xref: /freebsd/sys/compat/linuxkpi/common/src/linux_pci.c (revision 479c61bd5f661f0e5927276c7eaea074235f6acc)
1 /*-
2  * Copyright (c) 2015-2016 Mellanox Technologies, Ltd.
3  * All rights reserved.
4  * Copyright (c) 2020-2022 The FreeBSD Foundation
5  *
6  * Portions of this software were developed by Björn Zeeb
7  * under sponsorship from the FreeBSD Foundation.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice unmodified, this list of conditions, and the following
14  *    disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/bus.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/sysctl.h>
37 #include <sys/lock.h>
38 #include <sys/mutex.h>
39 #include <sys/fcntl.h>
40 #include <sys/file.h>
41 #include <sys/filio.h>
42 #include <sys/pciio.h>
43 #include <sys/pctrie.h>
44 #include <sys/rman.h>
45 #include <sys/rwlock.h>
46 
47 #include <vm/vm.h>
48 #include <vm/pmap.h>
49 
50 #include <machine/bus.h>
51 #include <machine/resource.h>
52 #include <machine/stdarg.h>
53 
54 #include <dev/pci/pcivar.h>
55 #include <dev/pci/pci_private.h>
56 #include <dev/pci/pci_iov.h>
57 #include <dev/backlight/backlight.h>
58 
59 #include <linux/kernel.h>
60 #include <linux/kobject.h>
61 #include <linux/device.h>
62 #include <linux/slab.h>
63 #include <linux/module.h>
64 #include <linux/cdev.h>
65 #include <linux/file.h>
66 #include <linux/sysfs.h>
67 #include <linux/mm.h>
68 #include <linux/io.h>
69 #include <linux/vmalloc.h>
70 #include <linux/pci.h>
71 #include <linux/compat.h>
72 
73 #include <linux/backlight.h>
74 
75 #include "backlight_if.h"
76 #include "pcib_if.h"
77 
78 /* Undef the linux function macro defined in linux/pci.h */
79 #undef pci_get_class
80 
81 extern int linuxkpi_debug;
82 
83 SYSCTL_DECL(_compat_linuxkpi);
84 
85 static counter_u64_t lkpi_pci_nseg1_fail;
86 SYSCTL_COUNTER_U64(_compat_linuxkpi, OID_AUTO, lkpi_pci_nseg1_fail, CTLFLAG_RD,
87     &lkpi_pci_nseg1_fail, "Count of busdma mapping failures of single-segment");
88 
89 static device_probe_t linux_pci_probe;
90 static device_attach_t linux_pci_attach;
91 static device_detach_t linux_pci_detach;
92 static device_suspend_t linux_pci_suspend;
93 static device_resume_t linux_pci_resume;
94 static device_shutdown_t linux_pci_shutdown;
95 static pci_iov_init_t linux_pci_iov_init;
96 static pci_iov_uninit_t linux_pci_iov_uninit;
97 static pci_iov_add_vf_t linux_pci_iov_add_vf;
98 static int linux_backlight_get_status(device_t dev, struct backlight_props *props);
99 static int linux_backlight_update_status(device_t dev, struct backlight_props *props);
100 static int linux_backlight_get_info(device_t dev, struct backlight_info *info);
101 static void lkpi_pcim_iomap_table_release(struct device *, void *);
102 
103 static device_method_t pci_methods[] = {
104 	DEVMETHOD(device_probe, linux_pci_probe),
105 	DEVMETHOD(device_attach, linux_pci_attach),
106 	DEVMETHOD(device_detach, linux_pci_detach),
107 	DEVMETHOD(device_suspend, linux_pci_suspend),
108 	DEVMETHOD(device_resume, linux_pci_resume),
109 	DEVMETHOD(device_shutdown, linux_pci_shutdown),
110 	DEVMETHOD(pci_iov_init, linux_pci_iov_init),
111 	DEVMETHOD(pci_iov_uninit, linux_pci_iov_uninit),
112 	DEVMETHOD(pci_iov_add_vf, linux_pci_iov_add_vf),
113 
114 	/* backlight interface */
115 	DEVMETHOD(backlight_update_status, linux_backlight_update_status),
116 	DEVMETHOD(backlight_get_status, linux_backlight_get_status),
117 	DEVMETHOD(backlight_get_info, linux_backlight_get_info),
118 	DEVMETHOD_END
119 };
120 
121 const char *pci_power_names[] = {
122 	"UNKNOWN", "D0", "D1", "D2", "D3hot", "D3cold"
123 };
124 
125 /* We need some meta-struct to keep track of these for devres. */
126 struct pci_devres {
127 	bool		enable_io;
128 	/* PCIR_MAX_BAR_0 + 1 = 6 => BIT(0..5). */
129 	uint8_t		region_mask;
130 	struct resource	*region_table[PCIR_MAX_BAR_0 + 1]; /* Not needed. */
131 };
132 struct pcim_iomap_devres {
133 	void		*mmio_table[PCIR_MAX_BAR_0 + 1];
134 	struct resource	*res_table[PCIR_MAX_BAR_0 + 1];
135 };
136 
137 struct linux_dma_priv {
138 	uint64_t	dma_mask;
139 	bus_dma_tag_t	dmat;
140 	uint64_t	dma_coherent_mask;
141 	bus_dma_tag_t	dmat_coherent;
142 	struct mtx	lock;
143 	struct pctrie	ptree;
144 };
145 #define	DMA_PRIV_LOCK(priv) mtx_lock(&(priv)->lock)
146 #define	DMA_PRIV_UNLOCK(priv) mtx_unlock(&(priv)->lock)
147 
148 static int
149 linux_pdev_dma_uninit(struct pci_dev *pdev)
150 {
151 	struct linux_dma_priv *priv;
152 
153 	priv = pdev->dev.dma_priv;
154 	if (priv->dmat)
155 		bus_dma_tag_destroy(priv->dmat);
156 	if (priv->dmat_coherent)
157 		bus_dma_tag_destroy(priv->dmat_coherent);
158 	mtx_destroy(&priv->lock);
159 	pdev->dev.dma_priv = NULL;
160 	free(priv, M_DEVBUF);
161 	return (0);
162 }
163 
164 static int
165 linux_pdev_dma_init(struct pci_dev *pdev)
166 {
167 	struct linux_dma_priv *priv;
168 	int error;
169 
170 	priv = malloc(sizeof(*priv), M_DEVBUF, M_WAITOK | M_ZERO);
171 
172 	mtx_init(&priv->lock, "lkpi-priv-dma", NULL, MTX_DEF);
173 	pctrie_init(&priv->ptree);
174 
175 	pdev->dev.dma_priv = priv;
176 
177 	/* Create a default DMA tags. */
178 	error = linux_dma_tag_init(&pdev->dev, DMA_BIT_MASK(64));
179 	if (error != 0)
180 		goto err;
181 	/* Coherent is lower 32bit only by default in Linux. */
182 	error = linux_dma_tag_init_coherent(&pdev->dev, DMA_BIT_MASK(32));
183 	if (error != 0)
184 		goto err;
185 
186 	return (error);
187 
188 err:
189 	linux_pdev_dma_uninit(pdev);
190 	return (error);
191 }
192 
193 int
194 linux_dma_tag_init(struct device *dev, u64 dma_mask)
195 {
196 	struct linux_dma_priv *priv;
197 	int error;
198 
199 	priv = dev->dma_priv;
200 
201 	if (priv->dmat) {
202 		if (priv->dma_mask == dma_mask)
203 			return (0);
204 
205 		bus_dma_tag_destroy(priv->dmat);
206 	}
207 
208 	priv->dma_mask = dma_mask;
209 
210 	error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
211 	    1, 0,			/* alignment, boundary */
212 	    dma_mask,			/* lowaddr */
213 	    BUS_SPACE_MAXADDR,		/* highaddr */
214 	    NULL, NULL,			/* filtfunc, filtfuncarg */
215 	    BUS_SPACE_MAXSIZE,		/* maxsize */
216 	    1,				/* nsegments */
217 	    BUS_SPACE_MAXSIZE,		/* maxsegsz */
218 	    0,				/* flags */
219 	    NULL, NULL,			/* lockfunc, lockfuncarg */
220 	    &priv->dmat);
221 	return (-error);
222 }
223 
224 int
225 linux_dma_tag_init_coherent(struct device *dev, u64 dma_mask)
226 {
227 	struct linux_dma_priv *priv;
228 	int error;
229 
230 	priv = dev->dma_priv;
231 
232 	if (priv->dmat_coherent) {
233 		if (priv->dma_coherent_mask == dma_mask)
234 			return (0);
235 
236 		bus_dma_tag_destroy(priv->dmat_coherent);
237 	}
238 
239 	priv->dma_coherent_mask = dma_mask;
240 
241 	error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
242 	    1, 0,			/* alignment, boundary */
243 	    dma_mask,			/* lowaddr */
244 	    BUS_SPACE_MAXADDR,		/* highaddr */
245 	    NULL, NULL,			/* filtfunc, filtfuncarg */
246 	    BUS_SPACE_MAXSIZE,		/* maxsize */
247 	    1,				/* nsegments */
248 	    BUS_SPACE_MAXSIZE,		/* maxsegsz */
249 	    0,				/* flags */
250 	    NULL, NULL,			/* lockfunc, lockfuncarg */
251 	    &priv->dmat_coherent);
252 	return (-error);
253 }
254 
255 static struct pci_driver *
256 linux_pci_find(device_t dev, const struct pci_device_id **idp)
257 {
258 	const struct pci_device_id *id;
259 	struct pci_driver *pdrv;
260 	uint16_t vendor;
261 	uint16_t device;
262 	uint16_t subvendor;
263 	uint16_t subdevice;
264 
265 	vendor = pci_get_vendor(dev);
266 	device = pci_get_device(dev);
267 	subvendor = pci_get_subvendor(dev);
268 	subdevice = pci_get_subdevice(dev);
269 
270 	spin_lock(&pci_lock);
271 	list_for_each_entry(pdrv, &pci_drivers, node) {
272 		for (id = pdrv->id_table; id->vendor != 0; id++) {
273 			if (vendor == id->vendor &&
274 			    (PCI_ANY_ID == id->device || device == id->device) &&
275 			    (PCI_ANY_ID == id->subvendor || subvendor == id->subvendor) &&
276 			    (PCI_ANY_ID == id->subdevice || subdevice == id->subdevice)) {
277 				*idp = id;
278 				spin_unlock(&pci_lock);
279 				return (pdrv);
280 			}
281 		}
282 	}
283 	spin_unlock(&pci_lock);
284 	return (NULL);
285 }
286 
287 struct pci_dev *
288 lkpi_pci_get_device(uint16_t vendor, uint16_t device, struct pci_dev *odev)
289 {
290 	struct pci_dev *pdev;
291 
292 	KASSERT(odev == NULL, ("%s: odev argument not yet supported\n", __func__));
293 
294 	spin_lock(&pci_lock);
295 	list_for_each_entry(pdev, &pci_devices, links) {
296 		if (pdev->vendor == vendor && pdev->device == device)
297 			break;
298 	}
299 	spin_unlock(&pci_lock);
300 
301 	return (pdev);
302 }
303 
304 static void
305 lkpi_pci_dev_release(struct device *dev)
306 {
307 
308 	lkpi_devres_release_free_list(dev);
309 	spin_lock_destroy(&dev->devres_lock);
310 }
311 
312 static void
313 lkpifill_pci_dev(device_t dev, struct pci_dev *pdev)
314 {
315 
316 	pdev->devfn = PCI_DEVFN(pci_get_slot(dev), pci_get_function(dev));
317 	pdev->vendor = pci_get_vendor(dev);
318 	pdev->device = pci_get_device(dev);
319 	pdev->subsystem_vendor = pci_get_subvendor(dev);
320 	pdev->subsystem_device = pci_get_subdevice(dev);
321 	pdev->class = pci_get_class(dev);
322 	pdev->revision = pci_get_revid(dev);
323 	pdev->path_name = kasprintf(GFP_KERNEL, "%04d:%02d:%02d.%d",
324 	    pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev),
325 	    pci_get_function(dev));
326 	pdev->bus = malloc(sizeof(*pdev->bus), M_DEVBUF, M_WAITOK | M_ZERO);
327 	/*
328 	 * This should be the upstream bridge; pci_upstream_bridge()
329 	 * handles that case on demand as otherwise we'll shadow the
330 	 * entire PCI hierarchy.
331 	 */
332 	pdev->bus->self = pdev;
333 	pdev->bus->number = pci_get_bus(dev);
334 	pdev->bus->domain = pci_get_domain(dev);
335 	pdev->dev.bsddev = dev;
336 	pdev->dev.parent = &linux_root_device;
337 	pdev->dev.release = lkpi_pci_dev_release;
338 	INIT_LIST_HEAD(&pdev->dev.irqents);
339 
340 	if (pci_msi_count(dev) > 0)
341 		pdev->msi_desc = malloc(pci_msi_count(dev) *
342 		    sizeof(*pdev->msi_desc), M_DEVBUF, M_WAITOK | M_ZERO);
343 
344 	kobject_init(&pdev->dev.kobj, &linux_dev_ktype);
345 	kobject_set_name(&pdev->dev.kobj, device_get_nameunit(dev));
346 	kobject_add(&pdev->dev.kobj, &linux_root_device.kobj,
347 	    kobject_name(&pdev->dev.kobj));
348 	spin_lock_init(&pdev->dev.devres_lock);
349 	INIT_LIST_HEAD(&pdev->dev.devres_head);
350 }
351 
352 static void
353 lkpinew_pci_dev_release(struct device *dev)
354 {
355 	struct pci_dev *pdev;
356 	int i;
357 
358 	pdev = to_pci_dev(dev);
359 	if (pdev->root != NULL)
360 		pci_dev_put(pdev->root);
361 	if (pdev->bus->self != pdev)
362 		pci_dev_put(pdev->bus->self);
363 	free(pdev->bus, M_DEVBUF);
364 	if (pdev->msi_desc != NULL) {
365 		for (i = pci_msi_count(pdev->dev.bsddev) - 1; i >= 0; i--)
366 			free(pdev->msi_desc[i], M_DEVBUF);
367 		free(pdev->msi_desc, M_DEVBUF);
368 	}
369 	kfree(pdev->path_name);
370 	free(pdev, M_DEVBUF);
371 }
372 
373 struct pci_dev *
374 lkpinew_pci_dev(device_t dev)
375 {
376 	struct pci_dev *pdev;
377 
378 	pdev = malloc(sizeof(*pdev), M_DEVBUF, M_WAITOK|M_ZERO);
379 	lkpifill_pci_dev(dev, pdev);
380 	pdev->dev.release = lkpinew_pci_dev_release;
381 
382 	return (pdev);
383 }
384 
385 struct pci_dev *
386 lkpi_pci_get_class(unsigned int class, struct pci_dev *from)
387 {
388 	device_t dev;
389 	device_t devfrom = NULL;
390 	struct pci_dev *pdev;
391 
392 	if (from != NULL)
393 		devfrom = from->dev.bsddev;
394 
395 	dev = pci_find_class_from(class >> 16, (class >> 8) & 0xFF, devfrom);
396 	if (dev == NULL)
397 		return (NULL);
398 
399 	pdev = lkpinew_pci_dev(dev);
400 	return (pdev);
401 }
402 
403 struct pci_dev *
404 lkpi_pci_get_base_class(unsigned int baseclass, struct pci_dev *from)
405 {
406 	device_t dev;
407 	device_t devfrom = NULL;
408 	struct pci_dev *pdev;
409 
410 	if (from != NULL)
411 		devfrom = from->dev.bsddev;
412 
413 	dev = pci_find_base_class_from(baseclass, devfrom);
414 	if (dev == NULL)
415 		return (NULL);
416 
417 	pdev = lkpinew_pci_dev(dev);
418 	return (pdev);
419 }
420 
421 struct pci_dev *
422 lkpi_pci_get_domain_bus_and_slot(int domain, unsigned int bus,
423     unsigned int devfn)
424 {
425 	device_t dev;
426 	struct pci_dev *pdev;
427 
428 	dev = pci_find_dbsf(domain, bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
429 	if (dev == NULL)
430 		return (NULL);
431 
432 	pdev = lkpinew_pci_dev(dev);
433 	return (pdev);
434 }
435 
436 static int
437 linux_pci_probe(device_t dev)
438 {
439 	const struct pci_device_id *id;
440 	struct pci_driver *pdrv;
441 
442 	if ((pdrv = linux_pci_find(dev, &id)) == NULL)
443 		return (ENXIO);
444 	if (device_get_driver(dev) != &pdrv->bsddriver)
445 		return (ENXIO);
446 	device_set_desc(dev, pdrv->name);
447 
448 	/* Assume BSS initialized (should never return BUS_PROBE_SPECIFIC). */
449 	if (pdrv->bsd_probe_return == 0)
450 		return (BUS_PROBE_DEFAULT);
451 	else
452 		return (pdrv->bsd_probe_return);
453 }
454 
455 static int
456 linux_pci_attach(device_t dev)
457 {
458 	const struct pci_device_id *id;
459 	struct pci_driver *pdrv;
460 	struct pci_dev *pdev;
461 
462 	pdrv = linux_pci_find(dev, &id);
463 	pdev = device_get_softc(dev);
464 
465 	MPASS(pdrv != NULL);
466 	MPASS(pdev != NULL);
467 
468 	return (linux_pci_attach_device(dev, pdrv, id, pdev));
469 }
470 
471 static struct resource_list_entry *
472 linux_pci_reserve_bar(struct pci_dev *pdev, struct resource_list *rl,
473     int type, int rid)
474 {
475 	device_t dev;
476 	struct resource *res;
477 
478 	KASSERT(type == SYS_RES_IOPORT || type == SYS_RES_MEMORY,
479 	    ("trying to reserve non-BAR type %d", type));
480 
481 	dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ?
482 	    device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev;
483 	res = pci_reserve_map(device_get_parent(dev), dev, type, &rid, 0, ~0,
484 	    1, 1, 0);
485 	if (res == NULL)
486 		return (NULL);
487 	return (resource_list_find(rl, type, rid));
488 }
489 
490 static struct resource_list_entry *
491 linux_pci_get_rle(struct pci_dev *pdev, int type, int rid, bool reserve_bar)
492 {
493 	struct pci_devinfo *dinfo;
494 	struct resource_list *rl;
495 	struct resource_list_entry *rle;
496 
497 	dinfo = device_get_ivars(pdev->dev.bsddev);
498 	rl = &dinfo->resources;
499 	rle = resource_list_find(rl, type, rid);
500 	/* Reserve resources for this BAR if needed. */
501 	if (rle == NULL && reserve_bar)
502 		rle = linux_pci_reserve_bar(pdev, rl, type, rid);
503 	return (rle);
504 }
505 
506 int
507 linux_pci_attach_device(device_t dev, struct pci_driver *pdrv,
508     const struct pci_device_id *id, struct pci_dev *pdev)
509 {
510 	struct resource_list_entry *rle;
511 	device_t parent;
512 	uintptr_t rid;
513 	int error;
514 	bool isdrm;
515 
516 	linux_set_current(curthread);
517 
518 	parent = device_get_parent(dev);
519 	isdrm = pdrv != NULL && pdrv->isdrm;
520 
521 	if (isdrm) {
522 		struct pci_devinfo *dinfo;
523 
524 		dinfo = device_get_ivars(parent);
525 		device_set_ivars(dev, dinfo);
526 	}
527 
528 	lkpifill_pci_dev(dev, pdev);
529 	if (isdrm)
530 		PCI_GET_ID(device_get_parent(parent), parent, PCI_ID_RID, &rid);
531 	else
532 		PCI_GET_ID(parent, dev, PCI_ID_RID, &rid);
533 	pdev->devfn = rid;
534 	pdev->pdrv = pdrv;
535 	rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 0, false);
536 	if (rle != NULL)
537 		pdev->dev.irq = rle->start;
538 	else
539 		pdev->dev.irq = LINUX_IRQ_INVALID;
540 	pdev->irq = pdev->dev.irq;
541 	error = linux_pdev_dma_init(pdev);
542 	if (error)
543 		goto out_dma_init;
544 
545 	TAILQ_INIT(&pdev->mmio);
546 	spin_lock_init(&pdev->pcie_cap_lock);
547 
548 	spin_lock(&pci_lock);
549 	list_add(&pdev->links, &pci_devices);
550 	spin_unlock(&pci_lock);
551 
552 	if (pdrv != NULL) {
553 		error = pdrv->probe(pdev, id);
554 		if (error)
555 			goto out_probe;
556 	}
557 	return (0);
558 
559 out_probe:
560 	free(pdev->bus, M_DEVBUF);
561 	spin_lock_destroy(&pdev->pcie_cap_lock);
562 	linux_pdev_dma_uninit(pdev);
563 out_dma_init:
564 	spin_lock(&pci_lock);
565 	list_del(&pdev->links);
566 	spin_unlock(&pci_lock);
567 	put_device(&pdev->dev);
568 	return (-error);
569 }
570 
571 static int
572 linux_pci_detach(device_t dev)
573 {
574 	struct pci_dev *pdev;
575 
576 	pdev = device_get_softc(dev);
577 
578 	MPASS(pdev != NULL);
579 
580 	device_set_desc(dev, NULL);
581 
582 	return (linux_pci_detach_device(pdev));
583 }
584 
585 int
586 linux_pci_detach_device(struct pci_dev *pdev)
587 {
588 
589 	linux_set_current(curthread);
590 
591 	if (pdev->pdrv != NULL)
592 		pdev->pdrv->remove(pdev);
593 
594 	if (pdev->root != NULL)
595 		pci_dev_put(pdev->root);
596 	free(pdev->bus, M_DEVBUF);
597 	linux_pdev_dma_uninit(pdev);
598 
599 	spin_lock(&pci_lock);
600 	list_del(&pdev->links);
601 	spin_unlock(&pci_lock);
602 	spin_lock_destroy(&pdev->pcie_cap_lock);
603 	put_device(&pdev->dev);
604 
605 	return (0);
606 }
607 
608 static int
609 lkpi_pci_disable_dev(struct device *dev)
610 {
611 
612 	(void) pci_disable_io(dev->bsddev, SYS_RES_MEMORY);
613 	(void) pci_disable_io(dev->bsddev, SYS_RES_IOPORT);
614 	return (0);
615 }
616 
617 static struct pci_devres *
618 lkpi_pci_devres_get_alloc(struct pci_dev *pdev)
619 {
620 	struct pci_devres *dr;
621 
622 	dr = lkpi_devres_find(&pdev->dev, lkpi_pci_devres_release, NULL, NULL);
623 	if (dr == NULL) {
624 		dr = lkpi_devres_alloc(lkpi_pci_devres_release, sizeof(*dr),
625 		    GFP_KERNEL | __GFP_ZERO);
626 		if (dr != NULL)
627 			lkpi_devres_add(&pdev->dev, dr);
628 	}
629 
630 	return (dr);
631 }
632 
633 static struct pci_devres *
634 lkpi_pci_devres_find(struct pci_dev *pdev)
635 {
636 	if (!pdev->managed)
637 		return (NULL);
638 
639 	return (lkpi_pci_devres_get_alloc(pdev));
640 }
641 
642 void
643 lkpi_pci_devres_release(struct device *dev, void *p)
644 {
645 	struct pci_devres *dr;
646 	struct pci_dev *pdev;
647 	int bar;
648 
649 	pdev = to_pci_dev(dev);
650 	dr = p;
651 
652 	if (pdev->msix_enabled)
653 		lkpi_pci_disable_msix(pdev);
654         if (pdev->msi_enabled)
655 		lkpi_pci_disable_msi(pdev);
656 
657 	if (dr->enable_io && lkpi_pci_disable_dev(dev) == 0)
658 		dr->enable_io = false;
659 
660 	if (dr->region_mask == 0)
661 		return;
662 	for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
663 
664 		if ((dr->region_mask & (1 << bar)) == 0)
665 			continue;
666 		pci_release_region(pdev, bar);
667 	}
668 }
669 
670 int
671 linuxkpi_pcim_enable_device(struct pci_dev *pdev)
672 {
673 	struct pci_devres *dr;
674 	int error;
675 
676 	/* Here we cannot run through the pdev->managed check. */
677 	dr = lkpi_pci_devres_get_alloc(pdev);
678 	if (dr == NULL)
679 		return (-ENOMEM);
680 
681 	/* If resources were enabled before do not do it again. */
682 	if (dr->enable_io)
683 		return (0);
684 
685 	error = pci_enable_device(pdev);
686 	if (error == 0)
687 		dr->enable_io = true;
688 
689 	/* This device is not managed. */
690 	pdev->managed = true;
691 
692 	return (error);
693 }
694 
695 static struct pcim_iomap_devres *
696 lkpi_pcim_iomap_devres_find(struct pci_dev *pdev)
697 {
698 	struct pcim_iomap_devres *dr;
699 
700 	dr = lkpi_devres_find(&pdev->dev, lkpi_pcim_iomap_table_release,
701 	    NULL, NULL);
702 	if (dr == NULL) {
703 		dr = lkpi_devres_alloc(lkpi_pcim_iomap_table_release,
704 		    sizeof(*dr), GFP_KERNEL | __GFP_ZERO);
705 		if (dr != NULL)
706 			lkpi_devres_add(&pdev->dev, dr);
707 	}
708 
709 	if (dr == NULL)
710 		device_printf(pdev->dev.bsddev, "%s: NULL\n", __func__);
711 
712 	return (dr);
713 }
714 
715 void __iomem **
716 linuxkpi_pcim_iomap_table(struct pci_dev *pdev)
717 {
718 	struct pcim_iomap_devres *dr;
719 
720 	dr = lkpi_pcim_iomap_devres_find(pdev);
721 	if (dr == NULL)
722 		return (NULL);
723 
724 	/*
725 	 * If the driver has manually set a flag to be able to request the
726 	 * resource to use bus_read/write_<n>, return the shadow table.
727 	 */
728 	if (pdev->want_iomap_res)
729 		return ((void **)dr->res_table);
730 
731 	/* This is the Linux default. */
732 	return (dr->mmio_table);
733 }
734 
735 static struct resource *
736 _lkpi_pci_iomap(struct pci_dev *pdev, int bar, int mmio_size __unused)
737 {
738 	struct pci_mmio_region *mmio, *p;
739 	int type;
740 
741 	type = pci_resource_type(pdev, bar);
742 	if (type < 0) {
743 		device_printf(pdev->dev.bsddev, "%s: bar %d type %d\n",
744 		     __func__, bar, type);
745 		return (NULL);
746 	}
747 
748 	/*
749 	 * Check for duplicate mappings.
750 	 * This can happen if a driver calls pci_request_region() first.
751 	 */
752 	TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) {
753 		if (mmio->type == type && mmio->rid == PCIR_BAR(bar)) {
754 			return (mmio->res);
755 		}
756 	}
757 
758 	mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO);
759 	mmio->rid = PCIR_BAR(bar);
760 	mmio->type = type;
761 	mmio->res = bus_alloc_resource_any(pdev->dev.bsddev, mmio->type,
762 	    &mmio->rid, RF_ACTIVE|RF_SHAREABLE);
763 	if (mmio->res == NULL) {
764 		device_printf(pdev->dev.bsddev, "%s: failed to alloc "
765 		    "bar %d type %d rid %d\n",
766 		    __func__, bar, type, PCIR_BAR(bar));
767 		free(mmio, M_DEVBUF);
768 		return (NULL);
769 	}
770 	TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next);
771 
772 	return (mmio->res);
773 }
774 
775 void *
776 linuxkpi_pci_iomap_range(struct pci_dev *pdev, int mmio_bar,
777     unsigned long mmio_off, unsigned long mmio_size)
778 {
779 	struct resource *res;
780 
781 	res = _lkpi_pci_iomap(pdev, mmio_bar, mmio_size);
782 	if (res == NULL)
783 		return (NULL);
784 	/* This is a FreeBSD extension so we can use bus_*(). */
785 	if (pdev->want_iomap_res)
786 		return (res);
787 	MPASS(mmio_off < rman_get_size(res));
788 	return ((void *)(rman_get_bushandle(res) + mmio_off));
789 }
790 
791 void *
792 linuxkpi_pci_iomap(struct pci_dev *pdev, int mmio_bar, int mmio_size)
793 {
794 	return (linuxkpi_pci_iomap_range(pdev, mmio_bar, 0, mmio_size));
795 }
796 
797 void
798 linuxkpi_pci_iounmap(struct pci_dev *pdev, void *res)
799 {
800 	struct pci_mmio_region *mmio, *p;
801 	bus_space_handle_t bh = (bus_space_handle_t)res;
802 
803 	TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) {
804 		if (pdev->want_iomap_res) {
805 			if (res != mmio->res)
806 				continue;
807 		} else {
808 			if (bh <  rman_get_bushandle(mmio->res) ||
809 			    bh >= rman_get_bushandle(mmio->res) +
810 				  rman_get_size(mmio->res))
811 				continue;
812 		}
813 		bus_release_resource(pdev->dev.bsddev,
814 		    mmio->type, mmio->rid, mmio->res);
815 		TAILQ_REMOVE(&pdev->mmio, mmio, next);
816 		free(mmio, M_DEVBUF);
817 		return;
818 	}
819 }
820 
821 int
822 linuxkpi_pcim_iomap_regions(struct pci_dev *pdev, uint32_t mask, const char *name)
823 {
824 	struct pcim_iomap_devres *dr;
825 	void *res;
826 	uint32_t mappings;
827 	int bar;
828 
829 	dr = lkpi_pcim_iomap_devres_find(pdev);
830 	if (dr == NULL)
831 		return (-ENOMEM);
832 
833 	/* Now iomap all the requested (by "mask") ones. */
834 	for (bar = mappings = 0; mappings != mask; bar++) {
835 		if ((mask & (1 << bar)) == 0)
836 			continue;
837 
838 		/* Request double is not allowed. */
839 		if (dr->mmio_table[bar] != NULL) {
840 			device_printf(pdev->dev.bsddev, "%s: bar %d %p\n",
841 			    __func__, bar, dr->mmio_table[bar]);
842 			goto err;
843 		}
844 
845 		res = _lkpi_pci_iomap(pdev, bar, 0);
846 		if (res == NULL)
847 			goto err;
848 		dr->mmio_table[bar] = (void *)rman_get_bushandle(res);
849 		dr->res_table[bar] = res;
850 
851 		mappings |= (1 << bar);
852 	}
853 
854 	return (0);
855 err:
856 	for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
857 		if ((mappings & (1 << bar)) != 0) {
858 			res = dr->mmio_table[bar];
859 			if (res == NULL)
860 				continue;
861 			pci_iounmap(pdev, res);
862 		}
863 	}
864 
865 	return (-EINVAL);
866 }
867 
868 static void
869 lkpi_pcim_iomap_table_release(struct device *dev, void *p)
870 {
871 	struct pcim_iomap_devres *dr;
872 	struct pci_dev *pdev;
873 	int bar;
874 
875 	dr = p;
876 	pdev = to_pci_dev(dev);
877 	for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
878 
879 		if (dr->mmio_table[bar] == NULL)
880 			continue;
881 
882 		pci_iounmap(pdev, dr->mmio_table[bar]);
883 	}
884 }
885 
886 static int
887 linux_pci_suspend(device_t dev)
888 {
889 	const struct dev_pm_ops *pmops;
890 	struct pm_message pm = { };
891 	struct pci_dev *pdev;
892 	int error;
893 
894 	error = 0;
895 	linux_set_current(curthread);
896 	pdev = device_get_softc(dev);
897 	pmops = pdev->pdrv->driver.pm;
898 
899 	if (pdev->pdrv->suspend != NULL)
900 		error = -pdev->pdrv->suspend(pdev, pm);
901 	else if (pmops != NULL && pmops->suspend != NULL) {
902 		error = -pmops->suspend(&pdev->dev);
903 		if (error == 0 && pmops->suspend_late != NULL)
904 			error = -pmops->suspend_late(&pdev->dev);
905 		if (error == 0 && pmops->suspend_noirq != NULL)
906 			error = -pmops->suspend_noirq(&pdev->dev);
907 	}
908 	return (error);
909 }
910 
911 static int
912 linux_pci_resume(device_t dev)
913 {
914 	const struct dev_pm_ops *pmops;
915 	struct pci_dev *pdev;
916 	int error;
917 
918 	error = 0;
919 	linux_set_current(curthread);
920 	pdev = device_get_softc(dev);
921 	pmops = pdev->pdrv->driver.pm;
922 
923 	if (pdev->pdrv->resume != NULL)
924 		error = -pdev->pdrv->resume(pdev);
925 	else if (pmops != NULL && pmops->resume != NULL) {
926 		if (pmops->resume_early != NULL)
927 			error = -pmops->resume_early(&pdev->dev);
928 		if (error == 0 && pmops->resume != NULL)
929 			error = -pmops->resume(&pdev->dev);
930 	}
931 	return (error);
932 }
933 
934 static int
935 linux_pci_shutdown(device_t dev)
936 {
937 	struct pci_dev *pdev;
938 
939 	linux_set_current(curthread);
940 	pdev = device_get_softc(dev);
941 	if (pdev->pdrv->shutdown != NULL)
942 		pdev->pdrv->shutdown(pdev);
943 	return (0);
944 }
945 
946 static int
947 linux_pci_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *pf_config)
948 {
949 	struct pci_dev *pdev;
950 	int error;
951 
952 	linux_set_current(curthread);
953 	pdev = device_get_softc(dev);
954 	if (pdev->pdrv->bsd_iov_init != NULL)
955 		error = pdev->pdrv->bsd_iov_init(dev, num_vfs, pf_config);
956 	else
957 		error = EINVAL;
958 	return (error);
959 }
960 
961 static void
962 linux_pci_iov_uninit(device_t dev)
963 {
964 	struct pci_dev *pdev;
965 
966 	linux_set_current(curthread);
967 	pdev = device_get_softc(dev);
968 	if (pdev->pdrv->bsd_iov_uninit != NULL)
969 		pdev->pdrv->bsd_iov_uninit(dev);
970 }
971 
972 static int
973 linux_pci_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *vf_config)
974 {
975 	struct pci_dev *pdev;
976 	int error;
977 
978 	linux_set_current(curthread);
979 	pdev = device_get_softc(dev);
980 	if (pdev->pdrv->bsd_iov_add_vf != NULL)
981 		error = pdev->pdrv->bsd_iov_add_vf(dev, vfnum, vf_config);
982 	else
983 		error = EINVAL;
984 	return (error);
985 }
986 
987 static int
988 _linux_pci_register_driver(struct pci_driver *pdrv, devclass_t dc)
989 {
990 	int error;
991 
992 	linux_set_current(curthread);
993 	spin_lock(&pci_lock);
994 	list_add(&pdrv->node, &pci_drivers);
995 	spin_unlock(&pci_lock);
996 	if (pdrv->bsddriver.name == NULL)
997 		pdrv->bsddriver.name = pdrv->name;
998 	pdrv->bsddriver.methods = pci_methods;
999 	pdrv->bsddriver.size = sizeof(struct pci_dev);
1000 
1001 	bus_topo_lock();
1002 	error = devclass_add_driver(dc, &pdrv->bsddriver,
1003 	    BUS_PASS_DEFAULT, &pdrv->bsdclass);
1004 	bus_topo_unlock();
1005 	return (-error);
1006 }
1007 
1008 int
1009 linux_pci_register_driver(struct pci_driver *pdrv)
1010 {
1011 	devclass_t dc;
1012 
1013 	pdrv->isdrm = strcmp(pdrv->name, "drmn") == 0;
1014 	dc = pdrv->isdrm ? devclass_create("vgapci") : devclass_find("pci");
1015 	if (dc == NULL)
1016 		return (-ENXIO);
1017 	return (_linux_pci_register_driver(pdrv, dc));
1018 }
1019 
1020 static struct resource_list_entry *
1021 lkpi_pci_get_bar(struct pci_dev *pdev, int bar, bool reserve)
1022 {
1023 	int type;
1024 
1025 	type = pci_resource_type(pdev, bar);
1026 	if (type < 0)
1027 		return (NULL);
1028 	bar = PCIR_BAR(bar);
1029 	return (linux_pci_get_rle(pdev, type, bar, reserve));
1030 }
1031 
1032 struct device *
1033 lkpi_pci_find_irq_dev(unsigned int irq)
1034 {
1035 	struct pci_dev *pdev;
1036 	struct device *found;
1037 
1038 	found = NULL;
1039 	spin_lock(&pci_lock);
1040 	list_for_each_entry(pdev, &pci_devices, links) {
1041 		if (irq == pdev->dev.irq ||
1042 		    (irq >= pdev->dev.irq_start && irq < pdev->dev.irq_end)) {
1043 			found = &pdev->dev;
1044 			break;
1045 		}
1046 	}
1047 	spin_unlock(&pci_lock);
1048 	return (found);
1049 }
1050 
1051 unsigned long
1052 pci_resource_start(struct pci_dev *pdev, int bar)
1053 {
1054 	struct resource_list_entry *rle;
1055 	rman_res_t newstart;
1056 	device_t dev;
1057 	int error;
1058 
1059 	if ((rle = lkpi_pci_get_bar(pdev, bar, true)) == NULL)
1060 		return (0);
1061 	dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ?
1062 	    device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev;
1063 	error = bus_translate_resource(dev, rle->type, rle->start, &newstart);
1064 	if (error != 0) {
1065 		device_printf(pdev->dev.bsddev,
1066 		    "translate of %#jx failed: %d\n",
1067 		    (uintmax_t)rle->start, error);
1068 		return (0);
1069 	}
1070 	return (newstart);
1071 }
1072 
1073 unsigned long
1074 pci_resource_len(struct pci_dev *pdev, int bar)
1075 {
1076 	struct resource_list_entry *rle;
1077 
1078 	if ((rle = lkpi_pci_get_bar(pdev, bar, true)) == NULL)
1079 		return (0);
1080 	return (rle->count);
1081 }
1082 
1083 int
1084 pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1085 {
1086 	struct resource *res;
1087 	struct pci_devres *dr;
1088 	struct pci_mmio_region *mmio;
1089 	int rid;
1090 	int type;
1091 
1092 	type = pci_resource_type(pdev, bar);
1093 	if (type < 0)
1094 		return (-ENODEV);
1095 	rid = PCIR_BAR(bar);
1096 	res = bus_alloc_resource_any(pdev->dev.bsddev, type, &rid,
1097 	    RF_ACTIVE|RF_SHAREABLE);
1098 	if (res == NULL) {
1099 		device_printf(pdev->dev.bsddev, "%s: failed to alloc "
1100 		    "bar %d type %d rid %d\n",
1101 		    __func__, bar, type, PCIR_BAR(bar));
1102 		return (-ENODEV);
1103 	}
1104 
1105 	/*
1106 	 * It seems there is an implicit devres tracking on these if the device
1107 	 * is managed; otherwise the resources are not automatiaclly freed on
1108 	 * FreeBSD/LinuxKPI tough they should be/are expected to be by Linux
1109 	 * drivers.
1110 	 */
1111 	dr = lkpi_pci_devres_find(pdev);
1112 	if (dr != NULL) {
1113 		dr->region_mask |= (1 << bar);
1114 		dr->region_table[bar] = res;
1115 	}
1116 
1117 	/* Even if the device is not managed we need to track it for iomap. */
1118 	mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO);
1119 	mmio->rid = PCIR_BAR(bar);
1120 	mmio->type = type;
1121 	mmio->res = res;
1122 	TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next);
1123 
1124 	return (0);
1125 }
1126 
1127 int
1128 linuxkpi_pci_request_regions(struct pci_dev *pdev, const char *res_name)
1129 {
1130 	int error;
1131 	int i;
1132 
1133 	for (i = 0; i <= PCIR_MAX_BAR_0; i++) {
1134 		error = pci_request_region(pdev, i, res_name);
1135 		if (error && error != -ENODEV) {
1136 			pci_release_regions(pdev);
1137 			return (error);
1138 		}
1139 	}
1140 	return (0);
1141 }
1142 
1143 void
1144 linuxkpi_pci_release_region(struct pci_dev *pdev, int bar)
1145 {
1146 	struct resource_list_entry *rle;
1147 	struct pci_devres *dr;
1148 	struct pci_mmio_region *mmio, *p;
1149 
1150 	if ((rle = lkpi_pci_get_bar(pdev, bar, false)) == NULL)
1151 		return;
1152 
1153 	/*
1154 	 * As we implicitly track the requests we also need to clear them on
1155 	 * release.  Do clear before resource release.
1156 	 */
1157 	dr = lkpi_pci_devres_find(pdev);
1158 	if (dr != NULL) {
1159 		KASSERT(dr->region_table[bar] == rle->res, ("%s: pdev %p bar %d"
1160 		    " region_table res %p != rel->res %p\n", __func__, pdev,
1161 		    bar, dr->region_table[bar], rle->res));
1162 		dr->region_table[bar] = NULL;
1163 		dr->region_mask &= ~(1 << bar);
1164 	}
1165 
1166 	TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) {
1167 		if (rle->res != (void *)rman_get_bushandle(mmio->res))
1168 			continue;
1169 		TAILQ_REMOVE(&pdev->mmio, mmio, next);
1170 		free(mmio, M_DEVBUF);
1171 	}
1172 
1173 	bus_release_resource(pdev->dev.bsddev, rle->type, rle->rid, rle->res);
1174 }
1175 
1176 void
1177 linuxkpi_pci_release_regions(struct pci_dev *pdev)
1178 {
1179 	int i;
1180 
1181 	for (i = 0; i <= PCIR_MAX_BAR_0; i++)
1182 		pci_release_region(pdev, i);
1183 }
1184 
1185 int
1186 linux_pci_register_drm_driver(struct pci_driver *pdrv)
1187 {
1188 	devclass_t dc;
1189 
1190 	dc = devclass_create("vgapci");
1191 	if (dc == NULL)
1192 		return (-ENXIO);
1193 	pdrv->isdrm = true;
1194 	pdrv->name = "drmn";
1195 	return (_linux_pci_register_driver(pdrv, dc));
1196 }
1197 
1198 void
1199 linux_pci_unregister_driver(struct pci_driver *pdrv)
1200 {
1201 	devclass_t bus;
1202 
1203 	bus = devclass_find(pdrv->isdrm ? "vgapci" : "pci");
1204 
1205 	spin_lock(&pci_lock);
1206 	list_del(&pdrv->node);
1207 	spin_unlock(&pci_lock);
1208 	bus_topo_lock();
1209 	if (bus != NULL)
1210 		devclass_delete_driver(bus, &pdrv->bsddriver);
1211 	bus_topo_unlock();
1212 }
1213 
1214 void
1215 linux_pci_unregister_drm_driver(struct pci_driver *pdrv)
1216 {
1217 	devclass_t bus;
1218 
1219 	bus = devclass_find("vgapci");
1220 
1221 	spin_lock(&pci_lock);
1222 	list_del(&pdrv->node);
1223 	spin_unlock(&pci_lock);
1224 	bus_topo_lock();
1225 	if (bus != NULL)
1226 		devclass_delete_driver(bus, &pdrv->bsddriver);
1227 	bus_topo_unlock();
1228 }
1229 
1230 int
1231 linuxkpi_pci_enable_msix(struct pci_dev *pdev, struct msix_entry *entries,
1232     int nreq)
1233 {
1234 	struct resource_list_entry *rle;
1235 	int error;
1236 	int avail;
1237 	int i;
1238 
1239 	avail = pci_msix_count(pdev->dev.bsddev);
1240 	if (avail < nreq) {
1241 		if (avail == 0)
1242 			return -EINVAL;
1243 		return avail;
1244 	}
1245 	avail = nreq;
1246 	if ((error = -pci_alloc_msix(pdev->dev.bsddev, &avail)) != 0)
1247 		return error;
1248 	/*
1249 	* Handle case where "pci_alloc_msix()" may allocate less
1250 	* interrupts than available and return with no error:
1251 	*/
1252 	if (avail < nreq) {
1253 		pci_release_msi(pdev->dev.bsddev);
1254 		return avail;
1255 	}
1256 	rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 1, false);
1257 	pdev->dev.irq_start = rle->start;
1258 	pdev->dev.irq_end = rle->start + avail;
1259 	for (i = 0; i < nreq; i++)
1260 		entries[i].vector = pdev->dev.irq_start + i;
1261 	pdev->msix_enabled = true;
1262 	return (0);
1263 }
1264 
1265 int
1266 _lkpi_pci_enable_msi_range(struct pci_dev *pdev, int minvec, int maxvec)
1267 {
1268 	struct resource_list_entry *rle;
1269 	int error;
1270 	int nvec;
1271 
1272 	if (maxvec < minvec)
1273 		return (-EINVAL);
1274 
1275 	nvec = pci_msi_count(pdev->dev.bsddev);
1276 	if (nvec < 1 || nvec < minvec)
1277 		return (-ENOSPC);
1278 
1279 	nvec = min(nvec, maxvec);
1280 	if ((error = -pci_alloc_msi(pdev->dev.bsddev, &nvec)) != 0)
1281 		return error;
1282 
1283 	/* Native PCI might only ever ask for 32 vectors. */
1284 	if (nvec < minvec) {
1285 		pci_release_msi(pdev->dev.bsddev);
1286 		return (-ENOSPC);
1287 	}
1288 
1289 	rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 1, false);
1290 	pdev->dev.irq_start = rle->start;
1291 	pdev->dev.irq_end = rle->start + nvec;
1292 	pdev->irq = rle->start;
1293 	pdev->msi_enabled = true;
1294 	return (0);
1295 }
1296 
1297 int
1298 pci_alloc_irq_vectors(struct pci_dev *pdev, int minv, int maxv,
1299     unsigned int flags)
1300 {
1301 	int error;
1302 
1303 	if (flags & PCI_IRQ_MSIX) {
1304 		struct msix_entry *entries;
1305 		int i;
1306 
1307 		entries = kcalloc(maxv, sizeof(*entries), GFP_KERNEL);
1308 		if (entries == NULL) {
1309 			error = -ENOMEM;
1310 			goto out;
1311 		}
1312 		for (i = 0; i < maxv; ++i)
1313 			entries[i].entry = i;
1314 		error = pci_enable_msix(pdev, entries, maxv);
1315 out:
1316 		kfree(entries);
1317 		if (error == 0 && pdev->msix_enabled)
1318 			return (pdev->dev.irq_end - pdev->dev.irq_start);
1319 	}
1320 	if (flags & PCI_IRQ_MSI) {
1321 		if (pci_msi_count(pdev->dev.bsddev) < minv)
1322 			return (-ENOSPC);
1323 		error = _lkpi_pci_enable_msi_range(pdev, minv, maxv);
1324 		if (error == 0 && pdev->msi_enabled)
1325 			return (pdev->dev.irq_end - pdev->dev.irq_start);
1326 	}
1327 	if (flags & PCI_IRQ_INTX) {
1328 		if (pdev->irq)
1329 			return (1);
1330 	}
1331 
1332 	return (-EINVAL);
1333 }
1334 
1335 struct msi_desc *
1336 lkpi_pci_msi_desc_alloc(int irq)
1337 {
1338 	struct device *dev;
1339 	struct pci_dev *pdev;
1340 	struct msi_desc *desc;
1341 	struct pci_devinfo *dinfo;
1342 	struct pcicfg_msi *msi;
1343 	int vec;
1344 
1345 	dev = lkpi_pci_find_irq_dev(irq);
1346 	if (dev == NULL)
1347 		return (NULL);
1348 
1349 	pdev = to_pci_dev(dev);
1350 
1351 	if (pdev->msi_desc == NULL)
1352 		return (NULL);
1353 
1354 	if (irq < pdev->dev.irq_start || irq >= pdev->dev.irq_end)
1355 		return (NULL);
1356 
1357 	vec = pdev->dev.irq_start - irq;
1358 
1359 	if (pdev->msi_desc[vec] != NULL)
1360 		return (pdev->msi_desc[vec]);
1361 
1362 	dinfo = device_get_ivars(dev->bsddev);
1363 	msi = &dinfo->cfg.msi;
1364 
1365 	desc = malloc(sizeof(*desc), M_DEVBUF, M_WAITOK | M_ZERO);
1366 
1367 	desc->pci.msi_attrib.is_64 =
1368 	   (msi->msi_ctrl & PCIM_MSICTRL_64BIT) ? true : false;
1369 	desc->msg.data = msi->msi_data;
1370 
1371 	pdev->msi_desc[vec] = desc;
1372 
1373 	return (desc);
1374 }
1375 
1376 bool
1377 pci_device_is_present(struct pci_dev *pdev)
1378 {
1379 	device_t dev;
1380 
1381 	dev = pdev->dev.bsddev;
1382 
1383 	return (bus_child_present(dev));
1384 }
1385 
1386 CTASSERT(sizeof(dma_addr_t) <= sizeof(uint64_t));
1387 
1388 struct linux_dma_obj {
1389 	void		*vaddr;
1390 	uint64_t	dma_addr;
1391 	bus_dmamap_t	dmamap;
1392 	bus_dma_tag_t	dmat;
1393 };
1394 
1395 static uma_zone_t linux_dma_trie_zone;
1396 static uma_zone_t linux_dma_obj_zone;
1397 
1398 static void
1399 linux_dma_init(void *arg)
1400 {
1401 
1402 	linux_dma_trie_zone = uma_zcreate("linux_dma_pctrie",
1403 	    pctrie_node_size(), NULL, NULL, pctrie_zone_init, NULL,
1404 	    UMA_ALIGN_PTR, 0);
1405 	linux_dma_obj_zone = uma_zcreate("linux_dma_object",
1406 	    sizeof(struct linux_dma_obj), NULL, NULL, NULL, NULL,
1407 	    UMA_ALIGN_PTR, 0);
1408 	lkpi_pci_nseg1_fail = counter_u64_alloc(M_WAITOK);
1409 }
1410 SYSINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_init, NULL);
1411 
1412 static void
1413 linux_dma_uninit(void *arg)
1414 {
1415 
1416 	counter_u64_free(lkpi_pci_nseg1_fail);
1417 	uma_zdestroy(linux_dma_obj_zone);
1418 	uma_zdestroy(linux_dma_trie_zone);
1419 }
1420 SYSUNINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_uninit, NULL);
1421 
1422 static void *
1423 linux_dma_trie_alloc(struct pctrie *ptree)
1424 {
1425 
1426 	return (uma_zalloc(linux_dma_trie_zone, M_NOWAIT));
1427 }
1428 
1429 static void
1430 linux_dma_trie_free(struct pctrie *ptree, void *node)
1431 {
1432 
1433 	uma_zfree(linux_dma_trie_zone, node);
1434 }
1435 
1436 PCTRIE_DEFINE(LINUX_DMA, linux_dma_obj, dma_addr, linux_dma_trie_alloc,
1437     linux_dma_trie_free);
1438 
1439 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1440 static dma_addr_t
1441 linux_dma_map_phys_common(struct device *dev, vm_paddr_t phys, size_t len,
1442     bus_dma_tag_t dmat)
1443 {
1444 	struct linux_dma_priv *priv;
1445 	struct linux_dma_obj *obj;
1446 	int error, nseg;
1447 	bus_dma_segment_t seg;
1448 
1449 	priv = dev->dma_priv;
1450 
1451 	/*
1452 	 * If the resultant mapping will be entirely 1:1 with the
1453 	 * physical address, short-circuit the remainder of the
1454 	 * bus_dma API.  This avoids tracking collisions in the pctrie
1455 	 * with the additional benefit of reducing overhead.
1456 	 */
1457 	if (bus_dma_id_mapped(dmat, phys, len))
1458 		return (phys);
1459 
1460 	obj = uma_zalloc(linux_dma_obj_zone, M_NOWAIT);
1461 	if (obj == NULL) {
1462 		return (0);
1463 	}
1464 	obj->dmat = dmat;
1465 
1466 	DMA_PRIV_LOCK(priv);
1467 	if (bus_dmamap_create(obj->dmat, 0, &obj->dmamap) != 0) {
1468 		DMA_PRIV_UNLOCK(priv);
1469 		uma_zfree(linux_dma_obj_zone, obj);
1470 		return (0);
1471 	}
1472 
1473 	nseg = -1;
1474 	if (_bus_dmamap_load_phys(obj->dmat, obj->dmamap, phys, len,
1475 	    BUS_DMA_NOWAIT, &seg, &nseg) != 0) {
1476 		bus_dmamap_destroy(obj->dmat, obj->dmamap);
1477 		DMA_PRIV_UNLOCK(priv);
1478 		uma_zfree(linux_dma_obj_zone, obj);
1479 		counter_u64_add(lkpi_pci_nseg1_fail, 1);
1480 		if (linuxkpi_debug)
1481 			dump_stack();
1482 		return (0);
1483 	}
1484 
1485 	KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
1486 	obj->dma_addr = seg.ds_addr;
1487 
1488 	error = LINUX_DMA_PCTRIE_INSERT(&priv->ptree, obj);
1489 	if (error != 0) {
1490 		bus_dmamap_unload(obj->dmat, obj->dmamap);
1491 		bus_dmamap_destroy(obj->dmat, obj->dmamap);
1492 		DMA_PRIV_UNLOCK(priv);
1493 		uma_zfree(linux_dma_obj_zone, obj);
1494 		return (0);
1495 	}
1496 	DMA_PRIV_UNLOCK(priv);
1497 	return (obj->dma_addr);
1498 }
1499 #else
1500 static dma_addr_t
1501 linux_dma_map_phys_common(struct device *dev __unused, vm_paddr_t phys,
1502     size_t len __unused, bus_dma_tag_t dmat __unused)
1503 {
1504 	return (phys);
1505 }
1506 #endif
1507 
1508 dma_addr_t
1509 linux_dma_map_phys(struct device *dev, vm_paddr_t phys, size_t len)
1510 {
1511 	struct linux_dma_priv *priv;
1512 
1513 	priv = dev->dma_priv;
1514 	return (linux_dma_map_phys_common(dev, phys, len, priv->dmat));
1515 }
1516 
1517 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1518 void
1519 linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len)
1520 {
1521 	struct linux_dma_priv *priv;
1522 	struct linux_dma_obj *obj;
1523 
1524 	priv = dev->dma_priv;
1525 
1526 	if (pctrie_is_empty(&priv->ptree))
1527 		return;
1528 
1529 	DMA_PRIV_LOCK(priv);
1530 	obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr);
1531 	if (obj == NULL) {
1532 		DMA_PRIV_UNLOCK(priv);
1533 		return;
1534 	}
1535 	LINUX_DMA_PCTRIE_REMOVE(&priv->ptree, dma_addr);
1536 	bus_dmamap_unload(obj->dmat, obj->dmamap);
1537 	bus_dmamap_destroy(obj->dmat, obj->dmamap);
1538 	DMA_PRIV_UNLOCK(priv);
1539 
1540 	uma_zfree(linux_dma_obj_zone, obj);
1541 }
1542 #else
1543 void
1544 linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len)
1545 {
1546 }
1547 #endif
1548 
1549 void *
1550 linux_dma_alloc_coherent(struct device *dev, size_t size,
1551     dma_addr_t *dma_handle, gfp_t flag)
1552 {
1553 	struct linux_dma_priv *priv;
1554 	vm_paddr_t high;
1555 	size_t align;
1556 	void *mem;
1557 
1558 	if (dev == NULL || dev->dma_priv == NULL) {
1559 		*dma_handle = 0;
1560 		return (NULL);
1561 	}
1562 	priv = dev->dma_priv;
1563 	if (priv->dma_coherent_mask)
1564 		high = priv->dma_coherent_mask;
1565 	else
1566 		/* Coherent is lower 32bit only by default in Linux. */
1567 		high = BUS_SPACE_MAXADDR_32BIT;
1568 	align = PAGE_SIZE << get_order(size);
1569 	/* Always zero the allocation. */
1570 	flag |= M_ZERO;
1571 	mem = kmem_alloc_contig(size, flag & GFP_NATIVE_MASK, 0, high,
1572 	    align, 0, VM_MEMATTR_DEFAULT);
1573 	if (mem != NULL) {
1574 		*dma_handle = linux_dma_map_phys_common(dev, vtophys(mem), size,
1575 		    priv->dmat_coherent);
1576 		if (*dma_handle == 0) {
1577 			kmem_free(mem, size);
1578 			mem = NULL;
1579 		}
1580 	} else {
1581 		*dma_handle = 0;
1582 	}
1583 	return (mem);
1584 }
1585 
1586 struct lkpi_devres_dmam_coherent {
1587 	size_t size;
1588 	dma_addr_t *handle;
1589 	void *mem;
1590 };
1591 
1592 static void
1593 lkpi_dmam_free_coherent(struct device *dev, void *p)
1594 {
1595 	struct lkpi_devres_dmam_coherent *dr;
1596 
1597 	dr = p;
1598 	dma_free_coherent(dev, dr->size, dr->mem, *dr->handle);
1599 }
1600 
1601 void *
1602 linuxkpi_dmam_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
1603     gfp_t flag)
1604 {
1605 	struct lkpi_devres_dmam_coherent *dr;
1606 
1607 	dr = lkpi_devres_alloc(lkpi_dmam_free_coherent,
1608 	    sizeof(*dr), GFP_KERNEL | __GFP_ZERO);
1609 
1610 	if (dr == NULL)
1611 		return (NULL);
1612 
1613 	dr->size = size;
1614 	dr->mem = linux_dma_alloc_coherent(dev, size, dma_handle, flag);
1615 	dr->handle = dma_handle;
1616 	if (dr->mem == NULL) {
1617 		lkpi_devres_free(dr);
1618 		return (NULL);
1619 	}
1620 
1621 	lkpi_devres_add(dev, dr);
1622 	return (dr->mem);
1623 }
1624 
1625 void
1626 linuxkpi_dma_sync(struct device *dev, dma_addr_t dma_addr, size_t size,
1627     bus_dmasync_op_t op)
1628 {
1629 	struct linux_dma_priv *priv;
1630 	struct linux_dma_obj *obj;
1631 
1632 	priv = dev->dma_priv;
1633 
1634 	if (pctrie_is_empty(&priv->ptree))
1635 		return;
1636 
1637 	DMA_PRIV_LOCK(priv);
1638 	obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr);
1639 	if (obj == NULL) {
1640 		DMA_PRIV_UNLOCK(priv);
1641 		return;
1642 	}
1643 
1644 	bus_dmamap_sync(obj->dmat, obj->dmamap, op);
1645 	DMA_PRIV_UNLOCK(priv);
1646 }
1647 
1648 int
1649 linux_dma_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nents,
1650     enum dma_data_direction direction, unsigned long attrs __unused)
1651 {
1652 	struct linux_dma_priv *priv;
1653 	struct scatterlist *sg;
1654 	int i, nseg;
1655 	bus_dma_segment_t seg;
1656 
1657 	priv = dev->dma_priv;
1658 
1659 	DMA_PRIV_LOCK(priv);
1660 
1661 	/* create common DMA map in the first S/G entry */
1662 	if (bus_dmamap_create(priv->dmat, 0, &sgl->dma_map) != 0) {
1663 		DMA_PRIV_UNLOCK(priv);
1664 		return (0);
1665 	}
1666 
1667 	/* load all S/G list entries */
1668 	for_each_sg(sgl, sg, nents, i) {
1669 		nseg = -1;
1670 		if (_bus_dmamap_load_phys(priv->dmat, sgl->dma_map,
1671 		    sg_phys(sg), sg->length, BUS_DMA_NOWAIT,
1672 		    &seg, &nseg) != 0) {
1673 			bus_dmamap_unload(priv->dmat, sgl->dma_map);
1674 			bus_dmamap_destroy(priv->dmat, sgl->dma_map);
1675 			DMA_PRIV_UNLOCK(priv);
1676 			return (0);
1677 		}
1678 		KASSERT(nseg == 0,
1679 		    ("More than one segment (nseg=%d)", nseg + 1));
1680 
1681 		sg_dma_address(sg) = seg.ds_addr;
1682 	}
1683 
1684 	switch (direction) {
1685 	case DMA_BIDIRECTIONAL:
1686 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE);
1687 		break;
1688 	case DMA_TO_DEVICE:
1689 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD);
1690 		break;
1691 	case DMA_FROM_DEVICE:
1692 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE);
1693 		break;
1694 	default:
1695 		break;
1696 	}
1697 
1698 	DMA_PRIV_UNLOCK(priv);
1699 
1700 	return (nents);
1701 }
1702 
1703 void
1704 linux_dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sgl,
1705     int nents __unused, enum dma_data_direction direction,
1706     unsigned long attrs __unused)
1707 {
1708 	struct linux_dma_priv *priv;
1709 
1710 	priv = dev->dma_priv;
1711 
1712 	DMA_PRIV_LOCK(priv);
1713 
1714 	switch (direction) {
1715 	case DMA_BIDIRECTIONAL:
1716 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD);
1717 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD);
1718 		break;
1719 	case DMA_TO_DEVICE:
1720 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTWRITE);
1721 		break;
1722 	case DMA_FROM_DEVICE:
1723 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD);
1724 		break;
1725 	default:
1726 		break;
1727 	}
1728 
1729 	bus_dmamap_unload(priv->dmat, sgl->dma_map);
1730 	bus_dmamap_destroy(priv->dmat, sgl->dma_map);
1731 	DMA_PRIV_UNLOCK(priv);
1732 }
1733 
1734 struct dma_pool {
1735 	struct device  *pool_device;
1736 	uma_zone_t	pool_zone;
1737 	struct mtx	pool_lock;
1738 	bus_dma_tag_t	pool_dmat;
1739 	size_t		pool_entry_size;
1740 	struct pctrie	pool_ptree;
1741 };
1742 
1743 #define	DMA_POOL_LOCK(pool) mtx_lock(&(pool)->pool_lock)
1744 #define	DMA_POOL_UNLOCK(pool) mtx_unlock(&(pool)->pool_lock)
1745 
1746 static inline int
1747 dma_pool_obj_ctor(void *mem, int size, void *arg, int flags)
1748 {
1749 	struct linux_dma_obj *obj = mem;
1750 	struct dma_pool *pool = arg;
1751 	int error, nseg;
1752 	bus_dma_segment_t seg;
1753 
1754 	nseg = -1;
1755 	DMA_POOL_LOCK(pool);
1756 	error = _bus_dmamap_load_phys(pool->pool_dmat, obj->dmamap,
1757 	    vtophys(obj->vaddr), pool->pool_entry_size, BUS_DMA_NOWAIT,
1758 	    &seg, &nseg);
1759 	DMA_POOL_UNLOCK(pool);
1760 	if (error != 0) {
1761 		return (error);
1762 	}
1763 	KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
1764 	obj->dma_addr = seg.ds_addr;
1765 
1766 	return (0);
1767 }
1768 
1769 static void
1770 dma_pool_obj_dtor(void *mem, int size, void *arg)
1771 {
1772 	struct linux_dma_obj *obj = mem;
1773 	struct dma_pool *pool = arg;
1774 
1775 	DMA_POOL_LOCK(pool);
1776 	bus_dmamap_unload(pool->pool_dmat, obj->dmamap);
1777 	DMA_POOL_UNLOCK(pool);
1778 }
1779 
1780 static int
1781 dma_pool_obj_import(void *arg, void **store, int count, int domain __unused,
1782     int flags)
1783 {
1784 	struct dma_pool *pool = arg;
1785 	struct linux_dma_obj *obj;
1786 	int error, i;
1787 
1788 	for (i = 0; i < count; i++) {
1789 		obj = uma_zalloc(linux_dma_obj_zone, flags);
1790 		if (obj == NULL)
1791 			break;
1792 
1793 		error = bus_dmamem_alloc(pool->pool_dmat, &obj->vaddr,
1794 		    BUS_DMA_NOWAIT, &obj->dmamap);
1795 		if (error!= 0) {
1796 			uma_zfree(linux_dma_obj_zone, obj);
1797 			break;
1798 		}
1799 
1800 		store[i] = obj;
1801 	}
1802 
1803 	return (i);
1804 }
1805 
1806 static void
1807 dma_pool_obj_release(void *arg, void **store, int count)
1808 {
1809 	struct dma_pool *pool = arg;
1810 	struct linux_dma_obj *obj;
1811 	int i;
1812 
1813 	for (i = 0; i < count; i++) {
1814 		obj = store[i];
1815 		bus_dmamem_free(pool->pool_dmat, obj->vaddr, obj->dmamap);
1816 		uma_zfree(linux_dma_obj_zone, obj);
1817 	}
1818 }
1819 
1820 struct dma_pool *
1821 linux_dma_pool_create(char *name, struct device *dev, size_t size,
1822     size_t align, size_t boundary)
1823 {
1824 	struct linux_dma_priv *priv;
1825 	struct dma_pool *pool;
1826 
1827 	priv = dev->dma_priv;
1828 
1829 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1830 	pool->pool_device = dev;
1831 	pool->pool_entry_size = size;
1832 
1833 	if (bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
1834 	    align, boundary,		/* alignment, boundary */
1835 	    priv->dma_mask,		/* lowaddr */
1836 	    BUS_SPACE_MAXADDR,		/* highaddr */
1837 	    NULL, NULL,			/* filtfunc, filtfuncarg */
1838 	    size,			/* maxsize */
1839 	    1,				/* nsegments */
1840 	    size,			/* maxsegsz */
1841 	    0,				/* flags */
1842 	    NULL, NULL,			/* lockfunc, lockfuncarg */
1843 	    &pool->pool_dmat)) {
1844 		kfree(pool);
1845 		return (NULL);
1846 	}
1847 
1848 	pool->pool_zone = uma_zcache_create(name, -1, dma_pool_obj_ctor,
1849 	    dma_pool_obj_dtor, NULL, NULL, dma_pool_obj_import,
1850 	    dma_pool_obj_release, pool, 0);
1851 
1852 	mtx_init(&pool->pool_lock, "lkpi-dma-pool", NULL, MTX_DEF);
1853 	pctrie_init(&pool->pool_ptree);
1854 
1855 	return (pool);
1856 }
1857 
1858 void
1859 linux_dma_pool_destroy(struct dma_pool *pool)
1860 {
1861 
1862 	uma_zdestroy(pool->pool_zone);
1863 	bus_dma_tag_destroy(pool->pool_dmat);
1864 	mtx_destroy(&pool->pool_lock);
1865 	kfree(pool);
1866 }
1867 
1868 void
1869 lkpi_dmam_pool_destroy(struct device *dev, void *p)
1870 {
1871 	struct dma_pool *pool;
1872 
1873 	pool = *(struct dma_pool **)p;
1874 	LINUX_DMA_PCTRIE_RECLAIM(&pool->pool_ptree);
1875 	linux_dma_pool_destroy(pool);
1876 }
1877 
1878 void *
1879 linux_dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
1880     dma_addr_t *handle)
1881 {
1882 	struct linux_dma_obj *obj;
1883 
1884 	obj = uma_zalloc_arg(pool->pool_zone, pool, mem_flags & GFP_NATIVE_MASK);
1885 	if (obj == NULL)
1886 		return (NULL);
1887 
1888 	DMA_POOL_LOCK(pool);
1889 	if (LINUX_DMA_PCTRIE_INSERT(&pool->pool_ptree, obj) != 0) {
1890 		DMA_POOL_UNLOCK(pool);
1891 		uma_zfree_arg(pool->pool_zone, obj, pool);
1892 		return (NULL);
1893 	}
1894 	DMA_POOL_UNLOCK(pool);
1895 
1896 	*handle = obj->dma_addr;
1897 	return (obj->vaddr);
1898 }
1899 
1900 void
1901 linux_dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma_addr)
1902 {
1903 	struct linux_dma_obj *obj;
1904 
1905 	DMA_POOL_LOCK(pool);
1906 	obj = LINUX_DMA_PCTRIE_LOOKUP(&pool->pool_ptree, dma_addr);
1907 	if (obj == NULL) {
1908 		DMA_POOL_UNLOCK(pool);
1909 		return;
1910 	}
1911 	LINUX_DMA_PCTRIE_REMOVE(&pool->pool_ptree, dma_addr);
1912 	DMA_POOL_UNLOCK(pool);
1913 
1914 	uma_zfree_arg(pool->pool_zone, obj, pool);
1915 }
1916 
1917 static int
1918 linux_backlight_get_status(device_t dev, struct backlight_props *props)
1919 {
1920 	struct pci_dev *pdev;
1921 
1922 	linux_set_current(curthread);
1923 	pdev = device_get_softc(dev);
1924 
1925 	props->brightness = pdev->dev.bd->props.brightness;
1926 	props->brightness = props->brightness * 100 / pdev->dev.bd->props.max_brightness;
1927 	props->nlevels = 0;
1928 
1929 	return (0);
1930 }
1931 
1932 static int
1933 linux_backlight_get_info(device_t dev, struct backlight_info *info)
1934 {
1935 	struct pci_dev *pdev;
1936 
1937 	linux_set_current(curthread);
1938 	pdev = device_get_softc(dev);
1939 
1940 	info->type = BACKLIGHT_TYPE_PANEL;
1941 	strlcpy(info->name, pdev->dev.bd->name, BACKLIGHTMAXNAMELENGTH);
1942 	return (0);
1943 }
1944 
1945 static int
1946 linux_backlight_update_status(device_t dev, struct backlight_props *props)
1947 {
1948 	struct pci_dev *pdev;
1949 
1950 	linux_set_current(curthread);
1951 	pdev = device_get_softc(dev);
1952 
1953 	pdev->dev.bd->props.brightness = pdev->dev.bd->props.max_brightness *
1954 		props->brightness / 100;
1955 	pdev->dev.bd->props.power = props->brightness == 0 ?
1956 		4/* FB_BLANK_POWERDOWN */ : 0/* FB_BLANK_UNBLANK */;
1957 	return (pdev->dev.bd->ops->update_status(pdev->dev.bd));
1958 }
1959 
1960 struct backlight_device *
1961 linux_backlight_device_register(const char *name, struct device *dev,
1962     void *data, const struct backlight_ops *ops, struct backlight_properties *props)
1963 {
1964 
1965 	dev->bd = malloc(sizeof(*dev->bd), M_DEVBUF, M_WAITOK | M_ZERO);
1966 	dev->bd->ops = ops;
1967 	dev->bd->props.type = props->type;
1968 	dev->bd->props.max_brightness = props->max_brightness;
1969 	dev->bd->props.brightness = props->brightness;
1970 	dev->bd->props.power = props->power;
1971 	dev->bd->data = data;
1972 	dev->bd->dev = dev;
1973 	dev->bd->name = strdup(name, M_DEVBUF);
1974 
1975 	dev->backlight_dev = backlight_register(name, dev->bsddev);
1976 
1977 	return (dev->bd);
1978 }
1979 
1980 void
1981 linux_backlight_device_unregister(struct backlight_device *bd)
1982 {
1983 
1984 	backlight_destroy(bd->dev->backlight_dev);
1985 	free(bd->name, M_DEVBUF);
1986 	free(bd, M_DEVBUF);
1987 }
1988