1 /*- 2 * Copyright (c) 2015-2016 Mellanox Technologies, Ltd. 3 * All rights reserved. 4 * Copyright (c) 2020-2025 The FreeBSD Foundation 5 * 6 * Portions of this software were developed by Björn Zeeb 7 * under sponsorship from the FreeBSD Foundation. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/bus.h> 34 #include <sys/malloc.h> 35 #include <sys/kernel.h> 36 #include <sys/sysctl.h> 37 #include <sys/lock.h> 38 #include <sys/mutex.h> 39 #include <sys/fcntl.h> 40 #include <sys/file.h> 41 #include <sys/filio.h> 42 #include <sys/pciio.h> 43 #include <sys/pctrie.h> 44 #include <sys/rman.h> 45 #include <sys/rwlock.h> 46 #include <sys/stdarg.h> 47 48 #include <vm/vm.h> 49 #include <vm/pmap.h> 50 51 #include <machine/bus.h> 52 #include <machine/resource.h> 53 54 #include <dev/pci/pcivar.h> 55 #include <dev/pci/pci_private.h> 56 #include <dev/pci/pci_iov.h> 57 #include <dev/backlight/backlight.h> 58 59 #include <linux/kernel.h> 60 #include <linux/kobject.h> 61 #include <linux/device.h> 62 #include <linux/slab.h> 63 #include <linux/module.h> 64 #include <linux/cdev.h> 65 #include <linux/file.h> 66 #include <linux/sysfs.h> 67 #include <linux/mm.h> 68 #include <linux/io.h> 69 #include <linux/vmalloc.h> 70 #define WANT_NATIVE_PCI_GET_SLOT 71 #include <linux/pci.h> 72 #include <linux/compat.h> 73 74 #include <linux/backlight.h> 75 76 #include "backlight_if.h" 77 #include "pcib_if.h" 78 79 /* Undef the linux function macro defined in linux/pci.h */ 80 #undef pci_get_class 81 82 extern int linuxkpi_debug; 83 84 SYSCTL_DECL(_compat_linuxkpi); 85 86 static counter_u64_t lkpi_pci_nseg1_fail; 87 SYSCTL_COUNTER_U64(_compat_linuxkpi, OID_AUTO, lkpi_pci_nseg1_fail, CTLFLAG_RD, 88 &lkpi_pci_nseg1_fail, "Count of busdma mapping failures of single-segment"); 89 90 static device_probe_t linux_pci_probe; 91 static device_attach_t linux_pci_attach; 92 static device_detach_t linux_pci_detach; 93 static device_suspend_t linux_pci_suspend; 94 static device_resume_t linux_pci_resume; 95 static device_shutdown_t linux_pci_shutdown; 96 static pci_iov_init_t linux_pci_iov_init; 97 static pci_iov_uninit_t linux_pci_iov_uninit; 98 static pci_iov_add_vf_t linux_pci_iov_add_vf; 99 static int linux_backlight_get_status(device_t dev, struct backlight_props *props); 100 static int linux_backlight_update_status(device_t dev, struct backlight_props *props); 101 static int linux_backlight_get_info(device_t dev, struct backlight_info *info); 102 static void lkpi_pcim_iomap_table_release(struct device *, void *); 103 104 static device_method_t pci_methods[] = { 105 DEVMETHOD(device_probe, linux_pci_probe), 106 DEVMETHOD(device_attach, linux_pci_attach), 107 DEVMETHOD(device_detach, linux_pci_detach), 108 DEVMETHOD(device_suspend, linux_pci_suspend), 109 DEVMETHOD(device_resume, linux_pci_resume), 110 DEVMETHOD(device_shutdown, linux_pci_shutdown), 111 DEVMETHOD(pci_iov_init, linux_pci_iov_init), 112 DEVMETHOD(pci_iov_uninit, linux_pci_iov_uninit), 113 DEVMETHOD(pci_iov_add_vf, linux_pci_iov_add_vf), 114 115 /* Bus interface. */ 116 DEVMETHOD(bus_add_child, bus_generic_add_child), 117 118 /* backlight interface */ 119 DEVMETHOD(backlight_update_status, linux_backlight_update_status), 120 DEVMETHOD(backlight_get_status, linux_backlight_get_status), 121 DEVMETHOD(backlight_get_info, linux_backlight_get_info), 122 DEVMETHOD_END 123 }; 124 125 const char *pci_power_names[] = { 126 "UNKNOWN", "D0", "D1", "D2", "D3hot", "D3cold" 127 }; 128 129 /* We need some meta-struct to keep track of these for devres. */ 130 struct pci_devres { 131 bool enable_io; 132 /* PCIR_MAX_BAR_0 + 1 = 6 => BIT(0..5). */ 133 uint8_t region_mask; 134 struct resource *region_table[PCIR_MAX_BAR_0 + 1]; /* Not needed. */ 135 }; 136 struct pcim_iomap_devres { 137 void *mmio_table[PCIR_MAX_BAR_0 + 1]; 138 struct resource *res_table[PCIR_MAX_BAR_0 + 1]; 139 }; 140 141 struct linux_dma_priv { 142 uint64_t dma_mask; 143 bus_dma_tag_t dmat; 144 uint64_t dma_coherent_mask; 145 bus_dma_tag_t dmat_coherent; 146 struct mtx lock; 147 struct pctrie ptree; 148 }; 149 #define DMA_PRIV_LOCK(priv) mtx_lock(&(priv)->lock) 150 #define DMA_PRIV_UNLOCK(priv) mtx_unlock(&(priv)->lock) 151 152 static void 153 lkpi_set_pcim_iomap_devres(struct pcim_iomap_devres *dr, int bar, 154 void *res) 155 { 156 dr->mmio_table[bar] = (void *)rman_get_bushandle(res); 157 dr->res_table[bar] = res; 158 } 159 160 static bool 161 lkpi_pci_bar_id_valid(int bar) 162 { 163 if (bar < 0 || bar > PCIR_MAX_BAR_0) 164 return (false); 165 166 return (true); 167 } 168 169 static int 170 linux_pdev_dma_uninit(struct pci_dev *pdev) 171 { 172 struct linux_dma_priv *priv; 173 174 priv = pdev->dev.dma_priv; 175 if (priv->dmat) 176 bus_dma_tag_destroy(priv->dmat); 177 if (priv->dmat_coherent) 178 bus_dma_tag_destroy(priv->dmat_coherent); 179 mtx_destroy(&priv->lock); 180 pdev->dev.dma_priv = NULL; 181 free(priv, M_DEVBUF); 182 return (0); 183 } 184 185 static int 186 linux_pdev_dma_init(struct pci_dev *pdev) 187 { 188 struct linux_dma_priv *priv; 189 int error; 190 191 priv = malloc(sizeof(*priv), M_DEVBUF, M_WAITOK | M_ZERO); 192 193 mtx_init(&priv->lock, "lkpi-priv-dma", NULL, MTX_DEF); 194 pctrie_init(&priv->ptree); 195 196 pdev->dev.dma_priv = priv; 197 198 /* Create a default DMA tags. */ 199 error = linux_dma_tag_init(&pdev->dev, DMA_BIT_MASK(64)); 200 if (error != 0) 201 goto err; 202 /* Coherent is lower 32bit only by default in Linux. */ 203 error = linux_dma_tag_init_coherent(&pdev->dev, DMA_BIT_MASK(32)); 204 if (error != 0) 205 goto err; 206 207 return (error); 208 209 err: 210 linux_pdev_dma_uninit(pdev); 211 return (error); 212 } 213 214 int 215 linux_dma_tag_init(struct device *dev, u64 dma_mask) 216 { 217 struct linux_dma_priv *priv; 218 int error; 219 220 priv = dev->dma_priv; 221 222 if (priv->dmat) { 223 if (priv->dma_mask == dma_mask) 224 return (0); 225 226 bus_dma_tag_destroy(priv->dmat); 227 } 228 229 priv->dma_mask = dma_mask; 230 231 error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev), 232 1, 0, /* alignment, boundary */ 233 dma_mask, /* lowaddr */ 234 BUS_SPACE_MAXADDR, /* highaddr */ 235 NULL, NULL, /* filtfunc, filtfuncarg */ 236 BUS_SPACE_MAXSIZE, /* maxsize */ 237 1, /* nsegments */ 238 BUS_SPACE_MAXSIZE, /* maxsegsz */ 239 0, /* flags */ 240 NULL, NULL, /* lockfunc, lockfuncarg */ 241 &priv->dmat); 242 return (-error); 243 } 244 245 int 246 linux_dma_tag_init_coherent(struct device *dev, u64 dma_mask) 247 { 248 struct linux_dma_priv *priv; 249 int error; 250 251 priv = dev->dma_priv; 252 253 if (priv->dmat_coherent) { 254 if (priv->dma_coherent_mask == dma_mask) 255 return (0); 256 257 bus_dma_tag_destroy(priv->dmat_coherent); 258 } 259 260 priv->dma_coherent_mask = dma_mask; 261 262 error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev), 263 1, 0, /* alignment, boundary */ 264 dma_mask, /* lowaddr */ 265 BUS_SPACE_MAXADDR, /* highaddr */ 266 NULL, NULL, /* filtfunc, filtfuncarg */ 267 BUS_SPACE_MAXSIZE, /* maxsize */ 268 1, /* nsegments */ 269 BUS_SPACE_MAXSIZE, /* maxsegsz */ 270 0, /* flags */ 271 NULL, NULL, /* lockfunc, lockfuncarg */ 272 &priv->dmat_coherent); 273 return (-error); 274 } 275 276 static struct pci_driver * 277 linux_pci_find(device_t dev, const struct pci_device_id **idp) 278 { 279 const struct pci_device_id *id; 280 struct pci_driver *pdrv; 281 uint16_t vendor; 282 uint16_t device; 283 uint16_t subvendor; 284 uint16_t subdevice; 285 286 vendor = pci_get_vendor(dev); 287 device = pci_get_device(dev); 288 subvendor = pci_get_subvendor(dev); 289 subdevice = pci_get_subdevice(dev); 290 291 spin_lock(&pci_lock); 292 list_for_each_entry(pdrv, &pci_drivers, node) { 293 for (id = pdrv->id_table; id->vendor != 0; id++) { 294 if (vendor == id->vendor && 295 (PCI_ANY_ID == id->device || device == id->device) && 296 (PCI_ANY_ID == id->subvendor || subvendor == id->subvendor) && 297 (PCI_ANY_ID == id->subdevice || subdevice == id->subdevice)) { 298 *idp = id; 299 spin_unlock(&pci_lock); 300 return (pdrv); 301 } 302 } 303 } 304 spin_unlock(&pci_lock); 305 return (NULL); 306 } 307 308 struct pci_dev * 309 lkpi_pci_get_device(uint32_t vendor, uint32_t device, struct pci_dev *odev) 310 { 311 struct pci_dev *pdev, *found; 312 313 found = NULL; 314 spin_lock(&pci_lock); 315 list_for_each_entry(pdev, &pci_devices, links) { 316 /* Walk until we find odev. */ 317 if (odev != NULL) { 318 if (pdev == odev) 319 odev = NULL; 320 continue; 321 } 322 323 if ((pdev->vendor == vendor || vendor == PCI_ANY_ID) && 324 (pdev->device == device || device == PCI_ANY_ID)) { 325 found = pdev; 326 break; 327 } 328 } 329 pci_dev_get(found); 330 spin_unlock(&pci_lock); 331 332 return (found); 333 } 334 335 static void 336 lkpi_pci_dev_release(struct device *dev) 337 { 338 339 lkpi_devres_release_free_list(dev); 340 spin_lock_destroy(&dev->devres_lock); 341 } 342 343 static int 344 lkpifill_pci_dev(device_t dev, struct pci_dev *pdev) 345 { 346 struct pci_devinfo *dinfo; 347 int error; 348 349 error = kobject_init_and_add(&pdev->dev.kobj, &linux_dev_ktype, 350 &linux_root_device.kobj, device_get_nameunit(dev)); 351 if (error != 0) { 352 printf("%s:%d: kobject_init_and_add returned %d\n", 353 __func__, __LINE__, error); 354 return (error); 355 } 356 357 pdev->devfn = PCI_DEVFN(pci_get_slot(dev), pci_get_function(dev)); 358 pdev->vendor = pci_get_vendor(dev); 359 pdev->device = pci_get_device(dev); 360 pdev->subsystem_vendor = pci_get_subvendor(dev); 361 pdev->subsystem_device = pci_get_subdevice(dev); 362 pdev->class = pci_get_class(dev); 363 pdev->revision = pci_get_revid(dev); 364 pdev->path_name = kasprintf(GFP_KERNEL, "%04d:%02d:%02d.%d", 365 pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev), 366 pci_get_function(dev)); 367 368 pdev->bus = malloc(sizeof(*pdev->bus), M_DEVBUF, M_WAITOK | M_ZERO); 369 pdev->bus->number = pci_get_bus(dev); 370 pdev->bus->domain = pci_get_domain(dev); 371 372 /* Check if we have reached the root to satisfy pci_is_root_bus() */ 373 dinfo = device_get_ivars(dev); 374 if (dinfo->cfg.pcie.pcie_location != 0 && 375 dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT) { 376 pdev->bus->self = NULL; 377 } else { 378 /* 379 * This should be the upstream bridge; pci_upstream_bridge() 380 * handles that case on demand as otherwise we'll shadow the 381 * entire PCI hierarchy. 382 */ 383 pdev->bus->self = pdev; 384 } 385 pdev->dev.bsddev = dev; 386 pdev->dev.parent = &linux_root_device; 387 pdev->dev.release = lkpi_pci_dev_release; 388 389 if (pci_msi_count(dev) > 0) 390 pdev->msi_desc = malloc(pci_msi_count(dev) * 391 sizeof(*pdev->msi_desc), M_DEVBUF, M_WAITOK | M_ZERO); 392 393 TAILQ_INIT(&pdev->mmio); 394 spin_lock_init(&pdev->pcie_cap_lock); 395 spin_lock_init(&pdev->dev.devres_lock); 396 INIT_LIST_HEAD(&pdev->dev.devres_head); 397 INIT_LIST_HEAD(&pdev->dev.irqents); 398 399 return (0); 400 } 401 402 static void 403 lkpinew_pci_dev_release(struct device *dev) 404 { 405 struct pci_dev *pdev; 406 int i; 407 408 pdev = to_pci_dev(dev); 409 if (pdev->root != NULL) 410 pci_dev_put(pdev->root); 411 if (pdev->bus->self != pdev && pdev->bus->self != NULL) 412 pci_dev_put(pdev->bus->self); 413 free(pdev->bus, M_DEVBUF); 414 if (pdev->msi_desc != NULL) { 415 for (i = pci_msi_count(pdev->dev.bsddev) - 1; i >= 0; i--) 416 free(pdev->msi_desc[i], M_DEVBUF); 417 free(pdev->msi_desc, M_DEVBUF); 418 } 419 kfree(pdev->path_name); 420 free(pdev, M_DEVBUF); 421 } 422 423 struct pci_dev * 424 lkpinew_pci_dev(device_t dev) 425 { 426 struct pci_dev *pdev; 427 int error; 428 429 pdev = malloc(sizeof(*pdev), M_DEVBUF, M_WAITOK|M_ZERO); 430 error = lkpifill_pci_dev(dev, pdev); 431 if (error != 0) { 432 free(pdev, M_DEVBUF); 433 return (NULL); 434 } 435 pdev->dev.release = lkpinew_pci_dev_release; 436 437 return (pdev); 438 } 439 440 struct pci_dev * 441 lkpi_pci_get_class(unsigned int class, struct pci_dev *from) 442 { 443 device_t dev; 444 device_t devfrom = NULL; 445 struct pci_dev *pdev; 446 447 if (from != NULL) 448 devfrom = from->dev.bsddev; 449 450 dev = pci_find_class_from(class >> 16, (class >> 8) & 0xFF, devfrom); 451 if (dev == NULL) 452 return (NULL); 453 454 pdev = lkpinew_pci_dev(dev); 455 return (pdev); 456 } 457 458 struct pci_dev * 459 lkpi_pci_get_base_class(unsigned int baseclass, struct pci_dev *from) 460 { 461 device_t dev; 462 device_t devfrom = NULL; 463 struct pci_dev *pdev; 464 465 if (from != NULL) 466 devfrom = from->dev.bsddev; 467 468 dev = pci_find_base_class_from(baseclass, devfrom); 469 if (dev == NULL) 470 return (NULL); 471 472 pdev = lkpinew_pci_dev(dev); 473 return (pdev); 474 } 475 476 struct pci_dev * 477 lkpi_pci_get_domain_bus_and_slot(int domain, unsigned int bus, 478 unsigned int devfn) 479 { 480 device_t dev; 481 struct pci_dev *pdev; 482 483 dev = pci_find_dbsf(domain, bus, PCI_SLOT(devfn), PCI_FUNC(devfn)); 484 if (dev == NULL) 485 return (NULL); 486 487 pdev = lkpinew_pci_dev(dev); 488 return (pdev); 489 } 490 491 struct pci_dev * 492 lkpi_pci_get_slot(struct pci_bus *pbus, unsigned int devfn) 493 { 494 device_t dev; 495 struct pci_dev *pdev; 496 497 dev = pci_find_bsf(pbus->number, PCI_SLOT(devfn), PCI_FUNC(devfn)); 498 if (dev == NULL) 499 return (NULL); 500 501 pdev = lkpinew_pci_dev(dev); 502 return (pdev); 503 } 504 505 static int 506 linux_pci_probe(device_t dev) 507 { 508 const struct pci_device_id *id; 509 struct pci_driver *pdrv; 510 511 if ((pdrv = linux_pci_find(dev, &id)) == NULL) 512 return (ENXIO); 513 if (device_get_driver(dev) != &pdrv->bsddriver) 514 return (ENXIO); 515 device_set_desc(dev, pdrv->name); 516 517 /* Assume BSS initialized (should never return BUS_PROBE_SPECIFIC). */ 518 if (pdrv->bsd_probe_return == 0) 519 return (BUS_PROBE_DEFAULT); 520 else 521 return (pdrv->bsd_probe_return); 522 } 523 524 static int 525 linux_pci_attach(device_t dev) 526 { 527 const struct pci_device_id *id; 528 struct pci_driver *pdrv; 529 struct pci_dev *pdev; 530 531 pdrv = linux_pci_find(dev, &id); 532 pdev = device_get_softc(dev); 533 534 MPASS(pdrv != NULL); 535 MPASS(pdev != NULL); 536 537 return (linux_pci_attach_device(dev, pdrv, id, pdev)); 538 } 539 540 static struct resource_list_entry * 541 linux_pci_reserve_bar(struct pci_dev *pdev, struct resource_list *rl, 542 int type, int rid) 543 { 544 device_t dev; 545 struct resource *res; 546 547 KASSERT(type == SYS_RES_IOPORT || type == SYS_RES_MEMORY, 548 ("trying to reserve non-BAR type %d", type)); 549 550 dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ? 551 device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev; 552 res = pci_reserve_map(device_get_parent(dev), dev, type, rid, 0, ~0, 553 1, 1, 0); 554 if (res == NULL) 555 return (NULL); 556 return (resource_list_find(rl, type, rid)); 557 } 558 559 static struct resource_list_entry * 560 linux_pci_get_rle(struct pci_dev *pdev, int type, int rid, bool reserve_bar) 561 { 562 struct pci_devinfo *dinfo; 563 struct resource_list *rl; 564 struct resource_list_entry *rle; 565 566 dinfo = device_get_ivars(pdev->dev.bsddev); 567 rl = &dinfo->resources; 568 rle = resource_list_find(rl, type, rid); 569 /* Reserve resources for this BAR if needed. */ 570 if (rle == NULL && reserve_bar) 571 rle = linux_pci_reserve_bar(pdev, rl, type, rid); 572 return (rle); 573 } 574 575 int 576 linux_pci_attach_device(device_t dev, struct pci_driver *pdrv, 577 const struct pci_device_id *id, struct pci_dev *pdev) 578 { 579 struct resource_list_entry *rle; 580 device_t parent; 581 struct pci_dev *pbus, *ppbus; 582 uintptr_t rid; 583 int error; 584 bool isdrm; 585 586 linux_set_current(curthread); 587 588 parent = device_get_parent(dev); 589 isdrm = pdrv != NULL && pdrv->isdrm; 590 591 if (isdrm) { 592 struct pci_devinfo *dinfo; 593 594 dinfo = device_get_ivars(parent); 595 device_set_ivars(dev, dinfo); 596 } 597 598 error = lkpifill_pci_dev(dev, pdev); 599 if (error != 0) 600 return (error); 601 602 if (isdrm) 603 PCI_GET_ID(device_get_parent(parent), parent, PCI_ID_RID, &rid); 604 else 605 PCI_GET_ID(parent, dev, PCI_ID_RID, &rid); 606 pdev->devfn = rid; 607 pdev->pdrv = pdrv; 608 rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 0, false); 609 if (rle != NULL) 610 pdev->dev.irq = rle->start; 611 else 612 pdev->dev.irq = LINUX_IRQ_INVALID; 613 pdev->irq = pdev->dev.irq; 614 error = linux_pdev_dma_init(pdev); 615 if (error) 616 goto out_dma_init; 617 618 spin_lock(&pci_lock); 619 list_add(&pdev->links, &pci_devices); 620 spin_unlock(&pci_lock); 621 622 /* 623 * Create the hierarchy now as we cannot on demand later. 624 * Take special care of DRM as there is a non-PCI device in the chain. 625 */ 626 pbus = pdev; 627 if (isdrm) { 628 pbus = lkpinew_pci_dev(parent); 629 if (pbus == NULL) { 630 error = ENXIO; 631 goto out_dma_init; 632 } 633 } 634 pcie_find_root_port(pbus); 635 if (isdrm) 636 pdev->root = pbus->root; 637 ppbus = pci_upstream_bridge(pbus); 638 while (ppbus != NULL && ppbus != pbus) { 639 pbus = ppbus; 640 ppbus = pci_upstream_bridge(pbus); 641 } 642 643 if (pdrv != NULL) { 644 error = pdrv->probe(pdev, id); 645 if (error) 646 goto out_probe; 647 } 648 return (0); 649 650 /* XXX the cleanup does not match the allocation up there. */ 651 out_probe: 652 free(pdev->bus, M_DEVBUF); 653 spin_lock_destroy(&pdev->pcie_cap_lock); 654 linux_pdev_dma_uninit(pdev); 655 out_dma_init: 656 spin_lock(&pci_lock); 657 list_del(&pdev->links); 658 spin_unlock(&pci_lock); 659 put_device(&pdev->dev); 660 return (-error); 661 } 662 663 static int 664 linux_pci_detach(device_t dev) 665 { 666 struct pci_dev *pdev; 667 668 pdev = device_get_softc(dev); 669 670 MPASS(pdev != NULL); 671 672 device_set_desc(dev, NULL); 673 674 return (linux_pci_detach_device(pdev)); 675 } 676 677 int 678 linux_pci_detach_device(struct pci_dev *pdev) 679 { 680 681 linux_set_current(curthread); 682 683 if (pdev->pdrv != NULL) 684 pdev->pdrv->remove(pdev); 685 686 if (pdev->root != NULL) 687 pci_dev_put(pdev->root); 688 free(pdev->bus, M_DEVBUF); 689 linux_pdev_dma_uninit(pdev); 690 691 spin_lock(&pci_lock); 692 list_del(&pdev->links); 693 spin_unlock(&pci_lock); 694 spin_lock_destroy(&pdev->pcie_cap_lock); 695 put_device(&pdev->dev); 696 697 return (0); 698 } 699 700 static int 701 lkpi_pci_disable_dev(struct device *dev) 702 { 703 704 (void) pci_disable_io(dev->bsddev, SYS_RES_MEMORY); 705 (void) pci_disable_io(dev->bsddev, SYS_RES_IOPORT); 706 return (0); 707 } 708 709 static struct pci_devres * 710 lkpi_pci_devres_get_alloc(struct pci_dev *pdev) 711 { 712 struct pci_devres *dr; 713 714 dr = lkpi_devres_find(&pdev->dev, lkpi_pci_devres_release, NULL, NULL); 715 if (dr == NULL) { 716 dr = lkpi_devres_alloc(lkpi_pci_devres_release, sizeof(*dr), 717 GFP_KERNEL | __GFP_ZERO); 718 if (dr != NULL) 719 lkpi_devres_add(&pdev->dev, dr); 720 } 721 722 return (dr); 723 } 724 725 static struct pci_devres * 726 lkpi_pci_devres_find(struct pci_dev *pdev) 727 { 728 if (!pdev->managed) 729 return (NULL); 730 731 return (lkpi_pci_devres_get_alloc(pdev)); 732 } 733 734 void 735 lkpi_pci_devres_release(struct device *dev, void *p) 736 { 737 struct pci_devres *dr; 738 struct pci_dev *pdev; 739 int bar; 740 741 pdev = to_pci_dev(dev); 742 dr = p; 743 744 if (pdev->msix_enabled) 745 lkpi_pci_disable_msix(pdev); 746 if (pdev->msi_enabled) 747 lkpi_pci_disable_msi(pdev); 748 749 if (dr->enable_io && lkpi_pci_disable_dev(dev) == 0) 750 dr->enable_io = false; 751 752 if (dr->region_mask == 0) 753 return; 754 for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) { 755 756 if ((dr->region_mask & (1 << bar)) == 0) 757 continue; 758 pci_release_region(pdev, bar); 759 } 760 } 761 762 int 763 linuxkpi_pcim_enable_device(struct pci_dev *pdev) 764 { 765 struct pci_devres *dr; 766 int error; 767 768 /* Here we cannot run through the pdev->managed check. */ 769 dr = lkpi_pci_devres_get_alloc(pdev); 770 if (dr == NULL) 771 return (-ENOMEM); 772 773 /* If resources were enabled before do not do it again. */ 774 if (dr->enable_io) 775 return (0); 776 777 error = pci_enable_device(pdev); 778 if (error == 0) 779 dr->enable_io = true; 780 781 /* This device is not managed. */ 782 pdev->managed = true; 783 784 return (error); 785 } 786 787 static struct pcim_iomap_devres * 788 lkpi_pcim_iomap_devres_find(struct pci_dev *pdev) 789 { 790 struct pcim_iomap_devres *dr; 791 792 dr = lkpi_devres_find(&pdev->dev, lkpi_pcim_iomap_table_release, 793 NULL, NULL); 794 if (dr == NULL) { 795 dr = lkpi_devres_alloc(lkpi_pcim_iomap_table_release, 796 sizeof(*dr), GFP_KERNEL | __GFP_ZERO); 797 if (dr != NULL) 798 lkpi_devres_add(&pdev->dev, dr); 799 } 800 801 if (dr == NULL) 802 device_printf(pdev->dev.bsddev, "%s: NULL\n", __func__); 803 804 return (dr); 805 } 806 807 void __iomem ** 808 linuxkpi_pcim_iomap_table(struct pci_dev *pdev) 809 { 810 struct pcim_iomap_devres *dr; 811 812 dr = lkpi_pcim_iomap_devres_find(pdev); 813 if (dr == NULL) 814 return (NULL); 815 816 /* 817 * If the driver has manually set a flag to be able to request the 818 * resource to use bus_read/write_<n>, return the shadow table. 819 */ 820 if (pdev->want_iomap_res) 821 return ((void **)dr->res_table); 822 823 /* This is the Linux default. */ 824 return (dr->mmio_table); 825 } 826 827 static struct resource * 828 _lkpi_pci_iomap(struct pci_dev *pdev, int bar, unsigned long maxlen __unused) 829 { 830 struct pci_mmio_region *mmio, *p; 831 int type; 832 833 if (!lkpi_pci_bar_id_valid(bar)) 834 return (NULL); 835 836 type = pci_resource_type(pdev, bar); 837 if (type < 0) { 838 device_printf(pdev->dev.bsddev, "%s: bar %d type %d\n", 839 __func__, bar, type); 840 return (NULL); 841 } 842 843 /* 844 * Check for duplicate mappings. 845 * This can happen if a driver calls pci_request_region() first. 846 */ 847 TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) { 848 if (mmio->type == type && mmio->rid == PCIR_BAR(bar)) { 849 return (mmio->res); 850 } 851 } 852 853 mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO); 854 mmio->rid = PCIR_BAR(bar); 855 mmio->type = type; 856 mmio->res = bus_alloc_resource_any(pdev->dev.bsddev, mmio->type, 857 &mmio->rid, RF_ACTIVE|RF_SHAREABLE); 858 if (mmio->res == NULL) { 859 device_printf(pdev->dev.bsddev, "%s: failed to alloc " 860 "bar %d type %d rid %d\n", 861 __func__, bar, type, PCIR_BAR(bar)); 862 free(mmio, M_DEVBUF); 863 return (NULL); 864 } 865 TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next); 866 867 return (mmio->res); 868 } 869 870 void * 871 linuxkpi_pci_iomap_range(struct pci_dev *pdev, int bar, 872 unsigned long off, unsigned long maxlen) 873 { 874 struct resource *res; 875 876 if (!lkpi_pci_bar_id_valid(bar)) 877 return (NULL); 878 879 res = _lkpi_pci_iomap(pdev, bar, maxlen); 880 if (res == NULL) 881 return (NULL); 882 /* This is a FreeBSD extension so we can use bus_*(). */ 883 if (pdev->want_iomap_res) 884 return (res); 885 MPASS(off < rman_get_size(res)); 886 return ((void *)(rman_get_bushandle(res) + off)); 887 } 888 889 void * 890 linuxkpi_pci_iomap(struct pci_dev *pdev, int bar, unsigned long maxlen) 891 { 892 if (!lkpi_pci_bar_id_valid(bar)) 893 return (NULL); 894 895 return (linuxkpi_pci_iomap_range(pdev, bar, 0, maxlen)); 896 } 897 898 void * 899 linuxkpi_pcim_iomap(struct pci_dev *pdev, int bar, unsigned long maxlen) 900 { 901 struct pcim_iomap_devres *dr; 902 void *res; 903 904 if (!lkpi_pci_bar_id_valid(bar)) 905 return (NULL); 906 907 dr = lkpi_pcim_iomap_devres_find(pdev); 908 if (dr == NULL) 909 return (NULL); 910 911 if (dr->res_table[bar] != NULL) 912 return (dr->res_table[bar]); 913 914 res = linuxkpi_pci_iomap(pdev, bar, maxlen); 915 if (res == NULL) { 916 /* 917 * Do not free the devres in case there were 918 * other valid mappings before already. 919 */ 920 return (NULL); 921 } 922 lkpi_set_pcim_iomap_devres(dr, bar, res); 923 924 return (res); 925 } 926 927 void 928 linuxkpi_pci_iounmap(struct pci_dev *pdev, void *res) 929 { 930 struct pci_mmio_region *mmio, *p; 931 bus_space_handle_t bh = (bus_space_handle_t)res; 932 933 TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) { 934 if (pdev->want_iomap_res) { 935 if (res != mmio->res) 936 continue; 937 } else { 938 if (bh < rman_get_bushandle(mmio->res) || 939 bh >= rman_get_bushandle(mmio->res) + 940 rman_get_size(mmio->res)) 941 continue; 942 } 943 bus_release_resource(pdev->dev.bsddev, 944 mmio->type, mmio->rid, mmio->res); 945 TAILQ_REMOVE(&pdev->mmio, mmio, next); 946 free(mmio, M_DEVBUF); 947 return; 948 } 949 } 950 951 int 952 linuxkpi_pcim_iomap_regions(struct pci_dev *pdev, uint32_t mask, const char *name) 953 { 954 struct pcim_iomap_devres *dr; 955 void *res; 956 uint32_t mappings; 957 int bar; 958 959 dr = lkpi_pcim_iomap_devres_find(pdev); 960 if (dr == NULL) 961 return (-ENOMEM); 962 963 /* Now iomap all the requested (by "mask") ones. */ 964 for (bar = mappings = 0; mappings != mask; bar++) { 965 if ((mask & (1 << bar)) == 0) 966 continue; 967 968 /* Request double is not allowed. */ 969 if (dr->mmio_table[bar] != NULL) { 970 device_printf(pdev->dev.bsddev, "%s: bar %d %p\n", 971 __func__, bar, dr->mmio_table[bar]); 972 goto err; 973 } 974 975 res = _lkpi_pci_iomap(pdev, bar, 0); 976 if (res == NULL) 977 goto err; 978 lkpi_set_pcim_iomap_devres(dr, bar, res); 979 980 mappings |= (1 << bar); 981 } 982 983 return (0); 984 err: 985 for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) { 986 if ((mappings & (1 << bar)) != 0) { 987 res = dr->mmio_table[bar]; 988 if (res == NULL) 989 continue; 990 pci_iounmap(pdev, res); 991 } 992 } 993 994 return (-EINVAL); 995 } 996 997 static void 998 lkpi_pcim_iomap_table_release(struct device *dev, void *p) 999 { 1000 struct pcim_iomap_devres *dr; 1001 struct pci_dev *pdev; 1002 int bar; 1003 1004 dr = p; 1005 pdev = to_pci_dev(dev); 1006 for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) { 1007 1008 if (dr->mmio_table[bar] == NULL) 1009 continue; 1010 1011 pci_iounmap(pdev, dr->mmio_table[bar]); 1012 } 1013 } 1014 1015 static int 1016 linux_pci_suspend(device_t dev) 1017 { 1018 const struct dev_pm_ops *pmops; 1019 struct pm_message pm = { }; 1020 struct pci_dev *pdev; 1021 int error; 1022 1023 error = 0; 1024 linux_set_current(curthread); 1025 pdev = device_get_softc(dev); 1026 pmops = pdev->pdrv->driver.pm; 1027 1028 if (pdev->pdrv->suspend != NULL) 1029 error = -pdev->pdrv->suspend(pdev, pm); 1030 else if (pmops != NULL && pmops->suspend != NULL) { 1031 error = -pmops->suspend(&pdev->dev); 1032 if (error == 0 && pmops->suspend_late != NULL) 1033 error = -pmops->suspend_late(&pdev->dev); 1034 if (error == 0 && pmops->suspend_noirq != NULL) 1035 error = -pmops->suspend_noirq(&pdev->dev); 1036 } 1037 return (error); 1038 } 1039 1040 static int 1041 linux_pci_resume(device_t dev) 1042 { 1043 const struct dev_pm_ops *pmops; 1044 struct pci_dev *pdev; 1045 int error; 1046 1047 error = 0; 1048 linux_set_current(curthread); 1049 pdev = device_get_softc(dev); 1050 pmops = pdev->pdrv->driver.pm; 1051 1052 if (pdev->pdrv->resume != NULL) 1053 error = -pdev->pdrv->resume(pdev); 1054 else if (pmops != NULL && pmops->resume != NULL) { 1055 if (pmops->resume_early != NULL) 1056 error = -pmops->resume_early(&pdev->dev); 1057 if (error == 0 && pmops->resume != NULL) 1058 error = -pmops->resume(&pdev->dev); 1059 } 1060 return (error); 1061 } 1062 1063 static int 1064 linux_pci_shutdown(device_t dev) 1065 { 1066 struct pci_dev *pdev; 1067 1068 linux_set_current(curthread); 1069 pdev = device_get_softc(dev); 1070 if (pdev->pdrv->shutdown != NULL) 1071 pdev->pdrv->shutdown(pdev); 1072 return (0); 1073 } 1074 1075 static int 1076 linux_pci_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *pf_config) 1077 { 1078 struct pci_dev *pdev; 1079 int error; 1080 1081 linux_set_current(curthread); 1082 pdev = device_get_softc(dev); 1083 if (pdev->pdrv->bsd_iov_init != NULL) 1084 error = pdev->pdrv->bsd_iov_init(dev, num_vfs, pf_config); 1085 else 1086 error = EINVAL; 1087 return (error); 1088 } 1089 1090 static void 1091 linux_pci_iov_uninit(device_t dev) 1092 { 1093 struct pci_dev *pdev; 1094 1095 linux_set_current(curthread); 1096 pdev = device_get_softc(dev); 1097 if (pdev->pdrv->bsd_iov_uninit != NULL) 1098 pdev->pdrv->bsd_iov_uninit(dev); 1099 } 1100 1101 static int 1102 linux_pci_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *vf_config) 1103 { 1104 struct pci_dev *pdev; 1105 int error; 1106 1107 linux_set_current(curthread); 1108 pdev = device_get_softc(dev); 1109 if (pdev->pdrv->bsd_iov_add_vf != NULL) 1110 error = pdev->pdrv->bsd_iov_add_vf(dev, vfnum, vf_config); 1111 else 1112 error = EINVAL; 1113 return (error); 1114 } 1115 1116 static int 1117 _linux_pci_register_driver(struct pci_driver *pdrv, devclass_t dc) 1118 { 1119 int error; 1120 1121 linux_set_current(curthread); 1122 spin_lock(&pci_lock); 1123 list_add(&pdrv->node, &pci_drivers); 1124 spin_unlock(&pci_lock); 1125 if (pdrv->bsddriver.name == NULL) 1126 pdrv->bsddriver.name = pdrv->name; 1127 pdrv->bsddriver.methods = pci_methods; 1128 pdrv->bsddriver.size = sizeof(struct pci_dev); 1129 1130 bus_topo_lock(); 1131 error = devclass_add_driver(dc, &pdrv->bsddriver, 1132 BUS_PASS_DEFAULT, &pdrv->bsdclass); 1133 bus_topo_unlock(); 1134 return (-error); 1135 } 1136 1137 int 1138 linux_pci_register_driver(struct pci_driver *pdrv) 1139 { 1140 devclass_t dc; 1141 1142 pdrv->isdrm = strcmp(pdrv->name, "drmn") == 0; 1143 dc = pdrv->isdrm ? devclass_create("vgapci") : devclass_find("pci"); 1144 if (dc == NULL) 1145 return (-ENXIO); 1146 return (_linux_pci_register_driver(pdrv, dc)); 1147 } 1148 1149 static struct resource_list_entry * 1150 lkpi_pci_get_bar(struct pci_dev *pdev, int bar, bool reserve) 1151 { 1152 int type; 1153 1154 type = pci_resource_type(pdev, bar); 1155 if (type < 0) 1156 return (NULL); 1157 bar = PCIR_BAR(bar); 1158 return (linux_pci_get_rle(pdev, type, bar, reserve)); 1159 } 1160 1161 struct device * 1162 lkpi_pci_find_irq_dev(unsigned int irq) 1163 { 1164 struct pci_dev *pdev; 1165 struct device *found; 1166 1167 found = NULL; 1168 spin_lock(&pci_lock); 1169 list_for_each_entry(pdev, &pci_devices, links) { 1170 if (irq == pdev->dev.irq || 1171 (irq >= pdev->dev.irq_start && irq < pdev->dev.irq_end)) { 1172 found = &pdev->dev; 1173 break; 1174 } 1175 } 1176 spin_unlock(&pci_lock); 1177 return (found); 1178 } 1179 1180 unsigned long 1181 pci_resource_start(struct pci_dev *pdev, int bar) 1182 { 1183 struct resource_list_entry *rle; 1184 rman_res_t newstart; 1185 device_t dev; 1186 int error; 1187 1188 if ((rle = lkpi_pci_get_bar(pdev, bar, true)) == NULL) 1189 return (0); 1190 dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ? 1191 device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev; 1192 error = bus_translate_resource(dev, rle->type, rle->start, &newstart); 1193 if (error != 0) { 1194 device_printf(pdev->dev.bsddev, 1195 "translate of %#jx failed: %d\n", 1196 (uintmax_t)rle->start, error); 1197 return (0); 1198 } 1199 return (newstart); 1200 } 1201 1202 unsigned long 1203 pci_resource_len(struct pci_dev *pdev, int bar) 1204 { 1205 struct resource_list_entry *rle; 1206 1207 if ((rle = lkpi_pci_get_bar(pdev, bar, true)) == NULL) 1208 return (0); 1209 return (rle->count); 1210 } 1211 1212 static int 1213 lkpi_pci_request_region(struct pci_dev *pdev, int bar, const char *res_name, 1214 bool managed) 1215 { 1216 struct resource *res; 1217 struct pci_devres *dr; 1218 struct pci_mmio_region *mmio; 1219 int rid; 1220 int type; 1221 1222 if (!lkpi_pci_bar_id_valid(bar)) 1223 return (-EINVAL); 1224 1225 type = pci_resource_type(pdev, bar); 1226 if (type < 0) 1227 return (0); 1228 1229 rid = PCIR_BAR(bar); 1230 res = bus_alloc_resource_any(pdev->dev.bsddev, type, &rid, 1231 RF_ACTIVE|RF_SHAREABLE); 1232 if (res == NULL) { 1233 device_printf(pdev->dev.bsddev, "%s: failed to alloc " 1234 "bar %d type %d rid %d\n", 1235 __func__, bar, type, PCIR_BAR(bar)); 1236 return (-EBUSY); 1237 } 1238 1239 /* 1240 * It seems there is an implicit devres tracking on these if the device 1241 * is managed (lkpi_pci_devres_find() case); otherwise the resources are 1242 * not automatically freed on FreeBSD/LinuxKPI though they should be/are 1243 * expected to be by Linux drivers. 1244 * Otherwise if we are called from a pcim-function with the managed 1245 * argument set, we need to track devres independent of pdev->managed. 1246 */ 1247 if (managed) 1248 dr = lkpi_pci_devres_get_alloc(pdev); 1249 else 1250 dr = lkpi_pci_devres_find(pdev); 1251 if (dr != NULL) { 1252 dr->region_mask |= (1 << bar); 1253 dr->region_table[bar] = res; 1254 } 1255 1256 /* Even if the device is not managed we need to track it for iomap. */ 1257 mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO); 1258 mmio->rid = PCIR_BAR(bar); 1259 mmio->type = type; 1260 mmio->res = res; 1261 TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next); 1262 1263 return (0); 1264 } 1265 1266 int 1267 linuxkpi_pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 1268 { 1269 return (lkpi_pci_request_region(pdev, bar, res_name, false)); 1270 } 1271 1272 int 1273 linuxkpi_pci_request_regions(struct pci_dev *pdev, const char *res_name) 1274 { 1275 int error; 1276 int i; 1277 1278 for (i = 0; i <= PCIR_MAX_BAR_0; i++) { 1279 error = pci_request_region(pdev, i, res_name); 1280 if (error && error != -EBUSY) { 1281 pci_release_regions(pdev); 1282 return (error); 1283 } 1284 } 1285 return (0); 1286 } 1287 1288 int 1289 linuxkpi_pcim_request_all_regions(struct pci_dev *pdev, const char *res_name) 1290 { 1291 int bar, error; 1292 1293 for (bar = 0; bar <= PCIR_MAX_BAR_0; bar++) { 1294 error = lkpi_pci_request_region(pdev, bar, res_name, true); 1295 if (error != 0 && error != -EBUSY) { 1296 device_printf(pdev->dev.bsddev, "%s: bar %d res_name '%s': " 1297 "lkpi_pci_request_region returned %d\n", __func__, 1298 bar, res_name, error); 1299 pci_release_regions(pdev); 1300 return (error); 1301 } 1302 } 1303 return (0); 1304 } 1305 1306 void 1307 linuxkpi_pci_release_region(struct pci_dev *pdev, int bar) 1308 { 1309 struct resource_list_entry *rle; 1310 struct pci_devres *dr; 1311 struct pci_mmio_region *mmio, *p; 1312 1313 if ((rle = lkpi_pci_get_bar(pdev, bar, false)) == NULL) 1314 return; 1315 1316 /* 1317 * As we implicitly track the requests we also need to clear them on 1318 * release. Do clear before resource release. 1319 */ 1320 dr = lkpi_pci_devres_find(pdev); 1321 if (dr != NULL) { 1322 KASSERT(dr->region_table[bar] == rle->res, ("%s: pdev %p bar %d" 1323 " region_table res %p != rel->res %p\n", __func__, pdev, 1324 bar, dr->region_table[bar], rle->res)); 1325 dr->region_table[bar] = NULL; 1326 dr->region_mask &= ~(1 << bar); 1327 } 1328 1329 TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) { 1330 if (rle->res != (void *)rman_get_bushandle(mmio->res)) 1331 continue; 1332 TAILQ_REMOVE(&pdev->mmio, mmio, next); 1333 free(mmio, M_DEVBUF); 1334 } 1335 1336 bus_release_resource(pdev->dev.bsddev, rle->type, rle->rid, rle->res); 1337 } 1338 1339 void 1340 linuxkpi_pci_release_regions(struct pci_dev *pdev) 1341 { 1342 int i; 1343 1344 for (i = 0; i <= PCIR_MAX_BAR_0; i++) 1345 pci_release_region(pdev, i); 1346 } 1347 1348 int 1349 linux_pci_register_drm_driver(struct pci_driver *pdrv) 1350 { 1351 devclass_t dc; 1352 1353 dc = devclass_create("vgapci"); 1354 if (dc == NULL) 1355 return (-ENXIO); 1356 pdrv->isdrm = true; 1357 pdrv->name = "drmn"; 1358 return (_linux_pci_register_driver(pdrv, dc)); 1359 } 1360 1361 void 1362 linux_pci_unregister_driver(struct pci_driver *pdrv) 1363 { 1364 devclass_t bus; 1365 1366 bus = devclass_find(pdrv->isdrm ? "vgapci" : "pci"); 1367 1368 spin_lock(&pci_lock); 1369 list_del(&pdrv->node); 1370 spin_unlock(&pci_lock); 1371 bus_topo_lock(); 1372 if (bus != NULL) 1373 devclass_delete_driver(bus, &pdrv->bsddriver); 1374 bus_topo_unlock(); 1375 } 1376 1377 void 1378 linux_pci_unregister_drm_driver(struct pci_driver *pdrv) 1379 { 1380 devclass_t bus; 1381 1382 bus = devclass_find("vgapci"); 1383 1384 spin_lock(&pci_lock); 1385 list_del(&pdrv->node); 1386 spin_unlock(&pci_lock); 1387 bus_topo_lock(); 1388 if (bus != NULL) 1389 devclass_delete_driver(bus, &pdrv->bsddriver); 1390 bus_topo_unlock(); 1391 } 1392 1393 int 1394 linuxkpi_pci_enable_msix(struct pci_dev *pdev, struct msix_entry *entries, 1395 int nreq) 1396 { 1397 struct resource_list_entry *rle; 1398 int error; 1399 int avail; 1400 int i; 1401 1402 avail = pci_msix_count(pdev->dev.bsddev); 1403 if (avail < nreq) { 1404 if (avail == 0) 1405 return -EINVAL; 1406 return avail; 1407 } 1408 avail = nreq; 1409 if ((error = -pci_alloc_msix(pdev->dev.bsddev, &avail)) != 0) 1410 return error; 1411 /* 1412 * Handle case where "pci_alloc_msix()" may allocate less 1413 * interrupts than available and return with no error: 1414 */ 1415 if (avail < nreq) { 1416 pci_release_msi(pdev->dev.bsddev); 1417 return avail; 1418 } 1419 rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 1, false); 1420 pdev->dev.irq_start = rle->start; 1421 pdev->dev.irq_end = rle->start + avail; 1422 for (i = 0; i < nreq; i++) 1423 entries[i].vector = pdev->dev.irq_start + i; 1424 pdev->msix_enabled = true; 1425 return (0); 1426 } 1427 1428 int 1429 _lkpi_pci_enable_msi_range(struct pci_dev *pdev, int minvec, int maxvec) 1430 { 1431 struct resource_list_entry *rle; 1432 int error; 1433 int nvec; 1434 1435 if (maxvec < minvec) 1436 return (-EINVAL); 1437 1438 nvec = pci_msi_count(pdev->dev.bsddev); 1439 if (nvec < 1 || nvec < minvec) 1440 return (-ENOSPC); 1441 1442 nvec = min(nvec, maxvec); 1443 if ((error = -pci_alloc_msi(pdev->dev.bsddev, &nvec)) != 0) 1444 return error; 1445 1446 /* Native PCI might only ever ask for 32 vectors. */ 1447 if (nvec < minvec) { 1448 pci_release_msi(pdev->dev.bsddev); 1449 return (-ENOSPC); 1450 } 1451 1452 rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 1, false); 1453 pdev->dev.irq_start = rle->start; 1454 pdev->dev.irq_end = rle->start + nvec; 1455 pdev->irq = rle->start; 1456 pdev->msi_enabled = true; 1457 return (0); 1458 } 1459 1460 int 1461 pci_alloc_irq_vectors(struct pci_dev *pdev, int minv, int maxv, 1462 unsigned int flags) 1463 { 1464 int error; 1465 1466 if (flags & PCI_IRQ_MSIX) { 1467 struct msix_entry *entries; 1468 int i; 1469 1470 entries = kcalloc(maxv, sizeof(*entries), GFP_KERNEL); 1471 if (entries == NULL) { 1472 error = -ENOMEM; 1473 goto out; 1474 } 1475 for (i = 0; i < maxv; ++i) 1476 entries[i].entry = i; 1477 error = pci_enable_msix(pdev, entries, maxv); 1478 out: 1479 kfree(entries); 1480 if (error == 0 && pdev->msix_enabled) 1481 return (pdev->dev.irq_end - pdev->dev.irq_start); 1482 } 1483 if (flags & PCI_IRQ_MSI) { 1484 if (pci_msi_count(pdev->dev.bsddev) < minv) 1485 return (-ENOSPC); 1486 error = _lkpi_pci_enable_msi_range(pdev, minv, maxv); 1487 if (error == 0 && pdev->msi_enabled) 1488 return (pdev->dev.irq_end - pdev->dev.irq_start); 1489 } 1490 if (flags & PCI_IRQ_INTX) { 1491 if (pdev->irq) 1492 return (1); 1493 } 1494 1495 return (-EINVAL); 1496 } 1497 1498 struct msi_desc * 1499 lkpi_pci_msi_desc_alloc(int irq) 1500 { 1501 struct device *dev; 1502 struct pci_dev *pdev; 1503 struct msi_desc *desc; 1504 struct pci_devinfo *dinfo; 1505 struct pcicfg_msi *msi; 1506 int vec; 1507 1508 dev = lkpi_pci_find_irq_dev(irq); 1509 if (dev == NULL) 1510 return (NULL); 1511 1512 pdev = to_pci_dev(dev); 1513 1514 if (pdev->msi_desc == NULL) 1515 return (NULL); 1516 1517 if (irq < pdev->dev.irq_start || irq >= pdev->dev.irq_end) 1518 return (NULL); 1519 1520 vec = pdev->dev.irq_start - irq; 1521 1522 if (pdev->msi_desc[vec] != NULL) 1523 return (pdev->msi_desc[vec]); 1524 1525 dinfo = device_get_ivars(dev->bsddev); 1526 msi = &dinfo->cfg.msi; 1527 1528 desc = malloc(sizeof(*desc), M_DEVBUF, M_WAITOK | M_ZERO); 1529 1530 desc->pci.msi_attrib.is_64 = 1531 (msi->msi_ctrl & PCIM_MSICTRL_64BIT) ? true : false; 1532 desc->msg.data = msi->msi_data; 1533 1534 pdev->msi_desc[vec] = desc; 1535 1536 return (desc); 1537 } 1538 1539 bool 1540 pci_device_is_present(struct pci_dev *pdev) 1541 { 1542 device_t dev; 1543 1544 dev = pdev->dev.bsddev; 1545 1546 return (bus_child_present(dev)); 1547 } 1548 1549 CTASSERT(sizeof(dma_addr_t) <= sizeof(uint64_t)); 1550 1551 struct linux_dma_obj { 1552 void *vaddr; 1553 uint64_t dma_addr; 1554 bus_dmamap_t dmamap; 1555 bus_dma_tag_t dmat; 1556 }; 1557 1558 static uma_zone_t linux_dma_trie_zone; 1559 static uma_zone_t linux_dma_obj_zone; 1560 1561 static void 1562 linux_dma_init(void *arg) 1563 { 1564 1565 linux_dma_trie_zone = uma_zcreate("linux_dma_pctrie", 1566 pctrie_node_size(), NULL, NULL, pctrie_zone_init, NULL, 1567 UMA_ALIGN_PTR, 0); 1568 linux_dma_obj_zone = uma_zcreate("linux_dma_object", 1569 sizeof(struct linux_dma_obj), NULL, NULL, NULL, NULL, 1570 UMA_ALIGN_PTR, 0); 1571 lkpi_pci_nseg1_fail = counter_u64_alloc(M_WAITOK); 1572 } 1573 SYSINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_init, NULL); 1574 1575 static void 1576 linux_dma_uninit(void *arg) 1577 { 1578 1579 counter_u64_free(lkpi_pci_nseg1_fail); 1580 uma_zdestroy(linux_dma_obj_zone); 1581 uma_zdestroy(linux_dma_trie_zone); 1582 } 1583 SYSUNINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_uninit, NULL); 1584 1585 static void * 1586 linux_dma_trie_alloc(struct pctrie *ptree) 1587 { 1588 1589 return (uma_zalloc(linux_dma_trie_zone, M_NOWAIT)); 1590 } 1591 1592 static void 1593 linux_dma_trie_free(struct pctrie *ptree, void *node) 1594 { 1595 1596 uma_zfree(linux_dma_trie_zone, node); 1597 } 1598 1599 PCTRIE_DEFINE(LINUX_DMA, linux_dma_obj, dma_addr, linux_dma_trie_alloc, 1600 linux_dma_trie_free); 1601 1602 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 1603 static dma_addr_t 1604 linux_dma_map_phys_common(struct device *dev, vm_paddr_t phys, size_t len, 1605 bus_dma_tag_t dmat) 1606 { 1607 struct linux_dma_priv *priv; 1608 struct linux_dma_obj *obj; 1609 int error, nseg; 1610 bus_dma_segment_t seg; 1611 1612 priv = dev->dma_priv; 1613 1614 /* 1615 * If the resultant mapping will be entirely 1:1 with the 1616 * physical address, short-circuit the remainder of the 1617 * bus_dma API. This avoids tracking collisions in the pctrie 1618 * with the additional benefit of reducing overhead. 1619 */ 1620 if (bus_dma_id_mapped(dmat, phys, len)) 1621 return (phys); 1622 1623 obj = uma_zalloc(linux_dma_obj_zone, M_NOWAIT); 1624 if (obj == NULL) { 1625 return (0); 1626 } 1627 obj->dmat = dmat; 1628 1629 DMA_PRIV_LOCK(priv); 1630 if (bus_dmamap_create(obj->dmat, 0, &obj->dmamap) != 0) { 1631 DMA_PRIV_UNLOCK(priv); 1632 uma_zfree(linux_dma_obj_zone, obj); 1633 return (0); 1634 } 1635 1636 nseg = -1; 1637 error = _bus_dmamap_load_phys(obj->dmat, obj->dmamap, phys, len, 1638 BUS_DMA_NOWAIT, &seg, &nseg); 1639 if (error != 0) { 1640 bus_dmamap_destroy(obj->dmat, obj->dmamap); 1641 DMA_PRIV_UNLOCK(priv); 1642 uma_zfree(linux_dma_obj_zone, obj); 1643 counter_u64_add(lkpi_pci_nseg1_fail, 1); 1644 if (linuxkpi_debug) { 1645 device_printf(dev->bsddev, "%s: _bus_dmamap_load_phys " 1646 "error %d, phys %#018jx len %zu\n", __func__, 1647 error, (uintmax_t)phys, len); 1648 dump_stack(); 1649 } 1650 return (0); 1651 } 1652 1653 KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg)); 1654 obj->dma_addr = seg.ds_addr; 1655 1656 error = LINUX_DMA_PCTRIE_INSERT(&priv->ptree, obj); 1657 if (error != 0) { 1658 bus_dmamap_unload(obj->dmat, obj->dmamap); 1659 bus_dmamap_destroy(obj->dmat, obj->dmamap); 1660 DMA_PRIV_UNLOCK(priv); 1661 uma_zfree(linux_dma_obj_zone, obj); 1662 return (0); 1663 } 1664 DMA_PRIV_UNLOCK(priv); 1665 return (obj->dma_addr); 1666 } 1667 #else 1668 static dma_addr_t 1669 linux_dma_map_phys_common(struct device *dev __unused, vm_paddr_t phys, 1670 size_t len __unused, bus_dma_tag_t dmat __unused) 1671 { 1672 return (phys); 1673 } 1674 #endif 1675 1676 dma_addr_t 1677 lkpi_dma_map_phys(struct device *dev, vm_paddr_t phys, size_t len, 1678 enum dma_data_direction direction, unsigned long attrs) 1679 { 1680 struct linux_dma_priv *priv; 1681 dma_addr_t dma; 1682 1683 priv = dev->dma_priv; 1684 dma = linux_dma_map_phys_common(dev, phys, len, priv->dmat); 1685 if (dma_mapping_error(dev, dma)) 1686 return (dma); 1687 1688 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1689 dma_sync_single_for_device(dev, dma, len, direction); 1690 1691 return (dma); 1692 } 1693 1694 /* For backward compat only so we can MFC this. Remove before 15. */ 1695 dma_addr_t 1696 linux_dma_map_phys(struct device *dev, vm_paddr_t phys, size_t len) 1697 { 1698 return (lkpi_dma_map_phys(dev, phys, len, DMA_NONE, 0)); 1699 } 1700 1701 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 1702 void 1703 lkpi_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len, 1704 enum dma_data_direction direction, unsigned long attrs) 1705 { 1706 struct linux_dma_priv *priv; 1707 struct linux_dma_obj *obj; 1708 1709 priv = dev->dma_priv; 1710 1711 if (pctrie_is_empty(&priv->ptree)) 1712 return; 1713 1714 DMA_PRIV_LOCK(priv); 1715 obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr); 1716 if (obj == NULL) { 1717 DMA_PRIV_UNLOCK(priv); 1718 return; 1719 } 1720 LINUX_DMA_PCTRIE_REMOVE(&priv->ptree, dma_addr); 1721 1722 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) != 0) 1723 goto skip_sync; 1724 1725 /* dma_sync_single_for_cpu() unrolled to avoid lock recursicn. */ 1726 switch (direction) { 1727 case DMA_BIDIRECTIONAL: 1728 bus_dmamap_sync(obj->dmat, obj->dmamap, BUS_DMASYNC_POSTREAD); 1729 bus_dmamap_sync(obj->dmat, obj->dmamap, BUS_DMASYNC_PREREAD); 1730 break; 1731 case DMA_TO_DEVICE: 1732 bus_dmamap_sync(obj->dmat, obj->dmamap, BUS_DMASYNC_POSTWRITE); 1733 break; 1734 case DMA_FROM_DEVICE: 1735 bus_dmamap_sync(obj->dmat, obj->dmamap, BUS_DMASYNC_POSTREAD); 1736 break; 1737 default: 1738 break; 1739 } 1740 1741 skip_sync: 1742 bus_dmamap_unload(obj->dmat, obj->dmamap); 1743 bus_dmamap_destroy(obj->dmat, obj->dmamap); 1744 DMA_PRIV_UNLOCK(priv); 1745 1746 uma_zfree(linux_dma_obj_zone, obj); 1747 } 1748 #else 1749 void 1750 lkpi_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len, 1751 enum dma_data_direction direction, unsigned long attrs) 1752 { 1753 } 1754 #endif 1755 1756 /* For backward compat only so we can MFC this. Remove before 15. */ 1757 void 1758 linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len) 1759 { 1760 lkpi_dma_unmap(dev, dma_addr, len, DMA_NONE, 0); 1761 } 1762 1763 void * 1764 linux_dma_alloc_coherent(struct device *dev, size_t size, 1765 dma_addr_t *dma_handle, gfp_t flag) 1766 { 1767 struct linux_dma_priv *priv; 1768 vm_paddr_t high; 1769 size_t align; 1770 void *mem; 1771 1772 if (dev == NULL || dev->dma_priv == NULL) { 1773 *dma_handle = 0; 1774 return (NULL); 1775 } 1776 priv = dev->dma_priv; 1777 if (priv->dma_coherent_mask) 1778 high = priv->dma_coherent_mask; 1779 else 1780 /* Coherent is lower 32bit only by default in Linux. */ 1781 high = BUS_SPACE_MAXADDR_32BIT; 1782 align = PAGE_SIZE << get_order(size); 1783 /* Always zero the allocation. */ 1784 flag |= M_ZERO; 1785 mem = kmem_alloc_contig(size, flag & GFP_NATIVE_MASK, 0, high, 1786 align, 0, VM_MEMATTR_DEFAULT); 1787 if (mem != NULL) { 1788 *dma_handle = linux_dma_map_phys_common(dev, vtophys(mem), size, 1789 priv->dmat_coherent); 1790 if (*dma_handle == 0) { 1791 kmem_free(mem, size); 1792 mem = NULL; 1793 } 1794 } else { 1795 *dma_handle = 0; 1796 } 1797 return (mem); 1798 } 1799 1800 struct lkpi_devres_dmam_coherent { 1801 size_t size; 1802 dma_addr_t *handle; 1803 void *mem; 1804 }; 1805 1806 static void 1807 lkpi_dmam_free_coherent(struct device *dev, void *p) 1808 { 1809 struct lkpi_devres_dmam_coherent *dr; 1810 1811 dr = p; 1812 dma_free_coherent(dev, dr->size, dr->mem, *dr->handle); 1813 } 1814 1815 static int 1816 lkpi_dmam_coherent_match(struct device *dev, void *dr, void *mp) 1817 { 1818 struct lkpi_devres_dmam_coherent *a, *b; 1819 1820 a = dr; 1821 b = mp; 1822 1823 if (a->mem != b->mem) 1824 return (0); 1825 if (a->size != b->size || a->handle != b->handle) 1826 dev_WARN(dev, "for mem %p: size %zu != %zu || handle %#jx != %#jx\n", 1827 a->mem, a->size, b->size, 1828 (uintmax_t)a->handle, (uintmax_t)b->handle); 1829 return (1); 1830 } 1831 1832 void 1833 linuxkpi_dmam_free_coherent(struct device *dev, size_t size, 1834 void *addr, dma_addr_t dma_handle) 1835 { 1836 struct lkpi_devres_dmam_coherent match = { 1837 .size = size, 1838 .handle = &dma_handle, 1839 .mem = addr 1840 }; 1841 int error; 1842 1843 error = devres_destroy(dev, lkpi_dmam_free_coherent, 1844 lkpi_dmam_coherent_match, &match); 1845 if (error != 0) 1846 dev_WARN(dev, "devres_destroy returned %d, size %zu addr %p " 1847 "dma_handle %#jx\n", error, size, addr, (uintmax_t)dma_handle); 1848 dma_free_coherent(dev, size, addr, dma_handle); 1849 } 1850 1851 void * 1852 linuxkpi_dmam_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, 1853 gfp_t flag) 1854 { 1855 struct lkpi_devres_dmam_coherent *dr; 1856 1857 dr = lkpi_devres_alloc(lkpi_dmam_free_coherent, 1858 sizeof(*dr), GFP_KERNEL | __GFP_ZERO); 1859 1860 if (dr == NULL) 1861 return (NULL); 1862 1863 dr->size = size; 1864 dr->mem = linux_dma_alloc_coherent(dev, size, dma_handle, flag); 1865 dr->handle = dma_handle; 1866 if (dr->mem == NULL) { 1867 lkpi_devres_free(dr); 1868 return (NULL); 1869 } 1870 1871 lkpi_devres_add(dev, dr); 1872 return (dr->mem); 1873 } 1874 1875 void 1876 linuxkpi_dma_sync(struct device *dev, dma_addr_t dma_addr, size_t size, 1877 bus_dmasync_op_t op) 1878 { 1879 struct linux_dma_priv *priv; 1880 struct linux_dma_obj *obj; 1881 1882 priv = dev->dma_priv; 1883 1884 if (pctrie_is_empty(&priv->ptree)) 1885 return; 1886 1887 DMA_PRIV_LOCK(priv); 1888 obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr); 1889 if (obj == NULL) { 1890 DMA_PRIV_UNLOCK(priv); 1891 return; 1892 } 1893 1894 bus_dmamap_sync(obj->dmat, obj->dmamap, op); 1895 DMA_PRIV_UNLOCK(priv); 1896 } 1897 1898 int 1899 linux_dma_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nents, 1900 enum dma_data_direction direction, unsigned long attrs) 1901 { 1902 struct linux_dma_priv *priv; 1903 struct scatterlist *sg; 1904 int i, nseg; 1905 bus_dma_segment_t seg; 1906 1907 priv = dev->dma_priv; 1908 1909 DMA_PRIV_LOCK(priv); 1910 1911 /* create common DMA map in the first S/G entry */ 1912 if (bus_dmamap_create(priv->dmat, 0, &sgl->dma_map) != 0) { 1913 DMA_PRIV_UNLOCK(priv); 1914 return (0); 1915 } 1916 1917 /* load all S/G list entries */ 1918 for_each_sg(sgl, sg, nents, i) { 1919 nseg = -1; 1920 if (_bus_dmamap_load_phys(priv->dmat, sgl->dma_map, 1921 sg_phys(sg), sg->length, BUS_DMA_NOWAIT, 1922 &seg, &nseg) != 0) { 1923 bus_dmamap_unload(priv->dmat, sgl->dma_map); 1924 bus_dmamap_destroy(priv->dmat, sgl->dma_map); 1925 DMA_PRIV_UNLOCK(priv); 1926 return (0); 1927 } 1928 KASSERT(nseg == 0, 1929 ("More than one segment (nseg=%d)", nseg + 1)); 1930 1931 sg_dma_address(sg) = seg.ds_addr; 1932 } 1933 1934 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) != 0) 1935 goto skip_sync; 1936 1937 switch (direction) { 1938 case DMA_BIDIRECTIONAL: 1939 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE); 1940 break; 1941 case DMA_TO_DEVICE: 1942 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD); 1943 break; 1944 case DMA_FROM_DEVICE: 1945 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE); 1946 break; 1947 default: 1948 break; 1949 } 1950 skip_sync: 1951 1952 DMA_PRIV_UNLOCK(priv); 1953 1954 return (nents); 1955 } 1956 1957 void 1958 linux_dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sgl, 1959 int nents __unused, enum dma_data_direction direction, 1960 unsigned long attrs) 1961 { 1962 struct linux_dma_priv *priv; 1963 1964 priv = dev->dma_priv; 1965 1966 DMA_PRIV_LOCK(priv); 1967 1968 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) != 0) 1969 goto skip_sync; 1970 1971 switch (direction) { 1972 case DMA_BIDIRECTIONAL: 1973 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD); 1974 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD); 1975 break; 1976 case DMA_TO_DEVICE: 1977 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTWRITE); 1978 break; 1979 case DMA_FROM_DEVICE: 1980 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD); 1981 break; 1982 default: 1983 break; 1984 } 1985 skip_sync: 1986 1987 bus_dmamap_unload(priv->dmat, sgl->dma_map); 1988 bus_dmamap_destroy(priv->dmat, sgl->dma_map); 1989 DMA_PRIV_UNLOCK(priv); 1990 } 1991 1992 struct dma_pool { 1993 struct device *pool_device; 1994 uma_zone_t pool_zone; 1995 struct mtx pool_lock; 1996 bus_dma_tag_t pool_dmat; 1997 size_t pool_entry_size; 1998 struct pctrie pool_ptree; 1999 }; 2000 2001 #define DMA_POOL_LOCK(pool) mtx_lock(&(pool)->pool_lock) 2002 #define DMA_POOL_UNLOCK(pool) mtx_unlock(&(pool)->pool_lock) 2003 2004 static inline int 2005 dma_pool_obj_ctor(void *mem, int size, void *arg, int flags) 2006 { 2007 struct linux_dma_obj *obj = mem; 2008 struct dma_pool *pool = arg; 2009 int error, nseg; 2010 bus_dma_segment_t seg; 2011 2012 nseg = -1; 2013 DMA_POOL_LOCK(pool); 2014 error = _bus_dmamap_load_phys(pool->pool_dmat, obj->dmamap, 2015 vtophys(obj->vaddr), pool->pool_entry_size, BUS_DMA_NOWAIT, 2016 &seg, &nseg); 2017 DMA_POOL_UNLOCK(pool); 2018 if (error != 0) { 2019 return (error); 2020 } 2021 KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg)); 2022 obj->dma_addr = seg.ds_addr; 2023 2024 return (0); 2025 } 2026 2027 static void 2028 dma_pool_obj_dtor(void *mem, int size, void *arg) 2029 { 2030 struct linux_dma_obj *obj = mem; 2031 struct dma_pool *pool = arg; 2032 2033 DMA_POOL_LOCK(pool); 2034 bus_dmamap_unload(pool->pool_dmat, obj->dmamap); 2035 DMA_POOL_UNLOCK(pool); 2036 } 2037 2038 static int 2039 dma_pool_obj_import(void *arg, void **store, int count, int domain __unused, 2040 int flags) 2041 { 2042 struct dma_pool *pool = arg; 2043 struct linux_dma_obj *obj; 2044 int error, i; 2045 2046 for (i = 0; i < count; i++) { 2047 obj = uma_zalloc(linux_dma_obj_zone, flags); 2048 if (obj == NULL) 2049 break; 2050 2051 error = bus_dmamem_alloc(pool->pool_dmat, &obj->vaddr, 2052 BUS_DMA_NOWAIT, &obj->dmamap); 2053 if (error!= 0) { 2054 uma_zfree(linux_dma_obj_zone, obj); 2055 break; 2056 } 2057 2058 store[i] = obj; 2059 } 2060 2061 return (i); 2062 } 2063 2064 static void 2065 dma_pool_obj_release(void *arg, void **store, int count) 2066 { 2067 struct dma_pool *pool = arg; 2068 struct linux_dma_obj *obj; 2069 int i; 2070 2071 for (i = 0; i < count; i++) { 2072 obj = store[i]; 2073 bus_dmamem_free(pool->pool_dmat, obj->vaddr, obj->dmamap); 2074 uma_zfree(linux_dma_obj_zone, obj); 2075 } 2076 } 2077 2078 struct dma_pool * 2079 linux_dma_pool_create(char *name, struct device *dev, size_t size, 2080 size_t align, size_t boundary) 2081 { 2082 struct linux_dma_priv *priv; 2083 struct dma_pool *pool; 2084 2085 priv = dev->dma_priv; 2086 2087 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2088 pool->pool_device = dev; 2089 pool->pool_entry_size = size; 2090 2091 if (bus_dma_tag_create(bus_get_dma_tag(dev->bsddev), 2092 align, boundary, /* alignment, boundary */ 2093 priv->dma_mask, /* lowaddr */ 2094 BUS_SPACE_MAXADDR, /* highaddr */ 2095 NULL, NULL, /* filtfunc, filtfuncarg */ 2096 size, /* maxsize */ 2097 1, /* nsegments */ 2098 size, /* maxsegsz */ 2099 0, /* flags */ 2100 NULL, NULL, /* lockfunc, lockfuncarg */ 2101 &pool->pool_dmat)) { 2102 kfree(pool); 2103 return (NULL); 2104 } 2105 2106 pool->pool_zone = uma_zcache_create(name, -1, dma_pool_obj_ctor, 2107 dma_pool_obj_dtor, NULL, NULL, dma_pool_obj_import, 2108 dma_pool_obj_release, pool, 0); 2109 2110 mtx_init(&pool->pool_lock, "lkpi-dma-pool", NULL, MTX_DEF); 2111 pctrie_init(&pool->pool_ptree); 2112 2113 return (pool); 2114 } 2115 2116 void 2117 linux_dma_pool_destroy(struct dma_pool *pool) 2118 { 2119 2120 uma_zdestroy(pool->pool_zone); 2121 bus_dma_tag_destroy(pool->pool_dmat); 2122 mtx_destroy(&pool->pool_lock); 2123 kfree(pool); 2124 } 2125 2126 void 2127 lkpi_dmam_pool_destroy(struct device *dev, void *p) 2128 { 2129 struct dma_pool *pool; 2130 2131 pool = *(struct dma_pool **)p; 2132 LINUX_DMA_PCTRIE_RECLAIM(&pool->pool_ptree); 2133 linux_dma_pool_destroy(pool); 2134 } 2135 2136 void * 2137 linux_dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags, 2138 dma_addr_t *handle) 2139 { 2140 struct linux_dma_obj *obj; 2141 2142 obj = uma_zalloc_arg(pool->pool_zone, pool, mem_flags & GFP_NATIVE_MASK); 2143 if (obj == NULL) 2144 return (NULL); 2145 2146 DMA_POOL_LOCK(pool); 2147 if (LINUX_DMA_PCTRIE_INSERT(&pool->pool_ptree, obj) != 0) { 2148 DMA_POOL_UNLOCK(pool); 2149 uma_zfree_arg(pool->pool_zone, obj, pool); 2150 return (NULL); 2151 } 2152 DMA_POOL_UNLOCK(pool); 2153 2154 *handle = obj->dma_addr; 2155 return (obj->vaddr); 2156 } 2157 2158 void 2159 linux_dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma_addr) 2160 { 2161 struct linux_dma_obj *obj; 2162 2163 DMA_POOL_LOCK(pool); 2164 obj = LINUX_DMA_PCTRIE_LOOKUP(&pool->pool_ptree, dma_addr); 2165 if (obj == NULL) { 2166 DMA_POOL_UNLOCK(pool); 2167 return; 2168 } 2169 LINUX_DMA_PCTRIE_REMOVE(&pool->pool_ptree, dma_addr); 2170 DMA_POOL_UNLOCK(pool); 2171 2172 uma_zfree_arg(pool->pool_zone, obj, pool); 2173 } 2174 2175 static int 2176 linux_backlight_get_status(device_t dev, struct backlight_props *props) 2177 { 2178 struct pci_dev *pdev; 2179 2180 linux_set_current(curthread); 2181 pdev = device_get_softc(dev); 2182 2183 props->brightness = pdev->dev.bd->props.brightness; 2184 props->brightness = props->brightness * 100 / pdev->dev.bd->props.max_brightness; 2185 props->nlevels = 0; 2186 2187 return (0); 2188 } 2189 2190 static int 2191 linux_backlight_get_info(device_t dev, struct backlight_info *info) 2192 { 2193 struct pci_dev *pdev; 2194 2195 linux_set_current(curthread); 2196 pdev = device_get_softc(dev); 2197 2198 info->type = BACKLIGHT_TYPE_PANEL; 2199 strlcpy(info->name, pdev->dev.bd->name, BACKLIGHTMAXNAMELENGTH); 2200 return (0); 2201 } 2202 2203 static int 2204 linux_backlight_update_status(device_t dev, struct backlight_props *props) 2205 { 2206 struct pci_dev *pdev; 2207 2208 linux_set_current(curthread); 2209 pdev = device_get_softc(dev); 2210 2211 pdev->dev.bd->props.brightness = pdev->dev.bd->props.max_brightness * 2212 props->brightness / 100; 2213 pdev->dev.bd->props.power = props->brightness == 0 ? 2214 4/* FB_BLANK_POWERDOWN */ : 0/* FB_BLANK_UNBLANK */; 2215 return (pdev->dev.bd->ops->update_status(pdev->dev.bd)); 2216 } 2217 2218 struct backlight_device * 2219 linux_backlight_device_register(const char *name, struct device *dev, 2220 void *data, const struct backlight_ops *ops, struct backlight_properties *props) 2221 { 2222 2223 dev->bd = malloc(sizeof(*dev->bd), M_DEVBUF, M_WAITOK | M_ZERO); 2224 dev->bd->ops = ops; 2225 dev->bd->props.type = props->type; 2226 dev->bd->props.max_brightness = props->max_brightness; 2227 dev->bd->props.brightness = props->brightness; 2228 dev->bd->props.power = props->power; 2229 dev->bd->data = data; 2230 dev->bd->dev = dev; 2231 dev->bd->name = strdup(name, M_DEVBUF); 2232 2233 dev->backlight_dev = backlight_register(name, dev->bsddev); 2234 2235 return (dev->bd); 2236 } 2237 2238 void 2239 linux_backlight_device_unregister(struct backlight_device *bd) 2240 { 2241 2242 backlight_destroy(bd->dev->backlight_dev); 2243 free(bd->name, M_DEVBUF); 2244 free(bd, M_DEVBUF); 2245 } 2246