1 /*-
2 * Copyright (c) 2010 Isilon Systems, Inc.
3 * Copyright (c) 2010 iX Systems, Inc.
4 * Copyright (c) 2010 Panasas, Inc.
5 * Copyright (c) 2013-2021 Mellanox Technologies, Ltd.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
13 * disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 #include "opt_global.h"
32 #include "opt_stack.h"
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/kernel.h>
38 #include <sys/sysctl.h>
39 #include <sys/proc.h>
40 #include <sys/sglist.h>
41 #include <sys/sleepqueue.h>
42 #include <sys/refcount.h>
43 #include <sys/lock.h>
44 #include <sys/mutex.h>
45 #include <sys/bus.h>
46 #include <sys/eventhandler.h>
47 #include <sys/fcntl.h>
48 #include <sys/file.h>
49 #include <sys/filio.h>
50 #include <sys/rwlock.h>
51 #include <sys/mman.h>
52 #include <sys/stack.h>
53 #include <sys/sysent.h>
54 #include <sys/time.h>
55 #include <sys/user.h>
56
57 #include <vm/vm.h>
58 #include <vm/pmap.h>
59 #include <vm/vm_object.h>
60 #include <vm/vm_page.h>
61 #include <vm/vm_pager.h>
62
63 #include <machine/stdarg.h>
64
65 #if defined(__i386__) || defined(__amd64__)
66 #include <machine/cputypes.h>
67 #include <machine/md_var.h>
68 #endif
69
70 #include <linux/kobject.h>
71 #include <linux/cpu.h>
72 #include <linux/device.h>
73 #include <linux/slab.h>
74 #include <linux/module.h>
75 #include <linux/moduleparam.h>
76 #include <linux/cdev.h>
77 #include <linux/file.h>
78 #include <linux/sysfs.h>
79 #include <linux/mm.h>
80 #include <linux/io.h>
81 #include <linux/vmalloc.h>
82 #include <linux/netdevice.h>
83 #include <linux/timer.h>
84 #include <linux/interrupt.h>
85 #include <linux/uaccess.h>
86 #include <linux/utsname.h>
87 #include <linux/list.h>
88 #include <linux/kthread.h>
89 #include <linux/kernel.h>
90 #include <linux/compat.h>
91 #include <linux/io-mapping.h>
92 #include <linux/poll.h>
93 #include <linux/smp.h>
94 #include <linux/wait_bit.h>
95 #include <linux/rcupdate.h>
96 #include <linux/interval_tree.h>
97 #include <linux/interval_tree_generic.h>
98
99 #if defined(__i386__) || defined(__amd64__)
100 #include <asm/smp.h>
101 #include <asm/processor.h>
102 #endif
103
104 #include <xen/xen.h>
105 #ifdef XENHVM
106 #undef xen_pv_domain
107 #undef xen_initial_domain
108 /* xen/xen-os.h redefines __must_check */
109 #undef __must_check
110 #include <xen/xen-os.h>
111 #endif
112
113 SYSCTL_NODE(_compat, OID_AUTO, linuxkpi, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
114 "LinuxKPI parameters");
115
116 int linuxkpi_debug;
117 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, debug, CTLFLAG_RWTUN,
118 &linuxkpi_debug, 0, "Set to enable pr_debug() prints. Clear to disable.");
119
120 int linuxkpi_rcu_debug;
121 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, rcu_debug, CTLFLAG_RWTUN,
122 &linuxkpi_rcu_debug, 0, "Set to enable RCU warning. Clear to disable.");
123
124 int linuxkpi_warn_dump_stack = 0;
125 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, warn_dump_stack, CTLFLAG_RWTUN,
126 &linuxkpi_warn_dump_stack, 0,
127 "Set to enable stack traces from WARN_ON(). Clear to disable.");
128
129 static struct timeval lkpi_net_lastlog;
130 static int lkpi_net_curpps;
131 static int lkpi_net_maxpps = 99;
132 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, net_ratelimit, CTLFLAG_RWTUN,
133 &lkpi_net_maxpps, 0, "Limit number of LinuxKPI net messages per second.");
134
135 MALLOC_DEFINE(M_KMALLOC, "lkpikmalloc", "Linux kmalloc compat");
136
137 #include <linux/rbtree.h>
138 /* Undo Linux compat changes. */
139 #undef RB_ROOT
140 #undef file
141 #undef cdev
142 #define RB_ROOT(head) (head)->rbh_root
143
144 static void linux_destroy_dev(struct linux_cdev *);
145 static void linux_cdev_deref(struct linux_cdev *ldev);
146 static struct vm_area_struct *linux_cdev_handle_find(void *handle);
147
148 cpumask_t cpu_online_mask;
149 static cpumask_t **static_single_cpu_mask;
150 static cpumask_t *static_single_cpu_mask_lcs;
151 struct kobject linux_class_root;
152 struct device linux_root_device;
153 struct class linux_class_misc;
154 struct list_head pci_drivers;
155 struct list_head pci_devices;
156 spinlock_t pci_lock;
157 struct uts_namespace init_uts_ns;
158
159 unsigned long linux_timer_hz_mask;
160
161 wait_queue_head_t linux_bit_waitq;
162 wait_queue_head_t linux_var_waitq;
163
164 int
panic_cmp(struct rb_node * one,struct rb_node * two)165 panic_cmp(struct rb_node *one, struct rb_node *two)
166 {
167 panic("no cmp");
168 }
169
170 RB_GENERATE(linux_root, rb_node, __entry, panic_cmp);
171
172 #define START(node) ((node)->start)
173 #define LAST(node) ((node)->last)
174
175 INTERVAL_TREE_DEFINE(struct interval_tree_node, rb, unsigned long,, START,
176 LAST,, lkpi_interval_tree)
177
178 static void
linux_device_release(struct device * dev)179 linux_device_release(struct device *dev)
180 {
181 pr_debug("linux_device_release: %s\n", dev_name(dev));
182 kfree(dev);
183 }
184
185 static ssize_t
linux_class_show(struct kobject * kobj,struct attribute * attr,char * buf)186 linux_class_show(struct kobject *kobj, struct attribute *attr, char *buf)
187 {
188 struct class_attribute *dattr;
189 ssize_t error;
190
191 dattr = container_of(attr, struct class_attribute, attr);
192 error = -EIO;
193 if (dattr->show)
194 error = dattr->show(container_of(kobj, struct class, kobj),
195 dattr, buf);
196 return (error);
197 }
198
199 static ssize_t
linux_class_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)200 linux_class_store(struct kobject *kobj, struct attribute *attr, const char *buf,
201 size_t count)
202 {
203 struct class_attribute *dattr;
204 ssize_t error;
205
206 dattr = container_of(attr, struct class_attribute, attr);
207 error = -EIO;
208 if (dattr->store)
209 error = dattr->store(container_of(kobj, struct class, kobj),
210 dattr, buf, count);
211 return (error);
212 }
213
214 static void
linux_class_release(struct kobject * kobj)215 linux_class_release(struct kobject *kobj)
216 {
217 struct class *class;
218
219 class = container_of(kobj, struct class, kobj);
220 if (class->class_release)
221 class->class_release(class);
222 }
223
224 static const struct sysfs_ops linux_class_sysfs = {
225 .show = linux_class_show,
226 .store = linux_class_store,
227 };
228
229 const struct kobj_type linux_class_ktype = {
230 .release = linux_class_release,
231 .sysfs_ops = &linux_class_sysfs
232 };
233
234 static void
linux_dev_release(struct kobject * kobj)235 linux_dev_release(struct kobject *kobj)
236 {
237 struct device *dev;
238
239 dev = container_of(kobj, struct device, kobj);
240 /* This is the precedence defined by linux. */
241 if (dev->release)
242 dev->release(dev);
243 else if (dev->class && dev->class->dev_release)
244 dev->class->dev_release(dev);
245 }
246
247 static ssize_t
linux_dev_show(struct kobject * kobj,struct attribute * attr,char * buf)248 linux_dev_show(struct kobject *kobj, struct attribute *attr, char *buf)
249 {
250 struct device_attribute *dattr;
251 ssize_t error;
252
253 dattr = container_of(attr, struct device_attribute, attr);
254 error = -EIO;
255 if (dattr->show)
256 error = dattr->show(container_of(kobj, struct device, kobj),
257 dattr, buf);
258 return (error);
259 }
260
261 static ssize_t
linux_dev_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)262 linux_dev_store(struct kobject *kobj, struct attribute *attr, const char *buf,
263 size_t count)
264 {
265 struct device_attribute *dattr;
266 ssize_t error;
267
268 dattr = container_of(attr, struct device_attribute, attr);
269 error = -EIO;
270 if (dattr->store)
271 error = dattr->store(container_of(kobj, struct device, kobj),
272 dattr, buf, count);
273 return (error);
274 }
275
276 static const struct sysfs_ops linux_dev_sysfs = {
277 .show = linux_dev_show,
278 .store = linux_dev_store,
279 };
280
281 const struct kobj_type linux_dev_ktype = {
282 .release = linux_dev_release,
283 .sysfs_ops = &linux_dev_sysfs
284 };
285
286 struct device *
device_create(struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,...)287 device_create(struct class *class, struct device *parent, dev_t devt,
288 void *drvdata, const char *fmt, ...)
289 {
290 struct device *dev;
291 va_list args;
292
293 dev = kzalloc(sizeof(*dev), M_WAITOK);
294 dev->parent = parent;
295 dev->class = class;
296 dev->devt = devt;
297 dev->driver_data = drvdata;
298 dev->release = linux_device_release;
299 va_start(args, fmt);
300 kobject_set_name_vargs(&dev->kobj, fmt, args);
301 va_end(args);
302 device_register(dev);
303
304 return (dev);
305 }
306
307 struct device *
device_create_groups_vargs(struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,va_list args)308 device_create_groups_vargs(struct class *class, struct device *parent,
309 dev_t devt, void *drvdata, const struct attribute_group **groups,
310 const char *fmt, va_list args)
311 {
312 struct device *dev = NULL;
313 int retval = -ENODEV;
314
315 if (class == NULL || IS_ERR(class))
316 goto error;
317
318 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
319 if (!dev) {
320 retval = -ENOMEM;
321 goto error;
322 }
323
324 dev->devt = devt;
325 dev->class = class;
326 dev->parent = parent;
327 dev->groups = groups;
328 dev->release = device_create_release;
329 /* device_initialize() needs the class and parent to be set */
330 device_initialize(dev);
331 dev_set_drvdata(dev, drvdata);
332
333 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
334 if (retval)
335 goto error;
336
337 retval = device_add(dev);
338 if (retval)
339 goto error;
340
341 return dev;
342
343 error:
344 put_device(dev);
345 return ERR_PTR(retval);
346 }
347
348 struct class *
lkpi_class_create(const char * name)349 lkpi_class_create(const char *name)
350 {
351 struct class *class;
352 int error;
353
354 class = kzalloc(sizeof(*class), M_WAITOK);
355 class->name = name;
356 class->class_release = linux_class_kfree;
357 error = class_register(class);
358 if (error) {
359 kfree(class);
360 return (NULL);
361 }
362
363 return (class);
364 }
365
366 static void
linux_kq_lock(void * arg)367 linux_kq_lock(void *arg)
368 {
369 spinlock_t *s = arg;
370
371 spin_lock(s);
372 }
373 static void
linux_kq_unlock(void * arg)374 linux_kq_unlock(void *arg)
375 {
376 spinlock_t *s = arg;
377
378 spin_unlock(s);
379 }
380
381 static void
linux_kq_assert_lock(void * arg,int what)382 linux_kq_assert_lock(void *arg, int what)
383 {
384 #ifdef INVARIANTS
385 spinlock_t *s = arg;
386
387 if (what == LA_LOCKED)
388 mtx_assert(s, MA_OWNED);
389 else
390 mtx_assert(s, MA_NOTOWNED);
391 #endif
392 }
393
394 static void
395 linux_file_kqfilter_poll(struct linux_file *, int);
396
397 struct linux_file *
linux_file_alloc(void)398 linux_file_alloc(void)
399 {
400 struct linux_file *filp;
401
402 filp = kzalloc(sizeof(*filp), GFP_KERNEL);
403
404 /* set initial refcount */
405 filp->f_count = 1;
406
407 /* setup fields needed by kqueue support */
408 spin_lock_init(&filp->f_kqlock);
409 knlist_init(&filp->f_selinfo.si_note, &filp->f_kqlock,
410 linux_kq_lock, linux_kq_unlock, linux_kq_assert_lock);
411
412 return (filp);
413 }
414
415 void
linux_file_free(struct linux_file * filp)416 linux_file_free(struct linux_file *filp)
417 {
418 if (filp->_file == NULL) {
419 if (filp->f_op != NULL && filp->f_op->release != NULL)
420 filp->f_op->release(filp->f_vnode, filp);
421 if (filp->f_shmem != NULL)
422 vm_object_deallocate(filp->f_shmem);
423 kfree_rcu(filp, rcu);
424 } else {
425 /*
426 * The close method of the character device or file
427 * will free the linux_file structure:
428 */
429 _fdrop(filp->_file, curthread);
430 }
431 }
432
433 struct linux_cdev *
cdev_alloc(void)434 cdev_alloc(void)
435 {
436 struct linux_cdev *cdev;
437
438 cdev = kzalloc(sizeof(struct linux_cdev), M_WAITOK);
439 kobject_init(&cdev->kobj, &linux_cdev_ktype);
440 cdev->refs = 1;
441 return (cdev);
442 }
443
444 static int
linux_cdev_pager_fault(vm_object_t vm_obj,vm_ooffset_t offset,int prot,vm_page_t * mres)445 linux_cdev_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot,
446 vm_page_t *mres)
447 {
448 struct vm_area_struct *vmap;
449
450 vmap = linux_cdev_handle_find(vm_obj->handle);
451
452 MPASS(vmap != NULL);
453 MPASS(vmap->vm_private_data == vm_obj->handle);
454
455 if (likely(vmap->vm_ops != NULL && offset < vmap->vm_len)) {
456 vm_paddr_t paddr = IDX_TO_OFF(vmap->vm_pfn) + offset;
457 vm_page_t page;
458
459 if (((*mres)->flags & PG_FICTITIOUS) != 0) {
460 /*
461 * If the passed in result page is a fake
462 * page, update it with the new physical
463 * address.
464 */
465 page = *mres;
466 vm_page_updatefake(page, paddr, vm_obj->memattr);
467 } else {
468 /*
469 * Replace the passed in "mres" page with our
470 * own fake page and free up the all of the
471 * original pages.
472 */
473 VM_OBJECT_WUNLOCK(vm_obj);
474 page = vm_page_getfake(paddr, vm_obj->memattr);
475 VM_OBJECT_WLOCK(vm_obj);
476
477 vm_page_replace(page, vm_obj, (*mres)->pindex, *mres);
478 *mres = page;
479 }
480 vm_page_valid(page);
481 return (VM_PAGER_OK);
482 }
483 return (VM_PAGER_FAIL);
484 }
485
486 static int
linux_cdev_pager_populate(vm_object_t vm_obj,vm_pindex_t pidx,int fault_type,vm_prot_t max_prot,vm_pindex_t * first,vm_pindex_t * last)487 linux_cdev_pager_populate(vm_object_t vm_obj, vm_pindex_t pidx, int fault_type,
488 vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last)
489 {
490 struct vm_area_struct *vmap;
491 int err;
492
493 /* get VM area structure */
494 vmap = linux_cdev_handle_find(vm_obj->handle);
495 MPASS(vmap != NULL);
496 MPASS(vmap->vm_private_data == vm_obj->handle);
497
498 VM_OBJECT_WUNLOCK(vm_obj);
499
500 linux_set_current(curthread);
501
502 down_write(&vmap->vm_mm->mmap_sem);
503 if (unlikely(vmap->vm_ops == NULL)) {
504 err = VM_FAULT_SIGBUS;
505 } else {
506 struct vm_fault vmf;
507
508 /* fill out VM fault structure */
509 vmf.virtual_address = (void *)(uintptr_t)IDX_TO_OFF(pidx);
510 vmf.flags = (fault_type & VM_PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
511 vmf.pgoff = 0;
512 vmf.page = NULL;
513 vmf.vma = vmap;
514
515 vmap->vm_pfn_count = 0;
516 vmap->vm_pfn_pcount = &vmap->vm_pfn_count;
517 vmap->vm_obj = vm_obj;
518
519 err = vmap->vm_ops->fault(&vmf);
520
521 while (vmap->vm_pfn_count == 0 && err == VM_FAULT_NOPAGE) {
522 kern_yield(PRI_USER);
523 err = vmap->vm_ops->fault(&vmf);
524 }
525 }
526
527 /* translate return code */
528 switch (err) {
529 case VM_FAULT_OOM:
530 err = VM_PAGER_AGAIN;
531 break;
532 case VM_FAULT_SIGBUS:
533 err = VM_PAGER_BAD;
534 break;
535 case VM_FAULT_NOPAGE:
536 /*
537 * By contract the fault handler will return having
538 * busied all the pages itself. If pidx is already
539 * found in the object, it will simply xbusy the first
540 * page and return with vm_pfn_count set to 1.
541 */
542 *first = vmap->vm_pfn_first;
543 *last = *first + vmap->vm_pfn_count - 1;
544 err = VM_PAGER_OK;
545 break;
546 default:
547 err = VM_PAGER_ERROR;
548 break;
549 }
550 up_write(&vmap->vm_mm->mmap_sem);
551 VM_OBJECT_WLOCK(vm_obj);
552 return (err);
553 }
554
555 static struct rwlock linux_vma_lock;
556 static TAILQ_HEAD(, vm_area_struct) linux_vma_head =
557 TAILQ_HEAD_INITIALIZER(linux_vma_head);
558
559 static void
linux_cdev_handle_free(struct vm_area_struct * vmap)560 linux_cdev_handle_free(struct vm_area_struct *vmap)
561 {
562 /* Drop reference on vm_file */
563 if (vmap->vm_file != NULL)
564 fput(vmap->vm_file);
565
566 /* Drop reference on mm_struct */
567 mmput(vmap->vm_mm);
568
569 kfree(vmap);
570 }
571
572 static void
linux_cdev_handle_remove(struct vm_area_struct * vmap)573 linux_cdev_handle_remove(struct vm_area_struct *vmap)
574 {
575 rw_wlock(&linux_vma_lock);
576 TAILQ_REMOVE(&linux_vma_head, vmap, vm_entry);
577 rw_wunlock(&linux_vma_lock);
578 }
579
580 static struct vm_area_struct *
linux_cdev_handle_find(void * handle)581 linux_cdev_handle_find(void *handle)
582 {
583 struct vm_area_struct *vmap;
584
585 rw_rlock(&linux_vma_lock);
586 TAILQ_FOREACH(vmap, &linux_vma_head, vm_entry) {
587 if (vmap->vm_private_data == handle)
588 break;
589 }
590 rw_runlock(&linux_vma_lock);
591 return (vmap);
592 }
593
594 static int
linux_cdev_pager_ctor(void * handle,vm_ooffset_t size,vm_prot_t prot,vm_ooffset_t foff,struct ucred * cred,u_short * color)595 linux_cdev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
596 vm_ooffset_t foff, struct ucred *cred, u_short *color)
597 {
598
599 MPASS(linux_cdev_handle_find(handle) != NULL);
600 *color = 0;
601 return (0);
602 }
603
604 static void
linux_cdev_pager_dtor(void * handle)605 linux_cdev_pager_dtor(void *handle)
606 {
607 const struct vm_operations_struct *vm_ops;
608 struct vm_area_struct *vmap;
609
610 vmap = linux_cdev_handle_find(handle);
611 MPASS(vmap != NULL);
612
613 /*
614 * Remove handle before calling close operation to prevent
615 * other threads from reusing the handle pointer.
616 */
617 linux_cdev_handle_remove(vmap);
618
619 down_write(&vmap->vm_mm->mmap_sem);
620 vm_ops = vmap->vm_ops;
621 if (likely(vm_ops != NULL))
622 vm_ops->close(vmap);
623 up_write(&vmap->vm_mm->mmap_sem);
624
625 linux_cdev_handle_free(vmap);
626 }
627
628 static struct cdev_pager_ops linux_cdev_pager_ops[2] = {
629 {
630 /* OBJT_MGTDEVICE */
631 .cdev_pg_populate = linux_cdev_pager_populate,
632 .cdev_pg_ctor = linux_cdev_pager_ctor,
633 .cdev_pg_dtor = linux_cdev_pager_dtor
634 },
635 {
636 /* OBJT_DEVICE */
637 .cdev_pg_fault = linux_cdev_pager_fault,
638 .cdev_pg_ctor = linux_cdev_pager_ctor,
639 .cdev_pg_dtor = linux_cdev_pager_dtor
640 },
641 };
642
643 int
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)644 zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
645 unsigned long size)
646 {
647 vm_object_t obj;
648 vm_page_t m;
649
650 obj = vma->vm_obj;
651 if (obj == NULL || (obj->flags & OBJ_UNMANAGED) != 0)
652 return (-ENOTSUP);
653 VM_OBJECT_RLOCK(obj);
654 for (m = vm_page_find_least(obj, OFF_TO_IDX(address));
655 m != NULL && m->pindex < OFF_TO_IDX(address + size);
656 m = TAILQ_NEXT(m, listq))
657 pmap_remove_all(m);
658 VM_OBJECT_RUNLOCK(obj);
659 return (0);
660 }
661
662 void
vma_set_file(struct vm_area_struct * vma,struct linux_file * file)663 vma_set_file(struct vm_area_struct *vma, struct linux_file *file)
664 {
665 struct linux_file *tmp;
666
667 /* Changing an anonymous vma with this is illegal */
668 get_file(file);
669 tmp = vma->vm_file;
670 vma->vm_file = file;
671 fput(tmp);
672 }
673
674 static struct file_operations dummy_ldev_ops = {
675 /* XXXKIB */
676 };
677
678 static struct linux_cdev dummy_ldev = {
679 .ops = &dummy_ldev_ops,
680 };
681
682 #define LDEV_SI_DTR 0x0001
683 #define LDEV_SI_REF 0x0002
684
685 static void
linux_get_fop(struct linux_file * filp,const struct file_operations ** fop,struct linux_cdev ** dev)686 linux_get_fop(struct linux_file *filp, const struct file_operations **fop,
687 struct linux_cdev **dev)
688 {
689 struct linux_cdev *ldev;
690 u_int siref;
691
692 ldev = filp->f_cdev;
693 *fop = filp->f_op;
694 if (ldev != NULL) {
695 if (ldev->kobj.ktype == &linux_cdev_static_ktype) {
696 refcount_acquire(&ldev->refs);
697 } else {
698 for (siref = ldev->siref;;) {
699 if ((siref & LDEV_SI_DTR) != 0) {
700 ldev = &dummy_ldev;
701 *fop = ldev->ops;
702 siref = ldev->siref;
703 MPASS((ldev->siref & LDEV_SI_DTR) == 0);
704 } else if (atomic_fcmpset_int(&ldev->siref,
705 &siref, siref + LDEV_SI_REF)) {
706 break;
707 }
708 }
709 }
710 }
711 *dev = ldev;
712 }
713
714 static void
linux_drop_fop(struct linux_cdev * ldev)715 linux_drop_fop(struct linux_cdev *ldev)
716 {
717
718 if (ldev == NULL)
719 return;
720 if (ldev->kobj.ktype == &linux_cdev_static_ktype) {
721 linux_cdev_deref(ldev);
722 } else {
723 MPASS(ldev->kobj.ktype == &linux_cdev_ktype);
724 MPASS((ldev->siref & ~LDEV_SI_DTR) != 0);
725 atomic_subtract_int(&ldev->siref, LDEV_SI_REF);
726 }
727 }
728
729 #define OPW(fp,td,code) ({ \
730 struct file *__fpop; \
731 __typeof(code) __retval; \
732 \
733 __fpop = (td)->td_fpop; \
734 (td)->td_fpop = (fp); \
735 __retval = (code); \
736 (td)->td_fpop = __fpop; \
737 __retval; \
738 })
739
740 static int
linux_dev_fdopen(struct cdev * dev,int fflags,struct thread * td,struct file * file)741 linux_dev_fdopen(struct cdev *dev, int fflags, struct thread *td,
742 struct file *file)
743 {
744 struct linux_cdev *ldev;
745 struct linux_file *filp;
746 const struct file_operations *fop;
747 int error;
748
749 ldev = dev->si_drv1;
750
751 filp = linux_file_alloc();
752 filp->f_dentry = &filp->f_dentry_store;
753 filp->f_op = ldev->ops;
754 filp->f_mode = file->f_flag;
755 filp->f_flags = file->f_flag;
756 filp->f_vnode = file->f_vnode;
757 filp->_file = file;
758 refcount_acquire(&ldev->refs);
759 filp->f_cdev = ldev;
760
761 linux_set_current(td);
762 linux_get_fop(filp, &fop, &ldev);
763
764 if (fop->open != NULL) {
765 error = -fop->open(file->f_vnode, filp);
766 if (error != 0) {
767 linux_drop_fop(ldev);
768 linux_cdev_deref(filp->f_cdev);
769 kfree(filp);
770 return (error);
771 }
772 }
773
774 /* hold on to the vnode - used for fstat() */
775 vref(filp->f_vnode);
776
777 /* release the file from devfs */
778 finit(file, filp->f_mode, DTYPE_DEV, filp, &linuxfileops);
779 linux_drop_fop(ldev);
780 return (ENXIO);
781 }
782
783 #define LINUX_IOCTL_MIN_PTR 0x10000UL
784 #define LINUX_IOCTL_MAX_PTR (LINUX_IOCTL_MIN_PTR + IOCPARM_MAX)
785
786 static inline int
linux_remap_address(void ** uaddr,size_t len)787 linux_remap_address(void **uaddr, size_t len)
788 {
789 uintptr_t uaddr_val = (uintptr_t)(*uaddr);
790
791 if (unlikely(uaddr_val >= LINUX_IOCTL_MIN_PTR &&
792 uaddr_val < LINUX_IOCTL_MAX_PTR)) {
793 struct task_struct *pts = current;
794 if (pts == NULL) {
795 *uaddr = NULL;
796 return (1);
797 }
798
799 /* compute data offset */
800 uaddr_val -= LINUX_IOCTL_MIN_PTR;
801
802 /* check that length is within bounds */
803 if ((len > IOCPARM_MAX) ||
804 (uaddr_val + len) > pts->bsd_ioctl_len) {
805 *uaddr = NULL;
806 return (1);
807 }
808
809 /* re-add kernel buffer address */
810 uaddr_val += (uintptr_t)pts->bsd_ioctl_data;
811
812 /* update address location */
813 *uaddr = (void *)uaddr_val;
814 return (1);
815 }
816 return (0);
817 }
818
819 int
linux_copyin(const void * uaddr,void * kaddr,size_t len)820 linux_copyin(const void *uaddr, void *kaddr, size_t len)
821 {
822 if (linux_remap_address(__DECONST(void **, &uaddr), len)) {
823 if (uaddr == NULL)
824 return (-EFAULT);
825 memcpy(kaddr, uaddr, len);
826 return (0);
827 }
828 return (-copyin(uaddr, kaddr, len));
829 }
830
831 int
linux_copyout(const void * kaddr,void * uaddr,size_t len)832 linux_copyout(const void *kaddr, void *uaddr, size_t len)
833 {
834 if (linux_remap_address(&uaddr, len)) {
835 if (uaddr == NULL)
836 return (-EFAULT);
837 memcpy(uaddr, kaddr, len);
838 return (0);
839 }
840 return (-copyout(kaddr, uaddr, len));
841 }
842
843 size_t
linux_clear_user(void * _uaddr,size_t _len)844 linux_clear_user(void *_uaddr, size_t _len)
845 {
846 uint8_t *uaddr = _uaddr;
847 size_t len = _len;
848
849 /* make sure uaddr is aligned before going into the fast loop */
850 while (((uintptr_t)uaddr & 7) != 0 && len > 7) {
851 if (subyte(uaddr, 0))
852 return (_len);
853 uaddr++;
854 len--;
855 }
856
857 /* zero 8 bytes at a time */
858 while (len > 7) {
859 #ifdef __LP64__
860 if (suword64(uaddr, 0))
861 return (_len);
862 #else
863 if (suword32(uaddr, 0))
864 return (_len);
865 if (suword32(uaddr + 4, 0))
866 return (_len);
867 #endif
868 uaddr += 8;
869 len -= 8;
870 }
871
872 /* zero fill end, if any */
873 while (len > 0) {
874 if (subyte(uaddr, 0))
875 return (_len);
876 uaddr++;
877 len--;
878 }
879 return (0);
880 }
881
882 int
linux_access_ok(const void * uaddr,size_t len)883 linux_access_ok(const void *uaddr, size_t len)
884 {
885 uintptr_t saddr;
886 uintptr_t eaddr;
887
888 /* get start and end address */
889 saddr = (uintptr_t)uaddr;
890 eaddr = (uintptr_t)uaddr + len;
891
892 /* verify addresses are valid for userspace */
893 return ((saddr == eaddr) ||
894 (eaddr > saddr && eaddr <= VM_MAXUSER_ADDRESS));
895 }
896
897 /*
898 * This function should return either EINTR or ERESTART depending on
899 * the signal type sent to this thread:
900 */
901 static int
linux_get_error(struct task_struct * task,int error)902 linux_get_error(struct task_struct *task, int error)
903 {
904 /* check for signal type interrupt code */
905 if (error == EINTR || error == ERESTARTSYS || error == ERESTART) {
906 error = -linux_schedule_get_interrupt_value(task);
907 if (error == 0)
908 error = EINTR;
909 }
910 return (error);
911 }
912
913 static int
linux_file_ioctl_sub(struct file * fp,struct linux_file * filp,const struct file_operations * fop,u_long cmd,caddr_t data,struct thread * td)914 linux_file_ioctl_sub(struct file *fp, struct linux_file *filp,
915 const struct file_operations *fop, u_long cmd, caddr_t data,
916 struct thread *td)
917 {
918 struct task_struct *task = current;
919 unsigned size;
920 int error;
921
922 size = IOCPARM_LEN(cmd);
923 /* refer to logic in sys_ioctl() */
924 if (size > 0) {
925 /*
926 * Setup hint for linux_copyin() and linux_copyout().
927 *
928 * Background: Linux code expects a user-space address
929 * while FreeBSD supplies a kernel-space address.
930 */
931 task->bsd_ioctl_data = data;
932 task->bsd_ioctl_len = size;
933 data = (void *)LINUX_IOCTL_MIN_PTR;
934 } else {
935 /* fetch user-space pointer */
936 data = *(void **)data;
937 }
938 #ifdef COMPAT_FREEBSD32
939 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
940 /* try the compat IOCTL handler first */
941 if (fop->compat_ioctl != NULL) {
942 error = -OPW(fp, td, fop->compat_ioctl(filp,
943 cmd, (u_long)data));
944 } else {
945 error = ENOTTY;
946 }
947
948 /* fallback to the regular IOCTL handler, if any */
949 if (error == ENOTTY && fop->unlocked_ioctl != NULL) {
950 error = -OPW(fp, td, fop->unlocked_ioctl(filp,
951 cmd, (u_long)data));
952 }
953 } else
954 #endif
955 {
956 if (fop->unlocked_ioctl != NULL) {
957 error = -OPW(fp, td, fop->unlocked_ioctl(filp,
958 cmd, (u_long)data));
959 } else {
960 error = ENOTTY;
961 }
962 }
963 if (size > 0) {
964 task->bsd_ioctl_data = NULL;
965 task->bsd_ioctl_len = 0;
966 }
967
968 if (error == EWOULDBLOCK) {
969 /* update kqfilter status, if any */
970 linux_file_kqfilter_poll(filp,
971 LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
972 } else {
973 error = linux_get_error(task, error);
974 }
975 return (error);
976 }
977
978 #define LINUX_POLL_TABLE_NORMAL ((poll_table *)1)
979
980 /*
981 * This function atomically updates the poll wakeup state and returns
982 * the previous state at the time of update.
983 */
984 static uint8_t
linux_poll_wakeup_state(atomic_t * v,const uint8_t * pstate)985 linux_poll_wakeup_state(atomic_t *v, const uint8_t *pstate)
986 {
987 int c, old;
988
989 c = v->counter;
990
991 while ((old = atomic_cmpxchg(v, c, pstate[c])) != c)
992 c = old;
993
994 return (c);
995 }
996
997 static int
linux_poll_wakeup_callback(wait_queue_t * wq,unsigned int wq_state,int flags,void * key)998 linux_poll_wakeup_callback(wait_queue_t *wq, unsigned int wq_state, int flags, void *key)
999 {
1000 static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1001 [LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */
1002 [LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1003 [LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_READY,
1004 [LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_READY, /* NOP */
1005 };
1006 struct linux_file *filp = container_of(wq, struct linux_file, f_wait_queue.wq);
1007
1008 switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1009 case LINUX_FWQ_STATE_QUEUED:
1010 linux_poll_wakeup(filp);
1011 return (1);
1012 default:
1013 return (0);
1014 }
1015 }
1016
1017 void
linux_poll_wait(struct linux_file * filp,wait_queue_head_t * wqh,poll_table * p)1018 linux_poll_wait(struct linux_file *filp, wait_queue_head_t *wqh, poll_table *p)
1019 {
1020 static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1021 [LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_NOT_READY,
1022 [LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1023 [LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_QUEUED, /* NOP */
1024 [LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_QUEUED,
1025 };
1026
1027 /* check if we are called inside the select system call */
1028 if (p == LINUX_POLL_TABLE_NORMAL)
1029 selrecord(curthread, &filp->f_selinfo);
1030
1031 switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1032 case LINUX_FWQ_STATE_INIT:
1033 /* NOTE: file handles can only belong to one wait-queue */
1034 filp->f_wait_queue.wqh = wqh;
1035 filp->f_wait_queue.wq.func = &linux_poll_wakeup_callback;
1036 add_wait_queue(wqh, &filp->f_wait_queue.wq);
1037 atomic_set(&filp->f_wait_queue.state, LINUX_FWQ_STATE_QUEUED);
1038 break;
1039 default:
1040 break;
1041 }
1042 }
1043
1044 static void
linux_poll_wait_dequeue(struct linux_file * filp)1045 linux_poll_wait_dequeue(struct linux_file *filp)
1046 {
1047 static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1048 [LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */
1049 [LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_INIT,
1050 [LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_INIT,
1051 [LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_INIT,
1052 };
1053
1054 seldrain(&filp->f_selinfo);
1055
1056 switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1057 case LINUX_FWQ_STATE_NOT_READY:
1058 case LINUX_FWQ_STATE_QUEUED:
1059 case LINUX_FWQ_STATE_READY:
1060 remove_wait_queue(filp->f_wait_queue.wqh, &filp->f_wait_queue.wq);
1061 break;
1062 default:
1063 break;
1064 }
1065 }
1066
1067 void
linux_poll_wakeup(struct linux_file * filp)1068 linux_poll_wakeup(struct linux_file *filp)
1069 {
1070 /* this function should be NULL-safe */
1071 if (filp == NULL)
1072 return;
1073
1074 selwakeup(&filp->f_selinfo);
1075
1076 spin_lock(&filp->f_kqlock);
1077 filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ |
1078 LINUX_KQ_FLAG_NEED_WRITE;
1079
1080 /* make sure the "knote" gets woken up */
1081 KNOTE_LOCKED(&filp->f_selinfo.si_note, 1);
1082 spin_unlock(&filp->f_kqlock);
1083 }
1084
1085 static void
linux_file_kqfilter_detach(struct knote * kn)1086 linux_file_kqfilter_detach(struct knote *kn)
1087 {
1088 struct linux_file *filp = kn->kn_hook;
1089
1090 spin_lock(&filp->f_kqlock);
1091 knlist_remove(&filp->f_selinfo.si_note, kn, 1);
1092 spin_unlock(&filp->f_kqlock);
1093 }
1094
1095 static int
linux_file_kqfilter_read_event(struct knote * kn,long hint)1096 linux_file_kqfilter_read_event(struct knote *kn, long hint)
1097 {
1098 struct linux_file *filp = kn->kn_hook;
1099
1100 mtx_assert(&filp->f_kqlock, MA_OWNED);
1101
1102 return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_READ) ? 1 : 0);
1103 }
1104
1105 static int
linux_file_kqfilter_write_event(struct knote * kn,long hint)1106 linux_file_kqfilter_write_event(struct knote *kn, long hint)
1107 {
1108 struct linux_file *filp = kn->kn_hook;
1109
1110 mtx_assert(&filp->f_kqlock, MA_OWNED);
1111
1112 return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_WRITE) ? 1 : 0);
1113 }
1114
1115 static const struct filterops linux_dev_kqfiltops_read = {
1116 .f_isfd = 1,
1117 .f_detach = linux_file_kqfilter_detach,
1118 .f_event = linux_file_kqfilter_read_event,
1119 };
1120
1121 static const struct filterops linux_dev_kqfiltops_write = {
1122 .f_isfd = 1,
1123 .f_detach = linux_file_kqfilter_detach,
1124 .f_event = linux_file_kqfilter_write_event,
1125 };
1126
1127 static void
linux_file_kqfilter_poll(struct linux_file * filp,int kqflags)1128 linux_file_kqfilter_poll(struct linux_file *filp, int kqflags)
1129 {
1130 struct thread *td;
1131 const struct file_operations *fop;
1132 struct linux_cdev *ldev;
1133 int temp;
1134
1135 if ((filp->f_kqflags & kqflags) == 0)
1136 return;
1137
1138 td = curthread;
1139
1140 linux_get_fop(filp, &fop, &ldev);
1141 /* get the latest polling state */
1142 temp = OPW(filp->_file, td, fop->poll(filp, NULL));
1143 linux_drop_fop(ldev);
1144
1145 spin_lock(&filp->f_kqlock);
1146 /* clear kqflags */
1147 filp->f_kqflags &= ~(LINUX_KQ_FLAG_NEED_READ |
1148 LINUX_KQ_FLAG_NEED_WRITE);
1149 /* update kqflags */
1150 if ((temp & (POLLIN | POLLOUT)) != 0) {
1151 if ((temp & POLLIN) != 0)
1152 filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ;
1153 if ((temp & POLLOUT) != 0)
1154 filp->f_kqflags |= LINUX_KQ_FLAG_NEED_WRITE;
1155
1156 /* make sure the "knote" gets woken up */
1157 KNOTE_LOCKED(&filp->f_selinfo.si_note, 0);
1158 }
1159 spin_unlock(&filp->f_kqlock);
1160 }
1161
1162 static int
linux_file_kqfilter(struct file * file,struct knote * kn)1163 linux_file_kqfilter(struct file *file, struct knote *kn)
1164 {
1165 struct linux_file *filp;
1166 struct thread *td;
1167 int error;
1168
1169 td = curthread;
1170 filp = (struct linux_file *)file->f_data;
1171 filp->f_flags = file->f_flag;
1172 if (filp->f_op->poll == NULL)
1173 return (EINVAL);
1174
1175 spin_lock(&filp->f_kqlock);
1176 switch (kn->kn_filter) {
1177 case EVFILT_READ:
1178 filp->f_kqflags |= LINUX_KQ_FLAG_HAS_READ;
1179 kn->kn_fop = &linux_dev_kqfiltops_read;
1180 kn->kn_hook = filp;
1181 knlist_add(&filp->f_selinfo.si_note, kn, 1);
1182 error = 0;
1183 break;
1184 case EVFILT_WRITE:
1185 filp->f_kqflags |= LINUX_KQ_FLAG_HAS_WRITE;
1186 kn->kn_fop = &linux_dev_kqfiltops_write;
1187 kn->kn_hook = filp;
1188 knlist_add(&filp->f_selinfo.si_note, kn, 1);
1189 error = 0;
1190 break;
1191 default:
1192 error = EINVAL;
1193 break;
1194 }
1195 spin_unlock(&filp->f_kqlock);
1196
1197 if (error == 0) {
1198 linux_set_current(td);
1199
1200 /* update kqfilter status, if any */
1201 linux_file_kqfilter_poll(filp,
1202 LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
1203 }
1204 return (error);
1205 }
1206
1207 static int
linux_file_mmap_single(struct file * fp,const struct file_operations * fop,vm_ooffset_t * offset,vm_size_t size,struct vm_object ** object,int nprot,bool is_shared,struct thread * td)1208 linux_file_mmap_single(struct file *fp, const struct file_operations *fop,
1209 vm_ooffset_t *offset, vm_size_t size, struct vm_object **object,
1210 int nprot, bool is_shared, struct thread *td)
1211 {
1212 struct task_struct *task;
1213 struct vm_area_struct *vmap;
1214 struct mm_struct *mm;
1215 struct linux_file *filp;
1216 vm_memattr_t attr;
1217 int error;
1218
1219 filp = (struct linux_file *)fp->f_data;
1220 filp->f_flags = fp->f_flag;
1221
1222 if (fop->mmap == NULL)
1223 return (EOPNOTSUPP);
1224
1225 linux_set_current(td);
1226
1227 /*
1228 * The same VM object might be shared by multiple processes
1229 * and the mm_struct is usually freed when a process exits.
1230 *
1231 * The atomic reference below makes sure the mm_struct is
1232 * available as long as the vmap is in the linux_vma_head.
1233 */
1234 task = current;
1235 mm = task->mm;
1236 if (atomic_inc_not_zero(&mm->mm_users) == 0)
1237 return (EINVAL);
1238
1239 vmap = kzalloc(sizeof(*vmap), GFP_KERNEL);
1240 vmap->vm_start = 0;
1241 vmap->vm_end = size;
1242 vmap->vm_pgoff = *offset / PAGE_SIZE;
1243 vmap->vm_pfn = 0;
1244 vmap->vm_flags = vmap->vm_page_prot = (nprot & VM_PROT_ALL);
1245 if (is_shared)
1246 vmap->vm_flags |= VM_SHARED;
1247 vmap->vm_ops = NULL;
1248 vmap->vm_file = get_file(filp);
1249 vmap->vm_mm = mm;
1250
1251 if (unlikely(down_write_killable(&vmap->vm_mm->mmap_sem))) {
1252 error = linux_get_error(task, EINTR);
1253 } else {
1254 error = -OPW(fp, td, fop->mmap(filp, vmap));
1255 error = linux_get_error(task, error);
1256 up_write(&vmap->vm_mm->mmap_sem);
1257 }
1258
1259 if (error != 0) {
1260 linux_cdev_handle_free(vmap);
1261 return (error);
1262 }
1263
1264 attr = pgprot2cachemode(vmap->vm_page_prot);
1265
1266 if (vmap->vm_ops != NULL) {
1267 struct vm_area_struct *ptr;
1268 void *vm_private_data;
1269 bool vm_no_fault;
1270
1271 if (vmap->vm_ops->open == NULL ||
1272 vmap->vm_ops->close == NULL ||
1273 vmap->vm_private_data == NULL) {
1274 /* free allocated VM area struct */
1275 linux_cdev_handle_free(vmap);
1276 return (EINVAL);
1277 }
1278
1279 vm_private_data = vmap->vm_private_data;
1280
1281 rw_wlock(&linux_vma_lock);
1282 TAILQ_FOREACH(ptr, &linux_vma_head, vm_entry) {
1283 if (ptr->vm_private_data == vm_private_data)
1284 break;
1285 }
1286 /* check if there is an existing VM area struct */
1287 if (ptr != NULL) {
1288 /* check if the VM area structure is invalid */
1289 if (ptr->vm_ops == NULL ||
1290 ptr->vm_ops->open == NULL ||
1291 ptr->vm_ops->close == NULL) {
1292 error = ESTALE;
1293 vm_no_fault = 1;
1294 } else {
1295 error = EEXIST;
1296 vm_no_fault = (ptr->vm_ops->fault == NULL);
1297 }
1298 } else {
1299 /* insert VM area structure into list */
1300 TAILQ_INSERT_TAIL(&linux_vma_head, vmap, vm_entry);
1301 error = 0;
1302 vm_no_fault = (vmap->vm_ops->fault == NULL);
1303 }
1304 rw_wunlock(&linux_vma_lock);
1305
1306 if (error != 0) {
1307 /* free allocated VM area struct */
1308 linux_cdev_handle_free(vmap);
1309 /* check for stale VM area struct */
1310 if (error != EEXIST)
1311 return (error);
1312 }
1313
1314 /* check if there is no fault handler */
1315 if (vm_no_fault) {
1316 *object = cdev_pager_allocate(vm_private_data, OBJT_DEVICE,
1317 &linux_cdev_pager_ops[1], size, nprot, *offset,
1318 td->td_ucred);
1319 } else {
1320 *object = cdev_pager_allocate(vm_private_data, OBJT_MGTDEVICE,
1321 &linux_cdev_pager_ops[0], size, nprot, *offset,
1322 td->td_ucred);
1323 }
1324
1325 /* check if allocating the VM object failed */
1326 if (*object == NULL) {
1327 if (error == 0) {
1328 /* remove VM area struct from list */
1329 linux_cdev_handle_remove(vmap);
1330 /* free allocated VM area struct */
1331 linux_cdev_handle_free(vmap);
1332 }
1333 return (EINVAL);
1334 }
1335 } else {
1336 struct sglist *sg;
1337
1338 sg = sglist_alloc(1, M_WAITOK);
1339 sglist_append_phys(sg,
1340 (vm_paddr_t)vmap->vm_pfn << PAGE_SHIFT, vmap->vm_len);
1341
1342 *object = vm_pager_allocate(OBJT_SG, sg, vmap->vm_len,
1343 nprot, 0, td->td_ucred);
1344
1345 linux_cdev_handle_free(vmap);
1346
1347 if (*object == NULL) {
1348 sglist_free(sg);
1349 return (EINVAL);
1350 }
1351 }
1352
1353 if (attr != VM_MEMATTR_DEFAULT) {
1354 VM_OBJECT_WLOCK(*object);
1355 vm_object_set_memattr(*object, attr);
1356 VM_OBJECT_WUNLOCK(*object);
1357 }
1358 *offset = 0;
1359 return (0);
1360 }
1361
1362 struct cdevsw linuxcdevsw = {
1363 .d_version = D_VERSION,
1364 .d_fdopen = linux_dev_fdopen,
1365 .d_name = "lkpidev",
1366 };
1367
1368 static int
linux_file_read(struct file * file,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1369 linux_file_read(struct file *file, struct uio *uio, struct ucred *active_cred,
1370 int flags, struct thread *td)
1371 {
1372 struct linux_file *filp;
1373 const struct file_operations *fop;
1374 struct linux_cdev *ldev;
1375 ssize_t bytes;
1376 int error;
1377
1378 error = 0;
1379 filp = (struct linux_file *)file->f_data;
1380 filp->f_flags = file->f_flag;
1381 /* XXX no support for I/O vectors currently */
1382 if (uio->uio_iovcnt != 1)
1383 return (EOPNOTSUPP);
1384 if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1385 return (EINVAL);
1386 linux_set_current(td);
1387 linux_get_fop(filp, &fop, &ldev);
1388 if (fop->read != NULL) {
1389 bytes = OPW(file, td, fop->read(filp,
1390 uio->uio_iov->iov_base,
1391 uio->uio_iov->iov_len, &uio->uio_offset));
1392 if (bytes >= 0) {
1393 uio->uio_iov->iov_base =
1394 ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1395 uio->uio_iov->iov_len -= bytes;
1396 uio->uio_resid -= bytes;
1397 } else {
1398 error = linux_get_error(current, -bytes);
1399 }
1400 } else
1401 error = ENXIO;
1402
1403 /* update kqfilter status, if any */
1404 linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_READ);
1405 linux_drop_fop(ldev);
1406
1407 return (error);
1408 }
1409
1410 static int
linux_file_write(struct file * file,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1411 linux_file_write(struct file *file, struct uio *uio, struct ucred *active_cred,
1412 int flags, struct thread *td)
1413 {
1414 struct linux_file *filp;
1415 const struct file_operations *fop;
1416 struct linux_cdev *ldev;
1417 ssize_t bytes;
1418 int error;
1419
1420 filp = (struct linux_file *)file->f_data;
1421 filp->f_flags = file->f_flag;
1422 /* XXX no support for I/O vectors currently */
1423 if (uio->uio_iovcnt != 1)
1424 return (EOPNOTSUPP);
1425 if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1426 return (EINVAL);
1427 linux_set_current(td);
1428 linux_get_fop(filp, &fop, &ldev);
1429 if (fop->write != NULL) {
1430 bytes = OPW(file, td, fop->write(filp,
1431 uio->uio_iov->iov_base,
1432 uio->uio_iov->iov_len, &uio->uio_offset));
1433 if (bytes >= 0) {
1434 uio->uio_iov->iov_base =
1435 ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1436 uio->uio_iov->iov_len -= bytes;
1437 uio->uio_resid -= bytes;
1438 error = 0;
1439 } else {
1440 error = linux_get_error(current, -bytes);
1441 }
1442 } else
1443 error = ENXIO;
1444
1445 /* update kqfilter status, if any */
1446 linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_WRITE);
1447
1448 linux_drop_fop(ldev);
1449
1450 return (error);
1451 }
1452
1453 static int
linux_file_poll(struct file * file,int events,struct ucred * active_cred,struct thread * td)1454 linux_file_poll(struct file *file, int events, struct ucred *active_cred,
1455 struct thread *td)
1456 {
1457 struct linux_file *filp;
1458 const struct file_operations *fop;
1459 struct linux_cdev *ldev;
1460 int revents;
1461
1462 filp = (struct linux_file *)file->f_data;
1463 filp->f_flags = file->f_flag;
1464 linux_set_current(td);
1465 linux_get_fop(filp, &fop, &ldev);
1466 if (fop->poll != NULL) {
1467 revents = OPW(file, td, fop->poll(filp,
1468 LINUX_POLL_TABLE_NORMAL)) & events;
1469 } else {
1470 revents = 0;
1471 }
1472 linux_drop_fop(ldev);
1473 return (revents);
1474 }
1475
1476 static int
linux_file_close(struct file * file,struct thread * td)1477 linux_file_close(struct file *file, struct thread *td)
1478 {
1479 struct linux_file *filp;
1480 int (*release)(struct inode *, struct linux_file *);
1481 const struct file_operations *fop;
1482 struct linux_cdev *ldev;
1483 int error;
1484
1485 filp = (struct linux_file *)file->f_data;
1486
1487 KASSERT(file_count(filp) == 0,
1488 ("File refcount(%d) is not zero", file_count(filp)));
1489
1490 if (td == NULL)
1491 td = curthread;
1492
1493 error = 0;
1494 filp->f_flags = file->f_flag;
1495 linux_set_current(td);
1496 linux_poll_wait_dequeue(filp);
1497 linux_get_fop(filp, &fop, &ldev);
1498 /*
1499 * Always use the real release function, if any, to avoid
1500 * leaking device resources:
1501 */
1502 release = filp->f_op->release;
1503 if (release != NULL)
1504 error = -OPW(file, td, release(filp->f_vnode, filp));
1505 funsetown(&filp->f_sigio);
1506 if (filp->f_vnode != NULL)
1507 vrele(filp->f_vnode);
1508 linux_drop_fop(ldev);
1509 ldev = filp->f_cdev;
1510 if (ldev != NULL)
1511 linux_cdev_deref(ldev);
1512 linux_synchronize_rcu(RCU_TYPE_REGULAR);
1513 kfree(filp);
1514
1515 return (error);
1516 }
1517
1518 static int
linux_file_ioctl(struct file * fp,u_long cmd,void * data,struct ucred * cred,struct thread * td)1519 linux_file_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *cred,
1520 struct thread *td)
1521 {
1522 struct linux_file *filp;
1523 const struct file_operations *fop;
1524 struct linux_cdev *ldev;
1525 struct fiodgname_arg *fgn;
1526 const char *p;
1527 int error, i;
1528
1529 error = 0;
1530 filp = (struct linux_file *)fp->f_data;
1531 filp->f_flags = fp->f_flag;
1532 linux_get_fop(filp, &fop, &ldev);
1533
1534 linux_set_current(td);
1535 switch (cmd) {
1536 case FIONBIO:
1537 break;
1538 case FIOASYNC:
1539 if (fop->fasync == NULL)
1540 break;
1541 error = -OPW(fp, td, fop->fasync(0, filp, fp->f_flag & FASYNC));
1542 break;
1543 case FIOSETOWN:
1544 error = fsetown(*(int *)data, &filp->f_sigio);
1545 if (error == 0) {
1546 if (fop->fasync == NULL)
1547 break;
1548 error = -OPW(fp, td, fop->fasync(0, filp,
1549 fp->f_flag & FASYNC));
1550 }
1551 break;
1552 case FIOGETOWN:
1553 *(int *)data = fgetown(&filp->f_sigio);
1554 break;
1555 case FIODGNAME:
1556 #ifdef COMPAT_FREEBSD32
1557 case FIODGNAME_32:
1558 #endif
1559 if (filp->f_cdev == NULL || filp->f_cdev->cdev == NULL) {
1560 error = ENXIO;
1561 break;
1562 }
1563 fgn = data;
1564 p = devtoname(filp->f_cdev->cdev);
1565 i = strlen(p) + 1;
1566 if (i > fgn->len) {
1567 error = EINVAL;
1568 break;
1569 }
1570 error = copyout(p, fiodgname_buf_get_ptr(fgn, cmd), i);
1571 break;
1572 default:
1573 error = linux_file_ioctl_sub(fp, filp, fop, cmd, data, td);
1574 break;
1575 }
1576 linux_drop_fop(ldev);
1577 return (error);
1578 }
1579
1580 static int
linux_file_mmap_sub(struct thread * td,vm_size_t objsize,vm_prot_t prot,vm_prot_t maxprot,int flags,struct file * fp,vm_ooffset_t * foff,const struct file_operations * fop,vm_object_t * objp)1581 linux_file_mmap_sub(struct thread *td, vm_size_t objsize, vm_prot_t prot,
1582 vm_prot_t maxprot, int flags, struct file *fp,
1583 vm_ooffset_t *foff, const struct file_operations *fop, vm_object_t *objp)
1584 {
1585 /*
1586 * Character devices do not provide private mappings
1587 * of any kind:
1588 */
1589 if ((maxprot & VM_PROT_WRITE) == 0 &&
1590 (prot & VM_PROT_WRITE) != 0)
1591 return (EACCES);
1592 if ((flags & (MAP_PRIVATE | MAP_COPY)) != 0)
1593 return (EINVAL);
1594
1595 return (linux_file_mmap_single(fp, fop, foff, objsize, objp,
1596 (int)prot, (flags & MAP_SHARED) ? true : false, td));
1597 }
1598
1599 static int
linux_file_mmap(struct file * fp,vm_map_t map,vm_offset_t * addr,vm_size_t size,vm_prot_t prot,vm_prot_t cap_maxprot,int flags,vm_ooffset_t foff,struct thread * td)1600 linux_file_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
1601 vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
1602 struct thread *td)
1603 {
1604 struct linux_file *filp;
1605 const struct file_operations *fop;
1606 struct linux_cdev *ldev;
1607 struct mount *mp;
1608 struct vnode *vp;
1609 vm_object_t object;
1610 vm_prot_t maxprot;
1611 int error;
1612
1613 filp = (struct linux_file *)fp->f_data;
1614
1615 vp = filp->f_vnode;
1616 if (vp == NULL)
1617 return (EOPNOTSUPP);
1618
1619 /*
1620 * Ensure that file and memory protections are
1621 * compatible.
1622 */
1623 mp = vp->v_mount;
1624 if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
1625 maxprot = VM_PROT_NONE;
1626 if ((prot & VM_PROT_EXECUTE) != 0)
1627 return (EACCES);
1628 } else
1629 maxprot = VM_PROT_EXECUTE;
1630 if ((fp->f_flag & FREAD) != 0)
1631 maxprot |= VM_PROT_READ;
1632 else if ((prot & VM_PROT_READ) != 0)
1633 return (EACCES);
1634
1635 /*
1636 * If we are sharing potential changes via MAP_SHARED and we
1637 * are trying to get write permission although we opened it
1638 * without asking for it, bail out.
1639 *
1640 * Note that most character devices always share mappings.
1641 *
1642 * Rely on linux_file_mmap_sub() to fail invalid MAP_PRIVATE
1643 * requests rather than doing it here.
1644 */
1645 if ((flags & MAP_SHARED) != 0) {
1646 if ((fp->f_flag & FWRITE) != 0)
1647 maxprot |= VM_PROT_WRITE;
1648 else if ((prot & VM_PROT_WRITE) != 0)
1649 return (EACCES);
1650 }
1651 maxprot &= cap_maxprot;
1652
1653 linux_get_fop(filp, &fop, &ldev);
1654 error = linux_file_mmap_sub(td, size, prot, maxprot, flags, fp,
1655 &foff, fop, &object);
1656 if (error != 0)
1657 goto out;
1658
1659 error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
1660 foff, FALSE, td);
1661 if (error != 0)
1662 vm_object_deallocate(object);
1663 out:
1664 linux_drop_fop(ldev);
1665 return (error);
1666 }
1667
1668 static int
linux_file_stat(struct file * fp,struct stat * sb,struct ucred * active_cred)1669 linux_file_stat(struct file *fp, struct stat *sb, struct ucred *active_cred)
1670 {
1671 struct linux_file *filp;
1672 struct vnode *vp;
1673 int error;
1674
1675 filp = (struct linux_file *)fp->f_data;
1676 if (filp->f_vnode == NULL)
1677 return (EOPNOTSUPP);
1678
1679 vp = filp->f_vnode;
1680
1681 vn_lock(vp, LK_SHARED | LK_RETRY);
1682 error = VOP_STAT(vp, sb, curthread->td_ucred, NOCRED);
1683 VOP_UNLOCK(vp);
1684
1685 return (error);
1686 }
1687
1688 static int
linux_file_fill_kinfo(struct file * fp,struct kinfo_file * kif,struct filedesc * fdp)1689 linux_file_fill_kinfo(struct file *fp, struct kinfo_file *kif,
1690 struct filedesc *fdp)
1691 {
1692 struct linux_file *filp;
1693 struct vnode *vp;
1694 int error;
1695
1696 filp = fp->f_data;
1697 vp = filp->f_vnode;
1698 if (vp == NULL) {
1699 error = 0;
1700 kif->kf_type = KF_TYPE_DEV;
1701 } else {
1702 vref(vp);
1703 FILEDESC_SUNLOCK(fdp);
1704 error = vn_fill_kinfo_vnode(vp, kif);
1705 vrele(vp);
1706 kif->kf_type = KF_TYPE_VNODE;
1707 FILEDESC_SLOCK(fdp);
1708 }
1709 return (error);
1710 }
1711
1712 unsigned int
linux_iminor(struct inode * inode)1713 linux_iminor(struct inode *inode)
1714 {
1715 struct linux_cdev *ldev;
1716
1717 if (inode == NULL || inode->v_rdev == NULL ||
1718 inode->v_rdev->si_devsw != &linuxcdevsw)
1719 return (-1U);
1720 ldev = inode->v_rdev->si_drv1;
1721 if (ldev == NULL)
1722 return (-1U);
1723
1724 return (minor(ldev->dev));
1725 }
1726
1727 static int
linux_file_kcmp(struct file * fp1,struct file * fp2,struct thread * td)1728 linux_file_kcmp(struct file *fp1, struct file *fp2, struct thread *td)
1729 {
1730 struct linux_file *filp1, *filp2;
1731
1732 if (fp2->f_type != DTYPE_DEV)
1733 return (3);
1734
1735 filp1 = fp1->f_data;
1736 filp2 = fp2->f_data;
1737 return (kcmp_cmp((uintptr_t)filp1->f_cdev, (uintptr_t)filp2->f_cdev));
1738 }
1739
1740 const struct fileops linuxfileops = {
1741 .fo_read = linux_file_read,
1742 .fo_write = linux_file_write,
1743 .fo_truncate = invfo_truncate,
1744 .fo_kqfilter = linux_file_kqfilter,
1745 .fo_stat = linux_file_stat,
1746 .fo_fill_kinfo = linux_file_fill_kinfo,
1747 .fo_poll = linux_file_poll,
1748 .fo_close = linux_file_close,
1749 .fo_ioctl = linux_file_ioctl,
1750 .fo_mmap = linux_file_mmap,
1751 .fo_chmod = invfo_chmod,
1752 .fo_chown = invfo_chown,
1753 .fo_sendfile = invfo_sendfile,
1754 .fo_cmp = linux_file_kcmp,
1755 .fo_flags = DFLAG_PASSABLE,
1756 };
1757
1758 /*
1759 * Hash of vmmap addresses. This is infrequently accessed and does not
1760 * need to be particularly large. This is done because we must store the
1761 * caller's idea of the map size to properly unmap.
1762 */
1763 struct vmmap {
1764 LIST_ENTRY(vmmap) vm_next;
1765 void *vm_addr;
1766 unsigned long vm_size;
1767 };
1768
1769 struct vmmaphd {
1770 struct vmmap *lh_first;
1771 };
1772 #define VMMAP_HASH_SIZE 64
1773 #define VMMAP_HASH_MASK (VMMAP_HASH_SIZE - 1)
1774 #define VM_HASH(addr) ((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK
1775 static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE];
1776 static struct mtx vmmaplock;
1777
1778 static void
vmmap_add(void * addr,unsigned long size)1779 vmmap_add(void *addr, unsigned long size)
1780 {
1781 struct vmmap *vmmap;
1782
1783 vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL);
1784 mtx_lock(&vmmaplock);
1785 vmmap->vm_size = size;
1786 vmmap->vm_addr = addr;
1787 LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next);
1788 mtx_unlock(&vmmaplock);
1789 }
1790
1791 static struct vmmap *
vmmap_remove(void * addr)1792 vmmap_remove(void *addr)
1793 {
1794 struct vmmap *vmmap;
1795
1796 mtx_lock(&vmmaplock);
1797 LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next)
1798 if (vmmap->vm_addr == addr)
1799 break;
1800 if (vmmap)
1801 LIST_REMOVE(vmmap, vm_next);
1802 mtx_unlock(&vmmaplock);
1803
1804 return (vmmap);
1805 }
1806
1807 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv)
1808 void *
_ioremap_attr(vm_paddr_t phys_addr,unsigned long size,int attr)1809 _ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr)
1810 {
1811 void *addr;
1812
1813 addr = pmap_mapdev_attr(phys_addr, size, attr);
1814 if (addr == NULL)
1815 return (NULL);
1816 vmmap_add(addr, size);
1817
1818 return (addr);
1819 }
1820 #endif
1821
1822 void
iounmap(void * addr)1823 iounmap(void *addr)
1824 {
1825 struct vmmap *vmmap;
1826
1827 vmmap = vmmap_remove(addr);
1828 if (vmmap == NULL)
1829 return;
1830 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv)
1831 pmap_unmapdev(addr, vmmap->vm_size);
1832 #endif
1833 kfree(vmmap);
1834 }
1835
1836 void *
vmap(struct page ** pages,unsigned int count,unsigned long flags,int prot)1837 vmap(struct page **pages, unsigned int count, unsigned long flags, int prot)
1838 {
1839 vm_offset_t off;
1840 size_t size;
1841
1842 size = count * PAGE_SIZE;
1843 off = kva_alloc(size);
1844 if (off == 0)
1845 return (NULL);
1846 vmmap_add((void *)off, size);
1847 pmap_qenter(off, pages, count);
1848
1849 return ((void *)off);
1850 }
1851
1852 void
vunmap(void * addr)1853 vunmap(void *addr)
1854 {
1855 struct vmmap *vmmap;
1856
1857 vmmap = vmmap_remove(addr);
1858 if (vmmap == NULL)
1859 return;
1860 pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE);
1861 kva_free((vm_offset_t)addr, vmmap->vm_size);
1862 kfree(vmmap);
1863 }
1864
1865 static char *
devm_kvasprintf(struct device * dev,gfp_t gfp,const char * fmt,va_list ap)1866 devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt, va_list ap)
1867 {
1868 unsigned int len;
1869 char *p;
1870 va_list aq;
1871
1872 va_copy(aq, ap);
1873 len = vsnprintf(NULL, 0, fmt, aq);
1874 va_end(aq);
1875
1876 if (dev != NULL)
1877 p = devm_kmalloc(dev, len + 1, gfp);
1878 else
1879 p = kmalloc(len + 1, gfp);
1880 if (p != NULL)
1881 vsnprintf(p, len + 1, fmt, ap);
1882
1883 return (p);
1884 }
1885
1886 char *
kvasprintf(gfp_t gfp,const char * fmt,va_list ap)1887 kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
1888 {
1889
1890 return (devm_kvasprintf(NULL, gfp, fmt, ap));
1891 }
1892
1893 char *
lkpi_devm_kasprintf(struct device * dev,gfp_t gfp,const char * fmt,...)1894 lkpi_devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...)
1895 {
1896 va_list ap;
1897 char *p;
1898
1899 va_start(ap, fmt);
1900 p = devm_kvasprintf(dev, gfp, fmt, ap);
1901 va_end(ap);
1902
1903 return (p);
1904 }
1905
1906 char *
kasprintf(gfp_t gfp,const char * fmt,...)1907 kasprintf(gfp_t gfp, const char *fmt, ...)
1908 {
1909 va_list ap;
1910 char *p;
1911
1912 va_start(ap, fmt);
1913 p = kvasprintf(gfp, fmt, ap);
1914 va_end(ap);
1915
1916 return (p);
1917 }
1918
1919 static void
linux_timer_callback_wrapper(void * context)1920 linux_timer_callback_wrapper(void *context)
1921 {
1922 struct timer_list *timer;
1923
1924 timer = context;
1925
1926 /* the timer is about to be shutdown permanently */
1927 if (timer->function == NULL)
1928 return;
1929
1930 if (linux_set_current_flags(curthread, M_NOWAIT)) {
1931 /* try again later */
1932 callout_reset(&timer->callout, 1,
1933 &linux_timer_callback_wrapper, timer);
1934 return;
1935 }
1936
1937 timer->function(timer->data);
1938 }
1939
1940 int
mod_timer(struct timer_list * timer,int expires)1941 mod_timer(struct timer_list *timer, int expires)
1942 {
1943 int ret;
1944
1945 timer->expires = expires;
1946 ret = callout_reset(&timer->callout,
1947 linux_timer_jiffies_until(expires),
1948 &linux_timer_callback_wrapper, timer);
1949
1950 MPASS(ret == 0 || ret == 1);
1951
1952 return (ret == 1);
1953 }
1954
1955 void
add_timer(struct timer_list * timer)1956 add_timer(struct timer_list *timer)
1957 {
1958
1959 callout_reset(&timer->callout,
1960 linux_timer_jiffies_until(timer->expires),
1961 &linux_timer_callback_wrapper, timer);
1962 }
1963
1964 void
add_timer_on(struct timer_list * timer,int cpu)1965 add_timer_on(struct timer_list *timer, int cpu)
1966 {
1967
1968 callout_reset_on(&timer->callout,
1969 linux_timer_jiffies_until(timer->expires),
1970 &linux_timer_callback_wrapper, timer, cpu);
1971 }
1972
1973 int
del_timer(struct timer_list * timer)1974 del_timer(struct timer_list *timer)
1975 {
1976
1977 if (callout_stop(&(timer)->callout) == -1)
1978 return (0);
1979 return (1);
1980 }
1981
1982 int
del_timer_sync(struct timer_list * timer)1983 del_timer_sync(struct timer_list *timer)
1984 {
1985
1986 if (callout_drain(&(timer)->callout) == -1)
1987 return (0);
1988 return (1);
1989 }
1990
1991 int
timer_delete_sync(struct timer_list * timer)1992 timer_delete_sync(struct timer_list *timer)
1993 {
1994
1995 return (del_timer_sync(timer));
1996 }
1997
1998 int
timer_shutdown_sync(struct timer_list * timer)1999 timer_shutdown_sync(struct timer_list *timer)
2000 {
2001
2002 timer->function = NULL;
2003 return (del_timer_sync(timer));
2004 }
2005
2006 /* greatest common divisor, Euclid equation */
2007 static uint64_t
lkpi_gcd_64(uint64_t a,uint64_t b)2008 lkpi_gcd_64(uint64_t a, uint64_t b)
2009 {
2010 uint64_t an;
2011 uint64_t bn;
2012
2013 while (b != 0) {
2014 an = b;
2015 bn = a % b;
2016 a = an;
2017 b = bn;
2018 }
2019 return (a);
2020 }
2021
2022 uint64_t lkpi_nsec2hz_rem;
2023 uint64_t lkpi_nsec2hz_div = 1000000000ULL;
2024 uint64_t lkpi_nsec2hz_max;
2025
2026 uint64_t lkpi_usec2hz_rem;
2027 uint64_t lkpi_usec2hz_div = 1000000ULL;
2028 uint64_t lkpi_usec2hz_max;
2029
2030 uint64_t lkpi_msec2hz_rem;
2031 uint64_t lkpi_msec2hz_div = 1000ULL;
2032 uint64_t lkpi_msec2hz_max;
2033
2034 static void
linux_timer_init(void * arg)2035 linux_timer_init(void *arg)
2036 {
2037 uint64_t gcd;
2038
2039 /*
2040 * Compute an internal HZ value which can divide 2**32 to
2041 * avoid timer rounding problems when the tick value wraps
2042 * around 2**32:
2043 */
2044 linux_timer_hz_mask = 1;
2045 while (linux_timer_hz_mask < (unsigned long)hz)
2046 linux_timer_hz_mask *= 2;
2047 linux_timer_hz_mask--;
2048
2049 /* compute some internal constants */
2050
2051 lkpi_nsec2hz_rem = hz;
2052 lkpi_usec2hz_rem = hz;
2053 lkpi_msec2hz_rem = hz;
2054
2055 gcd = lkpi_gcd_64(lkpi_nsec2hz_rem, lkpi_nsec2hz_div);
2056 lkpi_nsec2hz_rem /= gcd;
2057 lkpi_nsec2hz_div /= gcd;
2058 lkpi_nsec2hz_max = -1ULL / lkpi_nsec2hz_rem;
2059
2060 gcd = lkpi_gcd_64(lkpi_usec2hz_rem, lkpi_usec2hz_div);
2061 lkpi_usec2hz_rem /= gcd;
2062 lkpi_usec2hz_div /= gcd;
2063 lkpi_usec2hz_max = -1ULL / lkpi_usec2hz_rem;
2064
2065 gcd = lkpi_gcd_64(lkpi_msec2hz_rem, lkpi_msec2hz_div);
2066 lkpi_msec2hz_rem /= gcd;
2067 lkpi_msec2hz_div /= gcd;
2068 lkpi_msec2hz_max = -1ULL / lkpi_msec2hz_rem;
2069 }
2070 SYSINIT(linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, linux_timer_init, NULL);
2071
2072 void
linux_complete_common(struct completion * c,int all)2073 linux_complete_common(struct completion *c, int all)
2074 {
2075 sleepq_lock(c);
2076 if (all) {
2077 c->done = UINT_MAX;
2078 sleepq_broadcast(c, SLEEPQ_SLEEP, 0, 0);
2079 } else {
2080 if (c->done != UINT_MAX)
2081 c->done++;
2082 sleepq_signal(c, SLEEPQ_SLEEP, 0, 0);
2083 }
2084 sleepq_release(c);
2085 }
2086
2087 /*
2088 * Indefinite wait for done != 0 with or without signals.
2089 */
2090 int
linux_wait_for_common(struct completion * c,int flags)2091 linux_wait_for_common(struct completion *c, int flags)
2092 {
2093 struct task_struct *task;
2094 int error;
2095
2096 if (SCHEDULER_STOPPED())
2097 return (0);
2098
2099 task = current;
2100
2101 if (flags != 0)
2102 flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
2103 else
2104 flags = SLEEPQ_SLEEP;
2105 error = 0;
2106 for (;;) {
2107 sleepq_lock(c);
2108 if (c->done)
2109 break;
2110 sleepq_add(c, NULL, "completion", flags, 0);
2111 if (flags & SLEEPQ_INTERRUPTIBLE) {
2112 DROP_GIANT();
2113 error = -sleepq_wait_sig(c, 0);
2114 PICKUP_GIANT();
2115 if (error != 0) {
2116 linux_schedule_save_interrupt_value(task, error);
2117 error = -ERESTARTSYS;
2118 goto intr;
2119 }
2120 } else {
2121 DROP_GIANT();
2122 sleepq_wait(c, 0);
2123 PICKUP_GIANT();
2124 }
2125 }
2126 if (c->done != UINT_MAX)
2127 c->done--;
2128 sleepq_release(c);
2129
2130 intr:
2131 return (error);
2132 }
2133
2134 /*
2135 * Time limited wait for done != 0 with or without signals.
2136 */
2137 int
linux_wait_for_timeout_common(struct completion * c,int timeout,int flags)2138 linux_wait_for_timeout_common(struct completion *c, int timeout, int flags)
2139 {
2140 struct task_struct *task;
2141 int end = jiffies + timeout;
2142 int error;
2143
2144 if (SCHEDULER_STOPPED())
2145 return (0);
2146
2147 task = current;
2148
2149 if (flags != 0)
2150 flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
2151 else
2152 flags = SLEEPQ_SLEEP;
2153
2154 for (;;) {
2155 sleepq_lock(c);
2156 if (c->done)
2157 break;
2158 sleepq_add(c, NULL, "completion", flags, 0);
2159 sleepq_set_timeout(c, linux_timer_jiffies_until(end));
2160
2161 DROP_GIANT();
2162 if (flags & SLEEPQ_INTERRUPTIBLE)
2163 error = -sleepq_timedwait_sig(c, 0);
2164 else
2165 error = -sleepq_timedwait(c, 0);
2166 PICKUP_GIANT();
2167
2168 if (error != 0) {
2169 /* check for timeout */
2170 if (error == -EWOULDBLOCK) {
2171 error = 0; /* timeout */
2172 } else {
2173 /* signal happened */
2174 linux_schedule_save_interrupt_value(task, error);
2175 error = -ERESTARTSYS;
2176 }
2177 goto done;
2178 }
2179 }
2180 if (c->done != UINT_MAX)
2181 c->done--;
2182 sleepq_release(c);
2183
2184 /* return how many jiffies are left */
2185 error = linux_timer_jiffies_until(end);
2186 done:
2187 return (error);
2188 }
2189
2190 int
linux_try_wait_for_completion(struct completion * c)2191 linux_try_wait_for_completion(struct completion *c)
2192 {
2193 int isdone;
2194
2195 sleepq_lock(c);
2196 isdone = (c->done != 0);
2197 if (c->done != 0 && c->done != UINT_MAX)
2198 c->done--;
2199 sleepq_release(c);
2200 return (isdone);
2201 }
2202
2203 int
linux_completion_done(struct completion * c)2204 linux_completion_done(struct completion *c)
2205 {
2206 int isdone;
2207
2208 sleepq_lock(c);
2209 isdone = (c->done != 0);
2210 sleepq_release(c);
2211 return (isdone);
2212 }
2213
2214 static void
linux_cdev_deref(struct linux_cdev * ldev)2215 linux_cdev_deref(struct linux_cdev *ldev)
2216 {
2217 if (refcount_release(&ldev->refs) &&
2218 ldev->kobj.ktype == &linux_cdev_ktype)
2219 kfree(ldev);
2220 }
2221
2222 static void
linux_cdev_release(struct kobject * kobj)2223 linux_cdev_release(struct kobject *kobj)
2224 {
2225 struct linux_cdev *cdev;
2226 struct kobject *parent;
2227
2228 cdev = container_of(kobj, struct linux_cdev, kobj);
2229 parent = kobj->parent;
2230 linux_destroy_dev(cdev);
2231 linux_cdev_deref(cdev);
2232 kobject_put(parent);
2233 }
2234
2235 static void
linux_cdev_static_release(struct kobject * kobj)2236 linux_cdev_static_release(struct kobject *kobj)
2237 {
2238 struct cdev *cdev;
2239 struct linux_cdev *ldev;
2240
2241 ldev = container_of(kobj, struct linux_cdev, kobj);
2242 cdev = ldev->cdev;
2243 if (cdev != NULL) {
2244 destroy_dev(cdev);
2245 ldev->cdev = NULL;
2246 }
2247 kobject_put(kobj->parent);
2248 }
2249
2250 int
linux_cdev_device_add(struct linux_cdev * ldev,struct device * dev)2251 linux_cdev_device_add(struct linux_cdev *ldev, struct device *dev)
2252 {
2253 int ret;
2254
2255 if (dev->devt != 0) {
2256 /* Set parent kernel object. */
2257 ldev->kobj.parent = &dev->kobj;
2258
2259 /*
2260 * Unlike Linux we require the kobject of the
2261 * character device structure to have a valid name
2262 * before calling this function:
2263 */
2264 if (ldev->kobj.name == NULL)
2265 return (-EINVAL);
2266
2267 ret = cdev_add(ldev, dev->devt, 1);
2268 if (ret)
2269 return (ret);
2270 }
2271 ret = device_add(dev);
2272 if (ret != 0 && dev->devt != 0)
2273 cdev_del(ldev);
2274 return (ret);
2275 }
2276
2277 void
linux_cdev_device_del(struct linux_cdev * ldev,struct device * dev)2278 linux_cdev_device_del(struct linux_cdev *ldev, struct device *dev)
2279 {
2280 device_del(dev);
2281
2282 if (dev->devt != 0)
2283 cdev_del(ldev);
2284 }
2285
2286 static void
linux_destroy_dev(struct linux_cdev * ldev)2287 linux_destroy_dev(struct linux_cdev *ldev)
2288 {
2289
2290 if (ldev->cdev == NULL)
2291 return;
2292
2293 MPASS((ldev->siref & LDEV_SI_DTR) == 0);
2294 MPASS(ldev->kobj.ktype == &linux_cdev_ktype);
2295
2296 atomic_set_int(&ldev->siref, LDEV_SI_DTR);
2297 while ((atomic_load_int(&ldev->siref) & ~LDEV_SI_DTR) != 0)
2298 pause("ldevdtr", hz / 4);
2299
2300 destroy_dev(ldev->cdev);
2301 ldev->cdev = NULL;
2302 }
2303
2304 const struct kobj_type linux_cdev_ktype = {
2305 .release = linux_cdev_release,
2306 };
2307
2308 const struct kobj_type linux_cdev_static_ktype = {
2309 .release = linux_cdev_static_release,
2310 };
2311
2312 static void
linux_handle_ifnet_link_event(void * arg,struct ifnet * ifp,int linkstate)2313 linux_handle_ifnet_link_event(void *arg, struct ifnet *ifp, int linkstate)
2314 {
2315 struct notifier_block *nb;
2316 struct netdev_notifier_info ni;
2317
2318 nb = arg;
2319 ni.ifp = ifp;
2320 ni.dev = (struct net_device *)ifp;
2321 if (linkstate == LINK_STATE_UP)
2322 nb->notifier_call(nb, NETDEV_UP, &ni);
2323 else
2324 nb->notifier_call(nb, NETDEV_DOWN, &ni);
2325 }
2326
2327 static void
linux_handle_ifnet_arrival_event(void * arg,struct ifnet * ifp)2328 linux_handle_ifnet_arrival_event(void *arg, struct ifnet *ifp)
2329 {
2330 struct notifier_block *nb;
2331 struct netdev_notifier_info ni;
2332
2333 nb = arg;
2334 ni.ifp = ifp;
2335 ni.dev = (struct net_device *)ifp;
2336 nb->notifier_call(nb, NETDEV_REGISTER, &ni);
2337 }
2338
2339 static void
linux_handle_ifnet_departure_event(void * arg,struct ifnet * ifp)2340 linux_handle_ifnet_departure_event(void *arg, struct ifnet *ifp)
2341 {
2342 struct notifier_block *nb;
2343 struct netdev_notifier_info ni;
2344
2345 nb = arg;
2346 ni.ifp = ifp;
2347 ni.dev = (struct net_device *)ifp;
2348 nb->notifier_call(nb, NETDEV_UNREGISTER, &ni);
2349 }
2350
2351 static void
linux_handle_iflladdr_event(void * arg,struct ifnet * ifp)2352 linux_handle_iflladdr_event(void *arg, struct ifnet *ifp)
2353 {
2354 struct notifier_block *nb;
2355 struct netdev_notifier_info ni;
2356
2357 nb = arg;
2358 ni.ifp = ifp;
2359 ni.dev = (struct net_device *)ifp;
2360 nb->notifier_call(nb, NETDEV_CHANGEADDR, &ni);
2361 }
2362
2363 static void
linux_handle_ifaddr_event(void * arg,struct ifnet * ifp)2364 linux_handle_ifaddr_event(void *arg, struct ifnet *ifp)
2365 {
2366 struct notifier_block *nb;
2367 struct netdev_notifier_info ni;
2368
2369 nb = arg;
2370 ni.ifp = ifp;
2371 ni.dev = (struct net_device *)ifp;
2372 nb->notifier_call(nb, NETDEV_CHANGEIFADDR, &ni);
2373 }
2374
2375 int
register_netdevice_notifier(struct notifier_block * nb)2376 register_netdevice_notifier(struct notifier_block *nb)
2377 {
2378
2379 nb->tags[NETDEV_UP] = EVENTHANDLER_REGISTER(
2380 ifnet_link_event, linux_handle_ifnet_link_event, nb, 0);
2381 nb->tags[NETDEV_REGISTER] = EVENTHANDLER_REGISTER(
2382 ifnet_arrival_event, linux_handle_ifnet_arrival_event, nb, 0);
2383 nb->tags[NETDEV_UNREGISTER] = EVENTHANDLER_REGISTER(
2384 ifnet_departure_event, linux_handle_ifnet_departure_event, nb, 0);
2385 nb->tags[NETDEV_CHANGEADDR] = EVENTHANDLER_REGISTER(
2386 iflladdr_event, linux_handle_iflladdr_event, nb, 0);
2387
2388 return (0);
2389 }
2390
2391 int
register_inetaddr_notifier(struct notifier_block * nb)2392 register_inetaddr_notifier(struct notifier_block *nb)
2393 {
2394
2395 nb->tags[NETDEV_CHANGEIFADDR] = EVENTHANDLER_REGISTER(
2396 ifaddr_event, linux_handle_ifaddr_event, nb, 0);
2397 return (0);
2398 }
2399
2400 int
unregister_netdevice_notifier(struct notifier_block * nb)2401 unregister_netdevice_notifier(struct notifier_block *nb)
2402 {
2403
2404 EVENTHANDLER_DEREGISTER(ifnet_link_event,
2405 nb->tags[NETDEV_UP]);
2406 EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
2407 nb->tags[NETDEV_REGISTER]);
2408 EVENTHANDLER_DEREGISTER(ifnet_departure_event,
2409 nb->tags[NETDEV_UNREGISTER]);
2410 EVENTHANDLER_DEREGISTER(iflladdr_event,
2411 nb->tags[NETDEV_CHANGEADDR]);
2412
2413 return (0);
2414 }
2415
2416 int
unregister_inetaddr_notifier(struct notifier_block * nb)2417 unregister_inetaddr_notifier(struct notifier_block *nb)
2418 {
2419
2420 EVENTHANDLER_DEREGISTER(ifaddr_event,
2421 nb->tags[NETDEV_CHANGEIFADDR]);
2422
2423 return (0);
2424 }
2425
2426 struct list_sort_thunk {
2427 int (*cmp)(void *, struct list_head *, struct list_head *);
2428 void *priv;
2429 };
2430
2431 static inline int
linux_le_cmp(const void * d1,const void * d2,void * priv)2432 linux_le_cmp(const void *d1, const void *d2, void *priv)
2433 {
2434 struct list_head *le1, *le2;
2435 struct list_sort_thunk *thunk;
2436
2437 thunk = priv;
2438 le1 = *(__DECONST(struct list_head **, d1));
2439 le2 = *(__DECONST(struct list_head **, d2));
2440 return ((thunk->cmp)(thunk->priv, le1, le2));
2441 }
2442
2443 void
list_sort(void * priv,struct list_head * head,int (* cmp)(void * priv,struct list_head * a,struct list_head * b))2444 list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv,
2445 struct list_head *a, struct list_head *b))
2446 {
2447 struct list_sort_thunk thunk;
2448 struct list_head **ar, *le;
2449 size_t count, i;
2450
2451 count = 0;
2452 list_for_each(le, head)
2453 count++;
2454 ar = malloc(sizeof(struct list_head *) * count, M_KMALLOC, M_WAITOK);
2455 i = 0;
2456 list_for_each(le, head)
2457 ar[i++] = le;
2458 thunk.cmp = cmp;
2459 thunk.priv = priv;
2460 qsort_r(ar, count, sizeof(struct list_head *), linux_le_cmp, &thunk);
2461 INIT_LIST_HEAD(head);
2462 for (i = 0; i < count; i++)
2463 list_add_tail(ar[i], head);
2464 free(ar, M_KMALLOC);
2465 }
2466
2467 #if defined(__i386__) || defined(__amd64__)
2468 int
linux_wbinvd_on_all_cpus(void)2469 linux_wbinvd_on_all_cpus(void)
2470 {
2471
2472 pmap_invalidate_cache();
2473 return (0);
2474 }
2475 #endif
2476
2477 int
linux_on_each_cpu(void callback (void *),void * data)2478 linux_on_each_cpu(void callback(void *), void *data)
2479 {
2480
2481 smp_rendezvous(smp_no_rendezvous_barrier, callback,
2482 smp_no_rendezvous_barrier, data);
2483 return (0);
2484 }
2485
2486 int
linux_in_atomic(void)2487 linux_in_atomic(void)
2488 {
2489
2490 return ((curthread->td_pflags & TDP_NOFAULTING) != 0);
2491 }
2492
2493 struct linux_cdev *
linux_find_cdev(const char * name,unsigned major,unsigned minor)2494 linux_find_cdev(const char *name, unsigned major, unsigned minor)
2495 {
2496 dev_t dev = MKDEV(major, minor);
2497 struct cdev *cdev;
2498
2499 dev_lock();
2500 LIST_FOREACH(cdev, &linuxcdevsw.d_devs, si_list) {
2501 struct linux_cdev *ldev = cdev->si_drv1;
2502 if (ldev->dev == dev &&
2503 strcmp(kobject_name(&ldev->kobj), name) == 0) {
2504 break;
2505 }
2506 }
2507 dev_unlock();
2508
2509 return (cdev != NULL ? cdev->si_drv1 : NULL);
2510 }
2511
2512 int
__register_chrdev(unsigned int major,unsigned int baseminor,unsigned int count,const char * name,const struct file_operations * fops)2513 __register_chrdev(unsigned int major, unsigned int baseminor,
2514 unsigned int count, const char *name,
2515 const struct file_operations *fops)
2516 {
2517 struct linux_cdev *cdev;
2518 int ret = 0;
2519 int i;
2520
2521 for (i = baseminor; i < baseminor + count; i++) {
2522 cdev = cdev_alloc();
2523 cdev->ops = fops;
2524 kobject_set_name(&cdev->kobj, name);
2525
2526 ret = cdev_add(cdev, makedev(major, i), 1);
2527 if (ret != 0)
2528 break;
2529 }
2530 return (ret);
2531 }
2532
2533 int
__register_chrdev_p(unsigned int major,unsigned int baseminor,unsigned int count,const char * name,const struct file_operations * fops,uid_t uid,gid_t gid,int mode)2534 __register_chrdev_p(unsigned int major, unsigned int baseminor,
2535 unsigned int count, const char *name,
2536 const struct file_operations *fops, uid_t uid,
2537 gid_t gid, int mode)
2538 {
2539 struct linux_cdev *cdev;
2540 int ret = 0;
2541 int i;
2542
2543 for (i = baseminor; i < baseminor + count; i++) {
2544 cdev = cdev_alloc();
2545 cdev->ops = fops;
2546 kobject_set_name(&cdev->kobj, name);
2547
2548 ret = cdev_add_ext(cdev, makedev(major, i), uid, gid, mode);
2549 if (ret != 0)
2550 break;
2551 }
2552 return (ret);
2553 }
2554
2555 void
__unregister_chrdev(unsigned int major,unsigned int baseminor,unsigned int count,const char * name)2556 __unregister_chrdev(unsigned int major, unsigned int baseminor,
2557 unsigned int count, const char *name)
2558 {
2559 struct linux_cdev *cdevp;
2560 int i;
2561
2562 for (i = baseminor; i < baseminor + count; i++) {
2563 cdevp = linux_find_cdev(name, major, i);
2564 if (cdevp != NULL)
2565 cdev_del(cdevp);
2566 }
2567 }
2568
2569 void
linux_dump_stack(void)2570 linux_dump_stack(void)
2571 {
2572 #ifdef STACK
2573 struct stack st;
2574
2575 stack_save(&st);
2576 stack_print(&st);
2577 #endif
2578 }
2579
2580 int
linuxkpi_net_ratelimit(void)2581 linuxkpi_net_ratelimit(void)
2582 {
2583
2584 return (ppsratecheck(&lkpi_net_lastlog, &lkpi_net_curpps,
2585 lkpi_net_maxpps));
2586 }
2587
2588 struct io_mapping *
io_mapping_create_wc(resource_size_t base,unsigned long size)2589 io_mapping_create_wc(resource_size_t base, unsigned long size)
2590 {
2591 struct io_mapping *mapping;
2592
2593 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2594 if (mapping == NULL)
2595 return (NULL);
2596 return (io_mapping_init_wc(mapping, base, size));
2597 }
2598
2599 /* We likely want a linuxkpi_device.c at some point. */
2600 bool
device_can_wakeup(struct device * dev)2601 device_can_wakeup(struct device *dev)
2602 {
2603
2604 if (dev == NULL)
2605 return (false);
2606 /*
2607 * XXX-BZ iwlwifi queries it as part of enabling WoWLAN.
2608 * Normally this would be based on a bool in dev->power.XXX.
2609 * Check such as PCI PCIM_PCAP_*PME. We have no way to enable this yet.
2610 * We may get away by directly calling into bsddev for as long as
2611 * we can assume PCI only avoiding changing struct device breaking KBI.
2612 */
2613 pr_debug("%s:%d: not enabled; see comment.\n", __func__, __LINE__);
2614 return (false);
2615 }
2616
2617 static void
devm_device_group_remove(struct device * dev,void * p)2618 devm_device_group_remove(struct device *dev, void *p)
2619 {
2620 const struct attribute_group **dr = p;
2621 const struct attribute_group *group = *dr;
2622
2623 sysfs_remove_group(&dev->kobj, group);
2624 }
2625
2626 int
lkpi_devm_device_add_group(struct device * dev,const struct attribute_group * group)2627 lkpi_devm_device_add_group(struct device *dev,
2628 const struct attribute_group *group)
2629 {
2630 const struct attribute_group **dr;
2631 int ret;
2632
2633 dr = devres_alloc(devm_device_group_remove, sizeof(*dr), GFP_KERNEL);
2634 if (dr == NULL)
2635 return (-ENOMEM);
2636
2637 ret = sysfs_create_group(&dev->kobj, group);
2638 if (ret == 0) {
2639 *dr = group;
2640 devres_add(dev, dr);
2641 } else
2642 devres_free(dr);
2643
2644 return (ret);
2645 }
2646
2647 #if defined(__i386__) || defined(__amd64__)
2648 bool linux_cpu_has_clflush;
2649 struct cpuinfo_x86 boot_cpu_data;
2650 struct cpuinfo_x86 *__cpu_data;
2651 #endif
2652
2653 cpumask_t *
lkpi_get_static_single_cpu_mask(int cpuid)2654 lkpi_get_static_single_cpu_mask(int cpuid)
2655 {
2656
2657 KASSERT((cpuid >= 0 && cpuid <= mp_maxid), ("%s: invalid cpuid %d\n",
2658 __func__, cpuid));
2659 KASSERT(!CPU_ABSENT(cpuid), ("%s: cpu with cpuid %d is absent\n",
2660 __func__, cpuid));
2661
2662 return (static_single_cpu_mask[cpuid]);
2663 }
2664
2665 bool
lkpi_xen_initial_domain(void)2666 lkpi_xen_initial_domain(void)
2667 {
2668 #ifdef XENHVM
2669 return (xen_initial_domain());
2670 #else
2671 return (false);
2672 #endif
2673 }
2674
2675 bool
lkpi_xen_pv_domain(void)2676 lkpi_xen_pv_domain(void)
2677 {
2678 #ifdef XENHVM
2679 return (xen_pv_domain());
2680 #else
2681 return (false);
2682 #endif
2683 }
2684
2685 static void
linux_compat_init(void * arg)2686 linux_compat_init(void *arg)
2687 {
2688 struct sysctl_oid *rootoid;
2689 int i;
2690
2691 #if defined(__i386__) || defined(__amd64__)
2692 static const uint32_t x86_vendors[X86_VENDOR_NUM] = {
2693 [X86_VENDOR_INTEL] = CPU_VENDOR_INTEL,
2694 [X86_VENDOR_CYRIX] = CPU_VENDOR_CYRIX,
2695 [X86_VENDOR_AMD] = CPU_VENDOR_AMD,
2696 [X86_VENDOR_UMC] = CPU_VENDOR_UMC,
2697 [X86_VENDOR_CENTAUR] = CPU_VENDOR_CENTAUR,
2698 [X86_VENDOR_TRANSMETA] = CPU_VENDOR_TRANSMETA,
2699 [X86_VENDOR_NSC] = CPU_VENDOR_NSC,
2700 [X86_VENDOR_HYGON] = CPU_VENDOR_HYGON,
2701 };
2702 uint8_t x86_vendor = X86_VENDOR_UNKNOWN;
2703
2704 for (i = 0; i < X86_VENDOR_NUM; i++) {
2705 if (cpu_vendor_id != 0 && cpu_vendor_id == x86_vendors[i]) {
2706 x86_vendor = i;
2707 break;
2708 }
2709 }
2710 linux_cpu_has_clflush = (cpu_feature & CPUID_CLFSH);
2711 boot_cpu_data.x86_clflush_size = cpu_clflush_line_size;
2712 boot_cpu_data.x86_max_cores = mp_ncpus;
2713 boot_cpu_data.x86 = CPUID_TO_FAMILY(cpu_id);
2714 boot_cpu_data.x86_model = CPUID_TO_MODEL(cpu_id);
2715 boot_cpu_data.x86_vendor = x86_vendor;
2716
2717 __cpu_data = mallocarray(mp_maxid + 1,
2718 sizeof(*__cpu_data), M_KMALLOC, M_WAITOK | M_ZERO);
2719 CPU_FOREACH(i) {
2720 __cpu_data[i].x86_clflush_size = cpu_clflush_line_size;
2721 __cpu_data[i].x86_max_cores = mp_ncpus;
2722 __cpu_data[i].x86 = CPUID_TO_FAMILY(cpu_id);
2723 __cpu_data[i].x86_model = CPUID_TO_MODEL(cpu_id);
2724 __cpu_data[i].x86_vendor = x86_vendor;
2725 }
2726 #endif
2727 rw_init(&linux_vma_lock, "lkpi-vma-lock");
2728
2729 rootoid = SYSCTL_ADD_ROOT_NODE(NULL,
2730 OID_AUTO, "sys", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "sys");
2731 kobject_init(&linux_class_root, &linux_class_ktype);
2732 kobject_set_name(&linux_class_root, "class");
2733 linux_class_root.oidp = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(rootoid),
2734 OID_AUTO, "class", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "class");
2735 kobject_init(&linux_root_device.kobj, &linux_dev_ktype);
2736 kobject_set_name(&linux_root_device.kobj, "device");
2737 linux_root_device.kobj.oidp = SYSCTL_ADD_NODE(NULL,
2738 SYSCTL_CHILDREN(rootoid), OID_AUTO, "device",
2739 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "device");
2740 linux_root_device.bsddev = root_bus;
2741 linux_class_misc.name = "misc";
2742 class_register(&linux_class_misc);
2743 INIT_LIST_HEAD(&pci_drivers);
2744 INIT_LIST_HEAD(&pci_devices);
2745 spin_lock_init(&pci_lock);
2746 mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF);
2747 for (i = 0; i < VMMAP_HASH_SIZE; i++)
2748 LIST_INIT(&vmmaphead[i]);
2749 init_waitqueue_head(&linux_bit_waitq);
2750 init_waitqueue_head(&linux_var_waitq);
2751
2752 CPU_COPY(&all_cpus, &cpu_online_mask);
2753 /*
2754 * Generate a single-CPU cpumask_t for each CPU (possibly) in the system.
2755 * CPUs are indexed from 0..(mp_maxid). The entry for cpuid 0 will only
2756 * have itself in the cpumask, cupid 1 only itself on entry 1, and so on.
2757 * This is used by cpumask_of() (and possibly others in the future) for,
2758 * e.g., drivers to pass hints to irq_set_affinity_hint().
2759 */
2760 static_single_cpu_mask = mallocarray(mp_maxid + 1,
2761 sizeof(static_single_cpu_mask), M_KMALLOC, M_WAITOK | M_ZERO);
2762
2763 /*
2764 * When the number of CPUs reach a threshold, we start to save memory
2765 * given the sets are static by overlapping those having their single
2766 * bit set at same position in a bitset word. Asymptotically, this
2767 * regular scheme is in O(n²) whereas the overlapping one is in O(n)
2768 * only with n being the maximum number of CPUs, so the gain will become
2769 * huge quite quickly. The threshold for 64-bit architectures is 128
2770 * CPUs.
2771 */
2772 if (mp_ncpus < (2 * _BITSET_BITS)) {
2773 cpumask_t *sscm_ptr;
2774
2775 /*
2776 * This represents 'mp_ncpus * __bitset_words(CPU_SETSIZE) *
2777 * (_BITSET_BITS / 8)' bytes (for comparison with the
2778 * overlapping scheme).
2779 */
2780 static_single_cpu_mask_lcs = mallocarray(mp_ncpus,
2781 sizeof(*static_single_cpu_mask_lcs),
2782 M_KMALLOC, M_WAITOK | M_ZERO);
2783
2784 sscm_ptr = static_single_cpu_mask_lcs;
2785 CPU_FOREACH(i) {
2786 static_single_cpu_mask[i] = sscm_ptr++;
2787 CPU_SET(i, static_single_cpu_mask[i]);
2788 }
2789 } else {
2790 /* Pointer to a bitset word. */
2791 __typeof(((cpuset_t *)NULL)->__bits[0]) *bwp;
2792
2793 /*
2794 * Allocate memory for (static) spans of 'cpumask_t' ('cpuset_t'
2795 * really) with a single bit set that can be reused for all
2796 * single CPU masks by making them start at different offsets.
2797 * We need '__bitset_words(CPU_SETSIZE) - 1' bitset words before
2798 * the word having its single bit set, and the same amount
2799 * after.
2800 */
2801 static_single_cpu_mask_lcs = mallocarray(_BITSET_BITS,
2802 (2 * __bitset_words(CPU_SETSIZE) - 1) * (_BITSET_BITS / 8),
2803 M_KMALLOC, M_WAITOK | M_ZERO);
2804
2805 /*
2806 * We rely below on cpuset_t and the bitset generic
2807 * implementation assigning words in the '__bits' array in the
2808 * same order of bits (i.e., little-endian ordering, not to be
2809 * confused with machine endianness, which concerns bits in
2810 * words and other integers). This is an imperfect test, but it
2811 * will detect a change to big-endian ordering.
2812 */
2813 _Static_assert(
2814 __bitset_word(_BITSET_BITS + 1, _BITSET_BITS) == 1,
2815 "Assumes a bitset implementation that is little-endian "
2816 "on its words");
2817
2818 /* Initialize the single bit of each static span. */
2819 bwp = (__typeof(bwp))static_single_cpu_mask_lcs +
2820 (__bitset_words(CPU_SETSIZE) - 1);
2821 for (i = 0; i < _BITSET_BITS; i++) {
2822 CPU_SET(i, (cpuset_t *)bwp);
2823 bwp += (2 * __bitset_words(CPU_SETSIZE) - 1);
2824 }
2825
2826 /*
2827 * Finally set all CPU masks to the proper word in their
2828 * relevant span.
2829 */
2830 CPU_FOREACH(i) {
2831 bwp = (__typeof(bwp))static_single_cpu_mask_lcs;
2832 /* Find the non-zero word of the relevant span. */
2833 bwp += (2 * __bitset_words(CPU_SETSIZE) - 1) *
2834 (i % _BITSET_BITS) +
2835 __bitset_words(CPU_SETSIZE) - 1;
2836 /* Shift to find the CPU mask start. */
2837 bwp -= (i / _BITSET_BITS);
2838 static_single_cpu_mask[i] = (cpuset_t *)bwp;
2839 }
2840 }
2841
2842 strlcpy(init_uts_ns.name.release, osrelease, sizeof(init_uts_ns.name.release));
2843 }
2844 SYSINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_init, NULL);
2845
2846 static void
linux_compat_uninit(void * arg)2847 linux_compat_uninit(void *arg)
2848 {
2849 linux_kobject_kfree_name(&linux_class_root);
2850 linux_kobject_kfree_name(&linux_root_device.kobj);
2851 linux_kobject_kfree_name(&linux_class_misc.kobj);
2852
2853 free(static_single_cpu_mask_lcs, M_KMALLOC);
2854 free(static_single_cpu_mask, M_KMALLOC);
2855 #if defined(__i386__) || defined(__amd64__)
2856 free(__cpu_data, M_KMALLOC);
2857 #endif
2858
2859 mtx_destroy(&vmmaplock);
2860 spin_lock_destroy(&pci_lock);
2861 rw_destroy(&linux_vma_lock);
2862 }
2863 SYSUNINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_uninit, NULL);
2864
2865 /*
2866 * NOTE: Linux frequently uses "unsigned long" for pointer to integer
2867 * conversion and vice versa, where in FreeBSD "uintptr_t" would be
2868 * used. Assert these types have the same size, else some parts of the
2869 * LinuxKPI may not work like expected:
2870 */
2871 CTASSERT(sizeof(unsigned long) == sizeof(uintptr_t));
2872