1 /*-
2 * Copyright (c) 2010 Isilon Systems, Inc.
3 * Copyright (c) 2010 iX Systems, Inc.
4 * Copyright (c) 2010 Panasas, Inc.
5 * Copyright (c) 2013-2021 Mellanox Technologies, Ltd.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
13 * disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 #include "opt_global.h"
32 #include "opt_stack.h"
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/kernel.h>
38 #include <sys/sysctl.h>
39 #include <sys/proc.h>
40 #include <sys/sglist.h>
41 #include <sys/sleepqueue.h>
42 #include <sys/refcount.h>
43 #include <sys/lock.h>
44 #include <sys/mutex.h>
45 #include <sys/bus.h>
46 #include <sys/eventhandler.h>
47 #include <sys/fcntl.h>
48 #include <sys/file.h>
49 #include <sys/filio.h>
50 #include <sys/rwlock.h>
51 #include <sys/mman.h>
52 #include <sys/stack.h>
53 #include <sys/stdarg.h>
54 #include <sys/sysent.h>
55 #include <sys/time.h>
56 #include <sys/user.h>
57
58 #include <vm/vm.h>
59 #include <vm/pmap.h>
60 #include <vm/vm_object.h>
61 #include <vm/vm_page.h>
62 #include <vm/vm_pager.h>
63 #include <vm/vm_radix.h>
64
65 #if defined(__i386__) || defined(__amd64__)
66 #include <machine/cputypes.h>
67 #include <machine/md_var.h>
68 #endif
69
70 #include <linux/kobject.h>
71 #include <linux/cpu.h>
72 #include <linux/device.h>
73 #include <linux/slab.h>
74 #include <linux/module.h>
75 #include <linux/moduleparam.h>
76 #include <linux/cdev.h>
77 #include <linux/file.h>
78 #include <linux/fs.h>
79 #include <linux/sysfs.h>
80 #include <linux/mm.h>
81 #include <linux/io.h>
82 #include <linux/vmalloc.h>
83 #include <linux/netdevice.h>
84 #include <linux/timer.h>
85 #include <linux/interrupt.h>
86 #include <linux/uaccess.h>
87 #include <linux/utsname.h>
88 #include <linux/list.h>
89 #include <linux/kthread.h>
90 #include <linux/kernel.h>
91 #include <linux/compat.h>
92 #include <linux/io-mapping.h>
93 #include <linux/poll.h>
94 #include <linux/smp.h>
95 #include <linux/wait_bit.h>
96 #include <linux/rcupdate.h>
97 #include <linux/interval_tree.h>
98 #include <linux/interval_tree_generic.h>
99 #include <linux/printk.h>
100 #include <linux/seq_file.h>
101
102 #if defined(__i386__) || defined(__amd64__)
103 #include <asm/smp.h>
104 #include <asm/processor.h>
105 #endif
106
107 #include <xen/xen.h>
108 #ifdef XENHVM
109 #undef xen_pv_domain
110 #undef xen_initial_domain
111 /* xen/xen-os.h redefines __must_check */
112 #undef __must_check
113 #include <xen/xen-os.h>
114 #endif
115
116 SYSCTL_NODE(_compat, OID_AUTO, linuxkpi, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
117 "LinuxKPI parameters");
118
119 int linuxkpi_debug;
120 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, debug, CTLFLAG_RWTUN,
121 &linuxkpi_debug, 0, "Set to enable pr_debug() prints. Clear to disable.");
122
123 int linuxkpi_rcu_debug;
124 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, rcu_debug, CTLFLAG_RWTUN,
125 &linuxkpi_rcu_debug, 0, "Set to enable RCU warning. Clear to disable.");
126
127 int linuxkpi_warn_dump_stack = 0;
128 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, warn_dump_stack, CTLFLAG_RWTUN,
129 &linuxkpi_warn_dump_stack, 0,
130 "Set to enable stack traces from WARN_ON(). Clear to disable.");
131
132 static struct timeval lkpi_net_lastlog;
133 static int lkpi_net_curpps;
134 static int lkpi_net_maxpps = 99;
135 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, net_ratelimit, CTLFLAG_RWTUN,
136 &lkpi_net_maxpps, 0, "Limit number of LinuxKPI net messages per second.");
137
138 MALLOC_DEFINE(M_KMALLOC, "lkpikmalloc", "Linux kmalloc compat");
139
140 #include <linux/rbtree.h>
141 /* Undo Linux compat changes. */
142 #undef RB_ROOT
143 #undef file
144 #undef cdev
145 #define RB_ROOT(head) (head)->rbh_root
146
147 static void linux_destroy_dev(struct linux_cdev *);
148 static void linux_cdev_deref(struct linux_cdev *ldev);
149 static struct vm_area_struct *linux_cdev_handle_find(void *handle);
150
151 cpumask_t cpu_online_mask;
152 static cpumask_t **static_single_cpu_mask;
153 static cpumask_t *static_single_cpu_mask_lcs;
154 struct kobject linux_class_root;
155 struct device linux_root_device;
156 struct class linux_class_misc;
157 struct list_head pci_drivers;
158 struct list_head pci_devices;
159 spinlock_t pci_lock;
160 struct uts_namespace init_uts_ns;
161
162 unsigned long linux_timer_hz_mask;
163
164 wait_queue_head_t linux_bit_waitq;
165 wait_queue_head_t linux_var_waitq;
166
167 int
panic_cmp(struct rb_node * one,struct rb_node * two)168 panic_cmp(struct rb_node *one, struct rb_node *two)
169 {
170 panic("no cmp");
171 }
172
173 RB_GENERATE(linux_root, rb_node, __entry, panic_cmp);
174
175 #define START(node) ((node)->start)
176 #define LAST(node) ((node)->last)
177
178 INTERVAL_TREE_DEFINE(struct interval_tree_node, rb, unsigned long,, START,
179 LAST,, lkpi_interval_tree)
180
181 static void
linux_device_release(struct device * dev)182 linux_device_release(struct device *dev)
183 {
184 pr_debug("linux_device_release: %s\n", dev_name(dev));
185 kfree(dev);
186 }
187
188 static ssize_t
linux_class_show(struct kobject * kobj,struct attribute * attr,char * buf)189 linux_class_show(struct kobject *kobj, struct attribute *attr, char *buf)
190 {
191 struct class_attribute *dattr;
192 ssize_t error;
193
194 dattr = container_of(attr, struct class_attribute, attr);
195 error = -EIO;
196 if (dattr->show)
197 error = dattr->show(container_of(kobj, struct class, kobj),
198 dattr, buf);
199 return (error);
200 }
201
202 static ssize_t
linux_class_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)203 linux_class_store(struct kobject *kobj, struct attribute *attr, const char *buf,
204 size_t count)
205 {
206 struct class_attribute *dattr;
207 ssize_t error;
208
209 dattr = container_of(attr, struct class_attribute, attr);
210 error = -EIO;
211 if (dattr->store)
212 error = dattr->store(container_of(kobj, struct class, kobj),
213 dattr, buf, count);
214 return (error);
215 }
216
217 static void
linux_class_release(struct kobject * kobj)218 linux_class_release(struct kobject *kobj)
219 {
220 struct class *class;
221
222 class = container_of(kobj, struct class, kobj);
223 if (class->class_release)
224 class->class_release(class);
225 }
226
227 static const struct sysfs_ops linux_class_sysfs = {
228 .show = linux_class_show,
229 .store = linux_class_store,
230 };
231
232 const struct kobj_type linux_class_ktype = {
233 .release = linux_class_release,
234 .sysfs_ops = &linux_class_sysfs
235 };
236
237 static void
linux_dev_release(struct kobject * kobj)238 linux_dev_release(struct kobject *kobj)
239 {
240 struct device *dev;
241
242 dev = container_of(kobj, struct device, kobj);
243 /* This is the precedence defined by linux. */
244 if (dev->release)
245 dev->release(dev);
246 else if (dev->class && dev->class->dev_release)
247 dev->class->dev_release(dev);
248 }
249
250 static ssize_t
linux_dev_show(struct kobject * kobj,struct attribute * attr,char * buf)251 linux_dev_show(struct kobject *kobj, struct attribute *attr, char *buf)
252 {
253 struct device_attribute *dattr;
254 ssize_t error;
255
256 dattr = container_of(attr, struct device_attribute, attr);
257 error = -EIO;
258 if (dattr->show)
259 error = dattr->show(container_of(kobj, struct device, kobj),
260 dattr, buf);
261 return (error);
262 }
263
264 static ssize_t
linux_dev_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)265 linux_dev_store(struct kobject *kobj, struct attribute *attr, const char *buf,
266 size_t count)
267 {
268 struct device_attribute *dattr;
269 ssize_t error;
270
271 dattr = container_of(attr, struct device_attribute, attr);
272 error = -EIO;
273 if (dattr->store)
274 error = dattr->store(container_of(kobj, struct device, kobj),
275 dattr, buf, count);
276 return (error);
277 }
278
279 static const struct sysfs_ops linux_dev_sysfs = {
280 .show = linux_dev_show,
281 .store = linux_dev_store,
282 };
283
284 const struct kobj_type linux_dev_ktype = {
285 .release = linux_dev_release,
286 .sysfs_ops = &linux_dev_sysfs
287 };
288
289 struct device *
device_create(struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,...)290 device_create(struct class *class, struct device *parent, dev_t devt,
291 void *drvdata, const char *fmt, ...)
292 {
293 struct device *dev;
294 va_list args;
295
296 dev = kzalloc(sizeof(*dev), M_WAITOK);
297 dev->parent = parent;
298 dev->class = class;
299 dev->devt = devt;
300 dev->driver_data = drvdata;
301 dev->release = linux_device_release;
302 va_start(args, fmt);
303 kobject_set_name_vargs(&dev->kobj, fmt, args);
304 va_end(args);
305 device_register(dev);
306
307 return (dev);
308 }
309
310 struct device *
device_create_groups_vargs(struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,va_list args)311 device_create_groups_vargs(struct class *class, struct device *parent,
312 dev_t devt, void *drvdata, const struct attribute_group **groups,
313 const char *fmt, va_list args)
314 {
315 struct device *dev = NULL;
316 int retval = -ENODEV;
317
318 if (class == NULL || IS_ERR(class))
319 goto error;
320
321 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
322 if (!dev) {
323 retval = -ENOMEM;
324 goto error;
325 }
326
327 dev->devt = devt;
328 dev->class = class;
329 dev->parent = parent;
330 dev->groups = groups;
331 dev->release = device_create_release;
332 /* device_initialize() needs the class and parent to be set */
333 device_initialize(dev);
334 dev_set_drvdata(dev, drvdata);
335
336 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
337 if (retval)
338 goto error;
339
340 retval = device_add(dev);
341 if (retval)
342 goto error;
343
344 return dev;
345
346 error:
347 put_device(dev);
348 return ERR_PTR(retval);
349 }
350
351 struct class *
lkpi_class_create(const char * name)352 lkpi_class_create(const char *name)
353 {
354 struct class *class;
355 int error;
356
357 class = kzalloc(sizeof(*class), M_WAITOK);
358 class->name = name;
359 class->class_release = linux_class_kfree;
360 error = class_register(class);
361 if (error) {
362 kfree(class);
363 return (NULL);
364 }
365
366 return (class);
367 }
368
369 static void
linux_kq_lock(void * arg)370 linux_kq_lock(void *arg)
371 {
372 spinlock_t *s = arg;
373
374 spin_lock(s);
375 }
376 static void
linux_kq_unlock(void * arg)377 linux_kq_unlock(void *arg)
378 {
379 spinlock_t *s = arg;
380
381 spin_unlock(s);
382 }
383
384 static void
linux_kq_assert_lock(void * arg,int what)385 linux_kq_assert_lock(void *arg, int what)
386 {
387 #ifdef INVARIANTS
388 spinlock_t *s = arg;
389
390 if (what == LA_LOCKED)
391 mtx_assert(s, MA_OWNED);
392 else
393 mtx_assert(s, MA_NOTOWNED);
394 #endif
395 }
396
397 static void
398 linux_file_kqfilter_poll(struct linux_file *, int);
399
400 struct linux_file *
linux_file_alloc(void)401 linux_file_alloc(void)
402 {
403 struct linux_file *filp;
404
405 filp = kzalloc(sizeof(*filp), GFP_KERNEL);
406
407 /* set initial refcount */
408 filp->f_count = 1;
409
410 /* setup fields needed by kqueue support */
411 spin_lock_init(&filp->f_kqlock);
412 knlist_init(&filp->f_selinfo.si_note, &filp->f_kqlock,
413 linux_kq_lock, linux_kq_unlock, linux_kq_assert_lock);
414
415 return (filp);
416 }
417
418 void
linux_file_free(struct linux_file * filp)419 linux_file_free(struct linux_file *filp)
420 {
421 if (filp->_file == NULL) {
422 if (filp->f_op != NULL && filp->f_op->release != NULL)
423 filp->f_op->release(filp->f_vnode, filp);
424 if (filp->f_shmem != NULL)
425 vm_object_deallocate(filp->f_shmem);
426 kfree_rcu(filp, rcu);
427 } else {
428 /*
429 * The close method of the character device or file
430 * will free the linux_file structure:
431 */
432 _fdrop(filp->_file, curthread);
433 }
434 }
435
436 struct linux_cdev *
cdev_alloc(void)437 cdev_alloc(void)
438 {
439 struct linux_cdev *cdev;
440
441 cdev = kzalloc(sizeof(struct linux_cdev), M_WAITOK);
442 kobject_init(&cdev->kobj, &linux_cdev_ktype);
443 cdev->refs = 1;
444 return (cdev);
445 }
446
447 static int
linux_cdev_pager_fault(vm_object_t vm_obj,vm_ooffset_t offset,int prot,vm_page_t * mres)448 linux_cdev_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot,
449 vm_page_t *mres)
450 {
451 struct vm_area_struct *vmap;
452
453 vmap = linux_cdev_handle_find(vm_obj->handle);
454
455 MPASS(vmap != NULL);
456 MPASS(vmap->vm_private_data == vm_obj->handle);
457
458 if (likely(vmap->vm_ops != NULL && offset < vmap->vm_len)) {
459 vm_paddr_t paddr = IDX_TO_OFF(vmap->vm_pfn) + offset;
460 vm_page_t page;
461
462 if (((*mres)->flags & PG_FICTITIOUS) != 0) {
463 /*
464 * If the passed in result page is a fake
465 * page, update it with the new physical
466 * address.
467 */
468 page = *mres;
469 vm_page_updatefake(page, paddr, vm_obj->memattr);
470 } else {
471 /*
472 * Replace the passed in "mres" page with our
473 * own fake page and free up the all of the
474 * original pages.
475 */
476 VM_OBJECT_WUNLOCK(vm_obj);
477 page = vm_page_getfake(paddr, vm_obj->memattr);
478 VM_OBJECT_WLOCK(vm_obj);
479
480 vm_page_replace(page, vm_obj, (*mres)->pindex, *mres);
481 *mres = page;
482 }
483 vm_page_valid(page);
484 return (VM_PAGER_OK);
485 }
486 return (VM_PAGER_FAIL);
487 }
488
489 static int
linux_cdev_pager_populate(vm_object_t vm_obj,vm_pindex_t pidx,int fault_type,vm_prot_t max_prot,vm_pindex_t * first,vm_pindex_t * last)490 linux_cdev_pager_populate(vm_object_t vm_obj, vm_pindex_t pidx, int fault_type,
491 vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last)
492 {
493 struct vm_area_struct *vmap;
494 int err;
495
496 /* get VM area structure */
497 vmap = linux_cdev_handle_find(vm_obj->handle);
498 MPASS(vmap != NULL);
499 MPASS(vmap->vm_private_data == vm_obj->handle);
500
501 VM_OBJECT_WUNLOCK(vm_obj);
502
503 linux_set_current(curthread);
504
505 down_write(&vmap->vm_mm->mmap_sem);
506 if (unlikely(vmap->vm_ops == NULL)) {
507 err = VM_FAULT_SIGBUS;
508 } else {
509 struct vm_fault vmf;
510
511 /* fill out VM fault structure */
512 vmf.virtual_address = (void *)(uintptr_t)IDX_TO_OFF(pidx);
513 vmf.flags = (fault_type & VM_PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
514 vmf.pgoff = 0;
515 vmf.page = NULL;
516 vmf.vma = vmap;
517
518 vmap->vm_pfn_count = 0;
519 vmap->vm_pfn_pcount = &vmap->vm_pfn_count;
520 vmap->vm_obj = vm_obj;
521
522 err = vmap->vm_ops->fault(&vmf);
523
524 while (vmap->vm_pfn_count == 0 && err == VM_FAULT_NOPAGE) {
525 kern_yield(PRI_USER);
526 err = vmap->vm_ops->fault(&vmf);
527 }
528 }
529
530 /* translate return code */
531 switch (err) {
532 case VM_FAULT_OOM:
533 err = VM_PAGER_AGAIN;
534 break;
535 case VM_FAULT_SIGBUS:
536 err = VM_PAGER_BAD;
537 break;
538 case VM_FAULT_NOPAGE:
539 /*
540 * By contract the fault handler will return having
541 * busied all the pages itself. If pidx is already
542 * found in the object, it will simply xbusy the first
543 * page and return with vm_pfn_count set to 1.
544 */
545 *first = vmap->vm_pfn_first;
546 *last = *first + vmap->vm_pfn_count - 1;
547 err = VM_PAGER_OK;
548 break;
549 default:
550 err = VM_PAGER_ERROR;
551 break;
552 }
553 up_write(&vmap->vm_mm->mmap_sem);
554 VM_OBJECT_WLOCK(vm_obj);
555 return (err);
556 }
557
558 static struct rwlock linux_vma_lock;
559 static TAILQ_HEAD(, vm_area_struct) linux_vma_head =
560 TAILQ_HEAD_INITIALIZER(linux_vma_head);
561
562 static void
linux_cdev_handle_free(struct vm_area_struct * vmap)563 linux_cdev_handle_free(struct vm_area_struct *vmap)
564 {
565 /* Drop reference on vm_file */
566 if (vmap->vm_file != NULL)
567 fput(vmap->vm_file);
568
569 /* Drop reference on mm_struct */
570 mmput(vmap->vm_mm);
571
572 kfree(vmap);
573 }
574
575 static void
linux_cdev_handle_remove(struct vm_area_struct * vmap)576 linux_cdev_handle_remove(struct vm_area_struct *vmap)
577 {
578 rw_wlock(&linux_vma_lock);
579 TAILQ_REMOVE(&linux_vma_head, vmap, vm_entry);
580 rw_wunlock(&linux_vma_lock);
581 }
582
583 static struct vm_area_struct *
linux_cdev_handle_find(void * handle)584 linux_cdev_handle_find(void *handle)
585 {
586 struct vm_area_struct *vmap;
587
588 rw_rlock(&linux_vma_lock);
589 TAILQ_FOREACH(vmap, &linux_vma_head, vm_entry) {
590 if (vmap->vm_private_data == handle)
591 break;
592 }
593 rw_runlock(&linux_vma_lock);
594 return (vmap);
595 }
596
597 static int
linux_cdev_pager_ctor(void * handle,vm_ooffset_t size,vm_prot_t prot,vm_ooffset_t foff,struct ucred * cred,u_short * color)598 linux_cdev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
599 vm_ooffset_t foff, struct ucred *cred, u_short *color)
600 {
601
602 MPASS(linux_cdev_handle_find(handle) != NULL);
603 *color = 0;
604 return (0);
605 }
606
607 static void
linux_cdev_pager_dtor(void * handle)608 linux_cdev_pager_dtor(void *handle)
609 {
610 const struct vm_operations_struct *vm_ops;
611 struct vm_area_struct *vmap;
612
613 vmap = linux_cdev_handle_find(handle);
614 MPASS(vmap != NULL);
615
616 /*
617 * Remove handle before calling close operation to prevent
618 * other threads from reusing the handle pointer.
619 */
620 linux_cdev_handle_remove(vmap);
621
622 down_write(&vmap->vm_mm->mmap_sem);
623 vm_ops = vmap->vm_ops;
624 if (likely(vm_ops != NULL))
625 vm_ops->close(vmap);
626 up_write(&vmap->vm_mm->mmap_sem);
627
628 linux_cdev_handle_free(vmap);
629 }
630
631 static struct cdev_pager_ops linux_cdev_pager_ops[2] = {
632 {
633 /* OBJT_MGTDEVICE */
634 .cdev_pg_populate = linux_cdev_pager_populate,
635 .cdev_pg_ctor = linux_cdev_pager_ctor,
636 .cdev_pg_dtor = linux_cdev_pager_dtor
637 },
638 {
639 /* OBJT_DEVICE */
640 .cdev_pg_fault = linux_cdev_pager_fault,
641 .cdev_pg_ctor = linux_cdev_pager_ctor,
642 .cdev_pg_dtor = linux_cdev_pager_dtor
643 },
644 };
645
646 int
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)647 zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
648 unsigned long size)
649 {
650 struct pctrie_iter pages;
651 vm_object_t obj;
652 vm_page_t m;
653
654 obj = vma->vm_obj;
655 if (obj == NULL || (obj->flags & OBJ_UNMANAGED) != 0)
656 return (-ENOTSUP);
657 VM_OBJECT_RLOCK(obj);
658 vm_page_iter_limit_init(&pages, obj, OFF_TO_IDX(address + size));
659 VM_RADIX_FOREACH_FROM(m, &pages, OFF_TO_IDX(address))
660 pmap_remove_all(m);
661 VM_OBJECT_RUNLOCK(obj);
662 return (0);
663 }
664
665 void
vma_set_file(struct vm_area_struct * vma,struct linux_file * file)666 vma_set_file(struct vm_area_struct *vma, struct linux_file *file)
667 {
668 struct linux_file *tmp;
669
670 /* Changing an anonymous vma with this is illegal */
671 get_file(file);
672 tmp = vma->vm_file;
673 vma->vm_file = file;
674 fput(tmp);
675 }
676
677 static struct file_operations dummy_ldev_ops = {
678 /* XXXKIB */
679 };
680
681 static struct linux_cdev dummy_ldev = {
682 .ops = &dummy_ldev_ops,
683 };
684
685 #define LDEV_SI_DTR 0x0001
686 #define LDEV_SI_REF 0x0002
687
688 static void
linux_get_fop(struct linux_file * filp,const struct file_operations ** fop,struct linux_cdev ** dev)689 linux_get_fop(struct linux_file *filp, const struct file_operations **fop,
690 struct linux_cdev **dev)
691 {
692 struct linux_cdev *ldev;
693 u_int siref;
694
695 ldev = filp->f_cdev;
696 *fop = filp->f_op;
697 if (ldev != NULL) {
698 if (ldev->kobj.ktype == &linux_cdev_static_ktype) {
699 refcount_acquire(&ldev->refs);
700 } else {
701 for (siref = ldev->siref;;) {
702 if ((siref & LDEV_SI_DTR) != 0) {
703 ldev = &dummy_ldev;
704 *fop = ldev->ops;
705 siref = ldev->siref;
706 MPASS((ldev->siref & LDEV_SI_DTR) == 0);
707 } else if (atomic_fcmpset_int(&ldev->siref,
708 &siref, siref + LDEV_SI_REF)) {
709 break;
710 }
711 }
712 }
713 }
714 *dev = ldev;
715 }
716
717 static void
linux_drop_fop(struct linux_cdev * ldev)718 linux_drop_fop(struct linux_cdev *ldev)
719 {
720
721 if (ldev == NULL)
722 return;
723 if (ldev->kobj.ktype == &linux_cdev_static_ktype) {
724 linux_cdev_deref(ldev);
725 } else {
726 MPASS(ldev->kobj.ktype == &linux_cdev_ktype);
727 MPASS((ldev->siref & ~LDEV_SI_DTR) != 0);
728 atomic_subtract_int(&ldev->siref, LDEV_SI_REF);
729 }
730 }
731
732 #define OPW(fp,td,code) ({ \
733 struct file *__fpop; \
734 __typeof(code) __retval; \
735 \
736 __fpop = (td)->td_fpop; \
737 (td)->td_fpop = (fp); \
738 __retval = (code); \
739 (td)->td_fpop = __fpop; \
740 __retval; \
741 })
742
743 static int
linux_dev_fdopen(struct cdev * dev,int fflags,struct thread * td,struct file * file)744 linux_dev_fdopen(struct cdev *dev, int fflags, struct thread *td,
745 struct file *file)
746 {
747 struct linux_cdev *ldev;
748 struct linux_file *filp;
749 const struct file_operations *fop;
750 int error;
751
752 ldev = dev->si_drv1;
753
754 filp = linux_file_alloc();
755 filp->f_dentry = &filp->f_dentry_store;
756 filp->f_op = ldev->ops;
757 filp->f_mode = file->f_flag;
758 filp->f_flags = file->f_flag;
759 filp->f_vnode = file->f_vnode;
760 filp->_file = file;
761 refcount_acquire(&ldev->refs);
762 filp->f_cdev = ldev;
763
764 linux_set_current(td);
765 linux_get_fop(filp, &fop, &ldev);
766
767 if (fop->open != NULL) {
768 error = -fop->open(file->f_vnode, filp);
769 if (error != 0) {
770 linux_drop_fop(ldev);
771 linux_cdev_deref(filp->f_cdev);
772 kfree(filp);
773 return (error);
774 }
775 }
776
777 /* hold on to the vnode - used for fstat() */
778 vref(filp->f_vnode);
779
780 /* release the file from devfs */
781 finit(file, filp->f_mode, DTYPE_DEV, filp, &linuxfileops);
782 linux_drop_fop(ldev);
783 return (ENXIO);
784 }
785
786 #define LINUX_IOCTL_MIN_PTR 0x10000UL
787 #define LINUX_IOCTL_MAX_PTR (LINUX_IOCTL_MIN_PTR + IOCPARM_MAX)
788
789 static inline int
linux_remap_address(void ** uaddr,size_t len)790 linux_remap_address(void **uaddr, size_t len)
791 {
792 uintptr_t uaddr_val = (uintptr_t)(*uaddr);
793
794 if (unlikely(uaddr_val >= LINUX_IOCTL_MIN_PTR &&
795 uaddr_val < LINUX_IOCTL_MAX_PTR)) {
796 struct task_struct *pts = current;
797 if (pts == NULL) {
798 *uaddr = NULL;
799 return (1);
800 }
801
802 /* compute data offset */
803 uaddr_val -= LINUX_IOCTL_MIN_PTR;
804
805 /* check that length is within bounds */
806 if ((len > IOCPARM_MAX) ||
807 (uaddr_val + len) > pts->bsd_ioctl_len) {
808 *uaddr = NULL;
809 return (1);
810 }
811
812 /* re-add kernel buffer address */
813 uaddr_val += (uintptr_t)pts->bsd_ioctl_data;
814
815 /* update address location */
816 *uaddr = (void *)uaddr_val;
817 return (1);
818 }
819 return (0);
820 }
821
822 int
linux_copyin(const void * uaddr,void * kaddr,size_t len)823 linux_copyin(const void *uaddr, void *kaddr, size_t len)
824 {
825 if (linux_remap_address(__DECONST(void **, &uaddr), len)) {
826 if (uaddr == NULL)
827 return (-EFAULT);
828 memcpy(kaddr, uaddr, len);
829 return (0);
830 }
831 return (-copyin(uaddr, kaddr, len));
832 }
833
834 int
linux_copyout(const void * kaddr,void * uaddr,size_t len)835 linux_copyout(const void *kaddr, void *uaddr, size_t len)
836 {
837 if (linux_remap_address(&uaddr, len)) {
838 if (uaddr == NULL)
839 return (-EFAULT);
840 memcpy(uaddr, kaddr, len);
841 return (0);
842 }
843 return (-copyout(kaddr, uaddr, len));
844 }
845
846 size_t
linux_clear_user(void * _uaddr,size_t _len)847 linux_clear_user(void *_uaddr, size_t _len)
848 {
849 uint8_t *uaddr = _uaddr;
850 size_t len = _len;
851
852 /* make sure uaddr is aligned before going into the fast loop */
853 while (((uintptr_t)uaddr & 7) != 0 && len > 7) {
854 if (subyte(uaddr, 0))
855 return (_len);
856 uaddr++;
857 len--;
858 }
859
860 /* zero 8 bytes at a time */
861 while (len > 7) {
862 #ifdef __LP64__
863 if (suword64(uaddr, 0))
864 return (_len);
865 #else
866 if (suword32(uaddr, 0))
867 return (_len);
868 if (suword32(uaddr + 4, 0))
869 return (_len);
870 #endif
871 uaddr += 8;
872 len -= 8;
873 }
874
875 /* zero fill end, if any */
876 while (len > 0) {
877 if (subyte(uaddr, 0))
878 return (_len);
879 uaddr++;
880 len--;
881 }
882 return (0);
883 }
884
885 int
linux_access_ok(const void * uaddr,size_t len)886 linux_access_ok(const void *uaddr, size_t len)
887 {
888 uintptr_t saddr;
889 uintptr_t eaddr;
890
891 /* get start and end address */
892 saddr = (uintptr_t)uaddr;
893 eaddr = (uintptr_t)uaddr + len;
894
895 /* verify addresses are valid for userspace */
896 return ((saddr == eaddr) ||
897 (eaddr > saddr && eaddr <= VM_MAXUSER_ADDRESS));
898 }
899
900 /*
901 * This function should return either EINTR or ERESTART depending on
902 * the signal type sent to this thread:
903 */
904 static int
linux_get_error(struct task_struct * task,int error)905 linux_get_error(struct task_struct *task, int error)
906 {
907 /* check for signal type interrupt code */
908 if (error == EINTR || error == ERESTARTSYS || error == ERESTART) {
909 error = -linux_schedule_get_interrupt_value(task);
910 if (error == 0)
911 error = EINTR;
912 }
913 return (error);
914 }
915
916 static int
linux_file_ioctl_sub(struct file * fp,struct linux_file * filp,const struct file_operations * fop,u_long cmd,caddr_t data,struct thread * td)917 linux_file_ioctl_sub(struct file *fp, struct linux_file *filp,
918 const struct file_operations *fop, u_long cmd, caddr_t data,
919 struct thread *td)
920 {
921 struct task_struct *task = current;
922 unsigned size;
923 int error;
924
925 size = IOCPARM_LEN(cmd);
926 /* refer to logic in sys_ioctl() */
927 if (size > 0) {
928 /*
929 * Setup hint for linux_copyin() and linux_copyout().
930 *
931 * Background: Linux code expects a user-space address
932 * while FreeBSD supplies a kernel-space address.
933 */
934 task->bsd_ioctl_data = data;
935 task->bsd_ioctl_len = size;
936 data = (void *)LINUX_IOCTL_MIN_PTR;
937 } else {
938 /* fetch user-space pointer */
939 data = *(void **)data;
940 }
941 #ifdef COMPAT_FREEBSD32
942 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
943 /* try the compat IOCTL handler first */
944 if (fop->compat_ioctl != NULL) {
945 error = -OPW(fp, td, fop->compat_ioctl(filp,
946 cmd, (u_long)data));
947 } else {
948 error = ENOTTY;
949 }
950
951 /* fallback to the regular IOCTL handler, if any */
952 if (error == ENOTTY && fop->unlocked_ioctl != NULL) {
953 error = -OPW(fp, td, fop->unlocked_ioctl(filp,
954 cmd, (u_long)data));
955 }
956 } else
957 #endif
958 {
959 if (fop->unlocked_ioctl != NULL) {
960 error = -OPW(fp, td, fop->unlocked_ioctl(filp,
961 cmd, (u_long)data));
962 } else {
963 error = ENOTTY;
964 }
965 }
966 if (size > 0) {
967 task->bsd_ioctl_data = NULL;
968 task->bsd_ioctl_len = 0;
969 }
970
971 if (error == EWOULDBLOCK) {
972 /* update kqfilter status, if any */
973 linux_file_kqfilter_poll(filp,
974 LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
975 } else {
976 error = linux_get_error(task, error);
977 }
978 return (error);
979 }
980
981 #define LINUX_POLL_TABLE_NORMAL ((poll_table *)1)
982
983 /*
984 * This function atomically updates the poll wakeup state and returns
985 * the previous state at the time of update.
986 */
987 static uint8_t
linux_poll_wakeup_state(atomic_t * v,const uint8_t * pstate)988 linux_poll_wakeup_state(atomic_t *v, const uint8_t *pstate)
989 {
990 int c, old;
991
992 c = v->counter;
993
994 while ((old = atomic_cmpxchg(v, c, pstate[c])) != c)
995 c = old;
996
997 return (c);
998 }
999
1000 static int
linux_poll_wakeup_callback(wait_queue_t * wq,unsigned int wq_state,int flags,void * key)1001 linux_poll_wakeup_callback(wait_queue_t *wq, unsigned int wq_state, int flags, void *key)
1002 {
1003 static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1004 [LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */
1005 [LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1006 [LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_READY,
1007 [LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_READY, /* NOP */
1008 };
1009 struct linux_file *filp = container_of(wq, struct linux_file, f_wait_queue.wq);
1010
1011 switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1012 case LINUX_FWQ_STATE_QUEUED:
1013 linux_poll_wakeup(filp);
1014 return (1);
1015 default:
1016 return (0);
1017 }
1018 }
1019
1020 void
linux_poll_wait(struct linux_file * filp,wait_queue_head_t * wqh,poll_table * p)1021 linux_poll_wait(struct linux_file *filp, wait_queue_head_t *wqh, poll_table *p)
1022 {
1023 static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1024 [LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_NOT_READY,
1025 [LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1026 [LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_QUEUED, /* NOP */
1027 [LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_QUEUED,
1028 };
1029
1030 /* check if we are called inside the select system call */
1031 if (p == LINUX_POLL_TABLE_NORMAL)
1032 selrecord(curthread, &filp->f_selinfo);
1033
1034 switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1035 case LINUX_FWQ_STATE_INIT:
1036 /* NOTE: file handles can only belong to one wait-queue */
1037 filp->f_wait_queue.wqh = wqh;
1038 filp->f_wait_queue.wq.func = &linux_poll_wakeup_callback;
1039 add_wait_queue(wqh, &filp->f_wait_queue.wq);
1040 atomic_set(&filp->f_wait_queue.state, LINUX_FWQ_STATE_QUEUED);
1041 break;
1042 default:
1043 break;
1044 }
1045 }
1046
1047 static void
linux_poll_wait_dequeue(struct linux_file * filp)1048 linux_poll_wait_dequeue(struct linux_file *filp)
1049 {
1050 static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1051 [LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */
1052 [LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_INIT,
1053 [LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_INIT,
1054 [LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_INIT,
1055 };
1056
1057 seldrain(&filp->f_selinfo);
1058
1059 switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1060 case LINUX_FWQ_STATE_NOT_READY:
1061 case LINUX_FWQ_STATE_QUEUED:
1062 case LINUX_FWQ_STATE_READY:
1063 remove_wait_queue(filp->f_wait_queue.wqh, &filp->f_wait_queue.wq);
1064 break;
1065 default:
1066 break;
1067 }
1068 }
1069
1070 void
linux_poll_wakeup(struct linux_file * filp)1071 linux_poll_wakeup(struct linux_file *filp)
1072 {
1073 /* this function should be NULL-safe */
1074 if (filp == NULL)
1075 return;
1076
1077 selwakeup(&filp->f_selinfo);
1078
1079 spin_lock(&filp->f_kqlock);
1080 filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ |
1081 LINUX_KQ_FLAG_NEED_WRITE;
1082
1083 /* make sure the "knote" gets woken up */
1084 KNOTE_LOCKED(&filp->f_selinfo.si_note, 1);
1085 spin_unlock(&filp->f_kqlock);
1086 }
1087
1088 static struct linux_file *
__get_file_rcu(struct linux_file ** f)1089 __get_file_rcu(struct linux_file **f)
1090 {
1091 struct linux_file *file1, *file2;
1092
1093 file1 = READ_ONCE(*f);
1094 if (file1 == NULL)
1095 return (NULL);
1096
1097 if (!refcount_acquire_if_not_zero(
1098 file1->_file == NULL ? &file1->f_count : &file1->_file->f_count))
1099 return (ERR_PTR(-EAGAIN));
1100
1101 file2 = READ_ONCE(*f);
1102 if (file2 == file1)
1103 return (file2);
1104
1105 fput(file1);
1106 return (ERR_PTR(-EAGAIN));
1107 }
1108
1109 struct linux_file *
linux_get_file_rcu(struct linux_file ** f)1110 linux_get_file_rcu(struct linux_file **f)
1111 {
1112 struct linux_file *file1;
1113
1114 for (;;) {
1115 file1 = __get_file_rcu(f);
1116 if (file1 == NULL)
1117 return (NULL);
1118
1119 if (IS_ERR(file1))
1120 continue;
1121
1122 return (file1);
1123 }
1124 }
1125
1126 struct linux_file *
get_file_active(struct linux_file ** f)1127 get_file_active(struct linux_file **f)
1128 {
1129 struct linux_file *file1;
1130
1131 rcu_read_lock();
1132 file1 = __get_file_rcu(f);
1133 rcu_read_unlock();
1134 if (IS_ERR(file1))
1135 file1 = NULL;
1136
1137 return (file1);
1138 }
1139
1140 static void
linux_file_kqfilter_detach(struct knote * kn)1141 linux_file_kqfilter_detach(struct knote *kn)
1142 {
1143 struct linux_file *filp = kn->kn_hook;
1144
1145 spin_lock(&filp->f_kqlock);
1146 knlist_remove(&filp->f_selinfo.si_note, kn, 1);
1147 spin_unlock(&filp->f_kqlock);
1148 }
1149
1150 static int
linux_file_kqfilter_read_event(struct knote * kn,long hint)1151 linux_file_kqfilter_read_event(struct knote *kn, long hint)
1152 {
1153 struct linux_file *filp = kn->kn_hook;
1154
1155 mtx_assert(&filp->f_kqlock, MA_OWNED);
1156
1157 return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_READ) ? 1 : 0);
1158 }
1159
1160 static int
linux_file_kqfilter_write_event(struct knote * kn,long hint)1161 linux_file_kqfilter_write_event(struct knote *kn, long hint)
1162 {
1163 struct linux_file *filp = kn->kn_hook;
1164
1165 mtx_assert(&filp->f_kqlock, MA_OWNED);
1166
1167 return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_WRITE) ? 1 : 0);
1168 }
1169
1170 static const struct filterops linux_dev_kqfiltops_read = {
1171 .f_isfd = 1,
1172 .f_detach = linux_file_kqfilter_detach,
1173 .f_event = linux_file_kqfilter_read_event,
1174 .f_copy = knote_triv_copy,
1175 };
1176
1177 static const struct filterops linux_dev_kqfiltops_write = {
1178 .f_isfd = 1,
1179 .f_detach = linux_file_kqfilter_detach,
1180 .f_event = linux_file_kqfilter_write_event,
1181 .f_copy = knote_triv_copy,
1182 };
1183
1184 static void
linux_file_kqfilter_poll(struct linux_file * filp,int kqflags)1185 linux_file_kqfilter_poll(struct linux_file *filp, int kqflags)
1186 {
1187 struct thread *td;
1188 const struct file_operations *fop;
1189 struct linux_cdev *ldev;
1190 int temp;
1191
1192 if ((filp->f_kqflags & kqflags) == 0)
1193 return;
1194
1195 td = curthread;
1196
1197 linux_get_fop(filp, &fop, &ldev);
1198 /* get the latest polling state */
1199 temp = OPW(filp->_file, td, fop->poll(filp, NULL));
1200 linux_drop_fop(ldev);
1201
1202 spin_lock(&filp->f_kqlock);
1203 /* clear kqflags */
1204 filp->f_kqflags &= ~(LINUX_KQ_FLAG_NEED_READ |
1205 LINUX_KQ_FLAG_NEED_WRITE);
1206 /* update kqflags */
1207 if ((temp & (POLLIN | POLLOUT)) != 0) {
1208 if ((temp & POLLIN) != 0)
1209 filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ;
1210 if ((temp & POLLOUT) != 0)
1211 filp->f_kqflags |= LINUX_KQ_FLAG_NEED_WRITE;
1212
1213 /* make sure the "knote" gets woken up */
1214 KNOTE_LOCKED(&filp->f_selinfo.si_note, 0);
1215 }
1216 spin_unlock(&filp->f_kqlock);
1217 }
1218
1219 static int
linux_file_kqfilter(struct file * file,struct knote * kn)1220 linux_file_kqfilter(struct file *file, struct knote *kn)
1221 {
1222 struct linux_file *filp;
1223 struct thread *td;
1224 int error;
1225
1226 td = curthread;
1227 filp = (struct linux_file *)file->f_data;
1228 filp->f_flags = file->f_flag;
1229 if (filp->f_op->poll == NULL)
1230 return (EINVAL);
1231
1232 spin_lock(&filp->f_kqlock);
1233 switch (kn->kn_filter) {
1234 case EVFILT_READ:
1235 filp->f_kqflags |= LINUX_KQ_FLAG_HAS_READ;
1236 kn->kn_fop = &linux_dev_kqfiltops_read;
1237 kn->kn_hook = filp;
1238 knlist_add(&filp->f_selinfo.si_note, kn, 1);
1239 error = 0;
1240 break;
1241 case EVFILT_WRITE:
1242 filp->f_kqflags |= LINUX_KQ_FLAG_HAS_WRITE;
1243 kn->kn_fop = &linux_dev_kqfiltops_write;
1244 kn->kn_hook = filp;
1245 knlist_add(&filp->f_selinfo.si_note, kn, 1);
1246 error = 0;
1247 break;
1248 default:
1249 error = EINVAL;
1250 break;
1251 }
1252 spin_unlock(&filp->f_kqlock);
1253
1254 if (error == 0) {
1255 linux_set_current(td);
1256
1257 /* update kqfilter status, if any */
1258 linux_file_kqfilter_poll(filp,
1259 LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
1260 }
1261 return (error);
1262 }
1263
1264 static int
linux_file_mmap_single(struct file * fp,const struct file_operations * fop,vm_ooffset_t * offset,vm_size_t size,struct vm_object ** object,int nprot,bool is_shared,struct thread * td)1265 linux_file_mmap_single(struct file *fp, const struct file_operations *fop,
1266 vm_ooffset_t *offset, vm_size_t size, struct vm_object **object,
1267 int nprot, bool is_shared, struct thread *td)
1268 {
1269 struct task_struct *task;
1270 struct vm_area_struct *vmap;
1271 struct mm_struct *mm;
1272 struct linux_file *filp;
1273 vm_memattr_t attr;
1274 int error;
1275
1276 filp = (struct linux_file *)fp->f_data;
1277 filp->f_flags = fp->f_flag;
1278
1279 if (fop->mmap == NULL)
1280 return (EOPNOTSUPP);
1281
1282 linux_set_current(td);
1283
1284 /*
1285 * The same VM object might be shared by multiple processes
1286 * and the mm_struct is usually freed when a process exits.
1287 *
1288 * The atomic reference below makes sure the mm_struct is
1289 * available as long as the vmap is in the linux_vma_head.
1290 */
1291 task = current;
1292 mm = task->mm;
1293 if (atomic_inc_not_zero(&mm->mm_users) == 0)
1294 return (EINVAL);
1295
1296 vmap = kzalloc(sizeof(*vmap), GFP_KERNEL);
1297 vmap->vm_start = 0;
1298 vmap->vm_end = size;
1299 vmap->vm_pgoff = *offset / PAGE_SIZE;
1300 vmap->vm_pfn = 0;
1301 vmap->vm_flags = vmap->vm_page_prot = (nprot & VM_PROT_ALL);
1302 if (is_shared)
1303 vmap->vm_flags |= VM_SHARED;
1304 vmap->vm_ops = NULL;
1305 vmap->vm_file = get_file(filp);
1306 vmap->vm_mm = mm;
1307
1308 if (unlikely(down_write_killable(&vmap->vm_mm->mmap_sem))) {
1309 error = linux_get_error(task, EINTR);
1310 } else {
1311 error = -OPW(fp, td, fop->mmap(filp, vmap));
1312 error = linux_get_error(task, error);
1313 up_write(&vmap->vm_mm->mmap_sem);
1314 }
1315
1316 if (error != 0) {
1317 linux_cdev_handle_free(vmap);
1318 return (error);
1319 }
1320
1321 attr = pgprot2cachemode(vmap->vm_page_prot);
1322
1323 if (vmap->vm_ops != NULL) {
1324 struct vm_area_struct *ptr;
1325 void *vm_private_data;
1326 bool vm_no_fault;
1327
1328 if (vmap->vm_ops->open == NULL ||
1329 vmap->vm_ops->close == NULL ||
1330 vmap->vm_private_data == NULL) {
1331 /* free allocated VM area struct */
1332 linux_cdev_handle_free(vmap);
1333 return (EINVAL);
1334 }
1335
1336 vm_private_data = vmap->vm_private_data;
1337
1338 rw_wlock(&linux_vma_lock);
1339 TAILQ_FOREACH(ptr, &linux_vma_head, vm_entry) {
1340 if (ptr->vm_private_data == vm_private_data)
1341 break;
1342 }
1343 /* check if there is an existing VM area struct */
1344 if (ptr != NULL) {
1345 /* check if the VM area structure is invalid */
1346 if (ptr->vm_ops == NULL ||
1347 ptr->vm_ops->open == NULL ||
1348 ptr->vm_ops->close == NULL) {
1349 error = ESTALE;
1350 vm_no_fault = 1;
1351 } else {
1352 error = EEXIST;
1353 vm_no_fault = (ptr->vm_ops->fault == NULL);
1354 }
1355 } else {
1356 /* insert VM area structure into list */
1357 TAILQ_INSERT_TAIL(&linux_vma_head, vmap, vm_entry);
1358 error = 0;
1359 vm_no_fault = (vmap->vm_ops->fault == NULL);
1360 }
1361 rw_wunlock(&linux_vma_lock);
1362
1363 if (error != 0) {
1364 /* free allocated VM area struct */
1365 linux_cdev_handle_free(vmap);
1366 /* check for stale VM area struct */
1367 if (error != EEXIST)
1368 return (error);
1369 }
1370
1371 /* check if there is no fault handler */
1372 if (vm_no_fault) {
1373 *object = cdev_pager_allocate(vm_private_data, OBJT_DEVICE,
1374 &linux_cdev_pager_ops[1], size, nprot, *offset,
1375 td->td_ucred);
1376 } else {
1377 *object = cdev_pager_allocate(vm_private_data, OBJT_MGTDEVICE,
1378 &linux_cdev_pager_ops[0], size, nprot, *offset,
1379 td->td_ucred);
1380 }
1381
1382 /* check if allocating the VM object failed */
1383 if (*object == NULL) {
1384 if (error == 0) {
1385 /* remove VM area struct from list */
1386 linux_cdev_handle_remove(vmap);
1387 /* free allocated VM area struct */
1388 linux_cdev_handle_free(vmap);
1389 }
1390 return (EINVAL);
1391 }
1392 } else {
1393 struct sglist *sg;
1394
1395 sg = sglist_alloc(1, M_WAITOK);
1396 sglist_append_phys(sg,
1397 (vm_paddr_t)vmap->vm_pfn << PAGE_SHIFT, vmap->vm_len);
1398
1399 *object = vm_pager_allocate(OBJT_SG, sg, vmap->vm_len,
1400 nprot, 0, td->td_ucred);
1401
1402 linux_cdev_handle_free(vmap);
1403
1404 if (*object == NULL) {
1405 sglist_free(sg);
1406 return (EINVAL);
1407 }
1408 }
1409
1410 if (attr != VM_MEMATTR_DEFAULT) {
1411 VM_OBJECT_WLOCK(*object);
1412 vm_object_set_memattr(*object, attr);
1413 VM_OBJECT_WUNLOCK(*object);
1414 }
1415 *offset = 0;
1416 return (0);
1417 }
1418
1419 struct cdevsw linuxcdevsw = {
1420 .d_version = D_VERSION,
1421 .d_fdopen = linux_dev_fdopen,
1422 .d_name = "lkpidev",
1423 };
1424
1425 static int
linux_file_read(struct file * file,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1426 linux_file_read(struct file *file, struct uio *uio, struct ucred *active_cred,
1427 int flags, struct thread *td)
1428 {
1429 struct linux_file *filp;
1430 const struct file_operations *fop;
1431 struct linux_cdev *ldev;
1432 ssize_t bytes;
1433 int error;
1434
1435 error = 0;
1436 filp = (struct linux_file *)file->f_data;
1437 filp->f_flags = file->f_flag;
1438 /* XXX no support for I/O vectors currently */
1439 if (uio->uio_iovcnt != 1)
1440 return (EOPNOTSUPP);
1441 if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1442 return (EINVAL);
1443 linux_set_current(td);
1444 linux_get_fop(filp, &fop, &ldev);
1445 if (fop->read != NULL) {
1446 bytes = OPW(file, td, fop->read(filp,
1447 uio->uio_iov->iov_base,
1448 uio->uio_iov->iov_len, &uio->uio_offset));
1449 if (bytes >= 0) {
1450 uio->uio_iov->iov_base =
1451 ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1452 uio->uio_iov->iov_len -= bytes;
1453 uio->uio_resid -= bytes;
1454 } else {
1455 error = linux_get_error(current, -bytes);
1456 }
1457 } else
1458 error = ENXIO;
1459
1460 /* update kqfilter status, if any */
1461 linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_READ);
1462 linux_drop_fop(ldev);
1463
1464 return (error);
1465 }
1466
1467 static int
linux_file_write(struct file * file,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1468 linux_file_write(struct file *file, struct uio *uio, struct ucred *active_cred,
1469 int flags, struct thread *td)
1470 {
1471 struct linux_file *filp;
1472 const struct file_operations *fop;
1473 struct linux_cdev *ldev;
1474 ssize_t bytes;
1475 int error;
1476
1477 filp = (struct linux_file *)file->f_data;
1478 filp->f_flags = file->f_flag;
1479 /* XXX no support for I/O vectors currently */
1480 if (uio->uio_iovcnt != 1)
1481 return (EOPNOTSUPP);
1482 if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1483 return (EINVAL);
1484 linux_set_current(td);
1485 linux_get_fop(filp, &fop, &ldev);
1486 if (fop->write != NULL) {
1487 bytes = OPW(file, td, fop->write(filp,
1488 uio->uio_iov->iov_base,
1489 uio->uio_iov->iov_len, &uio->uio_offset));
1490 if (bytes >= 0) {
1491 uio->uio_iov->iov_base =
1492 ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1493 uio->uio_iov->iov_len -= bytes;
1494 uio->uio_resid -= bytes;
1495 error = 0;
1496 } else {
1497 error = linux_get_error(current, -bytes);
1498 }
1499 } else
1500 error = ENXIO;
1501
1502 /* update kqfilter status, if any */
1503 linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_WRITE);
1504
1505 linux_drop_fop(ldev);
1506
1507 return (error);
1508 }
1509
1510 static int
linux_file_poll(struct file * file,int events,struct ucred * active_cred,struct thread * td)1511 linux_file_poll(struct file *file, int events, struct ucred *active_cred,
1512 struct thread *td)
1513 {
1514 struct linux_file *filp;
1515 const struct file_operations *fop;
1516 struct linux_cdev *ldev;
1517 int revents;
1518
1519 filp = (struct linux_file *)file->f_data;
1520 filp->f_flags = file->f_flag;
1521 linux_set_current(td);
1522 linux_get_fop(filp, &fop, &ldev);
1523 if (fop->poll != NULL) {
1524 revents = OPW(file, td, fop->poll(filp,
1525 LINUX_POLL_TABLE_NORMAL)) & events;
1526 } else {
1527 revents = 0;
1528 }
1529 linux_drop_fop(ldev);
1530 return (revents);
1531 }
1532
1533 static int
linux_file_close(struct file * file,struct thread * td)1534 linux_file_close(struct file *file, struct thread *td)
1535 {
1536 struct linux_file *filp;
1537 int (*release)(struct inode *, struct linux_file *);
1538 const struct file_operations *fop;
1539 struct linux_cdev *ldev;
1540 int error;
1541
1542 filp = (struct linux_file *)file->f_data;
1543
1544 KASSERT(file_count(filp) == 0,
1545 ("File refcount(%d) is not zero", file_count(filp)));
1546
1547 if (td == NULL)
1548 td = curthread;
1549
1550 error = 0;
1551 filp->f_flags = file->f_flag;
1552 linux_set_current(td);
1553 linux_poll_wait_dequeue(filp);
1554 linux_get_fop(filp, &fop, &ldev);
1555 /*
1556 * Always use the real release function, if any, to avoid
1557 * leaking device resources:
1558 */
1559 release = filp->f_op->release;
1560 if (release != NULL)
1561 error = -OPW(file, td, release(filp->f_vnode, filp));
1562 funsetown(&filp->f_sigio);
1563 if (filp->f_vnode != NULL)
1564 vrele(filp->f_vnode);
1565 linux_drop_fop(ldev);
1566 ldev = filp->f_cdev;
1567 if (ldev != NULL)
1568 linux_cdev_deref(ldev);
1569 linux_synchronize_rcu(RCU_TYPE_REGULAR);
1570 kfree(filp);
1571
1572 return (error);
1573 }
1574
1575 static int
linux_file_ioctl(struct file * fp,u_long cmd,void * data,struct ucred * cred,struct thread * td)1576 linux_file_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *cred,
1577 struct thread *td)
1578 {
1579 struct linux_file *filp;
1580 const struct file_operations *fop;
1581 struct linux_cdev *ldev;
1582 struct fiodgname_arg *fgn;
1583 const char *p;
1584 int error, i;
1585
1586 error = 0;
1587 filp = (struct linux_file *)fp->f_data;
1588 filp->f_flags = fp->f_flag;
1589 linux_get_fop(filp, &fop, &ldev);
1590
1591 linux_set_current(td);
1592 switch (cmd) {
1593 case FIONBIO:
1594 break;
1595 case FIOASYNC:
1596 if (fop->fasync == NULL)
1597 break;
1598 error = -OPW(fp, td, fop->fasync(0, filp, fp->f_flag & FASYNC));
1599 break;
1600 case FIOSETOWN:
1601 error = fsetown(*(int *)data, &filp->f_sigio);
1602 if (error == 0) {
1603 if (fop->fasync == NULL)
1604 break;
1605 error = -OPW(fp, td, fop->fasync(0, filp,
1606 fp->f_flag & FASYNC));
1607 }
1608 break;
1609 case FIOGETOWN:
1610 *(int *)data = fgetown(&filp->f_sigio);
1611 break;
1612 case FIODGNAME:
1613 #ifdef COMPAT_FREEBSD32
1614 case FIODGNAME_32:
1615 #endif
1616 if (filp->f_cdev == NULL || filp->f_cdev->cdev == NULL) {
1617 error = ENXIO;
1618 break;
1619 }
1620 fgn = data;
1621 p = devtoname(filp->f_cdev->cdev);
1622 i = strlen(p) + 1;
1623 if (i > fgn->len) {
1624 error = EINVAL;
1625 break;
1626 }
1627 error = copyout(p, fiodgname_buf_get_ptr(fgn, cmd), i);
1628 break;
1629 default:
1630 error = linux_file_ioctl_sub(fp, filp, fop, cmd, data, td);
1631 break;
1632 }
1633 linux_drop_fop(ldev);
1634 return (error);
1635 }
1636
1637 static int
linux_file_mmap_sub(struct thread * td,vm_size_t objsize,vm_prot_t prot,vm_prot_t maxprot,int flags,struct file * fp,vm_ooffset_t * foff,const struct file_operations * fop,vm_object_t * objp)1638 linux_file_mmap_sub(struct thread *td, vm_size_t objsize, vm_prot_t prot,
1639 vm_prot_t maxprot, int flags, struct file *fp,
1640 vm_ooffset_t *foff, const struct file_operations *fop, vm_object_t *objp)
1641 {
1642 /*
1643 * Character devices do not provide private mappings
1644 * of any kind:
1645 */
1646 if ((maxprot & VM_PROT_WRITE) == 0 &&
1647 (prot & VM_PROT_WRITE) != 0)
1648 return (EACCES);
1649 if ((flags & (MAP_PRIVATE | MAP_COPY)) != 0)
1650 return (EINVAL);
1651
1652 return (linux_file_mmap_single(fp, fop, foff, objsize, objp,
1653 (int)prot, (flags & MAP_SHARED) ? true : false, td));
1654 }
1655
1656 static int
linux_file_mmap(struct file * fp,vm_map_t map,vm_offset_t * addr,vm_size_t size,vm_prot_t prot,vm_prot_t cap_maxprot,int flags,vm_ooffset_t foff,struct thread * td)1657 linux_file_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
1658 vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
1659 struct thread *td)
1660 {
1661 struct linux_file *filp;
1662 const struct file_operations *fop;
1663 struct linux_cdev *ldev;
1664 struct mount *mp;
1665 struct vnode *vp;
1666 vm_object_t object;
1667 vm_prot_t maxprot;
1668 int error;
1669
1670 filp = (struct linux_file *)fp->f_data;
1671
1672 vp = filp->f_vnode;
1673 if (vp == NULL)
1674 return (EOPNOTSUPP);
1675
1676 /*
1677 * Ensure that file and memory protections are
1678 * compatible.
1679 */
1680 mp = vp->v_mount;
1681 if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
1682 maxprot = VM_PROT_NONE;
1683 if ((prot & VM_PROT_EXECUTE) != 0)
1684 return (EACCES);
1685 } else
1686 maxprot = VM_PROT_EXECUTE;
1687 if ((fp->f_flag & FREAD) != 0)
1688 maxprot |= VM_PROT_READ;
1689 else if ((prot & VM_PROT_READ) != 0)
1690 return (EACCES);
1691
1692 /*
1693 * If we are sharing potential changes via MAP_SHARED and we
1694 * are trying to get write permission although we opened it
1695 * without asking for it, bail out.
1696 *
1697 * Note that most character devices always share mappings.
1698 *
1699 * Rely on linux_file_mmap_sub() to fail invalid MAP_PRIVATE
1700 * requests rather than doing it here.
1701 */
1702 if ((flags & MAP_SHARED) != 0) {
1703 if ((fp->f_flag & FWRITE) != 0)
1704 maxprot |= VM_PROT_WRITE;
1705 else if ((prot & VM_PROT_WRITE) != 0)
1706 return (EACCES);
1707 }
1708 maxprot &= cap_maxprot;
1709
1710 linux_get_fop(filp, &fop, &ldev);
1711 error = linux_file_mmap_sub(td, size, prot, maxprot, flags, fp,
1712 &foff, fop, &object);
1713 if (error != 0)
1714 goto out;
1715
1716 error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
1717 foff, FALSE, td);
1718 if (error != 0)
1719 vm_object_deallocate(object);
1720 out:
1721 linux_drop_fop(ldev);
1722 return (error);
1723 }
1724
1725 static int
linux_file_stat(struct file * fp,struct stat * sb,struct ucred * active_cred)1726 linux_file_stat(struct file *fp, struct stat *sb, struct ucred *active_cred)
1727 {
1728 struct linux_file *filp;
1729 struct vnode *vp;
1730 int error;
1731
1732 filp = (struct linux_file *)fp->f_data;
1733 if (filp->f_vnode == NULL)
1734 return (EOPNOTSUPP);
1735
1736 vp = filp->f_vnode;
1737
1738 vn_lock(vp, LK_SHARED | LK_RETRY);
1739 error = VOP_STAT(vp, sb, curthread->td_ucred, NOCRED);
1740 VOP_UNLOCK(vp);
1741
1742 return (error);
1743 }
1744
1745 static int
linux_file_fill_kinfo(struct file * fp,struct kinfo_file * kif,struct filedesc * fdp)1746 linux_file_fill_kinfo(struct file *fp, struct kinfo_file *kif,
1747 struct filedesc *fdp)
1748 {
1749 struct linux_file *filp;
1750 struct vnode *vp;
1751 int error;
1752
1753 filp = fp->f_data;
1754 vp = filp->f_vnode;
1755 if (vp == NULL) {
1756 error = 0;
1757 kif->kf_type = KF_TYPE_DEV;
1758 } else {
1759 vref(vp);
1760 FILEDESC_SUNLOCK(fdp);
1761 error = vn_fill_kinfo_vnode(vp, kif);
1762 vrele(vp);
1763 kif->kf_type = KF_TYPE_VNODE;
1764 FILEDESC_SLOCK(fdp);
1765 }
1766 return (error);
1767 }
1768
1769 unsigned int
linux_iminor(struct inode * inode)1770 linux_iminor(struct inode *inode)
1771 {
1772 struct linux_cdev *ldev;
1773
1774 if (inode == NULL || inode->v_rdev == NULL ||
1775 inode->v_rdev->si_devsw != &linuxcdevsw)
1776 return (-1U);
1777 ldev = inode->v_rdev->si_drv1;
1778 if (ldev == NULL)
1779 return (-1U);
1780
1781 return (minor(ldev->dev));
1782 }
1783
1784 static int
linux_file_kcmp(struct file * fp1,struct file * fp2,struct thread * td)1785 linux_file_kcmp(struct file *fp1, struct file *fp2, struct thread *td)
1786 {
1787 struct linux_file *filp1, *filp2;
1788
1789 if (fp2->f_type != DTYPE_DEV)
1790 return (3);
1791
1792 filp1 = fp1->f_data;
1793 filp2 = fp2->f_data;
1794 return (kcmp_cmp((uintptr_t)filp1->f_cdev, (uintptr_t)filp2->f_cdev));
1795 }
1796
1797 const struct fileops linuxfileops = {
1798 .fo_read = linux_file_read,
1799 .fo_write = linux_file_write,
1800 .fo_truncate = invfo_truncate,
1801 .fo_kqfilter = linux_file_kqfilter,
1802 .fo_stat = linux_file_stat,
1803 .fo_fill_kinfo = linux_file_fill_kinfo,
1804 .fo_poll = linux_file_poll,
1805 .fo_close = linux_file_close,
1806 .fo_ioctl = linux_file_ioctl,
1807 .fo_mmap = linux_file_mmap,
1808 .fo_chmod = invfo_chmod,
1809 .fo_chown = invfo_chown,
1810 .fo_sendfile = invfo_sendfile,
1811 .fo_cmp = linux_file_kcmp,
1812 .fo_flags = DFLAG_PASSABLE,
1813 };
1814
1815 /*
1816 * Hash of vmmap addresses. This is infrequently accessed and does not
1817 * need to be particularly large. This is done because we must store the
1818 * caller's idea of the map size to properly unmap.
1819 */
1820 struct vmmap {
1821 LIST_ENTRY(vmmap) vm_next;
1822 void *vm_addr;
1823 unsigned long vm_size;
1824 };
1825
1826 struct vmmaphd {
1827 struct vmmap *lh_first;
1828 };
1829 #define VMMAP_HASH_SIZE 64
1830 #define VMMAP_HASH_MASK (VMMAP_HASH_SIZE - 1)
1831 #define VM_HASH(addr) ((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK
1832 static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE];
1833 static struct mtx vmmaplock;
1834
1835 static void
vmmap_add(void * addr,unsigned long size)1836 vmmap_add(void *addr, unsigned long size)
1837 {
1838 struct vmmap *vmmap;
1839
1840 vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL);
1841 mtx_lock(&vmmaplock);
1842 vmmap->vm_size = size;
1843 vmmap->vm_addr = addr;
1844 LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next);
1845 mtx_unlock(&vmmaplock);
1846 }
1847
1848 static struct vmmap *
vmmap_remove(void * addr)1849 vmmap_remove(void *addr)
1850 {
1851 struct vmmap *vmmap;
1852
1853 mtx_lock(&vmmaplock);
1854 LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next)
1855 if (vmmap->vm_addr == addr)
1856 break;
1857 if (vmmap)
1858 LIST_REMOVE(vmmap, vm_next);
1859 mtx_unlock(&vmmaplock);
1860
1861 return (vmmap);
1862 }
1863
1864 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv)
1865 void *
_ioremap_attr(vm_paddr_t phys_addr,unsigned long size,int attr)1866 _ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr)
1867 {
1868 void *addr;
1869
1870 addr = pmap_mapdev_attr(phys_addr, size, attr);
1871 if (addr == NULL)
1872 return (NULL);
1873 vmmap_add(addr, size);
1874
1875 return (addr);
1876 }
1877 #endif
1878
1879 void
iounmap(void * addr)1880 iounmap(void *addr)
1881 {
1882 struct vmmap *vmmap;
1883
1884 vmmap = vmmap_remove(addr);
1885 if (vmmap == NULL)
1886 return;
1887 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv)
1888 pmap_unmapdev(addr, vmmap->vm_size);
1889 #endif
1890 kfree(vmmap);
1891 }
1892
1893 void *
vmap(struct page ** pages,unsigned int count,unsigned long flags,int prot)1894 vmap(struct page **pages, unsigned int count, unsigned long flags, int prot)
1895 {
1896 vm_offset_t off;
1897 size_t size;
1898
1899 size = count * PAGE_SIZE;
1900 off = kva_alloc(size);
1901 if (off == 0)
1902 return (NULL);
1903 vmmap_add((void *)off, size);
1904 pmap_qenter(off, pages, count);
1905
1906 return ((void *)off);
1907 }
1908
1909 void
vunmap(void * addr)1910 vunmap(void *addr)
1911 {
1912 struct vmmap *vmmap;
1913
1914 vmmap = vmmap_remove(addr);
1915 if (vmmap == NULL)
1916 return;
1917 pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE);
1918 kva_free((vm_offset_t)addr, vmmap->vm_size);
1919 kfree(vmmap);
1920 }
1921
1922 static char *
devm_kvasprintf(struct device * dev,gfp_t gfp,const char * fmt,va_list ap)1923 devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt, va_list ap)
1924 {
1925 unsigned int len;
1926 char *p;
1927 va_list aq;
1928
1929 va_copy(aq, ap);
1930 len = vsnprintf(NULL, 0, fmt, aq);
1931 va_end(aq);
1932
1933 if (dev != NULL)
1934 p = devm_kmalloc(dev, len + 1, gfp);
1935 else
1936 p = kmalloc(len + 1, gfp);
1937 if (p != NULL)
1938 vsnprintf(p, len + 1, fmt, ap);
1939
1940 return (p);
1941 }
1942
1943 char *
kvasprintf(gfp_t gfp,const char * fmt,va_list ap)1944 kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
1945 {
1946
1947 return (devm_kvasprintf(NULL, gfp, fmt, ap));
1948 }
1949
1950 char *
lkpi_devm_kasprintf(struct device * dev,gfp_t gfp,const char * fmt,...)1951 lkpi_devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...)
1952 {
1953 va_list ap;
1954 char *p;
1955
1956 va_start(ap, fmt);
1957 p = devm_kvasprintf(dev, gfp, fmt, ap);
1958 va_end(ap);
1959
1960 return (p);
1961 }
1962
1963 char *
kasprintf(gfp_t gfp,const char * fmt,...)1964 kasprintf(gfp_t gfp, const char *fmt, ...)
1965 {
1966 va_list ap;
1967 char *p;
1968
1969 va_start(ap, fmt);
1970 p = kvasprintf(gfp, fmt, ap);
1971 va_end(ap);
1972
1973 return (p);
1974 }
1975
1976 int
__lkpi_hexdump_printf(void * arg1 __unused,const char * fmt,...)1977 __lkpi_hexdump_printf(void *arg1 __unused, const char *fmt, ...)
1978 {
1979 va_list ap;
1980 int result;
1981
1982 va_start(ap, fmt);
1983 result = vprintf(fmt, ap);
1984 va_end(ap);
1985 return (result);
1986 }
1987
1988 int
__lkpi_hexdump_sbuf_printf(void * arg1,const char * fmt,...)1989 __lkpi_hexdump_sbuf_printf(void *arg1, const char *fmt, ...)
1990 {
1991 va_list ap;
1992 int result;
1993
1994 va_start(ap, fmt);
1995 result = sbuf_vprintf(arg1, fmt, ap);
1996 va_end(ap);
1997 return (result);
1998 }
1999
2000 void
lkpi_hex_dump(int (* _fpf)(void *,const char *,...),void * arg1,const char * level,const char * prefix_str,const int prefix_type,const int rowsize,const int groupsize,const void * buf,size_t len,const bool ascii)2001 lkpi_hex_dump(int(*_fpf)(void *, const char *, ...), void *arg1,
2002 const char *level, const char *prefix_str,
2003 const int prefix_type, const int rowsize, const int groupsize,
2004 const void *buf, size_t len, const bool ascii)
2005 {
2006 typedef const struct { long long value; } __packed *print_64p_t;
2007 typedef const struct { uint32_t value; } __packed *print_32p_t;
2008 typedef const struct { uint16_t value; } __packed *print_16p_t;
2009 const void *buf_old = buf;
2010 int row;
2011
2012 while (len > 0) {
2013 if (level != NULL)
2014 _fpf(arg1, "%s", level);
2015 if (prefix_str != NULL)
2016 _fpf(arg1, "%s ", prefix_str);
2017
2018 switch (prefix_type) {
2019 case DUMP_PREFIX_ADDRESS:
2020 _fpf(arg1, "[%p] ", buf);
2021 break;
2022 case DUMP_PREFIX_OFFSET:
2023 _fpf(arg1, "[%#tx] ", ((const char *)buf -
2024 (const char *)buf_old));
2025 break;
2026 default:
2027 break;
2028 }
2029 for (row = 0; row != rowsize; row++) {
2030 if (groupsize == 8 && len > 7) {
2031 _fpf(arg1, "%016llx ", ((print_64p_t)buf)->value);
2032 buf = (const uint8_t *)buf + 8;
2033 len -= 8;
2034 } else if (groupsize == 4 && len > 3) {
2035 _fpf(arg1, "%08x ", ((print_32p_t)buf)->value);
2036 buf = (const uint8_t *)buf + 4;
2037 len -= 4;
2038 } else if (groupsize == 2 && len > 1) {
2039 _fpf(arg1, "%04x ", ((print_16p_t)buf)->value);
2040 buf = (const uint8_t *)buf + 2;
2041 len -= 2;
2042 } else if (len > 0) {
2043 _fpf(arg1, "%02x ", *(const uint8_t *)buf);
2044 buf = (const uint8_t *)buf + 1;
2045 len--;
2046 } else {
2047 break;
2048 }
2049 }
2050 _fpf(arg1, "\n");
2051 }
2052 }
2053
2054 static void
linux_timer_callback_wrapper(void * context)2055 linux_timer_callback_wrapper(void *context)
2056 {
2057 struct timer_list *timer;
2058
2059 timer = context;
2060
2061 /* the timer is about to be shutdown permanently */
2062 if (timer->function == NULL)
2063 return;
2064
2065 if (linux_set_current_flags(curthread, M_NOWAIT)) {
2066 /* try again later */
2067 callout_reset(&timer->callout, 1,
2068 &linux_timer_callback_wrapper, timer);
2069 return;
2070 }
2071
2072 timer->function(timer->data);
2073 }
2074
2075 static int
linux_timer_jiffies_until(unsigned long expires)2076 linux_timer_jiffies_until(unsigned long expires)
2077 {
2078 unsigned long delta = expires - jiffies;
2079
2080 /*
2081 * Guard against already expired values and make sure that the value can
2082 * be used as a tick count, rather than a jiffies count.
2083 */
2084 if ((long)delta < 1)
2085 delta = 1;
2086 else if (delta > INT_MAX)
2087 delta = INT_MAX;
2088 return ((int)delta);
2089 }
2090
2091 int
mod_timer(struct timer_list * timer,unsigned long expires)2092 mod_timer(struct timer_list *timer, unsigned long expires)
2093 {
2094 int ret;
2095
2096 timer->expires = expires;
2097 ret = callout_reset(&timer->callout,
2098 linux_timer_jiffies_until(expires),
2099 &linux_timer_callback_wrapper, timer);
2100
2101 MPASS(ret == 0 || ret == 1);
2102
2103 return (ret == 1);
2104 }
2105
2106 void
add_timer(struct timer_list * timer)2107 add_timer(struct timer_list *timer)
2108 {
2109
2110 callout_reset(&timer->callout,
2111 linux_timer_jiffies_until(timer->expires),
2112 &linux_timer_callback_wrapper, timer);
2113 }
2114
2115 void
add_timer_on(struct timer_list * timer,int cpu)2116 add_timer_on(struct timer_list *timer, int cpu)
2117 {
2118
2119 callout_reset_on(&timer->callout,
2120 linux_timer_jiffies_until(timer->expires),
2121 &linux_timer_callback_wrapper, timer, cpu);
2122 }
2123
2124 int
timer_delete(struct timer_list * timer)2125 timer_delete(struct timer_list *timer)
2126 {
2127
2128 if (callout_stop(&(timer)->callout) == -1)
2129 return (0);
2130 return (1);
2131 }
2132
2133 int
timer_delete_sync(struct timer_list * timer)2134 timer_delete_sync(struct timer_list *timer)
2135 {
2136
2137 if (callout_drain(&(timer)->callout) == -1)
2138 return (0);
2139 return (1);
2140 }
2141
2142 int
timer_shutdown_sync(struct timer_list * timer)2143 timer_shutdown_sync(struct timer_list *timer)
2144 {
2145
2146 timer->function = NULL;
2147 return (del_timer_sync(timer));
2148 }
2149
2150 /* greatest common divisor, Euclid equation */
2151 static uint64_t
lkpi_gcd_64(uint64_t a,uint64_t b)2152 lkpi_gcd_64(uint64_t a, uint64_t b)
2153 {
2154 uint64_t an;
2155 uint64_t bn;
2156
2157 while (b != 0) {
2158 an = b;
2159 bn = a % b;
2160 a = an;
2161 b = bn;
2162 }
2163 return (a);
2164 }
2165
2166 uint64_t lkpi_nsec2hz_rem;
2167 uint64_t lkpi_nsec2hz_div = 1000000000ULL;
2168 uint64_t lkpi_nsec2hz_max;
2169
2170 uint64_t lkpi_usec2hz_rem;
2171 uint64_t lkpi_usec2hz_div = 1000000ULL;
2172 uint64_t lkpi_usec2hz_max;
2173
2174 uint64_t lkpi_msec2hz_rem;
2175 uint64_t lkpi_msec2hz_div = 1000ULL;
2176 uint64_t lkpi_msec2hz_max;
2177
2178 static void
linux_timer_init(void * arg)2179 linux_timer_init(void *arg)
2180 {
2181 uint64_t gcd;
2182
2183 /*
2184 * Compute an internal HZ value which can divide 2**32 to
2185 * avoid timer rounding problems when the tick value wraps
2186 * around 2**32:
2187 */
2188 linux_timer_hz_mask = 1;
2189 while (linux_timer_hz_mask < (unsigned long)hz)
2190 linux_timer_hz_mask *= 2;
2191 linux_timer_hz_mask--;
2192
2193 /* compute some internal constants */
2194
2195 lkpi_nsec2hz_rem = hz;
2196 lkpi_usec2hz_rem = hz;
2197 lkpi_msec2hz_rem = hz;
2198
2199 gcd = lkpi_gcd_64(lkpi_nsec2hz_rem, lkpi_nsec2hz_div);
2200 lkpi_nsec2hz_rem /= gcd;
2201 lkpi_nsec2hz_div /= gcd;
2202 lkpi_nsec2hz_max = -1ULL / lkpi_nsec2hz_rem;
2203
2204 gcd = lkpi_gcd_64(lkpi_usec2hz_rem, lkpi_usec2hz_div);
2205 lkpi_usec2hz_rem /= gcd;
2206 lkpi_usec2hz_div /= gcd;
2207 lkpi_usec2hz_max = -1ULL / lkpi_usec2hz_rem;
2208
2209 gcd = lkpi_gcd_64(lkpi_msec2hz_rem, lkpi_msec2hz_div);
2210 lkpi_msec2hz_rem /= gcd;
2211 lkpi_msec2hz_div /= gcd;
2212 lkpi_msec2hz_max = -1ULL / lkpi_msec2hz_rem;
2213 }
2214 SYSINIT(linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, linux_timer_init, NULL);
2215
2216 void
linux_complete_common(struct completion * c,int all)2217 linux_complete_common(struct completion *c, int all)
2218 {
2219 sleepq_lock(c);
2220 if (all) {
2221 c->done = UINT_MAX;
2222 sleepq_broadcast(c, SLEEPQ_SLEEP, 0, 0);
2223 } else {
2224 if (c->done != UINT_MAX)
2225 c->done++;
2226 sleepq_signal(c, SLEEPQ_SLEEP, 0, 0);
2227 }
2228 sleepq_release(c);
2229 }
2230
2231 /*
2232 * Indefinite wait for done != 0 with or without signals.
2233 */
2234 int
linux_wait_for_common(struct completion * c,int flags)2235 linux_wait_for_common(struct completion *c, int flags)
2236 {
2237 struct task_struct *task;
2238 int error;
2239
2240 if (SCHEDULER_STOPPED())
2241 return (0);
2242
2243 task = current;
2244
2245 if (flags != 0)
2246 flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
2247 else
2248 flags = SLEEPQ_SLEEP;
2249 error = 0;
2250 for (;;) {
2251 sleepq_lock(c);
2252 if (c->done)
2253 break;
2254 sleepq_add(c, NULL, "completion", flags, 0);
2255 if (flags & SLEEPQ_INTERRUPTIBLE) {
2256 DROP_GIANT();
2257 error = -sleepq_wait_sig(c, 0);
2258 PICKUP_GIANT();
2259 if (error != 0) {
2260 linux_schedule_save_interrupt_value(task, error);
2261 error = -ERESTARTSYS;
2262 goto intr;
2263 }
2264 } else {
2265 DROP_GIANT();
2266 sleepq_wait(c, 0);
2267 PICKUP_GIANT();
2268 }
2269 }
2270 if (c->done != UINT_MAX)
2271 c->done--;
2272 sleepq_release(c);
2273
2274 intr:
2275 return (error);
2276 }
2277
2278 /*
2279 * Time limited wait for done != 0 with or without signals.
2280 */
2281 unsigned long
linux_wait_for_timeout_common(struct completion * c,unsigned long timeout,int flags)2282 linux_wait_for_timeout_common(struct completion *c, unsigned long timeout,
2283 int flags)
2284 {
2285 struct task_struct *task;
2286 unsigned long end = jiffies + timeout, error;
2287
2288 if (SCHEDULER_STOPPED())
2289 return (0);
2290
2291 task = current;
2292
2293 if (flags != 0)
2294 flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
2295 else
2296 flags = SLEEPQ_SLEEP;
2297
2298 for (;;) {
2299 sleepq_lock(c);
2300 if (c->done)
2301 break;
2302 sleepq_add(c, NULL, "completion", flags, 0);
2303 sleepq_set_timeout(c, linux_timer_jiffies_until(end));
2304
2305 DROP_GIANT();
2306 if (flags & SLEEPQ_INTERRUPTIBLE)
2307 error = -sleepq_timedwait_sig(c, 0);
2308 else
2309 error = -sleepq_timedwait(c, 0);
2310 PICKUP_GIANT();
2311
2312 if (error != 0) {
2313 /* check for timeout */
2314 if (error == -EWOULDBLOCK) {
2315 error = 0; /* timeout */
2316 } else {
2317 /* signal happened */
2318 linux_schedule_save_interrupt_value(task, error);
2319 error = -ERESTARTSYS;
2320 }
2321 goto done;
2322 }
2323 }
2324 if (c->done != UINT_MAX)
2325 c->done--;
2326 sleepq_release(c);
2327
2328 /* return how many jiffies are left */
2329 error = linux_timer_jiffies_until(end);
2330 done:
2331 return (error);
2332 }
2333
2334 int
linux_try_wait_for_completion(struct completion * c)2335 linux_try_wait_for_completion(struct completion *c)
2336 {
2337 int isdone;
2338
2339 sleepq_lock(c);
2340 isdone = (c->done != 0);
2341 if (c->done != 0 && c->done != UINT_MAX)
2342 c->done--;
2343 sleepq_release(c);
2344 return (isdone);
2345 }
2346
2347 int
linux_completion_done(struct completion * c)2348 linux_completion_done(struct completion *c)
2349 {
2350 int isdone;
2351
2352 sleepq_lock(c);
2353 isdone = (c->done != 0);
2354 sleepq_release(c);
2355 return (isdone);
2356 }
2357
2358 static void
linux_cdev_deref(struct linux_cdev * ldev)2359 linux_cdev_deref(struct linux_cdev *ldev)
2360 {
2361 if (refcount_release(&ldev->refs) &&
2362 ldev->kobj.ktype == &linux_cdev_ktype)
2363 kfree(ldev);
2364 }
2365
2366 static void
linux_cdev_release(struct kobject * kobj)2367 linux_cdev_release(struct kobject *kobj)
2368 {
2369 struct linux_cdev *cdev;
2370 struct kobject *parent;
2371
2372 cdev = container_of(kobj, struct linux_cdev, kobj);
2373 parent = kobj->parent;
2374 linux_destroy_dev(cdev);
2375 linux_cdev_deref(cdev);
2376 kobject_put(parent);
2377 }
2378
2379 static void
linux_cdev_static_release(struct kobject * kobj)2380 linux_cdev_static_release(struct kobject *kobj)
2381 {
2382 struct cdev *cdev;
2383 struct linux_cdev *ldev;
2384
2385 ldev = container_of(kobj, struct linux_cdev, kobj);
2386 cdev = ldev->cdev;
2387 if (cdev != NULL) {
2388 destroy_dev(cdev);
2389 ldev->cdev = NULL;
2390 }
2391 kobject_put(kobj->parent);
2392 }
2393
2394 int
linux_cdev_device_add(struct linux_cdev * ldev,struct device * dev)2395 linux_cdev_device_add(struct linux_cdev *ldev, struct device *dev)
2396 {
2397 int ret;
2398
2399 if (dev->devt != 0) {
2400 /* Set parent kernel object. */
2401 ldev->kobj.parent = &dev->kobj;
2402
2403 /*
2404 * Unlike Linux we require the kobject of the
2405 * character device structure to have a valid name
2406 * before calling this function:
2407 */
2408 if (ldev->kobj.name == NULL)
2409 return (-EINVAL);
2410
2411 ret = cdev_add(ldev, dev->devt, 1);
2412 if (ret)
2413 return (ret);
2414 }
2415 ret = device_add(dev);
2416 if (ret != 0 && dev->devt != 0)
2417 cdev_del(ldev);
2418 return (ret);
2419 }
2420
2421 void
linux_cdev_device_del(struct linux_cdev * ldev,struct device * dev)2422 linux_cdev_device_del(struct linux_cdev *ldev, struct device *dev)
2423 {
2424 device_del(dev);
2425
2426 if (dev->devt != 0)
2427 cdev_del(ldev);
2428 }
2429
2430 static void
linux_destroy_dev(struct linux_cdev * ldev)2431 linux_destroy_dev(struct linux_cdev *ldev)
2432 {
2433
2434 if (ldev->cdev == NULL)
2435 return;
2436
2437 MPASS((ldev->siref & LDEV_SI_DTR) == 0);
2438 MPASS(ldev->kobj.ktype == &linux_cdev_ktype);
2439
2440 atomic_set_int(&ldev->siref, LDEV_SI_DTR);
2441 while ((atomic_load_int(&ldev->siref) & ~LDEV_SI_DTR) != 0)
2442 pause("ldevdtr", hz / 4);
2443
2444 destroy_dev(ldev->cdev);
2445 ldev->cdev = NULL;
2446 }
2447
2448 const struct kobj_type linux_cdev_ktype = {
2449 .release = linux_cdev_release,
2450 };
2451
2452 const struct kobj_type linux_cdev_static_ktype = {
2453 .release = linux_cdev_static_release,
2454 };
2455
2456 static void
linux_handle_ifnet_link_event(void * arg,struct ifnet * ifp,int linkstate)2457 linux_handle_ifnet_link_event(void *arg, struct ifnet *ifp, int linkstate)
2458 {
2459 struct notifier_block *nb;
2460 struct netdev_notifier_info ni;
2461
2462 nb = arg;
2463 ni.ifp = ifp;
2464 ni.dev = (struct net_device *)ifp;
2465 if (linkstate == LINK_STATE_UP)
2466 nb->notifier_call(nb, NETDEV_UP, &ni);
2467 else
2468 nb->notifier_call(nb, NETDEV_DOWN, &ni);
2469 }
2470
2471 static void
linux_handle_ifnet_arrival_event(void * arg,struct ifnet * ifp)2472 linux_handle_ifnet_arrival_event(void *arg, struct ifnet *ifp)
2473 {
2474 struct notifier_block *nb;
2475 struct netdev_notifier_info ni;
2476
2477 nb = arg;
2478 ni.ifp = ifp;
2479 ni.dev = (struct net_device *)ifp;
2480 nb->notifier_call(nb, NETDEV_REGISTER, &ni);
2481 }
2482
2483 static void
linux_handle_ifnet_departure_event(void * arg,struct ifnet * ifp)2484 linux_handle_ifnet_departure_event(void *arg, struct ifnet *ifp)
2485 {
2486 struct notifier_block *nb;
2487 struct netdev_notifier_info ni;
2488
2489 nb = arg;
2490 ni.ifp = ifp;
2491 ni.dev = (struct net_device *)ifp;
2492 nb->notifier_call(nb, NETDEV_UNREGISTER, &ni);
2493 }
2494
2495 static void
linux_handle_iflladdr_event(void * arg,struct ifnet * ifp)2496 linux_handle_iflladdr_event(void *arg, struct ifnet *ifp)
2497 {
2498 struct notifier_block *nb;
2499 struct netdev_notifier_info ni;
2500
2501 nb = arg;
2502 ni.ifp = ifp;
2503 ni.dev = (struct net_device *)ifp;
2504 nb->notifier_call(nb, NETDEV_CHANGEADDR, &ni);
2505 }
2506
2507 static void
linux_handle_ifaddr_event(void * arg,struct ifnet * ifp)2508 linux_handle_ifaddr_event(void *arg, struct ifnet *ifp)
2509 {
2510 struct notifier_block *nb;
2511 struct netdev_notifier_info ni;
2512
2513 nb = arg;
2514 ni.ifp = ifp;
2515 ni.dev = (struct net_device *)ifp;
2516 nb->notifier_call(nb, NETDEV_CHANGEIFADDR, &ni);
2517 }
2518
2519 int
register_netdevice_notifier(struct notifier_block * nb)2520 register_netdevice_notifier(struct notifier_block *nb)
2521 {
2522
2523 nb->tags[NETDEV_UP] = EVENTHANDLER_REGISTER(
2524 ifnet_link_event, linux_handle_ifnet_link_event, nb, 0);
2525 nb->tags[NETDEV_REGISTER] = EVENTHANDLER_REGISTER(
2526 ifnet_arrival_event, linux_handle_ifnet_arrival_event, nb, 0);
2527 nb->tags[NETDEV_UNREGISTER] = EVENTHANDLER_REGISTER(
2528 ifnet_departure_event, linux_handle_ifnet_departure_event, nb, 0);
2529 nb->tags[NETDEV_CHANGEADDR] = EVENTHANDLER_REGISTER(
2530 iflladdr_event, linux_handle_iflladdr_event, nb, 0);
2531
2532 return (0);
2533 }
2534
2535 int
register_inetaddr_notifier(struct notifier_block * nb)2536 register_inetaddr_notifier(struct notifier_block *nb)
2537 {
2538
2539 nb->tags[NETDEV_CHANGEIFADDR] = EVENTHANDLER_REGISTER(
2540 ifaddr_event, linux_handle_ifaddr_event, nb, 0);
2541 return (0);
2542 }
2543
2544 int
unregister_netdevice_notifier(struct notifier_block * nb)2545 unregister_netdevice_notifier(struct notifier_block *nb)
2546 {
2547
2548 EVENTHANDLER_DEREGISTER(ifnet_link_event,
2549 nb->tags[NETDEV_UP]);
2550 EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
2551 nb->tags[NETDEV_REGISTER]);
2552 EVENTHANDLER_DEREGISTER(ifnet_departure_event,
2553 nb->tags[NETDEV_UNREGISTER]);
2554 EVENTHANDLER_DEREGISTER(iflladdr_event,
2555 nb->tags[NETDEV_CHANGEADDR]);
2556
2557 return (0);
2558 }
2559
2560 int
unregister_inetaddr_notifier(struct notifier_block * nb)2561 unregister_inetaddr_notifier(struct notifier_block *nb)
2562 {
2563
2564 EVENTHANDLER_DEREGISTER(ifaddr_event,
2565 nb->tags[NETDEV_CHANGEIFADDR]);
2566
2567 return (0);
2568 }
2569
2570 struct list_sort_thunk {
2571 int (*cmp)(void *, struct list_head *, struct list_head *);
2572 void *priv;
2573 };
2574
2575 static inline int
linux_le_cmp(const void * d1,const void * d2,void * priv)2576 linux_le_cmp(const void *d1, const void *d2, void *priv)
2577 {
2578 struct list_head *le1, *le2;
2579 struct list_sort_thunk *thunk;
2580
2581 thunk = priv;
2582 le1 = *(__DECONST(struct list_head **, d1));
2583 le2 = *(__DECONST(struct list_head **, d2));
2584 return ((thunk->cmp)(thunk->priv, le1, le2));
2585 }
2586
2587 void
list_sort(void * priv,struct list_head * head,int (* cmp)(void * priv,struct list_head * a,struct list_head * b))2588 list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv,
2589 struct list_head *a, struct list_head *b))
2590 {
2591 struct list_sort_thunk thunk;
2592 struct list_head **ar, *le;
2593 size_t count, i;
2594
2595 count = 0;
2596 list_for_each(le, head)
2597 count++;
2598 ar = malloc(sizeof(struct list_head *) * count, M_KMALLOC, M_WAITOK);
2599 i = 0;
2600 list_for_each(le, head)
2601 ar[i++] = le;
2602 thunk.cmp = cmp;
2603 thunk.priv = priv;
2604 qsort_r(ar, count, sizeof(struct list_head *), linux_le_cmp, &thunk);
2605 INIT_LIST_HEAD(head);
2606 for (i = 0; i < count; i++)
2607 list_add_tail(ar[i], head);
2608 free(ar, M_KMALLOC);
2609 }
2610
2611 #if defined(__i386__) || defined(__amd64__)
2612 int
linux_wbinvd_on_all_cpus(void)2613 linux_wbinvd_on_all_cpus(void)
2614 {
2615
2616 pmap_invalidate_cache();
2617 return (0);
2618 }
2619 #endif
2620
2621 int
linux_on_each_cpu(void callback (void *),void * data)2622 linux_on_each_cpu(void callback(void *), void *data)
2623 {
2624
2625 smp_rendezvous(smp_no_rendezvous_barrier, callback,
2626 smp_no_rendezvous_barrier, data);
2627 return (0);
2628 }
2629
2630 int
linux_in_atomic(void)2631 linux_in_atomic(void)
2632 {
2633
2634 return ((curthread->td_pflags & TDP_NOFAULTING) != 0);
2635 }
2636
2637 struct linux_cdev *
linux_find_cdev(const char * name,unsigned major,unsigned minor)2638 linux_find_cdev(const char *name, unsigned major, unsigned minor)
2639 {
2640 dev_t dev = MKDEV(major, minor);
2641 struct cdev *cdev;
2642
2643 dev_lock();
2644 LIST_FOREACH(cdev, &linuxcdevsw.d_devs, si_list) {
2645 struct linux_cdev *ldev = cdev->si_drv1;
2646 if (ldev->dev == dev &&
2647 strcmp(kobject_name(&ldev->kobj), name) == 0) {
2648 break;
2649 }
2650 }
2651 dev_unlock();
2652
2653 return (cdev != NULL ? cdev->si_drv1 : NULL);
2654 }
2655
2656 int
__register_chrdev(unsigned int major,unsigned int baseminor,unsigned int count,const char * name,const struct file_operations * fops)2657 __register_chrdev(unsigned int major, unsigned int baseminor,
2658 unsigned int count, const char *name,
2659 const struct file_operations *fops)
2660 {
2661 struct linux_cdev *cdev;
2662 int ret = 0;
2663 int i;
2664
2665 for (i = baseminor; i < baseminor + count; i++) {
2666 cdev = cdev_alloc();
2667 cdev->ops = fops;
2668 kobject_set_name(&cdev->kobj, name);
2669
2670 ret = cdev_add(cdev, makedev(major, i), 1);
2671 if (ret != 0)
2672 break;
2673 }
2674 return (ret);
2675 }
2676
2677 int
__register_chrdev_p(unsigned int major,unsigned int baseminor,unsigned int count,const char * name,const struct file_operations * fops,uid_t uid,gid_t gid,int mode)2678 __register_chrdev_p(unsigned int major, unsigned int baseminor,
2679 unsigned int count, const char *name,
2680 const struct file_operations *fops, uid_t uid,
2681 gid_t gid, int mode)
2682 {
2683 struct linux_cdev *cdev;
2684 int ret = 0;
2685 int i;
2686
2687 for (i = baseminor; i < baseminor + count; i++) {
2688 cdev = cdev_alloc();
2689 cdev->ops = fops;
2690 kobject_set_name(&cdev->kobj, name);
2691
2692 ret = cdev_add_ext(cdev, makedev(major, i), uid, gid, mode);
2693 if (ret != 0)
2694 break;
2695 }
2696 return (ret);
2697 }
2698
2699 void
__unregister_chrdev(unsigned int major,unsigned int baseminor,unsigned int count,const char * name)2700 __unregister_chrdev(unsigned int major, unsigned int baseminor,
2701 unsigned int count, const char *name)
2702 {
2703 struct linux_cdev *cdevp;
2704 int i;
2705
2706 for (i = baseminor; i < baseminor + count; i++) {
2707 cdevp = linux_find_cdev(name, major, i);
2708 if (cdevp != NULL)
2709 cdev_del(cdevp);
2710 }
2711 }
2712
2713 void
linux_dump_stack(void)2714 linux_dump_stack(void)
2715 {
2716 #ifdef STACK
2717 struct stack st;
2718
2719 stack_save(&st);
2720 stack_print(&st);
2721 #endif
2722 }
2723
2724 int
linuxkpi_net_ratelimit(void)2725 linuxkpi_net_ratelimit(void)
2726 {
2727
2728 return (ppsratecheck(&lkpi_net_lastlog, &lkpi_net_curpps,
2729 lkpi_net_maxpps));
2730 }
2731
2732 struct io_mapping *
io_mapping_create_wc(resource_size_t base,unsigned long size)2733 io_mapping_create_wc(resource_size_t base, unsigned long size)
2734 {
2735 struct io_mapping *mapping;
2736
2737 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2738 if (mapping == NULL)
2739 return (NULL);
2740 return (io_mapping_init_wc(mapping, base, size));
2741 }
2742
2743 /* We likely want a linuxkpi_device.c at some point. */
2744 bool
device_can_wakeup(struct device * dev)2745 device_can_wakeup(struct device *dev)
2746 {
2747
2748 if (dev == NULL)
2749 return (false);
2750 /*
2751 * XXX-BZ iwlwifi queries it as part of enabling WoWLAN.
2752 * Normally this would be based on a bool in dev->power.XXX.
2753 * Check such as PCI PCIM_PCAP_*PME. We have no way to enable this yet.
2754 * We may get away by directly calling into bsddev for as long as
2755 * we can assume PCI only avoiding changing struct device breaking KBI.
2756 */
2757 pr_debug("%s:%d: not enabled; see comment.\n", __func__, __LINE__);
2758 return (false);
2759 }
2760
2761 static void
devm_device_group_remove(struct device * dev,void * p)2762 devm_device_group_remove(struct device *dev, void *p)
2763 {
2764 const struct attribute_group **dr = p;
2765 const struct attribute_group *group = *dr;
2766
2767 sysfs_remove_group(&dev->kobj, group);
2768 }
2769
2770 int
lkpi_devm_device_add_group(struct device * dev,const struct attribute_group * group)2771 lkpi_devm_device_add_group(struct device *dev,
2772 const struct attribute_group *group)
2773 {
2774 const struct attribute_group **dr;
2775 int ret;
2776
2777 dr = devres_alloc(devm_device_group_remove, sizeof(*dr), GFP_KERNEL);
2778 if (dr == NULL)
2779 return (-ENOMEM);
2780
2781 ret = sysfs_create_group(&dev->kobj, group);
2782 if (ret == 0) {
2783 *dr = group;
2784 devres_add(dev, dr);
2785 } else
2786 devres_free(dr);
2787
2788 return (ret);
2789 }
2790
2791 #if defined(__i386__) || defined(__amd64__)
2792 bool linux_cpu_has_clflush;
2793 struct cpuinfo_x86 boot_cpu_data;
2794 struct cpuinfo_x86 *__cpu_data;
2795 #endif
2796
2797 cpumask_t *
lkpi_get_static_single_cpu_mask(int cpuid)2798 lkpi_get_static_single_cpu_mask(int cpuid)
2799 {
2800
2801 KASSERT((cpuid >= 0 && cpuid <= mp_maxid), ("%s: invalid cpuid %d\n",
2802 __func__, cpuid));
2803 KASSERT(!CPU_ABSENT(cpuid), ("%s: cpu with cpuid %d is absent\n",
2804 __func__, cpuid));
2805
2806 return (static_single_cpu_mask[cpuid]);
2807 }
2808
2809 bool
lkpi_xen_initial_domain(void)2810 lkpi_xen_initial_domain(void)
2811 {
2812 #ifdef XENHVM
2813 return (xen_initial_domain());
2814 #else
2815 return (false);
2816 #endif
2817 }
2818
2819 bool
lkpi_xen_pv_domain(void)2820 lkpi_xen_pv_domain(void)
2821 {
2822 #ifdef XENHVM
2823 return (xen_pv_domain());
2824 #else
2825 return (false);
2826 #endif
2827 }
2828
2829 static void
linux_compat_init(void * arg)2830 linux_compat_init(void *arg)
2831 {
2832 struct sysctl_oid *rootoid;
2833 int i;
2834
2835 #if defined(__i386__) || defined(__amd64__)
2836 static const uint32_t x86_vendors[X86_VENDOR_NUM] = {
2837 [X86_VENDOR_INTEL] = CPU_VENDOR_INTEL,
2838 [X86_VENDOR_CYRIX] = CPU_VENDOR_CYRIX,
2839 [X86_VENDOR_AMD] = CPU_VENDOR_AMD,
2840 [X86_VENDOR_UMC] = CPU_VENDOR_UMC,
2841 [X86_VENDOR_CENTAUR] = CPU_VENDOR_CENTAUR,
2842 [X86_VENDOR_TRANSMETA] = CPU_VENDOR_TRANSMETA,
2843 [X86_VENDOR_NSC] = CPU_VENDOR_NSC,
2844 [X86_VENDOR_HYGON] = CPU_VENDOR_HYGON,
2845 };
2846 uint8_t x86_vendor = X86_VENDOR_UNKNOWN;
2847
2848 for (i = 0; i < X86_VENDOR_NUM; i++) {
2849 if (cpu_vendor_id != 0 && cpu_vendor_id == x86_vendors[i]) {
2850 x86_vendor = i;
2851 break;
2852 }
2853 }
2854 linux_cpu_has_clflush = (cpu_feature & CPUID_CLFSH);
2855 boot_cpu_data.x86_clflush_size = cpu_clflush_line_size;
2856 boot_cpu_data.x86_max_cores = mp_ncpus;
2857 boot_cpu_data.x86 = CPUID_TO_FAMILY(cpu_id);
2858 boot_cpu_data.x86_model = CPUID_TO_MODEL(cpu_id);
2859 boot_cpu_data.x86_vendor = x86_vendor;
2860
2861 __cpu_data = kmalloc_array(mp_maxid + 1,
2862 sizeof(*__cpu_data), M_WAITOK | M_ZERO);
2863 CPU_FOREACH(i) {
2864 __cpu_data[i].x86_clflush_size = cpu_clflush_line_size;
2865 __cpu_data[i].x86_max_cores = mp_ncpus;
2866 __cpu_data[i].x86 = CPUID_TO_FAMILY(cpu_id);
2867 __cpu_data[i].x86_model = CPUID_TO_MODEL(cpu_id);
2868 __cpu_data[i].x86_vendor = x86_vendor;
2869 }
2870 #endif
2871 rw_init(&linux_vma_lock, "lkpi-vma-lock");
2872
2873 rootoid = SYSCTL_ADD_ROOT_NODE(NULL,
2874 OID_AUTO, "sys", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "sys");
2875 kobject_init(&linux_class_root, &linux_class_ktype);
2876 kobject_set_name(&linux_class_root, "class");
2877 linux_class_root.oidp = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(rootoid),
2878 OID_AUTO, "class", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "class");
2879 kobject_init(&linux_root_device.kobj, &linux_dev_ktype);
2880 kobject_set_name(&linux_root_device.kobj, "device");
2881 linux_root_device.kobj.oidp = SYSCTL_ADD_NODE(NULL,
2882 SYSCTL_CHILDREN(rootoid), OID_AUTO, "device",
2883 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "device");
2884 linux_root_device.bsddev = root_bus;
2885 linux_class_misc.name = "misc";
2886 class_register(&linux_class_misc);
2887 INIT_LIST_HEAD(&pci_drivers);
2888 INIT_LIST_HEAD(&pci_devices);
2889 spin_lock_init(&pci_lock);
2890 mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF);
2891 for (i = 0; i < VMMAP_HASH_SIZE; i++)
2892 LIST_INIT(&vmmaphead[i]);
2893 init_waitqueue_head(&linux_bit_waitq);
2894 init_waitqueue_head(&linux_var_waitq);
2895
2896 CPU_COPY(&all_cpus, &cpu_online_mask);
2897 /*
2898 * Generate a single-CPU cpumask_t for each CPU (possibly) in the system.
2899 * CPUs are indexed from 0..(mp_maxid). The entry for cpuid 0 will only
2900 * have itself in the cpumask, cupid 1 only itself on entry 1, and so on.
2901 * This is used by cpumask_of() (and possibly others in the future) for,
2902 * e.g., drivers to pass hints to irq_set_affinity_hint().
2903 */
2904 static_single_cpu_mask = kmalloc_array(mp_maxid + 1,
2905 sizeof(static_single_cpu_mask), M_WAITOK | M_ZERO);
2906
2907 /*
2908 * When the number of CPUs reach a threshold, we start to save memory
2909 * given the sets are static by overlapping those having their single
2910 * bit set at same position in a bitset word. Asymptotically, this
2911 * regular scheme is in O(n²) whereas the overlapping one is in O(n)
2912 * only with n being the maximum number of CPUs, so the gain will become
2913 * huge quite quickly. The threshold for 64-bit architectures is 128
2914 * CPUs.
2915 */
2916 if (mp_ncpus < (2 * _BITSET_BITS)) {
2917 cpumask_t *sscm_ptr;
2918
2919 /*
2920 * This represents 'mp_ncpus * __bitset_words(CPU_SETSIZE) *
2921 * (_BITSET_BITS / 8)' bytes (for comparison with the
2922 * overlapping scheme).
2923 */
2924 static_single_cpu_mask_lcs = kmalloc_array(mp_ncpus,
2925 sizeof(*static_single_cpu_mask_lcs),
2926 M_WAITOK | M_ZERO);
2927
2928 sscm_ptr = static_single_cpu_mask_lcs;
2929 CPU_FOREACH(i) {
2930 static_single_cpu_mask[i] = sscm_ptr++;
2931 CPU_SET(i, static_single_cpu_mask[i]);
2932 }
2933 } else {
2934 /* Pointer to a bitset word. */
2935 __typeof(((cpuset_t *)NULL)->__bits[0]) *bwp;
2936
2937 /*
2938 * Allocate memory for (static) spans of 'cpumask_t' ('cpuset_t'
2939 * really) with a single bit set that can be reused for all
2940 * single CPU masks by making them start at different offsets.
2941 * We need '__bitset_words(CPU_SETSIZE) - 1' bitset words before
2942 * the word having its single bit set, and the same amount
2943 * after.
2944 */
2945 static_single_cpu_mask_lcs = mallocarray(_BITSET_BITS,
2946 (2 * __bitset_words(CPU_SETSIZE) - 1) * (_BITSET_BITS / 8),
2947 M_KMALLOC, M_WAITOK | M_ZERO);
2948
2949 /*
2950 * We rely below on cpuset_t and the bitset generic
2951 * implementation assigning words in the '__bits' array in the
2952 * same order of bits (i.e., little-endian ordering, not to be
2953 * confused with machine endianness, which concerns bits in
2954 * words and other integers). This is an imperfect test, but it
2955 * will detect a change to big-endian ordering.
2956 */
2957 _Static_assert(
2958 __bitset_word(_BITSET_BITS + 1, _BITSET_BITS) == 1,
2959 "Assumes a bitset implementation that is little-endian "
2960 "on its words");
2961
2962 /* Initialize the single bit of each static span. */
2963 bwp = (__typeof(bwp))static_single_cpu_mask_lcs +
2964 (__bitset_words(CPU_SETSIZE) - 1);
2965 for (i = 0; i < _BITSET_BITS; i++) {
2966 CPU_SET(i, (cpuset_t *)bwp);
2967 bwp += (2 * __bitset_words(CPU_SETSIZE) - 1);
2968 }
2969
2970 /*
2971 * Finally set all CPU masks to the proper word in their
2972 * relevant span.
2973 */
2974 CPU_FOREACH(i) {
2975 bwp = (__typeof(bwp))static_single_cpu_mask_lcs;
2976 /* Find the non-zero word of the relevant span. */
2977 bwp += (2 * __bitset_words(CPU_SETSIZE) - 1) *
2978 (i % _BITSET_BITS) +
2979 __bitset_words(CPU_SETSIZE) - 1;
2980 /* Shift to find the CPU mask start. */
2981 bwp -= (i / _BITSET_BITS);
2982 static_single_cpu_mask[i] = (cpuset_t *)bwp;
2983 }
2984 }
2985
2986 strlcpy(init_uts_ns.name.release, osrelease, sizeof(init_uts_ns.name.release));
2987 }
2988 SYSINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_init, NULL);
2989
2990 static void
linux_compat_uninit(void * arg)2991 linux_compat_uninit(void *arg)
2992 {
2993 linux_kobject_kfree_name(&linux_class_root);
2994 linux_kobject_kfree_name(&linux_root_device.kobj);
2995 linux_kobject_kfree_name(&linux_class_misc.kobj);
2996
2997 free(static_single_cpu_mask_lcs, M_KMALLOC);
2998 free(static_single_cpu_mask, M_KMALLOC);
2999 #if defined(__i386__) || defined(__amd64__)
3000 free(__cpu_data, M_KMALLOC);
3001 #endif
3002
3003 mtx_destroy(&vmmaplock);
3004 spin_lock_destroy(&pci_lock);
3005 rw_destroy(&linux_vma_lock);
3006 }
3007 SYSUNINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_uninit, NULL);
3008
3009 /*
3010 * NOTE: Linux frequently uses "unsigned long" for pointer to integer
3011 * conversion and vice versa, where in FreeBSD "uintptr_t" would be
3012 * used. Assert these types have the same size, else some parts of the
3013 * LinuxKPI may not work like expected:
3014 */
3015 CTASSERT(sizeof(unsigned long) == sizeof(uintptr_t));
3016