xref: /linux/sound/firewire/fireworks/fireworks_pcm.c (revision 05a54fa773284d1a7923cdfdd8f0c8dabb98bd26)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fireworks_pcm.c - a part of driver for Fireworks based devices
4  *
5  * Copyright (c) 2009-2010 Clemens Ladisch
6  * Copyright (c) 2013-2014 Takashi Sakamoto
7  */
8 #include "./fireworks.h"
9 
10 /*
11  * NOTE:
12  * Fireworks changes its AMDTP channels for PCM data according to its sampling
13  * rate. There are three modes. Here _XX is either _rx or _tx.
14  *  0:  32.0- 48.0 kHz then snd_efw_hwinfo.amdtp_XX_pcm_channels applied
15  *  1:  88.2- 96.0 kHz then snd_efw_hwinfo.amdtp_XX_pcm_channels_2x applied
16  *  2: 176.4-192.0 kHz then snd_efw_hwinfo.amdtp_XX_pcm_channels_4x applied
17  *
18  * The number of PCM channels for analog input and output are always fixed but
19  * the number of PCM channels for digital input and output are differed.
20  *
21  * Additionally, according to "AudioFire Owner's Manual Version 2.2", in some
22  * model, the number of PCM channels for digital input has more restriction
23  * depending on which digital interface is selected.
24  *  - S/PDIF coaxial and optical	: use input 1-2
25  *  - ADAT optical at 32.0-48.0 kHz	: use input 1-8
26  *  - ADAT optical at 88.2-96.0 kHz	: use input 1-4 (S/MUX format)
27  *
28  * The data in AMDTP channels for blank PCM channels are zero.
29  */
30 static const unsigned int freq_table[] = {
31 	/* multiplier mode 0 */
32 	[0] = 32000,
33 	[1] = 44100,
34 	[2] = 48000,
35 	/* multiplier mode 1 */
36 	[3] = 88200,
37 	[4] = 96000,
38 	/* multiplier mode 2 */
39 	[5] = 176400,
40 	[6] = 192000,
41 };
42 
43 static inline unsigned int
44 get_multiplier_mode_with_index(unsigned int index)
45 {
46 	return ((int)index - 1) / 2;
47 }
48 
49 int snd_efw_get_multiplier_mode(unsigned int sampling_rate, unsigned int *mode)
50 {
51 	unsigned int i;
52 
53 	for (i = 0; i < ARRAY_SIZE(freq_table); i++) {
54 		if (freq_table[i] == sampling_rate) {
55 			*mode = get_multiplier_mode_with_index(i);
56 			return 0;
57 		}
58 	}
59 
60 	return -EINVAL;
61 }
62 
63 static int
64 hw_rule_rate(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
65 {
66 	unsigned int *pcm_channels = rule->private;
67 	struct snd_interval *r =
68 		hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
69 	const struct snd_interval *c =
70 		hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_CHANNELS);
71 	struct snd_interval t = {
72 		.min = UINT_MAX, .max = 0, .integer = 1
73 	};
74 	unsigned int i, mode;
75 
76 	for (i = 0; i < ARRAY_SIZE(freq_table); i++) {
77 		mode = get_multiplier_mode_with_index(i);
78 		if (!snd_interval_test(c, pcm_channels[mode]))
79 			continue;
80 
81 		t.min = min(t.min, freq_table[i]);
82 		t.max = max(t.max, freq_table[i]);
83 	}
84 
85 	return snd_interval_refine(r, &t);
86 }
87 
88 static int
89 hw_rule_channels(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
90 {
91 	unsigned int *pcm_channels = rule->private;
92 	struct snd_interval *c =
93 		hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
94 	const struct snd_interval *r =
95 		hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
96 	struct snd_interval t = {
97 		.min = UINT_MAX, .max = 0, .integer = 1
98 	};
99 	unsigned int i, mode;
100 
101 	for (i = 0; i < ARRAY_SIZE(freq_table); i++) {
102 		mode = get_multiplier_mode_with_index(i);
103 		if (!snd_interval_test(r, freq_table[i]))
104 			continue;
105 
106 		t.min = min(t.min, pcm_channels[mode]);
107 		t.max = max(t.max, pcm_channels[mode]);
108 	}
109 
110 	return snd_interval_refine(c, &t);
111 }
112 
113 static void
114 limit_channels(struct snd_pcm_hardware *hw, unsigned int *pcm_channels)
115 {
116 	unsigned int i, mode;
117 
118 	hw->channels_min = UINT_MAX;
119 	hw->channels_max = 0;
120 
121 	for (i = 0; i < ARRAY_SIZE(freq_table); i++) {
122 		mode = get_multiplier_mode_with_index(i);
123 		if (pcm_channels[mode] == 0)
124 			continue;
125 
126 		hw->channels_min = min(hw->channels_min, pcm_channels[mode]);
127 		hw->channels_max = max(hw->channels_max, pcm_channels[mode]);
128 	}
129 }
130 
131 static int
132 pcm_init_hw_params(struct snd_efw *efw,
133 		   struct snd_pcm_substream *substream)
134 {
135 	struct snd_pcm_runtime *runtime = substream->runtime;
136 	struct amdtp_stream *s;
137 	unsigned int *pcm_channels;
138 	int err;
139 
140 	if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) {
141 		runtime->hw.formats = AM824_IN_PCM_FORMAT_BITS;
142 		s = &efw->tx_stream;
143 		pcm_channels = efw->pcm_capture_channels;
144 	} else {
145 		runtime->hw.formats = AM824_OUT_PCM_FORMAT_BITS;
146 		s = &efw->rx_stream;
147 		pcm_channels = efw->pcm_playback_channels;
148 	}
149 
150 	/* limit rates */
151 	runtime->hw.rates = efw->supported_sampling_rate;
152 	snd_pcm_limit_hw_rates(runtime);
153 
154 	limit_channels(&runtime->hw, pcm_channels);
155 
156 	err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
157 				  hw_rule_channels, pcm_channels,
158 				  SNDRV_PCM_HW_PARAM_RATE, -1);
159 	if (err < 0)
160 		goto end;
161 
162 	err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
163 				  hw_rule_rate, pcm_channels,
164 				  SNDRV_PCM_HW_PARAM_CHANNELS, -1);
165 	if (err < 0)
166 		goto end;
167 
168 	err = amdtp_am824_add_pcm_hw_constraints(s, runtime);
169 end:
170 	return err;
171 }
172 
173 static int pcm_open(struct snd_pcm_substream *substream)
174 {
175 	struct snd_efw *efw = substream->private_data;
176 	struct amdtp_domain *d = &efw->domain;
177 	enum snd_efw_clock_source clock_source;
178 	int err;
179 
180 	err = snd_efw_stream_lock_try(efw);
181 	if (err < 0)
182 		return err;
183 
184 	err = pcm_init_hw_params(efw, substream);
185 	if (err < 0)
186 		goto err_locked;
187 
188 	err = snd_efw_command_get_clock_source(efw, &clock_source);
189 	if (err < 0)
190 		goto err_locked;
191 
192 	scoped_guard(mutex, &efw->mutex) {
193 		// When source of clock is not internal or any stream is reserved for
194 		// transmission of PCM frames, the available sampling rate is limited
195 		// at current one.
196 		if ((clock_source != SND_EFW_CLOCK_SOURCE_INTERNAL) ||
197 		    (efw->substreams_counter > 0 && d->events_per_period > 0)) {
198 			unsigned int frames_per_period = d->events_per_period;
199 			unsigned int frames_per_buffer = d->events_per_buffer;
200 			unsigned int sampling_rate;
201 
202 			err = snd_efw_command_get_sampling_rate(efw, &sampling_rate);
203 			if (err < 0)
204 				goto err_locked;
205 			substream->runtime->hw.rate_min = sampling_rate;
206 			substream->runtime->hw.rate_max = sampling_rate;
207 
208 			if (frames_per_period > 0) {
209 				err = snd_pcm_hw_constraint_minmax(substream->runtime,
210 								   SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
211 								   frames_per_period, frames_per_period);
212 				if (err < 0)
213 					goto err_locked;
214 
215 				err = snd_pcm_hw_constraint_minmax(substream->runtime,
216 								   SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
217 								   frames_per_buffer, frames_per_buffer);
218 				if (err < 0)
219 					goto err_locked;
220 			}
221 		}
222 	}
223 
224 	snd_pcm_set_sync(substream);
225 
226 	return 0;
227 err_locked:
228 	snd_efw_stream_lock_release(efw);
229 	return err;
230 }
231 
232 static int pcm_close(struct snd_pcm_substream *substream)
233 {
234 	struct snd_efw *efw = substream->private_data;
235 	snd_efw_stream_lock_release(efw);
236 	return 0;
237 }
238 
239 static int pcm_hw_params(struct snd_pcm_substream *substream,
240 				 struct snd_pcm_hw_params *hw_params)
241 {
242 	struct snd_efw *efw = substream->private_data;
243 	int err = 0;
244 
245 	if (substream->runtime->state == SNDRV_PCM_STATE_OPEN) {
246 		unsigned int rate = params_rate(hw_params);
247 		unsigned int frames_per_period = params_period_size(hw_params);
248 		unsigned int frames_per_buffer = params_buffer_size(hw_params);
249 
250 		guard(mutex)(&efw->mutex);
251 		err = snd_efw_stream_reserve_duplex(efw, rate,
252 					frames_per_period, frames_per_buffer);
253 		if (err >= 0)
254 			++efw->substreams_counter;
255 	}
256 
257 	return err;
258 }
259 
260 static int pcm_hw_free(struct snd_pcm_substream *substream)
261 {
262 	struct snd_efw *efw = substream->private_data;
263 
264 	guard(mutex)(&efw->mutex);
265 
266 	if (substream->runtime->state != SNDRV_PCM_STATE_OPEN)
267 		--efw->substreams_counter;
268 
269 	snd_efw_stream_stop_duplex(efw);
270 
271 	return 0;
272 }
273 
274 static int pcm_capture_prepare(struct snd_pcm_substream *substream)
275 {
276 	struct snd_efw *efw = substream->private_data;
277 	int err;
278 
279 	err = snd_efw_stream_start_duplex(efw);
280 	if (err >= 0)
281 		amdtp_stream_pcm_prepare(&efw->tx_stream);
282 
283 	return err;
284 }
285 static int pcm_playback_prepare(struct snd_pcm_substream *substream)
286 {
287 	struct snd_efw *efw = substream->private_data;
288 	int err;
289 
290 	err = snd_efw_stream_start_duplex(efw);
291 	if (err >= 0)
292 		amdtp_stream_pcm_prepare(&efw->rx_stream);
293 
294 	return err;
295 }
296 
297 static int pcm_capture_trigger(struct snd_pcm_substream *substream, int cmd)
298 {
299 	struct snd_efw *efw = substream->private_data;
300 
301 	switch (cmd) {
302 	case SNDRV_PCM_TRIGGER_START:
303 		amdtp_stream_pcm_trigger(&efw->tx_stream, substream);
304 		break;
305 	case SNDRV_PCM_TRIGGER_STOP:
306 		amdtp_stream_pcm_trigger(&efw->tx_stream, NULL);
307 		break;
308 	default:
309 		return -EINVAL;
310 	}
311 
312 	return 0;
313 }
314 static int pcm_playback_trigger(struct snd_pcm_substream *substream, int cmd)
315 {
316 	struct snd_efw *efw = substream->private_data;
317 
318 	switch (cmd) {
319 	case SNDRV_PCM_TRIGGER_START:
320 		amdtp_stream_pcm_trigger(&efw->rx_stream, substream);
321 		break;
322 	case SNDRV_PCM_TRIGGER_STOP:
323 		amdtp_stream_pcm_trigger(&efw->rx_stream, NULL);
324 		break;
325 	default:
326 		return -EINVAL;
327 	}
328 
329 	return 0;
330 }
331 
332 static snd_pcm_uframes_t pcm_capture_pointer(struct snd_pcm_substream *sbstrm)
333 {
334 	struct snd_efw *efw = sbstrm->private_data;
335 
336 	return amdtp_domain_stream_pcm_pointer(&efw->domain, &efw->tx_stream);
337 }
338 static snd_pcm_uframes_t pcm_playback_pointer(struct snd_pcm_substream *sbstrm)
339 {
340 	struct snd_efw *efw = sbstrm->private_data;
341 
342 	return amdtp_domain_stream_pcm_pointer(&efw->domain, &efw->rx_stream);
343 }
344 
345 static int pcm_capture_ack(struct snd_pcm_substream *substream)
346 {
347 	struct snd_efw *efw = substream->private_data;
348 
349 	return amdtp_domain_stream_pcm_ack(&efw->domain, &efw->tx_stream);
350 }
351 
352 static int pcm_playback_ack(struct snd_pcm_substream *substream)
353 {
354 	struct snd_efw *efw = substream->private_data;
355 
356 	return amdtp_domain_stream_pcm_ack(&efw->domain, &efw->rx_stream);
357 }
358 
359 int snd_efw_create_pcm_devices(struct snd_efw *efw)
360 {
361 	static const struct snd_pcm_ops capture_ops = {
362 		.open		= pcm_open,
363 		.close		= pcm_close,
364 		.hw_params	= pcm_hw_params,
365 		.hw_free	= pcm_hw_free,
366 		.prepare	= pcm_capture_prepare,
367 		.trigger	= pcm_capture_trigger,
368 		.pointer	= pcm_capture_pointer,
369 		.ack		= pcm_capture_ack,
370 	};
371 	static const struct snd_pcm_ops playback_ops = {
372 		.open		= pcm_open,
373 		.close		= pcm_close,
374 		.hw_params	= pcm_hw_params,
375 		.hw_free	= pcm_hw_free,
376 		.prepare	= pcm_playback_prepare,
377 		.trigger	= pcm_playback_trigger,
378 		.pointer	= pcm_playback_pointer,
379 		.ack		= pcm_playback_ack,
380 	};
381 	struct snd_pcm *pcm;
382 	int err;
383 
384 	err = snd_pcm_new(efw->card, efw->card->driver, 0, 1, 1, &pcm);
385 	if (err < 0)
386 		goto end;
387 
388 	pcm->private_data = efw;
389 	pcm->nonatomic = true;
390 	snprintf(pcm->name, sizeof(pcm->name), "%s PCM", efw->card->shortname);
391 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &playback_ops);
392 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &capture_ops);
393 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_VMALLOC, NULL, 0, 0);
394 end:
395 	return err;
396 }
397 
398