xref: /linux/fs/namei.c (revision 3d85d6c8539950dfcf4339f9ea865fb5d8f7ce03)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/slab.h>
21 #include <linux/wordpart.h>
22 #include <linux/fs.h>
23 #include <linux/filelock.h>
24 #include <linux/namei.h>
25 #include <linux/pagemap.h>
26 #include <linux/sched/mm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/mount.h>
32 #include <linux/audit.h>
33 #include <linux/capability.h>
34 #include <linux/file.h>
35 #include <linux/fcntl.h>
36 #include <linux/device_cgroup.h>
37 #include <linux/fs_struct.h>
38 #include <linux/posix_acl.h>
39 #include <linux/hash.h>
40 #include <linux/bitops.h>
41 #include <linux/init_task.h>
42 #include <linux/uaccess.h>
43 
44 #include "internal.h"
45 #include "mount.h"
46 
47 /* [Feb-1997 T. Schoebel-Theuer]
48  * Fundamental changes in the pathname lookup mechanisms (namei)
49  * were necessary because of omirr.  The reason is that omirr needs
50  * to know the _real_ pathname, not the user-supplied one, in case
51  * of symlinks (and also when transname replacements occur).
52  *
53  * The new code replaces the old recursive symlink resolution with
54  * an iterative one (in case of non-nested symlink chains).  It does
55  * this with calls to <fs>_follow_link().
56  * As a side effect, dir_namei(), _namei() and follow_link() are now
57  * replaced with a single function lookup_dentry() that can handle all
58  * the special cases of the former code.
59  *
60  * With the new dcache, the pathname is stored at each inode, at least as
61  * long as the refcount of the inode is positive.  As a side effect, the
62  * size of the dcache depends on the inode cache and thus is dynamic.
63  *
64  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65  * resolution to correspond with current state of the code.
66  *
67  * Note that the symlink resolution is not *completely* iterative.
68  * There is still a significant amount of tail- and mid- recursion in
69  * the algorithm.  Also, note that <fs>_readlink() is not used in
70  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71  * may return different results than <fs>_follow_link().  Many virtual
72  * filesystems (including /proc) exhibit this behavior.
73  */
74 
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77  * and the name already exists in form of a symlink, try to create the new
78  * name indicated by the symlink. The old code always complained that the
79  * name already exists, due to not following the symlink even if its target
80  * is nonexistent.  The new semantics affects also mknod() and link() when
81  * the name is a symlink pointing to a non-existent name.
82  *
83  * I don't know which semantics is the right one, since I have no access
84  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86  * "old" one. Personally, I think the new semantics is much more logical.
87  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88  * file does succeed in both HP-UX and SunOs, but not in Solaris
89  * and in the old Linux semantics.
90  */
91 
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93  * semantics.  See the comments in "open_namei" and "do_link" below.
94  *
95  * [10-Sep-98 Alan Modra] Another symlink change.
96  */
97 
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99  *	inside the path - always follow.
100  *	in the last component in creation/removal/renaming - never follow.
101  *	if LOOKUP_FOLLOW passed - follow.
102  *	if the pathname has trailing slashes - follow.
103  *	otherwise - don't follow.
104  * (applied in that order).
105  *
106  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108  * During the 2.4 we need to fix the userland stuff depending on it -
109  * hopefully we will be able to get rid of that wart in 2.5. So far only
110  * XEmacs seems to be relying on it...
111  */
112 /*
113  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
115  * any extra contention...
116  */
117 
118 /* In order to reduce some races, while at the same time doing additional
119  * checking and hopefully speeding things up, we copy filenames to the
120  * kernel data space before using them..
121  *
122  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123  * PATH_MAX includes the nul terminator --RR.
124  */
125 
126 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
127 
128 struct filename *
getname_flags(const char __user * filename,int flags)129 getname_flags(const char __user *filename, int flags)
130 {
131 	struct filename *result;
132 	char *kname;
133 	int len;
134 
135 	result = audit_reusename(filename);
136 	if (result)
137 		return result;
138 
139 	result = __getname();
140 	if (unlikely(!result))
141 		return ERR_PTR(-ENOMEM);
142 
143 	/*
144 	 * First, try to embed the struct filename inside the names_cache
145 	 * allocation
146 	 */
147 	kname = (char *)result->iname;
148 	result->name = kname;
149 
150 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
151 	/*
152 	 * Handle both empty path and copy failure in one go.
153 	 */
154 	if (unlikely(len <= 0)) {
155 		if (unlikely(len < 0)) {
156 			__putname(result);
157 			return ERR_PTR(len);
158 		}
159 
160 		/* The empty path is special. */
161 		if (!(flags & LOOKUP_EMPTY)) {
162 			__putname(result);
163 			return ERR_PTR(-ENOENT);
164 		}
165 	}
166 
167 	/*
168 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
169 	 * separate struct filename so we can dedicate the entire
170 	 * names_cache allocation for the pathname, and re-do the copy from
171 	 * userland.
172 	 */
173 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
174 		const size_t size = offsetof(struct filename, iname[1]);
175 		kname = (char *)result;
176 
177 		/*
178 		 * size is chosen that way we to guarantee that
179 		 * result->iname[0] is within the same object and that
180 		 * kname can't be equal to result->iname, no matter what.
181 		 */
182 		result = kzalloc(size, GFP_KERNEL);
183 		if (unlikely(!result)) {
184 			__putname(kname);
185 			return ERR_PTR(-ENOMEM);
186 		}
187 		result->name = kname;
188 		len = strncpy_from_user(kname, filename, PATH_MAX);
189 		if (unlikely(len < 0)) {
190 			__putname(kname);
191 			kfree(result);
192 			return ERR_PTR(len);
193 		}
194 		/* The empty path is special. */
195 		if (unlikely(!len) && !(flags & LOOKUP_EMPTY)) {
196 			__putname(kname);
197 			kfree(result);
198 			return ERR_PTR(-ENOENT);
199 		}
200 		if (unlikely(len == PATH_MAX)) {
201 			__putname(kname);
202 			kfree(result);
203 			return ERR_PTR(-ENAMETOOLONG);
204 		}
205 	}
206 
207 	atomic_set(&result->refcnt, 1);
208 	result->uptr = filename;
209 	result->aname = NULL;
210 	audit_getname(result);
211 	return result;
212 }
213 
getname_uflags(const char __user * filename,int uflags)214 struct filename *getname_uflags(const char __user *filename, int uflags)
215 {
216 	int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
217 
218 	return getname_flags(filename, flags);
219 }
220 
getname(const char __user * filename)221 struct filename *getname(const char __user * filename)
222 {
223 	return getname_flags(filename, 0);
224 }
225 
__getname_maybe_null(const char __user * pathname)226 struct filename *__getname_maybe_null(const char __user *pathname)
227 {
228 	struct filename *name;
229 	char c;
230 
231 	/* try to save on allocations; loss on um, though */
232 	if (get_user(c, pathname))
233 		return ERR_PTR(-EFAULT);
234 	if (!c)
235 		return NULL;
236 
237 	name = getname_flags(pathname, LOOKUP_EMPTY);
238 	if (!IS_ERR(name) && !(name->name[0])) {
239 		putname(name);
240 		name = NULL;
241 	}
242 	return name;
243 }
244 
getname_kernel(const char * filename)245 struct filename *getname_kernel(const char * filename)
246 {
247 	struct filename *result;
248 	int len = strlen(filename) + 1;
249 
250 	result = __getname();
251 	if (unlikely(!result))
252 		return ERR_PTR(-ENOMEM);
253 
254 	if (len <= EMBEDDED_NAME_MAX) {
255 		result->name = (char *)result->iname;
256 	} else if (len <= PATH_MAX) {
257 		const size_t size = offsetof(struct filename, iname[1]);
258 		struct filename *tmp;
259 
260 		tmp = kmalloc(size, GFP_KERNEL);
261 		if (unlikely(!tmp)) {
262 			__putname(result);
263 			return ERR_PTR(-ENOMEM);
264 		}
265 		tmp->name = (char *)result;
266 		result = tmp;
267 	} else {
268 		__putname(result);
269 		return ERR_PTR(-ENAMETOOLONG);
270 	}
271 	memcpy((char *)result->name, filename, len);
272 	result->uptr = NULL;
273 	result->aname = NULL;
274 	atomic_set(&result->refcnt, 1);
275 	audit_getname(result);
276 
277 	return result;
278 }
279 EXPORT_SYMBOL(getname_kernel);
280 
putname(struct filename * name)281 void putname(struct filename *name)
282 {
283 	if (IS_ERR_OR_NULL(name))
284 		return;
285 
286 	if (WARN_ON_ONCE(!atomic_read(&name->refcnt)))
287 		return;
288 
289 	if (!atomic_dec_and_test(&name->refcnt))
290 		return;
291 
292 	if (name->name != name->iname) {
293 		__putname(name->name);
294 		kfree(name);
295 	} else
296 		__putname(name);
297 }
298 EXPORT_SYMBOL(putname);
299 
300 /**
301  * check_acl - perform ACL permission checking
302  * @idmap:	idmap of the mount the inode was found from
303  * @inode:	inode to check permissions on
304  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
305  *
306  * This function performs the ACL permission checking. Since this function
307  * retrieve POSIX acls it needs to know whether it is called from a blocking or
308  * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
309  *
310  * If the inode has been found through an idmapped mount the idmap of
311  * the vfsmount must be passed through @idmap. This function will then take
312  * care to map the inode according to @idmap before checking permissions.
313  * On non-idmapped mounts or if permission checking is to be performed on the
314  * raw inode simply pass @nop_mnt_idmap.
315  */
check_acl(struct mnt_idmap * idmap,struct inode * inode,int mask)316 static int check_acl(struct mnt_idmap *idmap,
317 		     struct inode *inode, int mask)
318 {
319 #ifdef CONFIG_FS_POSIX_ACL
320 	struct posix_acl *acl;
321 
322 	if (mask & MAY_NOT_BLOCK) {
323 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
324 	        if (!acl)
325 	                return -EAGAIN;
326 		/* no ->get_inode_acl() calls in RCU mode... */
327 		if (is_uncached_acl(acl))
328 			return -ECHILD;
329 	        return posix_acl_permission(idmap, inode, acl, mask);
330 	}
331 
332 	acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
333 	if (IS_ERR(acl))
334 		return PTR_ERR(acl);
335 	if (acl) {
336 	        int error = posix_acl_permission(idmap, inode, acl, mask);
337 	        posix_acl_release(acl);
338 	        return error;
339 	}
340 #endif
341 
342 	return -EAGAIN;
343 }
344 
345 /*
346  * Very quick optimistic "we know we have no ACL's" check.
347  *
348  * Note that this is purely for ACL_TYPE_ACCESS, and purely
349  * for the "we have cached that there are no ACLs" case.
350  *
351  * If this returns true, we know there are no ACLs. But if
352  * it returns false, we might still not have ACLs (it could
353  * be the is_uncached_acl() case).
354  */
no_acl_inode(struct inode * inode)355 static inline bool no_acl_inode(struct inode *inode)
356 {
357 #ifdef CONFIG_FS_POSIX_ACL
358 	return likely(!READ_ONCE(inode->i_acl));
359 #else
360 	return true;
361 #endif
362 }
363 
364 /**
365  * acl_permission_check - perform basic UNIX permission checking
366  * @idmap:	idmap of the mount the inode was found from
367  * @inode:	inode to check permissions on
368  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
369  *
370  * This function performs the basic UNIX permission checking. Since this
371  * function may retrieve POSIX acls it needs to know whether it is called from a
372  * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
373  *
374  * If the inode has been found through an idmapped mount the idmap of
375  * the vfsmount must be passed through @idmap. This function will then take
376  * care to map the inode according to @idmap before checking permissions.
377  * On non-idmapped mounts or if permission checking is to be performed on the
378  * raw inode simply pass @nop_mnt_idmap.
379  */
acl_permission_check(struct mnt_idmap * idmap,struct inode * inode,int mask)380 static int acl_permission_check(struct mnt_idmap *idmap,
381 				struct inode *inode, int mask)
382 {
383 	unsigned int mode = inode->i_mode;
384 	vfsuid_t vfsuid;
385 
386 	/*
387 	 * Common cheap case: everybody has the requested
388 	 * rights, and there are no ACLs to check. No need
389 	 * to do any owner/group checks in that case.
390 	 *
391 	 *  - 'mask&7' is the requested permission bit set
392 	 *  - multiplying by 0111 spreads them out to all of ugo
393 	 *  - '& ~mode' looks for missing inode permission bits
394 	 *  - the '!' is for "no missing permissions"
395 	 *
396 	 * After that, we just need to check that there are no
397 	 * ACL's on the inode - do the 'IS_POSIXACL()' check last
398 	 * because it will dereference the ->i_sb pointer and we
399 	 * want to avoid that if at all possible.
400 	 */
401 	if (!((mask & 7) * 0111 & ~mode)) {
402 		if (no_acl_inode(inode))
403 			return 0;
404 		if (!IS_POSIXACL(inode))
405 			return 0;
406 	}
407 
408 	/* Are we the owner? If so, ACL's don't matter */
409 	vfsuid = i_uid_into_vfsuid(idmap, inode);
410 	if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
411 		mask &= 7;
412 		mode >>= 6;
413 		return (mask & ~mode) ? -EACCES : 0;
414 	}
415 
416 	/* Do we have ACL's? */
417 	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
418 		int error = check_acl(idmap, inode, mask);
419 		if (error != -EAGAIN)
420 			return error;
421 	}
422 
423 	/* Only RWX matters for group/other mode bits */
424 	mask &= 7;
425 
426 	/*
427 	 * Are the group permissions different from
428 	 * the other permissions in the bits we care
429 	 * about? Need to check group ownership if so.
430 	 */
431 	if (mask & (mode ^ (mode >> 3))) {
432 		vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
433 		if (vfsgid_in_group_p(vfsgid))
434 			mode >>= 3;
435 	}
436 
437 	/* Bits in 'mode' clear that we require? */
438 	return (mask & ~mode) ? -EACCES : 0;
439 }
440 
441 /**
442  * generic_permission -  check for access rights on a Posix-like filesystem
443  * @idmap:	idmap of the mount the inode was found from
444  * @inode:	inode to check access rights for
445  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
446  *		%MAY_NOT_BLOCK ...)
447  *
448  * Used to check for read/write/execute permissions on a file.
449  * We use "fsuid" for this, letting us set arbitrary permissions
450  * for filesystem access without changing the "normal" uids which
451  * are used for other things.
452  *
453  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
454  * request cannot be satisfied (eg. requires blocking or too much complexity).
455  * It would then be called again in ref-walk mode.
456  *
457  * If the inode has been found through an idmapped mount the idmap of
458  * the vfsmount must be passed through @idmap. This function will then take
459  * care to map the inode according to @idmap before checking permissions.
460  * On non-idmapped mounts or if permission checking is to be performed on the
461  * raw inode simply pass @nop_mnt_idmap.
462  */
generic_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)463 int generic_permission(struct mnt_idmap *idmap, struct inode *inode,
464 		       int mask)
465 {
466 	int ret;
467 
468 	/*
469 	 * Do the basic permission checks.
470 	 */
471 	ret = acl_permission_check(idmap, inode, mask);
472 	if (ret != -EACCES)
473 		return ret;
474 
475 	if (S_ISDIR(inode->i_mode)) {
476 		/* DACs are overridable for directories */
477 		if (!(mask & MAY_WRITE))
478 			if (capable_wrt_inode_uidgid(idmap, inode,
479 						     CAP_DAC_READ_SEARCH))
480 				return 0;
481 		if (capable_wrt_inode_uidgid(idmap, inode,
482 					     CAP_DAC_OVERRIDE))
483 			return 0;
484 		return -EACCES;
485 	}
486 
487 	/*
488 	 * Searching includes executable on directories, else just read.
489 	 */
490 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
491 	if (mask == MAY_READ)
492 		if (capable_wrt_inode_uidgid(idmap, inode,
493 					     CAP_DAC_READ_SEARCH))
494 			return 0;
495 	/*
496 	 * Read/write DACs are always overridable.
497 	 * Executable DACs are overridable when there is
498 	 * at least one exec bit set.
499 	 */
500 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
501 		if (capable_wrt_inode_uidgid(idmap, inode,
502 					     CAP_DAC_OVERRIDE))
503 			return 0;
504 
505 	return -EACCES;
506 }
507 EXPORT_SYMBOL(generic_permission);
508 
509 /**
510  * do_inode_permission - UNIX permission checking
511  * @idmap:	idmap of the mount the inode was found from
512  * @inode:	inode to check permissions on
513  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
514  *
515  * We _really_ want to just do "generic_permission()" without
516  * even looking at the inode->i_op values. So we keep a cache
517  * flag in inode->i_opflags, that says "this has not special
518  * permission function, use the fast case".
519  */
do_inode_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)520 static inline int do_inode_permission(struct mnt_idmap *idmap,
521 				      struct inode *inode, int mask)
522 {
523 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
524 		if (likely(inode->i_op->permission))
525 			return inode->i_op->permission(idmap, inode, mask);
526 
527 		/* This gets set once for the inode lifetime */
528 		spin_lock(&inode->i_lock);
529 		inode->i_opflags |= IOP_FASTPERM;
530 		spin_unlock(&inode->i_lock);
531 	}
532 	return generic_permission(idmap, inode, mask);
533 }
534 
535 /**
536  * sb_permission - Check superblock-level permissions
537  * @sb: Superblock of inode to check permission on
538  * @inode: Inode to check permission on
539  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
540  *
541  * Separate out file-system wide checks from inode-specific permission checks.
542  */
sb_permission(struct super_block * sb,struct inode * inode,int mask)543 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
544 {
545 	if (unlikely(mask & MAY_WRITE)) {
546 		umode_t mode = inode->i_mode;
547 
548 		/* Nobody gets write access to a read-only fs. */
549 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
550 			return -EROFS;
551 	}
552 	return 0;
553 }
554 
555 /**
556  * inode_permission - Check for access rights to a given inode
557  * @idmap:	idmap of the mount the inode was found from
558  * @inode:	Inode to check permission on
559  * @mask:	Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
560  *
561  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
562  * this, letting us set arbitrary permissions for filesystem access without
563  * changing the "normal" UIDs which are used for other things.
564  *
565  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
566  */
inode_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)567 int inode_permission(struct mnt_idmap *idmap,
568 		     struct inode *inode, int mask)
569 {
570 	int retval;
571 
572 	retval = sb_permission(inode->i_sb, inode, mask);
573 	if (retval)
574 		return retval;
575 
576 	if (unlikely(mask & MAY_WRITE)) {
577 		/*
578 		 * Nobody gets write access to an immutable file.
579 		 */
580 		if (IS_IMMUTABLE(inode))
581 			return -EPERM;
582 
583 		/*
584 		 * Updating mtime will likely cause i_uid and i_gid to be
585 		 * written back improperly if their true value is unknown
586 		 * to the vfs.
587 		 */
588 		if (HAS_UNMAPPED_ID(idmap, inode))
589 			return -EACCES;
590 	}
591 
592 	retval = do_inode_permission(idmap, inode, mask);
593 	if (retval)
594 		return retval;
595 
596 	retval = devcgroup_inode_permission(inode, mask);
597 	if (retval)
598 		return retval;
599 
600 	return security_inode_permission(inode, mask);
601 }
602 EXPORT_SYMBOL(inode_permission);
603 
604 /**
605  * path_get - get a reference to a path
606  * @path: path to get the reference to
607  *
608  * Given a path increment the reference count to the dentry and the vfsmount.
609  */
path_get(const struct path * path)610 void path_get(const struct path *path)
611 {
612 	mntget(path->mnt);
613 	dget(path->dentry);
614 }
615 EXPORT_SYMBOL(path_get);
616 
617 /**
618  * path_put - put a reference to a path
619  * @path: path to put the reference to
620  *
621  * Given a path decrement the reference count to the dentry and the vfsmount.
622  */
path_put(const struct path * path)623 void path_put(const struct path *path)
624 {
625 	dput(path->dentry);
626 	mntput(path->mnt);
627 }
628 EXPORT_SYMBOL(path_put);
629 
630 #define EMBEDDED_LEVELS 2
631 struct nameidata {
632 	struct path	path;
633 	struct qstr	last;
634 	struct path	root;
635 	struct inode	*inode; /* path.dentry.d_inode */
636 	unsigned int	flags, state;
637 	unsigned	seq, next_seq, m_seq, r_seq;
638 	int		last_type;
639 	unsigned	depth;
640 	int		total_link_count;
641 	struct saved {
642 		struct path link;
643 		struct delayed_call done;
644 		const char *name;
645 		unsigned seq;
646 	} *stack, internal[EMBEDDED_LEVELS];
647 	struct filename	*name;
648 	const char *pathname;
649 	struct nameidata *saved;
650 	unsigned	root_seq;
651 	int		dfd;
652 	vfsuid_t	dir_vfsuid;
653 	umode_t		dir_mode;
654 } __randomize_layout;
655 
656 #define ND_ROOT_PRESET 1
657 #define ND_ROOT_GRABBED 2
658 #define ND_JUMPED 4
659 
__set_nameidata(struct nameidata * p,int dfd,struct filename * name)660 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
661 {
662 	struct nameidata *old = current->nameidata;
663 	p->stack = p->internal;
664 	p->depth = 0;
665 	p->dfd = dfd;
666 	p->name = name;
667 	p->pathname = likely(name) ? name->name : "";
668 	p->path.mnt = NULL;
669 	p->path.dentry = NULL;
670 	p->total_link_count = old ? old->total_link_count : 0;
671 	p->saved = old;
672 	current->nameidata = p;
673 }
674 
set_nameidata(struct nameidata * p,int dfd,struct filename * name,const struct path * root)675 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
676 			  const struct path *root)
677 {
678 	__set_nameidata(p, dfd, name);
679 	p->state = 0;
680 	if (unlikely(root)) {
681 		p->state = ND_ROOT_PRESET;
682 		p->root = *root;
683 	}
684 }
685 
restore_nameidata(void)686 static void restore_nameidata(void)
687 {
688 	struct nameidata *now = current->nameidata, *old = now->saved;
689 
690 	current->nameidata = old;
691 	if (old)
692 		old->total_link_count = now->total_link_count;
693 	if (now->stack != now->internal)
694 		kfree(now->stack);
695 }
696 
nd_alloc_stack(struct nameidata * nd)697 static bool nd_alloc_stack(struct nameidata *nd)
698 {
699 	struct saved *p;
700 
701 	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
702 			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
703 	if (unlikely(!p))
704 		return false;
705 	memcpy(p, nd->internal, sizeof(nd->internal));
706 	nd->stack = p;
707 	return true;
708 }
709 
710 /**
711  * path_connected - Verify that a dentry is below mnt.mnt_root
712  * @mnt: The mountpoint to check.
713  * @dentry: The dentry to check.
714  *
715  * Rename can sometimes move a file or directory outside of a bind
716  * mount, path_connected allows those cases to be detected.
717  */
path_connected(struct vfsmount * mnt,struct dentry * dentry)718 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
719 {
720 	struct super_block *sb = mnt->mnt_sb;
721 
722 	/* Bind mounts can have disconnected paths */
723 	if (mnt->mnt_root == sb->s_root)
724 		return true;
725 
726 	return is_subdir(dentry, mnt->mnt_root);
727 }
728 
drop_links(struct nameidata * nd)729 static void drop_links(struct nameidata *nd)
730 {
731 	int i = nd->depth;
732 	while (i--) {
733 		struct saved *last = nd->stack + i;
734 		do_delayed_call(&last->done);
735 		clear_delayed_call(&last->done);
736 	}
737 }
738 
leave_rcu(struct nameidata * nd)739 static void leave_rcu(struct nameidata *nd)
740 {
741 	nd->flags &= ~LOOKUP_RCU;
742 	nd->seq = nd->next_seq = 0;
743 	rcu_read_unlock();
744 }
745 
terminate_walk(struct nameidata * nd)746 static void terminate_walk(struct nameidata *nd)
747 {
748 	drop_links(nd);
749 	if (!(nd->flags & LOOKUP_RCU)) {
750 		int i;
751 		path_put(&nd->path);
752 		for (i = 0; i < nd->depth; i++)
753 			path_put(&nd->stack[i].link);
754 		if (nd->state & ND_ROOT_GRABBED) {
755 			path_put(&nd->root);
756 			nd->state &= ~ND_ROOT_GRABBED;
757 		}
758 	} else {
759 		leave_rcu(nd);
760 	}
761 	nd->depth = 0;
762 	nd->path.mnt = NULL;
763 	nd->path.dentry = NULL;
764 }
765 
766 /* path_put is needed afterwards regardless of success or failure */
__legitimize_path(struct path * path,unsigned seq,unsigned mseq)767 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
768 {
769 	int res = __legitimize_mnt(path->mnt, mseq);
770 	if (unlikely(res)) {
771 		if (res > 0)
772 			path->mnt = NULL;
773 		path->dentry = NULL;
774 		return false;
775 	}
776 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
777 		path->dentry = NULL;
778 		return false;
779 	}
780 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
781 }
782 
legitimize_path(struct nameidata * nd,struct path * path,unsigned seq)783 static inline bool legitimize_path(struct nameidata *nd,
784 			    struct path *path, unsigned seq)
785 {
786 	return __legitimize_path(path, seq, nd->m_seq);
787 }
788 
legitimize_links(struct nameidata * nd)789 static bool legitimize_links(struct nameidata *nd)
790 {
791 	int i;
792 	if (unlikely(nd->flags & LOOKUP_CACHED)) {
793 		drop_links(nd);
794 		nd->depth = 0;
795 		return false;
796 	}
797 	for (i = 0; i < nd->depth; i++) {
798 		struct saved *last = nd->stack + i;
799 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
800 			drop_links(nd);
801 			nd->depth = i + 1;
802 			return false;
803 		}
804 	}
805 	return true;
806 }
807 
legitimize_root(struct nameidata * nd)808 static bool legitimize_root(struct nameidata *nd)
809 {
810 	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
811 	if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
812 		return true;
813 	nd->state |= ND_ROOT_GRABBED;
814 	return legitimize_path(nd, &nd->root, nd->root_seq);
815 }
816 
817 /*
818  * Path walking has 2 modes, rcu-walk and ref-walk (see
819  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
820  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
821  * normal reference counts on dentries and vfsmounts to transition to ref-walk
822  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
823  * got stuck, so ref-walk may continue from there. If this is not successful
824  * (eg. a seqcount has changed), then failure is returned and it's up to caller
825  * to restart the path walk from the beginning in ref-walk mode.
826  */
827 
828 /**
829  * try_to_unlazy - try to switch to ref-walk mode.
830  * @nd: nameidata pathwalk data
831  * Returns: true on success, false on failure
832  *
833  * try_to_unlazy attempts to legitimize the current nd->path and nd->root
834  * for ref-walk mode.
835  * Must be called from rcu-walk context.
836  * Nothing should touch nameidata between try_to_unlazy() failure and
837  * terminate_walk().
838  */
try_to_unlazy(struct nameidata * nd)839 static bool try_to_unlazy(struct nameidata *nd)
840 {
841 	struct dentry *parent = nd->path.dentry;
842 
843 	BUG_ON(!(nd->flags & LOOKUP_RCU));
844 
845 	if (unlikely(!legitimize_links(nd)))
846 		goto out1;
847 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
848 		goto out;
849 	if (unlikely(!legitimize_root(nd)))
850 		goto out;
851 	leave_rcu(nd);
852 	BUG_ON(nd->inode != parent->d_inode);
853 	return true;
854 
855 out1:
856 	nd->path.mnt = NULL;
857 	nd->path.dentry = NULL;
858 out:
859 	leave_rcu(nd);
860 	return false;
861 }
862 
863 /**
864  * try_to_unlazy_next - try to switch to ref-walk mode.
865  * @nd: nameidata pathwalk data
866  * @dentry: next dentry to step into
867  * Returns: true on success, false on failure
868  *
869  * Similar to try_to_unlazy(), but here we have the next dentry already
870  * picked by rcu-walk and want to legitimize that in addition to the current
871  * nd->path and nd->root for ref-walk mode.  Must be called from rcu-walk context.
872  * Nothing should touch nameidata between try_to_unlazy_next() failure and
873  * terminate_walk().
874  */
try_to_unlazy_next(struct nameidata * nd,struct dentry * dentry)875 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
876 {
877 	int res;
878 	BUG_ON(!(nd->flags & LOOKUP_RCU));
879 
880 	if (unlikely(!legitimize_links(nd)))
881 		goto out2;
882 	res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
883 	if (unlikely(res)) {
884 		if (res > 0)
885 			goto out2;
886 		goto out1;
887 	}
888 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
889 		goto out1;
890 
891 	/*
892 	 * We need to move both the parent and the dentry from the RCU domain
893 	 * to be properly refcounted. And the sequence number in the dentry
894 	 * validates *both* dentry counters, since we checked the sequence
895 	 * number of the parent after we got the child sequence number. So we
896 	 * know the parent must still be valid if the child sequence number is
897 	 */
898 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
899 		goto out;
900 	if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
901 		goto out_dput;
902 	/*
903 	 * Sequence counts matched. Now make sure that the root is
904 	 * still valid and get it if required.
905 	 */
906 	if (unlikely(!legitimize_root(nd)))
907 		goto out_dput;
908 	leave_rcu(nd);
909 	return true;
910 
911 out2:
912 	nd->path.mnt = NULL;
913 out1:
914 	nd->path.dentry = NULL;
915 out:
916 	leave_rcu(nd);
917 	return false;
918 out_dput:
919 	leave_rcu(nd);
920 	dput(dentry);
921 	return false;
922 }
923 
d_revalidate(struct inode * dir,const struct qstr * name,struct dentry * dentry,unsigned int flags)924 static inline int d_revalidate(struct inode *dir, const struct qstr *name,
925 			       struct dentry *dentry, unsigned int flags)
926 {
927 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
928 		return dentry->d_op->d_revalidate(dir, name, dentry, flags);
929 	else
930 		return 1;
931 }
932 
933 /**
934  * complete_walk - successful completion of path walk
935  * @nd:  pointer nameidata
936  *
937  * If we had been in RCU mode, drop out of it and legitimize nd->path.
938  * Revalidate the final result, unless we'd already done that during
939  * the path walk or the filesystem doesn't ask for it.  Return 0 on
940  * success, -error on failure.  In case of failure caller does not
941  * need to drop nd->path.
942  */
complete_walk(struct nameidata * nd)943 static int complete_walk(struct nameidata *nd)
944 {
945 	struct dentry *dentry = nd->path.dentry;
946 	int status;
947 
948 	if (nd->flags & LOOKUP_RCU) {
949 		/*
950 		 * We don't want to zero nd->root for scoped-lookups or
951 		 * externally-managed nd->root.
952 		 */
953 		if (!(nd->state & ND_ROOT_PRESET))
954 			if (!(nd->flags & LOOKUP_IS_SCOPED))
955 				nd->root.mnt = NULL;
956 		nd->flags &= ~LOOKUP_CACHED;
957 		if (!try_to_unlazy(nd))
958 			return -ECHILD;
959 	}
960 
961 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
962 		/*
963 		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
964 		 * ever step outside the root during lookup" and should already
965 		 * be guaranteed by the rest of namei, we want to avoid a namei
966 		 * BUG resulting in userspace being given a path that was not
967 		 * scoped within the root at some point during the lookup.
968 		 *
969 		 * So, do a final sanity-check to make sure that in the
970 		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
971 		 * we won't silently return an fd completely outside of the
972 		 * requested root to userspace.
973 		 *
974 		 * Userspace could move the path outside the root after this
975 		 * check, but as discussed elsewhere this is not a concern (the
976 		 * resolved file was inside the root at some point).
977 		 */
978 		if (!path_is_under(&nd->path, &nd->root))
979 			return -EXDEV;
980 	}
981 
982 	if (likely(!(nd->state & ND_JUMPED)))
983 		return 0;
984 
985 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
986 		return 0;
987 
988 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
989 	if (status > 0)
990 		return 0;
991 
992 	if (!status)
993 		status = -ESTALE;
994 
995 	return status;
996 }
997 
set_root(struct nameidata * nd)998 static int set_root(struct nameidata *nd)
999 {
1000 	struct fs_struct *fs = current->fs;
1001 
1002 	/*
1003 	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
1004 	 * still have to ensure it doesn't happen because it will cause a breakout
1005 	 * from the dirfd.
1006 	 */
1007 	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
1008 		return -ENOTRECOVERABLE;
1009 
1010 	if (nd->flags & LOOKUP_RCU) {
1011 		unsigned seq;
1012 
1013 		do {
1014 			seq = read_seqcount_begin(&fs->seq);
1015 			nd->root = fs->root;
1016 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
1017 		} while (read_seqcount_retry(&fs->seq, seq));
1018 	} else {
1019 		get_fs_root(fs, &nd->root);
1020 		nd->state |= ND_ROOT_GRABBED;
1021 	}
1022 	return 0;
1023 }
1024 
nd_jump_root(struct nameidata * nd)1025 static int nd_jump_root(struct nameidata *nd)
1026 {
1027 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1028 		return -EXDEV;
1029 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1030 		/* Absolute path arguments to path_init() are allowed. */
1031 		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
1032 			return -EXDEV;
1033 	}
1034 	if (!nd->root.mnt) {
1035 		int error = set_root(nd);
1036 		if (error)
1037 			return error;
1038 	}
1039 	if (nd->flags & LOOKUP_RCU) {
1040 		struct dentry *d;
1041 		nd->path = nd->root;
1042 		d = nd->path.dentry;
1043 		nd->inode = d->d_inode;
1044 		nd->seq = nd->root_seq;
1045 		if (read_seqcount_retry(&d->d_seq, nd->seq))
1046 			return -ECHILD;
1047 	} else {
1048 		path_put(&nd->path);
1049 		nd->path = nd->root;
1050 		path_get(&nd->path);
1051 		nd->inode = nd->path.dentry->d_inode;
1052 	}
1053 	nd->state |= ND_JUMPED;
1054 	return 0;
1055 }
1056 
1057 /*
1058  * Helper to directly jump to a known parsed path from ->get_link,
1059  * caller must have taken a reference to path beforehand.
1060  */
nd_jump_link(const struct path * path)1061 int nd_jump_link(const struct path *path)
1062 {
1063 	int error = -ELOOP;
1064 	struct nameidata *nd = current->nameidata;
1065 
1066 	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
1067 		goto err;
1068 
1069 	error = -EXDEV;
1070 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1071 		if (nd->path.mnt != path->mnt)
1072 			goto err;
1073 	}
1074 	/* Not currently safe for scoped-lookups. */
1075 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1076 		goto err;
1077 
1078 	path_put(&nd->path);
1079 	nd->path = *path;
1080 	nd->inode = nd->path.dentry->d_inode;
1081 	nd->state |= ND_JUMPED;
1082 	return 0;
1083 
1084 err:
1085 	path_put(path);
1086 	return error;
1087 }
1088 
put_link(struct nameidata * nd)1089 static inline void put_link(struct nameidata *nd)
1090 {
1091 	struct saved *last = nd->stack + --nd->depth;
1092 	do_delayed_call(&last->done);
1093 	if (!(nd->flags & LOOKUP_RCU))
1094 		path_put(&last->link);
1095 }
1096 
1097 static int sysctl_protected_symlinks __read_mostly;
1098 static int sysctl_protected_hardlinks __read_mostly;
1099 static int sysctl_protected_fifos __read_mostly;
1100 static int sysctl_protected_regular __read_mostly;
1101 
1102 #ifdef CONFIG_SYSCTL
1103 static const struct ctl_table namei_sysctls[] = {
1104 	{
1105 		.procname	= "protected_symlinks",
1106 		.data		= &sysctl_protected_symlinks,
1107 		.maxlen		= sizeof(int),
1108 		.mode		= 0644,
1109 		.proc_handler	= proc_dointvec_minmax,
1110 		.extra1		= SYSCTL_ZERO,
1111 		.extra2		= SYSCTL_ONE,
1112 	},
1113 	{
1114 		.procname	= "protected_hardlinks",
1115 		.data		= &sysctl_protected_hardlinks,
1116 		.maxlen		= sizeof(int),
1117 		.mode		= 0644,
1118 		.proc_handler	= proc_dointvec_minmax,
1119 		.extra1		= SYSCTL_ZERO,
1120 		.extra2		= SYSCTL_ONE,
1121 	},
1122 	{
1123 		.procname	= "protected_fifos",
1124 		.data		= &sysctl_protected_fifos,
1125 		.maxlen		= sizeof(int),
1126 		.mode		= 0644,
1127 		.proc_handler	= proc_dointvec_minmax,
1128 		.extra1		= SYSCTL_ZERO,
1129 		.extra2		= SYSCTL_TWO,
1130 	},
1131 	{
1132 		.procname	= "protected_regular",
1133 		.data		= &sysctl_protected_regular,
1134 		.maxlen		= sizeof(int),
1135 		.mode		= 0644,
1136 		.proc_handler	= proc_dointvec_minmax,
1137 		.extra1		= SYSCTL_ZERO,
1138 		.extra2		= SYSCTL_TWO,
1139 	},
1140 };
1141 
init_fs_namei_sysctls(void)1142 static int __init init_fs_namei_sysctls(void)
1143 {
1144 	register_sysctl_init("fs", namei_sysctls);
1145 	return 0;
1146 }
1147 fs_initcall(init_fs_namei_sysctls);
1148 
1149 #endif /* CONFIG_SYSCTL */
1150 
1151 /**
1152  * may_follow_link - Check symlink following for unsafe situations
1153  * @nd: nameidata pathwalk data
1154  * @inode: Used for idmapping.
1155  *
1156  * In the case of the sysctl_protected_symlinks sysctl being enabled,
1157  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1158  * in a sticky world-writable directory. This is to protect privileged
1159  * processes from failing races against path names that may change out
1160  * from under them by way of other users creating malicious symlinks.
1161  * It will permit symlinks to be followed only when outside a sticky
1162  * world-writable directory, or when the uid of the symlink and follower
1163  * match, or when the directory owner matches the symlink's owner.
1164  *
1165  * Returns 0 if following the symlink is allowed, -ve on error.
1166  */
may_follow_link(struct nameidata * nd,const struct inode * inode)1167 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1168 {
1169 	struct mnt_idmap *idmap;
1170 	vfsuid_t vfsuid;
1171 
1172 	if (!sysctl_protected_symlinks)
1173 		return 0;
1174 
1175 	idmap = mnt_idmap(nd->path.mnt);
1176 	vfsuid = i_uid_into_vfsuid(idmap, inode);
1177 	/* Allowed if owner and follower match. */
1178 	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
1179 		return 0;
1180 
1181 	/* Allowed if parent directory not sticky and world-writable. */
1182 	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1183 		return 0;
1184 
1185 	/* Allowed if parent directory and link owner match. */
1186 	if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid))
1187 		return 0;
1188 
1189 	if (nd->flags & LOOKUP_RCU)
1190 		return -ECHILD;
1191 
1192 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1193 	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1194 	return -EACCES;
1195 }
1196 
1197 /**
1198  * safe_hardlink_source - Check for safe hardlink conditions
1199  * @idmap: idmap of the mount the inode was found from
1200  * @inode: the source inode to hardlink from
1201  *
1202  * Return false if at least one of the following conditions:
1203  *    - inode is not a regular file
1204  *    - inode is setuid
1205  *    - inode is setgid and group-exec
1206  *    - access failure for read and write
1207  *
1208  * Otherwise returns true.
1209  */
safe_hardlink_source(struct mnt_idmap * idmap,struct inode * inode)1210 static bool safe_hardlink_source(struct mnt_idmap *idmap,
1211 				 struct inode *inode)
1212 {
1213 	umode_t mode = inode->i_mode;
1214 
1215 	/* Special files should not get pinned to the filesystem. */
1216 	if (!S_ISREG(mode))
1217 		return false;
1218 
1219 	/* Setuid files should not get pinned to the filesystem. */
1220 	if (mode & S_ISUID)
1221 		return false;
1222 
1223 	/* Executable setgid files should not get pinned to the filesystem. */
1224 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1225 		return false;
1226 
1227 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1228 	if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE))
1229 		return false;
1230 
1231 	return true;
1232 }
1233 
1234 /**
1235  * may_linkat - Check permissions for creating a hardlink
1236  * @idmap: idmap of the mount the inode was found from
1237  * @link:  the source to hardlink from
1238  *
1239  * Block hardlink when all of:
1240  *  - sysctl_protected_hardlinks enabled
1241  *  - fsuid does not match inode
1242  *  - hardlink source is unsafe (see safe_hardlink_source() above)
1243  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1244  *
1245  * If the inode has been found through an idmapped mount the idmap of
1246  * the vfsmount must be passed through @idmap. This function will then take
1247  * care to map the inode according to @idmap before checking permissions.
1248  * On non-idmapped mounts or if permission checking is to be performed on the
1249  * raw inode simply pass @nop_mnt_idmap.
1250  *
1251  * Returns 0 if successful, -ve on error.
1252  */
may_linkat(struct mnt_idmap * idmap,const struct path * link)1253 int may_linkat(struct mnt_idmap *idmap, const struct path *link)
1254 {
1255 	struct inode *inode = link->dentry->d_inode;
1256 
1257 	/* Inode writeback is not safe when the uid or gid are invalid. */
1258 	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
1259 	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
1260 		return -EOVERFLOW;
1261 
1262 	if (!sysctl_protected_hardlinks)
1263 		return 0;
1264 
1265 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1266 	 * otherwise, it must be a safe source.
1267 	 */
1268 	if (safe_hardlink_source(idmap, inode) ||
1269 	    inode_owner_or_capable(idmap, inode))
1270 		return 0;
1271 
1272 	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1273 	return -EPERM;
1274 }
1275 
1276 /**
1277  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1278  *			  should be allowed, or not, on files that already
1279  *			  exist.
1280  * @idmap: idmap of the mount the inode was found from
1281  * @nd: nameidata pathwalk data
1282  * @inode: the inode of the file to open
1283  *
1284  * Block an O_CREAT open of a FIFO (or a regular file) when:
1285  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1286  *   - the file already exists
1287  *   - we are in a sticky directory
1288  *   - we don't own the file
1289  *   - the owner of the directory doesn't own the file
1290  *   - the directory is world writable
1291  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1292  * the directory doesn't have to be world writable: being group writable will
1293  * be enough.
1294  *
1295  * If the inode has been found through an idmapped mount the idmap of
1296  * the vfsmount must be passed through @idmap. This function will then take
1297  * care to map the inode according to @idmap before checking permissions.
1298  * On non-idmapped mounts or if permission checking is to be performed on the
1299  * raw inode simply pass @nop_mnt_idmap.
1300  *
1301  * Returns 0 if the open is allowed, -ve on error.
1302  */
may_create_in_sticky(struct mnt_idmap * idmap,struct nameidata * nd,struct inode * const inode)1303 static int may_create_in_sticky(struct mnt_idmap *idmap, struct nameidata *nd,
1304 				struct inode *const inode)
1305 {
1306 	umode_t dir_mode = nd->dir_mode;
1307 	vfsuid_t dir_vfsuid = nd->dir_vfsuid, i_vfsuid;
1308 
1309 	if (likely(!(dir_mode & S_ISVTX)))
1310 		return 0;
1311 
1312 	if (S_ISREG(inode->i_mode) && !sysctl_protected_regular)
1313 		return 0;
1314 
1315 	if (S_ISFIFO(inode->i_mode) && !sysctl_protected_fifos)
1316 		return 0;
1317 
1318 	i_vfsuid = i_uid_into_vfsuid(idmap, inode);
1319 
1320 	if (vfsuid_eq(i_vfsuid, dir_vfsuid))
1321 		return 0;
1322 
1323 	if (vfsuid_eq_kuid(i_vfsuid, current_fsuid()))
1324 		return 0;
1325 
1326 	if (likely(dir_mode & 0002)) {
1327 		audit_log_path_denied(AUDIT_ANOM_CREAT, "sticky_create");
1328 		return -EACCES;
1329 	}
1330 
1331 	if (dir_mode & 0020) {
1332 		if (sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) {
1333 			audit_log_path_denied(AUDIT_ANOM_CREAT,
1334 					      "sticky_create_fifo");
1335 			return -EACCES;
1336 		}
1337 
1338 		if (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode)) {
1339 			audit_log_path_denied(AUDIT_ANOM_CREAT,
1340 					      "sticky_create_regular");
1341 			return -EACCES;
1342 		}
1343 	}
1344 
1345 	return 0;
1346 }
1347 
1348 /*
1349  * follow_up - Find the mountpoint of path's vfsmount
1350  *
1351  * Given a path, find the mountpoint of its source file system.
1352  * Replace @path with the path of the mountpoint in the parent mount.
1353  * Up is towards /.
1354  *
1355  * Return 1 if we went up a level and 0 if we were already at the
1356  * root.
1357  */
follow_up(struct path * path)1358 int follow_up(struct path *path)
1359 {
1360 	struct mount *mnt = real_mount(path->mnt);
1361 	struct mount *parent;
1362 	struct dentry *mountpoint;
1363 
1364 	read_seqlock_excl(&mount_lock);
1365 	parent = mnt->mnt_parent;
1366 	if (parent == mnt) {
1367 		read_sequnlock_excl(&mount_lock);
1368 		return 0;
1369 	}
1370 	mntget(&parent->mnt);
1371 	mountpoint = dget(mnt->mnt_mountpoint);
1372 	read_sequnlock_excl(&mount_lock);
1373 	dput(path->dentry);
1374 	path->dentry = mountpoint;
1375 	mntput(path->mnt);
1376 	path->mnt = &parent->mnt;
1377 	return 1;
1378 }
1379 EXPORT_SYMBOL(follow_up);
1380 
choose_mountpoint_rcu(struct mount * m,const struct path * root,struct path * path,unsigned * seqp)1381 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1382 				  struct path *path, unsigned *seqp)
1383 {
1384 	while (mnt_has_parent(m)) {
1385 		struct dentry *mountpoint = m->mnt_mountpoint;
1386 
1387 		m = m->mnt_parent;
1388 		if (unlikely(root->dentry == mountpoint &&
1389 			     root->mnt == &m->mnt))
1390 			break;
1391 		if (mountpoint != m->mnt.mnt_root) {
1392 			path->mnt = &m->mnt;
1393 			path->dentry = mountpoint;
1394 			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1395 			return true;
1396 		}
1397 	}
1398 	return false;
1399 }
1400 
choose_mountpoint(struct mount * m,const struct path * root,struct path * path)1401 static bool choose_mountpoint(struct mount *m, const struct path *root,
1402 			      struct path *path)
1403 {
1404 	bool found;
1405 
1406 	rcu_read_lock();
1407 	while (1) {
1408 		unsigned seq, mseq = read_seqbegin(&mount_lock);
1409 
1410 		found = choose_mountpoint_rcu(m, root, path, &seq);
1411 		if (unlikely(!found)) {
1412 			if (!read_seqretry(&mount_lock, mseq))
1413 				break;
1414 		} else {
1415 			if (likely(__legitimize_path(path, seq, mseq)))
1416 				break;
1417 			rcu_read_unlock();
1418 			path_put(path);
1419 			rcu_read_lock();
1420 		}
1421 	}
1422 	rcu_read_unlock();
1423 	return found;
1424 }
1425 
1426 /*
1427  * Perform an automount
1428  * - return -EISDIR to tell follow_managed() to stop and return the path we
1429  *   were called with.
1430  */
follow_automount(struct path * path,int * count,unsigned lookup_flags)1431 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1432 {
1433 	struct dentry *dentry = path->dentry;
1434 
1435 	/* We don't want to mount if someone's just doing a stat -
1436 	 * unless they're stat'ing a directory and appended a '/' to
1437 	 * the name.
1438 	 *
1439 	 * We do, however, want to mount if someone wants to open or
1440 	 * create a file of any type under the mountpoint, wants to
1441 	 * traverse through the mountpoint or wants to open the
1442 	 * mounted directory.  Also, autofs may mark negative dentries
1443 	 * as being automount points.  These will need the attentions
1444 	 * of the daemon to instantiate them before they can be used.
1445 	 */
1446 	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1447 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1448 	    dentry->d_inode)
1449 		return -EISDIR;
1450 
1451 	if (count && (*count)++ >= MAXSYMLINKS)
1452 		return -ELOOP;
1453 
1454 	return finish_automount(dentry->d_op->d_automount(path), path);
1455 }
1456 
1457 /*
1458  * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1459  * dentries are pinned but not locked here, so negative dentry can go
1460  * positive right under us.  Use of smp_load_acquire() provides a barrier
1461  * sufficient for ->d_inode and ->d_flags consistency.
1462  */
__traverse_mounts(struct path * path,unsigned flags,bool * jumped,int * count,unsigned lookup_flags)1463 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1464 			     int *count, unsigned lookup_flags)
1465 {
1466 	struct vfsmount *mnt = path->mnt;
1467 	bool need_mntput = false;
1468 	int ret = 0;
1469 
1470 	while (flags & DCACHE_MANAGED_DENTRY) {
1471 		/* Allow the filesystem to manage the transit without i_mutex
1472 		 * being held. */
1473 		if (flags & DCACHE_MANAGE_TRANSIT) {
1474 			ret = path->dentry->d_op->d_manage(path, false);
1475 			flags = smp_load_acquire(&path->dentry->d_flags);
1476 			if (ret < 0)
1477 				break;
1478 		}
1479 
1480 		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
1481 			struct vfsmount *mounted = lookup_mnt(path);
1482 			if (mounted) {		// ... in our namespace
1483 				dput(path->dentry);
1484 				if (need_mntput)
1485 					mntput(path->mnt);
1486 				path->mnt = mounted;
1487 				path->dentry = dget(mounted->mnt_root);
1488 				// here we know it's positive
1489 				flags = path->dentry->d_flags;
1490 				need_mntput = true;
1491 				continue;
1492 			}
1493 		}
1494 
1495 		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1496 			break;
1497 
1498 		// uncovered automount point
1499 		ret = follow_automount(path, count, lookup_flags);
1500 		flags = smp_load_acquire(&path->dentry->d_flags);
1501 		if (ret < 0)
1502 			break;
1503 	}
1504 
1505 	if (ret == -EISDIR)
1506 		ret = 0;
1507 	// possible if you race with several mount --move
1508 	if (need_mntput && path->mnt == mnt)
1509 		mntput(path->mnt);
1510 	if (!ret && unlikely(d_flags_negative(flags)))
1511 		ret = -ENOENT;
1512 	*jumped = need_mntput;
1513 	return ret;
1514 }
1515 
traverse_mounts(struct path * path,bool * jumped,int * count,unsigned lookup_flags)1516 static inline int traverse_mounts(struct path *path, bool *jumped,
1517 				  int *count, unsigned lookup_flags)
1518 {
1519 	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1520 
1521 	/* fastpath */
1522 	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1523 		*jumped = false;
1524 		if (unlikely(d_flags_negative(flags)))
1525 			return -ENOENT;
1526 		return 0;
1527 	}
1528 	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1529 }
1530 
follow_down_one(struct path * path)1531 int follow_down_one(struct path *path)
1532 {
1533 	struct vfsmount *mounted;
1534 
1535 	mounted = lookup_mnt(path);
1536 	if (mounted) {
1537 		dput(path->dentry);
1538 		mntput(path->mnt);
1539 		path->mnt = mounted;
1540 		path->dentry = dget(mounted->mnt_root);
1541 		return 1;
1542 	}
1543 	return 0;
1544 }
1545 EXPORT_SYMBOL(follow_down_one);
1546 
1547 /*
1548  * Follow down to the covering mount currently visible to userspace.  At each
1549  * point, the filesystem owning that dentry may be queried as to whether the
1550  * caller is permitted to proceed or not.
1551  */
follow_down(struct path * path,unsigned int flags)1552 int follow_down(struct path *path, unsigned int flags)
1553 {
1554 	struct vfsmount *mnt = path->mnt;
1555 	bool jumped;
1556 	int ret = traverse_mounts(path, &jumped, NULL, flags);
1557 
1558 	if (path->mnt != mnt)
1559 		mntput(mnt);
1560 	return ret;
1561 }
1562 EXPORT_SYMBOL(follow_down);
1563 
1564 /*
1565  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1566  * we meet a managed dentry that would need blocking.
1567  */
__follow_mount_rcu(struct nameidata * nd,struct path * path)1568 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1569 {
1570 	struct dentry *dentry = path->dentry;
1571 	unsigned int flags = dentry->d_flags;
1572 
1573 	if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1574 		return true;
1575 
1576 	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1577 		return false;
1578 
1579 	for (;;) {
1580 		/*
1581 		 * Don't forget we might have a non-mountpoint managed dentry
1582 		 * that wants to block transit.
1583 		 */
1584 		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1585 			int res = dentry->d_op->d_manage(path, true);
1586 			if (res)
1587 				return res == -EISDIR;
1588 			flags = dentry->d_flags;
1589 		}
1590 
1591 		if (flags & DCACHE_MOUNTED) {
1592 			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1593 			if (mounted) {
1594 				path->mnt = &mounted->mnt;
1595 				dentry = path->dentry = mounted->mnt.mnt_root;
1596 				nd->state |= ND_JUMPED;
1597 				nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1598 				flags = dentry->d_flags;
1599 				// makes sure that non-RCU pathwalk could reach
1600 				// this state.
1601 				if (read_seqretry(&mount_lock, nd->m_seq))
1602 					return false;
1603 				continue;
1604 			}
1605 			if (read_seqretry(&mount_lock, nd->m_seq))
1606 				return false;
1607 		}
1608 		return !(flags & DCACHE_NEED_AUTOMOUNT);
1609 	}
1610 }
1611 
handle_mounts(struct nameidata * nd,struct dentry * dentry,struct path * path)1612 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1613 			  struct path *path)
1614 {
1615 	bool jumped;
1616 	int ret;
1617 
1618 	path->mnt = nd->path.mnt;
1619 	path->dentry = dentry;
1620 	if (nd->flags & LOOKUP_RCU) {
1621 		unsigned int seq = nd->next_seq;
1622 		if (likely(__follow_mount_rcu(nd, path)))
1623 			return 0;
1624 		// *path and nd->next_seq might've been clobbered
1625 		path->mnt = nd->path.mnt;
1626 		path->dentry = dentry;
1627 		nd->next_seq = seq;
1628 		if (!try_to_unlazy_next(nd, dentry))
1629 			return -ECHILD;
1630 	}
1631 	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1632 	if (jumped) {
1633 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1634 			ret = -EXDEV;
1635 		else
1636 			nd->state |= ND_JUMPED;
1637 	}
1638 	if (unlikely(ret)) {
1639 		dput(path->dentry);
1640 		if (path->mnt != nd->path.mnt)
1641 			mntput(path->mnt);
1642 	}
1643 	return ret;
1644 }
1645 
1646 /*
1647  * This looks up the name in dcache and possibly revalidates the found dentry.
1648  * NULL is returned if the dentry does not exist in the cache.
1649  */
lookup_dcache(const struct qstr * name,struct dentry * dir,unsigned int flags)1650 static struct dentry *lookup_dcache(const struct qstr *name,
1651 				    struct dentry *dir,
1652 				    unsigned int flags)
1653 {
1654 	struct dentry *dentry = d_lookup(dir, name);
1655 	if (dentry) {
1656 		int error = d_revalidate(dir->d_inode, name, dentry, flags);
1657 		if (unlikely(error <= 0)) {
1658 			if (!error)
1659 				d_invalidate(dentry);
1660 			dput(dentry);
1661 			return ERR_PTR(error);
1662 		}
1663 	}
1664 	return dentry;
1665 }
1666 
1667 /*
1668  * Parent directory has inode locked exclusive.  This is one
1669  * and only case when ->lookup() gets called on non in-lookup
1670  * dentries - as the matter of fact, this only gets called
1671  * when directory is guaranteed to have no in-lookup children
1672  * at all.
1673  */
lookup_one_qstr_excl(const struct qstr * name,struct dentry * base,unsigned int flags)1674 struct dentry *lookup_one_qstr_excl(const struct qstr *name,
1675 				    struct dentry *base,
1676 				    unsigned int flags)
1677 {
1678 	struct dentry *dentry = lookup_dcache(name, base, flags);
1679 	struct dentry *old;
1680 	struct inode *dir = base->d_inode;
1681 
1682 	if (dentry)
1683 		return dentry;
1684 
1685 	/* Don't create child dentry for a dead directory. */
1686 	if (unlikely(IS_DEADDIR(dir)))
1687 		return ERR_PTR(-ENOENT);
1688 
1689 	dentry = d_alloc(base, name);
1690 	if (unlikely(!dentry))
1691 		return ERR_PTR(-ENOMEM);
1692 
1693 	old = dir->i_op->lookup(dir, dentry, flags);
1694 	if (unlikely(old)) {
1695 		dput(dentry);
1696 		dentry = old;
1697 	}
1698 	return dentry;
1699 }
1700 EXPORT_SYMBOL(lookup_one_qstr_excl);
1701 
1702 /**
1703  * lookup_fast - do fast lockless (but racy) lookup of a dentry
1704  * @nd: current nameidata
1705  *
1706  * Do a fast, but racy lookup in the dcache for the given dentry, and
1707  * revalidate it. Returns a valid dentry pointer or NULL if one wasn't
1708  * found. On error, an ERR_PTR will be returned.
1709  *
1710  * If this function returns a valid dentry and the walk is no longer
1711  * lazy, the dentry will carry a reference that must later be put. If
1712  * RCU mode is still in force, then this is not the case and the dentry
1713  * must be legitimized before use. If this returns NULL, then the walk
1714  * will no longer be in RCU mode.
1715  */
lookup_fast(struct nameidata * nd)1716 static struct dentry *lookup_fast(struct nameidata *nd)
1717 {
1718 	struct dentry *dentry, *parent = nd->path.dentry;
1719 	int status = 1;
1720 
1721 	/*
1722 	 * Rename seqlock is not required here because in the off chance
1723 	 * of a false negative due to a concurrent rename, the caller is
1724 	 * going to fall back to non-racy lookup.
1725 	 */
1726 	if (nd->flags & LOOKUP_RCU) {
1727 		dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1728 		if (unlikely(!dentry)) {
1729 			if (!try_to_unlazy(nd))
1730 				return ERR_PTR(-ECHILD);
1731 			return NULL;
1732 		}
1733 
1734 		/*
1735 		 * This sequence count validates that the parent had no
1736 		 * changes while we did the lookup of the dentry above.
1737 		 */
1738 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
1739 			return ERR_PTR(-ECHILD);
1740 
1741 		status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags);
1742 		if (likely(status > 0))
1743 			return dentry;
1744 		if (!try_to_unlazy_next(nd, dentry))
1745 			return ERR_PTR(-ECHILD);
1746 		if (status == -ECHILD)
1747 			/* we'd been told to redo it in non-rcu mode */
1748 			status = d_revalidate(nd->inode, &nd->last,
1749 					      dentry, nd->flags);
1750 	} else {
1751 		dentry = __d_lookup(parent, &nd->last);
1752 		if (unlikely(!dentry))
1753 			return NULL;
1754 		status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags);
1755 	}
1756 	if (unlikely(status <= 0)) {
1757 		if (!status)
1758 			d_invalidate(dentry);
1759 		dput(dentry);
1760 		return ERR_PTR(status);
1761 	}
1762 	return dentry;
1763 }
1764 
1765 /* Fast lookup failed, do it the slow way */
__lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1766 static struct dentry *__lookup_slow(const struct qstr *name,
1767 				    struct dentry *dir,
1768 				    unsigned int flags)
1769 {
1770 	struct dentry *dentry, *old;
1771 	struct inode *inode = dir->d_inode;
1772 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1773 
1774 	/* Don't go there if it's already dead */
1775 	if (unlikely(IS_DEADDIR(inode)))
1776 		return ERR_PTR(-ENOENT);
1777 again:
1778 	dentry = d_alloc_parallel(dir, name, &wq);
1779 	if (IS_ERR(dentry))
1780 		return dentry;
1781 	if (unlikely(!d_in_lookup(dentry))) {
1782 		int error = d_revalidate(inode, name, dentry, flags);
1783 		if (unlikely(error <= 0)) {
1784 			if (!error) {
1785 				d_invalidate(dentry);
1786 				dput(dentry);
1787 				goto again;
1788 			}
1789 			dput(dentry);
1790 			dentry = ERR_PTR(error);
1791 		}
1792 	} else {
1793 		old = inode->i_op->lookup(inode, dentry, flags);
1794 		d_lookup_done(dentry);
1795 		if (unlikely(old)) {
1796 			dput(dentry);
1797 			dentry = old;
1798 		}
1799 	}
1800 	return dentry;
1801 }
1802 
lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1803 static struct dentry *lookup_slow(const struct qstr *name,
1804 				  struct dentry *dir,
1805 				  unsigned int flags)
1806 {
1807 	struct inode *inode = dir->d_inode;
1808 	struct dentry *res;
1809 	inode_lock_shared(inode);
1810 	res = __lookup_slow(name, dir, flags);
1811 	inode_unlock_shared(inode);
1812 	return res;
1813 }
1814 
may_lookup(struct mnt_idmap * idmap,struct nameidata * restrict nd)1815 static inline int may_lookup(struct mnt_idmap *idmap,
1816 			     struct nameidata *restrict nd)
1817 {
1818 	int err, mask;
1819 
1820 	mask = nd->flags & LOOKUP_RCU ? MAY_NOT_BLOCK : 0;
1821 	err = inode_permission(idmap, nd->inode, mask | MAY_EXEC);
1822 	if (likely(!err))
1823 		return 0;
1824 
1825 	// If we failed, and we weren't in LOOKUP_RCU, it's final
1826 	if (!(nd->flags & LOOKUP_RCU))
1827 		return err;
1828 
1829 	// Drop out of RCU mode to make sure it wasn't transient
1830 	if (!try_to_unlazy(nd))
1831 		return -ECHILD;	// redo it all non-lazy
1832 
1833 	if (err != -ECHILD)	// hard error
1834 		return err;
1835 
1836 	return inode_permission(idmap, nd->inode, MAY_EXEC);
1837 }
1838 
reserve_stack(struct nameidata * nd,struct path * link)1839 static int reserve_stack(struct nameidata *nd, struct path *link)
1840 {
1841 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1842 		return -ELOOP;
1843 
1844 	if (likely(nd->depth != EMBEDDED_LEVELS))
1845 		return 0;
1846 	if (likely(nd->stack != nd->internal))
1847 		return 0;
1848 	if (likely(nd_alloc_stack(nd)))
1849 		return 0;
1850 
1851 	if (nd->flags & LOOKUP_RCU) {
1852 		// we need to grab link before we do unlazy.  And we can't skip
1853 		// unlazy even if we fail to grab the link - cleanup needs it
1854 		bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1855 
1856 		if (!try_to_unlazy(nd) || !grabbed_link)
1857 			return -ECHILD;
1858 
1859 		if (nd_alloc_stack(nd))
1860 			return 0;
1861 	}
1862 	return -ENOMEM;
1863 }
1864 
1865 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1866 
pick_link(struct nameidata * nd,struct path * link,struct inode * inode,int flags)1867 static const char *pick_link(struct nameidata *nd, struct path *link,
1868 		     struct inode *inode, int flags)
1869 {
1870 	struct saved *last;
1871 	const char *res;
1872 	int error = reserve_stack(nd, link);
1873 
1874 	if (unlikely(error)) {
1875 		if (!(nd->flags & LOOKUP_RCU))
1876 			path_put(link);
1877 		return ERR_PTR(error);
1878 	}
1879 	last = nd->stack + nd->depth++;
1880 	last->link = *link;
1881 	clear_delayed_call(&last->done);
1882 	last->seq = nd->next_seq;
1883 
1884 	if (flags & WALK_TRAILING) {
1885 		error = may_follow_link(nd, inode);
1886 		if (unlikely(error))
1887 			return ERR_PTR(error);
1888 	}
1889 
1890 	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1891 			unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1892 		return ERR_PTR(-ELOOP);
1893 
1894 	if (!(nd->flags & LOOKUP_RCU)) {
1895 		touch_atime(&last->link);
1896 		cond_resched();
1897 	} else if (atime_needs_update(&last->link, inode)) {
1898 		if (!try_to_unlazy(nd))
1899 			return ERR_PTR(-ECHILD);
1900 		touch_atime(&last->link);
1901 	}
1902 
1903 	error = security_inode_follow_link(link->dentry, inode,
1904 					   nd->flags & LOOKUP_RCU);
1905 	if (unlikely(error))
1906 		return ERR_PTR(error);
1907 
1908 	res = READ_ONCE(inode->i_link);
1909 	if (!res) {
1910 		const char * (*get)(struct dentry *, struct inode *,
1911 				struct delayed_call *);
1912 		get = inode->i_op->get_link;
1913 		if (nd->flags & LOOKUP_RCU) {
1914 			res = get(NULL, inode, &last->done);
1915 			if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1916 				res = get(link->dentry, inode, &last->done);
1917 		} else {
1918 			res = get(link->dentry, inode, &last->done);
1919 		}
1920 		if (!res)
1921 			goto all_done;
1922 		if (IS_ERR(res))
1923 			return res;
1924 	}
1925 	if (*res == '/') {
1926 		error = nd_jump_root(nd);
1927 		if (unlikely(error))
1928 			return ERR_PTR(error);
1929 		while (unlikely(*++res == '/'))
1930 			;
1931 	}
1932 	if (*res)
1933 		return res;
1934 all_done: // pure jump
1935 	put_link(nd);
1936 	return NULL;
1937 }
1938 
1939 /*
1940  * Do we need to follow links? We _really_ want to be able
1941  * to do this check without having to look at inode->i_op,
1942  * so we keep a cache of "no, this doesn't need follow_link"
1943  * for the common case.
1944  *
1945  * NOTE: dentry must be what nd->next_seq had been sampled from.
1946  */
step_into(struct nameidata * nd,int flags,struct dentry * dentry)1947 static const char *step_into(struct nameidata *nd, int flags,
1948 		     struct dentry *dentry)
1949 {
1950 	struct path path;
1951 	struct inode *inode;
1952 	int err = handle_mounts(nd, dentry, &path);
1953 
1954 	if (err < 0)
1955 		return ERR_PTR(err);
1956 	inode = path.dentry->d_inode;
1957 	if (likely(!d_is_symlink(path.dentry)) ||
1958 	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1959 	   (flags & WALK_NOFOLLOW)) {
1960 		/* not a symlink or should not follow */
1961 		if (nd->flags & LOOKUP_RCU) {
1962 			if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1963 				return ERR_PTR(-ECHILD);
1964 			if (unlikely(!inode))
1965 				return ERR_PTR(-ENOENT);
1966 		} else {
1967 			dput(nd->path.dentry);
1968 			if (nd->path.mnt != path.mnt)
1969 				mntput(nd->path.mnt);
1970 		}
1971 		nd->path = path;
1972 		nd->inode = inode;
1973 		nd->seq = nd->next_seq;
1974 		return NULL;
1975 	}
1976 	if (nd->flags & LOOKUP_RCU) {
1977 		/* make sure that d_is_symlink above matches inode */
1978 		if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1979 			return ERR_PTR(-ECHILD);
1980 	} else {
1981 		if (path.mnt == nd->path.mnt)
1982 			mntget(path.mnt);
1983 	}
1984 	return pick_link(nd, &path, inode, flags);
1985 }
1986 
follow_dotdot_rcu(struct nameidata * nd)1987 static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
1988 {
1989 	struct dentry *parent, *old;
1990 
1991 	if (path_equal(&nd->path, &nd->root))
1992 		goto in_root;
1993 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1994 		struct path path;
1995 		unsigned seq;
1996 		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1997 					   &nd->root, &path, &seq))
1998 			goto in_root;
1999 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
2000 			return ERR_PTR(-ECHILD);
2001 		nd->path = path;
2002 		nd->inode = path.dentry->d_inode;
2003 		nd->seq = seq;
2004 		// makes sure that non-RCU pathwalk could reach this state
2005 		if (read_seqretry(&mount_lock, nd->m_seq))
2006 			return ERR_PTR(-ECHILD);
2007 		/* we know that mountpoint was pinned */
2008 	}
2009 	old = nd->path.dentry;
2010 	parent = old->d_parent;
2011 	nd->next_seq = read_seqcount_begin(&parent->d_seq);
2012 	// makes sure that non-RCU pathwalk could reach this state
2013 	if (read_seqcount_retry(&old->d_seq, nd->seq))
2014 		return ERR_PTR(-ECHILD);
2015 	if (unlikely(!path_connected(nd->path.mnt, parent)))
2016 		return ERR_PTR(-ECHILD);
2017 	return parent;
2018 in_root:
2019 	if (read_seqretry(&mount_lock, nd->m_seq))
2020 		return ERR_PTR(-ECHILD);
2021 	if (unlikely(nd->flags & LOOKUP_BENEATH))
2022 		return ERR_PTR(-ECHILD);
2023 	nd->next_seq = nd->seq;
2024 	return nd->path.dentry;
2025 }
2026 
follow_dotdot(struct nameidata * nd)2027 static struct dentry *follow_dotdot(struct nameidata *nd)
2028 {
2029 	struct dentry *parent;
2030 
2031 	if (path_equal(&nd->path, &nd->root))
2032 		goto in_root;
2033 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
2034 		struct path path;
2035 
2036 		if (!choose_mountpoint(real_mount(nd->path.mnt),
2037 				       &nd->root, &path))
2038 			goto in_root;
2039 		path_put(&nd->path);
2040 		nd->path = path;
2041 		nd->inode = path.dentry->d_inode;
2042 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
2043 			return ERR_PTR(-EXDEV);
2044 	}
2045 	/* rare case of legitimate dget_parent()... */
2046 	parent = dget_parent(nd->path.dentry);
2047 	if (unlikely(!path_connected(nd->path.mnt, parent))) {
2048 		dput(parent);
2049 		return ERR_PTR(-ENOENT);
2050 	}
2051 	return parent;
2052 
2053 in_root:
2054 	if (unlikely(nd->flags & LOOKUP_BENEATH))
2055 		return ERR_PTR(-EXDEV);
2056 	return dget(nd->path.dentry);
2057 }
2058 
handle_dots(struct nameidata * nd,int type)2059 static const char *handle_dots(struct nameidata *nd, int type)
2060 {
2061 	if (type == LAST_DOTDOT) {
2062 		const char *error = NULL;
2063 		struct dentry *parent;
2064 
2065 		if (!nd->root.mnt) {
2066 			error = ERR_PTR(set_root(nd));
2067 			if (error)
2068 				return error;
2069 		}
2070 		if (nd->flags & LOOKUP_RCU)
2071 			parent = follow_dotdot_rcu(nd);
2072 		else
2073 			parent = follow_dotdot(nd);
2074 		if (IS_ERR(parent))
2075 			return ERR_CAST(parent);
2076 		error = step_into(nd, WALK_NOFOLLOW, parent);
2077 		if (unlikely(error))
2078 			return error;
2079 
2080 		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
2081 			/*
2082 			 * If there was a racing rename or mount along our
2083 			 * path, then we can't be sure that ".." hasn't jumped
2084 			 * above nd->root (and so userspace should retry or use
2085 			 * some fallback).
2086 			 */
2087 			smp_rmb();
2088 			if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
2089 				return ERR_PTR(-EAGAIN);
2090 			if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
2091 				return ERR_PTR(-EAGAIN);
2092 		}
2093 	}
2094 	return NULL;
2095 }
2096 
walk_component(struct nameidata * nd,int flags)2097 static const char *walk_component(struct nameidata *nd, int flags)
2098 {
2099 	struct dentry *dentry;
2100 	/*
2101 	 * "." and ".." are special - ".." especially so because it has
2102 	 * to be able to know about the current root directory and
2103 	 * parent relationships.
2104 	 */
2105 	if (unlikely(nd->last_type != LAST_NORM)) {
2106 		if (!(flags & WALK_MORE) && nd->depth)
2107 			put_link(nd);
2108 		return handle_dots(nd, nd->last_type);
2109 	}
2110 	dentry = lookup_fast(nd);
2111 	if (IS_ERR(dentry))
2112 		return ERR_CAST(dentry);
2113 	if (unlikely(!dentry)) {
2114 		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2115 		if (IS_ERR(dentry))
2116 			return ERR_CAST(dentry);
2117 	}
2118 	if (!(flags & WALK_MORE) && nd->depth)
2119 		put_link(nd);
2120 	return step_into(nd, flags, dentry);
2121 }
2122 
2123 /*
2124  * We can do the critical dentry name comparison and hashing
2125  * operations one word at a time, but we are limited to:
2126  *
2127  * - Architectures with fast unaligned word accesses. We could
2128  *   do a "get_unaligned()" if this helps and is sufficiently
2129  *   fast.
2130  *
2131  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2132  *   do not trap on the (extremely unlikely) case of a page
2133  *   crossing operation.
2134  *
2135  * - Furthermore, we need an efficient 64-bit compile for the
2136  *   64-bit case in order to generate the "number of bytes in
2137  *   the final mask". Again, that could be replaced with a
2138  *   efficient population count instruction or similar.
2139  */
2140 #ifdef CONFIG_DCACHE_WORD_ACCESS
2141 
2142 #include <asm/word-at-a-time.h>
2143 
2144 #ifdef HASH_MIX
2145 
2146 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2147 
2148 #elif defined(CONFIG_64BIT)
2149 /*
2150  * Register pressure in the mixing function is an issue, particularly
2151  * on 32-bit x86, but almost any function requires one state value and
2152  * one temporary.  Instead, use a function designed for two state values
2153  * and no temporaries.
2154  *
2155  * This function cannot create a collision in only two iterations, so
2156  * we have two iterations to achieve avalanche.  In those two iterations,
2157  * we have six layers of mixing, which is enough to spread one bit's
2158  * influence out to 2^6 = 64 state bits.
2159  *
2160  * Rotate constants are scored by considering either 64 one-bit input
2161  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2162  * probability of that delta causing a change to each of the 128 output
2163  * bits, using a sample of random initial states.
2164  *
2165  * The Shannon entropy of the computed probabilities is then summed
2166  * to produce a score.  Ideally, any input change has a 50% chance of
2167  * toggling any given output bit.
2168  *
2169  * Mixing scores (in bits) for (12,45):
2170  * Input delta: 1-bit      2-bit
2171  * 1 round:     713.3    42542.6
2172  * 2 rounds:   2753.7   140389.8
2173  * 3 rounds:   5954.1   233458.2
2174  * 4 rounds:   7862.6   256672.2
2175  * Perfect:    8192     258048
2176  *            (64*128) (64*63/2 * 128)
2177  */
2178 #define HASH_MIX(x, y, a)	\
2179 	(	x ^= (a),	\
2180 	y ^= x,	x = rol64(x,12),\
2181 	x += y,	y = rol64(y,45),\
2182 	y *= 9			)
2183 
2184 /*
2185  * Fold two longs into one 32-bit hash value.  This must be fast, but
2186  * latency isn't quite as critical, as there is a fair bit of additional
2187  * work done before the hash value is used.
2188  */
fold_hash(unsigned long x,unsigned long y)2189 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2190 {
2191 	y ^= x * GOLDEN_RATIO_64;
2192 	y *= GOLDEN_RATIO_64;
2193 	return y >> 32;
2194 }
2195 
2196 #else	/* 32-bit case */
2197 
2198 /*
2199  * Mixing scores (in bits) for (7,20):
2200  * Input delta: 1-bit      2-bit
2201  * 1 round:     330.3     9201.6
2202  * 2 rounds:   1246.4    25475.4
2203  * 3 rounds:   1907.1    31295.1
2204  * 4 rounds:   2042.3    31718.6
2205  * Perfect:    2048      31744
2206  *            (32*64)   (32*31/2 * 64)
2207  */
2208 #define HASH_MIX(x, y, a)	\
2209 	(	x ^= (a),	\
2210 	y ^= x,	x = rol32(x, 7),\
2211 	x += y,	y = rol32(y,20),\
2212 	y *= 9			)
2213 
fold_hash(unsigned long x,unsigned long y)2214 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2215 {
2216 	/* Use arch-optimized multiply if one exists */
2217 	return __hash_32(y ^ __hash_32(x));
2218 }
2219 
2220 #endif
2221 
2222 /*
2223  * Return the hash of a string of known length.  This is carfully
2224  * designed to match hash_name(), which is the more critical function.
2225  * In particular, we must end by hashing a final word containing 0..7
2226  * payload bytes, to match the way that hash_name() iterates until it
2227  * finds the delimiter after the name.
2228  */
full_name_hash(const void * salt,const char * name,unsigned int len)2229 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2230 {
2231 	unsigned long a, x = 0, y = (unsigned long)salt;
2232 
2233 	for (;;) {
2234 		if (!len)
2235 			goto done;
2236 		a = load_unaligned_zeropad(name);
2237 		if (len < sizeof(unsigned long))
2238 			break;
2239 		HASH_MIX(x, y, a);
2240 		name += sizeof(unsigned long);
2241 		len -= sizeof(unsigned long);
2242 	}
2243 	x ^= a & bytemask_from_count(len);
2244 done:
2245 	return fold_hash(x, y);
2246 }
2247 EXPORT_SYMBOL(full_name_hash);
2248 
2249 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2250 u64 hashlen_string(const void *salt, const char *name)
2251 {
2252 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2253 	unsigned long adata, mask, len;
2254 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2255 
2256 	len = 0;
2257 	goto inside;
2258 
2259 	do {
2260 		HASH_MIX(x, y, a);
2261 		len += sizeof(unsigned long);
2262 inside:
2263 		a = load_unaligned_zeropad(name+len);
2264 	} while (!has_zero(a, &adata, &constants));
2265 
2266 	adata = prep_zero_mask(a, adata, &constants);
2267 	mask = create_zero_mask(adata);
2268 	x ^= a & zero_bytemask(mask);
2269 
2270 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2271 }
2272 EXPORT_SYMBOL(hashlen_string);
2273 
2274 /*
2275  * Calculate the length and hash of the path component, and
2276  * return the length as the result.
2277  */
hash_name(struct nameidata * nd,const char * name,unsigned long * lastword)2278 static inline const char *hash_name(struct nameidata *nd,
2279 				    const char *name,
2280 				    unsigned long *lastword)
2281 {
2282 	unsigned long a, b, x, y = (unsigned long)nd->path.dentry;
2283 	unsigned long adata, bdata, mask, len;
2284 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2285 
2286 	/*
2287 	 * The first iteration is special, because it can result in
2288 	 * '.' and '..' and has no mixing other than the final fold.
2289 	 */
2290 	a = load_unaligned_zeropad(name);
2291 	b = a ^ REPEAT_BYTE('/');
2292 	if (has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)) {
2293 		adata = prep_zero_mask(a, adata, &constants);
2294 		bdata = prep_zero_mask(b, bdata, &constants);
2295 		mask = create_zero_mask(adata | bdata);
2296 		a &= zero_bytemask(mask);
2297 		*lastword = a;
2298 		len = find_zero(mask);
2299 		nd->last.hash = fold_hash(a, y);
2300 		nd->last.len = len;
2301 		return name + len;
2302 	}
2303 
2304 	len = 0;
2305 	x = 0;
2306 	do {
2307 		HASH_MIX(x, y, a);
2308 		len += sizeof(unsigned long);
2309 		a = load_unaligned_zeropad(name+len);
2310 		b = a ^ REPEAT_BYTE('/');
2311 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2312 
2313 	adata = prep_zero_mask(a, adata, &constants);
2314 	bdata = prep_zero_mask(b, bdata, &constants);
2315 	mask = create_zero_mask(adata | bdata);
2316 	a &= zero_bytemask(mask);
2317 	x ^= a;
2318 	len += find_zero(mask);
2319 	*lastword = 0;		// Multi-word components cannot be DOT or DOTDOT
2320 
2321 	nd->last.hash = fold_hash(x, y);
2322 	nd->last.len = len;
2323 	return name + len;
2324 }
2325 
2326 /*
2327  * Note that the 'last' word is always zero-masked, but
2328  * was loaded as a possibly big-endian word.
2329  */
2330 #ifdef __BIG_ENDIAN
2331   #define LAST_WORD_IS_DOT	(0x2eul << (BITS_PER_LONG-8))
2332   #define LAST_WORD_IS_DOTDOT	(0x2e2eul << (BITS_PER_LONG-16))
2333 #endif
2334 
2335 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2336 
2337 /* Return the hash of a string of known length */
full_name_hash(const void * salt,const char * name,unsigned int len)2338 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2339 {
2340 	unsigned long hash = init_name_hash(salt);
2341 	while (len--)
2342 		hash = partial_name_hash((unsigned char)*name++, hash);
2343 	return end_name_hash(hash);
2344 }
2345 EXPORT_SYMBOL(full_name_hash);
2346 
2347 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2348 u64 hashlen_string(const void *salt, const char *name)
2349 {
2350 	unsigned long hash = init_name_hash(salt);
2351 	unsigned long len = 0, c;
2352 
2353 	c = (unsigned char)*name;
2354 	while (c) {
2355 		len++;
2356 		hash = partial_name_hash(c, hash);
2357 		c = (unsigned char)name[len];
2358 	}
2359 	return hashlen_create(end_name_hash(hash), len);
2360 }
2361 EXPORT_SYMBOL(hashlen_string);
2362 
2363 /*
2364  * We know there's a real path component here of at least
2365  * one character.
2366  */
hash_name(struct nameidata * nd,const char * name,unsigned long * lastword)2367 static inline const char *hash_name(struct nameidata *nd, const char *name, unsigned long *lastword)
2368 {
2369 	unsigned long hash = init_name_hash(nd->path.dentry);
2370 	unsigned long len = 0, c, last = 0;
2371 
2372 	c = (unsigned char)*name;
2373 	do {
2374 		last = (last << 8) + c;
2375 		len++;
2376 		hash = partial_name_hash(c, hash);
2377 		c = (unsigned char)name[len];
2378 	} while (c && c != '/');
2379 
2380 	// This is reliable for DOT or DOTDOT, since the component
2381 	// cannot contain NUL characters - top bits being zero means
2382 	// we cannot have had any other pathnames.
2383 	*lastword = last;
2384 	nd->last.hash = end_name_hash(hash);
2385 	nd->last.len = len;
2386 	return name + len;
2387 }
2388 
2389 #endif
2390 
2391 #ifndef LAST_WORD_IS_DOT
2392   #define LAST_WORD_IS_DOT	0x2e
2393   #define LAST_WORD_IS_DOTDOT	0x2e2e
2394 #endif
2395 
2396 /*
2397  * Name resolution.
2398  * This is the basic name resolution function, turning a pathname into
2399  * the final dentry. We expect 'base' to be positive and a directory.
2400  *
2401  * Returns 0 and nd will have valid dentry and mnt on success.
2402  * Returns error and drops reference to input namei data on failure.
2403  */
link_path_walk(const char * name,struct nameidata * nd)2404 static int link_path_walk(const char *name, struct nameidata *nd)
2405 {
2406 	int depth = 0; // depth <= nd->depth
2407 	int err;
2408 
2409 	nd->last_type = LAST_ROOT;
2410 	nd->flags |= LOOKUP_PARENT;
2411 	if (IS_ERR(name))
2412 		return PTR_ERR(name);
2413 	while (*name=='/')
2414 		name++;
2415 	if (!*name) {
2416 		nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2417 		return 0;
2418 	}
2419 
2420 	/* At this point we know we have a real path component. */
2421 	for(;;) {
2422 		struct mnt_idmap *idmap;
2423 		const char *link;
2424 		unsigned long lastword;
2425 
2426 		idmap = mnt_idmap(nd->path.mnt);
2427 		err = may_lookup(idmap, nd);
2428 		if (err)
2429 			return err;
2430 
2431 		nd->last.name = name;
2432 		name = hash_name(nd, name, &lastword);
2433 
2434 		switch(lastword) {
2435 		case LAST_WORD_IS_DOTDOT:
2436 			nd->last_type = LAST_DOTDOT;
2437 			nd->state |= ND_JUMPED;
2438 			break;
2439 
2440 		case LAST_WORD_IS_DOT:
2441 			nd->last_type = LAST_DOT;
2442 			break;
2443 
2444 		default:
2445 			nd->last_type = LAST_NORM;
2446 			nd->state &= ~ND_JUMPED;
2447 
2448 			struct dentry *parent = nd->path.dentry;
2449 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2450 				err = parent->d_op->d_hash(parent, &nd->last);
2451 				if (err < 0)
2452 					return err;
2453 			}
2454 		}
2455 
2456 		if (!*name)
2457 			goto OK;
2458 		/*
2459 		 * If it wasn't NUL, we know it was '/'. Skip that
2460 		 * slash, and continue until no more slashes.
2461 		 */
2462 		do {
2463 			name++;
2464 		} while (unlikely(*name == '/'));
2465 		if (unlikely(!*name)) {
2466 OK:
2467 			/* pathname or trailing symlink, done */
2468 			if (!depth) {
2469 				nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode);
2470 				nd->dir_mode = nd->inode->i_mode;
2471 				nd->flags &= ~LOOKUP_PARENT;
2472 				return 0;
2473 			}
2474 			/* last component of nested symlink */
2475 			name = nd->stack[--depth].name;
2476 			link = walk_component(nd, 0);
2477 		} else {
2478 			/* not the last component */
2479 			link = walk_component(nd, WALK_MORE);
2480 		}
2481 		if (unlikely(link)) {
2482 			if (IS_ERR(link))
2483 				return PTR_ERR(link);
2484 			/* a symlink to follow */
2485 			nd->stack[depth++].name = name;
2486 			name = link;
2487 			continue;
2488 		}
2489 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2490 			if (nd->flags & LOOKUP_RCU) {
2491 				if (!try_to_unlazy(nd))
2492 					return -ECHILD;
2493 			}
2494 			return -ENOTDIR;
2495 		}
2496 	}
2497 }
2498 
2499 /* must be paired with terminate_walk() */
path_init(struct nameidata * nd,unsigned flags)2500 static const char *path_init(struct nameidata *nd, unsigned flags)
2501 {
2502 	int error;
2503 	const char *s = nd->pathname;
2504 
2505 	/* LOOKUP_CACHED requires RCU, ask caller to retry */
2506 	if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2507 		return ERR_PTR(-EAGAIN);
2508 
2509 	if (!*s)
2510 		flags &= ~LOOKUP_RCU;
2511 	if (flags & LOOKUP_RCU)
2512 		rcu_read_lock();
2513 	else
2514 		nd->seq = nd->next_seq = 0;
2515 
2516 	nd->flags = flags;
2517 	nd->state |= ND_JUMPED;
2518 
2519 	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2520 	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2521 	smp_rmb();
2522 
2523 	if (nd->state & ND_ROOT_PRESET) {
2524 		struct dentry *root = nd->root.dentry;
2525 		struct inode *inode = root->d_inode;
2526 		if (*s && unlikely(!d_can_lookup(root)))
2527 			return ERR_PTR(-ENOTDIR);
2528 		nd->path = nd->root;
2529 		nd->inode = inode;
2530 		if (flags & LOOKUP_RCU) {
2531 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2532 			nd->root_seq = nd->seq;
2533 		} else {
2534 			path_get(&nd->path);
2535 		}
2536 		return s;
2537 	}
2538 
2539 	nd->root.mnt = NULL;
2540 
2541 	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2542 	if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2543 		error = nd_jump_root(nd);
2544 		if (unlikely(error))
2545 			return ERR_PTR(error);
2546 		return s;
2547 	}
2548 
2549 	/* Relative pathname -- get the starting-point it is relative to. */
2550 	if (nd->dfd == AT_FDCWD) {
2551 		if (flags & LOOKUP_RCU) {
2552 			struct fs_struct *fs = current->fs;
2553 			unsigned seq;
2554 
2555 			do {
2556 				seq = read_seqcount_begin(&fs->seq);
2557 				nd->path = fs->pwd;
2558 				nd->inode = nd->path.dentry->d_inode;
2559 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2560 			} while (read_seqcount_retry(&fs->seq, seq));
2561 		} else {
2562 			get_fs_pwd(current->fs, &nd->path);
2563 			nd->inode = nd->path.dentry->d_inode;
2564 		}
2565 	} else {
2566 		/* Caller must check execute permissions on the starting path component */
2567 		CLASS(fd_raw, f)(nd->dfd);
2568 		struct dentry *dentry;
2569 
2570 		if (fd_empty(f))
2571 			return ERR_PTR(-EBADF);
2572 
2573 		if (flags & LOOKUP_LINKAT_EMPTY) {
2574 			if (fd_file(f)->f_cred != current_cred() &&
2575 			    !ns_capable(fd_file(f)->f_cred->user_ns, CAP_DAC_READ_SEARCH))
2576 				return ERR_PTR(-ENOENT);
2577 		}
2578 
2579 		dentry = fd_file(f)->f_path.dentry;
2580 
2581 		if (*s && unlikely(!d_can_lookup(dentry)))
2582 			return ERR_PTR(-ENOTDIR);
2583 
2584 		nd->path = fd_file(f)->f_path;
2585 		if (flags & LOOKUP_RCU) {
2586 			nd->inode = nd->path.dentry->d_inode;
2587 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2588 		} else {
2589 			path_get(&nd->path);
2590 			nd->inode = nd->path.dentry->d_inode;
2591 		}
2592 	}
2593 
2594 	/* For scoped-lookups we need to set the root to the dirfd as well. */
2595 	if (flags & LOOKUP_IS_SCOPED) {
2596 		nd->root = nd->path;
2597 		if (flags & LOOKUP_RCU) {
2598 			nd->root_seq = nd->seq;
2599 		} else {
2600 			path_get(&nd->root);
2601 			nd->state |= ND_ROOT_GRABBED;
2602 		}
2603 	}
2604 	return s;
2605 }
2606 
lookup_last(struct nameidata * nd)2607 static inline const char *lookup_last(struct nameidata *nd)
2608 {
2609 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2610 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2611 
2612 	return walk_component(nd, WALK_TRAILING);
2613 }
2614 
handle_lookup_down(struct nameidata * nd)2615 static int handle_lookup_down(struct nameidata *nd)
2616 {
2617 	if (!(nd->flags & LOOKUP_RCU))
2618 		dget(nd->path.dentry);
2619 	nd->next_seq = nd->seq;
2620 	return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2621 }
2622 
2623 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
path_lookupat(struct nameidata * nd,unsigned flags,struct path * path)2624 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2625 {
2626 	const char *s = path_init(nd, flags);
2627 	int err;
2628 
2629 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2630 		err = handle_lookup_down(nd);
2631 		if (unlikely(err < 0))
2632 			s = ERR_PTR(err);
2633 	}
2634 
2635 	while (!(err = link_path_walk(s, nd)) &&
2636 	       (s = lookup_last(nd)) != NULL)
2637 		;
2638 	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2639 		err = handle_lookup_down(nd);
2640 		nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2641 	}
2642 	if (!err)
2643 		err = complete_walk(nd);
2644 
2645 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2646 		if (!d_can_lookup(nd->path.dentry))
2647 			err = -ENOTDIR;
2648 	if (!err) {
2649 		*path = nd->path;
2650 		nd->path.mnt = NULL;
2651 		nd->path.dentry = NULL;
2652 	}
2653 	terminate_walk(nd);
2654 	return err;
2655 }
2656 
filename_lookup(int dfd,struct filename * name,unsigned flags,struct path * path,struct path * root)2657 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2658 		    struct path *path, struct path *root)
2659 {
2660 	int retval;
2661 	struct nameidata nd;
2662 	if (IS_ERR(name))
2663 		return PTR_ERR(name);
2664 	set_nameidata(&nd, dfd, name, root);
2665 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2666 	if (unlikely(retval == -ECHILD))
2667 		retval = path_lookupat(&nd, flags, path);
2668 	if (unlikely(retval == -ESTALE))
2669 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2670 
2671 	if (likely(!retval))
2672 		audit_inode(name, path->dentry,
2673 			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2674 	restore_nameidata();
2675 	return retval;
2676 }
2677 
2678 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
path_parentat(struct nameidata * nd,unsigned flags,struct path * parent)2679 static int path_parentat(struct nameidata *nd, unsigned flags,
2680 				struct path *parent)
2681 {
2682 	const char *s = path_init(nd, flags);
2683 	int err = link_path_walk(s, nd);
2684 	if (!err)
2685 		err = complete_walk(nd);
2686 	if (!err) {
2687 		*parent = nd->path;
2688 		nd->path.mnt = NULL;
2689 		nd->path.dentry = NULL;
2690 	}
2691 	terminate_walk(nd);
2692 	return err;
2693 }
2694 
2695 /* Note: this does not consume "name" */
__filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type,const struct path * root)2696 static int __filename_parentat(int dfd, struct filename *name,
2697 			       unsigned int flags, struct path *parent,
2698 			       struct qstr *last, int *type,
2699 			       const struct path *root)
2700 {
2701 	int retval;
2702 	struct nameidata nd;
2703 
2704 	if (IS_ERR(name))
2705 		return PTR_ERR(name);
2706 	set_nameidata(&nd, dfd, name, root);
2707 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2708 	if (unlikely(retval == -ECHILD))
2709 		retval = path_parentat(&nd, flags, parent);
2710 	if (unlikely(retval == -ESTALE))
2711 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2712 	if (likely(!retval)) {
2713 		*last = nd.last;
2714 		*type = nd.last_type;
2715 		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2716 	}
2717 	restore_nameidata();
2718 	return retval;
2719 }
2720 
filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type)2721 static int filename_parentat(int dfd, struct filename *name,
2722 			     unsigned int flags, struct path *parent,
2723 			     struct qstr *last, int *type)
2724 {
2725 	return __filename_parentat(dfd, name, flags, parent, last, type, NULL);
2726 }
2727 
2728 /* does lookup, returns the object with parent locked */
__kern_path_locked(int dfd,struct filename * name,struct path * path)2729 static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path)
2730 {
2731 	struct dentry *d;
2732 	struct qstr last;
2733 	int type, error;
2734 
2735 	error = filename_parentat(dfd, name, 0, path, &last, &type);
2736 	if (error)
2737 		return ERR_PTR(error);
2738 	if (unlikely(type != LAST_NORM)) {
2739 		path_put(path);
2740 		return ERR_PTR(-EINVAL);
2741 	}
2742 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2743 	d = lookup_one_qstr_excl(&last, path->dentry, 0);
2744 	if (IS_ERR(d)) {
2745 		inode_unlock(path->dentry->d_inode);
2746 		path_put(path);
2747 	}
2748 	return d;
2749 }
2750 
kern_path_locked(const char * name,struct path * path)2751 struct dentry *kern_path_locked(const char *name, struct path *path)
2752 {
2753 	struct filename *filename = getname_kernel(name);
2754 	struct dentry *res = __kern_path_locked(AT_FDCWD, filename, path);
2755 
2756 	putname(filename);
2757 	return res;
2758 }
2759 
user_path_locked_at(int dfd,const char __user * name,struct path * path)2760 struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path)
2761 {
2762 	struct filename *filename = getname(name);
2763 	struct dentry *res = __kern_path_locked(dfd, filename, path);
2764 
2765 	putname(filename);
2766 	return res;
2767 }
2768 EXPORT_SYMBOL(user_path_locked_at);
2769 
kern_path(const char * name,unsigned int flags,struct path * path)2770 int kern_path(const char *name, unsigned int flags, struct path *path)
2771 {
2772 	struct filename *filename = getname_kernel(name);
2773 	int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2774 
2775 	putname(filename);
2776 	return ret;
2777 
2778 }
2779 EXPORT_SYMBOL(kern_path);
2780 
2781 /**
2782  * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
2783  * @filename: filename structure
2784  * @flags: lookup flags
2785  * @parent: pointer to struct path to fill
2786  * @last: last component
2787  * @type: type of the last component
2788  * @root: pointer to struct path of the base directory
2789  */
vfs_path_parent_lookup(struct filename * filename,unsigned int flags,struct path * parent,struct qstr * last,int * type,const struct path * root)2790 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags,
2791 			   struct path *parent, struct qstr *last, int *type,
2792 			   const struct path *root)
2793 {
2794 	return  __filename_parentat(AT_FDCWD, filename, flags, parent, last,
2795 				    type, root);
2796 }
2797 EXPORT_SYMBOL(vfs_path_parent_lookup);
2798 
2799 /**
2800  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2801  * @dentry:  pointer to dentry of the base directory
2802  * @mnt: pointer to vfs mount of the base directory
2803  * @name: pointer to file name
2804  * @flags: lookup flags
2805  * @path: pointer to struct path to fill
2806  */
vfs_path_lookup(struct dentry * dentry,struct vfsmount * mnt,const char * name,unsigned int flags,struct path * path)2807 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2808 		    const char *name, unsigned int flags,
2809 		    struct path *path)
2810 {
2811 	struct filename *filename;
2812 	struct path root = {.mnt = mnt, .dentry = dentry};
2813 	int ret;
2814 
2815 	filename = getname_kernel(name);
2816 	/* the first argument of filename_lookup() is ignored with root */
2817 	ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2818 	putname(filename);
2819 	return ret;
2820 }
2821 EXPORT_SYMBOL(vfs_path_lookup);
2822 
lookup_one_common(struct mnt_idmap * idmap,const char * name,struct dentry * base,int len,struct qstr * this)2823 static int lookup_one_common(struct mnt_idmap *idmap,
2824 			     const char *name, struct dentry *base, int len,
2825 			     struct qstr *this)
2826 {
2827 	this->name = name;
2828 	this->len = len;
2829 	this->hash = full_name_hash(base, name, len);
2830 	if (!len)
2831 		return -EACCES;
2832 
2833 	if (is_dot_dotdot(name, len))
2834 		return -EACCES;
2835 
2836 	while (len--) {
2837 		unsigned int c = *(const unsigned char *)name++;
2838 		if (c == '/' || c == '\0')
2839 			return -EACCES;
2840 	}
2841 	/*
2842 	 * See if the low-level filesystem might want
2843 	 * to use its own hash..
2844 	 */
2845 	if (base->d_flags & DCACHE_OP_HASH) {
2846 		int err = base->d_op->d_hash(base, this);
2847 		if (err < 0)
2848 			return err;
2849 	}
2850 
2851 	return inode_permission(idmap, base->d_inode, MAY_EXEC);
2852 }
2853 
2854 /**
2855  * try_lookup_one_len - filesystem helper to lookup single pathname component
2856  * @name:	pathname component to lookup
2857  * @base:	base directory to lookup from
2858  * @len:	maximum length @len should be interpreted to
2859  *
2860  * Look up a dentry by name in the dcache, returning NULL if it does not
2861  * currently exist.  The function does not try to create a dentry.
2862  *
2863  * Note that this routine is purely a helper for filesystem usage and should
2864  * not be called by generic code.
2865  *
2866  * The caller must hold base->i_mutex.
2867  */
try_lookup_one_len(const char * name,struct dentry * base,int len)2868 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2869 {
2870 	struct qstr this;
2871 	int err;
2872 
2873 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2874 
2875 	err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2876 	if (err)
2877 		return ERR_PTR(err);
2878 
2879 	return lookup_dcache(&this, base, 0);
2880 }
2881 EXPORT_SYMBOL(try_lookup_one_len);
2882 
2883 /**
2884  * lookup_one_len - filesystem helper to lookup single pathname component
2885  * @name:	pathname component to lookup
2886  * @base:	base directory to lookup from
2887  * @len:	maximum length @len should be interpreted to
2888  *
2889  * Note that this routine is purely a helper for filesystem usage and should
2890  * not be called by generic code.
2891  *
2892  * The caller must hold base->i_mutex.
2893  */
lookup_one_len(const char * name,struct dentry * base,int len)2894 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2895 {
2896 	struct dentry *dentry;
2897 	struct qstr this;
2898 	int err;
2899 
2900 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2901 
2902 	err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2903 	if (err)
2904 		return ERR_PTR(err);
2905 
2906 	dentry = lookup_dcache(&this, base, 0);
2907 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2908 }
2909 EXPORT_SYMBOL(lookup_one_len);
2910 
2911 /**
2912  * lookup_one - filesystem helper to lookup single pathname component
2913  * @idmap:	idmap of the mount the lookup is performed from
2914  * @name:	pathname component to lookup
2915  * @base:	base directory to lookup from
2916  * @len:	maximum length @len should be interpreted to
2917  *
2918  * Note that this routine is purely a helper for filesystem usage and should
2919  * not be called by generic code.
2920  *
2921  * The caller must hold base->i_mutex.
2922  */
lookup_one(struct mnt_idmap * idmap,const char * name,struct dentry * base,int len)2923 struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name,
2924 			  struct dentry *base, int len)
2925 {
2926 	struct dentry *dentry;
2927 	struct qstr this;
2928 	int err;
2929 
2930 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2931 
2932 	err = lookup_one_common(idmap, name, base, len, &this);
2933 	if (err)
2934 		return ERR_PTR(err);
2935 
2936 	dentry = lookup_dcache(&this, base, 0);
2937 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2938 }
2939 EXPORT_SYMBOL(lookup_one);
2940 
2941 /**
2942  * lookup_one_unlocked - filesystem helper to lookup single pathname component
2943  * @idmap:	idmap of the mount the lookup is performed from
2944  * @name:	pathname component to lookup
2945  * @base:	base directory to lookup from
2946  * @len:	maximum length @len should be interpreted to
2947  *
2948  * Note that this routine is purely a helper for filesystem usage and should
2949  * not be called by generic code.
2950  *
2951  * Unlike lookup_one_len, it should be called without the parent
2952  * i_mutex held, and will take the i_mutex itself if necessary.
2953  */
lookup_one_unlocked(struct mnt_idmap * idmap,const char * name,struct dentry * base,int len)2954 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap,
2955 				   const char *name, struct dentry *base,
2956 				   int len)
2957 {
2958 	struct qstr this;
2959 	int err;
2960 	struct dentry *ret;
2961 
2962 	err = lookup_one_common(idmap, name, base, len, &this);
2963 	if (err)
2964 		return ERR_PTR(err);
2965 
2966 	ret = lookup_dcache(&this, base, 0);
2967 	if (!ret)
2968 		ret = lookup_slow(&this, base, 0);
2969 	return ret;
2970 }
2971 EXPORT_SYMBOL(lookup_one_unlocked);
2972 
2973 /**
2974  * lookup_one_positive_unlocked - filesystem helper to lookup single
2975  *				  pathname component
2976  * @idmap:	idmap of the mount the lookup is performed from
2977  * @name:	pathname component to lookup
2978  * @base:	base directory to lookup from
2979  * @len:	maximum length @len should be interpreted to
2980  *
2981  * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2982  * known positive or ERR_PTR(). This is what most of the users want.
2983  *
2984  * Note that pinned negative with unlocked parent _can_ become positive at any
2985  * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2986  * positives have >d_inode stable, so this one avoids such problems.
2987  *
2988  * Note that this routine is purely a helper for filesystem usage and should
2989  * not be called by generic code.
2990  *
2991  * The helper should be called without i_mutex held.
2992  */
lookup_one_positive_unlocked(struct mnt_idmap * idmap,const char * name,struct dentry * base,int len)2993 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap,
2994 					    const char *name,
2995 					    struct dentry *base, int len)
2996 {
2997 	struct dentry *ret = lookup_one_unlocked(idmap, name, base, len);
2998 
2999 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
3000 		dput(ret);
3001 		ret = ERR_PTR(-ENOENT);
3002 	}
3003 	return ret;
3004 }
3005 EXPORT_SYMBOL(lookup_one_positive_unlocked);
3006 
3007 /**
3008  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
3009  * @name:	pathname component to lookup
3010  * @base:	base directory to lookup from
3011  * @len:	maximum length @len should be interpreted to
3012  *
3013  * Note that this routine is purely a helper for filesystem usage and should
3014  * not be called by generic code.
3015  *
3016  * Unlike lookup_one_len, it should be called without the parent
3017  * i_mutex held, and will take the i_mutex itself if necessary.
3018  */
lookup_one_len_unlocked(const char * name,struct dentry * base,int len)3019 struct dentry *lookup_one_len_unlocked(const char *name,
3020 				       struct dentry *base, int len)
3021 {
3022 	return lookup_one_unlocked(&nop_mnt_idmap, name, base, len);
3023 }
3024 EXPORT_SYMBOL(lookup_one_len_unlocked);
3025 
3026 /*
3027  * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
3028  * on negatives.  Returns known positive or ERR_PTR(); that's what
3029  * most of the users want.  Note that pinned negative with unlocked parent
3030  * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
3031  * need to be very careful; pinned positives have ->d_inode stable, so
3032  * this one avoids such problems.
3033  */
lookup_positive_unlocked(const char * name,struct dentry * base,int len)3034 struct dentry *lookup_positive_unlocked(const char *name,
3035 				       struct dentry *base, int len)
3036 {
3037 	return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len);
3038 }
3039 EXPORT_SYMBOL(lookup_positive_unlocked);
3040 
3041 #ifdef CONFIG_UNIX98_PTYS
path_pts(struct path * path)3042 int path_pts(struct path *path)
3043 {
3044 	/* Find something mounted on "pts" in the same directory as
3045 	 * the input path.
3046 	 */
3047 	struct dentry *parent = dget_parent(path->dentry);
3048 	struct dentry *child;
3049 	struct qstr this = QSTR_INIT("pts", 3);
3050 
3051 	if (unlikely(!path_connected(path->mnt, parent))) {
3052 		dput(parent);
3053 		return -ENOENT;
3054 	}
3055 	dput(path->dentry);
3056 	path->dentry = parent;
3057 	child = d_hash_and_lookup(parent, &this);
3058 	if (IS_ERR_OR_NULL(child))
3059 		return -ENOENT;
3060 
3061 	path->dentry = child;
3062 	dput(parent);
3063 	follow_down(path, 0);
3064 	return 0;
3065 }
3066 #endif
3067 
user_path_at(int dfd,const char __user * name,unsigned flags,struct path * path)3068 int user_path_at(int dfd, const char __user *name, unsigned flags,
3069 		 struct path *path)
3070 {
3071 	struct filename *filename = getname_flags(name, flags);
3072 	int ret = filename_lookup(dfd, filename, flags, path, NULL);
3073 
3074 	putname(filename);
3075 	return ret;
3076 }
3077 EXPORT_SYMBOL(user_path_at);
3078 
__check_sticky(struct mnt_idmap * idmap,struct inode * dir,struct inode * inode)3079 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
3080 		   struct inode *inode)
3081 {
3082 	kuid_t fsuid = current_fsuid();
3083 
3084 	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid))
3085 		return 0;
3086 	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid))
3087 		return 0;
3088 	return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER);
3089 }
3090 EXPORT_SYMBOL(__check_sticky);
3091 
3092 /*
3093  *	Check whether we can remove a link victim from directory dir, check
3094  *  whether the type of victim is right.
3095  *  1. We can't do it if dir is read-only (done in permission())
3096  *  2. We should have write and exec permissions on dir
3097  *  3. We can't remove anything from append-only dir
3098  *  4. We can't do anything with immutable dir (done in permission())
3099  *  5. If the sticky bit on dir is set we should either
3100  *	a. be owner of dir, or
3101  *	b. be owner of victim, or
3102  *	c. have CAP_FOWNER capability
3103  *  6. If the victim is append-only or immutable we can't do antyhing with
3104  *     links pointing to it.
3105  *  7. If the victim has an unknown uid or gid we can't change the inode.
3106  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
3107  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
3108  * 10. We can't remove a root or mountpoint.
3109  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
3110  *     nfs_async_unlink().
3111  */
may_delete(struct mnt_idmap * idmap,struct inode * dir,struct dentry * victim,bool isdir)3112 static int may_delete(struct mnt_idmap *idmap, struct inode *dir,
3113 		      struct dentry *victim, bool isdir)
3114 {
3115 	struct inode *inode = d_backing_inode(victim);
3116 	int error;
3117 
3118 	if (d_is_negative(victim))
3119 		return -ENOENT;
3120 	BUG_ON(!inode);
3121 
3122 	BUG_ON(victim->d_parent->d_inode != dir);
3123 
3124 	/* Inode writeback is not safe when the uid or gid are invalid. */
3125 	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
3126 	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
3127 		return -EOVERFLOW;
3128 
3129 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
3130 
3131 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3132 	if (error)
3133 		return error;
3134 	if (IS_APPEND(dir))
3135 		return -EPERM;
3136 
3137 	if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) ||
3138 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
3139 	    HAS_UNMAPPED_ID(idmap, inode))
3140 		return -EPERM;
3141 	if (isdir) {
3142 		if (!d_is_dir(victim))
3143 			return -ENOTDIR;
3144 		if (IS_ROOT(victim))
3145 			return -EBUSY;
3146 	} else if (d_is_dir(victim))
3147 		return -EISDIR;
3148 	if (IS_DEADDIR(dir))
3149 		return -ENOENT;
3150 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
3151 		return -EBUSY;
3152 	return 0;
3153 }
3154 
3155 /*	Check whether we can create an object with dentry child in directory
3156  *  dir.
3157  *  1. We can't do it if child already exists (open has special treatment for
3158  *     this case, but since we are inlined it's OK)
3159  *  2. We can't do it if dir is read-only (done in permission())
3160  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
3161  *  4. We should have write and exec permissions on dir
3162  *  5. We can't do it if dir is immutable (done in permission())
3163  */
may_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * child)3164 static inline int may_create(struct mnt_idmap *idmap,
3165 			     struct inode *dir, struct dentry *child)
3166 {
3167 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
3168 	if (child->d_inode)
3169 		return -EEXIST;
3170 	if (IS_DEADDIR(dir))
3171 		return -ENOENT;
3172 	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
3173 		return -EOVERFLOW;
3174 
3175 	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3176 }
3177 
3178 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held
lock_two_directories(struct dentry * p1,struct dentry * p2)3179 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2)
3180 {
3181 	struct dentry *p = p1, *q = p2, *r;
3182 
3183 	while ((r = p->d_parent) != p2 && r != p)
3184 		p = r;
3185 	if (r == p2) {
3186 		// p is a child of p2 and an ancestor of p1 or p1 itself
3187 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3188 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2);
3189 		return p;
3190 	}
3191 	// p is the root of connected component that contains p1
3192 	// p2 does not occur on the path from p to p1
3193 	while ((r = q->d_parent) != p1 && r != p && r != q)
3194 		q = r;
3195 	if (r == p1) {
3196 		// q is a child of p1 and an ancestor of p2 or p2 itself
3197 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3198 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3199 		return q;
3200 	} else if (likely(r == p)) {
3201 		// both p2 and p1 are descendents of p
3202 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3203 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3204 		return NULL;
3205 	} else { // no common ancestor at the time we'd been called
3206 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3207 		return ERR_PTR(-EXDEV);
3208 	}
3209 }
3210 
3211 /*
3212  * p1 and p2 should be directories on the same fs.
3213  */
lock_rename(struct dentry * p1,struct dentry * p2)3214 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3215 {
3216 	if (p1 == p2) {
3217 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3218 		return NULL;
3219 	}
3220 
3221 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3222 	return lock_two_directories(p1, p2);
3223 }
3224 EXPORT_SYMBOL(lock_rename);
3225 
3226 /*
3227  * c1 and p2 should be on the same fs.
3228  */
lock_rename_child(struct dentry * c1,struct dentry * p2)3229 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2)
3230 {
3231 	if (READ_ONCE(c1->d_parent) == p2) {
3232 		/*
3233 		 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3234 		 */
3235 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3236 		/*
3237 		 * now that p2 is locked, nobody can move in or out of it,
3238 		 * so the test below is safe.
3239 		 */
3240 		if (likely(c1->d_parent == p2))
3241 			return NULL;
3242 
3243 		/*
3244 		 * c1 got moved out of p2 while we'd been taking locks;
3245 		 * unlock and fall back to slow case.
3246 		 */
3247 		inode_unlock(p2->d_inode);
3248 	}
3249 
3250 	mutex_lock(&c1->d_sb->s_vfs_rename_mutex);
3251 	/*
3252 	 * nobody can move out of any directories on this fs.
3253 	 */
3254 	if (likely(c1->d_parent != p2))
3255 		return lock_two_directories(c1->d_parent, p2);
3256 
3257 	/*
3258 	 * c1 got moved into p2 while we were taking locks;
3259 	 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3260 	 * for consistency with lock_rename().
3261 	 */
3262 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3263 	mutex_unlock(&c1->d_sb->s_vfs_rename_mutex);
3264 	return NULL;
3265 }
3266 EXPORT_SYMBOL(lock_rename_child);
3267 
unlock_rename(struct dentry * p1,struct dentry * p2)3268 void unlock_rename(struct dentry *p1, struct dentry *p2)
3269 {
3270 	inode_unlock(p1->d_inode);
3271 	if (p1 != p2) {
3272 		inode_unlock(p2->d_inode);
3273 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3274 	}
3275 }
3276 EXPORT_SYMBOL(unlock_rename);
3277 
3278 /**
3279  * vfs_prepare_mode - prepare the mode to be used for a new inode
3280  * @idmap:	idmap of the mount the inode was found from
3281  * @dir:	parent directory of the new inode
3282  * @mode:	mode of the new inode
3283  * @mask_perms:	allowed permission by the vfs
3284  * @type:	type of file to be created
3285  *
3286  * This helper consolidates and enforces vfs restrictions on the @mode of a new
3287  * object to be created.
3288  *
3289  * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3290  * the kernel documentation for mode_strip_umask()). Moving umask stripping
3291  * after setgid stripping allows the same ordering for both non-POSIX ACL and
3292  * POSIX ACL supporting filesystems.
3293  *
3294  * Note that it's currently valid for @type to be 0 if a directory is created.
3295  * Filesystems raise that flag individually and we need to check whether each
3296  * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3297  * non-zero type.
3298  *
3299  * Returns: mode to be passed to the filesystem
3300  */
vfs_prepare_mode(struct mnt_idmap * idmap,const struct inode * dir,umode_t mode,umode_t mask_perms,umode_t type)3301 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap,
3302 				       const struct inode *dir, umode_t mode,
3303 				       umode_t mask_perms, umode_t type)
3304 {
3305 	mode = mode_strip_sgid(idmap, dir, mode);
3306 	mode = mode_strip_umask(dir, mode);
3307 
3308 	/*
3309 	 * Apply the vfs mandated allowed permission mask and set the type of
3310 	 * file to be created before we call into the filesystem.
3311 	 */
3312 	mode &= (mask_perms & ~S_IFMT);
3313 	mode |= (type & S_IFMT);
3314 
3315 	return mode;
3316 }
3317 
3318 /**
3319  * vfs_create - create new file
3320  * @idmap:	idmap of the mount the inode was found from
3321  * @dir:	inode of the parent directory
3322  * @dentry:	dentry of the child file
3323  * @mode:	mode of the child file
3324  * @want_excl:	whether the file must not yet exist
3325  *
3326  * Create a new file.
3327  *
3328  * If the inode has been found through an idmapped mount the idmap of
3329  * the vfsmount must be passed through @idmap. This function will then take
3330  * care to map the inode according to @idmap before checking permissions.
3331  * On non-idmapped mounts or if permission checking is to be performed on the
3332  * raw inode simply pass @nop_mnt_idmap.
3333  */
vfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool want_excl)3334 int vfs_create(struct mnt_idmap *idmap, struct inode *dir,
3335 	       struct dentry *dentry, umode_t mode, bool want_excl)
3336 {
3337 	int error;
3338 
3339 	error = may_create(idmap, dir, dentry);
3340 	if (error)
3341 		return error;
3342 
3343 	if (!dir->i_op->create)
3344 		return -EACCES;	/* shouldn't it be ENOSYS? */
3345 
3346 	mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG);
3347 	error = security_inode_create(dir, dentry, mode);
3348 	if (error)
3349 		return error;
3350 	error = dir->i_op->create(idmap, dir, dentry, mode, want_excl);
3351 	if (!error)
3352 		fsnotify_create(dir, dentry);
3353 	return error;
3354 }
3355 EXPORT_SYMBOL(vfs_create);
3356 
vfs_mkobj(struct dentry * dentry,umode_t mode,int (* f)(struct dentry *,umode_t,void *),void * arg)3357 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3358 		int (*f)(struct dentry *, umode_t, void *),
3359 		void *arg)
3360 {
3361 	struct inode *dir = dentry->d_parent->d_inode;
3362 	int error = may_create(&nop_mnt_idmap, dir, dentry);
3363 	if (error)
3364 		return error;
3365 
3366 	mode &= S_IALLUGO;
3367 	mode |= S_IFREG;
3368 	error = security_inode_create(dir, dentry, mode);
3369 	if (error)
3370 		return error;
3371 	error = f(dentry, mode, arg);
3372 	if (!error)
3373 		fsnotify_create(dir, dentry);
3374 	return error;
3375 }
3376 EXPORT_SYMBOL(vfs_mkobj);
3377 
may_open_dev(const struct path * path)3378 bool may_open_dev(const struct path *path)
3379 {
3380 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
3381 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3382 }
3383 
may_open(struct mnt_idmap * idmap,const struct path * path,int acc_mode,int flag)3384 static int may_open(struct mnt_idmap *idmap, const struct path *path,
3385 		    int acc_mode, int flag)
3386 {
3387 	struct dentry *dentry = path->dentry;
3388 	struct inode *inode = dentry->d_inode;
3389 	int error;
3390 
3391 	if (!inode)
3392 		return -ENOENT;
3393 
3394 	switch (inode->i_mode & S_IFMT) {
3395 	case S_IFLNK:
3396 		return -ELOOP;
3397 	case S_IFDIR:
3398 		if (acc_mode & MAY_WRITE)
3399 			return -EISDIR;
3400 		if (acc_mode & MAY_EXEC)
3401 			return -EACCES;
3402 		break;
3403 	case S_IFBLK:
3404 	case S_IFCHR:
3405 		if (!may_open_dev(path))
3406 			return -EACCES;
3407 		fallthrough;
3408 	case S_IFIFO:
3409 	case S_IFSOCK:
3410 		if (acc_mode & MAY_EXEC)
3411 			return -EACCES;
3412 		flag &= ~O_TRUNC;
3413 		break;
3414 	case S_IFREG:
3415 		if ((acc_mode & MAY_EXEC) && path_noexec(path))
3416 			return -EACCES;
3417 		break;
3418 	}
3419 
3420 	error = inode_permission(idmap, inode, MAY_OPEN | acc_mode);
3421 	if (error)
3422 		return error;
3423 
3424 	/*
3425 	 * An append-only file must be opened in append mode for writing.
3426 	 */
3427 	if (IS_APPEND(inode)) {
3428 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3429 			return -EPERM;
3430 		if (flag & O_TRUNC)
3431 			return -EPERM;
3432 	}
3433 
3434 	/* O_NOATIME can only be set by the owner or superuser */
3435 	if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode))
3436 		return -EPERM;
3437 
3438 	return 0;
3439 }
3440 
handle_truncate(struct mnt_idmap * idmap,struct file * filp)3441 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp)
3442 {
3443 	const struct path *path = &filp->f_path;
3444 	struct inode *inode = path->dentry->d_inode;
3445 	int error = get_write_access(inode);
3446 	if (error)
3447 		return error;
3448 
3449 	error = security_file_truncate(filp);
3450 	if (!error) {
3451 		error = do_truncate(idmap, path->dentry, 0,
3452 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3453 				    filp);
3454 	}
3455 	put_write_access(inode);
3456 	return error;
3457 }
3458 
open_to_namei_flags(int flag)3459 static inline int open_to_namei_flags(int flag)
3460 {
3461 	if ((flag & O_ACCMODE) == 3)
3462 		flag--;
3463 	return flag;
3464 }
3465 
may_o_create(struct mnt_idmap * idmap,const struct path * dir,struct dentry * dentry,umode_t mode)3466 static int may_o_create(struct mnt_idmap *idmap,
3467 			const struct path *dir, struct dentry *dentry,
3468 			umode_t mode)
3469 {
3470 	int error = security_path_mknod(dir, dentry, mode, 0);
3471 	if (error)
3472 		return error;
3473 
3474 	if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap))
3475 		return -EOVERFLOW;
3476 
3477 	error = inode_permission(idmap, dir->dentry->d_inode,
3478 				 MAY_WRITE | MAY_EXEC);
3479 	if (error)
3480 		return error;
3481 
3482 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3483 }
3484 
3485 /*
3486  * Attempt to atomically look up, create and open a file from a negative
3487  * dentry.
3488  *
3489  * Returns 0 if successful.  The file will have been created and attached to
3490  * @file by the filesystem calling finish_open().
3491  *
3492  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3493  * be set.  The caller will need to perform the open themselves.  @path will
3494  * have been updated to point to the new dentry.  This may be negative.
3495  *
3496  * Returns an error code otherwise.
3497  */
atomic_open(struct nameidata * nd,struct dentry * dentry,struct file * file,int open_flag,umode_t mode)3498 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3499 				  struct file *file,
3500 				  int open_flag, umode_t mode)
3501 {
3502 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3503 	struct inode *dir =  nd->path.dentry->d_inode;
3504 	int error;
3505 
3506 	if (nd->flags & LOOKUP_DIRECTORY)
3507 		open_flag |= O_DIRECTORY;
3508 
3509 	file->f_path.dentry = DENTRY_NOT_SET;
3510 	file->f_path.mnt = nd->path.mnt;
3511 	error = dir->i_op->atomic_open(dir, dentry, file,
3512 				       open_to_namei_flags(open_flag), mode);
3513 	d_lookup_done(dentry);
3514 	if (!error) {
3515 		if (file->f_mode & FMODE_OPENED) {
3516 			if (unlikely(dentry != file->f_path.dentry)) {
3517 				dput(dentry);
3518 				dentry = dget(file->f_path.dentry);
3519 			}
3520 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3521 			error = -EIO;
3522 		} else {
3523 			if (file->f_path.dentry) {
3524 				dput(dentry);
3525 				dentry = file->f_path.dentry;
3526 			}
3527 			if (unlikely(d_is_negative(dentry)))
3528 				error = -ENOENT;
3529 		}
3530 	}
3531 	if (error) {
3532 		dput(dentry);
3533 		dentry = ERR_PTR(error);
3534 	}
3535 	return dentry;
3536 }
3537 
3538 /*
3539  * Look up and maybe create and open the last component.
3540  *
3541  * Must be called with parent locked (exclusive in O_CREAT case).
3542  *
3543  * Returns 0 on success, that is, if
3544  *  the file was successfully atomically created (if necessary) and opened, or
3545  *  the file was not completely opened at this time, though lookups and
3546  *  creations were performed.
3547  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3548  * In the latter case dentry returned in @path might be negative if O_CREAT
3549  * hadn't been specified.
3550  *
3551  * An error code is returned on failure.
3552  */
lookup_open(struct nameidata * nd,struct file * file,const struct open_flags * op,bool got_write)3553 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3554 				  const struct open_flags *op,
3555 				  bool got_write)
3556 {
3557 	struct mnt_idmap *idmap;
3558 	struct dentry *dir = nd->path.dentry;
3559 	struct inode *dir_inode = dir->d_inode;
3560 	int open_flag = op->open_flag;
3561 	struct dentry *dentry;
3562 	int error, create_error = 0;
3563 	umode_t mode = op->mode;
3564 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3565 
3566 	if (unlikely(IS_DEADDIR(dir_inode)))
3567 		return ERR_PTR(-ENOENT);
3568 
3569 	file->f_mode &= ~FMODE_CREATED;
3570 	dentry = d_lookup(dir, &nd->last);
3571 	for (;;) {
3572 		if (!dentry) {
3573 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3574 			if (IS_ERR(dentry))
3575 				return dentry;
3576 		}
3577 		if (d_in_lookup(dentry))
3578 			break;
3579 
3580 		error = d_revalidate(dir_inode, &nd->last, dentry, nd->flags);
3581 		if (likely(error > 0))
3582 			break;
3583 		if (error)
3584 			goto out_dput;
3585 		d_invalidate(dentry);
3586 		dput(dentry);
3587 		dentry = NULL;
3588 	}
3589 	if (dentry->d_inode) {
3590 		/* Cached positive dentry: will open in f_op->open */
3591 		return dentry;
3592 	}
3593 
3594 	if (open_flag & O_CREAT)
3595 		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3596 
3597 	/*
3598 	 * Checking write permission is tricky, bacuse we don't know if we are
3599 	 * going to actually need it: O_CREAT opens should work as long as the
3600 	 * file exists.  But checking existence breaks atomicity.  The trick is
3601 	 * to check access and if not granted clear O_CREAT from the flags.
3602 	 *
3603 	 * Another problem is returing the "right" error value (e.g. for an
3604 	 * O_EXCL open we want to return EEXIST not EROFS).
3605 	 */
3606 	if (unlikely(!got_write))
3607 		open_flag &= ~O_TRUNC;
3608 	idmap = mnt_idmap(nd->path.mnt);
3609 	if (open_flag & O_CREAT) {
3610 		if (open_flag & O_EXCL)
3611 			open_flag &= ~O_TRUNC;
3612 		mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode);
3613 		if (likely(got_write))
3614 			create_error = may_o_create(idmap, &nd->path,
3615 						    dentry, mode);
3616 		else
3617 			create_error = -EROFS;
3618 	}
3619 	if (create_error)
3620 		open_flag &= ~O_CREAT;
3621 	if (dir_inode->i_op->atomic_open) {
3622 		dentry = atomic_open(nd, dentry, file, open_flag, mode);
3623 		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3624 			dentry = ERR_PTR(create_error);
3625 		return dentry;
3626 	}
3627 
3628 	if (d_in_lookup(dentry)) {
3629 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3630 							     nd->flags);
3631 		d_lookup_done(dentry);
3632 		if (unlikely(res)) {
3633 			if (IS_ERR(res)) {
3634 				error = PTR_ERR(res);
3635 				goto out_dput;
3636 			}
3637 			dput(dentry);
3638 			dentry = res;
3639 		}
3640 	}
3641 
3642 	/* Negative dentry, just create the file */
3643 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3644 		file->f_mode |= FMODE_CREATED;
3645 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3646 		if (!dir_inode->i_op->create) {
3647 			error = -EACCES;
3648 			goto out_dput;
3649 		}
3650 
3651 		error = dir_inode->i_op->create(idmap, dir_inode, dentry,
3652 						mode, open_flag & O_EXCL);
3653 		if (error)
3654 			goto out_dput;
3655 	}
3656 	if (unlikely(create_error) && !dentry->d_inode) {
3657 		error = create_error;
3658 		goto out_dput;
3659 	}
3660 	return dentry;
3661 
3662 out_dput:
3663 	dput(dentry);
3664 	return ERR_PTR(error);
3665 }
3666 
trailing_slashes(struct nameidata * nd)3667 static inline bool trailing_slashes(struct nameidata *nd)
3668 {
3669 	return (bool)nd->last.name[nd->last.len];
3670 }
3671 
lookup_fast_for_open(struct nameidata * nd,int open_flag)3672 static struct dentry *lookup_fast_for_open(struct nameidata *nd, int open_flag)
3673 {
3674 	struct dentry *dentry;
3675 
3676 	if (open_flag & O_CREAT) {
3677 		if (trailing_slashes(nd))
3678 			return ERR_PTR(-EISDIR);
3679 
3680 		/* Don't bother on an O_EXCL create */
3681 		if (open_flag & O_EXCL)
3682 			return NULL;
3683 	}
3684 
3685 	if (trailing_slashes(nd))
3686 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3687 
3688 	dentry = lookup_fast(nd);
3689 	if (IS_ERR_OR_NULL(dentry))
3690 		return dentry;
3691 
3692 	if (open_flag & O_CREAT) {
3693 		/* Discard negative dentries. Need inode_lock to do the create */
3694 		if (!dentry->d_inode) {
3695 			if (!(nd->flags & LOOKUP_RCU))
3696 				dput(dentry);
3697 			dentry = NULL;
3698 		}
3699 	}
3700 	return dentry;
3701 }
3702 
open_last_lookups(struct nameidata * nd,struct file * file,const struct open_flags * op)3703 static const char *open_last_lookups(struct nameidata *nd,
3704 		   struct file *file, const struct open_flags *op)
3705 {
3706 	struct dentry *dir = nd->path.dentry;
3707 	int open_flag = op->open_flag;
3708 	bool got_write = false;
3709 	struct dentry *dentry;
3710 	const char *res;
3711 
3712 	nd->flags |= op->intent;
3713 
3714 	if (nd->last_type != LAST_NORM) {
3715 		if (nd->depth)
3716 			put_link(nd);
3717 		return handle_dots(nd, nd->last_type);
3718 	}
3719 
3720 	/* We _can_ be in RCU mode here */
3721 	dentry = lookup_fast_for_open(nd, open_flag);
3722 	if (IS_ERR(dentry))
3723 		return ERR_CAST(dentry);
3724 
3725 	if (likely(dentry))
3726 		goto finish_lookup;
3727 
3728 	if (!(open_flag & O_CREAT)) {
3729 		if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU))
3730 			return ERR_PTR(-ECHILD);
3731 	} else {
3732 		if (nd->flags & LOOKUP_RCU) {
3733 			if (!try_to_unlazy(nd))
3734 				return ERR_PTR(-ECHILD);
3735 		}
3736 	}
3737 
3738 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3739 		got_write = !mnt_want_write(nd->path.mnt);
3740 		/*
3741 		 * do _not_ fail yet - we might not need that or fail with
3742 		 * a different error; let lookup_open() decide; we'll be
3743 		 * dropping this one anyway.
3744 		 */
3745 	}
3746 	if (open_flag & O_CREAT)
3747 		inode_lock(dir->d_inode);
3748 	else
3749 		inode_lock_shared(dir->d_inode);
3750 	dentry = lookup_open(nd, file, op, got_write);
3751 	if (!IS_ERR(dentry)) {
3752 		if (file->f_mode & FMODE_CREATED)
3753 			fsnotify_create(dir->d_inode, dentry);
3754 		if (file->f_mode & FMODE_OPENED)
3755 			fsnotify_open(file);
3756 	}
3757 	if (open_flag & O_CREAT)
3758 		inode_unlock(dir->d_inode);
3759 	else
3760 		inode_unlock_shared(dir->d_inode);
3761 
3762 	if (got_write)
3763 		mnt_drop_write(nd->path.mnt);
3764 
3765 	if (IS_ERR(dentry))
3766 		return ERR_CAST(dentry);
3767 
3768 	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3769 		dput(nd->path.dentry);
3770 		nd->path.dentry = dentry;
3771 		return NULL;
3772 	}
3773 
3774 finish_lookup:
3775 	if (nd->depth)
3776 		put_link(nd);
3777 	res = step_into(nd, WALK_TRAILING, dentry);
3778 	if (unlikely(res))
3779 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3780 	return res;
3781 }
3782 
3783 /*
3784  * Handle the last step of open()
3785  */
do_open(struct nameidata * nd,struct file * file,const struct open_flags * op)3786 static int do_open(struct nameidata *nd,
3787 		   struct file *file, const struct open_flags *op)
3788 {
3789 	struct mnt_idmap *idmap;
3790 	int open_flag = op->open_flag;
3791 	bool do_truncate;
3792 	int acc_mode;
3793 	int error;
3794 
3795 	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3796 		error = complete_walk(nd);
3797 		if (error)
3798 			return error;
3799 	}
3800 	if (!(file->f_mode & FMODE_CREATED))
3801 		audit_inode(nd->name, nd->path.dentry, 0);
3802 	idmap = mnt_idmap(nd->path.mnt);
3803 	if (open_flag & O_CREAT) {
3804 		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3805 			return -EEXIST;
3806 		if (d_is_dir(nd->path.dentry))
3807 			return -EISDIR;
3808 		error = may_create_in_sticky(idmap, nd,
3809 					     d_backing_inode(nd->path.dentry));
3810 		if (unlikely(error))
3811 			return error;
3812 	}
3813 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3814 		return -ENOTDIR;
3815 
3816 	do_truncate = false;
3817 	acc_mode = op->acc_mode;
3818 	if (file->f_mode & FMODE_CREATED) {
3819 		/* Don't check for write permission, don't truncate */
3820 		open_flag &= ~O_TRUNC;
3821 		acc_mode = 0;
3822 	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3823 		error = mnt_want_write(nd->path.mnt);
3824 		if (error)
3825 			return error;
3826 		do_truncate = true;
3827 	}
3828 	error = may_open(idmap, &nd->path, acc_mode, open_flag);
3829 	if (!error && !(file->f_mode & FMODE_OPENED))
3830 		error = vfs_open(&nd->path, file);
3831 	if (!error)
3832 		error = security_file_post_open(file, op->acc_mode);
3833 	if (!error && do_truncate)
3834 		error = handle_truncate(idmap, file);
3835 	if (unlikely(error > 0)) {
3836 		WARN_ON(1);
3837 		error = -EINVAL;
3838 	}
3839 	if (do_truncate)
3840 		mnt_drop_write(nd->path.mnt);
3841 	return error;
3842 }
3843 
3844 /**
3845  * vfs_tmpfile - create tmpfile
3846  * @idmap:	idmap of the mount the inode was found from
3847  * @parentpath:	pointer to the path of the base directory
3848  * @file:	file descriptor of the new tmpfile
3849  * @mode:	mode of the new tmpfile
3850  *
3851  * Create a temporary file.
3852  *
3853  * If the inode has been found through an idmapped mount the idmap of
3854  * the vfsmount must be passed through @idmap. This function will then take
3855  * care to map the inode according to @idmap before checking permissions.
3856  * On non-idmapped mounts or if permission checking is to be performed on the
3857  * raw inode simply pass @nop_mnt_idmap.
3858  */
vfs_tmpfile(struct mnt_idmap * idmap,const struct path * parentpath,struct file * file,umode_t mode)3859 int vfs_tmpfile(struct mnt_idmap *idmap,
3860 		const struct path *parentpath,
3861 		struct file *file, umode_t mode)
3862 {
3863 	struct dentry *child;
3864 	struct inode *dir = d_inode(parentpath->dentry);
3865 	struct inode *inode;
3866 	int error;
3867 	int open_flag = file->f_flags;
3868 
3869 	/* we want directory to be writable */
3870 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3871 	if (error)
3872 		return error;
3873 	if (!dir->i_op->tmpfile)
3874 		return -EOPNOTSUPP;
3875 	child = d_alloc(parentpath->dentry, &slash_name);
3876 	if (unlikely(!child))
3877 		return -ENOMEM;
3878 	file->f_path.mnt = parentpath->mnt;
3879 	file->f_path.dentry = child;
3880 	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3881 	error = dir->i_op->tmpfile(idmap, dir, file, mode);
3882 	dput(child);
3883 	if (file->f_mode & FMODE_OPENED)
3884 		fsnotify_open(file);
3885 	if (error)
3886 		return error;
3887 	/* Don't check for other permissions, the inode was just created */
3888 	error = may_open(idmap, &file->f_path, 0, file->f_flags);
3889 	if (error)
3890 		return error;
3891 	inode = file_inode(file);
3892 	if (!(open_flag & O_EXCL)) {
3893 		spin_lock(&inode->i_lock);
3894 		inode->i_state |= I_LINKABLE;
3895 		spin_unlock(&inode->i_lock);
3896 	}
3897 	security_inode_post_create_tmpfile(idmap, inode);
3898 	return 0;
3899 }
3900 
3901 /**
3902  * kernel_tmpfile_open - open a tmpfile for kernel internal use
3903  * @idmap:	idmap of the mount the inode was found from
3904  * @parentpath:	path of the base directory
3905  * @mode:	mode of the new tmpfile
3906  * @open_flag:	flags
3907  * @cred:	credentials for open
3908  *
3909  * Create and open a temporary file.  The file is not accounted in nr_files,
3910  * hence this is only for kernel internal use, and must not be installed into
3911  * file tables or such.
3912  */
kernel_tmpfile_open(struct mnt_idmap * idmap,const struct path * parentpath,umode_t mode,int open_flag,const struct cred * cred)3913 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
3914 				 const struct path *parentpath,
3915 				 umode_t mode, int open_flag,
3916 				 const struct cred *cred)
3917 {
3918 	struct file *file;
3919 	int error;
3920 
3921 	file = alloc_empty_file_noaccount(open_flag, cred);
3922 	if (IS_ERR(file))
3923 		return file;
3924 
3925 	error = vfs_tmpfile(idmap, parentpath, file, mode);
3926 	if (error) {
3927 		fput(file);
3928 		file = ERR_PTR(error);
3929 	}
3930 	return file;
3931 }
3932 EXPORT_SYMBOL(kernel_tmpfile_open);
3933 
do_tmpfile(struct nameidata * nd,unsigned flags,const struct open_flags * op,struct file * file)3934 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3935 		const struct open_flags *op,
3936 		struct file *file)
3937 {
3938 	struct path path;
3939 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3940 
3941 	if (unlikely(error))
3942 		return error;
3943 	error = mnt_want_write(path.mnt);
3944 	if (unlikely(error))
3945 		goto out;
3946 	error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode);
3947 	if (error)
3948 		goto out2;
3949 	audit_inode(nd->name, file->f_path.dentry, 0);
3950 out2:
3951 	mnt_drop_write(path.mnt);
3952 out:
3953 	path_put(&path);
3954 	return error;
3955 }
3956 
do_o_path(struct nameidata * nd,unsigned flags,struct file * file)3957 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3958 {
3959 	struct path path;
3960 	int error = path_lookupat(nd, flags, &path);
3961 	if (!error) {
3962 		audit_inode(nd->name, path.dentry, 0);
3963 		error = vfs_open(&path, file);
3964 		path_put(&path);
3965 	}
3966 	return error;
3967 }
3968 
path_openat(struct nameidata * nd,const struct open_flags * op,unsigned flags)3969 static struct file *path_openat(struct nameidata *nd,
3970 			const struct open_flags *op, unsigned flags)
3971 {
3972 	struct file *file;
3973 	int error;
3974 
3975 	file = alloc_empty_file(op->open_flag, current_cred());
3976 	if (IS_ERR(file))
3977 		return file;
3978 
3979 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3980 		error = do_tmpfile(nd, flags, op, file);
3981 	} else if (unlikely(file->f_flags & O_PATH)) {
3982 		error = do_o_path(nd, flags, file);
3983 	} else {
3984 		const char *s = path_init(nd, flags);
3985 		while (!(error = link_path_walk(s, nd)) &&
3986 		       (s = open_last_lookups(nd, file, op)) != NULL)
3987 			;
3988 		if (!error)
3989 			error = do_open(nd, file, op);
3990 		terminate_walk(nd);
3991 	}
3992 	if (likely(!error)) {
3993 		if (likely(file->f_mode & FMODE_OPENED))
3994 			return file;
3995 		WARN_ON(1);
3996 		error = -EINVAL;
3997 	}
3998 	fput(file);
3999 	if (error == -EOPENSTALE) {
4000 		if (flags & LOOKUP_RCU)
4001 			error = -ECHILD;
4002 		else
4003 			error = -ESTALE;
4004 	}
4005 	return ERR_PTR(error);
4006 }
4007 
do_filp_open(int dfd,struct filename * pathname,const struct open_flags * op)4008 struct file *do_filp_open(int dfd, struct filename *pathname,
4009 		const struct open_flags *op)
4010 {
4011 	struct nameidata nd;
4012 	int flags = op->lookup_flags;
4013 	struct file *filp;
4014 
4015 	set_nameidata(&nd, dfd, pathname, NULL);
4016 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
4017 	if (unlikely(filp == ERR_PTR(-ECHILD)))
4018 		filp = path_openat(&nd, op, flags);
4019 	if (unlikely(filp == ERR_PTR(-ESTALE)))
4020 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
4021 	restore_nameidata();
4022 	return filp;
4023 }
4024 
do_file_open_root(const struct path * root,const char * name,const struct open_flags * op)4025 struct file *do_file_open_root(const struct path *root,
4026 		const char *name, const struct open_flags *op)
4027 {
4028 	struct nameidata nd;
4029 	struct file *file;
4030 	struct filename *filename;
4031 	int flags = op->lookup_flags;
4032 
4033 	if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
4034 		return ERR_PTR(-ELOOP);
4035 
4036 	filename = getname_kernel(name);
4037 	if (IS_ERR(filename))
4038 		return ERR_CAST(filename);
4039 
4040 	set_nameidata(&nd, -1, filename, root);
4041 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
4042 	if (unlikely(file == ERR_PTR(-ECHILD)))
4043 		file = path_openat(&nd, op, flags);
4044 	if (unlikely(file == ERR_PTR(-ESTALE)))
4045 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
4046 	restore_nameidata();
4047 	putname(filename);
4048 	return file;
4049 }
4050 
filename_create(int dfd,struct filename * name,struct path * path,unsigned int lookup_flags)4051 static struct dentry *filename_create(int dfd, struct filename *name,
4052 				      struct path *path, unsigned int lookup_flags)
4053 {
4054 	struct dentry *dentry = ERR_PTR(-EEXIST);
4055 	struct qstr last;
4056 	bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
4057 	unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
4058 	unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
4059 	int type;
4060 	int err2;
4061 	int error;
4062 
4063 	error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
4064 	if (error)
4065 		return ERR_PTR(error);
4066 
4067 	/*
4068 	 * Yucky last component or no last component at all?
4069 	 * (foo/., foo/.., /////)
4070 	 */
4071 	if (unlikely(type != LAST_NORM))
4072 		goto out;
4073 
4074 	/* don't fail immediately if it's r/o, at least try to report other errors */
4075 	err2 = mnt_want_write(path->mnt);
4076 	/*
4077 	 * Do the final lookup.  Suppress 'create' if there is a trailing
4078 	 * '/', and a directory wasn't requested.
4079 	 */
4080 	if (last.name[last.len] && !want_dir)
4081 		create_flags = 0;
4082 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
4083 	dentry = lookup_one_qstr_excl(&last, path->dentry,
4084 				      reval_flag | create_flags);
4085 	if (IS_ERR(dentry))
4086 		goto unlock;
4087 
4088 	error = -EEXIST;
4089 	if (d_is_positive(dentry))
4090 		goto fail;
4091 
4092 	/*
4093 	 * Special case - lookup gave negative, but... we had foo/bar/
4094 	 * From the vfs_mknod() POV we just have a negative dentry -
4095 	 * all is fine. Let's be bastards - you had / on the end, you've
4096 	 * been asking for (non-existent) directory. -ENOENT for you.
4097 	 */
4098 	if (unlikely(!create_flags)) {
4099 		error = -ENOENT;
4100 		goto fail;
4101 	}
4102 	if (unlikely(err2)) {
4103 		error = err2;
4104 		goto fail;
4105 	}
4106 	return dentry;
4107 fail:
4108 	dput(dentry);
4109 	dentry = ERR_PTR(error);
4110 unlock:
4111 	inode_unlock(path->dentry->d_inode);
4112 	if (!err2)
4113 		mnt_drop_write(path->mnt);
4114 out:
4115 	path_put(path);
4116 	return dentry;
4117 }
4118 
kern_path_create(int dfd,const char * pathname,struct path * path,unsigned int lookup_flags)4119 struct dentry *kern_path_create(int dfd, const char *pathname,
4120 				struct path *path, unsigned int lookup_flags)
4121 {
4122 	struct filename *filename = getname_kernel(pathname);
4123 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4124 
4125 	putname(filename);
4126 	return res;
4127 }
4128 EXPORT_SYMBOL(kern_path_create);
4129 
done_path_create(struct path * path,struct dentry * dentry)4130 void done_path_create(struct path *path, struct dentry *dentry)
4131 {
4132 	dput(dentry);
4133 	inode_unlock(path->dentry->d_inode);
4134 	mnt_drop_write(path->mnt);
4135 	path_put(path);
4136 }
4137 EXPORT_SYMBOL(done_path_create);
4138 
user_path_create(int dfd,const char __user * pathname,struct path * path,unsigned int lookup_flags)4139 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
4140 				struct path *path, unsigned int lookup_flags)
4141 {
4142 	struct filename *filename = getname(pathname);
4143 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4144 
4145 	putname(filename);
4146 	return res;
4147 }
4148 EXPORT_SYMBOL(user_path_create);
4149 
4150 /**
4151  * vfs_mknod - create device node or file
4152  * @idmap:	idmap of the mount the inode was found from
4153  * @dir:	inode of the parent directory
4154  * @dentry:	dentry of the child device node
4155  * @mode:	mode of the child device node
4156  * @dev:	device number of device to create
4157  *
4158  * Create a device node or file.
4159  *
4160  * If the inode has been found through an idmapped mount the idmap of
4161  * the vfsmount must be passed through @idmap. This function will then take
4162  * care to map the inode according to @idmap before checking permissions.
4163  * On non-idmapped mounts or if permission checking is to be performed on the
4164  * raw inode simply pass @nop_mnt_idmap.
4165  */
vfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)4166 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
4167 	      struct dentry *dentry, umode_t mode, dev_t dev)
4168 {
4169 	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
4170 	int error = may_create(idmap, dir, dentry);
4171 
4172 	if (error)
4173 		return error;
4174 
4175 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
4176 	    !capable(CAP_MKNOD))
4177 		return -EPERM;
4178 
4179 	if (!dir->i_op->mknod)
4180 		return -EPERM;
4181 
4182 	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
4183 	error = devcgroup_inode_mknod(mode, dev);
4184 	if (error)
4185 		return error;
4186 
4187 	error = security_inode_mknod(dir, dentry, mode, dev);
4188 	if (error)
4189 		return error;
4190 
4191 	error = dir->i_op->mknod(idmap, dir, dentry, mode, dev);
4192 	if (!error)
4193 		fsnotify_create(dir, dentry);
4194 	return error;
4195 }
4196 EXPORT_SYMBOL(vfs_mknod);
4197 
may_mknod(umode_t mode)4198 static int may_mknod(umode_t mode)
4199 {
4200 	switch (mode & S_IFMT) {
4201 	case S_IFREG:
4202 	case S_IFCHR:
4203 	case S_IFBLK:
4204 	case S_IFIFO:
4205 	case S_IFSOCK:
4206 	case 0: /* zero mode translates to S_IFREG */
4207 		return 0;
4208 	case S_IFDIR:
4209 		return -EPERM;
4210 	default:
4211 		return -EINVAL;
4212 	}
4213 }
4214 
do_mknodat(int dfd,struct filename * name,umode_t mode,unsigned int dev)4215 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
4216 		unsigned int dev)
4217 {
4218 	struct mnt_idmap *idmap;
4219 	struct dentry *dentry;
4220 	struct path path;
4221 	int error;
4222 	unsigned int lookup_flags = 0;
4223 
4224 	error = may_mknod(mode);
4225 	if (error)
4226 		goto out1;
4227 retry:
4228 	dentry = filename_create(dfd, name, &path, lookup_flags);
4229 	error = PTR_ERR(dentry);
4230 	if (IS_ERR(dentry))
4231 		goto out1;
4232 
4233 	error = security_path_mknod(&path, dentry,
4234 			mode_strip_umask(path.dentry->d_inode, mode), dev);
4235 	if (error)
4236 		goto out2;
4237 
4238 	idmap = mnt_idmap(path.mnt);
4239 	switch (mode & S_IFMT) {
4240 		case 0: case S_IFREG:
4241 			error = vfs_create(idmap, path.dentry->d_inode,
4242 					   dentry, mode, true);
4243 			if (!error)
4244 				security_path_post_mknod(idmap, dentry);
4245 			break;
4246 		case S_IFCHR: case S_IFBLK:
4247 			error = vfs_mknod(idmap, path.dentry->d_inode,
4248 					  dentry, mode, new_decode_dev(dev));
4249 			break;
4250 		case S_IFIFO: case S_IFSOCK:
4251 			error = vfs_mknod(idmap, path.dentry->d_inode,
4252 					  dentry, mode, 0);
4253 			break;
4254 	}
4255 out2:
4256 	done_path_create(&path, dentry);
4257 	if (retry_estale(error, lookup_flags)) {
4258 		lookup_flags |= LOOKUP_REVAL;
4259 		goto retry;
4260 	}
4261 out1:
4262 	putname(name);
4263 	return error;
4264 }
4265 
SYSCALL_DEFINE4(mknodat,int,dfd,const char __user *,filename,umode_t,mode,unsigned int,dev)4266 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
4267 		unsigned int, dev)
4268 {
4269 	return do_mknodat(dfd, getname(filename), mode, dev);
4270 }
4271 
SYSCALL_DEFINE3(mknod,const char __user *,filename,umode_t,mode,unsigned,dev)4272 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
4273 {
4274 	return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
4275 }
4276 
4277 /**
4278  * vfs_mkdir - create directory
4279  * @idmap:	idmap of the mount the inode was found from
4280  * @dir:	inode of the parent directory
4281  * @dentry:	dentry of the child directory
4282  * @mode:	mode of the child directory
4283  *
4284  * Create a directory.
4285  *
4286  * If the inode has been found through an idmapped mount the idmap of
4287  * the vfsmount must be passed through @idmap. This function will then take
4288  * care to map the inode according to @idmap before checking permissions.
4289  * On non-idmapped mounts or if permission checking is to be performed on the
4290  * raw inode simply pass @nop_mnt_idmap.
4291  */
vfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)4292 int vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
4293 	      struct dentry *dentry, umode_t mode)
4294 {
4295 	int error;
4296 	unsigned max_links = dir->i_sb->s_max_links;
4297 
4298 	error = may_create(idmap, dir, dentry);
4299 	if (error)
4300 		return error;
4301 
4302 	if (!dir->i_op->mkdir)
4303 		return -EPERM;
4304 
4305 	mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4306 	error = security_inode_mkdir(dir, dentry, mode);
4307 	if (error)
4308 		return error;
4309 
4310 	if (max_links && dir->i_nlink >= max_links)
4311 		return -EMLINK;
4312 
4313 	error = dir->i_op->mkdir(idmap, dir, dentry, mode);
4314 	if (!error)
4315 		fsnotify_mkdir(dir, dentry);
4316 	return error;
4317 }
4318 EXPORT_SYMBOL(vfs_mkdir);
4319 
do_mkdirat(int dfd,struct filename * name,umode_t mode)4320 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4321 {
4322 	struct dentry *dentry;
4323 	struct path path;
4324 	int error;
4325 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
4326 
4327 retry:
4328 	dentry = filename_create(dfd, name, &path, lookup_flags);
4329 	error = PTR_ERR(dentry);
4330 	if (IS_ERR(dentry))
4331 		goto out_putname;
4332 
4333 	error = security_path_mkdir(&path, dentry,
4334 			mode_strip_umask(path.dentry->d_inode, mode));
4335 	if (!error) {
4336 		error = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode,
4337 				  dentry, mode);
4338 	}
4339 	done_path_create(&path, dentry);
4340 	if (retry_estale(error, lookup_flags)) {
4341 		lookup_flags |= LOOKUP_REVAL;
4342 		goto retry;
4343 	}
4344 out_putname:
4345 	putname(name);
4346 	return error;
4347 }
4348 
SYSCALL_DEFINE3(mkdirat,int,dfd,const char __user *,pathname,umode_t,mode)4349 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4350 {
4351 	return do_mkdirat(dfd, getname(pathname), mode);
4352 }
4353 
SYSCALL_DEFINE2(mkdir,const char __user *,pathname,umode_t,mode)4354 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4355 {
4356 	return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4357 }
4358 
4359 /**
4360  * vfs_rmdir - remove directory
4361  * @idmap:	idmap of the mount the inode was found from
4362  * @dir:	inode of the parent directory
4363  * @dentry:	dentry of the child directory
4364  *
4365  * Remove a directory.
4366  *
4367  * If the inode has been found through an idmapped mount the idmap of
4368  * the vfsmount must be passed through @idmap. This function will then take
4369  * care to map the inode according to @idmap before checking permissions.
4370  * On non-idmapped mounts or if permission checking is to be performed on the
4371  * raw inode simply pass @nop_mnt_idmap.
4372  */
vfs_rmdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry)4373 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir,
4374 		     struct dentry *dentry)
4375 {
4376 	int error = may_delete(idmap, dir, dentry, 1);
4377 
4378 	if (error)
4379 		return error;
4380 
4381 	if (!dir->i_op->rmdir)
4382 		return -EPERM;
4383 
4384 	dget(dentry);
4385 	inode_lock(dentry->d_inode);
4386 
4387 	error = -EBUSY;
4388 	if (is_local_mountpoint(dentry) ||
4389 	    (dentry->d_inode->i_flags & S_KERNEL_FILE))
4390 		goto out;
4391 
4392 	error = security_inode_rmdir(dir, dentry);
4393 	if (error)
4394 		goto out;
4395 
4396 	error = dir->i_op->rmdir(dir, dentry);
4397 	if (error)
4398 		goto out;
4399 
4400 	shrink_dcache_parent(dentry);
4401 	dentry->d_inode->i_flags |= S_DEAD;
4402 	dont_mount(dentry);
4403 	detach_mounts(dentry);
4404 
4405 out:
4406 	inode_unlock(dentry->d_inode);
4407 	dput(dentry);
4408 	if (!error)
4409 		d_delete_notify(dir, dentry);
4410 	return error;
4411 }
4412 EXPORT_SYMBOL(vfs_rmdir);
4413 
do_rmdir(int dfd,struct filename * name)4414 int do_rmdir(int dfd, struct filename *name)
4415 {
4416 	int error;
4417 	struct dentry *dentry;
4418 	struct path path;
4419 	struct qstr last;
4420 	int type;
4421 	unsigned int lookup_flags = 0;
4422 retry:
4423 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4424 	if (error)
4425 		goto exit1;
4426 
4427 	switch (type) {
4428 	case LAST_DOTDOT:
4429 		error = -ENOTEMPTY;
4430 		goto exit2;
4431 	case LAST_DOT:
4432 		error = -EINVAL;
4433 		goto exit2;
4434 	case LAST_ROOT:
4435 		error = -EBUSY;
4436 		goto exit2;
4437 	}
4438 
4439 	error = mnt_want_write(path.mnt);
4440 	if (error)
4441 		goto exit2;
4442 
4443 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4444 	dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4445 	error = PTR_ERR(dentry);
4446 	if (IS_ERR(dentry))
4447 		goto exit3;
4448 	if (!dentry->d_inode) {
4449 		error = -ENOENT;
4450 		goto exit4;
4451 	}
4452 	error = security_path_rmdir(&path, dentry);
4453 	if (error)
4454 		goto exit4;
4455 	error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry);
4456 exit4:
4457 	dput(dentry);
4458 exit3:
4459 	inode_unlock(path.dentry->d_inode);
4460 	mnt_drop_write(path.mnt);
4461 exit2:
4462 	path_put(&path);
4463 	if (retry_estale(error, lookup_flags)) {
4464 		lookup_flags |= LOOKUP_REVAL;
4465 		goto retry;
4466 	}
4467 exit1:
4468 	putname(name);
4469 	return error;
4470 }
4471 
SYSCALL_DEFINE1(rmdir,const char __user *,pathname)4472 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4473 {
4474 	return do_rmdir(AT_FDCWD, getname(pathname));
4475 }
4476 
4477 /**
4478  * vfs_unlink - unlink a filesystem object
4479  * @idmap:	idmap of the mount the inode was found from
4480  * @dir:	parent directory
4481  * @dentry:	victim
4482  * @delegated_inode: returns victim inode, if the inode is delegated.
4483  *
4484  * The caller must hold dir->i_mutex.
4485  *
4486  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4487  * return a reference to the inode in delegated_inode.  The caller
4488  * should then break the delegation on that inode and retry.  Because
4489  * breaking a delegation may take a long time, the caller should drop
4490  * dir->i_mutex before doing so.
4491  *
4492  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4493  * be appropriate for callers that expect the underlying filesystem not
4494  * to be NFS exported.
4495  *
4496  * If the inode has been found through an idmapped mount the idmap of
4497  * the vfsmount must be passed through @idmap. This function will then take
4498  * care to map the inode according to @idmap before checking permissions.
4499  * On non-idmapped mounts or if permission checking is to be performed on the
4500  * raw inode simply pass @nop_mnt_idmap.
4501  */
vfs_unlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,struct inode ** delegated_inode)4502 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir,
4503 	       struct dentry *dentry, struct inode **delegated_inode)
4504 {
4505 	struct inode *target = dentry->d_inode;
4506 	int error = may_delete(idmap, dir, dentry, 0);
4507 
4508 	if (error)
4509 		return error;
4510 
4511 	if (!dir->i_op->unlink)
4512 		return -EPERM;
4513 
4514 	inode_lock(target);
4515 	if (IS_SWAPFILE(target))
4516 		error = -EPERM;
4517 	else if (is_local_mountpoint(dentry))
4518 		error = -EBUSY;
4519 	else {
4520 		error = security_inode_unlink(dir, dentry);
4521 		if (!error) {
4522 			error = try_break_deleg(target, delegated_inode);
4523 			if (error)
4524 				goto out;
4525 			error = dir->i_op->unlink(dir, dentry);
4526 			if (!error) {
4527 				dont_mount(dentry);
4528 				detach_mounts(dentry);
4529 			}
4530 		}
4531 	}
4532 out:
4533 	inode_unlock(target);
4534 
4535 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4536 	if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4537 		fsnotify_unlink(dir, dentry);
4538 	} else if (!error) {
4539 		fsnotify_link_count(target);
4540 		d_delete_notify(dir, dentry);
4541 	}
4542 
4543 	return error;
4544 }
4545 EXPORT_SYMBOL(vfs_unlink);
4546 
4547 /*
4548  * Make sure that the actual truncation of the file will occur outside its
4549  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4550  * writeout happening, and we don't want to prevent access to the directory
4551  * while waiting on the I/O.
4552  */
do_unlinkat(int dfd,struct filename * name)4553 int do_unlinkat(int dfd, struct filename *name)
4554 {
4555 	int error;
4556 	struct dentry *dentry;
4557 	struct path path;
4558 	struct qstr last;
4559 	int type;
4560 	struct inode *inode = NULL;
4561 	struct inode *delegated_inode = NULL;
4562 	unsigned int lookup_flags = 0;
4563 retry:
4564 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4565 	if (error)
4566 		goto exit1;
4567 
4568 	error = -EISDIR;
4569 	if (type != LAST_NORM)
4570 		goto exit2;
4571 
4572 	error = mnt_want_write(path.mnt);
4573 	if (error)
4574 		goto exit2;
4575 retry_deleg:
4576 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4577 	dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4578 	error = PTR_ERR(dentry);
4579 	if (!IS_ERR(dentry)) {
4580 
4581 		/* Why not before? Because we want correct error value */
4582 		if (last.name[last.len] || d_is_negative(dentry))
4583 			goto slashes;
4584 		inode = dentry->d_inode;
4585 		ihold(inode);
4586 		error = security_path_unlink(&path, dentry);
4587 		if (error)
4588 			goto exit3;
4589 		error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4590 				   dentry, &delegated_inode);
4591 exit3:
4592 		dput(dentry);
4593 	}
4594 	inode_unlock(path.dentry->d_inode);
4595 	if (inode)
4596 		iput(inode);	/* truncate the inode here */
4597 	inode = NULL;
4598 	if (delegated_inode) {
4599 		error = break_deleg_wait(&delegated_inode);
4600 		if (!error)
4601 			goto retry_deleg;
4602 	}
4603 	mnt_drop_write(path.mnt);
4604 exit2:
4605 	path_put(&path);
4606 	if (retry_estale(error, lookup_flags)) {
4607 		lookup_flags |= LOOKUP_REVAL;
4608 		inode = NULL;
4609 		goto retry;
4610 	}
4611 exit1:
4612 	putname(name);
4613 	return error;
4614 
4615 slashes:
4616 	if (d_is_negative(dentry))
4617 		error = -ENOENT;
4618 	else if (d_is_dir(dentry))
4619 		error = -EISDIR;
4620 	else
4621 		error = -ENOTDIR;
4622 	goto exit3;
4623 }
4624 
SYSCALL_DEFINE3(unlinkat,int,dfd,const char __user *,pathname,int,flag)4625 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4626 {
4627 	if ((flag & ~AT_REMOVEDIR) != 0)
4628 		return -EINVAL;
4629 
4630 	if (flag & AT_REMOVEDIR)
4631 		return do_rmdir(dfd, getname(pathname));
4632 	return do_unlinkat(dfd, getname(pathname));
4633 }
4634 
SYSCALL_DEFINE1(unlink,const char __user *,pathname)4635 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4636 {
4637 	return do_unlinkat(AT_FDCWD, getname(pathname));
4638 }
4639 
4640 /**
4641  * vfs_symlink - create symlink
4642  * @idmap:	idmap of the mount the inode was found from
4643  * @dir:	inode of the parent directory
4644  * @dentry:	dentry of the child symlink file
4645  * @oldname:	name of the file to link to
4646  *
4647  * Create a symlink.
4648  *
4649  * If the inode has been found through an idmapped mount the idmap of
4650  * the vfsmount must be passed through @idmap. This function will then take
4651  * care to map the inode according to @idmap before checking permissions.
4652  * On non-idmapped mounts or if permission checking is to be performed on the
4653  * raw inode simply pass @nop_mnt_idmap.
4654  */
vfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * oldname)4655 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
4656 		struct dentry *dentry, const char *oldname)
4657 {
4658 	int error;
4659 
4660 	error = may_create(idmap, dir, dentry);
4661 	if (error)
4662 		return error;
4663 
4664 	if (!dir->i_op->symlink)
4665 		return -EPERM;
4666 
4667 	error = security_inode_symlink(dir, dentry, oldname);
4668 	if (error)
4669 		return error;
4670 
4671 	error = dir->i_op->symlink(idmap, dir, dentry, oldname);
4672 	if (!error)
4673 		fsnotify_create(dir, dentry);
4674 	return error;
4675 }
4676 EXPORT_SYMBOL(vfs_symlink);
4677 
do_symlinkat(struct filename * from,int newdfd,struct filename * to)4678 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4679 {
4680 	int error;
4681 	struct dentry *dentry;
4682 	struct path path;
4683 	unsigned int lookup_flags = 0;
4684 
4685 	if (IS_ERR(from)) {
4686 		error = PTR_ERR(from);
4687 		goto out_putnames;
4688 	}
4689 retry:
4690 	dentry = filename_create(newdfd, to, &path, lookup_flags);
4691 	error = PTR_ERR(dentry);
4692 	if (IS_ERR(dentry))
4693 		goto out_putnames;
4694 
4695 	error = security_path_symlink(&path, dentry, from->name);
4696 	if (!error)
4697 		error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4698 				    dentry, from->name);
4699 	done_path_create(&path, dentry);
4700 	if (retry_estale(error, lookup_flags)) {
4701 		lookup_flags |= LOOKUP_REVAL;
4702 		goto retry;
4703 	}
4704 out_putnames:
4705 	putname(to);
4706 	putname(from);
4707 	return error;
4708 }
4709 
SYSCALL_DEFINE3(symlinkat,const char __user *,oldname,int,newdfd,const char __user *,newname)4710 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4711 		int, newdfd, const char __user *, newname)
4712 {
4713 	return do_symlinkat(getname(oldname), newdfd, getname(newname));
4714 }
4715 
SYSCALL_DEFINE2(symlink,const char __user *,oldname,const char __user *,newname)4716 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4717 {
4718 	return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4719 }
4720 
4721 /**
4722  * vfs_link - create a new link
4723  * @old_dentry:	object to be linked
4724  * @idmap:	idmap of the mount
4725  * @dir:	new parent
4726  * @new_dentry:	where to create the new link
4727  * @delegated_inode: returns inode needing a delegation break
4728  *
4729  * The caller must hold dir->i_mutex
4730  *
4731  * If vfs_link discovers a delegation on the to-be-linked file in need
4732  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4733  * inode in delegated_inode.  The caller should then break the delegation
4734  * and retry.  Because breaking a delegation may take a long time, the
4735  * caller should drop the i_mutex before doing so.
4736  *
4737  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4738  * be appropriate for callers that expect the underlying filesystem not
4739  * to be NFS exported.
4740  *
4741  * If the inode has been found through an idmapped mount the idmap of
4742  * the vfsmount must be passed through @idmap. This function will then take
4743  * care to map the inode according to @idmap before checking permissions.
4744  * On non-idmapped mounts or if permission checking is to be performed on the
4745  * raw inode simply pass @nop_mnt_idmap.
4746  */
vfs_link(struct dentry * old_dentry,struct mnt_idmap * idmap,struct inode * dir,struct dentry * new_dentry,struct inode ** delegated_inode)4747 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap,
4748 	     struct inode *dir, struct dentry *new_dentry,
4749 	     struct inode **delegated_inode)
4750 {
4751 	struct inode *inode = old_dentry->d_inode;
4752 	unsigned max_links = dir->i_sb->s_max_links;
4753 	int error;
4754 
4755 	if (!inode)
4756 		return -ENOENT;
4757 
4758 	error = may_create(idmap, dir, new_dentry);
4759 	if (error)
4760 		return error;
4761 
4762 	if (dir->i_sb != inode->i_sb)
4763 		return -EXDEV;
4764 
4765 	/*
4766 	 * A link to an append-only or immutable file cannot be created.
4767 	 */
4768 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4769 		return -EPERM;
4770 	/*
4771 	 * Updating the link count will likely cause i_uid and i_gid to
4772 	 * be writen back improperly if their true value is unknown to
4773 	 * the vfs.
4774 	 */
4775 	if (HAS_UNMAPPED_ID(idmap, inode))
4776 		return -EPERM;
4777 	if (!dir->i_op->link)
4778 		return -EPERM;
4779 	if (S_ISDIR(inode->i_mode))
4780 		return -EPERM;
4781 
4782 	error = security_inode_link(old_dentry, dir, new_dentry);
4783 	if (error)
4784 		return error;
4785 
4786 	inode_lock(inode);
4787 	/* Make sure we don't allow creating hardlink to an unlinked file */
4788 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4789 		error =  -ENOENT;
4790 	else if (max_links && inode->i_nlink >= max_links)
4791 		error = -EMLINK;
4792 	else {
4793 		error = try_break_deleg(inode, delegated_inode);
4794 		if (!error)
4795 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4796 	}
4797 
4798 	if (!error && (inode->i_state & I_LINKABLE)) {
4799 		spin_lock(&inode->i_lock);
4800 		inode->i_state &= ~I_LINKABLE;
4801 		spin_unlock(&inode->i_lock);
4802 	}
4803 	inode_unlock(inode);
4804 	if (!error)
4805 		fsnotify_link(dir, inode, new_dentry);
4806 	return error;
4807 }
4808 EXPORT_SYMBOL(vfs_link);
4809 
4810 /*
4811  * Hardlinks are often used in delicate situations.  We avoid
4812  * security-related surprises by not following symlinks on the
4813  * newname.  --KAB
4814  *
4815  * We don't follow them on the oldname either to be compatible
4816  * with linux 2.0, and to avoid hard-linking to directories
4817  * and other special files.  --ADM
4818  */
do_linkat(int olddfd,struct filename * old,int newdfd,struct filename * new,int flags)4819 int do_linkat(int olddfd, struct filename *old, int newdfd,
4820 	      struct filename *new, int flags)
4821 {
4822 	struct mnt_idmap *idmap;
4823 	struct dentry *new_dentry;
4824 	struct path old_path, new_path;
4825 	struct inode *delegated_inode = NULL;
4826 	int how = 0;
4827 	int error;
4828 
4829 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4830 		error = -EINVAL;
4831 		goto out_putnames;
4832 	}
4833 	/*
4834 	 * To use null names we require CAP_DAC_READ_SEARCH or
4835 	 * that the open-time creds of the dfd matches current.
4836 	 * This ensures that not everyone will be able to create
4837 	 * a hardlink using the passed file descriptor.
4838 	 */
4839 	if (flags & AT_EMPTY_PATH)
4840 		how |= LOOKUP_LINKAT_EMPTY;
4841 
4842 	if (flags & AT_SYMLINK_FOLLOW)
4843 		how |= LOOKUP_FOLLOW;
4844 retry:
4845 	error = filename_lookup(olddfd, old, how, &old_path, NULL);
4846 	if (error)
4847 		goto out_putnames;
4848 
4849 	new_dentry = filename_create(newdfd, new, &new_path,
4850 					(how & LOOKUP_REVAL));
4851 	error = PTR_ERR(new_dentry);
4852 	if (IS_ERR(new_dentry))
4853 		goto out_putpath;
4854 
4855 	error = -EXDEV;
4856 	if (old_path.mnt != new_path.mnt)
4857 		goto out_dput;
4858 	idmap = mnt_idmap(new_path.mnt);
4859 	error = may_linkat(idmap, &old_path);
4860 	if (unlikely(error))
4861 		goto out_dput;
4862 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4863 	if (error)
4864 		goto out_dput;
4865 	error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode,
4866 			 new_dentry, &delegated_inode);
4867 out_dput:
4868 	done_path_create(&new_path, new_dentry);
4869 	if (delegated_inode) {
4870 		error = break_deleg_wait(&delegated_inode);
4871 		if (!error) {
4872 			path_put(&old_path);
4873 			goto retry;
4874 		}
4875 	}
4876 	if (retry_estale(error, how)) {
4877 		path_put(&old_path);
4878 		how |= LOOKUP_REVAL;
4879 		goto retry;
4880 	}
4881 out_putpath:
4882 	path_put(&old_path);
4883 out_putnames:
4884 	putname(old);
4885 	putname(new);
4886 
4887 	return error;
4888 }
4889 
SYSCALL_DEFINE5(linkat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,int,flags)4890 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4891 		int, newdfd, const char __user *, newname, int, flags)
4892 {
4893 	return do_linkat(olddfd, getname_uflags(oldname, flags),
4894 		newdfd, getname(newname), flags);
4895 }
4896 
SYSCALL_DEFINE2(link,const char __user *,oldname,const char __user *,newname)4897 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4898 {
4899 	return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4900 }
4901 
4902 /**
4903  * vfs_rename - rename a filesystem object
4904  * @rd:		pointer to &struct renamedata info
4905  *
4906  * The caller must hold multiple mutexes--see lock_rename()).
4907  *
4908  * If vfs_rename discovers a delegation in need of breaking at either
4909  * the source or destination, it will return -EWOULDBLOCK and return a
4910  * reference to the inode in delegated_inode.  The caller should then
4911  * break the delegation and retry.  Because breaking a delegation may
4912  * take a long time, the caller should drop all locks before doing
4913  * so.
4914  *
4915  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4916  * be appropriate for callers that expect the underlying filesystem not
4917  * to be NFS exported.
4918  *
4919  * The worst of all namespace operations - renaming directory. "Perverted"
4920  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4921  * Problems:
4922  *
4923  *	a) we can get into loop creation.
4924  *	b) race potential - two innocent renames can create a loop together.
4925  *	   That's where 4.4BSD screws up. Current fix: serialization on
4926  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4927  *	   story.
4928  *	c) we may have to lock up to _four_ objects - parents and victim (if it exists),
4929  *	   and source (if it's a non-directory or a subdirectory that moves to
4930  *	   different parent).
4931  *	   And that - after we got ->i_mutex on parents (until then we don't know
4932  *	   whether the target exists).  Solution: try to be smart with locking
4933  *	   order for inodes.  We rely on the fact that tree topology may change
4934  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4935  *	   move will be locked.  Thus we can rank directories by the tree
4936  *	   (ancestors first) and rank all non-directories after them.
4937  *	   That works since everybody except rename does "lock parent, lookup,
4938  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4939  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4940  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4941  *	   we'd better make sure that there's no link(2) for them.
4942  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4943  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4944  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4945  *	   ->i_mutex on parents, which works but leads to some truly excessive
4946  *	   locking].
4947  */
vfs_rename(struct renamedata * rd)4948 int vfs_rename(struct renamedata *rd)
4949 {
4950 	int error;
4951 	struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4952 	struct dentry *old_dentry = rd->old_dentry;
4953 	struct dentry *new_dentry = rd->new_dentry;
4954 	struct inode **delegated_inode = rd->delegated_inode;
4955 	unsigned int flags = rd->flags;
4956 	bool is_dir = d_is_dir(old_dentry);
4957 	struct inode *source = old_dentry->d_inode;
4958 	struct inode *target = new_dentry->d_inode;
4959 	bool new_is_dir = false;
4960 	unsigned max_links = new_dir->i_sb->s_max_links;
4961 	struct name_snapshot old_name;
4962 	bool lock_old_subdir, lock_new_subdir;
4963 
4964 	if (source == target)
4965 		return 0;
4966 
4967 	error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir);
4968 	if (error)
4969 		return error;
4970 
4971 	if (!target) {
4972 		error = may_create(rd->new_mnt_idmap, new_dir, new_dentry);
4973 	} else {
4974 		new_is_dir = d_is_dir(new_dentry);
4975 
4976 		if (!(flags & RENAME_EXCHANGE))
4977 			error = may_delete(rd->new_mnt_idmap, new_dir,
4978 					   new_dentry, is_dir);
4979 		else
4980 			error = may_delete(rd->new_mnt_idmap, new_dir,
4981 					   new_dentry, new_is_dir);
4982 	}
4983 	if (error)
4984 		return error;
4985 
4986 	if (!old_dir->i_op->rename)
4987 		return -EPERM;
4988 
4989 	/*
4990 	 * If we are going to change the parent - check write permissions,
4991 	 * we'll need to flip '..'.
4992 	 */
4993 	if (new_dir != old_dir) {
4994 		if (is_dir) {
4995 			error = inode_permission(rd->old_mnt_idmap, source,
4996 						 MAY_WRITE);
4997 			if (error)
4998 				return error;
4999 		}
5000 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
5001 			error = inode_permission(rd->new_mnt_idmap, target,
5002 						 MAY_WRITE);
5003 			if (error)
5004 				return error;
5005 		}
5006 	}
5007 
5008 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
5009 				      flags);
5010 	if (error)
5011 		return error;
5012 
5013 	take_dentry_name_snapshot(&old_name, old_dentry);
5014 	dget(new_dentry);
5015 	/*
5016 	 * Lock children.
5017 	 * The source subdirectory needs to be locked on cross-directory
5018 	 * rename or cross-directory exchange since its parent changes.
5019 	 * The target subdirectory needs to be locked on cross-directory
5020 	 * exchange due to parent change and on any rename due to becoming
5021 	 * a victim.
5022 	 * Non-directories need locking in all cases (for NFS reasons);
5023 	 * they get locked after any subdirectories (in inode address order).
5024 	 *
5025 	 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
5026 	 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
5027 	 */
5028 	lock_old_subdir = new_dir != old_dir;
5029 	lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE);
5030 	if (is_dir) {
5031 		if (lock_old_subdir)
5032 			inode_lock_nested(source, I_MUTEX_CHILD);
5033 		if (target && (!new_is_dir || lock_new_subdir))
5034 			inode_lock(target);
5035 	} else if (new_is_dir) {
5036 		if (lock_new_subdir)
5037 			inode_lock_nested(target, I_MUTEX_CHILD);
5038 		inode_lock(source);
5039 	} else {
5040 		lock_two_nondirectories(source, target);
5041 	}
5042 
5043 	error = -EPERM;
5044 	if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
5045 		goto out;
5046 
5047 	error = -EBUSY;
5048 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
5049 		goto out;
5050 
5051 	if (max_links && new_dir != old_dir) {
5052 		error = -EMLINK;
5053 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
5054 			goto out;
5055 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
5056 		    old_dir->i_nlink >= max_links)
5057 			goto out;
5058 	}
5059 	if (!is_dir) {
5060 		error = try_break_deleg(source, delegated_inode);
5061 		if (error)
5062 			goto out;
5063 	}
5064 	if (target && !new_is_dir) {
5065 		error = try_break_deleg(target, delegated_inode);
5066 		if (error)
5067 			goto out;
5068 	}
5069 	error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry,
5070 				      new_dir, new_dentry, flags);
5071 	if (error)
5072 		goto out;
5073 
5074 	if (!(flags & RENAME_EXCHANGE) && target) {
5075 		if (is_dir) {
5076 			shrink_dcache_parent(new_dentry);
5077 			target->i_flags |= S_DEAD;
5078 		}
5079 		dont_mount(new_dentry);
5080 		detach_mounts(new_dentry);
5081 	}
5082 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
5083 		if (!(flags & RENAME_EXCHANGE))
5084 			d_move(old_dentry, new_dentry);
5085 		else
5086 			d_exchange(old_dentry, new_dentry);
5087 	}
5088 out:
5089 	if (!is_dir || lock_old_subdir)
5090 		inode_unlock(source);
5091 	if (target && (!new_is_dir || lock_new_subdir))
5092 		inode_unlock(target);
5093 	dput(new_dentry);
5094 	if (!error) {
5095 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
5096 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
5097 		if (flags & RENAME_EXCHANGE) {
5098 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
5099 				      new_is_dir, NULL, new_dentry);
5100 		}
5101 	}
5102 	release_dentry_name_snapshot(&old_name);
5103 
5104 	return error;
5105 }
5106 EXPORT_SYMBOL(vfs_rename);
5107 
do_renameat2(int olddfd,struct filename * from,int newdfd,struct filename * to,unsigned int flags)5108 int do_renameat2(int olddfd, struct filename *from, int newdfd,
5109 		 struct filename *to, unsigned int flags)
5110 {
5111 	struct renamedata rd;
5112 	struct dentry *old_dentry, *new_dentry;
5113 	struct dentry *trap;
5114 	struct path old_path, new_path;
5115 	struct qstr old_last, new_last;
5116 	int old_type, new_type;
5117 	struct inode *delegated_inode = NULL;
5118 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
5119 	bool should_retry = false;
5120 	int error = -EINVAL;
5121 
5122 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
5123 		goto put_names;
5124 
5125 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
5126 	    (flags & RENAME_EXCHANGE))
5127 		goto put_names;
5128 
5129 	if (flags & RENAME_EXCHANGE)
5130 		target_flags = 0;
5131 
5132 retry:
5133 	error = filename_parentat(olddfd, from, lookup_flags, &old_path,
5134 				  &old_last, &old_type);
5135 	if (error)
5136 		goto put_names;
5137 
5138 	error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
5139 				  &new_type);
5140 	if (error)
5141 		goto exit1;
5142 
5143 	error = -EXDEV;
5144 	if (old_path.mnt != new_path.mnt)
5145 		goto exit2;
5146 
5147 	error = -EBUSY;
5148 	if (old_type != LAST_NORM)
5149 		goto exit2;
5150 
5151 	if (flags & RENAME_NOREPLACE)
5152 		error = -EEXIST;
5153 	if (new_type != LAST_NORM)
5154 		goto exit2;
5155 
5156 	error = mnt_want_write(old_path.mnt);
5157 	if (error)
5158 		goto exit2;
5159 
5160 retry_deleg:
5161 	trap = lock_rename(new_path.dentry, old_path.dentry);
5162 	if (IS_ERR(trap)) {
5163 		error = PTR_ERR(trap);
5164 		goto exit_lock_rename;
5165 	}
5166 
5167 	old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry,
5168 					  lookup_flags);
5169 	error = PTR_ERR(old_dentry);
5170 	if (IS_ERR(old_dentry))
5171 		goto exit3;
5172 	/* source must exist */
5173 	error = -ENOENT;
5174 	if (d_is_negative(old_dentry))
5175 		goto exit4;
5176 	new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry,
5177 					  lookup_flags | target_flags);
5178 	error = PTR_ERR(new_dentry);
5179 	if (IS_ERR(new_dentry))
5180 		goto exit4;
5181 	error = -EEXIST;
5182 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
5183 		goto exit5;
5184 	if (flags & RENAME_EXCHANGE) {
5185 		error = -ENOENT;
5186 		if (d_is_negative(new_dentry))
5187 			goto exit5;
5188 
5189 		if (!d_is_dir(new_dentry)) {
5190 			error = -ENOTDIR;
5191 			if (new_last.name[new_last.len])
5192 				goto exit5;
5193 		}
5194 	}
5195 	/* unless the source is a directory trailing slashes give -ENOTDIR */
5196 	if (!d_is_dir(old_dentry)) {
5197 		error = -ENOTDIR;
5198 		if (old_last.name[old_last.len])
5199 			goto exit5;
5200 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
5201 			goto exit5;
5202 	}
5203 	/* source should not be ancestor of target */
5204 	error = -EINVAL;
5205 	if (old_dentry == trap)
5206 		goto exit5;
5207 	/* target should not be an ancestor of source */
5208 	if (!(flags & RENAME_EXCHANGE))
5209 		error = -ENOTEMPTY;
5210 	if (new_dentry == trap)
5211 		goto exit5;
5212 
5213 	error = security_path_rename(&old_path, old_dentry,
5214 				     &new_path, new_dentry, flags);
5215 	if (error)
5216 		goto exit5;
5217 
5218 	rd.old_dir	   = old_path.dentry->d_inode;
5219 	rd.old_dentry	   = old_dentry;
5220 	rd.old_mnt_idmap   = mnt_idmap(old_path.mnt);
5221 	rd.new_dir	   = new_path.dentry->d_inode;
5222 	rd.new_dentry	   = new_dentry;
5223 	rd.new_mnt_idmap   = mnt_idmap(new_path.mnt);
5224 	rd.delegated_inode = &delegated_inode;
5225 	rd.flags	   = flags;
5226 	error = vfs_rename(&rd);
5227 exit5:
5228 	dput(new_dentry);
5229 exit4:
5230 	dput(old_dentry);
5231 exit3:
5232 	unlock_rename(new_path.dentry, old_path.dentry);
5233 exit_lock_rename:
5234 	if (delegated_inode) {
5235 		error = break_deleg_wait(&delegated_inode);
5236 		if (!error)
5237 			goto retry_deleg;
5238 	}
5239 	mnt_drop_write(old_path.mnt);
5240 exit2:
5241 	if (retry_estale(error, lookup_flags))
5242 		should_retry = true;
5243 	path_put(&new_path);
5244 exit1:
5245 	path_put(&old_path);
5246 	if (should_retry) {
5247 		should_retry = false;
5248 		lookup_flags |= LOOKUP_REVAL;
5249 		goto retry;
5250 	}
5251 put_names:
5252 	putname(from);
5253 	putname(to);
5254 	return error;
5255 }
5256 
SYSCALL_DEFINE5(renameat2,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,unsigned int,flags)5257 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
5258 		int, newdfd, const char __user *, newname, unsigned int, flags)
5259 {
5260 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5261 				flags);
5262 }
5263 
SYSCALL_DEFINE4(renameat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname)5264 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
5265 		int, newdfd, const char __user *, newname)
5266 {
5267 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5268 				0);
5269 }
5270 
SYSCALL_DEFINE2(rename,const char __user *,oldname,const char __user *,newname)5271 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
5272 {
5273 	return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
5274 				getname(newname), 0);
5275 }
5276 
readlink_copy(char __user * buffer,int buflen,const char * link,int linklen)5277 int readlink_copy(char __user *buffer, int buflen, const char *link, int linklen)
5278 {
5279 	int copylen;
5280 
5281 	copylen = linklen;
5282 	if (unlikely(copylen > (unsigned) buflen))
5283 		copylen = buflen;
5284 	if (copy_to_user(buffer, link, copylen))
5285 		copylen = -EFAULT;
5286 	return copylen;
5287 }
5288 
5289 /**
5290  * vfs_readlink - copy symlink body into userspace buffer
5291  * @dentry: dentry on which to get symbolic link
5292  * @buffer: user memory pointer
5293  * @buflen: size of buffer
5294  *
5295  * Does not touch atime.  That's up to the caller if necessary
5296  *
5297  * Does not call security hook.
5298  */
vfs_readlink(struct dentry * dentry,char __user * buffer,int buflen)5299 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5300 {
5301 	struct inode *inode = d_inode(dentry);
5302 	DEFINE_DELAYED_CALL(done);
5303 	const char *link;
5304 	int res;
5305 
5306 	if (inode->i_opflags & IOP_CACHED_LINK)
5307 		return readlink_copy(buffer, buflen, inode->i_link, inode->i_linklen);
5308 
5309 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
5310 		if (unlikely(inode->i_op->readlink))
5311 			return inode->i_op->readlink(dentry, buffer, buflen);
5312 
5313 		if (!d_is_symlink(dentry))
5314 			return -EINVAL;
5315 
5316 		spin_lock(&inode->i_lock);
5317 		inode->i_opflags |= IOP_DEFAULT_READLINK;
5318 		spin_unlock(&inode->i_lock);
5319 	}
5320 
5321 	link = READ_ONCE(inode->i_link);
5322 	if (!link) {
5323 		link = inode->i_op->get_link(dentry, inode, &done);
5324 		if (IS_ERR(link))
5325 			return PTR_ERR(link);
5326 	}
5327 	res = readlink_copy(buffer, buflen, link, strlen(link));
5328 	do_delayed_call(&done);
5329 	return res;
5330 }
5331 EXPORT_SYMBOL(vfs_readlink);
5332 
5333 /**
5334  * vfs_get_link - get symlink body
5335  * @dentry: dentry on which to get symbolic link
5336  * @done: caller needs to free returned data with this
5337  *
5338  * Calls security hook and i_op->get_link() on the supplied inode.
5339  *
5340  * It does not touch atime.  That's up to the caller if necessary.
5341  *
5342  * Does not work on "special" symlinks like /proc/$$/fd/N
5343  */
vfs_get_link(struct dentry * dentry,struct delayed_call * done)5344 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5345 {
5346 	const char *res = ERR_PTR(-EINVAL);
5347 	struct inode *inode = d_inode(dentry);
5348 
5349 	if (d_is_symlink(dentry)) {
5350 		res = ERR_PTR(security_inode_readlink(dentry));
5351 		if (!res)
5352 			res = inode->i_op->get_link(dentry, inode, done);
5353 	}
5354 	return res;
5355 }
5356 EXPORT_SYMBOL(vfs_get_link);
5357 
5358 /* get the link contents into pagecache */
__page_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)5359 static char *__page_get_link(struct dentry *dentry, struct inode *inode,
5360 			     struct delayed_call *callback)
5361 {
5362 	struct page *page;
5363 	struct address_space *mapping = inode->i_mapping;
5364 
5365 	if (!dentry) {
5366 		page = find_get_page(mapping, 0);
5367 		if (!page)
5368 			return ERR_PTR(-ECHILD);
5369 		if (!PageUptodate(page)) {
5370 			put_page(page);
5371 			return ERR_PTR(-ECHILD);
5372 		}
5373 	} else {
5374 		page = read_mapping_page(mapping, 0, NULL);
5375 		if (IS_ERR(page))
5376 			return (char*)page;
5377 	}
5378 	set_delayed_call(callback, page_put_link, page);
5379 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5380 	return page_address(page);
5381 }
5382 
page_get_link_raw(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)5383 const char *page_get_link_raw(struct dentry *dentry, struct inode *inode,
5384 			      struct delayed_call *callback)
5385 {
5386 	return __page_get_link(dentry, inode, callback);
5387 }
5388 EXPORT_SYMBOL_GPL(page_get_link_raw);
5389 
page_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)5390 const char *page_get_link(struct dentry *dentry, struct inode *inode,
5391 					struct delayed_call *callback)
5392 {
5393 	char *kaddr = __page_get_link(dentry, inode, callback);
5394 
5395 	if (!IS_ERR(kaddr))
5396 		nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5397 	return kaddr;
5398 }
5399 
5400 EXPORT_SYMBOL(page_get_link);
5401 
page_put_link(void * arg)5402 void page_put_link(void *arg)
5403 {
5404 	put_page(arg);
5405 }
5406 EXPORT_SYMBOL(page_put_link);
5407 
page_readlink(struct dentry * dentry,char __user * buffer,int buflen)5408 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5409 {
5410 	const char *link;
5411 	int res;
5412 
5413 	DEFINE_DELAYED_CALL(done);
5414 	link = page_get_link(dentry, d_inode(dentry), &done);
5415 	res = PTR_ERR(link);
5416 	if (!IS_ERR(link))
5417 		res = readlink_copy(buffer, buflen, link, strlen(link));
5418 	do_delayed_call(&done);
5419 	return res;
5420 }
5421 EXPORT_SYMBOL(page_readlink);
5422 
page_symlink(struct inode * inode,const char * symname,int len)5423 int page_symlink(struct inode *inode, const char *symname, int len)
5424 {
5425 	struct address_space *mapping = inode->i_mapping;
5426 	const struct address_space_operations *aops = mapping->a_ops;
5427 	bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5428 	struct folio *folio;
5429 	void *fsdata = NULL;
5430 	int err;
5431 	unsigned int flags;
5432 
5433 retry:
5434 	if (nofs)
5435 		flags = memalloc_nofs_save();
5436 	err = aops->write_begin(NULL, mapping, 0, len-1, &folio, &fsdata);
5437 	if (nofs)
5438 		memalloc_nofs_restore(flags);
5439 	if (err)
5440 		goto fail;
5441 
5442 	memcpy(folio_address(folio), symname, len - 1);
5443 
5444 	err = aops->write_end(NULL, mapping, 0, len - 1, len - 1,
5445 						folio, fsdata);
5446 	if (err < 0)
5447 		goto fail;
5448 	if (err < len-1)
5449 		goto retry;
5450 
5451 	mark_inode_dirty(inode);
5452 	return 0;
5453 fail:
5454 	return err;
5455 }
5456 EXPORT_SYMBOL(page_symlink);
5457 
5458 const struct inode_operations page_symlink_inode_operations = {
5459 	.get_link	= page_get_link,
5460 };
5461 EXPORT_SYMBOL(page_symlink_inode_operations);
5462