;
164 sysinfo.bufferram = 0;
165
166 swap_pager_status(&i, &j);
167 sysinfo.totalswap = i * PAGE_SIZE;
168 sysinfo.freeswap = (i - j) * PAGE_SIZE;
169
170 sysinfo.procs = nprocs;
171
172 /*
173 * Platforms supported by the emulation layer do not have a notion of
174 * high memory.
175 */
176 sysinfo.totalhigh = 0;
177 sysinfo.freehigh = 0;
178
179 sysinfo.mem_unit = 1;
180
181 return (copyout(&sysinfo, args->info, sizeof(sysinfo)));
182 }
183
184 #ifdef LINUX_LEGACY_SYSCALLS
185 int
linux_alarm(struct thread * td,struct linux_alarm_args * args)186 linux_alarm(struct thread *td, struct linux_alarm_args *args)
187 {
188 struct itimerval it, old_it;
189 u_int secs;
190 int error __diagused;
191
192 secs = args->secs;
193 /*
194 * Linux alarm() is always successful. Limit secs to INT32_MAX / 2
195 * to match kern_setitimer()'s limit to avoid error from it.
196 *
197 * XXX. Linux limit secs to INT_MAX on 32 and does not limit on 64-bit
198 * platforms.
199 */
200 if (secs > INT32_MAX / 2)
201 secs = INT32_MAX / 2;
202
203 it.it_value.tv_sec = secs;
204 it.it_value.tv_usec = 0;
205 timevalclear(&it.it_interval);
206 error = kern_setitimer(td, ITIMER_REAL, &it, &old_it);
207 KASSERT(error == 0, ("kern_setitimer returns %d", error));
208
209 if ((old_it.it_value.tv_sec == 0 && old_it.it_value.tv_usec > 0) ||
210 old_it.it_value.tv_usec >= 500000)
211 old_it.it_value.tv_sec++;
212 td->td_retval[0] = old_it.it_value.tv_sec;
213 return (0);
214 }
215 #endif
216
217 int
linux_brk(struct thread * td,struct linux_brk_args * args)218 linux_brk(struct thread *td, struct linux_brk_args *args)
219 {
220 struct vmspace *vm = td->td_proc->p_vmspace;
221 uintptr_t new, old;
222
223 old = (uintptr_t)vm->vm_daddr + ctob(vm->vm_dsize);
224 new = (uintptr_t)args->dsend;
225 if ((caddr_t)new > vm->vm_daddr && !kern_break(td, &new))
226 td->td_retval[0] = (register_t)new;
227 else
228 td->td_retval[0] = (register_t)old;
229
230 return (0);
231 }
232
233 #ifdef LINUX_LEGACY_SYSCALLS
234 int
linux_select(struct thread * td,struct linux_select_args * args)235 linux_select(struct thread *td, struct linux_select_args *args)
236 {
237 l_timeval ltv;
238 struct timeval tv0, tv1, utv, *tvp;
239 int error;
240
241 /*
242 * Store current time for computation of the amount of
243 * time left.
244 */
245 if (args->timeout) {
246 if ((error = copyin(args->timeout, <v, sizeof(ltv))))
247 goto select_out;
248 utv.tv_sec = ltv.tv_sec;
249 utv.tv_usec = ltv.tv_usec;
250
251 if (itimerfix(&utv)) {
252 /*
253 * The timeval was invalid. Convert it to something
254 * valid that will act as it does under Linux.
255 */
256 utv.tv_sec += utv.tv_usec / 1000000;
257 utv.tv_usec %= 1000000;
258 if (utv.tv_usec < 0) {
259 utv.tv_sec -= 1;
260 utv.tv_usec += 1000000;
261 }
262 if (utv.tv_sec < 0)
263 timevalclear(&utv);
264 }
265 microtime(&tv0);
266 tvp = &utv;
267 } else
268 tvp = NULL;
269
270 error = kern_select(td, args->nfds, args->readfds, args->writefds,
271 args->exceptfds, tvp, LINUX_NFDBITS);
272 if (error)
273 goto select_out;
274
275 if (args->timeout) {
276 if (td->td_retval[0]) {
277 /*
278 * Compute how much time was left of the timeout,
279 * by subtracting the current time and the time
280 * before we started the call, and subtracting
281 * that result from the user-supplied value.
282 */
283 microtime(&tv1);
284 timevalsub(&tv1, &tv0);
285 timevalsub(&utv, &tv1);
286 if (utv.tv_sec < 0)
287 timevalclear(&utv);
288 } else
289 timevalclear(&utv);
290 ltv.tv_sec = utv.tv_sec;
291 ltv.tv_usec = utv.tv_usec;
292 if ((error = copyout(<v, args->timeout, sizeof(ltv))))
293 goto select_out;
294 }
295
296 select_out:
297 return (error);
298 }
299 #endif
300
301 int
linux_mremap(struct thread * td,struct linux_mremap_args * args)302 linux_mremap(struct thread *td, struct linux_mremap_args *args)
303 {
304 uintptr_t addr;
305 size_t len;
306 int error = 0;
307
308 if (args->flags & ~(LINUX_MREMAP_FIXED | LINUX_MREMAP_MAYMOVE)) {
309 td->td_retval[0] = 0;
310 return (EINVAL);
311 }
312
313 /*
314 * Check for the page alignment.
315 * Linux defines PAGE_MASK to be FreeBSD ~PAGE_MASK.
316 */
317 if (args->addr & PAGE_MASK) {
318 td->td_retval[0] = 0;
319 return (EINVAL);
320 }
321
322 args->new_len = round_page(args->new_len);
323 args->old_len = round_page(args->old_len);
324
325 if (args->new_len > args->old_len) {
326 td->td_retval[0] = 0;
327 return (ENOMEM);
328 }
329
330 if (args->new_len < args->old_len) {
331 addr = args->addr + args->new_len;
332 len = args->old_len - args->new_len;
333 error = kern_munmap(td, addr, len);
334 }
335
336 td->td_retval[0] = error ? 0 : (uintptr_t)args->addr;
337 return (error);
338 }
339
340 #define LINUX_MS_ASYNC 0x0001
341 #define LINUX_MS_INVALIDATE 0x0002
342 #define LINUX_MS_SYNC 0x0004
343
344 int
linux_msync(struct thread * td,struct linux_msync_args * args)345 linux_msync(struct thread *td, struct linux_msync_args *args)
346 {
347
348 return (kern_msync(td, args->addr, args->len,
349 args->fl & ~LINUX_MS_SYNC));
350 }
351
352 int
linux_mprotect(struct thread * td,struct linux_mprotect_args * uap)353 linux_mprotect(struct thread *td, struct linux_mprotect_args *uap)
354 {
355
356 return (linux_mprotect_common(td, PTROUT(uap->addr), uap->len,
357 uap->prot));
358 }
359
360 int
linux_madvise(struct thread * td,struct linux_madvise_args * uap)361 linux_madvise(struct thread *td, struct linux_madvise_args *uap)
362 {
363
364 return (linux_madvise_common(td, PTROUT(uap->addr), uap->len,
365 uap->behav));
366 }
367
368 int
linux_mmap2(struct thread * td,struct linux_mmap2_args * uap)369 linux_mmap2(struct thread *td, struct linux_mmap2_args *uap)
370 {
371 #if defined(LINUX_ARCHWANT_MMAP2PGOFF)
372 /*
373 * For architectures with sizeof (off_t) < sizeof (loff_t) mmap is
374 * implemented with mmap2 syscall and the offset is represented in
375 * multiples of page size.
376 */
377 return (linux_mmap_common(td, PTROUT(uap->addr), uap->len, uap->prot,
378 uap->flags, uap->fd, (uint64_t)(uint32_t)uap->pgoff * PAGE_SIZE));
379 #else
380 return (linux_mmap_common(td, PTROUT(uap->addr), uap->len, uap->prot,
381 uap->flags, uap->fd, uap->pgoff));
382 #endif
383 }
384
385 #ifdef LINUX_LEGACY_SYSCALLS
386 int
linux_time(struct thread * td,struct linux_time_args * args)387 linux_time(struct thread *td, struct linux_time_args *args)
388 {
389 struct timeval tv;
390 l_time_t tm;
391 int error;
392
393 microtime(&tv);
394 tm = tv.tv_sec;
395 if (args->tm && (error = copyout(&tm, args->tm, sizeof(tm))))
396 return (error);
397 td->td_retval[0] = tm;
398 return (0);
399 }
400 #endif
401
402 struct l_times_argv {
403 l_clock_t tms_utime;
404 l_clock_t tms_stime;
405 l_clock_t tms_cutime;
406 l_clock_t tms_cstime;
407 };
408
409 /*
410 * Glibc versions prior to 2.2.1 always use hard-coded CLK_TCK value.
411 * Since 2.2.1 Glibc uses value exported from kernel via AT_CLKTCK
412 * auxiliary vector entry.
413 */
414 #define CLK_TCK 100
415
416 #define CONVOTCK(r) (r.tv_sec * CLK_TCK + r.tv_usec / (1000000 / CLK_TCK))
417 #define CONVNTCK(r) (r.tv_sec * stclohz + r.tv_usec / (1000000 / stclohz))
418
419 #define CONVTCK(r) (linux_kernver(td) >= LINUX_KERNVER(2,4,0) ? \
420 CONVNTCK(r) : CONVOTCK(r))
421
422 int
linux_times(struct thread * td,struct linux_times_args * args)423 linux_times(struct thread *td, struct linux_times_args *args)
424 {
425 struct timeval tv, utime, stime, cutime, cstime;
426 struct l_times_argv tms;
427 struct proc *p;
428 int error;
429
430 if (args->buf != NULL) {
431 p = td->td_proc;
432 PROC_LOCK(p);
433 PROC_STATLOCK(p);
434 calcru(p, &utime, &stime);
435 PROC_STATUNLOCK(p);
436 calccru(p, &cutime, &cstime);
437 PROC_UNLOCK(p);
438
439 tms.tms_utime = CONVTCK(utime);
440 tms.tms_stime = CONVTCK(stime);
441
442 tms.tms_cutime = CONVTCK(cutime);
443 tms.tms_cstime = CONVTCK(cstime);
444
445 if ((error = copyout(&tms, args->buf, sizeof(tms))))
446 return (error);
447 }
448
449 microuptime(&tv);
450 td->td_retval[0] = (int)CONVTCK(tv);
451 return (0);
452 }
453
454 int
linux_newuname(struct thread * td,struct linux_newuname_args * args)455 linux_newuname(struct thread *td, struct linux_newuname_args *args)
456 {
457 struct l_new_utsname utsname;
458 char osname[LINUX_MAX_UTSNAME];
459 char osrelease[LINUX_MAX_UTSNAME];
460 char *p;
461
462 linux_get_osname(td, osname);
463 linux_get_osrelease(td, osrelease);
464
465 bzero(&utsname, sizeof(utsname));
466 strlcpy(utsname.sysname, osname, LINUX_MAX_UTSNAME);
467 getcredhostname(td->td_ucred, utsname.nodename, LINUX_MAX_UTSNAME);
468 getcreddomainname(td->td_ucred, utsname.domainname, LINUX_MAX_UTSNAME);
469 strlcpy(utsname.release, osrelease, LINUX_MAX_UTSNAME);
470 strlcpy(utsname.version, version, LINUX_MAX_UTSNAME);
471 for (p = utsname.version; *p != '\0'; ++p)
472 if (*p == '\n') {
473 *p = '\0';
474 break;
475 }
476 #if defined(__amd64__)
477 /*
478 * On amd64, Linux uname(2) needs to return "x86_64"
479 * for both 64-bit and 32-bit applications. On 32-bit,
480 * the string returned by getauxval(AT_PLATFORM) needs
481 * to remain "i686", though.
482 */
483 #if defined(COMPAT_LINUX32)
484 if (linux32_emulate_i386)
485 strlcpy(utsname.machine, "i686", LINUX_MAX_UTSNAME);
486 else
487 #endif
488 strlcpy(utsname.machine, "x86_64", LINUX_MAX_UTSNAME);
489 #elif defined(__aarch64__)
490 strlcpy(utsname.machine, "aarch64", LINUX_MAX_UTSNAME);
491 #elif defined(__i386__)
492 strlcpy(utsname.machine, "i686", LINUX_MAX_UTSNAME);
493 #endif
494
495 return (copyout(&utsname, args->buf, sizeof(utsname)));
496 }
497
498 struct l_utimbuf {
499 l_time_t l_actime;
500 l_time_t l_modtime;
501 };
502
503 #ifdef LINUX_LEGACY_SYSCALLS
504 int
linux_utime(struct thread * td,struct linux_utime_args * args)505 linux_utime(struct thread *td, struct linux_utime_args *args)
506 {
507 struct timeval tv[2], *tvp;
508 struct l_utimbuf lut;
509 int error;
510
511 if (args->times) {
512 if ((error = copyin(args->times, &lut, sizeof lut)) != 0)
513 return (error);
514 tv[0].tv_sec = lut.l_actime;
515 tv[0].tv_usec = 0;
516 tv[1].tv_sec = lut.l_modtime;
517 tv[1].tv_usec = 0;
518 tvp = tv;
519 } else
520 tvp = NULL;
521
522 return (kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE,
523 tvp, UIO_SYSSPACE));
524 }
525 #endif
526
527 #ifdef LINUX_LEGACY_SYSCALLS
528 int
linux_utimes(struct thread * td,struct linux_utimes_args * args)529 linux_utimes(struct thread *td, struct linux_utimes_args *args)
530 {
531 l_timeval ltv[2];
532 struct timeval tv[2], *tvp = NULL;
533 int error;
534
535 if (args->tptr != NULL) {
536 if ((error = copyin(args->tptr, ltv, sizeof ltv)) != 0)
537 return (error);
538 tv[0].tv_sec = ltv[0].tv_sec;
539 tv[0].tv_usec = ltv[0].tv_usec;
540 tv[1].tv_sec = ltv[1].tv_sec;
541 tv[1].tv_usec = ltv[1].tv_usec;
542 tvp = tv;
543 }
544
545 return (kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE,
546 tvp, UIO_SYSSPACE));
547 }
548 #endif
549
550 static int
linux_utimensat_lts_to_ts(struct l_timespec * l_times,struct timespec * times)551 linux_utimensat_lts_to_ts(struct l_timespec *l_times, struct timespec *times)
552 {
553
554 if (l_times->tv_nsec != LINUX_UTIME_OMIT &&
555 l_times->tv_nsec != LINUX_UTIME_NOW &&
556 (l_times->tv_nsec < 0 || l_times->tv_nsec > 999999999))
557 return (EINVAL);
558
559 times->tv_sec = l_times->tv_sec;
560 switch (l_times->tv_nsec)
561 {
562 case LINUX_UTIME_OMIT:
563 times->tv_nsec = UTIME_OMIT;
564 break;
565 case LINUX_UTIME_NOW:
566 times->tv_nsec = UTIME_NOW;
567 break;
568 default:
569 times->tv_nsec = l_times->tv_nsec;
570 }
571
572 return (0);
573 }
574
575 static int
linux_common_utimensat(struct thread * td,int ldfd,const char * pathname,struct timespec * timesp,int lflags)576 linux_common_utimensat(struct thread *td, int ldfd, const char *pathname,
577 struct timespec *timesp, int lflags)
578 {
579 int dfd, flags = 0;
580
581 dfd = (ldfd == LINUX_AT_FDCWD) ? AT_FDCWD : ldfd;
582
583 if (lflags & ~(LINUX_AT_SYMLINK_NOFOLLOW | LINUX_AT_EMPTY_PATH))
584 return (EINVAL);
585
586 if (timesp != NULL) {
587 /* This breaks POSIX, but is what the Linux kernel does
588 * _on purpose_ (documented in the man page for utimensat(2)),
589 * so we must follow that behaviour. */
590 if (timesp[0].tv_nsec == UTIME_OMIT &&
591 timesp[1].tv_nsec == UTIME_OMIT)
592 return (0);
593 }
594
595 if (lflags & LINUX_AT_SYMLINK_NOFOLLOW)
596 flags |= AT_SYMLINK_NOFOLLOW;
597 if (lflags & LINUX_AT_EMPTY_PATH)
598 flags |= AT_EMPTY_PATH;
599
600 if (pathname != NULL)
601 return (kern_utimensat(td, dfd, pathname,
602 UIO_USERSPACE, timesp, UIO_SYSSPACE, flags));
603
604 if (lflags != 0)
605 return (EINVAL);
606
607 return (kern_futimens(td, dfd, timesp, UIO_SYSSPACE));
608 }
609
610 int
linux_utimensat(struct thread * td,struct linux_utimensat_args * args)611 linux_utimensat(struct thread *td, struct linux_utimensat_args *args)
612 {
613 struct l_timespec l_times[2];
614 struct timespec times[2], *timesp;
615 int error;
616
617 if (args->times != NULL) {
618 error = copyin(args->times, l_times, sizeof(l_times));
619 if (error != 0)
620 return (error);
621
622 error = linux_utimensat_lts_to_ts(&l_times[0], ×[0]);
623 if (error != 0)
624 return (error);
625 error = linux_utimensat_lts_to_ts(&l_times[1], ×[1]);
626 if (error != 0)
627 return (error);
628 timesp = times;
629 } else
630 timesp = NULL;
631
632 return (linux_common_utimensat(td, args->dfd, args->pathname,
633 timesp, args->flags));
634 }
635
636 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
637 static int
linux_utimensat_lts64_to_ts(struct l_timespec64 * l_times,struct timespec * times)638 linux_utimensat_lts64_to_ts(struct l_timespec64 *l_times, struct timespec *times)
639 {
640
641 /* Zero out the padding in compat mode. */
642 l_times->tv_nsec &= 0xFFFFFFFFUL;
643
644 if (l_times->tv_nsec != LINUX_UTIME_OMIT &&
645 l_times->tv_nsec != LINUX_UTIME_NOW &&
646 (l_times->tv_nsec < 0 || l_times->tv_nsec > 999999999))
647 return (EINVAL);
648
649 times->tv_sec = l_times->tv_sec;
650 switch (l_times->tv_nsec)
651 {
652 case LINUX_UTIME_OMIT:
653 times->tv_nsec = UTIME_OMIT;
654 break;
655 case LINUX_UTIME_NOW:
656 times->tv_nsec = UTIME_NOW;
657 break;
658 default:
659 times->tv_nsec = l_times->tv_nsec;
660 }
661
662 return (0);
663 }
664
665 int
linux_utimensat_time64(struct thread * td,struct linux_utimensat_time64_args * args)666 linux_utimensat_time64(struct thread *td, struct linux_utimensat_time64_args *args)
667 {
668 struct l_timespec64 l_times[2];
669 struct timespec times[2], *timesp;
670 int error;
671
672 if (args->times64 != NULL) {
673 error = copyin(args->times64, l_times, sizeof(l_times));
674 if (error != 0)
675 return (error);
676
677 error = linux_utimensat_lts64_to_ts(&l_times[0], ×[0]);
678 if (error != 0)
679 return (error);
680 error = linux_utimensat_lts64_to_ts(&l_times[1], ×[1]);
681 if (error != 0)
682 return (error);
683 timesp = times;
684 } else
685 timesp = NULL;
686
687 return (linux_common_utimensat(td, args->dfd, args->pathname,
688 timesp, args->flags));
689 }
690 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
691
692 #ifdef LINUX_LEGACY_SYSCALLS
693 int
linux_futimesat(struct thread * td,struct linux_futimesat_args * args)694 linux_futimesat(struct thread *td, struct linux_futimesat_args *args)
695 {
696 l_timeval ltv[2];
697 struct timeval tv[2], *tvp = NULL;
698 int error, dfd;
699
700 dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
701
702 if (args->utimes != NULL) {
703 if ((error = copyin(args->utimes, ltv, sizeof ltv)) != 0)
704 return (error);
705 tv[0].tv_sec = ltv[0].tv_sec;
706 tv[0].tv_usec = ltv[0].tv_usec;
707 tv[1].tv_sec = ltv[1].tv_sec;
708 tv[1].tv_usec = ltv[1].tv_usec;
709 tvp = tv;
710 }
711
712 return (kern_utimesat(td, dfd, args->filename, UIO_USERSPACE,
713 tvp, UIO_SYSSPACE));
714 }
715 #endif
716
717 static int
linux_common_wait(struct thread * td,idtype_t idtype,int id,int * statusp,int options,void * rup,l_siginfo_t * infop)718 linux_common_wait(struct thread *td, idtype_t idtype, int id, int *statusp,
719 int options, void *rup, l_siginfo_t *infop)
720 {
721 l_siginfo_t lsi;
722 siginfo_t siginfo;
723 struct __wrusage wru;
724 int error, status, tmpstat, sig;
725
726 error = kern_wait6(td, idtype, id, &status, options,
727 rup != NULL ? &wru : NULL, &siginfo);
728
729 if (error == 0 && statusp) {
730 tmpstat = status & 0xffff;
731 if (WIFSIGNALED(tmpstat)) {
732 tmpstat = (tmpstat & 0xffffff80) |
733 bsd_to_linux_signal(WTERMSIG(tmpstat));
734 } else if (WIFSTOPPED(tmpstat)) {
735 tmpstat = (tmpstat & 0xffff00ff) |
736 (bsd_to_linux_signal(WSTOPSIG(tmpstat)) << 8);
737 #if defined(__aarch64__) || (defined(__amd64__) && !defined(COMPAT_LINUX32))
738 if (WSTOPSIG(status) == SIGTRAP) {
739 tmpstat = linux_ptrace_status(td,
740 siginfo.si_pid, tmpstat);
741 }
742 #endif
743 } else if (WIFCONTINUED(tmpstat)) {
744 tmpstat = 0xffff;
745 }
746 error = copyout(&tmpstat, statusp, sizeof(int));
747 }
748 if (error == 0 && rup != NULL)
749 error = linux_copyout_rusage(&wru.wru_self, rup);
750 if (error == 0 && infop != NULL && td->td_retval[0] != 0) {
751 sig = bsd_to_linux_signal(siginfo.si_signo);
752 siginfo_to_lsiginfo(&siginfo, &lsi, sig);
753 error = copyout(&lsi, infop, sizeof(lsi));
754 }
755
756 return (error);
757 }
758
759 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
760 int
linux_waitpid(struct thread * td,struct linux_waitpid_args * args)761 linux_waitpid(struct thread *td, struct linux_waitpid_args *args)
762 {
763 struct linux_wait4_args wait4_args = {
764 .pid = args->pid,
765 .status = args->status,
766 .options = args->options,
767 .rusage = NULL,
768 };
769
770 return (linux_wait4(td, &wait4_args));
771 }
772 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
773
774 int
linux_wait4(struct thread * td,struct linux_wait4_args * args)775 linux_wait4(struct thread *td, struct linux_wait4_args *args)
776 {
777 struct proc *p;
778 int options, id, idtype;
779
780 if (args->options & ~(LINUX_WUNTRACED | LINUX_WNOHANG |
781 LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL))
782 return (EINVAL);
783
784 /* -INT_MIN is not defined. */
785 if (args->pid == INT_MIN)
786 return (ESRCH);
787
788 options = 0;
789 linux_to_bsd_waitopts(args->options, &options);
790
791 /*
792 * For backward compatibility we implicitly add flags WEXITED
793 * and WTRAPPED here.
794 */
795 options |= WEXITED | WTRAPPED;
796
797 if (args->pid == WAIT_ANY) {
798 idtype = P_ALL;
799 id = 0;
800 } else if (args->pid < 0) {
801 idtype = P_PGID;
802 id = (id_t)-args->pid;
803 } else if (args->pid == 0) {
804 idtype = P_PGID;
805 p = td->td_proc;
806 PROC_LOCK(p);
807 id = p->p_pgid;
808 PROC_UNLOCK(p);
809 } else {
810 idtype = P_PID;
811 id = (id_t)args->pid;
812 }
813
814 return (linux_common_wait(td, idtype, id, args->status, options,
815 args->rusage, NULL));
816 }
817
818 int
linux_waitid(struct thread * td,struct linux_waitid_args * args)819 linux_waitid(struct thread *td, struct linux_waitid_args *args)
820 {
821 idtype_t idtype;
822 int error, options;
823 struct proc *p;
824 pid_t id;
825
826 if (args->options & ~(LINUX_WNOHANG | LINUX_WNOWAIT | LINUX_WEXITED |
827 LINUX_WSTOPPED | LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL))
828 return (EINVAL);
829
830 options = 0;
831 linux_to_bsd_waitopts(args->options, &options);
832
833 id = args->id;
834 switch (args->idtype) {
835 case LINUX_P_ALL:
836 idtype = P_ALL;
837 break;
838 case LINUX_P_PID:
839 if (args->id <= 0)
840 return (EINVAL);
841 idtype = P_PID;
842 break;
843 case LINUX_P_PGID:
844 if (linux_kernver(td) >= LINUX_KERNVER(5,4,0) && args->id == 0) {
845 p = td->td_proc;
846 PROC_LOCK(p);
847 id = p->p_pgid;
848 PROC_UNLOCK(p);
849 } else if (args->id <= 0)
850 return (EINVAL);
851 idtype = P_PGID;
852 break;
853 case LINUX_P_PIDFD:
854 LINUX_RATELIMIT_MSG("unsupported waitid P_PIDFD idtype");
855 return (ENOSYS);
856 default:
857 return (EINVAL);
858 }
859
860 error = linux_common_wait(td, idtype, id, NULL, options,
861 args->rusage, args->info);
862 td->td_retval[0] = 0;
863
864 return (error);
865 }
866
867 #ifdef LINUX_LEGACY_SYSCALLS
868 int
linux_mknod(struct thread * td,struct linux_mknod_args * args)869 linux_mknod(struct thread *td, struct linux_mknod_args *args)
870 {
871 int error;
872
873 switch (args->mode & S_IFMT) {
874 case S_IFIFO:
875 case S_IFSOCK:
876 error = kern_mkfifoat(td, AT_FDCWD, args->path, UIO_USERSPACE,
877 args->mode);
878 break;
879
880 case S_IFCHR:
881 case S_IFBLK:
882 error = kern_mknodat(td, AT_FDCWD, args->path, UIO_USERSPACE,
883 args->mode, linux_decode_dev(args->dev));
884 break;
885
886 case S_IFDIR:
887 error = EPERM;
888 break;
889
890 case 0:
891 args->mode |= S_IFREG;
892 /* FALLTHROUGH */
893 case S_IFREG:
894 error = kern_openat(td, AT_FDCWD, args->path, UIO_USERSPACE,
895 O_WRONLY | O_CREAT | O_TRUNC, args->mode);
896 if (error == 0)
897 kern_close(td, td->td_retval[0]);
898 break;
899
900 default:
901 error = EINVAL;
902 break;
903 }
904 return (error);
905 }
906 #endif
907
908 int
linux_mknodat(struct thread * td,struct linux_mknodat_args * args)909 linux_mknodat(struct thread *td, struct linux_mknodat_args *args)
910 {
911 int error, dfd;
912
913 dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
914
915 switch (args->mode & S_IFMT) {
916 case S_IFIFO:
917 case S_IFSOCK:
918 error = kern_mkfifoat(td, dfd, args->filename, UIO_USERSPACE,
919 args->mode);
920 break;
921
922 case S_IFCHR:
923 case S_IFBLK:
924 error = kern_mknodat(td, dfd, args->filename, UIO_USERSPACE,
925 args->mode, linux_decode_dev(args->dev));
926 break;
927
928 case S_IFDIR:
929 error = EPERM;
930 break;
931
932 case 0:
933 args->mode |= S_IFREG;
934 /* FALLTHROUGH */
935 case S_IFREG:
936 error = kern_openat(td, dfd, args->filename, UIO_USERSPACE,
937 O_WRONLY | O_CREAT | O_TRUNC, args->mode);
938 if (error == 0)
939 kern_close(td, td->td_retval[0]);
940 break;
941
942 default:
943 error = EINVAL;
944 break;
945 }
946 return (error);
947 }
948
949 /*
950 * UGH! This is just about the dumbest idea I've ever heard!!
951 */
952 int
linux_personality(struct thread * td,struct linux_personality_args * args)953 linux_personality(struct thread *td, struct linux_personality_args *args)
954 {
955 struct linux_pemuldata *pem;
956 struct proc *p = td->td_proc;
957 uint32_t old;
958
959 PROC_LOCK(p);
960 pem = pem_find(p);
961 old = pem->persona;
962 if (args->per != 0xffffffff)
963 pem->persona = args->per;
964 PROC_UNLOCK(p);
965
966 td->td_retval[0] = old;
967 return (0);
968 }
969
970 struct l_itimerval {
971 l_timeval it_interval;
972 l_timeval it_value;
973 };
974
975 #define B2L_ITIMERVAL(bip, lip) \
976 (bip)->it_interval.tv_sec = (lip)->it_interval.tv_sec; \
977 (bip)->it_interval.tv_usec = (lip)->it_interval.tv_usec; \
978 (bip)->it_value.tv_sec = (lip)->it_value.tv_sec; \
979 (bip)->it_value.tv_usec = (lip)->it_value.tv_usec;
980
981 int
linux_setitimer(struct thread * td,struct linux_setitimer_args * uap)982 linux_setitimer(struct thread *td, struct linux_setitimer_args *uap)
983 {
984 int error;
985 struct l_itimerval ls;
986 struct itimerval aitv, oitv;
987
988 if (uap->itv == NULL) {
989 uap->itv = uap->oitv;
990 return (linux_getitimer(td, (struct linux_getitimer_args *)uap));
991 }
992
993 error = copyin(uap->itv, &ls, sizeof(ls));
994 if (error != 0)
995 return (error);
996 B2L_ITIMERVAL(&aitv, &ls);
997 error = kern_setitimer(td, uap->which, &aitv, &oitv);
998 if (error != 0 || uap->oitv == NULL)
999 return (error);
1000 B2L_ITIMERVAL(&ls, &oitv);
1001
1002 return (copyout(&ls, uap->oitv, sizeof(ls)));
1003 }
1004
1005 int
linux_getitimer(struct thread * td,struct linux_getitimer_args * uap)1006 linux_getitimer(struct thread *td, struct linux_getitimer_args *uap)
1007 {
1008 int error;
1009 struct l_itimerval ls;
1010 struct itimerval aitv;
1011
1012 error = kern_getitimer(td, uap->which, &aitv);
1013 if (error != 0)
1014 return (error);
1015 B2L_ITIMERVAL(&ls, &aitv);
1016 return (copyout(&ls, uap->itv, sizeof(ls)));
1017 }
1018
1019 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
1020 int
linux_nice(struct thread * td,struct linux_nice_args * args)1021 linux_nice(struct thread *td, struct linux_nice_args *args)
1022 {
1023
1024 return (kern_setpriority(td, PRIO_PROCESS, 0, args->inc));
1025 }
1026 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
1027
1028 int
linux_setgroups(struct thread * td,struct linux_setgroups_args * args)1029 linux_setgroups(struct thread *td, struct linux_setgroups_args *args)
1030 {
1031 const int ngrp = args->gidsetsize;
1032 struct ucred *newcred, *oldcred;
1033 l_gid_t *linux_gidset;
1034 int error;
1035 struct proc *p;
1036
1037 if (ngrp < 0 || ngrp > ngroups_max)
1038 return (EINVAL);
1039 linux_gidset = malloc(ngrp * sizeof(*linux_gidset), M_LINUX, M_WAITOK);
1040 error = copyin(args->grouplist, linux_gidset, ngrp * sizeof(l_gid_t));
1041 if (error)
1042 goto out;
1043
1044 newcred = crget();
1045 crextend(newcred, ngrp);
1046 p = td->td_proc;
1047 PROC_LOCK(p);
1048 oldcred = crcopysafe(p, newcred);
1049
1050 if ((error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS)) != 0) {
1051 PROC_UNLOCK(p);
1052 crfree(newcred);
1053 goto out;
1054 }
1055
1056 newcred->cr_ngroups = ngrp;
1057 for (int i = 0; i < ngrp; i++)
1058 newcred->cr_groups[i] = linux_gidset[i];
1059 newcred->cr_flags |= CRED_FLAG_GROUPSET;
1060
1061 setsugid(p);
1062 proc_set_cred(p, newcred);
1063 PROC_UNLOCK(p);
1064 crfree(oldcred);
1065 error = 0;
1066 out:
1067 free(linux_gidset, M_LINUX);
1068 return (error);
1069 }
1070
1071 int
linux_getgroups(struct thread * td,struct linux_getgroups_args * args)1072 linux_getgroups(struct thread *td, struct linux_getgroups_args *args)
1073 {
1074 const struct ucred *const cred = td->td_ucred;
1075 l_gid_t *linux_gidset;
1076 int ngrp, error;
1077
1078 ngrp = args->gidsetsize;
1079
1080 if (ngrp == 0) {
1081 td->td_retval[0] = cred->cr_ngroups;
1082 return (0);
1083 }
1084 if (ngrp < cred->cr_ngroups)
1085 return (EINVAL);
1086
1087 ngrp = cred->cr_ngroups;
1088
1089 linux_gidset = malloc(ngrp * sizeof(*linux_gidset), M_LINUX, M_WAITOK);
1090 for (int i = 0; i < ngrp; ++i)
1091 linux_gidset[i] = cred->cr_groups[i];
1092
1093 error = copyout(linux_gidset, args->grouplist, ngrp * sizeof(l_gid_t));
1094 free(linux_gidset, M_LINUX);
1095
1096 if (error != 0)
1097 return (error);
1098
1099 td->td_retval[0] = ngrp;
1100 return (0);
1101 }
1102
1103 static bool
linux_get_dummy_limit(struct thread * td,l_uint resource,struct rlimit * rlim)1104 linux_get_dummy_limit(struct thread *td, l_uint resource, struct rlimit *rlim)
1105 {
1106 ssize_t size;
1107 int res, error;
1108
1109 if (linux_dummy_rlimits == 0)
1110 return (false);
1111
1112 switch (resource) {
1113 case LINUX_RLIMIT_LOCKS:
1114 case LINUX_RLIMIT_RTTIME:
1115 rlim->rlim_cur = LINUX_RLIM_INFINITY;
1116 rlim->rlim_max = LINUX_RLIM_INFINITY;
1117 return (true);
1118 case LINUX_RLIMIT_NICE:
1119 case LINUX_RLIMIT_RTPRIO:
1120 rlim->rlim_cur = 0;
1121 rlim->rlim_max = 0;
1122 return (true);
1123 case LINUX_RLIMIT_SIGPENDING:
1124 error = kernel_sysctlbyname(td,
1125 "kern.sigqueue.max_pending_per_proc",
1126 &res, &size, 0, 0, 0, 0);
1127 if (error != 0)
1128 return (false);
1129 rlim->rlim_cur = res;
1130 rlim->rlim_max = res;
1131 return (true);
1132 case LINUX_RLIMIT_MSGQUEUE:
1133 error = kernel_sysctlbyname(td,
1134 "kern.ipc.msgmnb", &res, &size, 0, 0, 0, 0);
1135 if (error != 0)
1136 return (false);
1137 rlim->rlim_cur = res;
1138 rlim->rlim_max = res;
1139 return (true);
1140 default:
1141 return (false);
1142 }
1143 }
1144
1145 int
linux_setrlimit(struct thread * td,struct linux_setrlimit_args * args)1146 linux_setrlimit(struct thread *td, struct linux_setrlimit_args *args)
1147 {
1148 struct rlimit bsd_rlim;
1149 struct l_rlimit rlim;
1150 u_int which;
1151 int error;
1152
1153 if (args->resource >= LINUX_RLIM_NLIMITS)
1154 return (EINVAL);
1155
1156 which = linux_to_bsd_resource[args->resource];
1157 if (which == -1)
1158 return (EINVAL);
1159
1160 error = copyin(args->rlim, &rlim, sizeof(rlim));
1161 if (error)
1162 return (error);
1163
1164 bsd_rlim.rlim_cur = (rlim_t)rlim.rlim_cur;
1165 bsd_rlim.rlim_max = (rlim_t)rlim.rlim_max;
1166 return (kern_setrlimit(td, which, &bsd_rlim));
1167 }
1168
1169 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
1170 int
linux_old_getrlimit(struct thread * td,struct linux_old_getrlimit_args * args)1171 linux_old_getrlimit(struct thread *td, struct linux_old_getrlimit_args *args)
1172 {
1173 struct l_rlimit rlim;
1174 struct rlimit bsd_rlim;
1175 u_int which;
1176
1177 if (linux_get_dummy_limit(td, args->resource, &bsd_rlim)) {
1178 rlim.rlim_cur = bsd_rlim.rlim_cur;
1179 rlim.rlim_max = bsd_rlim.rlim_max;
1180 return (copyout(&rlim, args->rlim, sizeof(rlim)));
1181 }
1182
1183 if (args->resource >= LINUX_RLIM_NLIMITS)
1184 return (EINVAL);
1185
1186 which = linux_to_bsd_resource[args->resource];
1187 if (which == -1)
1188 return (EINVAL);
1189
1190 lim_rlimit(td, which, &bsd_rlim);
1191
1192 #ifdef COMPAT_LINUX32
1193 rlim.rlim_cur = (unsigned int)bsd_rlim.rlim_cur;
1194 if (rlim.rlim_cur == UINT_MAX)
1195 rlim.rlim_cur = INT_MAX;
1196 rlim.rlim_max = (unsigned int)bsd_rlim.rlim_max;
1197 if (rlim.rlim_max == UINT_MAX)
1198 rlim.rlim_max = INT_MAX;
1199 #else
1200 rlim.rlim_cur = (unsigned long)bsd_rlim.rlim_cur;
1201 if (rlim.rlim_cur == ULONG_MAX)
1202 rlim.rlim_cur = LONG_MAX;
1203 rlim.rlim_max = (unsigned long)bsd_rlim.rlim_max;
1204 if (rlim.rlim_max == ULONG_MAX)
1205 rlim.rlim_max = LONG_MAX;
1206 #endif
1207 return (copyout(&rlim, args->rlim, sizeof(rlim)));
1208 }
1209 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
1210
1211 int
linux_getrlimit(struct thread * td,struct linux_getrlimit_args * args)1212 linux_getrlimit(struct thread *td, struct linux_getrlimit_args *args)
1213 {
1214 struct l_rlimit rlim;
1215 struct rlimit bsd_rlim;
1216 u_int which;
1217
1218 if (linux_get_dummy_limit(td, args->resource, &bsd_rlim)) {
1219 rlim.rlim_cur = bsd_rlim.rlim_cur;
1220 rlim.rlim_max = bsd_rlim.rlim_max;
1221 return (copyout(&rlim, args->rlim, sizeof(rlim)));
1222 }
1223
1224 if (args->resource >= LINUX_RLIM_NLIMITS)
1225 return (EINVAL);
1226
1227 which = linux_to_bsd_resource[args->resource];
1228 if (which == -1)
1229 return (EINVAL);
1230
1231 lim_rlimit(td, which, &bsd_rlim);
1232
1233 rlim.rlim_cur = (l_ulong)bsd_rlim.rlim_cur;
1234 rlim.rlim_max = (l_ulong)bsd_rlim.rlim_max;
1235 return (copyout(&rlim, args->rlim, sizeof(rlim)));
1236 }
1237
1238 int
linux_sched_setscheduler(struct thread * td,struct linux_sched_setscheduler_args * args)1239 linux_sched_setscheduler(struct thread *td,
1240 struct linux_sched_setscheduler_args *args)
1241 {
1242 struct sched_param sched_param;
1243 struct thread *tdt;
1244 int error, policy;
1245
1246 switch (args->policy) {
1247 case LINUX_SCHED_OTHER:
1248 policy = SCHED_OTHER;
1249 break;
1250 case LINUX_SCHED_FIFO:
1251 policy = SCHED_FIFO;
1252 break;
1253 case LINUX_SCHED_RR:
1254 policy = SCHED_RR;
1255 break;
1256 default:
1257 return (EINVAL);
1258 }
1259
1260 error = copyin(args->param, &sched_param, sizeof(sched_param));
1261 if (error)
1262 return (error);
1263
1264 if (linux_map_sched_prio) {
1265 switch (policy) {
1266 case SCHED_OTHER:
1267 if (sched_param.sched_priority != 0)
1268 return (EINVAL);
1269
1270 sched_param.sched_priority =
1271 PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE;
1272 break;
1273 case SCHED_FIFO:
1274 case SCHED_RR:
1275 if (sched_param.sched_priority < 1 ||
1276 sched_param.sched_priority >= LINUX_MAX_RT_PRIO)
1277 return (EINVAL);
1278
1279 /*
1280 * Map [1, LINUX_MAX_RT_PRIO - 1] to
1281 * [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down).
1282 */
1283 sched_param.sched_priority =
1284 (sched_param.sched_priority - 1) *
1285 (RTP_PRIO_MAX - RTP_PRIO_MIN + 1) /
1286 (LINUX_MAX_RT_PRIO - 1);
1287 break;
1288 }
1289 }
1290
1291 tdt = linux_tdfind(td, args->pid, -1);
1292 if (tdt == NULL)
1293 return (ESRCH);
1294
1295 error = kern_sched_setscheduler(td, tdt, policy, &sched_param);
1296 PROC_UNLOCK(tdt->td_proc);
1297 return (error);
1298 }
1299
1300 int
linux_sched_getscheduler(struct thread * td,struct linux_sched_getscheduler_args * args)1301 linux_sched_getscheduler(struct thread *td,
1302 struct linux_sched_getscheduler_args *args)
1303 {
1304 struct thread *tdt;
1305 int error, policy;
1306
1307 tdt = linux_tdfind(td, args->pid, -1);
1308 if (tdt == NULL)
1309 return (ESRCH);
1310
1311 error = kern_sched_getscheduler(td, tdt, &policy);
1312 PROC_UNLOCK(tdt->td_proc);
1313
1314 switch (policy) {
1315 case SCHED_OTHER:
1316 td->td_retval[0] = LINUX_SCHED_OTHER;
1317 break;
1318 case SCHED_FIFO:
1319 td->td_retval[0] = LINUX_SCHED_FIFO;
1320 break;
1321 case SCHED_RR:
1322 td->td_retval[0] = LINUX_SCHED_RR;
1323 break;
1324 }
1325 return (error);
1326 }
1327
1328 int
linux_sched_get_priority_max(struct thread * td,struct linux_sched_get_priority_max_args * args)1329 linux_sched_get_priority_max(struct thread *td,
1330 struct linux_sched_get_priority_max_args *args)
1331 {
1332 struct sched_get_priority_max_args bsd;
1333
1334 if (linux_map_sched_prio) {
1335 switch (args->policy) {
1336 case LINUX_SCHED_OTHER:
1337 td->td_retval[0] = 0;
1338 return (0);
1339 case LINUX_SCHED_FIFO:
1340 case LINUX_SCHED_RR:
1341 td->td_retval[0] = LINUX_MAX_RT_PRIO - 1;
1342 return (0);
1343 default:
1344 return (EINVAL);
1345 }
1346 }
1347
1348 switch (args->policy) {
1349 case LINUX_SCHED_OTHER:
1350 bsd.policy = SCHED_OTHER;
1351 break;
1352 case LINUX_SCHED_FIFO:
1353 bsd.policy = SCHED_FIFO;
1354 break;
1355 case LINUX_SCHED_RR:
1356 bsd.policy = SCHED_RR;
1357 break;
1358 default:
1359 return (EINVAL);
1360 }
1361 return (sys_sched_get_priority_max(td, &bsd));
1362 }
1363
1364 int
linux_sched_get_priority_min(struct thread * td,struct linux_sched_get_priority_min_args * args)1365 linux_sched_get_priority_min(struct thread *td,
1366 struct linux_sched_get_priority_min_args *args)
1367 {
1368 struct sched_get_priority_min_args bsd;
1369
1370 if (linux_map_sched_prio) {
1371 switch (args->policy) {
1372 case LINUX_SCHED_OTHER:
1373 td->td_retval[0] = 0;
1374 return (0);
1375 case LINUX_SCHED_FIFO:
1376 case LINUX_SCHED_RR:
1377 td->td_retval[0] = 1;
1378 return (0);
1379 default:
1380 return (EINVAL);
1381 }
1382 }
1383
1384 switch (args->policy) {
1385 case LINUX_SCHED_OTHER:
1386 bsd.policy = SCHED_OTHER;
1387 break;
1388 case LINUX_SCHED_FIFO:
1389 bsd.policy = SCHED_FIFO;
1390 break;
1391 case LINUX_SCHED_RR:
1392 bsd.policy = SCHED_RR;
1393 break;
1394 default:
1395 return (EINVAL);
1396 }
1397 return (sys_sched_get_priority_min(td, &bsd));
1398 }
1399
1400 #define REBOOT_CAD_ON 0x89abcdef
1401 #define REBOOT_CAD_OFF 0
1402 #define REBOOT_HALT 0xcdef0123
1403 #define REBOOT_RESTART 0x01234567
1404 #define REBOOT_RESTART2 0xA1B2C3D4
1405 #define REBOOT_POWEROFF 0x4321FEDC
1406 #define REBOOT_MAGIC1 0xfee1dead
1407 #define REBOOT_MAGIC2 0x28121969
1408 #define REBOOT_MAGIC2A 0x05121996
1409 #define REBOOT_MAGIC2B 0x16041998
1410
1411 int
linux_reboot(struct thread * td,struct linux_reboot_args * args)1412 linux_reboot(struct thread *td, struct linux_reboot_args *args)
1413 {
1414 struct reboot_args bsd_args;
1415
1416 if (args->magic1 != REBOOT_MAGIC1)
1417 return (EINVAL);
1418
1419 switch (args->magic2) {
1420 case REBOOT_MAGIC2:
1421 case REBOOT_MAGIC2A:
1422 case REBOOT_MAGIC2B:
1423 break;
1424 default:
1425 return (EINVAL);
1426 }
1427
1428 switch (args->cmd) {
1429 case REBOOT_CAD_ON:
1430 case REBOOT_CAD_OFF:
1431 return (priv_check(td, PRIV_REBOOT));
1432 case REBOOT_HALT:
1433 bsd_args.opt = RB_HALT;
1434 break;
1435 case REBOOT_RESTART:
1436 case REBOOT_RESTART2:
1437 bsd_args.opt = 0;
1438 break;
1439 case REBOOT_POWEROFF:
1440 bsd_args.opt = RB_POWEROFF;
1441 break;
1442 default:
1443 return (EINVAL);
1444 }
1445 return (sys_reboot(td, &bsd_args));
1446 }
1447
1448 int
linux_getpid(struct thread * td,struct linux_getpid_args * args)1449 linux_getpid(struct thread *td, struct linux_getpid_args *args)
1450 {
1451
1452 td->td_retval[0] = td->td_proc->p_pid;
1453
1454 return (0);
1455 }
1456
1457 int
linux_gettid(struct thread * td,struct linux_gettid_args * args)1458 linux_gettid(struct thread *td, struct linux_gettid_args *args)
1459 {
1460 struct linux_emuldata *em;
1461
1462 em = em_find(td);
1463 KASSERT(em != NULL, ("gettid: emuldata not found.\n"));
1464
1465 td->td_retval[0] = em->em_tid;
1466
1467 return (0);
1468 }
1469
1470 int
linux_getppid(struct thread * td,struct linux_getppid_args * args)1471 linux_getppid(struct thread *td, struct linux_getppid_args *args)
1472 {
1473
1474 td->td_retval[0] = kern_getppid(td);
1475 return (0);
1476 }
1477
1478 int
linux_getgid(struct thread * td,struct linux_getgid_args * args)1479 linux_getgid(struct thread *td, struct linux_getgid_args *args)
1480 {
1481
1482 td->td_retval[0] = td->td_ucred->cr_rgid;
1483 return (0);
1484 }
1485
1486 int
linux_getuid(struct thread * td,struct linux_getuid_args * args)1487 linux_getuid(struct thread *td, struct linux_getuid_args *args)
1488 {
1489
1490 td->td_retval[0] = td->td_ucred->cr_ruid;
1491 return (0);
1492 }
1493
1494 int
linux_getsid(struct thread * td,struct linux_getsid_args * args)1495 linux_getsid(struct thread *td, struct linux_getsid_args *args)
1496 {
1497
1498 return (kern_getsid(td, args->pid));
1499 }
1500
1501 int
linux_getpriority(struct thread * td,struct linux_getpriority_args * args)1502 linux_getpriority(struct thread *td, struct linux_getpriority_args *args)
1503 {
1504 int error;
1505
1506 error = kern_getpriority(td, args->which, args->who);
1507 td->td_retval[0] = 20 - td->td_retval[0];
1508 return (error);
1509 }
1510
1511 int
linux_sethostname(struct thread * td,struct linux_sethostname_args * args)1512 linux_sethostname(struct thread *td, struct linux_sethostname_args *args)
1513 {
1514 int name[2];
1515
1516 name[0] = CTL_KERN;
1517 name[1] = KERN_HOSTNAME;
1518 return (userland_sysctl(td, name, 2, 0, 0, 0, args->hostname,
1519 args->len, 0, 0));
1520 }
1521
1522 int
linux_setdomainname(struct thread * td,struct linux_setdomainname_args * args)1523 linux_setdomainname(struct thread *td, struct linux_setdomainname_args *args)
1524 {
1525 int name[2];
1526
1527 name[0] = CTL_KERN;
1528 name[1] = KERN_NISDOMAINNAME;
1529 return (userland_sysctl(td, name, 2, 0, 0, 0, args->name,
1530 args->len, 0, 0));
1531 }
1532
1533 int
linux_exit_group(struct thread * td,struct linux_exit_group_args * args)1534 linux_exit_group(struct thread *td, struct linux_exit_group_args *args)
1535 {
1536
1537 LINUX_CTR2(exit_group, "thread(%d) (%d)", td->td_tid,
1538 args->error_code);
1539
1540 /*
1541 * XXX: we should send a signal to the parent if
1542 * SIGNAL_EXIT_GROUP is set. We ignore that (temporarily?)
1543 * as it doesnt occur often.
1544 */
1545 exit1(td, args->error_code, 0);
1546 /* NOTREACHED */
1547 }
1548
1549 #define _LINUX_CAPABILITY_VERSION_1 0x19980330
1550 #define _LINUX_CAPABILITY_VERSION_2 0x20071026
1551 #define _LINUX_CAPABILITY_VERSION_3 0x20080522
1552
1553 struct l_user_cap_header {
1554 l_int version;
1555 l_int pid;
1556 };
1557
1558 struct l_user_cap_data {
1559 l_int effective;
1560 l_int permitted;
1561 l_int inheritable;
1562 };
1563
1564 int
linux_capget(struct thread * td,struct linux_capget_args * uap)1565 linux_capget(struct thread *td, struct linux_capget_args *uap)
1566 {
1567 struct l_user_cap_header luch;
1568 struct l_user_cap_data lucd[2];
1569 int error, u32s;
1570
1571 if (uap->hdrp == NULL)
1572 return (EFAULT);
1573
1574 error = copyin(uap->hdrp, &luch, sizeof(luch));
1575 if (error != 0)
1576 return (error);
1577
1578 switch (luch.version) {
1579 case _LINUX_CAPABILITY_VERSION_1:
1580 u32s = 1;
1581 break;
1582 case _LINUX_CAPABILITY_VERSION_2:
1583 case _LINUX_CAPABILITY_VERSION_3:
1584 u32s = 2;
1585 break;
1586 default:
1587 luch.version = _LINUX_CAPABILITY_VERSION_1;
1588 error = copyout(&luch, uap->hdrp, sizeof(luch));
1589 if (error)
1590 return (error);
1591 return (EINVAL);
1592 }
1593
1594 if (luch.pid)
1595 return (EPERM);
1596
1597 if (uap->datap) {
1598 /*
1599 * The current implementation doesn't support setting
1600 * a capability (it's essentially a stub) so indicate
1601 * that no capabilities are currently set or available
1602 * to request.
1603 */
1604 memset(&lucd, 0, u32s * sizeof(lucd[0]));
1605 error = copyout(&lucd, uap->datap, u32s * sizeof(lucd[0]));
1606 }
1607
1608 return (error);
1609 }
1610
1611 int
linux_capset(struct thread * td,struct linux_capset_args * uap)1612 linux_capset(struct thread *td, struct linux_capset_args *uap)
1613 {
1614 struct l_user_cap_header luch;
1615 struct l_user_cap_data lucd[2];
1616 int error, i, u32s;
1617
1618 if (uap->hdrp == NULL || uap->datap == NULL)
1619 return (EFAULT);
1620
1621 error = copyin(uap->hdrp, &luch, sizeof(luch));
1622 if (error != 0)
1623 return (error);
1624
1625 switch (luch.version) {
1626 case _LINUX_CAPABILITY_VERSION_1:
1627 u32s = 1;
1628 break;
1629 case _LINUX_CAPABILITY_VERSION_2:
1630 case _LINUX_CAPABILITY_VERSION_3:
1631 u32s = 2;
1632 break;
1633 default:
1634 luch.version = _LINUX_CAPABILITY_VERSION_1;
1635 error = copyout(&luch, uap->hdrp, sizeof(luch));
1636 if (error)
1637 return (error);
1638 return (EINVAL);
1639 }
1640
1641 if (luch.pid)
1642 return (EPERM);
1643
1644 error = copyin(uap->datap, &lucd, u32s * sizeof(lucd[0]));
1645 if (error != 0)
1646 return (error);
1647
1648 /* We currently don't support setting any capabilities. */
1649 for (i = 0; i < u32s; i++) {
1650 if (lucd[i].effective || lucd[i].permitted ||
1651 lucd[i].inheritable) {
1652 linux_msg(td,
1653 "capset[%d] effective=0x%x, permitted=0x%x, "
1654 "inheritable=0x%x is not implemented", i,
1655 (int)lucd[i].effective, (int)lucd[i].permitted,
1656 (int)lucd[i].inheritable);
1657 return (EPERM);
1658 }
1659 }
1660
1661 return (0);
1662 }
1663
1664 int
linux_prctl(struct thread * td,struct linux_prctl_args * args)1665 linux_prctl(struct thread *td, struct linux_prctl_args *args)
1666 {
1667 int error = 0, max_size, arg;
1668 struct proc *p = td->td_proc;
1669 char comm[LINUX_MAX_COMM_LEN];
1670 int pdeath_signal, trace_state;
1671
1672 switch (args->option) {
1673 case LINUX_PR_SET_PDEATHSIG:
1674 if (!LINUX_SIG_VALID(args->arg2))
1675 return (EINVAL);
1676 pdeath_signal = linux_to_bsd_signal(args->arg2);
1677 return (kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_CTL,
1678 &pdeath_signal));
1679 case LINUX_PR_GET_PDEATHSIG:
1680 error = kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_STATUS,
1681 &pdeath_signal);
1682 if (error != 0)
1683 return (error);
1684 pdeath_signal = bsd_to_linux_signal(pdeath_signal);
1685 return (copyout(&pdeath_signal,
1686 (void *)(register_t)args->arg2,
1687 sizeof(pdeath_signal)));
1688 /*
1689 * In Linux, this flag controls if set[gu]id processes can coredump.
1690 * There are additional semantics imposed on processes that cannot
1691 * coredump:
1692 * - Such processes can not be ptraced.
1693 * - There are some semantics around ownership of process-related files
1694 * in the /proc namespace.
1695 *
1696 * In FreeBSD, we can (and by default, do) disable setuid coredump
1697 * system-wide with 'sugid_coredump.' We control tracability on a
1698 * per-process basis with the procctl PROC_TRACE (=> P2_NOTRACE flag).
1699 * By happy coincidence, P2_NOTRACE also prevents coredumping. So the
1700 * procctl is roughly analogous to Linux's DUMPABLE.
1701 *
1702 * So, proxy these knobs to the corresponding PROC_TRACE setting.
1703 */
1704 case LINUX_PR_GET_DUMPABLE:
1705 error = kern_procctl(td, P_PID, p->p_pid, PROC_TRACE_STATUS,
1706 &trace_state);
1707 if (error != 0)
1708 return (error);
1709 td->td_retval[0] = (trace_state != -1);
1710 return (0);
1711 case LINUX_PR_SET_DUMPABLE:
1712 /*
1713 * It is only valid for userspace to set one of these two
1714 * flags, and only one at a time.
1715 */
1716 switch (args->arg2) {
1717 case LINUX_SUID_DUMP_DISABLE:
1718 trace_state = PROC_TRACE_CTL_DISABLE_EXEC;
1719 break;
1720 case LINUX_SUID_DUMP_USER:
1721 trace_state = PROC_TRACE_CTL_ENABLE;
1722 break;
1723 default:
1724 return (EINVAL);
1725 }
1726 return (kern_procctl(td, P_PID, p->p_pid, PROC_TRACE_CTL,
1727 &trace_state));
1728 case LINUX_PR_GET_KEEPCAPS:
1729 /*
1730 * Indicate that we always clear the effective and
1731 * permitted capability sets when the user id becomes
1732 * non-zero (actually the capability sets are simply
1733 * always zero in the current implementation).
1734 */
1735 td->td_retval[0] = 0;
1736 break;
1737 case LINUX_PR_SET_KEEPCAPS:
1738 /*
1739 * Ignore requests to keep the effective and permitted
1740 * capability sets when the user id becomes non-zero.
1741 */
1742 break;
1743 case LINUX_PR_SET_NAME:
1744 /*
1745 * To be on the safe side we need to make sure to not
1746 * overflow the size a Linux program expects. We already
1747 * do this here in the copyin, so that we don't need to
1748 * check on copyout.
1749 */
1750 max_size = MIN(sizeof(comm), sizeof(p->p_comm));
1751 error = copyinstr((void *)(register_t)args->arg2, comm,
1752 max_size, NULL);
1753
1754 /* Linux silently truncates the name if it is too long. */
1755 if (error == ENAMETOOLONG) {
1756 /*
1757 * XXX: copyinstr() isn't documented to populate the
1758 * array completely, so do a copyin() to be on the
1759 * safe side. This should be changed in case
1760 * copyinstr() is changed to guarantee this.
1761 */
1762 error = copyin((void *)(register_t)args->arg2, comm,
1763 max_size - 1);
1764 comm[max_size - 1] = '\0';
1765 }
1766 if (error)
1767 return (error);
1768
1769 PROC_LOCK(p);
1770 strlcpy(p->p_comm, comm, sizeof(p->p_comm));
1771 PROC_UNLOCK(p);
1772 break;
1773 case LINUX_PR_GET_NAME:
1774 PROC_LOCK(p);
1775 strlcpy(comm, p->p_comm, sizeof(comm));
1776 PROC_UNLOCK(p);
1777 error = copyout(comm, (void *)(register_t)args->arg2,
1778 strlen(comm) + 1);
1779 break;
1780 case LINUX_PR_GET_SECCOMP:
1781 case LINUX_PR_SET_SECCOMP:
1782 /*
1783 * Same as returned by Linux without CONFIG_SECCOMP enabled.
1784 */
1785 error = EINVAL;
1786 break;
1787 case LINUX_PR_CAPBSET_READ:
1788 #if 0
1789 /*
1790 * This makes too much noise with Ubuntu Focal.
1791 */
1792 linux_msg(td, "unsupported prctl PR_CAPBSET_READ %d",
1793 (int)args->arg2);
1794 #endif
1795 error = EINVAL;
1796 break;
1797 case LINUX_PR_SET_CHILD_SUBREAPER:
1798 if (args->arg2 == 0) {
1799 return (kern_procctl(td, P_PID, 0, PROC_REAP_RELEASE,
1800 NULL));
1801 }
1802
1803 return (kern_procctl(td, P_PID, 0, PROC_REAP_ACQUIRE,
1804 NULL));
1805 case LINUX_PR_SET_NO_NEW_PRIVS:
1806 arg = args->arg2 == 1 ?
1807 PROC_NO_NEW_PRIVS_ENABLE : PROC_NO_NEW_PRIVS_DISABLE;
1808 error = kern_procctl(td, P_PID, p->p_pid,
1809 PROC_NO_NEW_PRIVS_CTL, &arg);
1810 break;
1811 case LINUX_PR_SET_PTRACER:
1812 linux_msg(td, "unsupported prctl PR_SET_PTRACER");
1813 error = EINVAL;
1814 break;
1815 default:
1816 linux_msg(td, "unsupported prctl option %d", args->option);
1817 error = EINVAL;
1818 break;
1819 }
1820
1821 return (error);
1822 }
1823
1824 int
linux_sched_setparam(struct thread * td,struct linux_sched_setparam_args * uap)1825 linux_sched_setparam(struct thread *td,
1826 struct linux_sched_setparam_args *uap)
1827 {
1828 struct sched_param sched_param;
1829 struct thread *tdt;
1830 int error, policy;
1831
1832 error = copyin(uap->param, &sched_param, sizeof(sched_param));
1833 if (error)
1834 return (error);
1835
1836 tdt = linux_tdfind(td, uap->pid, -1);
1837 if (tdt == NULL)
1838 return (ESRCH);
1839
1840 if (linux_map_sched_prio) {
1841 error = kern_sched_getscheduler(td, tdt, &policy);
1842 if (error)
1843 goto out;
1844
1845 switch (policy) {
1846 case SCHED_OTHER:
1847 if (sched_param.sched_priority != 0) {
1848 error = EINVAL;
1849 goto out;
1850 }
1851 sched_param.sched_priority =
1852 PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE;
1853 break;
1854 case SCHED_FIFO:
1855 case SCHED_RR:
1856 if (sched_param.sched_priority < 1 ||
1857 sched_param.sched_priority >= LINUX_MAX_RT_PRIO) {
1858 error = EINVAL;
1859 goto out;
1860 }
1861 /*
1862 * Map [1, LINUX_MAX_RT_PRIO - 1] to
1863 * [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down).
1864 */
1865 sched_param.sched_priority =
1866 (sched_param.sched_priority - 1) *
1867 (RTP_PRIO_MAX - RTP_PRIO_MIN + 1) /
1868 (LINUX_MAX_RT_PRIO - 1);
1869 break;
1870 }
1871 }
1872
1873 error = kern_sched_setparam(td, tdt, &sched_param);
1874 out: PROC_UNLOCK(tdt->td_proc);
1875 return (error);
1876 }
1877
1878 int
linux_sched_getparam(struct thread * td,struct linux_sched_getparam_args * uap)1879 linux_sched_getparam(struct thread *td,
1880 struct linux_sched_getparam_args *uap)
1881 {
1882 struct sched_param sched_param;
1883 struct thread *tdt;
1884 int error, policy;
1885
1886 tdt = linux_tdfind(td, uap->pid, -1);
1887 if (tdt == NULL)
1888 return (ESRCH);
1889
1890 error = kern_sched_getparam(td, tdt, &sched_param);
1891 if (error) {
1892 PROC_UNLOCK(tdt->td_proc);
1893 return (error);
1894 }
1895
1896 if (linux_map_sched_prio) {
1897 error = kern_sched_getscheduler(td, tdt, &policy);
1898 PROC_UNLOCK(tdt->td_proc);
1899 if (error)
1900 return (error);
1901
1902 switch (policy) {
1903 case SCHED_OTHER:
1904 sched_param.sched_priority = 0;
1905 break;
1906 case SCHED_FIFO:
1907 case SCHED_RR:
1908 /*
1909 * Map [0, RTP_PRIO_MAX - RTP_PRIO_MIN] to
1910 * [1, LINUX_MAX_RT_PRIO - 1] (rounding up).
1911 */
1912 sched_param.sched_priority =
1913 (sched_param.sched_priority *
1914 (LINUX_MAX_RT_PRIO - 1) +
1915 (RTP_PRIO_MAX - RTP_PRIO_MIN - 1)) /
1916 (RTP_PRIO_MAX - RTP_PRIO_MIN) + 1;
1917 break;
1918 }
1919 } else
1920 PROC_UNLOCK(tdt->td_proc);
1921
1922 error = copyout(&sched_param, uap->param, sizeof(sched_param));
1923 return (error);
1924 }
1925
1926 /*
1927 * Get affinity of a process.
1928 */
1929 int
linux_sched_getaffinity(struct thread * td,struct linux_sched_getaffinity_args * args)1930 linux_sched_getaffinity(struct thread *td,
1931 struct linux_sched_getaffinity_args *args)
1932 {
1933 struct thread *tdt;
1934 cpuset_t *mask;
1935 size_t size;
1936 int error;
1937 id_t tid;
1938
1939 tdt = linux_tdfind(td, args->pid, -1);
1940 if (tdt == NULL)
1941 return (ESRCH);
1942 tid = tdt->td_tid;
1943 PROC_UNLOCK(tdt->td_proc);
1944
1945 mask = malloc(sizeof(cpuset_t), M_LINUX, M_WAITOK | M_ZERO);
1946 size = min(args->len, sizeof(cpuset_t));
1947 error = kern_cpuset_getaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID,
1948 tid, size, mask);
1949 if (error == ERANGE)
1950 error = EINVAL;
1951 if (error == 0)
1952 error = copyout(mask, args->user_mask_ptr, size);
1953 if (error == 0)
1954 td->td_retval[0] = size;
1955 free(mask, M_LINUX);
1956 return (error);
1957 }
1958
1959 /*
1960 * Set affinity of a process.
1961 */
1962 int
linux_sched_setaffinity(struct thread * td,struct linux_sched_setaffinity_args * args)1963 linux_sched_setaffinity(struct thread *td,
1964 struct linux_sched_setaffinity_args *args)
1965 {
1966 struct thread *tdt;
1967 cpuset_t *mask;
1968 int cpu, error;
1969 size_t len;
1970 id_t tid;
1971
1972 tdt = linux_tdfind(td, args->pid, -1);
1973 if (tdt == NULL)
1974 return (ESRCH);
1975 tid = tdt->td_tid;
1976 PROC_UNLOCK(tdt->td_proc);
1977
1978 len = min(args->len, sizeof(cpuset_t));
1979 mask = malloc(sizeof(cpuset_t), M_TEMP, M_WAITOK | M_ZERO);
1980 error = copyin(args->user_mask_ptr, mask, len);
1981 if (error != 0)
1982 goto out;
1983 /* Linux ignore high bits */
1984 CPU_FOREACH_ISSET(cpu, mask)
1985 if (cpu > mp_maxid)
1986 CPU_CLR(cpu, mask);
1987
1988 error = kern_cpuset_setaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID,
1989 tid, mask);
1990 if (error == EDEADLK)
1991 error = EINVAL;
1992 out:
1993 free(mask, M_TEMP);
1994 return (error);
1995 }
1996
1997 struct linux_rlimit64 {
1998 uint64_t rlim_cur;
1999 uint64_t rlim_max;
2000 };
2001
2002 int
linux_prlimit64(struct thread * td,struct linux_prlimit64_args * args)2003 linux_prlimit64(struct thread *td, struct linux_prlimit64_args *args)
2004 {
2005 struct rlimit rlim, nrlim;
2006 struct linux_rlimit64 lrlim;
2007 struct proc *p;
2008 u_int which;
2009 int flags;
2010 int error;
2011
2012 if (args->new == NULL && args->old != NULL) {
2013 if (linux_get_dummy_limit(td, args->resource, &rlim)) {
2014 lrlim.rlim_cur = rlim.rlim_cur;
2015 lrlim.rlim_max = rlim.rlim_max;
2016 return (copyout(&lrlim, args->old, sizeof(lrlim)));
2017 }
2018 }
2019
2020 if (args->resource >= LINUX_RLIM_NLIMITS)
2021 return (EINVAL);
2022
2023 which = linux_to_bsd_resource[args->resource];
2024 if (which == -1)
2025 return (EINVAL);
2026
2027 if (args->new != NULL) {
2028 /*
2029 * Note. Unlike FreeBSD where rlim is signed 64-bit Linux
2030 * rlim is unsigned 64-bit. FreeBSD treats negative limits
2031 * as INFINITY so we do not need a conversion even.
2032 */
2033 error = copyin(args->new, &nrlim, sizeof(nrlim));
2034 if (error != 0)
2035 return (error);
2036 }
2037
2038 flags = PGET_HOLD | PGET_NOTWEXIT;
2039 if (args->new != NULL)
2040 flags |= PGET_CANDEBUG;
2041 else
2042 flags |= PGET_CANSEE;
2043 if (args->pid == 0) {
2044 p = td->td_proc;
2045 PHOLD(p);
2046 } else {
2047 error = pget(args->pid, flags, &p);
2048 if (error != 0)
2049 return (error);
2050 }
2051 if (args->old != NULL) {
2052 PROC_LOCK(p);
2053 lim_rlimit_proc(p, which, &rlim);
2054 PROC_UNLOCK(p);
2055 if (rlim.rlim_cur == RLIM_INFINITY)
2056 lrlim.rlim_cur = LINUX_RLIM_INFINITY;
2057 else
2058 lrlim.rlim_cur = rlim.rlim_cur;
2059 if (rlim.rlim_max == RLIM_INFINITY)
2060 lrlim.rlim_max = LINUX_RLIM_INFINITY;
2061 else
2062 lrlim.rlim_max = rlim.rlim_max;
2063 error = copyout(&lrlim, args->old, sizeof(lrlim));
2064 if (error != 0)
2065 goto out;
2066 }
2067
2068 if (args->new != NULL)
2069 error = kern_proc_setrlimit(td, p, which, &nrlim);
2070
2071 out:
2072 PRELE(p);
2073 return (error);
2074 }
2075
2076 int
linux_pselect6(struct thread * td,struct linux_pselect6_args * args)2077 linux_pselect6(struct thread *td, struct linux_pselect6_args *args)
2078 {
2079 struct timespec ts, *tsp;
2080 int error;
2081
2082 if (args->tsp != NULL) {
2083 error = linux_get_timespec(&ts, args->tsp);
2084 if (error != 0)
2085 return (error);
2086 tsp = &ts;
2087 } else
2088 tsp = NULL;
2089
2090 error = linux_common_pselect6(td, args->nfds, args->readfds,
2091 args->writefds, args->exceptfds, tsp, args->sig);
2092
2093 if (args->tsp != NULL)
2094 linux_put_timespec(&ts, args->tsp);
2095 return (error);
2096 }
2097
2098 static int
linux_common_pselect6(struct thread * td,l_int nfds,l_fd_set * readfds,l_fd_set * writefds,l_fd_set * exceptfds,struct timespec * tsp,l_uintptr_t * sig)2099 linux_common_pselect6(struct thread *td, l_int nfds, l_fd_set *readfds,
2100 l_fd_set *writefds, l_fd_set *exceptfds, struct timespec *tsp,
2101 l_uintptr_t *sig)
2102 {
2103 struct timeval utv, tv0, tv1, *tvp;
2104 struct l_pselect6arg lpse6;
2105 sigset_t *ssp;
2106 sigset_t ss;
2107 int error;
2108
2109 ssp = NULL;
2110 if (sig != NULL) {
2111 error = copyin(sig, &lpse6, sizeof(lpse6));
2112 if (error != 0)
2113 return (error);
2114 error = linux_copyin_sigset(td, PTRIN(lpse6.ss),
2115 lpse6.ss_len, &ss, &ssp);
2116 if (error != 0)
2117 return (error);
2118 } else
2119 ssp = NULL;
2120
2121 /*
2122 * Currently glibc changes nanosecond number to microsecond.
2123 * This mean losing precision but for now it is hardly seen.
2124 */
2125 if (tsp != NULL) {
2126 TIMESPEC_TO_TIMEVAL(&utv, tsp);
2127 if (itimerfix(&utv))
2128 return (EINVAL);
2129
2130 microtime(&tv0);
2131 tvp = &utv;
2132 } else
2133 tvp = NULL;
2134
2135 error = kern_pselect(td, nfds, readfds, writefds,
2136 exceptfds, tvp, ssp, LINUX_NFDBITS);
2137
2138 if (tsp != NULL) {
2139 /*
2140 * Compute how much time was left of the timeout,
2141 * by subtracting the current time and the time
2142 * before we started the call, and subtracting
2143 * that result from the user-supplied value.
2144 */
2145 microtime(&tv1);
2146 timevalsub(&tv1, &tv0);
2147 timevalsub(&utv, &tv1);
2148 if (utv.tv_sec < 0)
2149 timevalclear(&utv);
2150 TIMEVAL_TO_TIMESPEC(&utv, tsp);
2151 }
2152 return (error);
2153 }
2154
2155 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
2156 int
linux_pselect6_time64(struct thread * td,struct linux_pselect6_time64_args * args)2157 linux_pselect6_time64(struct thread *td,
2158 struct linux_pselect6_time64_args *args)
2159 {
2160 struct timespec ts, *tsp;
2161 int error;
2162
2163 if (args->tsp != NULL) {
2164 error = linux_get_timespec64(&ts, args->tsp);
2165 if (error != 0)
2166 return (error);
2167 tsp = &ts;
2168 } else
2169 tsp = NULL;
2170
2171 error = linux_common_pselect6(td, args->nfds, args->readfds,
2172 args->writefds, args->exceptfds, tsp, args->sig);
2173
2174 if (args->tsp != NULL)
2175 linux_put_timespec64(&ts, args->tsp);
2176 return (error);
2177 }
2178 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
2179
2180 int
linux_ppoll(struct thread * td,struct linux_ppoll_args * args)2181 linux_ppoll(struct thread *td, struct linux_ppoll_args *args)
2182 {
2183 struct timespec uts, *tsp;
2184 int error;
2185
2186 if (args->tsp != NULL) {
2187 error = linux_get_timespec(&uts, args->tsp);
2188 if (error != 0)
2189 return (error);
2190 tsp = &uts;
2191 } else
2192 tsp = NULL;
2193
2194 error = linux_common_ppoll(td, args->fds, args->nfds, tsp,
2195 args->sset, args->ssize);
2196 if (error == 0 && args->tsp != NULL)
2197 error = linux_put_timespec(&uts, args->tsp);
2198 return (error);
2199 }
2200
2201 static int
linux_common_ppoll(struct thread * td,struct pollfd * fds,uint32_t nfds,struct timespec * tsp,l_sigset_t * sset,l_size_t ssize)2202 linux_common_ppoll(struct thread *td, struct pollfd *fds, uint32_t nfds,
2203 struct timespec *tsp, l_sigset_t *sset, l_size_t ssize)
2204 {
2205 struct timespec ts0, ts1;
2206 struct pollfd stackfds[32];
2207 struct pollfd *kfds;
2208 sigset_t *ssp;
2209 sigset_t ss;
2210 int error;
2211
2212 if (kern_poll_maxfds(nfds))
2213 return (EINVAL);
2214 if (sset != NULL) {
2215 error = linux_copyin_sigset(td, sset, ssize, &ss, &ssp);
2216 if (error != 0)
2217 return (error);
2218 } else
2219 ssp = NULL;
2220 if (tsp != NULL)
2221 nanotime(&ts0);
2222
2223 if (nfds > nitems(stackfds))
2224 kfds = mallocarray(nfds, sizeof(*kfds), M_TEMP, M_WAITOK);
2225 else
2226 kfds = stackfds;
2227 error = linux_pollin(td, kfds, fds, nfds);
2228 if (error != 0)
2229 goto out;
2230
2231 error = kern_poll_kfds(td, kfds, nfds, tsp, ssp);
2232 if (error == 0)
2233 error = linux_pollout(td, kfds, fds, nfds);
2234
2235 if (error == 0 && tsp != NULL) {
2236 if (td->td_retval[0]) {
2237 nanotime(&ts1);
2238 timespecsub(&ts1, &ts0, &ts1);
2239 timespecsub(tsp, &ts1, tsp);
2240 if (tsp->tv_sec < 0)
2241 timespecclear(tsp);
2242 } else
2243 timespecclear(tsp);
2244 }
2245
2246 out:
2247 if (nfds > nitems(stackfds))
2248 free(kfds, M_TEMP);
2249 return (error);
2250 }
2251
2252 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
2253 int
linux_ppoll_time64(struct thread * td,struct linux_ppoll_time64_args * args)2254 linux_ppoll_time64(struct thread *td, struct linux_ppoll_time64_args *args)
2255 {
2256 struct timespec uts, *tsp;
2257 int error;
2258
2259 if (args->tsp != NULL) {
2260 error = linux_get_timespec64(&uts, args->tsp);
2261 if (error != 0)
2262 return (error);
2263 tsp = &uts;
2264 } else
2265 tsp = NULL;
2266 error = linux_common_ppoll(td, args->fds, args->nfds, tsp,
2267 args->sset, args->ssize);
2268 if (error == 0 && args->tsp != NULL)
2269 error = linux_put_timespec64(&uts, args->tsp);
2270 return (error);
2271 }
2272 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
2273
2274 static int
linux_pollin(struct thread * td,struct pollfd * fds,struct pollfd * ufds,u_int nfd)2275 linux_pollin(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd)
2276 {
2277 int error;
2278 u_int i;
2279
2280 error = copyin(ufds, fds, nfd * sizeof(*fds));
2281 if (error != 0)
2282 return (error);
2283
2284 for (i = 0; i < nfd; i++) {
2285 if (fds->events != 0)
2286 linux_to_bsd_poll_events(td, fds->fd,
2287 fds->events, &fds->events);
2288 fds++;
2289 }
2290 return (0);
2291 }
2292
2293 static int
linux_pollout(struct thread * td,struct pollfd * fds,struct pollfd * ufds,u_int nfd)2294 linux_pollout(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd)
2295 {
2296 int error = 0;
2297 u_int i, n = 0;
2298
2299 for (i = 0; i < nfd; i++) {
2300 if (fds->revents != 0) {
2301 bsd_to_linux_poll_events(fds->revents,
2302 &fds->revents);
2303 n++;
2304 }
2305 error = copyout(&fds->revents, &ufds->revents,
2306 sizeof(ufds->revents));
2307 if (error)
2308 return (error);
2309 fds++;
2310 ufds++;
2311 }
2312 td->td_retval[0] = n;
2313 return (0);
2314 }
2315
2316 static int
linux_sched_rr_get_interval_common(struct thread * td,pid_t pid,struct timespec * ts)2317 linux_sched_rr_get_interval_common(struct thread *td, pid_t pid,
2318 struct timespec *ts)
2319 {
2320 struct thread *tdt;
2321 int error;
2322
2323 /*
2324 * According to man in case the invalid pid specified
2325 * EINVAL should be returned.
2326 */
2327 if (pid < 0)
2328 return (EINVAL);
2329
2330 tdt = linux_tdfind(td, pid, -1);
2331 if (tdt == NULL)
2332 return (ESRCH);
2333
2334 error = kern_sched_rr_get_interval_td(td, tdt, ts);
2335 PROC_UNLOCK(tdt->td_proc);
2336 return (error);
2337 }
2338
2339 int
linux_sched_rr_get_interval(struct thread * td,struct linux_sched_rr_get_interval_args * uap)2340 linux_sched_rr_get_interval(struct thread *td,
2341 struct linux_sched_rr_get_interval_args *uap)
2342 {
2343 struct timespec ts;
2344 int error;
2345
2346 error = linux_sched_rr_get_interval_common(td, uap->pid, &ts);
2347 if (error != 0)
2348 return (error);
2349 return (linux_put_timespec(&ts, uap->interval));
2350 }
2351
2352 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
2353 int
linux_sched_rr_get_interval_time64(struct thread * td,struct linux_sched_rr_get_interval_time64_args * uap)2354 linux_sched_rr_get_interval_time64(struct thread *td,
2355 struct linux_sched_rr_get_interval_time64_args *uap)
2356 {
2357 struct timespec ts;
2358 int error;
2359
2360 error = linux_sched_rr_get_interval_common(td, uap->pid, &ts);
2361 if (error != 0)
2362 return (error);
2363 return (linux_put_timespec64(&ts, uap->interval));
2364 }
2365 #endif
2366
2367 /*
2368 * In case when the Linux thread is the initial thread in
2369 * the thread group thread id is equal to the process id.
2370 * Glibc depends on this magic (assert in pthread_getattr_np.c).
2371 */
2372 struct thread *
linux_tdfind(struct thread * td,lwpid_t tid,pid_t pid)2373 linux_tdfind(struct thread *td, lwpid_t tid, pid_t pid)
2374 {
2375 struct linux_emuldata *em;
2376 struct thread *tdt;
2377 struct proc *p;
2378
2379 tdt = NULL;
2380 if (tid == 0 || tid == td->td_tid) {
2381 if (pid != -1 && td->td_proc->p_pid != pid)
2382 return (NULL);
2383 PROC_LOCK(td->td_proc);
2384 return (td);
2385 } else if (tid > PID_MAX)
2386 return (tdfind(tid, pid));
2387
2388 /*
2389 * Initial thread where the tid equal to the pid.
2390 */
2391 p = pfind(tid);
2392 if (p != NULL) {
2393 if (SV_PROC_ABI(p) != SV_ABI_LINUX ||
2394 (pid != -1 && tid != pid)) {
2395 /*
2396 * p is not a Linuxulator process.
2397 */
2398 PROC_UNLOCK(p);
2399 return (NULL);
2400 }
2401 FOREACH_THREAD_IN_PROC(p, tdt) {
2402 em = em_find(tdt);
2403 if (tid == em->em_tid)
2404 return (tdt);
2405 }
2406 PROC_UNLOCK(p);
2407 }
2408 return (NULL);
2409 }
2410
2411 void
linux_to_bsd_waitopts(int options,int * bsdopts)2412 linux_to_bsd_waitopts(int options, int *bsdopts)
2413 {
2414
2415 if (options & LINUX_WNOHANG)
2416 *bsdopts |= WNOHANG;
2417 if (options & LINUX_WUNTRACED)
2418 *bsdopts |= WUNTRACED;
2419 if (options & LINUX_WEXITED)
2420 *bsdopts |= WEXITED;
2421 if (options & LINUX_WCONTINUED)
2422 *bsdopts |= WCONTINUED;
2423 if (options & LINUX_WNOWAIT)
2424 *bsdopts |= WNOWAIT;
2425
2426 if (options & __WCLONE)
2427 *bsdopts |= WLINUXCLONE;
2428 }
2429
2430 int
linux_getrandom(struct thread * td,struct linux_getrandom_args * args)2431 linux_getrandom(struct thread *td, struct linux_getrandom_args *args)
2432 {
2433 struct uio uio;
2434 struct iovec iov;
2435 int error;
2436
2437 if (args->flags & ~(LINUX_GRND_NONBLOCK|LINUX_GRND_RANDOM))
2438 return (EINVAL);
2439 if (args->count > INT_MAX)
2440 args->count = INT_MAX;
2441
2442 iov.iov_base = args->buf;
2443 iov.iov_len = args->count;
2444
2445 uio.uio_iov = &iov;
2446 uio.uio_iovcnt = 1;
2447 uio.uio_resid = iov.iov_len;
2448 uio.uio_segflg = UIO_USERSPACE;
2449 uio.uio_rw = UIO_READ;
2450 uio.uio_td = td;
2451
2452 error = read_random_uio(&uio, args->flags & LINUX_GRND_NONBLOCK);
2453 if (error == 0)
2454 td->td_retval[0] = args->count - uio.uio_resid;
2455 return (error);
2456 }
2457
2458 int
linux_mincore(struct thread * td,struct linux_mincore_args * args)2459 linux_mincore(struct thread *td, struct linux_mincore_args *args)
2460 {
2461
2462 /* Needs to be page-aligned */
2463 if (args->start & PAGE_MASK)
2464 return (EINVAL);
2465 return (kern_mincore(td, args->start, args->len, args->vec));
2466 }
2467
2468 #define SYSLOG_TAG "<6>"
2469
2470 int
linux_syslog(struct thread * td,struct linux_syslog_args * args)2471 linux_syslog(struct thread *td, struct linux_syslog_args *args)
2472 {
2473 char buf[128], *src, *dst;
2474 u_int seq;
2475 int buflen, error;
2476
2477 if (args->type != LINUX_SYSLOG_ACTION_READ_ALL) {
2478 linux_msg(td, "syslog unsupported type 0x%x", args->type);
2479 return (EINVAL);
2480 }
2481
2482 if (args->len < 6) {
2483 td->td_retval[0] = 0;
2484 return (0);
2485 }
2486
2487 error = priv_check(td, PRIV_MSGBUF);
2488 if (error)
2489 return (error);
2490
2491 mtx_lock(&msgbuf_lock);
2492 msgbuf_peekbytes(msgbufp, NULL, 0, &seq);
2493 mtx_unlock(&msgbuf_lock);
2494
2495 dst = args->buf;
2496 error = copyout(&SYSLOG_TAG, dst, sizeof(SYSLOG_TAG));
2497 /* The -1 is to skip the trailing '\0'. */
2498 dst += sizeof(SYSLOG_TAG) - 1;
2499
2500 while (error == 0) {
2501 mtx_lock(&msgbuf_lock);
2502 buflen = msgbuf_peekbytes(msgbufp, buf, sizeof(buf), &seq);
2503 mtx_unlock(&msgbuf_lock);
2504
2505 if (buflen == 0)
2506 break;
2507
2508 for (src = buf; src < buf + buflen && error == 0; src++) {
2509 if (*src == '\0')
2510 continue;
2511
2512 if (dst >= args->buf + args->len)
2513 goto out;
2514
2515 error = copyout(src, dst, 1);
2516 dst++;
2517
2518 if (*src == '\n' && *(src + 1) != '<' &&
2519 dst + sizeof(SYSLOG_TAG) < args->buf + args->len) {
2520 error = copyout(&SYSLOG_TAG,
2521 dst, sizeof(SYSLOG_TAG));
2522 dst += sizeof(SYSLOG_TAG) - 1;
2523 }
2524 }
2525 }
2526 out:
2527 td->td_retval[0] = dst - args->buf;
2528 return (error);
2529 }
2530
2531 int
linux_getcpu(struct thread * td,struct linux_getcpu_args * args)2532 linux_getcpu(struct thread *td, struct linux_getcpu_args *args)
2533 {
2534 int cpu, error, node;
2535
2536 cpu = td->td_oncpu; /* Make sure it doesn't change during copyout(9) */
2537 error = 0;
2538 node = cpuid_to_pcpu[cpu]->pc_domain;
2539
2540 if (args->cpu != NULL)
2541 error = copyout(&cpu, args->cpu, sizeof(l_int));
2542 if (args->node != NULL)
2543 error = copyout(&node, args->node, sizeof(l_int));
2544 return (error);
2545 }
2546
2547 #if defined(__i386__) || defined(__amd64__)
2548 int
linux_poll(struct thread * td,struct linux_poll_args * args)2549 linux_poll(struct thread *td, struct linux_poll_args *args)
2550 {
2551 struct timespec ts, *tsp;
2552
2553 if (args->timeout != INFTIM) {
2554 if (args->timeout < 0)
2555 return (EINVAL);
2556 ts.tv_sec = args->timeout / 1000;
2557 ts.tv_nsec = (args->timeout % 1000) * 1000000;
2558 tsp = &ts;
2559 } else
2560 tsp = NULL;
2561
2562 return (linux_common_ppoll(td, args->fds, args->nfds,
2563 tsp, NULL, 0));
2564 }
2565 #endif /* __i386__ || __amd64__ */
2566
2567 int
linux_seccomp(struct thread * td,struct linux_seccomp_args * args)2568 linux_seccomp(struct thread *td, struct linux_seccomp_args *args)
2569 {
2570
2571 switch (args->op) {
2572 case LINUX_SECCOMP_GET_ACTION_AVAIL:
2573 return (EOPNOTSUPP);
2574 default:
2575 /*
2576 * Ignore unknown operations, just like Linux kernel built
2577 * without CONFIG_SECCOMP.
2578 */
2579 return (EINVAL);
2580 }
2581 }
2582
2583 /*
2584 * Custom version of exec_copyin_args(), to copy out argument and environment
2585 * strings from the old process address space into the temporary string buffer.
2586 * Based on freebsd32_exec_copyin_args.
2587 */
2588 static int
linux_exec_copyin_args(struct image_args * args,const char * fname,l_uintptr_t * argv,l_uintptr_t * envv)2589 linux_exec_copyin_args(struct image_args *args, const char *fname,
2590 l_uintptr_t *argv, l_uintptr_t *envv)
2591 {
2592 char *argp, *envp;
2593 l_uintptr_t *ptr, arg;
2594 int error;
2595
2596 bzero(args, sizeof(*args));
2597 if (argv == NULL)
2598 return (EFAULT);
2599
2600 /*
2601 * Allocate demand-paged memory for the file name, argument, and
2602 * environment strings.
2603 */
2604 error = exec_alloc_args(args);
2605 if (error != 0)
2606 return (error);
2607
2608 /*
2609 * Copy the file name.
2610 */
2611 error = exec_args_add_fname(args, fname, UIO_USERSPACE);
2612 if (error != 0)
2613 goto err_exit;
2614
2615 /*
2616 * extract arguments first
2617 */
2618 ptr = argv;
2619 for (;;) {
2620 error = copyin(ptr++, &arg, sizeof(arg));
2621 if (error)
2622 goto err_exit;
2623 if (arg == 0)
2624 break;
2625 argp = PTRIN(arg);
2626 error = exec_args_add_arg(args, argp, UIO_USERSPACE);
2627 if (error != 0)
2628 goto err_exit;
2629 }
2630
2631 /*
2632 * This comment is from Linux do_execveat_common:
2633 * When argv is empty, add an empty string ("") as argv[0] to
2634 * ensure confused userspace programs that start processing
2635 * from argv[1] won't end up walking envp.
2636 */
2637 if (args->argc == 0 &&
2638 (error = exec_args_add_arg(args, "", UIO_SYSSPACE) != 0))
2639 goto err_exit;
2640
2641 /*
2642 * extract environment strings
2643 */
2644 if (envv) {
2645 ptr = envv;
2646 for (;;) {
2647 error = copyin(ptr++, &arg, sizeof(arg));
2648 if (error)
2649 goto err_exit;
2650 if (arg == 0)
2651 break;
2652 envp = PTRIN(arg);
2653 error = exec_args_add_env(args, envp, UIO_USERSPACE);
2654 if (error != 0)
2655 goto err_exit;
2656 }
2657 }
2658
2659 return (0);
2660
2661 err_exit:
2662 exec_free_args(args);
2663 return (error);
2664 }
2665
2666 int
linux_execve(struct thread * td,struct linux_execve_args * args)2667 linux_execve(struct thread *td, struct linux_execve_args *args)
2668 {
2669 struct image_args eargs;
2670 int error;
2671
2672 LINUX_CTR(execve);
2673
2674 error = linux_exec_copyin_args(&eargs, args->path, args->argp,
2675 args->envp);
2676 if (error == 0)
2677 error = linux_common_execve(td, &eargs);
2678 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
2679 return (error);
2680 }
2681
2682 static void
linux_up_rtprio_if(struct thread * td1,struct rtprio * rtp)2683 linux_up_rtprio_if(struct thread *td1, struct rtprio *rtp)
2684 {
2685 struct rtprio rtp2;
2686
2687 pri_to_rtp(td1, &rtp2);
2688 if (rtp2.type < rtp->type ||
2689 (rtp2.type == rtp->type &&
2690 rtp2.prio < rtp->prio)) {
2691 rtp->type = rtp2.type;
2692 rtp->prio = rtp2.prio;
2693 }
2694 }
2695
2696 #define LINUX_PRIO_DIVIDER RTP_PRIO_MAX / LINUX_IOPRIO_MAX
2697
2698 static int
linux_rtprio2ioprio(struct rtprio * rtp)2699 linux_rtprio2ioprio(struct rtprio *rtp)
2700 {
2701 int ioprio, prio;
2702
2703 switch (rtp->type) {
2704 case RTP_PRIO_IDLE:
2705 prio = RTP_PRIO_MIN;
2706 ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_IDLE, prio);
2707 break;
2708 case RTP_PRIO_NORMAL:
2709 prio = rtp->prio / LINUX_PRIO_DIVIDER;
2710 ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_BE, prio);
2711 break;
2712 case RTP_PRIO_REALTIME:
2713 prio = rtp->prio / LINUX_PRIO_DIVIDER;
2714 ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_RT, prio);
2715 break;
2716 default:
2717 prio = RTP_PRIO_MIN;
2718 ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_NONE, prio);
2719 break;
2720 }
2721 return (ioprio);
2722 }
2723
2724 static int
linux_ioprio2rtprio(int ioprio,struct rtprio * rtp)2725 linux_ioprio2rtprio(int ioprio, struct rtprio *rtp)
2726 {
2727
2728 switch (LINUX_IOPRIO_PRIO_CLASS(ioprio)) {
2729 case LINUX_IOPRIO_CLASS_IDLE:
2730 rtp->prio = RTP_PRIO_MIN;
2731 rtp->type = RTP_PRIO_IDLE;
2732 break;
2733 case LINUX_IOPRIO_CLASS_BE:
2734 rtp->prio = LINUX_IOPRIO_PRIO_DATA(ioprio) * LINUX_PRIO_DIVIDER;
2735 rtp->type = RTP_PRIO_NORMAL;
2736 break;
2737 case LINUX_IOPRIO_CLASS_RT:
2738 rtp->prio = LINUX_IOPRIO_PRIO_DATA(ioprio) * LINUX_PRIO_DIVIDER;
2739 rtp->type = RTP_PRIO_REALTIME;
2740 break;
2741 default:
2742 return (EINVAL);
2743 }
2744 return (0);
2745 }
2746 #undef LINUX_PRIO_DIVIDER
2747
2748 int
linux_ioprio_get(struct thread * td,struct linux_ioprio_get_args * args)2749 linux_ioprio_get(struct thread *td, struct linux_ioprio_get_args *args)
2750 {
2751 struct thread *td1;
2752 struct rtprio rtp;
2753 struct pgrp *pg;
2754 struct proc *p;
2755 int error, found;
2756
2757 p = NULL;
2758 td1 = NULL;
2759 error = 0;
2760 found = 0;
2761 rtp.type = RTP_PRIO_IDLE;
2762 rtp.prio = RTP_PRIO_MAX;
2763 switch (args->which) {
2764 case LINUX_IOPRIO_WHO_PROCESS:
2765 if (args->who == 0) {
2766 td1 = td;
2767 p = td1->td_proc;
2768 PROC_LOCK(p);
2769 } else if (args->who > PID_MAX) {
2770 td1 = linux_tdfind(td, args->who, -1);
2771 if (td1 != NULL)
2772 p = td1->td_proc;
2773 } else
2774 p = pfind(args->who);
2775 if (p == NULL)
2776 return (ESRCH);
2777 if ((error = p_cansee(td, p))) {
2778 PROC_UNLOCK(p);
2779 break;
2780 }
2781 if (td1 != NULL) {
2782 pri_to_rtp(td1, &rtp);
2783 } else {
2784 FOREACH_THREAD_IN_PROC(p, td1) {
2785 linux_up_rtprio_if(td1, &rtp);
2786 }
2787 }
2788 found++;
2789 PROC_UNLOCK(p);
2790 break;
2791 case LINUX_IOPRIO_WHO_PGRP:
2792 sx_slock(&proctree_lock);
2793 if (args->who == 0) {
2794 pg = td->td_proc->p_pgrp;
2795 PGRP_LOCK(pg);
2796 } else {
2797 pg = pgfind(args->who);
2798 if (pg == NULL) {
2799 sx_sunlock(&proctree_lock);
2800 error = ESRCH;
2801 break;
2802 }
2803 }
2804 sx_sunlock(&proctree_lock);
2805 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
2806 PROC_LOCK(p);
2807 if (p->p_state == PRS_NORMAL &&
2808 p_cansee(td, p) == 0) {
2809 FOREACH_THREAD_IN_PROC(p, td1) {
2810 linux_up_rtprio_if(td1, &rtp);
2811 found++;
2812 }
2813 }
2814 PROC_UNLOCK(p);
2815 }
2816 PGRP_UNLOCK(pg);
2817 break;
2818 case LINUX_IOPRIO_WHO_USER:
2819 if (args->who == 0)
2820 args->who = td->td_ucred->cr_uid;
2821 sx_slock(&allproc_lock);
2822 FOREACH_PROC_IN_SYSTEM(p) {
2823 PROC_LOCK(p);
2824 if (p->p_state == PRS_NORMAL &&
2825 p->p_ucred->cr_uid == args->who &&
2826 p_cansee(td, p) == 0) {
2827 FOREACH_THREAD_IN_PROC(p, td1) {
2828 linux_up_rtprio_if(td1, &rtp);
2829 found++;
2830 }
2831 }
2832 PROC_UNLOCK(p);
2833 }
2834 sx_sunlock(&allproc_lock);
2835 break;
2836 default:
2837 error = EINVAL;
2838 break;
2839 }
2840 if (error == 0) {
2841 if (found != 0)
2842 td->td_retval[0] = linux_rtprio2ioprio(&rtp);
2843 else
2844 error = ESRCH;
2845 }
2846 return (error);
2847 }
2848
2849 int
linux_ioprio_set(struct thread * td,struct linux_ioprio_set_args * args)2850 linux_ioprio_set(struct thread *td, struct linux_ioprio_set_args *args)
2851 {
2852 struct thread *td1;
2853 struct rtprio rtp;
2854 struct pgrp *pg;
2855 struct proc *p;
2856 int error;
2857
2858 if ((error = linux_ioprio2rtprio(args->ioprio, &rtp)) != 0)
2859 return (error);
2860 /* Attempts to set high priorities (REALTIME) require su privileges. */
2861 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME &&
2862 (error = priv_check(td, PRIV_SCHED_RTPRIO)) != 0)
2863 return (error);
2864
2865 p = NULL;
2866 td1 = NULL;
2867 switch (args->which) {
2868 case LINUX_IOPRIO_WHO_PROCESS:
2869 if (args->who == 0) {
2870 td1 = td;
2871 p = td1->td_proc;
2872 PROC_LOCK(p);
2873 } else if (args->who > PID_MAX) {
2874 td1 = linux_tdfind(td, args->who, -1);
2875 if (td1 != NULL)
2876 p = td1->td_proc;
2877 } else
2878 p = pfind(args->who);
2879 if (p == NULL)
2880 return (ESRCH);
2881 if ((error = p_cansched(td, p))) {
2882 PROC_UNLOCK(p);
2883 break;
2884 }
2885 if (td1 != NULL) {
2886 error = rtp_to_pri(&rtp, td1);
2887 } else {
2888 FOREACH_THREAD_IN_PROC(p, td1) {
2889 if ((error = rtp_to_pri(&rtp, td1)) != 0)
2890 break;
2891 }
2892 }
2893 PROC_UNLOCK(p);
2894 break;
2895 case LINUX_IOPRIO_WHO_PGRP:
2896 sx_slock(&proctree_lock);
2897 if (args->who == 0) {
2898 pg = td->td_proc->p_pgrp;
2899 PGRP_LOCK(pg);
2900 } else {
2901 pg = pgfind(args->who);
2902 if (pg == NULL) {
2903 sx_sunlock(&proctree_lock);
2904 error = ESRCH;
2905 break;
2906 }
2907 }
2908 sx_sunlock(&proctree_lock);
2909 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
2910 PROC_LOCK(p);
2911 if (p->p_state == PRS_NORMAL &&
2912 p_cansched(td, p) == 0) {
2913 FOREACH_THREAD_IN_PROC(p, td1) {
2914 if ((error = rtp_to_pri(&rtp, td1)) != 0)
2915 break;
2916 }
2917 }
2918 PROC_UNLOCK(p);
2919 if (error != 0)
2920 break;
2921 }
2922 PGRP_UNLOCK(pg);
2923 break;
2924 case LINUX_IOPRIO_WHO_USER:
2925 if (args->who == 0)
2926 args->who = td->td_ucred->cr_uid;
2927 sx_slock(&allproc_lock);
2928 FOREACH_PROC_IN_SYSTEM(p) {
2929 PROC_LOCK(p);
2930 if (p->p_state == PRS_NORMAL &&
2931 p->p_ucred->cr_uid == args->who &&
2932 p_cansched(td, p) == 0) {
2933 FOREACH_THREAD_IN_PROC(p, td1) {
2934 if ((error = rtp_to_pri(&rtp, td1)) != 0)
2935 break;
2936 }
2937 }
2938 PROC_UNLOCK(p);
2939 if (error != 0)
2940 break;
2941 }
2942 sx_sunlock(&allproc_lock);
2943 break;
2944 default:
2945 error = EINVAL;
2946 break;
2947 }
2948 return (error);
2949 }
2950
2951 /* The only flag is O_NONBLOCK */
2952 #define B2L_MQ_FLAGS(bflags) ((bflags) != 0 ? LINUX_O_NONBLOCK : 0)
2953 #define L2B_MQ_FLAGS(lflags) ((lflags) != 0 ? O_NONBLOCK : 0)
2954
2955 int
linux_mq_open(struct thread * td,struct linux_mq_open_args * args)2956 linux_mq_open(struct thread *td, struct linux_mq_open_args *args)
2957 {
2958 struct mq_attr attr;
2959 int error, flags;
2960
2961 flags = linux_common_openflags(args->oflag);
2962 if ((flags & O_ACCMODE) == O_ACCMODE || (flags & O_EXEC) != 0)
2963 return (EINVAL);
2964 flags = FFLAGS(flags);
2965 if ((flags & O_CREAT) != 0 && args->attr != NULL) {
2966 error = copyin(args->attr, &attr, sizeof(attr));
2967 if (error != 0)
2968 return (error);
2969 attr.mq_flags = L2B_MQ_FLAGS(attr.mq_flags);
2970 }
2971
2972 return (kern_kmq_open(td, args->name, flags, args->mode,
2973 args->attr != NULL ? &attr : NULL));
2974 }
2975
2976 int
linux_mq_unlink(struct thread * td,struct linux_mq_unlink_args * args)2977 linux_mq_unlink(struct thread *td, struct linux_mq_unlink_args *args)
2978 {
2979 struct kmq_unlink_args bsd_args = {
2980 .path = PTRIN(args->name)
2981 };
2982
2983 return (sys_kmq_unlink(td, &bsd_args));
2984 }
2985
2986 int
linux_mq_timedsend(struct thread * td,struct linux_mq_timedsend_args * args)2987 linux_mq_timedsend(struct thread *td, struct linux_mq_timedsend_args *args)
2988 {
2989 struct timespec ts, *abs_timeout;
2990 int error;
2991
2992 if (args->abs_timeout == NULL)
2993 abs_timeout = NULL;
2994 else {
2995 error = linux_get_timespec(&ts, args->abs_timeout);
2996 if (error != 0)
2997 return (error);
2998 abs_timeout = &ts;
2999 }
3000
3001 return (kern_kmq_timedsend(td, args->mqd, PTRIN(args->msg_ptr),
3002 args->msg_len, args->msg_prio, abs_timeout));
3003 }
3004
3005 int
linux_mq_timedreceive(struct thread * td,struct linux_mq_timedreceive_args * args)3006 linux_mq_timedreceive(struct thread *td, struct linux_mq_timedreceive_args *args)
3007 {
3008 struct timespec ts, *abs_timeout;
3009 int error;
3010
3011 if (args->abs_timeout == NULL)
3012 abs_timeout = NULL;
3013 else {
3014 error = linux_get_timespec(&ts, args->abs_timeout);
3015 if (error != 0)
3016 return (error);
3017 abs_timeout = &ts;
3018 }
3019
3020 return (kern_kmq_timedreceive(td, args->mqd, PTRIN(args->msg_ptr),
3021 args->msg_len, args->msg_prio, abs_timeout));
3022 }
3023
3024 int
linux_mq_notify(struct thread * td,struct linux_mq_notify_args * args)3025 linux_mq_notify(struct thread *td, struct linux_mq_notify_args *args)
3026 {
3027 struct sigevent ev, *evp;
3028 struct l_sigevent l_ev;
3029 int error;
3030
3031 if (args->sevp == NULL)
3032 evp = NULL;
3033 else {
3034 error = copyin(args->sevp, &l_ev, sizeof(l_ev));
3035 if (error != 0)
3036 return (error);
3037 error = linux_convert_l_sigevent(&l_ev, &ev);
3038 if (error != 0)
3039 return (error);
3040 evp = &ev;
3041 }
3042
3043 return (kern_kmq_notify(td, args->mqd, evp));
3044 }
3045
3046 int
linux_mq_getsetattr(struct thread * td,struct linux_mq_getsetattr_args * args)3047 linux_mq_getsetattr(struct thread *td, struct linux_mq_getsetattr_args *args)
3048 {
3049 struct mq_attr attr, oattr;
3050 int error;
3051
3052 if (args->attr != NULL) {
3053 error = copyin(args->attr, &attr, sizeof(attr));
3054 if (error != 0)
3055 return (error);
3056 attr.mq_flags = L2B_MQ_FLAGS(attr.mq_flags);
3057 }
3058
3059 error = kern_kmq_setattr(td, args->mqd, args->attr != NULL ? &attr : NULL,
3060 &oattr);
3061 if (error == 0 && args->oattr != NULL) {
3062 oattr.mq_flags = B2L_MQ_FLAGS(oattr.mq_flags);
3063 bzero(oattr.__reserved, sizeof(oattr.__reserved));
3064 error = copyout(&oattr, args->oattr, sizeof(oattr));
3065 }
3066
3067 return (error);
3068 }
3069
3070 MODULE_DEPEND(linux, mqueuefs, 1, 1, 1);
3071