xref: /freebsd/sys/compat/linuxkpi/common/src/linux_compat.c (revision ef9ffb8594eee294334ced627755bf5b46b48f9f)
1 /*-
2  * Copyright (c) 2010 Isilon Systems, Inc.
3  * Copyright (c) 2010 iX Systems, Inc.
4  * Copyright (c) 2010 Panasas, Inc.
5  * Copyright (c) 2013-2021 Mellanox Technologies, Ltd.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 #include "opt_global.h"
32 #include "opt_stack.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/kernel.h>
38 #include <sys/sysctl.h>
39 #include <sys/proc.h>
40 #include <sys/sglist.h>
41 #include <sys/sleepqueue.h>
42 #include <sys/refcount.h>
43 #include <sys/lock.h>
44 #include <sys/mutex.h>
45 #include <sys/bus.h>
46 #include <sys/eventhandler.h>
47 #include <sys/fcntl.h>
48 #include <sys/file.h>
49 #include <sys/filio.h>
50 #include <sys/rwlock.h>
51 #include <sys/mman.h>
52 #include <sys/stack.h>
53 #include <sys/sysent.h>
54 #include <sys/time.h>
55 #include <sys/user.h>
56 
57 #include <vm/vm.h>
58 #include <vm/pmap.h>
59 #include <vm/vm_object.h>
60 #include <vm/vm_page.h>
61 #include <vm/vm_pager.h>
62 
63 #include <machine/stdarg.h>
64 
65 #if defined(__i386__) || defined(__amd64__)
66 #include <machine/cputypes.h>
67 #include <machine/md_var.h>
68 #endif
69 
70 #include <linux/kobject.h>
71 #include <linux/cpu.h>
72 #include <linux/device.h>
73 #include <linux/slab.h>
74 #include <linux/module.h>
75 #include <linux/moduleparam.h>
76 #include <linux/cdev.h>
77 #include <linux/file.h>
78 #include <linux/sysfs.h>
79 #include <linux/mm.h>
80 #include <linux/io.h>
81 #include <linux/vmalloc.h>
82 #include <linux/netdevice.h>
83 #include <linux/timer.h>
84 #include <linux/interrupt.h>
85 #include <linux/uaccess.h>
86 #include <linux/utsname.h>
87 #include <linux/list.h>
88 #include <linux/kthread.h>
89 #include <linux/kernel.h>
90 #include <linux/compat.h>
91 #include <linux/io-mapping.h>
92 #include <linux/poll.h>
93 #include <linux/smp.h>
94 #include <linux/wait_bit.h>
95 #include <linux/rcupdate.h>
96 #include <linux/interval_tree.h>
97 #include <linux/interval_tree_generic.h>
98 
99 #if defined(__i386__) || defined(__amd64__)
100 #include <asm/smp.h>
101 #include <asm/processor.h>
102 #endif
103 
104 #include <xen/xen.h>
105 #ifdef XENHVM
106 #undef xen_pv_domain
107 #undef xen_initial_domain
108 /* xen/xen-os.h redefines __must_check */
109 #undef __must_check
110 #include <xen/xen-os.h>
111 #endif
112 
113 SYSCTL_NODE(_compat, OID_AUTO, linuxkpi, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
114     "LinuxKPI parameters");
115 
116 int linuxkpi_debug;
117 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, debug, CTLFLAG_RWTUN,
118     &linuxkpi_debug, 0, "Set to enable pr_debug() prints. Clear to disable.");
119 
120 int linuxkpi_rcu_debug;
121 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, rcu_debug, CTLFLAG_RWTUN,
122     &linuxkpi_rcu_debug, 0, "Set to enable RCU warning. Clear to disable.");
123 
124 int linuxkpi_warn_dump_stack = 0;
125 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, warn_dump_stack, CTLFLAG_RWTUN,
126     &linuxkpi_warn_dump_stack, 0,
127     "Set to enable stack traces from WARN_ON(). Clear to disable.");
128 
129 static struct timeval lkpi_net_lastlog;
130 static int lkpi_net_curpps;
131 static int lkpi_net_maxpps = 99;
132 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, net_ratelimit, CTLFLAG_RWTUN,
133     &lkpi_net_maxpps, 0, "Limit number of LinuxKPI net messages per second.");
134 
135 MALLOC_DEFINE(M_KMALLOC, "lkpikmalloc", "Linux kmalloc compat");
136 
137 #include <linux/rbtree.h>
138 /* Undo Linux compat changes. */
139 #undef RB_ROOT
140 #undef file
141 #undef cdev
142 #define	RB_ROOT(head)	(head)->rbh_root
143 
144 static void linux_destroy_dev(struct linux_cdev *);
145 static void linux_cdev_deref(struct linux_cdev *ldev);
146 static struct vm_area_struct *linux_cdev_handle_find(void *handle);
147 
148 cpumask_t cpu_online_mask;
149 static cpumask_t **static_single_cpu_mask;
150 static cpumask_t *static_single_cpu_mask_lcs;
151 struct kobject linux_class_root;
152 struct device linux_root_device;
153 struct class linux_class_misc;
154 struct list_head pci_drivers;
155 struct list_head pci_devices;
156 spinlock_t pci_lock;
157 struct uts_namespace init_uts_ns;
158 
159 unsigned long linux_timer_hz_mask;
160 
161 wait_queue_head_t linux_bit_waitq;
162 wait_queue_head_t linux_var_waitq;
163 
164 int
panic_cmp(struct rb_node * one,struct rb_node * two)165 panic_cmp(struct rb_node *one, struct rb_node *two)
166 {
167 	panic("no cmp");
168 }
169 
170 RB_GENERATE(linux_root, rb_node, __entry, panic_cmp);
171 
172 #define	START(node)	((node)->start)
173 #define	LAST(node)	((node)->last)
174 
175 INTERVAL_TREE_DEFINE(struct interval_tree_node, rb, unsigned long,, START,
176     LAST,, lkpi_interval_tree)
177 
178 static void
linux_device_release(struct device * dev)179 linux_device_release(struct device *dev)
180 {
181 	pr_debug("linux_device_release: %s\n", dev_name(dev));
182 	kfree(dev);
183 }
184 
185 static ssize_t
linux_class_show(struct kobject * kobj,struct attribute * attr,char * buf)186 linux_class_show(struct kobject *kobj, struct attribute *attr, char *buf)
187 {
188 	struct class_attribute *dattr;
189 	ssize_t error;
190 
191 	dattr = container_of(attr, struct class_attribute, attr);
192 	error = -EIO;
193 	if (dattr->show)
194 		error = dattr->show(container_of(kobj, struct class, kobj),
195 		    dattr, buf);
196 	return (error);
197 }
198 
199 static ssize_t
linux_class_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)200 linux_class_store(struct kobject *kobj, struct attribute *attr, const char *buf,
201     size_t count)
202 {
203 	struct class_attribute *dattr;
204 	ssize_t error;
205 
206 	dattr = container_of(attr, struct class_attribute, attr);
207 	error = -EIO;
208 	if (dattr->store)
209 		error = dattr->store(container_of(kobj, struct class, kobj),
210 		    dattr, buf, count);
211 	return (error);
212 }
213 
214 static void
linux_class_release(struct kobject * kobj)215 linux_class_release(struct kobject *kobj)
216 {
217 	struct class *class;
218 
219 	class = container_of(kobj, struct class, kobj);
220 	if (class->class_release)
221 		class->class_release(class);
222 }
223 
224 static const struct sysfs_ops linux_class_sysfs = {
225 	.show  = linux_class_show,
226 	.store = linux_class_store,
227 };
228 
229 const struct kobj_type linux_class_ktype = {
230 	.release = linux_class_release,
231 	.sysfs_ops = &linux_class_sysfs
232 };
233 
234 static void
linux_dev_release(struct kobject * kobj)235 linux_dev_release(struct kobject *kobj)
236 {
237 	struct device *dev;
238 
239 	dev = container_of(kobj, struct device, kobj);
240 	/* This is the precedence defined by linux. */
241 	if (dev->release)
242 		dev->release(dev);
243 	else if (dev->class && dev->class->dev_release)
244 		dev->class->dev_release(dev);
245 }
246 
247 static ssize_t
linux_dev_show(struct kobject * kobj,struct attribute * attr,char * buf)248 linux_dev_show(struct kobject *kobj, struct attribute *attr, char *buf)
249 {
250 	struct device_attribute *dattr;
251 	ssize_t error;
252 
253 	dattr = container_of(attr, struct device_attribute, attr);
254 	error = -EIO;
255 	if (dattr->show)
256 		error = dattr->show(container_of(kobj, struct device, kobj),
257 		    dattr, buf);
258 	return (error);
259 }
260 
261 static ssize_t
linux_dev_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)262 linux_dev_store(struct kobject *kobj, struct attribute *attr, const char *buf,
263     size_t count)
264 {
265 	struct device_attribute *dattr;
266 	ssize_t error;
267 
268 	dattr = container_of(attr, struct device_attribute, attr);
269 	error = -EIO;
270 	if (dattr->store)
271 		error = dattr->store(container_of(kobj, struct device, kobj),
272 		    dattr, buf, count);
273 	return (error);
274 }
275 
276 static const struct sysfs_ops linux_dev_sysfs = {
277 	.show  = linux_dev_show,
278 	.store = linux_dev_store,
279 };
280 
281 const struct kobj_type linux_dev_ktype = {
282 	.release = linux_dev_release,
283 	.sysfs_ops = &linux_dev_sysfs
284 };
285 
286 struct device *
device_create(struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,...)287 device_create(struct class *class, struct device *parent, dev_t devt,
288     void *drvdata, const char *fmt, ...)
289 {
290 	struct device *dev;
291 	va_list args;
292 
293 	dev = kzalloc(sizeof(*dev), M_WAITOK);
294 	dev->parent = parent;
295 	dev->class = class;
296 	dev->devt = devt;
297 	dev->driver_data = drvdata;
298 	dev->release = linux_device_release;
299 	va_start(args, fmt);
300 	kobject_set_name_vargs(&dev->kobj, fmt, args);
301 	va_end(args);
302 	device_register(dev);
303 
304 	return (dev);
305 }
306 
307 struct device *
device_create_groups_vargs(struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,va_list args)308 device_create_groups_vargs(struct class *class, struct device *parent,
309     dev_t devt, void *drvdata, const struct attribute_group **groups,
310     const char *fmt, va_list args)
311 {
312 	struct device *dev = NULL;
313 	int retval = -ENODEV;
314 
315 	if (class == NULL || IS_ERR(class))
316 		goto error;
317 
318 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
319 	if (!dev) {
320 		retval = -ENOMEM;
321 		goto error;
322 	}
323 
324 	dev->devt = devt;
325 	dev->class = class;
326 	dev->parent = parent;
327 	dev->groups = groups;
328 	dev->release = device_create_release;
329 	/* device_initialize() needs the class and parent to be set */
330 	device_initialize(dev);
331 	dev_set_drvdata(dev, drvdata);
332 
333 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
334 	if (retval)
335 		goto error;
336 
337 	retval = device_add(dev);
338 	if (retval)
339 		goto error;
340 
341 	return dev;
342 
343 error:
344 	put_device(dev);
345 	return ERR_PTR(retval);
346 }
347 
348 struct class *
lkpi_class_create(const char * name)349 lkpi_class_create(const char *name)
350 {
351 	struct class *class;
352 	int error;
353 
354 	class = kzalloc(sizeof(*class), M_WAITOK);
355 	class->name = name;
356 	class->class_release = linux_class_kfree;
357 	error = class_register(class);
358 	if (error) {
359 		kfree(class);
360 		return (NULL);
361 	}
362 
363 	return (class);
364 }
365 
366 static void
linux_kq_lock(void * arg)367 linux_kq_lock(void *arg)
368 {
369 	spinlock_t *s = arg;
370 
371 	spin_lock(s);
372 }
373 static void
linux_kq_unlock(void * arg)374 linux_kq_unlock(void *arg)
375 {
376 	spinlock_t *s = arg;
377 
378 	spin_unlock(s);
379 }
380 
381 static void
linux_kq_assert_lock(void * arg,int what)382 linux_kq_assert_lock(void *arg, int what)
383 {
384 #ifdef INVARIANTS
385 	spinlock_t *s = arg;
386 
387 	if (what == LA_LOCKED)
388 		mtx_assert(s, MA_OWNED);
389 	else
390 		mtx_assert(s, MA_NOTOWNED);
391 #endif
392 }
393 
394 static void
395 linux_file_kqfilter_poll(struct linux_file *, int);
396 
397 struct linux_file *
linux_file_alloc(void)398 linux_file_alloc(void)
399 {
400 	struct linux_file *filp;
401 
402 	filp = kzalloc(sizeof(*filp), GFP_KERNEL);
403 
404 	/* set initial refcount */
405 	filp->f_count = 1;
406 
407 	/* setup fields needed by kqueue support */
408 	spin_lock_init(&filp->f_kqlock);
409 	knlist_init(&filp->f_selinfo.si_note, &filp->f_kqlock,
410 	    linux_kq_lock, linux_kq_unlock, linux_kq_assert_lock);
411 
412 	return (filp);
413 }
414 
415 void
linux_file_free(struct linux_file * filp)416 linux_file_free(struct linux_file *filp)
417 {
418 	if (filp->_file == NULL) {
419 		if (filp->f_op != NULL && filp->f_op->release != NULL)
420 			filp->f_op->release(filp->f_vnode, filp);
421 		if (filp->f_shmem != NULL)
422 			vm_object_deallocate(filp->f_shmem);
423 		kfree_rcu(filp, rcu);
424 	} else {
425 		/*
426 		 * The close method of the character device or file
427 		 * will free the linux_file structure:
428 		 */
429 		_fdrop(filp->_file, curthread);
430 	}
431 }
432 
433 struct linux_cdev *
cdev_alloc(void)434 cdev_alloc(void)
435 {
436 	struct linux_cdev *cdev;
437 
438 	cdev = kzalloc(sizeof(struct linux_cdev), M_WAITOK);
439 	kobject_init(&cdev->kobj, &linux_cdev_ktype);
440 	cdev->refs = 1;
441 	return (cdev);
442 }
443 
444 static int
linux_cdev_pager_fault(vm_object_t vm_obj,vm_ooffset_t offset,int prot,vm_page_t * mres)445 linux_cdev_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot,
446     vm_page_t *mres)
447 {
448 	struct vm_area_struct *vmap;
449 
450 	vmap = linux_cdev_handle_find(vm_obj->handle);
451 
452 	MPASS(vmap != NULL);
453 	MPASS(vmap->vm_private_data == vm_obj->handle);
454 
455 	if (likely(vmap->vm_ops != NULL && offset < vmap->vm_len)) {
456 		vm_paddr_t paddr = IDX_TO_OFF(vmap->vm_pfn) + offset;
457 		vm_page_t page;
458 
459 		if (((*mres)->flags & PG_FICTITIOUS) != 0) {
460 			/*
461 			 * If the passed in result page is a fake
462 			 * page, update it with the new physical
463 			 * address.
464 			 */
465 			page = *mres;
466 			vm_page_updatefake(page, paddr, vm_obj->memattr);
467 		} else {
468 			/*
469 			 * Replace the passed in "mres" page with our
470 			 * own fake page and free up the all of the
471 			 * original pages.
472 			 */
473 			VM_OBJECT_WUNLOCK(vm_obj);
474 			page = vm_page_getfake(paddr, vm_obj->memattr);
475 			VM_OBJECT_WLOCK(vm_obj);
476 
477 			vm_page_replace(page, vm_obj, (*mres)->pindex, *mres);
478 			*mres = page;
479 		}
480 		vm_page_valid(page);
481 		return (VM_PAGER_OK);
482 	}
483 	return (VM_PAGER_FAIL);
484 }
485 
486 static int
linux_cdev_pager_populate(vm_object_t vm_obj,vm_pindex_t pidx,int fault_type,vm_prot_t max_prot,vm_pindex_t * first,vm_pindex_t * last)487 linux_cdev_pager_populate(vm_object_t vm_obj, vm_pindex_t pidx, int fault_type,
488     vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last)
489 {
490 	struct vm_area_struct *vmap;
491 	int err;
492 
493 	/* get VM area structure */
494 	vmap = linux_cdev_handle_find(vm_obj->handle);
495 	MPASS(vmap != NULL);
496 	MPASS(vmap->vm_private_data == vm_obj->handle);
497 
498 	VM_OBJECT_WUNLOCK(vm_obj);
499 
500 	linux_set_current(curthread);
501 
502 	down_write(&vmap->vm_mm->mmap_sem);
503 	if (unlikely(vmap->vm_ops == NULL)) {
504 		err = VM_FAULT_SIGBUS;
505 	} else {
506 		struct vm_fault vmf;
507 
508 		/* fill out VM fault structure */
509 		vmf.virtual_address = (void *)(uintptr_t)IDX_TO_OFF(pidx);
510 		vmf.flags = (fault_type & VM_PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
511 		vmf.pgoff = 0;
512 		vmf.page = NULL;
513 		vmf.vma = vmap;
514 
515 		vmap->vm_pfn_count = 0;
516 		vmap->vm_pfn_pcount = &vmap->vm_pfn_count;
517 		vmap->vm_obj = vm_obj;
518 
519 		err = vmap->vm_ops->fault(&vmf);
520 
521 		while (vmap->vm_pfn_count == 0 && err == VM_FAULT_NOPAGE) {
522 			kern_yield(PRI_USER);
523 			err = vmap->vm_ops->fault(&vmf);
524 		}
525 	}
526 
527 	/* translate return code */
528 	switch (err) {
529 	case VM_FAULT_OOM:
530 		err = VM_PAGER_AGAIN;
531 		break;
532 	case VM_FAULT_SIGBUS:
533 		err = VM_PAGER_BAD;
534 		break;
535 	case VM_FAULT_NOPAGE:
536 		/*
537 		 * By contract the fault handler will return having
538 		 * busied all the pages itself. If pidx is already
539 		 * found in the object, it will simply xbusy the first
540 		 * page and return with vm_pfn_count set to 1.
541 		 */
542 		*first = vmap->vm_pfn_first;
543 		*last = *first + vmap->vm_pfn_count - 1;
544 		err = VM_PAGER_OK;
545 		break;
546 	default:
547 		err = VM_PAGER_ERROR;
548 		break;
549 	}
550 	up_write(&vmap->vm_mm->mmap_sem);
551 	VM_OBJECT_WLOCK(vm_obj);
552 	return (err);
553 }
554 
555 static struct rwlock linux_vma_lock;
556 static TAILQ_HEAD(, vm_area_struct) linux_vma_head =
557     TAILQ_HEAD_INITIALIZER(linux_vma_head);
558 
559 static void
linux_cdev_handle_free(struct vm_area_struct * vmap)560 linux_cdev_handle_free(struct vm_area_struct *vmap)
561 {
562 	/* Drop reference on vm_file */
563 	if (vmap->vm_file != NULL)
564 		fput(vmap->vm_file);
565 
566 	/* Drop reference on mm_struct */
567 	mmput(vmap->vm_mm);
568 
569 	kfree(vmap);
570 }
571 
572 static void
linux_cdev_handle_remove(struct vm_area_struct * vmap)573 linux_cdev_handle_remove(struct vm_area_struct *vmap)
574 {
575 	rw_wlock(&linux_vma_lock);
576 	TAILQ_REMOVE(&linux_vma_head, vmap, vm_entry);
577 	rw_wunlock(&linux_vma_lock);
578 }
579 
580 static struct vm_area_struct *
linux_cdev_handle_find(void * handle)581 linux_cdev_handle_find(void *handle)
582 {
583 	struct vm_area_struct *vmap;
584 
585 	rw_rlock(&linux_vma_lock);
586 	TAILQ_FOREACH(vmap, &linux_vma_head, vm_entry) {
587 		if (vmap->vm_private_data == handle)
588 			break;
589 	}
590 	rw_runlock(&linux_vma_lock);
591 	return (vmap);
592 }
593 
594 static int
linux_cdev_pager_ctor(void * handle,vm_ooffset_t size,vm_prot_t prot,vm_ooffset_t foff,struct ucred * cred,u_short * color)595 linux_cdev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
596 		      vm_ooffset_t foff, struct ucred *cred, u_short *color)
597 {
598 
599 	MPASS(linux_cdev_handle_find(handle) != NULL);
600 	*color = 0;
601 	return (0);
602 }
603 
604 static void
linux_cdev_pager_dtor(void * handle)605 linux_cdev_pager_dtor(void *handle)
606 {
607 	const struct vm_operations_struct *vm_ops;
608 	struct vm_area_struct *vmap;
609 
610 	vmap = linux_cdev_handle_find(handle);
611 	MPASS(vmap != NULL);
612 
613 	/*
614 	 * Remove handle before calling close operation to prevent
615 	 * other threads from reusing the handle pointer.
616 	 */
617 	linux_cdev_handle_remove(vmap);
618 
619 	down_write(&vmap->vm_mm->mmap_sem);
620 	vm_ops = vmap->vm_ops;
621 	if (likely(vm_ops != NULL))
622 		vm_ops->close(vmap);
623 	up_write(&vmap->vm_mm->mmap_sem);
624 
625 	linux_cdev_handle_free(vmap);
626 }
627 
628 static struct cdev_pager_ops linux_cdev_pager_ops[2] = {
629   {
630 	/* OBJT_MGTDEVICE */
631 	.cdev_pg_populate	= linux_cdev_pager_populate,
632 	.cdev_pg_ctor	= linux_cdev_pager_ctor,
633 	.cdev_pg_dtor	= linux_cdev_pager_dtor
634   },
635   {
636 	/* OBJT_DEVICE */
637 	.cdev_pg_fault	= linux_cdev_pager_fault,
638 	.cdev_pg_ctor	= linux_cdev_pager_ctor,
639 	.cdev_pg_dtor	= linux_cdev_pager_dtor
640   },
641 };
642 
643 int
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)644 zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
645     unsigned long size)
646 {
647 	vm_object_t obj;
648 	vm_page_t m;
649 
650 	obj = vma->vm_obj;
651 	if (obj == NULL || (obj->flags & OBJ_UNMANAGED) != 0)
652 		return (-ENOTSUP);
653 	VM_OBJECT_RLOCK(obj);
654 	for (m = vm_page_find_least(obj, OFF_TO_IDX(address));
655 	    m != NULL && m->pindex < OFF_TO_IDX(address + size);
656 	    m = TAILQ_NEXT(m, listq))
657 		pmap_remove_all(m);
658 	VM_OBJECT_RUNLOCK(obj);
659 	return (0);
660 }
661 
662 void
vma_set_file(struct vm_area_struct * vma,struct linux_file * file)663 vma_set_file(struct vm_area_struct *vma, struct linux_file *file)
664 {
665 	struct linux_file *tmp;
666 
667 	/* Changing an anonymous vma with this is illegal */
668 	get_file(file);
669 	tmp = vma->vm_file;
670 	vma->vm_file = file;
671 	fput(tmp);
672 }
673 
674 static struct file_operations dummy_ldev_ops = {
675 	/* XXXKIB */
676 };
677 
678 static struct linux_cdev dummy_ldev = {
679 	.ops = &dummy_ldev_ops,
680 };
681 
682 #define	LDEV_SI_DTR	0x0001
683 #define	LDEV_SI_REF	0x0002
684 
685 static void
linux_get_fop(struct linux_file * filp,const struct file_operations ** fop,struct linux_cdev ** dev)686 linux_get_fop(struct linux_file *filp, const struct file_operations **fop,
687     struct linux_cdev **dev)
688 {
689 	struct linux_cdev *ldev;
690 	u_int siref;
691 
692 	ldev = filp->f_cdev;
693 	*fop = filp->f_op;
694 	if (ldev != NULL) {
695 		if (ldev->kobj.ktype == &linux_cdev_static_ktype) {
696 			refcount_acquire(&ldev->refs);
697 		} else {
698 			for (siref = ldev->siref;;) {
699 				if ((siref & LDEV_SI_DTR) != 0) {
700 					ldev = &dummy_ldev;
701 					*fop = ldev->ops;
702 					siref = ldev->siref;
703 					MPASS((ldev->siref & LDEV_SI_DTR) == 0);
704 				} else if (atomic_fcmpset_int(&ldev->siref,
705 				    &siref, siref + LDEV_SI_REF)) {
706 					break;
707 				}
708 			}
709 		}
710 	}
711 	*dev = ldev;
712 }
713 
714 static void
linux_drop_fop(struct linux_cdev * ldev)715 linux_drop_fop(struct linux_cdev *ldev)
716 {
717 
718 	if (ldev == NULL)
719 		return;
720 	if (ldev->kobj.ktype == &linux_cdev_static_ktype) {
721 		linux_cdev_deref(ldev);
722 	} else {
723 		MPASS(ldev->kobj.ktype == &linux_cdev_ktype);
724 		MPASS((ldev->siref & ~LDEV_SI_DTR) != 0);
725 		atomic_subtract_int(&ldev->siref, LDEV_SI_REF);
726 	}
727 }
728 
729 #define	OPW(fp,td,code) ({			\
730 	struct file *__fpop;			\
731 	__typeof(code) __retval;		\
732 						\
733 	__fpop = (td)->td_fpop;			\
734 	(td)->td_fpop = (fp);			\
735 	__retval = (code);			\
736 	(td)->td_fpop = __fpop;			\
737 	__retval;				\
738 })
739 
740 static int
linux_dev_fdopen(struct cdev * dev,int fflags,struct thread * td,struct file * file)741 linux_dev_fdopen(struct cdev *dev, int fflags, struct thread *td,
742     struct file *file)
743 {
744 	struct linux_cdev *ldev;
745 	struct linux_file *filp;
746 	const struct file_operations *fop;
747 	int error;
748 
749 	ldev = dev->si_drv1;
750 
751 	filp = linux_file_alloc();
752 	filp->f_dentry = &filp->f_dentry_store;
753 	filp->f_op = ldev->ops;
754 	filp->f_mode = file->f_flag;
755 	filp->f_flags = file->f_flag;
756 	filp->f_vnode = file->f_vnode;
757 	filp->_file = file;
758 	refcount_acquire(&ldev->refs);
759 	filp->f_cdev = ldev;
760 
761 	linux_set_current(td);
762 	linux_get_fop(filp, &fop, &ldev);
763 
764 	if (fop->open != NULL) {
765 		error = -fop->open(file->f_vnode, filp);
766 		if (error != 0) {
767 			linux_drop_fop(ldev);
768 			linux_cdev_deref(filp->f_cdev);
769 			kfree(filp);
770 			return (error);
771 		}
772 	}
773 
774 	/* hold on to the vnode - used for fstat() */
775 	vref(filp->f_vnode);
776 
777 	/* release the file from devfs */
778 	finit(file, filp->f_mode, DTYPE_DEV, filp, &linuxfileops);
779 	linux_drop_fop(ldev);
780 	return (ENXIO);
781 }
782 
783 #define	LINUX_IOCTL_MIN_PTR 0x10000UL
784 #define	LINUX_IOCTL_MAX_PTR (LINUX_IOCTL_MIN_PTR + IOCPARM_MAX)
785 
786 static inline int
linux_remap_address(void ** uaddr,size_t len)787 linux_remap_address(void **uaddr, size_t len)
788 {
789 	uintptr_t uaddr_val = (uintptr_t)(*uaddr);
790 
791 	if (unlikely(uaddr_val >= LINUX_IOCTL_MIN_PTR &&
792 	    uaddr_val < LINUX_IOCTL_MAX_PTR)) {
793 		struct task_struct *pts = current;
794 		if (pts == NULL) {
795 			*uaddr = NULL;
796 			return (1);
797 		}
798 
799 		/* compute data offset */
800 		uaddr_val -= LINUX_IOCTL_MIN_PTR;
801 
802 		/* check that length is within bounds */
803 		if ((len > IOCPARM_MAX) ||
804 		    (uaddr_val + len) > pts->bsd_ioctl_len) {
805 			*uaddr = NULL;
806 			return (1);
807 		}
808 
809 		/* re-add kernel buffer address */
810 		uaddr_val += (uintptr_t)pts->bsd_ioctl_data;
811 
812 		/* update address location */
813 		*uaddr = (void *)uaddr_val;
814 		return (1);
815 	}
816 	return (0);
817 }
818 
819 int
linux_copyin(const void * uaddr,void * kaddr,size_t len)820 linux_copyin(const void *uaddr, void *kaddr, size_t len)
821 {
822 	if (linux_remap_address(__DECONST(void **, &uaddr), len)) {
823 		if (uaddr == NULL)
824 			return (-EFAULT);
825 		memcpy(kaddr, uaddr, len);
826 		return (0);
827 	}
828 	return (-copyin(uaddr, kaddr, len));
829 }
830 
831 int
linux_copyout(const void * kaddr,void * uaddr,size_t len)832 linux_copyout(const void *kaddr, void *uaddr, size_t len)
833 {
834 	if (linux_remap_address(&uaddr, len)) {
835 		if (uaddr == NULL)
836 			return (-EFAULT);
837 		memcpy(uaddr, kaddr, len);
838 		return (0);
839 	}
840 	return (-copyout(kaddr, uaddr, len));
841 }
842 
843 size_t
linux_clear_user(void * _uaddr,size_t _len)844 linux_clear_user(void *_uaddr, size_t _len)
845 {
846 	uint8_t *uaddr = _uaddr;
847 	size_t len = _len;
848 
849 	/* make sure uaddr is aligned before going into the fast loop */
850 	while (((uintptr_t)uaddr & 7) != 0 && len > 7) {
851 		if (subyte(uaddr, 0))
852 			return (_len);
853 		uaddr++;
854 		len--;
855 	}
856 
857 	/* zero 8 bytes at a time */
858 	while (len > 7) {
859 #ifdef __LP64__
860 		if (suword64(uaddr, 0))
861 			return (_len);
862 #else
863 		if (suword32(uaddr, 0))
864 			return (_len);
865 		if (suword32(uaddr + 4, 0))
866 			return (_len);
867 #endif
868 		uaddr += 8;
869 		len -= 8;
870 	}
871 
872 	/* zero fill end, if any */
873 	while (len > 0) {
874 		if (subyte(uaddr, 0))
875 			return (_len);
876 		uaddr++;
877 		len--;
878 	}
879 	return (0);
880 }
881 
882 int
linux_access_ok(const void * uaddr,size_t len)883 linux_access_ok(const void *uaddr, size_t len)
884 {
885 	uintptr_t saddr;
886 	uintptr_t eaddr;
887 
888 	/* get start and end address */
889 	saddr = (uintptr_t)uaddr;
890 	eaddr = (uintptr_t)uaddr + len;
891 
892 	/* verify addresses are valid for userspace */
893 	return ((saddr == eaddr) ||
894 	    (eaddr > saddr && eaddr <= VM_MAXUSER_ADDRESS));
895 }
896 
897 /*
898  * This function should return either EINTR or ERESTART depending on
899  * the signal type sent to this thread:
900  */
901 static int
linux_get_error(struct task_struct * task,int error)902 linux_get_error(struct task_struct *task, int error)
903 {
904 	/* check for signal type interrupt code */
905 	if (error == EINTR || error == ERESTARTSYS || error == ERESTART) {
906 		error = -linux_schedule_get_interrupt_value(task);
907 		if (error == 0)
908 			error = EINTR;
909 	}
910 	return (error);
911 }
912 
913 static int
linux_file_ioctl_sub(struct file * fp,struct linux_file * filp,const struct file_operations * fop,u_long cmd,caddr_t data,struct thread * td)914 linux_file_ioctl_sub(struct file *fp, struct linux_file *filp,
915     const struct file_operations *fop, u_long cmd, caddr_t data,
916     struct thread *td)
917 {
918 	struct task_struct *task = current;
919 	unsigned size;
920 	int error;
921 
922 	size = IOCPARM_LEN(cmd);
923 	/* refer to logic in sys_ioctl() */
924 	if (size > 0) {
925 		/*
926 		 * Setup hint for linux_copyin() and linux_copyout().
927 		 *
928 		 * Background: Linux code expects a user-space address
929 		 * while FreeBSD supplies a kernel-space address.
930 		 */
931 		task->bsd_ioctl_data = data;
932 		task->bsd_ioctl_len = size;
933 		data = (void *)LINUX_IOCTL_MIN_PTR;
934 	} else {
935 		/* fetch user-space pointer */
936 		data = *(void **)data;
937 	}
938 #ifdef COMPAT_FREEBSD32
939 	if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
940 		/* try the compat IOCTL handler first */
941 		if (fop->compat_ioctl != NULL) {
942 			error = -OPW(fp, td, fop->compat_ioctl(filp,
943 			    cmd, (u_long)data));
944 		} else {
945 			error = ENOTTY;
946 		}
947 
948 		/* fallback to the regular IOCTL handler, if any */
949 		if (error == ENOTTY && fop->unlocked_ioctl != NULL) {
950 			error = -OPW(fp, td, fop->unlocked_ioctl(filp,
951 			    cmd, (u_long)data));
952 		}
953 	} else
954 #endif
955 	{
956 		if (fop->unlocked_ioctl != NULL) {
957 			error = -OPW(fp, td, fop->unlocked_ioctl(filp,
958 			    cmd, (u_long)data));
959 		} else {
960 			error = ENOTTY;
961 		}
962 	}
963 	if (size > 0) {
964 		task->bsd_ioctl_data = NULL;
965 		task->bsd_ioctl_len = 0;
966 	}
967 
968 	if (error == EWOULDBLOCK) {
969 		/* update kqfilter status, if any */
970 		linux_file_kqfilter_poll(filp,
971 		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
972 	} else {
973 		error = linux_get_error(task, error);
974 	}
975 	return (error);
976 }
977 
978 #define	LINUX_POLL_TABLE_NORMAL ((poll_table *)1)
979 
980 /*
981  * This function atomically updates the poll wakeup state and returns
982  * the previous state at the time of update.
983  */
984 static uint8_t
linux_poll_wakeup_state(atomic_t * v,const uint8_t * pstate)985 linux_poll_wakeup_state(atomic_t *v, const uint8_t *pstate)
986 {
987 	int c, old;
988 
989 	c = v->counter;
990 
991 	while ((old = atomic_cmpxchg(v, c, pstate[c])) != c)
992 		c = old;
993 
994 	return (c);
995 }
996 
997 static int
linux_poll_wakeup_callback(wait_queue_t * wq,unsigned int wq_state,int flags,void * key)998 linux_poll_wakeup_callback(wait_queue_t *wq, unsigned int wq_state, int flags, void *key)
999 {
1000 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1001 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */
1002 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1003 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_READY,
1004 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_READY, /* NOP */
1005 	};
1006 	struct linux_file *filp = container_of(wq, struct linux_file, f_wait_queue.wq);
1007 
1008 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1009 	case LINUX_FWQ_STATE_QUEUED:
1010 		linux_poll_wakeup(filp);
1011 		return (1);
1012 	default:
1013 		return (0);
1014 	}
1015 }
1016 
1017 void
linux_poll_wait(struct linux_file * filp,wait_queue_head_t * wqh,poll_table * p)1018 linux_poll_wait(struct linux_file *filp, wait_queue_head_t *wqh, poll_table *p)
1019 {
1020 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1021 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_NOT_READY,
1022 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1023 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_QUEUED, /* NOP */
1024 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_QUEUED,
1025 	};
1026 
1027 	/* check if we are called inside the select system call */
1028 	if (p == LINUX_POLL_TABLE_NORMAL)
1029 		selrecord(curthread, &filp->f_selinfo);
1030 
1031 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1032 	case LINUX_FWQ_STATE_INIT:
1033 		/* NOTE: file handles can only belong to one wait-queue */
1034 		filp->f_wait_queue.wqh = wqh;
1035 		filp->f_wait_queue.wq.func = &linux_poll_wakeup_callback;
1036 		add_wait_queue(wqh, &filp->f_wait_queue.wq);
1037 		atomic_set(&filp->f_wait_queue.state, LINUX_FWQ_STATE_QUEUED);
1038 		break;
1039 	default:
1040 		break;
1041 	}
1042 }
1043 
1044 static void
linux_poll_wait_dequeue(struct linux_file * filp)1045 linux_poll_wait_dequeue(struct linux_file *filp)
1046 {
1047 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1048 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT,	/* NOP */
1049 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_INIT,
1050 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_INIT,
1051 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_INIT,
1052 	};
1053 
1054 	seldrain(&filp->f_selinfo);
1055 
1056 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1057 	case LINUX_FWQ_STATE_NOT_READY:
1058 	case LINUX_FWQ_STATE_QUEUED:
1059 	case LINUX_FWQ_STATE_READY:
1060 		remove_wait_queue(filp->f_wait_queue.wqh, &filp->f_wait_queue.wq);
1061 		break;
1062 	default:
1063 		break;
1064 	}
1065 }
1066 
1067 void
linux_poll_wakeup(struct linux_file * filp)1068 linux_poll_wakeup(struct linux_file *filp)
1069 {
1070 	/* this function should be NULL-safe */
1071 	if (filp == NULL)
1072 		return;
1073 
1074 	selwakeup(&filp->f_selinfo);
1075 
1076 	spin_lock(&filp->f_kqlock);
1077 	filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ |
1078 	    LINUX_KQ_FLAG_NEED_WRITE;
1079 
1080 	/* make sure the "knote" gets woken up */
1081 	KNOTE_LOCKED(&filp->f_selinfo.si_note, 1);
1082 	spin_unlock(&filp->f_kqlock);
1083 }
1084 
1085 static void
linux_file_kqfilter_detach(struct knote * kn)1086 linux_file_kqfilter_detach(struct knote *kn)
1087 {
1088 	struct linux_file *filp = kn->kn_hook;
1089 
1090 	spin_lock(&filp->f_kqlock);
1091 	knlist_remove(&filp->f_selinfo.si_note, kn, 1);
1092 	spin_unlock(&filp->f_kqlock);
1093 }
1094 
1095 static int
linux_file_kqfilter_read_event(struct knote * kn,long hint)1096 linux_file_kqfilter_read_event(struct knote *kn, long hint)
1097 {
1098 	struct linux_file *filp = kn->kn_hook;
1099 
1100 	mtx_assert(&filp->f_kqlock, MA_OWNED);
1101 
1102 	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_READ) ? 1 : 0);
1103 }
1104 
1105 static int
linux_file_kqfilter_write_event(struct knote * kn,long hint)1106 linux_file_kqfilter_write_event(struct knote *kn, long hint)
1107 {
1108 	struct linux_file *filp = kn->kn_hook;
1109 
1110 	mtx_assert(&filp->f_kqlock, MA_OWNED);
1111 
1112 	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_WRITE) ? 1 : 0);
1113 }
1114 
1115 static const struct filterops linux_dev_kqfiltops_read = {
1116 	.f_isfd = 1,
1117 	.f_detach = linux_file_kqfilter_detach,
1118 	.f_event = linux_file_kqfilter_read_event,
1119 };
1120 
1121 static const struct filterops linux_dev_kqfiltops_write = {
1122 	.f_isfd = 1,
1123 	.f_detach = linux_file_kqfilter_detach,
1124 	.f_event = linux_file_kqfilter_write_event,
1125 };
1126 
1127 static void
linux_file_kqfilter_poll(struct linux_file * filp,int kqflags)1128 linux_file_kqfilter_poll(struct linux_file *filp, int kqflags)
1129 {
1130 	struct thread *td;
1131 	const struct file_operations *fop;
1132 	struct linux_cdev *ldev;
1133 	int temp;
1134 
1135 	if ((filp->f_kqflags & kqflags) == 0)
1136 		return;
1137 
1138 	td = curthread;
1139 
1140 	linux_get_fop(filp, &fop, &ldev);
1141 	/* get the latest polling state */
1142 	temp = OPW(filp->_file, td, fop->poll(filp, NULL));
1143 	linux_drop_fop(ldev);
1144 
1145 	spin_lock(&filp->f_kqlock);
1146 	/* clear kqflags */
1147 	filp->f_kqflags &= ~(LINUX_KQ_FLAG_NEED_READ |
1148 	    LINUX_KQ_FLAG_NEED_WRITE);
1149 	/* update kqflags */
1150 	if ((temp & (POLLIN | POLLOUT)) != 0) {
1151 		if ((temp & POLLIN) != 0)
1152 			filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ;
1153 		if ((temp & POLLOUT) != 0)
1154 			filp->f_kqflags |= LINUX_KQ_FLAG_NEED_WRITE;
1155 
1156 		/* make sure the "knote" gets woken up */
1157 		KNOTE_LOCKED(&filp->f_selinfo.si_note, 0);
1158 	}
1159 	spin_unlock(&filp->f_kqlock);
1160 }
1161 
1162 static int
linux_file_kqfilter(struct file * file,struct knote * kn)1163 linux_file_kqfilter(struct file *file, struct knote *kn)
1164 {
1165 	struct linux_file *filp;
1166 	struct thread *td;
1167 	int error;
1168 
1169 	td = curthread;
1170 	filp = (struct linux_file *)file->f_data;
1171 	filp->f_flags = file->f_flag;
1172 	if (filp->f_op->poll == NULL)
1173 		return (EINVAL);
1174 
1175 	spin_lock(&filp->f_kqlock);
1176 	switch (kn->kn_filter) {
1177 	case EVFILT_READ:
1178 		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_READ;
1179 		kn->kn_fop = &linux_dev_kqfiltops_read;
1180 		kn->kn_hook = filp;
1181 		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1182 		error = 0;
1183 		break;
1184 	case EVFILT_WRITE:
1185 		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_WRITE;
1186 		kn->kn_fop = &linux_dev_kqfiltops_write;
1187 		kn->kn_hook = filp;
1188 		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1189 		error = 0;
1190 		break;
1191 	default:
1192 		error = EINVAL;
1193 		break;
1194 	}
1195 	spin_unlock(&filp->f_kqlock);
1196 
1197 	if (error == 0) {
1198 		linux_set_current(td);
1199 
1200 		/* update kqfilter status, if any */
1201 		linux_file_kqfilter_poll(filp,
1202 		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
1203 	}
1204 	return (error);
1205 }
1206 
1207 static int
linux_file_mmap_single(struct file * fp,const struct file_operations * fop,vm_ooffset_t * offset,vm_size_t size,struct vm_object ** object,int nprot,bool is_shared,struct thread * td)1208 linux_file_mmap_single(struct file *fp, const struct file_operations *fop,
1209     vm_ooffset_t *offset, vm_size_t size, struct vm_object **object,
1210     int nprot, bool is_shared, struct thread *td)
1211 {
1212 	struct task_struct *task;
1213 	struct vm_area_struct *vmap;
1214 	struct mm_struct *mm;
1215 	struct linux_file *filp;
1216 	vm_memattr_t attr;
1217 	int error;
1218 
1219 	filp = (struct linux_file *)fp->f_data;
1220 	filp->f_flags = fp->f_flag;
1221 
1222 	if (fop->mmap == NULL)
1223 		return (EOPNOTSUPP);
1224 
1225 	linux_set_current(td);
1226 
1227 	/*
1228 	 * The same VM object might be shared by multiple processes
1229 	 * and the mm_struct is usually freed when a process exits.
1230 	 *
1231 	 * The atomic reference below makes sure the mm_struct is
1232 	 * available as long as the vmap is in the linux_vma_head.
1233 	 */
1234 	task = current;
1235 	mm = task->mm;
1236 	if (atomic_inc_not_zero(&mm->mm_users) == 0)
1237 		return (EINVAL);
1238 
1239 	vmap = kzalloc(sizeof(*vmap), GFP_KERNEL);
1240 	vmap->vm_start = 0;
1241 	vmap->vm_end = size;
1242 	vmap->vm_pgoff = *offset / PAGE_SIZE;
1243 	vmap->vm_pfn = 0;
1244 	vmap->vm_flags = vmap->vm_page_prot = (nprot & VM_PROT_ALL);
1245 	if (is_shared)
1246 		vmap->vm_flags |= VM_SHARED;
1247 	vmap->vm_ops = NULL;
1248 	vmap->vm_file = get_file(filp);
1249 	vmap->vm_mm = mm;
1250 
1251 	if (unlikely(down_write_killable(&vmap->vm_mm->mmap_sem))) {
1252 		error = linux_get_error(task, EINTR);
1253 	} else {
1254 		error = -OPW(fp, td, fop->mmap(filp, vmap));
1255 		error = linux_get_error(task, error);
1256 		up_write(&vmap->vm_mm->mmap_sem);
1257 	}
1258 
1259 	if (error != 0) {
1260 		linux_cdev_handle_free(vmap);
1261 		return (error);
1262 	}
1263 
1264 	attr = pgprot2cachemode(vmap->vm_page_prot);
1265 
1266 	if (vmap->vm_ops != NULL) {
1267 		struct vm_area_struct *ptr;
1268 		void *vm_private_data;
1269 		bool vm_no_fault;
1270 
1271 		if (vmap->vm_ops->open == NULL ||
1272 		    vmap->vm_ops->close == NULL ||
1273 		    vmap->vm_private_data == NULL) {
1274 			/* free allocated VM area struct */
1275 			linux_cdev_handle_free(vmap);
1276 			return (EINVAL);
1277 		}
1278 
1279 		vm_private_data = vmap->vm_private_data;
1280 
1281 		rw_wlock(&linux_vma_lock);
1282 		TAILQ_FOREACH(ptr, &linux_vma_head, vm_entry) {
1283 			if (ptr->vm_private_data == vm_private_data)
1284 				break;
1285 		}
1286 		/* check if there is an existing VM area struct */
1287 		if (ptr != NULL) {
1288 			/* check if the VM area structure is invalid */
1289 			if (ptr->vm_ops == NULL ||
1290 			    ptr->vm_ops->open == NULL ||
1291 			    ptr->vm_ops->close == NULL) {
1292 				error = ESTALE;
1293 				vm_no_fault = 1;
1294 			} else {
1295 				error = EEXIST;
1296 				vm_no_fault = (ptr->vm_ops->fault == NULL);
1297 			}
1298 		} else {
1299 			/* insert VM area structure into list */
1300 			TAILQ_INSERT_TAIL(&linux_vma_head, vmap, vm_entry);
1301 			error = 0;
1302 			vm_no_fault = (vmap->vm_ops->fault == NULL);
1303 		}
1304 		rw_wunlock(&linux_vma_lock);
1305 
1306 		if (error != 0) {
1307 			/* free allocated VM area struct */
1308 			linux_cdev_handle_free(vmap);
1309 			/* check for stale VM area struct */
1310 			if (error != EEXIST)
1311 				return (error);
1312 		}
1313 
1314 		/* check if there is no fault handler */
1315 		if (vm_no_fault) {
1316 			*object = cdev_pager_allocate(vm_private_data, OBJT_DEVICE,
1317 			    &linux_cdev_pager_ops[1], size, nprot, *offset,
1318 			    td->td_ucred);
1319 		} else {
1320 			*object = cdev_pager_allocate(vm_private_data, OBJT_MGTDEVICE,
1321 			    &linux_cdev_pager_ops[0], size, nprot, *offset,
1322 			    td->td_ucred);
1323 		}
1324 
1325 		/* check if allocating the VM object failed */
1326 		if (*object == NULL) {
1327 			if (error == 0) {
1328 				/* remove VM area struct from list */
1329 				linux_cdev_handle_remove(vmap);
1330 				/* free allocated VM area struct */
1331 				linux_cdev_handle_free(vmap);
1332 			}
1333 			return (EINVAL);
1334 		}
1335 	} else {
1336 		struct sglist *sg;
1337 
1338 		sg = sglist_alloc(1, M_WAITOK);
1339 		sglist_append_phys(sg,
1340 		    (vm_paddr_t)vmap->vm_pfn << PAGE_SHIFT, vmap->vm_len);
1341 
1342 		*object = vm_pager_allocate(OBJT_SG, sg, vmap->vm_len,
1343 		    nprot, 0, td->td_ucred);
1344 
1345 		linux_cdev_handle_free(vmap);
1346 
1347 		if (*object == NULL) {
1348 			sglist_free(sg);
1349 			return (EINVAL);
1350 		}
1351 	}
1352 
1353 	if (attr != VM_MEMATTR_DEFAULT) {
1354 		VM_OBJECT_WLOCK(*object);
1355 		vm_object_set_memattr(*object, attr);
1356 		VM_OBJECT_WUNLOCK(*object);
1357 	}
1358 	*offset = 0;
1359 	return (0);
1360 }
1361 
1362 struct cdevsw linuxcdevsw = {
1363 	.d_version = D_VERSION,
1364 	.d_fdopen = linux_dev_fdopen,
1365 	.d_name = "lkpidev",
1366 };
1367 
1368 static int
linux_file_read(struct file * file,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1369 linux_file_read(struct file *file, struct uio *uio, struct ucred *active_cred,
1370     int flags, struct thread *td)
1371 {
1372 	struct linux_file *filp;
1373 	const struct file_operations *fop;
1374 	struct linux_cdev *ldev;
1375 	ssize_t bytes;
1376 	int error;
1377 
1378 	error = 0;
1379 	filp = (struct linux_file *)file->f_data;
1380 	filp->f_flags = file->f_flag;
1381 	/* XXX no support for I/O vectors currently */
1382 	if (uio->uio_iovcnt != 1)
1383 		return (EOPNOTSUPP);
1384 	if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1385 		return (EINVAL);
1386 	linux_set_current(td);
1387 	linux_get_fop(filp, &fop, &ldev);
1388 	if (fop->read != NULL) {
1389 		bytes = OPW(file, td, fop->read(filp,
1390 		    uio->uio_iov->iov_base,
1391 		    uio->uio_iov->iov_len, &uio->uio_offset));
1392 		if (bytes >= 0) {
1393 			uio->uio_iov->iov_base =
1394 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1395 			uio->uio_iov->iov_len -= bytes;
1396 			uio->uio_resid -= bytes;
1397 		} else {
1398 			error = linux_get_error(current, -bytes);
1399 		}
1400 	} else
1401 		error = ENXIO;
1402 
1403 	/* update kqfilter status, if any */
1404 	linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_READ);
1405 	linux_drop_fop(ldev);
1406 
1407 	return (error);
1408 }
1409 
1410 static int
linux_file_write(struct file * file,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1411 linux_file_write(struct file *file, struct uio *uio, struct ucred *active_cred,
1412     int flags, struct thread *td)
1413 {
1414 	struct linux_file *filp;
1415 	const struct file_operations *fop;
1416 	struct linux_cdev *ldev;
1417 	ssize_t bytes;
1418 	int error;
1419 
1420 	filp = (struct linux_file *)file->f_data;
1421 	filp->f_flags = file->f_flag;
1422 	/* XXX no support for I/O vectors currently */
1423 	if (uio->uio_iovcnt != 1)
1424 		return (EOPNOTSUPP);
1425 	if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1426 		return (EINVAL);
1427 	linux_set_current(td);
1428 	linux_get_fop(filp, &fop, &ldev);
1429 	if (fop->write != NULL) {
1430 		bytes = OPW(file, td, fop->write(filp,
1431 		    uio->uio_iov->iov_base,
1432 		    uio->uio_iov->iov_len, &uio->uio_offset));
1433 		if (bytes >= 0) {
1434 			uio->uio_iov->iov_base =
1435 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1436 			uio->uio_iov->iov_len -= bytes;
1437 			uio->uio_resid -= bytes;
1438 			error = 0;
1439 		} else {
1440 			error = linux_get_error(current, -bytes);
1441 		}
1442 	} else
1443 		error = ENXIO;
1444 
1445 	/* update kqfilter status, if any */
1446 	linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_WRITE);
1447 
1448 	linux_drop_fop(ldev);
1449 
1450 	return (error);
1451 }
1452 
1453 static int
linux_file_poll(struct file * file,int events,struct ucred * active_cred,struct thread * td)1454 linux_file_poll(struct file *file, int events, struct ucred *active_cred,
1455     struct thread *td)
1456 {
1457 	struct linux_file *filp;
1458 	const struct file_operations *fop;
1459 	struct linux_cdev *ldev;
1460 	int revents;
1461 
1462 	filp = (struct linux_file *)file->f_data;
1463 	filp->f_flags = file->f_flag;
1464 	linux_set_current(td);
1465 	linux_get_fop(filp, &fop, &ldev);
1466 	if (fop->poll != NULL) {
1467 		revents = OPW(file, td, fop->poll(filp,
1468 		    LINUX_POLL_TABLE_NORMAL)) & events;
1469 	} else {
1470 		revents = 0;
1471 	}
1472 	linux_drop_fop(ldev);
1473 	return (revents);
1474 }
1475 
1476 static int
linux_file_close(struct file * file,struct thread * td)1477 linux_file_close(struct file *file, struct thread *td)
1478 {
1479 	struct linux_file *filp;
1480 	int (*release)(struct inode *, struct linux_file *);
1481 	const struct file_operations *fop;
1482 	struct linux_cdev *ldev;
1483 	int error;
1484 
1485 	filp = (struct linux_file *)file->f_data;
1486 
1487 	KASSERT(file_count(filp) == 0,
1488 	    ("File refcount(%d) is not zero", file_count(filp)));
1489 
1490 	if (td == NULL)
1491 		td = curthread;
1492 
1493 	error = 0;
1494 	filp->f_flags = file->f_flag;
1495 	linux_set_current(td);
1496 	linux_poll_wait_dequeue(filp);
1497 	linux_get_fop(filp, &fop, &ldev);
1498 	/*
1499 	 * Always use the real release function, if any, to avoid
1500 	 * leaking device resources:
1501 	 */
1502 	release = filp->f_op->release;
1503 	if (release != NULL)
1504 		error = -OPW(file, td, release(filp->f_vnode, filp));
1505 	funsetown(&filp->f_sigio);
1506 	if (filp->f_vnode != NULL)
1507 		vrele(filp->f_vnode);
1508 	linux_drop_fop(ldev);
1509 	ldev = filp->f_cdev;
1510 	if (ldev != NULL)
1511 		linux_cdev_deref(ldev);
1512 	linux_synchronize_rcu(RCU_TYPE_REGULAR);
1513 	kfree(filp);
1514 
1515 	return (error);
1516 }
1517 
1518 static int
linux_file_ioctl(struct file * fp,u_long cmd,void * data,struct ucred * cred,struct thread * td)1519 linux_file_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *cred,
1520     struct thread *td)
1521 {
1522 	struct linux_file *filp;
1523 	const struct file_operations *fop;
1524 	struct linux_cdev *ldev;
1525 	struct fiodgname_arg *fgn;
1526 	const char *p;
1527 	int error, i;
1528 
1529 	error = 0;
1530 	filp = (struct linux_file *)fp->f_data;
1531 	filp->f_flags = fp->f_flag;
1532 	linux_get_fop(filp, &fop, &ldev);
1533 
1534 	linux_set_current(td);
1535 	switch (cmd) {
1536 	case FIONBIO:
1537 		break;
1538 	case FIOASYNC:
1539 		if (fop->fasync == NULL)
1540 			break;
1541 		error = -OPW(fp, td, fop->fasync(0, filp, fp->f_flag & FASYNC));
1542 		break;
1543 	case FIOSETOWN:
1544 		error = fsetown(*(int *)data, &filp->f_sigio);
1545 		if (error == 0) {
1546 			if (fop->fasync == NULL)
1547 				break;
1548 			error = -OPW(fp, td, fop->fasync(0, filp,
1549 			    fp->f_flag & FASYNC));
1550 		}
1551 		break;
1552 	case FIOGETOWN:
1553 		*(int *)data = fgetown(&filp->f_sigio);
1554 		break;
1555 	case FIODGNAME:
1556 #ifdef	COMPAT_FREEBSD32
1557 	case FIODGNAME_32:
1558 #endif
1559 		if (filp->f_cdev == NULL || filp->f_cdev->cdev == NULL) {
1560 			error = ENXIO;
1561 			break;
1562 		}
1563 		fgn = data;
1564 		p = devtoname(filp->f_cdev->cdev);
1565 		i = strlen(p) + 1;
1566 		if (i > fgn->len) {
1567 			error = EINVAL;
1568 			break;
1569 		}
1570 		error = copyout(p, fiodgname_buf_get_ptr(fgn, cmd), i);
1571 		break;
1572 	default:
1573 		error = linux_file_ioctl_sub(fp, filp, fop, cmd, data, td);
1574 		break;
1575 	}
1576 	linux_drop_fop(ldev);
1577 	return (error);
1578 }
1579 
1580 static int
linux_file_mmap_sub(struct thread * td,vm_size_t objsize,vm_prot_t prot,vm_prot_t maxprot,int flags,struct file * fp,vm_ooffset_t * foff,const struct file_operations * fop,vm_object_t * objp)1581 linux_file_mmap_sub(struct thread *td, vm_size_t objsize, vm_prot_t prot,
1582     vm_prot_t maxprot, int flags, struct file *fp,
1583     vm_ooffset_t *foff, const struct file_operations *fop, vm_object_t *objp)
1584 {
1585 	/*
1586 	 * Character devices do not provide private mappings
1587 	 * of any kind:
1588 	 */
1589 	if ((maxprot & VM_PROT_WRITE) == 0 &&
1590 	    (prot & VM_PROT_WRITE) != 0)
1591 		return (EACCES);
1592 	if ((flags & (MAP_PRIVATE | MAP_COPY)) != 0)
1593 		return (EINVAL);
1594 
1595 	return (linux_file_mmap_single(fp, fop, foff, objsize, objp,
1596 	    (int)prot, (flags & MAP_SHARED) ? true : false, td));
1597 }
1598 
1599 static int
linux_file_mmap(struct file * fp,vm_map_t map,vm_offset_t * addr,vm_size_t size,vm_prot_t prot,vm_prot_t cap_maxprot,int flags,vm_ooffset_t foff,struct thread * td)1600 linux_file_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
1601     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
1602     struct thread *td)
1603 {
1604 	struct linux_file *filp;
1605 	const struct file_operations *fop;
1606 	struct linux_cdev *ldev;
1607 	struct mount *mp;
1608 	struct vnode *vp;
1609 	vm_object_t object;
1610 	vm_prot_t maxprot;
1611 	int error;
1612 
1613 	filp = (struct linux_file *)fp->f_data;
1614 
1615 	vp = filp->f_vnode;
1616 	if (vp == NULL)
1617 		return (EOPNOTSUPP);
1618 
1619 	/*
1620 	 * Ensure that file and memory protections are
1621 	 * compatible.
1622 	 */
1623 	mp = vp->v_mount;
1624 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
1625 		maxprot = VM_PROT_NONE;
1626 		if ((prot & VM_PROT_EXECUTE) != 0)
1627 			return (EACCES);
1628 	} else
1629 		maxprot = VM_PROT_EXECUTE;
1630 	if ((fp->f_flag & FREAD) != 0)
1631 		maxprot |= VM_PROT_READ;
1632 	else if ((prot & VM_PROT_READ) != 0)
1633 		return (EACCES);
1634 
1635 	/*
1636 	 * If we are sharing potential changes via MAP_SHARED and we
1637 	 * are trying to get write permission although we opened it
1638 	 * without asking for it, bail out.
1639 	 *
1640 	 * Note that most character devices always share mappings.
1641 	 *
1642 	 * Rely on linux_file_mmap_sub() to fail invalid MAP_PRIVATE
1643 	 * requests rather than doing it here.
1644 	 */
1645 	if ((flags & MAP_SHARED) != 0) {
1646 		if ((fp->f_flag & FWRITE) != 0)
1647 			maxprot |= VM_PROT_WRITE;
1648 		else if ((prot & VM_PROT_WRITE) != 0)
1649 			return (EACCES);
1650 	}
1651 	maxprot &= cap_maxprot;
1652 
1653 	linux_get_fop(filp, &fop, &ldev);
1654 	error = linux_file_mmap_sub(td, size, prot, maxprot, flags, fp,
1655 	    &foff, fop, &object);
1656 	if (error != 0)
1657 		goto out;
1658 
1659 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
1660 	    foff, FALSE, td);
1661 	if (error != 0)
1662 		vm_object_deallocate(object);
1663 out:
1664 	linux_drop_fop(ldev);
1665 	return (error);
1666 }
1667 
1668 static int
linux_file_stat(struct file * fp,struct stat * sb,struct ucred * active_cred)1669 linux_file_stat(struct file *fp, struct stat *sb, struct ucred *active_cred)
1670 {
1671 	struct linux_file *filp;
1672 	struct vnode *vp;
1673 	int error;
1674 
1675 	filp = (struct linux_file *)fp->f_data;
1676 	if (filp->f_vnode == NULL)
1677 		return (EOPNOTSUPP);
1678 
1679 	vp = filp->f_vnode;
1680 
1681 	vn_lock(vp, LK_SHARED | LK_RETRY);
1682 	error = VOP_STAT(vp, sb, curthread->td_ucred, NOCRED);
1683 	VOP_UNLOCK(vp);
1684 
1685 	return (error);
1686 }
1687 
1688 static int
linux_file_fill_kinfo(struct file * fp,struct kinfo_file * kif,struct filedesc * fdp)1689 linux_file_fill_kinfo(struct file *fp, struct kinfo_file *kif,
1690     struct filedesc *fdp)
1691 {
1692 	struct linux_file *filp;
1693 	struct vnode *vp;
1694 	int error;
1695 
1696 	filp = fp->f_data;
1697 	vp = filp->f_vnode;
1698 	if (vp == NULL) {
1699 		error = 0;
1700 		kif->kf_type = KF_TYPE_DEV;
1701 	} else {
1702 		vref(vp);
1703 		FILEDESC_SUNLOCK(fdp);
1704 		error = vn_fill_kinfo_vnode(vp, kif);
1705 		vrele(vp);
1706 		kif->kf_type = KF_TYPE_VNODE;
1707 		FILEDESC_SLOCK(fdp);
1708 	}
1709 	return (error);
1710 }
1711 
1712 unsigned int
linux_iminor(struct inode * inode)1713 linux_iminor(struct inode *inode)
1714 {
1715 	struct linux_cdev *ldev;
1716 
1717 	if (inode == NULL || inode->v_rdev == NULL ||
1718 	    inode->v_rdev->si_devsw != &linuxcdevsw)
1719 		return (-1U);
1720 	ldev = inode->v_rdev->si_drv1;
1721 	if (ldev == NULL)
1722 		return (-1U);
1723 
1724 	return (minor(ldev->dev));
1725 }
1726 
1727 static int
linux_file_kcmp(struct file * fp1,struct file * fp2,struct thread * td)1728 linux_file_kcmp(struct file *fp1, struct file *fp2, struct thread *td)
1729 {
1730 	struct linux_file *filp1, *filp2;
1731 
1732 	if (fp2->f_type != DTYPE_DEV)
1733 		return (3);
1734 
1735 	filp1 = fp1->f_data;
1736 	filp2 = fp2->f_data;
1737 	return (kcmp_cmp((uintptr_t)filp1->f_cdev, (uintptr_t)filp2->f_cdev));
1738 }
1739 
1740 const struct fileops linuxfileops = {
1741 	.fo_read = linux_file_read,
1742 	.fo_write = linux_file_write,
1743 	.fo_truncate = invfo_truncate,
1744 	.fo_kqfilter = linux_file_kqfilter,
1745 	.fo_stat = linux_file_stat,
1746 	.fo_fill_kinfo = linux_file_fill_kinfo,
1747 	.fo_poll = linux_file_poll,
1748 	.fo_close = linux_file_close,
1749 	.fo_ioctl = linux_file_ioctl,
1750 	.fo_mmap = linux_file_mmap,
1751 	.fo_chmod = invfo_chmod,
1752 	.fo_chown = invfo_chown,
1753 	.fo_sendfile = invfo_sendfile,
1754 	.fo_cmp = linux_file_kcmp,
1755 	.fo_flags = DFLAG_PASSABLE,
1756 };
1757 
1758 /*
1759  * Hash of vmmap addresses.  This is infrequently accessed and does not
1760  * need to be particularly large.  This is done because we must store the
1761  * caller's idea of the map size to properly unmap.
1762  */
1763 struct vmmap {
1764 	LIST_ENTRY(vmmap)	vm_next;
1765 	void 			*vm_addr;
1766 	unsigned long		vm_size;
1767 };
1768 
1769 struct vmmaphd {
1770 	struct vmmap *lh_first;
1771 };
1772 #define	VMMAP_HASH_SIZE	64
1773 #define	VMMAP_HASH_MASK	(VMMAP_HASH_SIZE - 1)
1774 #define	VM_HASH(addr)	((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK
1775 static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE];
1776 static struct mtx vmmaplock;
1777 
1778 static void
vmmap_add(void * addr,unsigned long size)1779 vmmap_add(void *addr, unsigned long size)
1780 {
1781 	struct vmmap *vmmap;
1782 
1783 	vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL);
1784 	mtx_lock(&vmmaplock);
1785 	vmmap->vm_size = size;
1786 	vmmap->vm_addr = addr;
1787 	LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next);
1788 	mtx_unlock(&vmmaplock);
1789 }
1790 
1791 static struct vmmap *
vmmap_remove(void * addr)1792 vmmap_remove(void *addr)
1793 {
1794 	struct vmmap *vmmap;
1795 
1796 	mtx_lock(&vmmaplock);
1797 	LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next)
1798 		if (vmmap->vm_addr == addr)
1799 			break;
1800 	if (vmmap)
1801 		LIST_REMOVE(vmmap, vm_next);
1802 	mtx_unlock(&vmmaplock);
1803 
1804 	return (vmmap);
1805 }
1806 
1807 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv)
1808 void *
_ioremap_attr(vm_paddr_t phys_addr,unsigned long size,int attr)1809 _ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr)
1810 {
1811 	void *addr;
1812 
1813 	addr = pmap_mapdev_attr(phys_addr, size, attr);
1814 	if (addr == NULL)
1815 		return (NULL);
1816 	vmmap_add(addr, size);
1817 
1818 	return (addr);
1819 }
1820 #endif
1821 
1822 void
iounmap(void * addr)1823 iounmap(void *addr)
1824 {
1825 	struct vmmap *vmmap;
1826 
1827 	vmmap = vmmap_remove(addr);
1828 	if (vmmap == NULL)
1829 		return;
1830 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv)
1831 	pmap_unmapdev(addr, vmmap->vm_size);
1832 #endif
1833 	kfree(vmmap);
1834 }
1835 
1836 void *
vmap(struct page ** pages,unsigned int count,unsigned long flags,int prot)1837 vmap(struct page **pages, unsigned int count, unsigned long flags, int prot)
1838 {
1839 	vm_offset_t off;
1840 	size_t size;
1841 
1842 	size = count * PAGE_SIZE;
1843 	off = kva_alloc(size);
1844 	if (off == 0)
1845 		return (NULL);
1846 	vmmap_add((void *)off, size);
1847 	pmap_qenter(off, pages, count);
1848 
1849 	return ((void *)off);
1850 }
1851 
1852 void
vunmap(void * addr)1853 vunmap(void *addr)
1854 {
1855 	struct vmmap *vmmap;
1856 
1857 	vmmap = vmmap_remove(addr);
1858 	if (vmmap == NULL)
1859 		return;
1860 	pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE);
1861 	kva_free((vm_offset_t)addr, vmmap->vm_size);
1862 	kfree(vmmap);
1863 }
1864 
1865 static char *
devm_kvasprintf(struct device * dev,gfp_t gfp,const char * fmt,va_list ap)1866 devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt, va_list ap)
1867 {
1868 	unsigned int len;
1869 	char *p;
1870 	va_list aq;
1871 
1872 	va_copy(aq, ap);
1873 	len = vsnprintf(NULL, 0, fmt, aq);
1874 	va_end(aq);
1875 
1876 	if (dev != NULL)
1877 		p = devm_kmalloc(dev, len + 1, gfp);
1878 	else
1879 		p = kmalloc(len + 1, gfp);
1880 	if (p != NULL)
1881 		vsnprintf(p, len + 1, fmt, ap);
1882 
1883 	return (p);
1884 }
1885 
1886 char *
kvasprintf(gfp_t gfp,const char * fmt,va_list ap)1887 kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
1888 {
1889 
1890 	return (devm_kvasprintf(NULL, gfp, fmt, ap));
1891 }
1892 
1893 char *
lkpi_devm_kasprintf(struct device * dev,gfp_t gfp,const char * fmt,...)1894 lkpi_devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...)
1895 {
1896 	va_list ap;
1897 	char *p;
1898 
1899 	va_start(ap, fmt);
1900 	p = devm_kvasprintf(dev, gfp, fmt, ap);
1901 	va_end(ap);
1902 
1903 	return (p);
1904 }
1905 
1906 char *
kasprintf(gfp_t gfp,const char * fmt,...)1907 kasprintf(gfp_t gfp, const char *fmt, ...)
1908 {
1909 	va_list ap;
1910 	char *p;
1911 
1912 	va_start(ap, fmt);
1913 	p = kvasprintf(gfp, fmt, ap);
1914 	va_end(ap);
1915 
1916 	return (p);
1917 }
1918 
1919 static void
linux_timer_callback_wrapper(void * context)1920 linux_timer_callback_wrapper(void *context)
1921 {
1922 	struct timer_list *timer;
1923 
1924 	timer = context;
1925 
1926 	/* the timer is about to be shutdown permanently */
1927 	if (timer->function == NULL)
1928 		return;
1929 
1930 	if (linux_set_current_flags(curthread, M_NOWAIT)) {
1931 		/* try again later */
1932 		callout_reset(&timer->callout, 1,
1933 		    &linux_timer_callback_wrapper, timer);
1934 		return;
1935 	}
1936 
1937 	timer->function(timer->data);
1938 }
1939 
1940 int
mod_timer(struct timer_list * timer,int expires)1941 mod_timer(struct timer_list *timer, int expires)
1942 {
1943 	int ret;
1944 
1945 	timer->expires = expires;
1946 	ret = callout_reset(&timer->callout,
1947 	    linux_timer_jiffies_until(expires),
1948 	    &linux_timer_callback_wrapper, timer);
1949 
1950 	MPASS(ret == 0 || ret == 1);
1951 
1952 	return (ret == 1);
1953 }
1954 
1955 void
add_timer(struct timer_list * timer)1956 add_timer(struct timer_list *timer)
1957 {
1958 
1959 	callout_reset(&timer->callout,
1960 	    linux_timer_jiffies_until(timer->expires),
1961 	    &linux_timer_callback_wrapper, timer);
1962 }
1963 
1964 void
add_timer_on(struct timer_list * timer,int cpu)1965 add_timer_on(struct timer_list *timer, int cpu)
1966 {
1967 
1968 	callout_reset_on(&timer->callout,
1969 	    linux_timer_jiffies_until(timer->expires),
1970 	    &linux_timer_callback_wrapper, timer, cpu);
1971 }
1972 
1973 int
del_timer(struct timer_list * timer)1974 del_timer(struct timer_list *timer)
1975 {
1976 
1977 	if (callout_stop(&(timer)->callout) == -1)
1978 		return (0);
1979 	return (1);
1980 }
1981 
1982 int
del_timer_sync(struct timer_list * timer)1983 del_timer_sync(struct timer_list *timer)
1984 {
1985 
1986 	if (callout_drain(&(timer)->callout) == -1)
1987 		return (0);
1988 	return (1);
1989 }
1990 
1991 int
timer_delete_sync(struct timer_list * timer)1992 timer_delete_sync(struct timer_list *timer)
1993 {
1994 
1995 	return (del_timer_sync(timer));
1996 }
1997 
1998 int
timer_shutdown_sync(struct timer_list * timer)1999 timer_shutdown_sync(struct timer_list *timer)
2000 {
2001 
2002 	timer->function = NULL;
2003 	return (del_timer_sync(timer));
2004 }
2005 
2006 /* greatest common divisor, Euclid equation */
2007 static uint64_t
lkpi_gcd_64(uint64_t a,uint64_t b)2008 lkpi_gcd_64(uint64_t a, uint64_t b)
2009 {
2010 	uint64_t an;
2011 	uint64_t bn;
2012 
2013 	while (b != 0) {
2014 		an = b;
2015 		bn = a % b;
2016 		a = an;
2017 		b = bn;
2018 	}
2019 	return (a);
2020 }
2021 
2022 uint64_t lkpi_nsec2hz_rem;
2023 uint64_t lkpi_nsec2hz_div = 1000000000ULL;
2024 uint64_t lkpi_nsec2hz_max;
2025 
2026 uint64_t lkpi_usec2hz_rem;
2027 uint64_t lkpi_usec2hz_div = 1000000ULL;
2028 uint64_t lkpi_usec2hz_max;
2029 
2030 uint64_t lkpi_msec2hz_rem;
2031 uint64_t lkpi_msec2hz_div = 1000ULL;
2032 uint64_t lkpi_msec2hz_max;
2033 
2034 static void
linux_timer_init(void * arg)2035 linux_timer_init(void *arg)
2036 {
2037 	uint64_t gcd;
2038 
2039 	/*
2040 	 * Compute an internal HZ value which can divide 2**32 to
2041 	 * avoid timer rounding problems when the tick value wraps
2042 	 * around 2**32:
2043 	 */
2044 	linux_timer_hz_mask = 1;
2045 	while (linux_timer_hz_mask < (unsigned long)hz)
2046 		linux_timer_hz_mask *= 2;
2047 	linux_timer_hz_mask--;
2048 
2049 	/* compute some internal constants */
2050 
2051 	lkpi_nsec2hz_rem = hz;
2052 	lkpi_usec2hz_rem = hz;
2053 	lkpi_msec2hz_rem = hz;
2054 
2055 	gcd = lkpi_gcd_64(lkpi_nsec2hz_rem, lkpi_nsec2hz_div);
2056 	lkpi_nsec2hz_rem /= gcd;
2057 	lkpi_nsec2hz_div /= gcd;
2058 	lkpi_nsec2hz_max = -1ULL / lkpi_nsec2hz_rem;
2059 
2060 	gcd = lkpi_gcd_64(lkpi_usec2hz_rem, lkpi_usec2hz_div);
2061 	lkpi_usec2hz_rem /= gcd;
2062 	lkpi_usec2hz_div /= gcd;
2063 	lkpi_usec2hz_max = -1ULL / lkpi_usec2hz_rem;
2064 
2065 	gcd = lkpi_gcd_64(lkpi_msec2hz_rem, lkpi_msec2hz_div);
2066 	lkpi_msec2hz_rem /= gcd;
2067 	lkpi_msec2hz_div /= gcd;
2068 	lkpi_msec2hz_max = -1ULL / lkpi_msec2hz_rem;
2069 }
2070 SYSINIT(linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, linux_timer_init, NULL);
2071 
2072 void
linux_complete_common(struct completion * c,int all)2073 linux_complete_common(struct completion *c, int all)
2074 {
2075 	sleepq_lock(c);
2076 	if (all) {
2077 		c->done = UINT_MAX;
2078 		sleepq_broadcast(c, SLEEPQ_SLEEP, 0, 0);
2079 	} else {
2080 		if (c->done != UINT_MAX)
2081 			c->done++;
2082 		sleepq_signal(c, SLEEPQ_SLEEP, 0, 0);
2083 	}
2084 	sleepq_release(c);
2085 }
2086 
2087 /*
2088  * Indefinite wait for done != 0 with or without signals.
2089  */
2090 int
linux_wait_for_common(struct completion * c,int flags)2091 linux_wait_for_common(struct completion *c, int flags)
2092 {
2093 	struct task_struct *task;
2094 	int error;
2095 
2096 	if (SCHEDULER_STOPPED())
2097 		return (0);
2098 
2099 	task = current;
2100 
2101 	if (flags != 0)
2102 		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
2103 	else
2104 		flags = SLEEPQ_SLEEP;
2105 	error = 0;
2106 	for (;;) {
2107 		sleepq_lock(c);
2108 		if (c->done)
2109 			break;
2110 		sleepq_add(c, NULL, "completion", flags, 0);
2111 		if (flags & SLEEPQ_INTERRUPTIBLE) {
2112 			DROP_GIANT();
2113 			error = -sleepq_wait_sig(c, 0);
2114 			PICKUP_GIANT();
2115 			if (error != 0) {
2116 				linux_schedule_save_interrupt_value(task, error);
2117 				error = -ERESTARTSYS;
2118 				goto intr;
2119 			}
2120 		} else {
2121 			DROP_GIANT();
2122 			sleepq_wait(c, 0);
2123 			PICKUP_GIANT();
2124 		}
2125 	}
2126 	if (c->done != UINT_MAX)
2127 		c->done--;
2128 	sleepq_release(c);
2129 
2130 intr:
2131 	return (error);
2132 }
2133 
2134 /*
2135  * Time limited wait for done != 0 with or without signals.
2136  */
2137 int
linux_wait_for_timeout_common(struct completion * c,int timeout,int flags)2138 linux_wait_for_timeout_common(struct completion *c, int timeout, int flags)
2139 {
2140 	struct task_struct *task;
2141 	int end = jiffies + timeout;
2142 	int error;
2143 
2144 	if (SCHEDULER_STOPPED())
2145 		return (0);
2146 
2147 	task = current;
2148 
2149 	if (flags != 0)
2150 		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
2151 	else
2152 		flags = SLEEPQ_SLEEP;
2153 
2154 	for (;;) {
2155 		sleepq_lock(c);
2156 		if (c->done)
2157 			break;
2158 		sleepq_add(c, NULL, "completion", flags, 0);
2159 		sleepq_set_timeout(c, linux_timer_jiffies_until(end));
2160 
2161 		DROP_GIANT();
2162 		if (flags & SLEEPQ_INTERRUPTIBLE)
2163 			error = -sleepq_timedwait_sig(c, 0);
2164 		else
2165 			error = -sleepq_timedwait(c, 0);
2166 		PICKUP_GIANT();
2167 
2168 		if (error != 0) {
2169 			/* check for timeout */
2170 			if (error == -EWOULDBLOCK) {
2171 				error = 0;	/* timeout */
2172 			} else {
2173 				/* signal happened */
2174 				linux_schedule_save_interrupt_value(task, error);
2175 				error = -ERESTARTSYS;
2176 			}
2177 			goto done;
2178 		}
2179 	}
2180 	if (c->done != UINT_MAX)
2181 		c->done--;
2182 	sleepq_release(c);
2183 
2184 	/* return how many jiffies are left */
2185 	error = linux_timer_jiffies_until(end);
2186 done:
2187 	return (error);
2188 }
2189 
2190 int
linux_try_wait_for_completion(struct completion * c)2191 linux_try_wait_for_completion(struct completion *c)
2192 {
2193 	int isdone;
2194 
2195 	sleepq_lock(c);
2196 	isdone = (c->done != 0);
2197 	if (c->done != 0 && c->done != UINT_MAX)
2198 		c->done--;
2199 	sleepq_release(c);
2200 	return (isdone);
2201 }
2202 
2203 int
linux_completion_done(struct completion * c)2204 linux_completion_done(struct completion *c)
2205 {
2206 	int isdone;
2207 
2208 	sleepq_lock(c);
2209 	isdone = (c->done != 0);
2210 	sleepq_release(c);
2211 	return (isdone);
2212 }
2213 
2214 static void
linux_cdev_deref(struct linux_cdev * ldev)2215 linux_cdev_deref(struct linux_cdev *ldev)
2216 {
2217 	if (refcount_release(&ldev->refs) &&
2218 	    ldev->kobj.ktype == &linux_cdev_ktype)
2219 		kfree(ldev);
2220 }
2221 
2222 static void
linux_cdev_release(struct kobject * kobj)2223 linux_cdev_release(struct kobject *kobj)
2224 {
2225 	struct linux_cdev *cdev;
2226 	struct kobject *parent;
2227 
2228 	cdev = container_of(kobj, struct linux_cdev, kobj);
2229 	parent = kobj->parent;
2230 	linux_destroy_dev(cdev);
2231 	linux_cdev_deref(cdev);
2232 	kobject_put(parent);
2233 }
2234 
2235 static void
linux_cdev_static_release(struct kobject * kobj)2236 linux_cdev_static_release(struct kobject *kobj)
2237 {
2238 	struct cdev *cdev;
2239 	struct linux_cdev *ldev;
2240 
2241 	ldev = container_of(kobj, struct linux_cdev, kobj);
2242 	cdev = ldev->cdev;
2243 	if (cdev != NULL) {
2244 		destroy_dev(cdev);
2245 		ldev->cdev = NULL;
2246 	}
2247 	kobject_put(kobj->parent);
2248 }
2249 
2250 int
linux_cdev_device_add(struct linux_cdev * ldev,struct device * dev)2251 linux_cdev_device_add(struct linux_cdev *ldev, struct device *dev)
2252 {
2253 	int ret;
2254 
2255 	if (dev->devt != 0) {
2256 		/* Set parent kernel object. */
2257 		ldev->kobj.parent = &dev->kobj;
2258 
2259 		/*
2260 		 * Unlike Linux we require the kobject of the
2261 		 * character device structure to have a valid name
2262 		 * before calling this function:
2263 		 */
2264 		if (ldev->kobj.name == NULL)
2265 			return (-EINVAL);
2266 
2267 		ret = cdev_add(ldev, dev->devt, 1);
2268 		if (ret)
2269 			return (ret);
2270 	}
2271 	ret = device_add(dev);
2272 	if (ret != 0 && dev->devt != 0)
2273 		cdev_del(ldev);
2274 	return (ret);
2275 }
2276 
2277 void
linux_cdev_device_del(struct linux_cdev * ldev,struct device * dev)2278 linux_cdev_device_del(struct linux_cdev *ldev, struct device *dev)
2279 {
2280 	device_del(dev);
2281 
2282 	if (dev->devt != 0)
2283 		cdev_del(ldev);
2284 }
2285 
2286 static void
linux_destroy_dev(struct linux_cdev * ldev)2287 linux_destroy_dev(struct linux_cdev *ldev)
2288 {
2289 
2290 	if (ldev->cdev == NULL)
2291 		return;
2292 
2293 	MPASS((ldev->siref & LDEV_SI_DTR) == 0);
2294 	MPASS(ldev->kobj.ktype == &linux_cdev_ktype);
2295 
2296 	atomic_set_int(&ldev->siref, LDEV_SI_DTR);
2297 	while ((atomic_load_int(&ldev->siref) & ~LDEV_SI_DTR) != 0)
2298 		pause("ldevdtr", hz / 4);
2299 
2300 	destroy_dev(ldev->cdev);
2301 	ldev->cdev = NULL;
2302 }
2303 
2304 const struct kobj_type linux_cdev_ktype = {
2305 	.release = linux_cdev_release,
2306 };
2307 
2308 const struct kobj_type linux_cdev_static_ktype = {
2309 	.release = linux_cdev_static_release,
2310 };
2311 
2312 static void
linux_handle_ifnet_link_event(void * arg,struct ifnet * ifp,int linkstate)2313 linux_handle_ifnet_link_event(void *arg, struct ifnet *ifp, int linkstate)
2314 {
2315 	struct notifier_block *nb;
2316 	struct netdev_notifier_info ni;
2317 
2318 	nb = arg;
2319 	ni.ifp = ifp;
2320 	ni.dev = (struct net_device *)ifp;
2321 	if (linkstate == LINK_STATE_UP)
2322 		nb->notifier_call(nb, NETDEV_UP, &ni);
2323 	else
2324 		nb->notifier_call(nb, NETDEV_DOWN, &ni);
2325 }
2326 
2327 static void
linux_handle_ifnet_arrival_event(void * arg,struct ifnet * ifp)2328 linux_handle_ifnet_arrival_event(void *arg, struct ifnet *ifp)
2329 {
2330 	struct notifier_block *nb;
2331 	struct netdev_notifier_info ni;
2332 
2333 	nb = arg;
2334 	ni.ifp = ifp;
2335 	ni.dev = (struct net_device *)ifp;
2336 	nb->notifier_call(nb, NETDEV_REGISTER, &ni);
2337 }
2338 
2339 static void
linux_handle_ifnet_departure_event(void * arg,struct ifnet * ifp)2340 linux_handle_ifnet_departure_event(void *arg, struct ifnet *ifp)
2341 {
2342 	struct notifier_block *nb;
2343 	struct netdev_notifier_info ni;
2344 
2345 	nb = arg;
2346 	ni.ifp = ifp;
2347 	ni.dev = (struct net_device *)ifp;
2348 	nb->notifier_call(nb, NETDEV_UNREGISTER, &ni);
2349 }
2350 
2351 static void
linux_handle_iflladdr_event(void * arg,struct ifnet * ifp)2352 linux_handle_iflladdr_event(void *arg, struct ifnet *ifp)
2353 {
2354 	struct notifier_block *nb;
2355 	struct netdev_notifier_info ni;
2356 
2357 	nb = arg;
2358 	ni.ifp = ifp;
2359 	ni.dev = (struct net_device *)ifp;
2360 	nb->notifier_call(nb, NETDEV_CHANGEADDR, &ni);
2361 }
2362 
2363 static void
linux_handle_ifaddr_event(void * arg,struct ifnet * ifp)2364 linux_handle_ifaddr_event(void *arg, struct ifnet *ifp)
2365 {
2366 	struct notifier_block *nb;
2367 	struct netdev_notifier_info ni;
2368 
2369 	nb = arg;
2370 	ni.ifp = ifp;
2371 	ni.dev = (struct net_device *)ifp;
2372 	nb->notifier_call(nb, NETDEV_CHANGEIFADDR, &ni);
2373 }
2374 
2375 int
register_netdevice_notifier(struct notifier_block * nb)2376 register_netdevice_notifier(struct notifier_block *nb)
2377 {
2378 
2379 	nb->tags[NETDEV_UP] = EVENTHANDLER_REGISTER(
2380 	    ifnet_link_event, linux_handle_ifnet_link_event, nb, 0);
2381 	nb->tags[NETDEV_REGISTER] = EVENTHANDLER_REGISTER(
2382 	    ifnet_arrival_event, linux_handle_ifnet_arrival_event, nb, 0);
2383 	nb->tags[NETDEV_UNREGISTER] = EVENTHANDLER_REGISTER(
2384 	    ifnet_departure_event, linux_handle_ifnet_departure_event, nb, 0);
2385 	nb->tags[NETDEV_CHANGEADDR] = EVENTHANDLER_REGISTER(
2386 	    iflladdr_event, linux_handle_iflladdr_event, nb, 0);
2387 
2388 	return (0);
2389 }
2390 
2391 int
register_inetaddr_notifier(struct notifier_block * nb)2392 register_inetaddr_notifier(struct notifier_block *nb)
2393 {
2394 
2395 	nb->tags[NETDEV_CHANGEIFADDR] = EVENTHANDLER_REGISTER(
2396 	    ifaddr_event, linux_handle_ifaddr_event, nb, 0);
2397 	return (0);
2398 }
2399 
2400 int
unregister_netdevice_notifier(struct notifier_block * nb)2401 unregister_netdevice_notifier(struct notifier_block *nb)
2402 {
2403 
2404 	EVENTHANDLER_DEREGISTER(ifnet_link_event,
2405 	    nb->tags[NETDEV_UP]);
2406 	EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
2407 	    nb->tags[NETDEV_REGISTER]);
2408 	EVENTHANDLER_DEREGISTER(ifnet_departure_event,
2409 	    nb->tags[NETDEV_UNREGISTER]);
2410 	EVENTHANDLER_DEREGISTER(iflladdr_event,
2411 	    nb->tags[NETDEV_CHANGEADDR]);
2412 
2413 	return (0);
2414 }
2415 
2416 int
unregister_inetaddr_notifier(struct notifier_block * nb)2417 unregister_inetaddr_notifier(struct notifier_block *nb)
2418 {
2419 
2420 	EVENTHANDLER_DEREGISTER(ifaddr_event,
2421 	    nb->tags[NETDEV_CHANGEIFADDR]);
2422 
2423 	return (0);
2424 }
2425 
2426 struct list_sort_thunk {
2427 	int (*cmp)(void *, struct list_head *, struct list_head *);
2428 	void *priv;
2429 };
2430 
2431 static inline int
linux_le_cmp(const void * d1,const void * d2,void * priv)2432 linux_le_cmp(const void *d1, const void *d2, void *priv)
2433 {
2434 	struct list_head *le1, *le2;
2435 	struct list_sort_thunk *thunk;
2436 
2437 	thunk = priv;
2438 	le1 = *(__DECONST(struct list_head **, d1));
2439 	le2 = *(__DECONST(struct list_head **, d2));
2440 	return ((thunk->cmp)(thunk->priv, le1, le2));
2441 }
2442 
2443 void
list_sort(void * priv,struct list_head * head,int (* cmp)(void * priv,struct list_head * a,struct list_head * b))2444 list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv,
2445     struct list_head *a, struct list_head *b))
2446 {
2447 	struct list_sort_thunk thunk;
2448 	struct list_head **ar, *le;
2449 	size_t count, i;
2450 
2451 	count = 0;
2452 	list_for_each(le, head)
2453 		count++;
2454 	ar = malloc(sizeof(struct list_head *) * count, M_KMALLOC, M_WAITOK);
2455 	i = 0;
2456 	list_for_each(le, head)
2457 		ar[i++] = le;
2458 	thunk.cmp = cmp;
2459 	thunk.priv = priv;
2460 	qsort_r(ar, count, sizeof(struct list_head *), linux_le_cmp, &thunk);
2461 	INIT_LIST_HEAD(head);
2462 	for (i = 0; i < count; i++)
2463 		list_add_tail(ar[i], head);
2464 	free(ar, M_KMALLOC);
2465 }
2466 
2467 #if defined(__i386__) || defined(__amd64__)
2468 int
linux_wbinvd_on_all_cpus(void)2469 linux_wbinvd_on_all_cpus(void)
2470 {
2471 
2472 	pmap_invalidate_cache();
2473 	return (0);
2474 }
2475 #endif
2476 
2477 int
linux_on_each_cpu(void callback (void *),void * data)2478 linux_on_each_cpu(void callback(void *), void *data)
2479 {
2480 
2481 	smp_rendezvous(smp_no_rendezvous_barrier, callback,
2482 	    smp_no_rendezvous_barrier, data);
2483 	return (0);
2484 }
2485 
2486 int
linux_in_atomic(void)2487 linux_in_atomic(void)
2488 {
2489 
2490 	return ((curthread->td_pflags & TDP_NOFAULTING) != 0);
2491 }
2492 
2493 struct linux_cdev *
linux_find_cdev(const char * name,unsigned major,unsigned minor)2494 linux_find_cdev(const char *name, unsigned major, unsigned minor)
2495 {
2496 	dev_t dev = MKDEV(major, minor);
2497 	struct cdev *cdev;
2498 
2499 	dev_lock();
2500 	LIST_FOREACH(cdev, &linuxcdevsw.d_devs, si_list) {
2501 		struct linux_cdev *ldev = cdev->si_drv1;
2502 		if (ldev->dev == dev &&
2503 		    strcmp(kobject_name(&ldev->kobj), name) == 0) {
2504 			break;
2505 		}
2506 	}
2507 	dev_unlock();
2508 
2509 	return (cdev != NULL ? cdev->si_drv1 : NULL);
2510 }
2511 
2512 int
__register_chrdev(unsigned int major,unsigned int baseminor,unsigned int count,const char * name,const struct file_operations * fops)2513 __register_chrdev(unsigned int major, unsigned int baseminor,
2514     unsigned int count, const char *name,
2515     const struct file_operations *fops)
2516 {
2517 	struct linux_cdev *cdev;
2518 	int ret = 0;
2519 	int i;
2520 
2521 	for (i = baseminor; i < baseminor + count; i++) {
2522 		cdev = cdev_alloc();
2523 		cdev->ops = fops;
2524 		kobject_set_name(&cdev->kobj, name);
2525 
2526 		ret = cdev_add(cdev, makedev(major, i), 1);
2527 		if (ret != 0)
2528 			break;
2529 	}
2530 	return (ret);
2531 }
2532 
2533 int
__register_chrdev_p(unsigned int major,unsigned int baseminor,unsigned int count,const char * name,const struct file_operations * fops,uid_t uid,gid_t gid,int mode)2534 __register_chrdev_p(unsigned int major, unsigned int baseminor,
2535     unsigned int count, const char *name,
2536     const struct file_operations *fops, uid_t uid,
2537     gid_t gid, int mode)
2538 {
2539 	struct linux_cdev *cdev;
2540 	int ret = 0;
2541 	int i;
2542 
2543 	for (i = baseminor; i < baseminor + count; i++) {
2544 		cdev = cdev_alloc();
2545 		cdev->ops = fops;
2546 		kobject_set_name(&cdev->kobj, name);
2547 
2548 		ret = cdev_add_ext(cdev, makedev(major, i), uid, gid, mode);
2549 		if (ret != 0)
2550 			break;
2551 	}
2552 	return (ret);
2553 }
2554 
2555 void
__unregister_chrdev(unsigned int major,unsigned int baseminor,unsigned int count,const char * name)2556 __unregister_chrdev(unsigned int major, unsigned int baseminor,
2557     unsigned int count, const char *name)
2558 {
2559 	struct linux_cdev *cdevp;
2560 	int i;
2561 
2562 	for (i = baseminor; i < baseminor + count; i++) {
2563 		cdevp = linux_find_cdev(name, major, i);
2564 		if (cdevp != NULL)
2565 			cdev_del(cdevp);
2566 	}
2567 }
2568 
2569 void
linux_dump_stack(void)2570 linux_dump_stack(void)
2571 {
2572 #ifdef STACK
2573 	struct stack st;
2574 
2575 	stack_save(&st);
2576 	stack_print(&st);
2577 #endif
2578 }
2579 
2580 int
linuxkpi_net_ratelimit(void)2581 linuxkpi_net_ratelimit(void)
2582 {
2583 
2584 	return (ppsratecheck(&lkpi_net_lastlog, &lkpi_net_curpps,
2585 	   lkpi_net_maxpps));
2586 }
2587 
2588 struct io_mapping *
io_mapping_create_wc(resource_size_t base,unsigned long size)2589 io_mapping_create_wc(resource_size_t base, unsigned long size)
2590 {
2591 	struct io_mapping *mapping;
2592 
2593 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2594 	if (mapping == NULL)
2595 		return (NULL);
2596 	return (io_mapping_init_wc(mapping, base, size));
2597 }
2598 
2599 /* We likely want a linuxkpi_device.c at some point. */
2600 bool
device_can_wakeup(struct device * dev)2601 device_can_wakeup(struct device *dev)
2602 {
2603 
2604 	if (dev == NULL)
2605 		return (false);
2606 	/*
2607 	 * XXX-BZ iwlwifi queries it as part of enabling WoWLAN.
2608 	 * Normally this would be based on a bool in dev->power.XXX.
2609 	 * Check such as PCI PCIM_PCAP_*PME.  We have no way to enable this yet.
2610 	 * We may get away by directly calling into bsddev for as long as
2611 	 * we can assume PCI only avoiding changing struct device breaking KBI.
2612 	 */
2613 	pr_debug("%s:%d: not enabled; see comment.\n", __func__, __LINE__);
2614 	return (false);
2615 }
2616 
2617 static void
devm_device_group_remove(struct device * dev,void * p)2618 devm_device_group_remove(struct device *dev, void *p)
2619 {
2620 	const struct attribute_group **dr = p;
2621 	const struct attribute_group *group = *dr;
2622 
2623 	sysfs_remove_group(&dev->kobj, group);
2624 }
2625 
2626 int
lkpi_devm_device_add_group(struct device * dev,const struct attribute_group * group)2627 lkpi_devm_device_add_group(struct device *dev,
2628     const struct attribute_group *group)
2629 {
2630 	const struct attribute_group **dr;
2631 	int ret;
2632 
2633 	dr = devres_alloc(devm_device_group_remove, sizeof(*dr), GFP_KERNEL);
2634 	if (dr == NULL)
2635 		return (-ENOMEM);
2636 
2637 	ret = sysfs_create_group(&dev->kobj, group);
2638 	if (ret == 0) {
2639 		*dr = group;
2640 		devres_add(dev, dr);
2641 	} else
2642 		devres_free(dr);
2643 
2644 	return (ret);
2645 }
2646 
2647 #if defined(__i386__) || defined(__amd64__)
2648 bool linux_cpu_has_clflush;
2649 struct cpuinfo_x86 boot_cpu_data;
2650 struct cpuinfo_x86 *__cpu_data;
2651 #endif
2652 
2653 cpumask_t *
lkpi_get_static_single_cpu_mask(int cpuid)2654 lkpi_get_static_single_cpu_mask(int cpuid)
2655 {
2656 
2657 	KASSERT((cpuid >= 0 && cpuid <= mp_maxid), ("%s: invalid cpuid %d\n",
2658 	    __func__, cpuid));
2659 	KASSERT(!CPU_ABSENT(cpuid), ("%s: cpu with cpuid %d is absent\n",
2660 	    __func__, cpuid));
2661 
2662 	return (static_single_cpu_mask[cpuid]);
2663 }
2664 
2665 bool
lkpi_xen_initial_domain(void)2666 lkpi_xen_initial_domain(void)
2667 {
2668 #ifdef XENHVM
2669 	return (xen_initial_domain());
2670 #else
2671 	return (false);
2672 #endif
2673 }
2674 
2675 bool
lkpi_xen_pv_domain(void)2676 lkpi_xen_pv_domain(void)
2677 {
2678 #ifdef XENHVM
2679 	return (xen_pv_domain());
2680 #else
2681 	return (false);
2682 #endif
2683 }
2684 
2685 static void
linux_compat_init(void * arg)2686 linux_compat_init(void *arg)
2687 {
2688 	struct sysctl_oid *rootoid;
2689 	int i;
2690 
2691 #if defined(__i386__) || defined(__amd64__)
2692 	static const uint32_t x86_vendors[X86_VENDOR_NUM] = {
2693 		[X86_VENDOR_INTEL] = CPU_VENDOR_INTEL,
2694 		[X86_VENDOR_CYRIX] = CPU_VENDOR_CYRIX,
2695 		[X86_VENDOR_AMD] = CPU_VENDOR_AMD,
2696 		[X86_VENDOR_UMC] = CPU_VENDOR_UMC,
2697 		[X86_VENDOR_CENTAUR] = CPU_VENDOR_CENTAUR,
2698 		[X86_VENDOR_TRANSMETA] = CPU_VENDOR_TRANSMETA,
2699 		[X86_VENDOR_NSC] = CPU_VENDOR_NSC,
2700 		[X86_VENDOR_HYGON] = CPU_VENDOR_HYGON,
2701 	};
2702 	uint8_t x86_vendor = X86_VENDOR_UNKNOWN;
2703 
2704 	for (i = 0; i < X86_VENDOR_NUM; i++) {
2705 		if (cpu_vendor_id != 0 && cpu_vendor_id == x86_vendors[i]) {
2706 			x86_vendor = i;
2707 			break;
2708 		}
2709 	}
2710 	linux_cpu_has_clflush = (cpu_feature & CPUID_CLFSH);
2711 	boot_cpu_data.x86_clflush_size = cpu_clflush_line_size;
2712 	boot_cpu_data.x86_max_cores = mp_ncpus;
2713 	boot_cpu_data.x86 = CPUID_TO_FAMILY(cpu_id);
2714 	boot_cpu_data.x86_model = CPUID_TO_MODEL(cpu_id);
2715 	boot_cpu_data.x86_vendor = x86_vendor;
2716 
2717 	__cpu_data = mallocarray(mp_maxid + 1,
2718 	    sizeof(*__cpu_data), M_KMALLOC, M_WAITOK | M_ZERO);
2719 	CPU_FOREACH(i) {
2720 		__cpu_data[i].x86_clflush_size = cpu_clflush_line_size;
2721 		__cpu_data[i].x86_max_cores = mp_ncpus;
2722 		__cpu_data[i].x86 = CPUID_TO_FAMILY(cpu_id);
2723 		__cpu_data[i].x86_model = CPUID_TO_MODEL(cpu_id);
2724 		__cpu_data[i].x86_vendor = x86_vendor;
2725 	}
2726 #endif
2727 	rw_init(&linux_vma_lock, "lkpi-vma-lock");
2728 
2729 	rootoid = SYSCTL_ADD_ROOT_NODE(NULL,
2730 	    OID_AUTO, "sys", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "sys");
2731 	kobject_init(&linux_class_root, &linux_class_ktype);
2732 	kobject_set_name(&linux_class_root, "class");
2733 	linux_class_root.oidp = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(rootoid),
2734 	    OID_AUTO, "class", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "class");
2735 	kobject_init(&linux_root_device.kobj, &linux_dev_ktype);
2736 	kobject_set_name(&linux_root_device.kobj, "device");
2737 	linux_root_device.kobj.oidp = SYSCTL_ADD_NODE(NULL,
2738 	    SYSCTL_CHILDREN(rootoid), OID_AUTO, "device",
2739 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "device");
2740 	linux_root_device.bsddev = root_bus;
2741 	linux_class_misc.name = "misc";
2742 	class_register(&linux_class_misc);
2743 	INIT_LIST_HEAD(&pci_drivers);
2744 	INIT_LIST_HEAD(&pci_devices);
2745 	spin_lock_init(&pci_lock);
2746 	mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF);
2747 	for (i = 0; i < VMMAP_HASH_SIZE; i++)
2748 		LIST_INIT(&vmmaphead[i]);
2749 	init_waitqueue_head(&linux_bit_waitq);
2750 	init_waitqueue_head(&linux_var_waitq);
2751 
2752 	CPU_COPY(&all_cpus, &cpu_online_mask);
2753 	/*
2754 	 * Generate a single-CPU cpumask_t for each CPU (possibly) in the system.
2755 	 * CPUs are indexed from 0..(mp_maxid).  The entry for cpuid 0 will only
2756 	 * have itself in the cpumask, cupid 1 only itself on entry 1, and so on.
2757 	 * This is used by cpumask_of() (and possibly others in the future) for,
2758 	 * e.g., drivers to pass hints to irq_set_affinity_hint().
2759 	 */
2760 	static_single_cpu_mask = mallocarray(mp_maxid + 1,
2761 	    sizeof(static_single_cpu_mask), M_KMALLOC, M_WAITOK | M_ZERO);
2762 
2763 	/*
2764 	 * When the number of CPUs reach a threshold, we start to save memory
2765 	 * given the sets are static by overlapping those having their single
2766 	 * bit set at same position in a bitset word.  Asymptotically, this
2767 	 * regular scheme is in O(n²) whereas the overlapping one is in O(n)
2768 	 * only with n being the maximum number of CPUs, so the gain will become
2769 	 * huge quite quickly.  The threshold for 64-bit architectures is 128
2770 	 * CPUs.
2771 	 */
2772 	if (mp_ncpus < (2 * _BITSET_BITS)) {
2773 		cpumask_t *sscm_ptr;
2774 
2775 		/*
2776 		 * This represents 'mp_ncpus * __bitset_words(CPU_SETSIZE) *
2777 		 * (_BITSET_BITS / 8)' bytes (for comparison with the
2778 		 * overlapping scheme).
2779 		 */
2780 		static_single_cpu_mask_lcs = mallocarray(mp_ncpus,
2781 		    sizeof(*static_single_cpu_mask_lcs),
2782 		    M_KMALLOC, M_WAITOK | M_ZERO);
2783 
2784 		sscm_ptr = static_single_cpu_mask_lcs;
2785 		CPU_FOREACH(i) {
2786 			static_single_cpu_mask[i] = sscm_ptr++;
2787 			CPU_SET(i, static_single_cpu_mask[i]);
2788 		}
2789 	} else {
2790 		/* Pointer to a bitset word. */
2791 		__typeof(((cpuset_t *)NULL)->__bits[0]) *bwp;
2792 
2793 		/*
2794 		 * Allocate memory for (static) spans of 'cpumask_t' ('cpuset_t'
2795 		 * really) with a single bit set that can be reused for all
2796 		 * single CPU masks by making them start at different offsets.
2797 		 * We need '__bitset_words(CPU_SETSIZE) - 1' bitset words before
2798 		 * the word having its single bit set, and the same amount
2799 		 * after.
2800 		 */
2801 		static_single_cpu_mask_lcs = mallocarray(_BITSET_BITS,
2802 		    (2 * __bitset_words(CPU_SETSIZE) - 1) * (_BITSET_BITS / 8),
2803 		    M_KMALLOC, M_WAITOK | M_ZERO);
2804 
2805 		/*
2806 		 * We rely below on cpuset_t and the bitset generic
2807 		 * implementation assigning words in the '__bits' array in the
2808 		 * same order of bits (i.e., little-endian ordering, not to be
2809 		 * confused with machine endianness, which concerns bits in
2810 		 * words and other integers).  This is an imperfect test, but it
2811 		 * will detect a change to big-endian ordering.
2812 		 */
2813 		_Static_assert(
2814 		    __bitset_word(_BITSET_BITS + 1, _BITSET_BITS) == 1,
2815 		    "Assumes a bitset implementation that is little-endian "
2816 		    "on its words");
2817 
2818 		/* Initialize the single bit of each static span. */
2819 		bwp = (__typeof(bwp))static_single_cpu_mask_lcs +
2820 		    (__bitset_words(CPU_SETSIZE) - 1);
2821 		for (i = 0; i < _BITSET_BITS; i++) {
2822 			CPU_SET(i, (cpuset_t *)bwp);
2823 			bwp += (2 * __bitset_words(CPU_SETSIZE) - 1);
2824 		}
2825 
2826 		/*
2827 		 * Finally set all CPU masks to the proper word in their
2828 		 * relevant span.
2829 		 */
2830 		CPU_FOREACH(i) {
2831 			bwp = (__typeof(bwp))static_single_cpu_mask_lcs;
2832 			/* Find the non-zero word of the relevant span. */
2833 			bwp += (2 * __bitset_words(CPU_SETSIZE) - 1) *
2834 			    (i % _BITSET_BITS) +
2835 			    __bitset_words(CPU_SETSIZE) - 1;
2836 			/* Shift to find the CPU mask start. */
2837 			bwp -= (i / _BITSET_BITS);
2838 			static_single_cpu_mask[i] = (cpuset_t *)bwp;
2839 		}
2840 	}
2841 
2842 	strlcpy(init_uts_ns.name.release, osrelease, sizeof(init_uts_ns.name.release));
2843 }
2844 SYSINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_init, NULL);
2845 
2846 static void
linux_compat_uninit(void * arg)2847 linux_compat_uninit(void *arg)
2848 {
2849 	linux_kobject_kfree_name(&linux_class_root);
2850 	linux_kobject_kfree_name(&linux_root_device.kobj);
2851 	linux_kobject_kfree_name(&linux_class_misc.kobj);
2852 
2853 	free(static_single_cpu_mask_lcs, M_KMALLOC);
2854 	free(static_single_cpu_mask, M_KMALLOC);
2855 #if defined(__i386__) || defined(__amd64__)
2856 	free(__cpu_data, M_KMALLOC);
2857 #endif
2858 
2859 	mtx_destroy(&vmmaplock);
2860 	spin_lock_destroy(&pci_lock);
2861 	rw_destroy(&linux_vma_lock);
2862 }
2863 SYSUNINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_uninit, NULL);
2864 
2865 /*
2866  * NOTE: Linux frequently uses "unsigned long" for pointer to integer
2867  * conversion and vice versa, where in FreeBSD "uintptr_t" would be
2868  * used. Assert these types have the same size, else some parts of the
2869  * LinuxKPI may not work like expected:
2870  */
2871 CTASSERT(sizeof(unsigned long) == sizeof(uintptr_t));
2872