1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25 /*
26 * Copyright (c) 2010, Intel Corporation.
27 * All rights reserved.
28 * Copyright 2024 Oxide Computer Company
29 */
30
31 /*
32 * LOCALITY GROUP (LGROUP) PLATFORM SUPPORT FOR X86/AMD64 PLATFORMS
33 * ================================================================
34 * Multiprocessor AMD and Intel systems may have Non Uniform Memory Access
35 * (NUMA). A NUMA machine consists of one or more "nodes" that each consist of
36 * one or more CPUs and some local memory. The CPUs in each node can access
37 * the memory in the other nodes but at a higher latency than accessing their
38 * local memory. Typically, a system with only one node has Uniform Memory
39 * Access (UMA), but it may be possible to have a one node system that has
40 * some global memory outside of the node which is higher latency.
41 *
42 * Module Description
43 * ------------------
44 * This module provides a platform interface for determining which CPUs and
45 * which memory (and how much) are in a NUMA node and how far each node is from
46 * each other. The interface is used by the Virtual Memory (VM) system and the
47 * common lgroup framework. The VM system uses the plat_*() routines to fill
48 * in its memory node (memnode) array with the physical address range spanned
49 * by each NUMA node to know which memory belongs to which node, so it can
50 * build and manage a physical page free list for each NUMA node and allocate
51 * local memory from each node as needed. The common lgroup framework uses the
52 * exported lgrp_plat_*() routines to figure out which CPUs and memory belong
53 * to each node (leaf lgroup) and how far each node is from each other, so it
54 * can build the latency (lgroup) topology for the machine in order to optimize
55 * for locality. Also, an lgroup platform handle instead of lgroups are used
56 * in the interface with this module, so this module shouldn't need to know
57 * anything about lgroups. Instead, it just needs to know which CPUs, memory,
58 * etc. are in each NUMA node, how far each node is from each other, and to use
59 * a unique lgroup platform handle to refer to each node through the interface.
60 *
61 * Determining NUMA Configuration
62 * ------------------------------
63 * By default, this module will try to determine the NUMA configuration of the
64 * machine by reading the ACPI System Resource Affinity Table (SRAT) and System
65 * Locality Information Table (SLIT). The SRAT contains info to tell which
66 * CPUs and memory are local to a given proximity domain (NUMA node). The SLIT
67 * is a matrix that gives the distance between each system locality (which is
68 * a NUMA node and should correspond to proximity domains in the SRAT). For
69 * more details on the SRAT and SLIT, please refer to an ACPI 3.0 or newer
70 * specification.
71 *
72 * If the SRAT doesn't exist on a system with AMD Opteron processors, we
73 * examine registers in PCI configuration space to determine how many nodes are
74 * in the system and which CPUs and memory are in each node.
75 * do while booting the kernel.
76 *
77 * NOTE: Using these PCI configuration space registers to determine this
78 * locality info is not guaranteed to work or be compatible across all
79 * Opteron processor families.
80 *
81 * If the SLIT does not exist or look right, the kernel will probe to determine
82 * the distance between nodes as long as the NUMA CPU and memory configuration
83 * has been determined (see lgrp_plat_probe() for details).
84 *
85 * Data Structures
86 * ---------------
87 * The main data structures used by this code are the following:
88 *
89 * - lgrp_plat_cpu_node[] CPU to node ID mapping table indexed by
90 * CPU ID (only used for SRAT)
91 *
92 * - lgrp_plat_lat_stats.latencies[][] Table of latencies between same and
93 * different nodes indexed by node ID
94 *
95 * - lgrp_plat_node_cnt Number of NUMA nodes in system for
96 * non-DR-capable systems,
97 * maximum possible number of NUMA nodes
98 * in system for DR capable systems.
99 *
100 * - lgrp_plat_node_domain[] Node ID to proximity domain ID mapping
101 * table indexed by node ID (only used
102 * for SRAT)
103 *
104 * - lgrp_plat_memnode_info[] Table with physical address range for
105 * each memory node indexed by memory node
106 * ID
107 *
108 * The code is implemented to make the following always be true:
109 *
110 * lgroup platform handle == node ID == memnode ID
111 *
112 * Moreover, it allows for the proximity domain ID to be equal to all of the
113 * above as long as the proximity domains IDs are numbered from 0 to <number of
114 * nodes - 1>. This is done by hashing each proximity domain ID into the range
115 * from 0 to <number of nodes - 1>. Then proximity ID N will hash into node ID
116 * N and proximity domain ID N will be entered into lgrp_plat_node_domain[N]
117 * and be assigned node ID N. If the proximity domain IDs aren't numbered
118 * from 0 to <number of nodes - 1>, then hashing the proximity domain IDs into
119 * lgrp_plat_node_domain[] will still work for assigning proximity domain IDs
120 * to node IDs. However, the proximity domain IDs may not map to the
121 * equivalent node ID since we want to keep the node IDs numbered from 0 to
122 * <number of nodes - 1> to minimize cost of searching and potentially space.
123 *
124 * With the introduction of support of memory DR operations on x86 platforms,
125 * things get a little complicated. The addresses of hot-added memory may not
126 * be continuous with other memory connected to the same lgrp node. In other
127 * words, memory addresses may get interleaved among lgrp nodes after memory
128 * DR operations. To work around this limitation, we have extended the
129 * relationship between lgrp node and memory node from 1:1 map to 1:N map,
130 * that means there may be multiple memory nodes associated with a lgrp node
131 * after memory DR operations.
132 *
133 * To minimize the code changes to support memory DR operations, the
134 * following policies have been adopted.
135 * 1) On non-DR-capable systems, the relationship among lgroup platform handle,
136 * node ID and memnode ID is still kept as:
137 * lgroup platform handle == node ID == memnode ID
138 * 2) For memory present at boot time on DR capable platforms, the relationship
139 * is still kept as is.
140 * lgroup platform handle == node ID == memnode ID
141 * 3) For hot-added memory, the relationship between lgrp ID and memnode ID have
142 * been changed from 1:1 map to 1:N map. Memnode IDs [0 - lgrp_plat_node_cnt)
143 * are reserved for memory present at boot time, and memnode IDs
144 * [lgrp_plat_node_cnt, max_mem_nodes) are used to dynamically allocate
145 * memnode ID for hot-added memory.
146 * 4) All boot code having the assumption "node ID == memnode ID" can live as
147 * is, that's because node ID is always equal to memnode ID at boot time.
148 * 5) The lgrp_plat_memnode_info_update(), plat_pfn_to_mem_node() and
149 * lgrp_plat_mem_size() related logics have been enhanced to deal with
150 * the 1:N map relationship.
151 * 6) The latency probing related logics, which have the assumption
152 * "node ID == memnode ID" and may be called at run time, is disabled if
153 * memory DR operation is enabled.
154 */
155
156
157 #include <sys/archsystm.h> /* for {in,out}{b,w,l}() */
158 #include <sys/atomic.h>
159 #include <sys/bootconf.h>
160 #include <sys/cmn_err.h>
161 #include <sys/controlregs.h>
162 #include <sys/cpupart.h>
163 #include <sys/cpuvar.h>
164 #include <sys/lgrp.h>
165 #include <sys/machsystm.h>
166 #include <sys/memlist.h>
167 #include <sys/memnode.h>
168 #include <sys/mman.h>
169 #include <sys/note.h>
170 #include <sys/pci_cfgspace.h>
171 #include <sys/pci_impl.h>
172 #include <sys/param.h>
173 #include <sys/pghw.h>
174 #include <sys/promif.h> /* for prom_printf() */
175 #include <sys/sysmacros.h>
176 #include <sys/systm.h>
177 #include <sys/thread.h>
178 #include <sys/types.h>
179 #include <sys/var.h>
180 #include <sys/x86_archext.h>
181 #include <vm/hat_i86.h>
182 #include <vm/seg_kmem.h>
183 #include <vm/vm_dep.h>
184
185 #include <sys/acpidev.h>
186 #include <sys/acpi/acpi.h> /* for SRAT, SLIT and MSCT */
187
188 /* from fakebop.c */
189 extern ACPI_TABLE_SRAT *srat_ptr;
190 extern ACPI_TABLE_SLIT *slit_ptr;
191 extern ACPI_TABLE_MSCT *msct_ptr;
192
193 #define MAX_NODES 8
194 #define NLGRP (MAX_NODES * (MAX_NODES - 1) + 1)
195
196 /*
197 * Constants for configuring probing
198 */
199 #define LGRP_PLAT_PROBE_NROUNDS 64 /* default laps for probing */
200 #define LGRP_PLAT_PROBE_NSAMPLES 1 /* default samples to take */
201 #define LGRP_PLAT_PROBE_NREADS 256 /* number of vendor ID reads */
202
203 /*
204 * Flags for probing
205 */
206 #define LGRP_PLAT_PROBE_ENABLE 0x1 /* enable probing */
207 #define LGRP_PLAT_PROBE_PGCPY 0x2 /* probe using page copy */
208 #define LGRP_PLAT_PROBE_VENDOR 0x4 /* probe vendor ID register */
209
210 /*
211 * Hash proximity domain ID into node to domain mapping table "mod" number of
212 * nodes to minimize span of entries used and try to have lowest numbered
213 * proximity domain be node 0
214 */
215 #define NODE_DOMAIN_HASH(domain, node_cnt) \
216 ((lgrp_plat_prox_domain_min == UINT32_MAX) ? (domain) % node_cnt : \
217 ((domain) - lgrp_plat_prox_domain_min) % node_cnt)
218
219 /*
220 * CPU to node ID mapping structure (only used with SRAT)
221 */
222 typedef struct cpu_node_map {
223 int exists;
224 uint_t node;
225 uint32_t apicid;
226 uint32_t prox_domain;
227 } cpu_node_map_t;
228
229 /*
230 * Latency statistics
231 */
232 typedef struct lgrp_plat_latency_stats {
233 hrtime_t latencies[MAX_NODES][MAX_NODES];
234 hrtime_t latency_max;
235 hrtime_t latency_min;
236 } lgrp_plat_latency_stats_t;
237
238 /*
239 * Memory configuration for probing
240 */
241 typedef struct lgrp_plat_probe_mem_config {
242 size_t probe_memsize; /* how much memory to probe per node */
243 caddr_t probe_va[MAX_NODES]; /* where memory mapped for probing */
244 pfn_t probe_pfn[MAX_NODES]; /* physical pages to map for probing */
245 } lgrp_plat_probe_mem_config_t;
246
247 /*
248 * Statistics kept for probing
249 */
250 typedef struct lgrp_plat_probe_stats {
251 hrtime_t flush_cost;
252 hrtime_t probe_cost;
253 hrtime_t probe_cost_total;
254 hrtime_t probe_error_code;
255 hrtime_t probe_errors[MAX_NODES][MAX_NODES];
256 int probe_suspect[MAX_NODES][MAX_NODES];
257 hrtime_t probe_max[MAX_NODES][MAX_NODES];
258 hrtime_t probe_min[MAX_NODES][MAX_NODES];
259 } lgrp_plat_probe_stats_t;
260
261 /*
262 * Node to proximity domain ID mapping structure (only used with SRAT)
263 */
264 typedef struct node_domain_map {
265 int exists;
266 uint32_t prox_domain;
267 } node_domain_map_t;
268
269 /*
270 * Node ID and starting and ending page for physical memory in memory node
271 */
272 typedef struct memnode_phys_addr_map {
273 pfn_t start;
274 pfn_t end;
275 int exists;
276 uint32_t prox_domain;
277 uint32_t device_id;
278 uint_t lgrphand;
279 } memnode_phys_addr_map_t;
280
281 /*
282 * Number of CPUs for which we got APIC IDs
283 */
284 static int lgrp_plat_apic_ncpus = 0;
285
286 /*
287 * CPU to node ID mapping table (only used for SRAT) and its max number of
288 * entries
289 */
290 static cpu_node_map_t *lgrp_plat_cpu_node = NULL;
291 static uint_t lgrp_plat_cpu_node_nentries = 0;
292
293 /*
294 * Latency statistics
295 */
296 lgrp_plat_latency_stats_t lgrp_plat_lat_stats;
297
298 /*
299 * Whether memory is interleaved across nodes causing MPO to be disabled
300 */
301 static int lgrp_plat_mem_intrlv = 0;
302
303 /*
304 * Node ID to proximity domain ID mapping table (only used for SRAT)
305 */
306 static node_domain_map_t lgrp_plat_node_domain[MAX_NODES];
307
308 /*
309 * Physical address range for memory in each node
310 */
311 static memnode_phys_addr_map_t lgrp_plat_memnode_info[MAX_MEM_NODES];
312
313 /*
314 * Statistics gotten from probing
315 */
316 static lgrp_plat_probe_stats_t lgrp_plat_probe_stats;
317
318 /*
319 * Memory configuration for probing
320 */
321 static lgrp_plat_probe_mem_config_t lgrp_plat_probe_mem_config;
322
323 /*
324 * Lowest proximity domain ID seen in ACPI SRAT
325 */
326 static uint32_t lgrp_plat_prox_domain_min = UINT32_MAX;
327
328 /*
329 * Error code from processing ACPI SRAT
330 */
331 static int lgrp_plat_srat_error = 0;
332
333 /*
334 * Error code from processing ACPI SLIT
335 */
336 static int lgrp_plat_slit_error = 0;
337
338 /*
339 * Whether lgrp topology has been flattened to 2 levels.
340 */
341 static int lgrp_plat_topo_flatten = 0;
342
343
344 /*
345 * Maximum memory node ID in use.
346 */
347 static uint_t lgrp_plat_max_mem_node;
348
349 /*
350 * Allocate lgroup array statically
351 */
352 static lgrp_t lgrp_space[NLGRP];
353 static int nlgrps_alloc;
354
355
356 /*
357 * Enable finding and using minimum proximity domain ID when hashing
358 */
359 int lgrp_plat_domain_min_enable = 1;
360
361 /*
362 * Maximum possible number of nodes in system
363 */
364 uint_t lgrp_plat_node_cnt = 1;
365
366 /*
367 * Enable sorting nodes in ascending order by starting physical address
368 */
369 int lgrp_plat_node_sort_enable = 1;
370
371 /*
372 * Configuration Parameters for Probing
373 * - lgrp_plat_probe_flags Flags to specify enabling probing, probe
374 * operation, etc.
375 * - lgrp_plat_probe_nrounds How many rounds of probing to do
376 * - lgrp_plat_probe_nsamples Number of samples to take when probing each
377 * node
378 * - lgrp_plat_probe_nreads Number of times to read vendor ID from
379 * Northbridge for each probe
380 */
381 uint_t lgrp_plat_probe_flags = 0;
382 int lgrp_plat_probe_nrounds = LGRP_PLAT_PROBE_NROUNDS;
383 int lgrp_plat_probe_nsamples = LGRP_PLAT_PROBE_NSAMPLES;
384 int lgrp_plat_probe_nreads = LGRP_PLAT_PROBE_NREADS;
385
386 /*
387 * Enable use of ACPI System Resource Affinity Table (SRAT), System
388 * Locality Information Table (SLIT) and Maximum System Capability Table (MSCT)
389 */
390 int lgrp_plat_srat_enable = 1;
391 int lgrp_plat_slit_enable = 1;
392 int lgrp_plat_msct_enable = 1;
393
394 /*
395 * mnode_xwa: set to non-zero value to initiate workaround if large pages are
396 * found to be crossing memory node boundaries. The workaround will eliminate
397 * a base size page at the end of each memory node boundary to ensure that
398 * a large page with constituent pages that span more than 1 memory node
399 * can never be formed.
400 *
401 */
402 int mnode_xwa = 1;
403
404 /*
405 * Static array to hold lgroup statistics
406 */
407 struct lgrp_stats lgrp_stats[NLGRP];
408
409
410 /*
411 * Forward declarations of platform interface routines
412 */
413 void plat_build_mem_nodes(struct memlist *list);
414
415 int plat_mnode_xcheck(pfn_t pfncnt);
416
417 lgrp_handle_t plat_mem_node_to_lgrphand(int mnode);
418
419 int plat_pfn_to_mem_node(pfn_t pfn);
420
421 /*
422 * Forward declarations of lgroup platform interface routines
423 */
424 lgrp_t *lgrp_plat_alloc(lgrp_id_t lgrpid);
425
426 void lgrp_plat_config(lgrp_config_flag_t flag, uintptr_t arg);
427
428 lgrp_handle_t lgrp_plat_cpu_to_hand(processorid_t id);
429
430 void lgrp_plat_init(lgrp_init_stages_t stage);
431
432 int lgrp_plat_latency(lgrp_handle_t from, lgrp_handle_t to);
433
434 int lgrp_plat_max_lgrps(void);
435
436 pgcnt_t lgrp_plat_mem_size(lgrp_handle_t plathand,
437 lgrp_mem_query_t query);
438
439 lgrp_handle_t lgrp_plat_pfn_to_hand(pfn_t pfn);
440
441 void lgrp_plat_probe(void);
442
443 lgrp_handle_t lgrp_plat_root_hand(void);
444
445
446 /*
447 * Forward declarations of local routines
448 */
449 static int is_opteron(void);
450
451 static int lgrp_plat_cpu_node_update(node_domain_map_t *node_domain,
452 int node_cnt, cpu_node_map_t *cpu_node, int nentries, uint32_t apicid,
453 uint32_t domain);
454
455 static int lgrp_plat_cpu_to_node(cpu_t *cp, cpu_node_map_t *cpu_node,
456 int cpu_node_nentries);
457
458 static int lgrp_plat_domain_to_node(node_domain_map_t *node_domain,
459 int node_cnt, uint32_t domain);
460
461 static void lgrp_plat_get_numa_config(void);
462
463 static void lgrp_plat_latency_adjust(memnode_phys_addr_map_t *memnode_info,
464 lgrp_plat_latency_stats_t *lat_stats,
465 lgrp_plat_probe_stats_t *probe_stats);
466
467 static int lgrp_plat_latency_verify(memnode_phys_addr_map_t *memnode_info,
468 lgrp_plat_latency_stats_t *lat_stats);
469
470 static void lgrp_plat_main_init(void);
471
472 static pgcnt_t lgrp_plat_mem_size_default(lgrp_handle_t, lgrp_mem_query_t);
473
474 static int lgrp_plat_node_domain_update(node_domain_map_t *node_domain,
475 int node_cnt, uint32_t domain);
476
477 static int lgrp_plat_memnode_info_update(node_domain_map_t *node_domain,
478 int node_cnt, memnode_phys_addr_map_t *memnode_info, int memnode_cnt,
479 uint64_t start, uint64_t end, uint32_t domain, uint32_t device_id);
480
481 static void lgrp_plat_node_sort(node_domain_map_t *node_domain,
482 int node_cnt, cpu_node_map_t *cpu_node, int cpu_count,
483 memnode_phys_addr_map_t *memnode_info);
484
485 static hrtime_t lgrp_plat_probe_time(int to, cpu_node_map_t *cpu_node,
486 int cpu_node_nentries, lgrp_plat_probe_mem_config_t *probe_mem_config,
487 lgrp_plat_latency_stats_t *lat_stats, lgrp_plat_probe_stats_t *probe_stats);
488
489 static int lgrp_plat_process_cpu_apicids(cpu_node_map_t *cpu_node);
490
491 static int lgrp_plat_process_slit(ACPI_TABLE_SLIT *tp,
492 node_domain_map_t *node_domain, uint_t node_cnt,
493 memnode_phys_addr_map_t *memnode_info,
494 lgrp_plat_latency_stats_t *lat_stats);
495
496 static int lgrp_plat_process_sli(uint32_t domain, uchar_t *sli_info,
497 uint32_t sli_cnt, node_domain_map_t *node_domain, uint_t node_cnt,
498 lgrp_plat_latency_stats_t *lat_stats);
499
500 static int lgrp_plat_process_srat(ACPI_TABLE_SRAT *tp, ACPI_TABLE_MSCT *mp,
501 uint32_t *prox_domain_min, node_domain_map_t *node_domain,
502 cpu_node_map_t *cpu_node, int cpu_count,
503 memnode_phys_addr_map_t *memnode_info);
504
505 static void lgrp_plat_release_bootstrap(void);
506
507 static int lgrp_plat_srat_domains(ACPI_TABLE_SRAT *tp,
508 uint32_t *prox_domain_min);
509
510 static int lgrp_plat_msct_domains(ACPI_TABLE_MSCT *tp,
511 uint32_t *prox_domain_min);
512
513 static void lgrp_plat_2level_setup(lgrp_plat_latency_stats_t *lat_stats);
514
515 static void opt_get_numa_config(uint_t *node_cnt, int *mem_intrlv,
516 memnode_phys_addr_map_t *memnode_info);
517
518 static hrtime_t opt_probe_vendor(int dest_node, int nreads);
519
520
521 /*
522 * PLATFORM INTERFACE ROUTINES
523 */
524
525 /*
526 * Configure memory nodes for machines with more than one node (ie NUMA)
527 */
528 void
plat_build_mem_nodes(struct memlist * list)529 plat_build_mem_nodes(struct memlist *list)
530 {
531 pfn_t cur_start; /* start addr of subrange */
532 pfn_t cur_end; /* end addr of subrange */
533 pfn_t start; /* start addr of whole range */
534 pfn_t end; /* end addr of whole range */
535 pgcnt_t endcnt; /* pages to sacrifice */
536
537 /*
538 * Boot install lists are arranged <addr, len>, ...
539 */
540 while (list) {
541 int node;
542
543 start = list->ml_address >> PAGESHIFT;
544 end = (list->ml_address + list->ml_size - 1) >> PAGESHIFT;
545
546 if (start > physmax) {
547 list = list->ml_next;
548 continue;
549 }
550 if (end > physmax)
551 end = physmax;
552
553 /*
554 * When there is only one memnode, just add memory to memnode
555 */
556 if (max_mem_nodes == 1) {
557 mem_node_add_slice(start, end);
558 list = list->ml_next;
559 continue;
560 }
561
562 /*
563 * mem_node_add_slice() expects to get a memory range that
564 * is within one memnode, so need to split any memory range
565 * that spans multiple memnodes into subranges that are each
566 * contained within one memnode when feeding them to
567 * mem_node_add_slice()
568 */
569 cur_start = start;
570 do {
571 node = plat_pfn_to_mem_node(cur_start);
572
573 /*
574 * Panic if DRAM address map registers or SRAT say
575 * memory in node doesn't exist or address from
576 * boot installed memory list entry isn't in this node.
577 * This shouldn't happen and rest of code can't deal
578 * with this if it does.
579 */
580 if (node < 0 || node >= lgrp_plat_max_mem_node ||
581 !lgrp_plat_memnode_info[node].exists ||
582 cur_start < lgrp_plat_memnode_info[node].start ||
583 cur_start > lgrp_plat_memnode_info[node].end) {
584 cmn_err(CE_PANIC, "Don't know which memnode "
585 "to add installed memory address 0x%lx\n",
586 cur_start);
587 }
588
589 /*
590 * End of current subrange should not span memnodes
591 */
592 cur_end = end;
593 endcnt = 0;
594 if (lgrp_plat_memnode_info[node].exists &&
595 cur_end > lgrp_plat_memnode_info[node].end) {
596 cur_end = lgrp_plat_memnode_info[node].end;
597 if (mnode_xwa > 1) {
598 /*
599 * sacrifice the last page in each
600 * node to eliminate large pages
601 * that span more than 1 memory node.
602 */
603 endcnt = 1;
604 physinstalled--;
605 }
606 }
607
608 mem_node_add_slice(cur_start, cur_end - endcnt);
609
610 /*
611 * Next subrange starts after end of current one
612 */
613 cur_start = cur_end + 1;
614 } while (cur_end < end);
615
616 list = list->ml_next;
617 }
618 mem_node_physalign = 0;
619 mem_node_pfn_shift = 0;
620 }
621
622
623 /*
624 * plat_mnode_xcheck: checks the node memory ranges to see if there is a pfncnt
625 * range of pages aligned on pfncnt that crosses an node boundary. Returns 1 if
626 * a crossing is found and returns 0 otherwise.
627 */
628 int
plat_mnode_xcheck(pfn_t pfncnt)629 plat_mnode_xcheck(pfn_t pfncnt)
630 {
631 int node, prevnode = -1, basenode;
632 pfn_t ea, sa;
633
634 for (node = 0; node < lgrp_plat_max_mem_node; node++) {
635
636 if (lgrp_plat_memnode_info[node].exists == 0)
637 continue;
638
639 if (prevnode == -1) {
640 prevnode = node;
641 basenode = node;
642 continue;
643 }
644
645 /* assume x86 node pfn ranges are in increasing order */
646 ASSERT(lgrp_plat_memnode_info[node].start >
647 lgrp_plat_memnode_info[prevnode].end);
648
649 /*
650 * continue if the starting address of node is not contiguous
651 * with the previous node.
652 */
653
654 if (lgrp_plat_memnode_info[node].start !=
655 (lgrp_plat_memnode_info[prevnode].end + 1)) {
656 basenode = node;
657 prevnode = node;
658 continue;
659 }
660
661 /* check if the starting address of node is pfncnt aligned */
662 if ((lgrp_plat_memnode_info[node].start & (pfncnt - 1)) != 0) {
663
664 /*
665 * at this point, node starts at an unaligned boundary
666 * and is contiguous with the previous node(s) to
667 * basenode. Check if there is an aligned contiguous
668 * range of length pfncnt that crosses this boundary.
669 */
670
671 sa = P2ALIGN(lgrp_plat_memnode_info[prevnode].end,
672 pfncnt);
673 ea = P2ROUNDUP((lgrp_plat_memnode_info[node].start),
674 pfncnt);
675
676 ASSERT((ea - sa) == pfncnt);
677 if (sa >= lgrp_plat_memnode_info[basenode].start &&
678 ea <= (lgrp_plat_memnode_info[node].end + 1)) {
679 /*
680 * large page found to cross mnode boundary.
681 * Return Failure if workaround not enabled.
682 */
683 if (mnode_xwa == 0)
684 return (1);
685 mnode_xwa++;
686 }
687 }
688 prevnode = node;
689 }
690 return (0);
691 }
692
693
694 lgrp_handle_t
plat_mem_node_to_lgrphand(int mnode)695 plat_mem_node_to_lgrphand(int mnode)
696 {
697 if (max_mem_nodes == 1)
698 return (LGRP_DEFAULT_HANDLE);
699
700 ASSERT(0 <= mnode && mnode < lgrp_plat_max_mem_node);
701
702 return ((lgrp_handle_t)(lgrp_plat_memnode_info[mnode].lgrphand));
703 }
704
705 int
plat_pfn_to_mem_node(pfn_t pfn)706 plat_pfn_to_mem_node(pfn_t pfn)
707 {
708 int node;
709
710 if (max_mem_nodes == 1)
711 return (0);
712
713 for (node = 0; node < lgrp_plat_max_mem_node; node++) {
714 /*
715 * Skip nodes with no memory
716 */
717 if (!lgrp_plat_memnode_info[node].exists)
718 continue;
719
720 membar_consumer();
721 if (pfn >= lgrp_plat_memnode_info[node].start &&
722 pfn <= lgrp_plat_memnode_info[node].end)
723 return (node);
724 }
725
726 /*
727 * Didn't find memnode where this PFN lives which should never happen
728 */
729 ASSERT(node < lgrp_plat_max_mem_node);
730 return (-1);
731 }
732
733
734 /*
735 * LGROUP PLATFORM INTERFACE ROUTINES
736 */
737
738 /*
739 * Allocate additional space for an lgroup.
740 */
741 lgrp_t *
lgrp_plat_alloc(lgrp_id_t lgrpid)742 lgrp_plat_alloc(lgrp_id_t lgrpid)
743 {
744 lgrp_t *lgrp;
745
746 lgrp = &lgrp_space[nlgrps_alloc++];
747 if (lgrpid >= NLGRP || nlgrps_alloc > NLGRP)
748 return (NULL);
749 return (lgrp);
750 }
751
752
753 /*
754 * Platform handling for (re)configuration changes
755 *
756 * Mechanism to protect lgrp_plat_cpu_node[] at CPU hotplug:
757 * 1) Use cpu_lock to synchronize between lgrp_plat_config() and
758 * lgrp_plat_cpu_to_hand().
759 * 2) Disable latency probing logic by making sure that the flag
760 * LGRP_PLAT_PROBE_ENABLE is cleared.
761 *
762 * Mechanism to protect lgrp_plat_memnode_info[] at memory hotplug:
763 * 1) Only inserts into lgrp_plat_memnode_info at memory hotplug, no removal.
764 * 2) Only expansion to existing entries, no shrinking.
765 * 3) On writing side, DR framework ensures that lgrp_plat_config() is called
766 * in single-threaded context. And membar_producer() is used to ensure that
767 * all changes are visible to other CPUs before setting the "exists" flag.
768 * 4) On reading side, membar_consumer() after checking the "exists" flag
769 * ensures that right values are retrieved.
770 *
771 * Mechanism to protect lgrp_plat_node_domain[] at hotplug:
772 * 1) Only insertion into lgrp_plat_node_domain at hotplug, no removal.
773 * 2) On writing side, it's single-threaded and membar_producer() is used to
774 * ensure all changes are visible to other CPUs before setting the "exists"
775 * flag.
776 * 3) On reading side, membar_consumer() after checking the "exists" flag
777 * ensures that right values are retrieved.
778 */
779 void
lgrp_plat_config(lgrp_config_flag_t flag,uintptr_t arg)780 lgrp_plat_config(lgrp_config_flag_t flag, uintptr_t arg)
781 {
782 #ifdef __xpv
783 _NOTE(ARGUNUSED(flag, arg));
784 #else
785 int rc, node;
786 cpu_t *cp;
787 void *hdl = NULL;
788 uchar_t *sliptr = NULL;
789 uint32_t domain, apicid, slicnt = 0;
790 update_membounds_t *mp;
791
792 extern int acpidev_dr_get_cpu_numa_info(cpu_t *, void **, uint32_t *,
793 uint32_t *, uint32_t *, uchar_t **);
794 extern void acpidev_dr_free_cpu_numa_info(void *);
795
796 /*
797 * This interface is used to support CPU/memory DR operations.
798 * Don't bother here if it's still during boot or only one lgrp node
799 * is supported.
800 */
801 if (!lgrp_topo_initialized || lgrp_plat_node_cnt == 1)
802 return;
803
804 switch (flag) {
805 case LGRP_CONFIG_CPU_ADD:
806 cp = (cpu_t *)arg;
807 ASSERT(cp != NULL);
808 ASSERT(MUTEX_HELD(&cpu_lock));
809
810 /* Check whether CPU already exists. */
811 ASSERT(!lgrp_plat_cpu_node[cp->cpu_id].exists);
812 if (lgrp_plat_cpu_node[cp->cpu_id].exists) {
813 cmn_err(CE_WARN,
814 "!lgrp: CPU(%d) already exists in cpu_node map.",
815 cp->cpu_id);
816 break;
817 }
818
819 /* Query CPU lgrp information. */
820 rc = acpidev_dr_get_cpu_numa_info(cp, &hdl, &apicid, &domain,
821 &slicnt, &sliptr);
822 ASSERT(rc == 0);
823 if (rc != 0) {
824 cmn_err(CE_WARN,
825 "!lgrp: failed to query lgrp info for CPU(%d).",
826 cp->cpu_id);
827 break;
828 }
829
830 /* Update node to proximity domain mapping */
831 node = lgrp_plat_domain_to_node(lgrp_plat_node_domain,
832 lgrp_plat_node_cnt, domain);
833 if (node == -1) {
834 node = lgrp_plat_node_domain_update(
835 lgrp_plat_node_domain, lgrp_plat_node_cnt, domain);
836 ASSERT(node != -1);
837 if (node == -1) {
838 acpidev_dr_free_cpu_numa_info(hdl);
839 cmn_err(CE_WARN, "!lgrp: failed to update "
840 "node_domain map for domain(%u).", domain);
841 break;
842 }
843 }
844
845 /* Update latency information among lgrps. */
846 if (slicnt != 0 && sliptr != NULL) {
847 if (lgrp_plat_process_sli(domain, sliptr, slicnt,
848 lgrp_plat_node_domain, lgrp_plat_node_cnt,
849 &lgrp_plat_lat_stats) != 0) {
850 cmn_err(CE_WARN, "!lgrp: failed to update "
851 "latency information for domain (%u).",
852 domain);
853 }
854 }
855
856 /* Update CPU to node mapping. */
857 lgrp_plat_cpu_node[cp->cpu_id].prox_domain = domain;
858 lgrp_plat_cpu_node[cp->cpu_id].node = node;
859 lgrp_plat_cpu_node[cp->cpu_id].apicid = apicid;
860 lgrp_plat_cpu_node[cp->cpu_id].exists = 1;
861 lgrp_plat_apic_ncpus++;
862
863 acpidev_dr_free_cpu_numa_info(hdl);
864 break;
865
866 case LGRP_CONFIG_CPU_DEL:
867 cp = (cpu_t *)arg;
868 ASSERT(cp != NULL);
869 ASSERT(MUTEX_HELD(&cpu_lock));
870
871 /* Check whether CPU exists. */
872 ASSERT(lgrp_plat_cpu_node[cp->cpu_id].exists);
873 if (!lgrp_plat_cpu_node[cp->cpu_id].exists) {
874 cmn_err(CE_WARN,
875 "!lgrp: CPU(%d) doesn't exist in cpu_node map.",
876 cp->cpu_id);
877 break;
878 }
879
880 /* Query CPU lgrp information. */
881 rc = acpidev_dr_get_cpu_numa_info(cp, &hdl, &apicid, &domain,
882 NULL, NULL);
883 ASSERT(rc == 0);
884 if (rc != 0) {
885 cmn_err(CE_WARN,
886 "!lgrp: failed to query lgrp info for CPU(%d).",
887 cp->cpu_id);
888 break;
889 }
890
891 /* Update map. */
892 ASSERT(lgrp_plat_cpu_node[cp->cpu_id].apicid == apicid);
893 ASSERT(lgrp_plat_cpu_node[cp->cpu_id].prox_domain == domain);
894 lgrp_plat_cpu_node[cp->cpu_id].exists = 0;
895 lgrp_plat_cpu_node[cp->cpu_id].apicid = UINT32_MAX;
896 lgrp_plat_cpu_node[cp->cpu_id].prox_domain = UINT32_MAX;
897 lgrp_plat_cpu_node[cp->cpu_id].node = UINT_MAX;
898 lgrp_plat_apic_ncpus--;
899
900 acpidev_dr_free_cpu_numa_info(hdl);
901 break;
902
903 case LGRP_CONFIG_MEM_ADD:
904 mp = (update_membounds_t *)arg;
905 ASSERT(mp != NULL);
906
907 /* Update latency information among lgrps. */
908 if (mp->u_sli_cnt != 0 && mp->u_sli_ptr != NULL) {
909 if (lgrp_plat_process_sli(mp->u_domain,
910 mp->u_sli_ptr, mp->u_sli_cnt,
911 lgrp_plat_node_domain, lgrp_plat_node_cnt,
912 &lgrp_plat_lat_stats) != 0) {
913 cmn_err(CE_WARN, "!lgrp: failed to update "
914 "latency information for domain (%u).",
915 domain);
916 }
917 }
918
919 if (lgrp_plat_memnode_info_update(lgrp_plat_node_domain,
920 lgrp_plat_node_cnt, lgrp_plat_memnode_info, max_mem_nodes,
921 mp->u_base, mp->u_base + mp->u_length,
922 mp->u_domain, mp->u_device_id) < 0) {
923 cmn_err(CE_WARN,
924 "!lgrp: failed to update latency information for "
925 "memory (0x%" PRIx64 " - 0x%" PRIx64 ").",
926 mp->u_base, mp->u_base + mp->u_length);
927 }
928 break;
929
930 default:
931 break;
932 }
933 #endif /* __xpv */
934 }
935
936
937 /*
938 * Return the platform handle for the lgroup containing the given CPU
939 */
940 lgrp_handle_t
lgrp_plat_cpu_to_hand(processorid_t id)941 lgrp_plat_cpu_to_hand(processorid_t id)
942 {
943 lgrp_handle_t hand;
944
945 ASSERT(!lgrp_initialized || MUTEX_HELD(&cpu_lock));
946
947 if (lgrp_plat_node_cnt == 1)
948 return (LGRP_DEFAULT_HANDLE);
949
950 hand = (lgrp_handle_t)lgrp_plat_cpu_to_node(cpu[id],
951 lgrp_plat_cpu_node, lgrp_plat_cpu_node_nentries);
952
953 if (hand == (lgrp_handle_t)-1)
954 return (LGRP_NULL_HANDLE);
955
956 return (hand);
957 }
958
959
960 /*
961 * Platform-specific initialization of lgroups
962 */
963 void
lgrp_plat_init(lgrp_init_stages_t stage)964 lgrp_plat_init(lgrp_init_stages_t stage)
965 {
966 #if defined(__xpv)
967 #else /* __xpv */
968 u_longlong_t value;
969 #endif /* __xpv */
970
971 switch (stage) {
972 case LGRP_INIT_STAGE1:
973 #if defined(__xpv)
974 /*
975 * XXPV For now, the hypervisor treats all memory equally.
976 */
977 lgrp_plat_node_cnt = max_mem_nodes = 1;
978 #else /* __xpv */
979
980 /*
981 * Get boot property for lgroup topology height limit
982 */
983 if (bootprop_getval(BP_LGRP_TOPO_LEVELS, &value) == 0)
984 (void) lgrp_topo_ht_limit_set((int)value);
985
986 /*
987 * Get boot property for enabling/disabling SRAT
988 */
989 if (bootprop_getval(BP_LGRP_SRAT_ENABLE, &value) == 0)
990 lgrp_plat_srat_enable = (int)value;
991
992 /*
993 * Get boot property for enabling/disabling SLIT
994 */
995 if (bootprop_getval(BP_LGRP_SLIT_ENABLE, &value) == 0)
996 lgrp_plat_slit_enable = (int)value;
997
998 /*
999 * Get boot property for enabling/disabling MSCT
1000 */
1001 if (bootprop_getval(BP_LGRP_MSCT_ENABLE, &value) == 0)
1002 lgrp_plat_msct_enable = (int)value;
1003
1004 /*
1005 * Initialize as a UMA machine
1006 */
1007 if (lgrp_topo_ht_limit() == 1) {
1008 lgrp_plat_node_cnt = max_mem_nodes = 1;
1009 lgrp_plat_max_mem_node = 1;
1010 return;
1011 }
1012
1013 lgrp_plat_get_numa_config();
1014
1015 /*
1016 * Each lgrp node needs MAX_MEM_NODES_PER_LGROUP memnodes
1017 * to support memory DR operations if memory DR is enabled.
1018 */
1019 lgrp_plat_max_mem_node = lgrp_plat_node_cnt;
1020 if (plat_dr_support_memory() && lgrp_plat_node_cnt != 1) {
1021 max_mem_nodes = MAX_MEM_NODES_PER_LGROUP *
1022 lgrp_plat_node_cnt;
1023 ASSERT(max_mem_nodes <= MAX_MEM_NODES);
1024 }
1025 #endif /* __xpv */
1026 break;
1027
1028 case LGRP_INIT_STAGE3:
1029 lgrp_plat_probe();
1030 lgrp_plat_release_bootstrap();
1031 break;
1032
1033 case LGRP_INIT_STAGE4:
1034 lgrp_plat_main_init();
1035 break;
1036
1037 default:
1038 break;
1039 }
1040 }
1041
1042
1043 /*
1044 * Return latency between "from" and "to" lgroups
1045 *
1046 * This latency number can only be used for relative comparison
1047 * between lgroups on the running system, cannot be used across platforms,
1048 * and may not reflect the actual latency. It is platform and implementation
1049 * specific, so platform gets to decide its value. It would be nice if the
1050 * number was at least proportional to make comparisons more meaningful though.
1051 */
1052 int
lgrp_plat_latency(lgrp_handle_t from,lgrp_handle_t to)1053 lgrp_plat_latency(lgrp_handle_t from, lgrp_handle_t to)
1054 {
1055 lgrp_handle_t src, dest;
1056 int node;
1057
1058 if (max_mem_nodes == 1)
1059 return (0);
1060
1061 /*
1062 * Return max latency for root lgroup
1063 */
1064 if (from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE)
1065 return (lgrp_plat_lat_stats.latency_max);
1066
1067 src = from;
1068 dest = to;
1069
1070 /*
1071 * Return 0 for nodes (lgroup platform handles) out of range
1072 */
1073 if (src >= MAX_NODES || dest >= MAX_NODES)
1074 return (0);
1075
1076 /*
1077 * Probe from current CPU if its lgroup latencies haven't been set yet
1078 * and we are trying to get latency from current CPU to some node.
1079 * Avoid probing if CPU/memory DR is enabled.
1080 */
1081 if (lgrp_plat_lat_stats.latencies[src][src] == 0) {
1082 /*
1083 * Latency information should be updated by lgrp_plat_config()
1084 * for DR operations. Something is wrong if reaches here.
1085 * For safety, flatten lgrp topology to two levels.
1086 */
1087 if (plat_dr_support_cpu() || plat_dr_support_memory()) {
1088 ASSERT(lgrp_plat_lat_stats.latencies[src][src]);
1089 cmn_err(CE_WARN,
1090 "lgrp: failed to get latency information, "
1091 "fall back to two-level topology.");
1092 lgrp_plat_2level_setup(&lgrp_plat_lat_stats);
1093 } else {
1094 node = lgrp_plat_cpu_to_node(CPU, lgrp_plat_cpu_node,
1095 lgrp_plat_cpu_node_nentries);
1096 ASSERT3U(node, <, lgrp_plat_node_cnt);
1097 if (node == (lgrp_handle_t)-1)
1098 return (0);
1099 if (node == src)
1100 lgrp_plat_probe();
1101 }
1102 }
1103
1104 return (lgrp_plat_lat_stats.latencies[src][dest]);
1105 }
1106
1107
1108 /*
1109 * Return the maximum number of lgrps supported by the platform.
1110 * Before lgrp topology is known it returns an estimate based on the number of
1111 * nodes. Once topology is known it returns:
1112 * 1) the actual maximim number of lgrps created if CPU/memory DR operations
1113 * are not suppported.
1114 * 2) the maximum possible number of lgrps if CPU/memory DR operations are
1115 * supported.
1116 */
1117 int
lgrp_plat_max_lgrps(void)1118 lgrp_plat_max_lgrps(void)
1119 {
1120 if (!lgrp_topo_initialized || plat_dr_support_cpu() ||
1121 plat_dr_support_memory()) {
1122 return (lgrp_plat_node_cnt * (lgrp_plat_node_cnt - 1) + 1);
1123 } else {
1124 return (lgrp_alloc_max + 1);
1125 }
1126 }
1127
1128
1129 /*
1130 * Count number of memory pages (_t) based on mnode id (_n) and query type (_t).
1131 */
1132 #define _LGRP_PLAT_MEM_SIZE(_n, _q, _t) \
1133 if (mem_node_config[_n].exists) { \
1134 switch (_q) { \
1135 case LGRP_MEM_SIZE_FREE: \
1136 _t += MNODE_PGCNT(_n); \
1137 break; \
1138 case LGRP_MEM_SIZE_AVAIL: \
1139 _t += mem_node_memlist_pages(_n, phys_avail); \
1140 break; \
1141 case LGRP_MEM_SIZE_INSTALL: \
1142 _t += mem_node_memlist_pages(_n, phys_install); \
1143 break; \
1144 default: \
1145 break; \
1146 } \
1147 }
1148
1149 /*
1150 * Return the number of free pages in an lgroup.
1151 *
1152 * For query of LGRP_MEM_SIZE_FREE, return the number of base pagesize
1153 * pages on freelists. For query of LGRP_MEM_SIZE_AVAIL, return the
1154 * number of allocatable base pagesize pages corresponding to the
1155 * lgroup (e.g. do not include page_t's, BOP_ALLOC()'ed memory, ..)
1156 * For query of LGRP_MEM_SIZE_INSTALL, return the amount of physical
1157 * memory installed, regardless of whether or not it's usable.
1158 */
1159 pgcnt_t
lgrp_plat_mem_size(lgrp_handle_t plathand,lgrp_mem_query_t query)1160 lgrp_plat_mem_size(lgrp_handle_t plathand, lgrp_mem_query_t query)
1161 {
1162 int mnode;
1163 pgcnt_t npgs = (pgcnt_t)0;
1164 extern struct memlist *phys_avail;
1165 extern struct memlist *phys_install;
1166
1167
1168 if (plathand == LGRP_DEFAULT_HANDLE)
1169 return (lgrp_plat_mem_size_default(plathand, query));
1170
1171 if (plathand != LGRP_NULL_HANDLE) {
1172 /* Count memory node present at boot. */
1173 mnode = (int)plathand;
1174 ASSERT(mnode < lgrp_plat_node_cnt);
1175 _LGRP_PLAT_MEM_SIZE(mnode, query, npgs);
1176
1177 /* Count possible hot-added memory nodes. */
1178 for (mnode = lgrp_plat_node_cnt;
1179 mnode < lgrp_plat_max_mem_node; mnode++) {
1180 if (lgrp_plat_memnode_info[mnode].lgrphand == plathand)
1181 _LGRP_PLAT_MEM_SIZE(mnode, query, npgs);
1182 }
1183 }
1184
1185 return (npgs);
1186 }
1187
1188
1189 /*
1190 * Return the platform handle of the lgroup that contains the physical memory
1191 * corresponding to the given page frame number
1192 */
1193 lgrp_handle_t
lgrp_plat_pfn_to_hand(pfn_t pfn)1194 lgrp_plat_pfn_to_hand(pfn_t pfn)
1195 {
1196 int mnode;
1197
1198 if (max_mem_nodes == 1)
1199 return (LGRP_DEFAULT_HANDLE);
1200
1201 if (pfn > physmax)
1202 return (LGRP_NULL_HANDLE);
1203
1204 mnode = plat_pfn_to_mem_node(pfn);
1205 if (mnode < 0)
1206 return (LGRP_NULL_HANDLE);
1207
1208 return (MEM_NODE_2_LGRPHAND(mnode));
1209 }
1210
1211
1212 /*
1213 * Probe memory in each node from current CPU to determine latency topology
1214 *
1215 * The probing code will probe the vendor ID register on the Northbridge of
1216 * Opteron processors and probe memory for other processors by default.
1217 *
1218 * Since probing is inherently error prone, the code takes laps across all the
1219 * nodes probing from each node to each of the other nodes some number of
1220 * times. Furthermore, each node is probed some number of times before moving
1221 * onto the next one during each lap. The minimum latency gotten between nodes
1222 * is kept as the latency between the nodes.
1223 *
1224 * After all that, the probe times are adjusted by normalizing values that are
1225 * close to each other and local latencies are made the same. Lastly, the
1226 * latencies are verified to make sure that certain conditions are met (eg.
1227 * local < remote, latency(a, b) == latency(b, a), etc.).
1228 *
1229 * If any of the conditions aren't met, the code will export a NUMA
1230 * configuration with the local CPUs and memory given by the SRAT or PCI config
1231 * space registers and one remote memory latency since it can't tell exactly
1232 * how far each node is from each other.
1233 */
1234 void
lgrp_plat_probe(void)1235 lgrp_plat_probe(void)
1236 {
1237 int from;
1238 int i;
1239 lgrp_plat_latency_stats_t *lat_stats;
1240 boolean_t probed;
1241 hrtime_t probe_time;
1242 int to;
1243
1244 if (!(lgrp_plat_probe_flags & LGRP_PLAT_PROBE_ENABLE) ||
1245 max_mem_nodes == 1 || lgrp_topo_ht_limit() <= 2)
1246 return;
1247
1248 /* SRAT and SLIT should be enabled if DR operations are enabled. */
1249 if (plat_dr_support_cpu() || plat_dr_support_memory())
1250 return;
1251
1252 /*
1253 * Determine ID of node containing current CPU
1254 */
1255 from = lgrp_plat_cpu_to_node(CPU, lgrp_plat_cpu_node,
1256 lgrp_plat_cpu_node_nentries);
1257 ASSERT3U(from, <, lgrp_plat_node_cnt);
1258 if (from == (lgrp_handle_t)-1)
1259 return;
1260 if (srat_ptr && lgrp_plat_srat_enable && !lgrp_plat_srat_error)
1261 ASSERT(lgrp_plat_node_domain[from].exists);
1262
1263 /*
1264 * Don't need to probe if got times already
1265 */
1266 lat_stats = &lgrp_plat_lat_stats;
1267 if (lat_stats->latencies[from][from] != 0)
1268 return;
1269
1270 /*
1271 * Read vendor ID in Northbridge or read and write page(s)
1272 * in each node from current CPU and remember how long it takes,
1273 * so we can build latency topology of machine later.
1274 * This should approximate the memory latency between each node.
1275 */
1276 probed = B_FALSE;
1277 for (i = 0; i < lgrp_plat_probe_nrounds; i++) {
1278 for (to = 0; to < lgrp_plat_node_cnt; to++) {
1279 /*
1280 * Get probe time and skip over any nodes that can't be
1281 * probed yet or don't have memory
1282 */
1283 probe_time = lgrp_plat_probe_time(to,
1284 lgrp_plat_cpu_node, lgrp_plat_cpu_node_nentries,
1285 &lgrp_plat_probe_mem_config, &lgrp_plat_lat_stats,
1286 &lgrp_plat_probe_stats);
1287 if (probe_time == 0)
1288 continue;
1289
1290 probed = B_TRUE;
1291
1292 /*
1293 * Keep lowest probe time as latency between nodes
1294 */
1295 if (lat_stats->latencies[from][to] == 0 ||
1296 probe_time < lat_stats->latencies[from][to])
1297 lat_stats->latencies[from][to] = probe_time;
1298
1299 /*
1300 * Update overall minimum and maximum probe times
1301 * across all nodes
1302 */
1303 if (probe_time < lat_stats->latency_min ||
1304 lat_stats->latency_min == -1)
1305 lat_stats->latency_min = probe_time;
1306 if (probe_time > lat_stats->latency_max)
1307 lat_stats->latency_max = probe_time;
1308 }
1309 }
1310
1311 /*
1312 * Bail out if weren't able to probe any nodes from current CPU
1313 */
1314 if (probed == B_FALSE)
1315 return;
1316
1317 /*
1318 * - Fix up latencies such that local latencies are same,
1319 * latency(i, j) == latency(j, i), etc. (if possible)
1320 *
1321 * - Verify that latencies look ok
1322 *
1323 * - Fallback to just optimizing for local and remote if
1324 * latencies didn't look right
1325 */
1326 lgrp_plat_latency_adjust(lgrp_plat_memnode_info, &lgrp_plat_lat_stats,
1327 &lgrp_plat_probe_stats);
1328 lgrp_plat_probe_stats.probe_error_code =
1329 lgrp_plat_latency_verify(lgrp_plat_memnode_info,
1330 &lgrp_plat_lat_stats);
1331 if (lgrp_plat_probe_stats.probe_error_code)
1332 lgrp_plat_2level_setup(&lgrp_plat_lat_stats);
1333 }
1334
1335
1336 /*
1337 * Return platform handle for root lgroup
1338 */
1339 lgrp_handle_t
lgrp_plat_root_hand(void)1340 lgrp_plat_root_hand(void)
1341 {
1342 return (LGRP_DEFAULT_HANDLE);
1343 }
1344
1345
1346 /*
1347 * INTERNAL ROUTINES
1348 */
1349
1350
1351 /*
1352 * Update CPU to node mapping for given CPU and proximity domain.
1353 * Return values:
1354 * - zero for success
1355 * - positive numbers for warnings
1356 * - negative numbers for errors
1357 */
1358 static int
lgrp_plat_cpu_node_update(node_domain_map_t * node_domain,int node_cnt,cpu_node_map_t * cpu_node,int nentries,uint32_t apicid,uint32_t domain)1359 lgrp_plat_cpu_node_update(node_domain_map_t *node_domain, int node_cnt,
1360 cpu_node_map_t *cpu_node, int nentries, uint32_t apicid, uint32_t domain)
1361 {
1362 uint_t i;
1363 int node;
1364
1365 /*
1366 * Get node number for proximity domain
1367 */
1368 node = lgrp_plat_domain_to_node(node_domain, node_cnt, domain);
1369 if (node == -1) {
1370 node = lgrp_plat_node_domain_update(node_domain, node_cnt,
1371 domain);
1372 if (node == -1)
1373 return (-1);
1374 }
1375
1376 /*
1377 * Search for entry with given APIC ID and fill in its node and
1378 * proximity domain IDs (if they haven't been set already)
1379 */
1380 for (i = 0; i < nentries; i++) {
1381 /*
1382 * Skip nonexistent entries and ones without matching APIC ID
1383 */
1384 if (!cpu_node[i].exists || cpu_node[i].apicid != apicid)
1385 continue;
1386
1387 /*
1388 * Just return if entry completely and correctly filled in
1389 * already
1390 */
1391 if (cpu_node[i].prox_domain == domain &&
1392 cpu_node[i].node == node)
1393 return (1);
1394
1395 /*
1396 * It's invalid to have more than one entry with the same
1397 * local APIC ID in SRAT table.
1398 */
1399 if (cpu_node[i].node != UINT_MAX)
1400 return (-2);
1401
1402 /*
1403 * Fill in node and proximity domain IDs
1404 */
1405 cpu_node[i].prox_domain = domain;
1406 cpu_node[i].node = node;
1407
1408 return (0);
1409 }
1410
1411 /*
1412 * It's possible that an apicid doesn't exist in the cpu_node map due
1413 * to user limits number of CPUs powered on at boot by specifying the
1414 * boot_ncpus kernel option.
1415 */
1416 return (2);
1417 }
1418
1419
1420 /*
1421 * Get node ID for given CPU
1422 */
1423 static int
lgrp_plat_cpu_to_node(cpu_t * cp,cpu_node_map_t * cpu_node,int cpu_node_nentries)1424 lgrp_plat_cpu_to_node(cpu_t *cp, cpu_node_map_t *cpu_node,
1425 int cpu_node_nentries)
1426 {
1427 processorid_t cpuid;
1428
1429 if (cp == NULL)
1430 return (-1);
1431
1432 cpuid = cp->cpu_id;
1433 if (cpuid < 0 || cpuid >= max_ncpus)
1434 return (-1);
1435
1436 /*
1437 * SRAT doesn't exist, isn't enabled, or there was an error processing
1438 * it, so return node ID for Opteron and -1 otherwise.
1439 */
1440 if (srat_ptr == NULL || !lgrp_plat_srat_enable ||
1441 lgrp_plat_srat_error) {
1442 if (is_opteron())
1443 return (pg_plat_hw_instance_id(cp, PGHW_PROCNODE));
1444 return (-1);
1445 }
1446
1447 /*
1448 * Return -1 when CPU to node ID mapping entry doesn't exist for given
1449 * CPU
1450 */
1451 if (cpuid >= cpu_node_nentries || !cpu_node[cpuid].exists)
1452 return (-1);
1453
1454 return (cpu_node[cpuid].node);
1455 }
1456
1457
1458 /*
1459 * Return node number for given proximity domain/system locality
1460 */
1461 static int
lgrp_plat_domain_to_node(node_domain_map_t * node_domain,int node_cnt,uint32_t domain)1462 lgrp_plat_domain_to_node(node_domain_map_t *node_domain, int node_cnt,
1463 uint32_t domain)
1464 {
1465 uint_t node;
1466 uint_t start;
1467
1468 /*
1469 * Hash proximity domain ID into node to domain mapping table (array),
1470 * search for entry with matching proximity domain ID, and return index
1471 * of matching entry as node ID.
1472 */
1473 node = start = NODE_DOMAIN_HASH(domain, node_cnt);
1474 do {
1475 if (node_domain[node].exists) {
1476 membar_consumer();
1477 if (node_domain[node].prox_domain == domain)
1478 return (node);
1479 }
1480 node = (node + 1) % node_cnt;
1481 } while (node != start);
1482 return (-1);
1483 }
1484
1485
1486 /*
1487 * Get NUMA configuration of machine
1488 */
1489 static void
lgrp_plat_get_numa_config(void)1490 lgrp_plat_get_numa_config(void)
1491 {
1492 uint_t probe_op;
1493
1494 /*
1495 * Read boot property with CPU to APIC ID mapping table/array to
1496 * determine number of CPUs
1497 */
1498 lgrp_plat_apic_ncpus = lgrp_plat_process_cpu_apicids(NULL);
1499
1500 /*
1501 * Determine which CPUs and memory are local to each other and number
1502 * of NUMA nodes by reading ACPI System Resource Affinity Table (SRAT)
1503 */
1504 if (lgrp_plat_apic_ncpus > 0) {
1505 int retval;
1506
1507 /* Reserve enough resources if CPU DR is enabled. */
1508 if (plat_dr_support_cpu() && max_ncpus > lgrp_plat_apic_ncpus)
1509 lgrp_plat_cpu_node_nentries = max_ncpus;
1510 else
1511 lgrp_plat_cpu_node_nentries = lgrp_plat_apic_ncpus;
1512
1513 /*
1514 * Temporarily allocate boot memory to use for CPU to node
1515 * mapping since kernel memory allocator isn't alive yet
1516 */
1517 lgrp_plat_cpu_node = (cpu_node_map_t *)BOP_ALLOC(bootops,
1518 NULL, lgrp_plat_cpu_node_nentries * sizeof (cpu_node_map_t),
1519 sizeof (int));
1520
1521 ASSERT(lgrp_plat_cpu_node != NULL);
1522 if (lgrp_plat_cpu_node) {
1523 bzero(lgrp_plat_cpu_node, lgrp_plat_cpu_node_nentries *
1524 sizeof (cpu_node_map_t));
1525 } else {
1526 lgrp_plat_cpu_node_nentries = 0;
1527 }
1528
1529 /*
1530 * Fill in CPU to node ID mapping table with APIC ID for each
1531 * CPU
1532 */
1533 (void) lgrp_plat_process_cpu_apicids(lgrp_plat_cpu_node);
1534
1535 retval = lgrp_plat_process_srat(srat_ptr, msct_ptr,
1536 &lgrp_plat_prox_domain_min,
1537 lgrp_plat_node_domain, lgrp_plat_cpu_node,
1538 lgrp_plat_apic_ncpus, lgrp_plat_memnode_info);
1539 if (retval <= 0) {
1540 lgrp_plat_srat_error = retval;
1541 lgrp_plat_node_cnt = 1;
1542 } else {
1543 lgrp_plat_srat_error = 0;
1544 lgrp_plat_node_cnt = retval;
1545 }
1546 }
1547
1548 /*
1549 * Try to use PCI config space registers on Opteron if there's an error
1550 * processing CPU to APIC ID mapping or SRAT
1551 */
1552 if ((lgrp_plat_apic_ncpus <= 0 || lgrp_plat_srat_error != 0) &&
1553 is_opteron())
1554 opt_get_numa_config(&lgrp_plat_node_cnt, &lgrp_plat_mem_intrlv,
1555 lgrp_plat_memnode_info);
1556
1557 /*
1558 * Don't bother to setup system for multiple lgroups and only use one
1559 * memory node when memory is interleaved between any nodes or there is
1560 * only one NUMA node
1561 */
1562 if (lgrp_plat_mem_intrlv || lgrp_plat_node_cnt == 1) {
1563 lgrp_plat_node_cnt = max_mem_nodes = 1;
1564 (void) lgrp_topo_ht_limit_set(1);
1565 return;
1566 }
1567
1568 /*
1569 * Leaf lgroups on x86/x64 architectures contain one physical
1570 * processor chip. Tune lgrp_expand_proc_thresh and
1571 * lgrp_expand_proc_diff so that lgrp_choose() will spread
1572 * things out aggressively.
1573 */
1574 lgrp_expand_proc_thresh = LGRP_LOADAVG_THREAD_MAX / 2;
1575 lgrp_expand_proc_diff = 0;
1576
1577 /*
1578 * There should be one memnode (physical page free list(s)) for
1579 * each node if memory DR is disabled.
1580 */
1581 max_mem_nodes = lgrp_plat_node_cnt;
1582
1583 /*
1584 * Initialize min and max latency before reading SLIT or probing
1585 */
1586 lgrp_plat_lat_stats.latency_min = -1;
1587 lgrp_plat_lat_stats.latency_max = 0;
1588
1589 /*
1590 * Determine how far each NUMA node is from each other by
1591 * reading ACPI System Locality Information Table (SLIT) if it
1592 * exists
1593 */
1594 lgrp_plat_slit_error = lgrp_plat_process_slit(slit_ptr,
1595 lgrp_plat_node_domain, lgrp_plat_node_cnt, lgrp_plat_memnode_info,
1596 &lgrp_plat_lat_stats);
1597
1598 /*
1599 * Disable support of CPU/memory DR operations if multiple locality
1600 * domains exist in system and either of following is true.
1601 * 1) Failed to process SLIT table.
1602 * 2) Latency probing is enabled by user.
1603 */
1604 if (lgrp_plat_node_cnt > 1 &&
1605 (plat_dr_support_cpu() || plat_dr_support_memory())) {
1606 if (!lgrp_plat_slit_enable || lgrp_plat_slit_error != 0 ||
1607 !lgrp_plat_srat_enable || lgrp_plat_srat_error != 0 ||
1608 lgrp_plat_apic_ncpus <= 0) {
1609 cmn_err(CE_CONT,
1610 "?lgrp: failed to process ACPI SRAT/SLIT table, "
1611 "disable support of CPU/memory DR operations.");
1612 plat_dr_disable_cpu();
1613 plat_dr_disable_memory();
1614 } else if (lgrp_plat_probe_flags & LGRP_PLAT_PROBE_ENABLE) {
1615 cmn_err(CE_CONT,
1616 "?lgrp: latency probing enabled by user, "
1617 "disable support of CPU/memory DR operations.");
1618 plat_dr_disable_cpu();
1619 plat_dr_disable_memory();
1620 }
1621 }
1622
1623 /* Done if succeeded to process SLIT table. */
1624 if (lgrp_plat_slit_error == 0)
1625 return;
1626
1627 /*
1628 * Probe to determine latency between NUMA nodes when SLIT
1629 * doesn't exist or make sense
1630 */
1631 lgrp_plat_probe_flags |= LGRP_PLAT_PROBE_ENABLE;
1632
1633 /*
1634 * Specify whether to probe using vendor ID register or page copy
1635 * if hasn't been specified already or is overspecified
1636 */
1637 probe_op = lgrp_plat_probe_flags &
1638 (LGRP_PLAT_PROBE_PGCPY|LGRP_PLAT_PROBE_VENDOR);
1639
1640 if (probe_op == 0 ||
1641 probe_op == (LGRP_PLAT_PROBE_PGCPY|LGRP_PLAT_PROBE_VENDOR)) {
1642 lgrp_plat_probe_flags &=
1643 ~(LGRP_PLAT_PROBE_PGCPY|LGRP_PLAT_PROBE_VENDOR);
1644 if (is_opteron())
1645 lgrp_plat_probe_flags |=
1646 LGRP_PLAT_PROBE_VENDOR;
1647 else
1648 lgrp_plat_probe_flags |= LGRP_PLAT_PROBE_PGCPY;
1649 }
1650
1651 /*
1652 * Probing errors can mess up the lgroup topology and
1653 * force us fall back to a 2 level lgroup topology.
1654 * Here we bound how tall the lgroup topology can grow
1655 * in hopes of avoiding any anamolies in probing from
1656 * messing up the lgroup topology by limiting the
1657 * accuracy of the latency topology.
1658 *
1659 * Assume that nodes will at least be configured in a
1660 * ring, so limit height of lgroup topology to be less
1661 * than number of nodes on a system with 4 or more
1662 * nodes
1663 */
1664 if (lgrp_plat_node_cnt >= 4 && lgrp_topo_ht_limit() ==
1665 lgrp_topo_ht_limit_default())
1666 (void) lgrp_topo_ht_limit_set(lgrp_plat_node_cnt - 1);
1667 }
1668
1669
1670 /*
1671 * Latencies must be within 1/(2**LGRP_LAT_TOLERANCE_SHIFT) of each other to
1672 * be considered same
1673 */
1674 #define LGRP_LAT_TOLERANCE_SHIFT 4
1675
1676 int lgrp_plat_probe_lt_shift = LGRP_LAT_TOLERANCE_SHIFT;
1677
1678
1679 /*
1680 * Adjust latencies between nodes to be symmetric, normalize latencies between
1681 * any nodes that are within some tolerance to be same, and make local
1682 * latencies be same
1683 */
1684 static void
lgrp_plat_latency_adjust(memnode_phys_addr_map_t * memnode_info,lgrp_plat_latency_stats_t * lat_stats,lgrp_plat_probe_stats_t * probe_stats)1685 lgrp_plat_latency_adjust(memnode_phys_addr_map_t *memnode_info,
1686 lgrp_plat_latency_stats_t *lat_stats, lgrp_plat_probe_stats_t *probe_stats)
1687 {
1688 int i;
1689 int j;
1690 int k;
1691 int l;
1692 u_longlong_t max;
1693 u_longlong_t min;
1694 u_longlong_t t;
1695 u_longlong_t t1;
1696 u_longlong_t t2;
1697 const lgrp_config_flag_t cflag = LGRP_CONFIG_LAT_CHANGE_ALL;
1698 int lat_corrected[MAX_NODES][MAX_NODES];
1699
1700 t = 0;
1701 /*
1702 * Nothing to do when this is an UMA machine or don't have args needed
1703 */
1704 if (max_mem_nodes == 1)
1705 return;
1706
1707 ASSERT(memnode_info != NULL && lat_stats != NULL &&
1708 probe_stats != NULL);
1709
1710 /*
1711 * Make sure that latencies are symmetric between any two nodes
1712 * (ie. latency(node0, node1) == latency(node1, node0))
1713 */
1714 for (i = 0; i < lgrp_plat_node_cnt; i++) {
1715 if (!memnode_info[i].exists)
1716 continue;
1717
1718 for (j = 0; j < lgrp_plat_node_cnt; j++) {
1719 if (!memnode_info[j].exists)
1720 continue;
1721
1722 t1 = lat_stats->latencies[i][j];
1723 t2 = lat_stats->latencies[j][i];
1724
1725 if (t1 == 0 || t2 == 0 || t1 == t2)
1726 continue;
1727
1728 /*
1729 * Latencies should be same
1730 * - Use minimum of two latencies which should be same
1731 * - Track suspect probe times not within tolerance of
1732 * min value
1733 * - Remember how much values are corrected by
1734 */
1735 if (t1 > t2) {
1736 t = t2;
1737 probe_stats->probe_errors[i][j] += t1 - t2;
1738 if (t1 - t2 > t2 >> lgrp_plat_probe_lt_shift) {
1739 probe_stats->probe_suspect[i][j]++;
1740 probe_stats->probe_suspect[j][i]++;
1741 }
1742 } else if (t2 > t1) {
1743 t = t1;
1744 probe_stats->probe_errors[j][i] += t2 - t1;
1745 if (t2 - t1 > t1 >> lgrp_plat_probe_lt_shift) {
1746 probe_stats->probe_suspect[i][j]++;
1747 probe_stats->probe_suspect[j][i]++;
1748 }
1749 }
1750
1751 lat_stats->latencies[i][j] =
1752 lat_stats->latencies[j][i] = t;
1753 lgrp_config(cflag, t1, t);
1754 lgrp_config(cflag, t2, t);
1755 }
1756 }
1757
1758 /*
1759 * Keep track of which latencies get corrected
1760 */
1761 for (i = 0; i < MAX_NODES; i++)
1762 for (j = 0; j < MAX_NODES; j++)
1763 lat_corrected[i][j] = 0;
1764
1765 /*
1766 * For every two nodes, see whether there is another pair of nodes which
1767 * are about the same distance apart and make the latencies be the same
1768 * if they are close enough together
1769 */
1770 for (i = 0; i < lgrp_plat_node_cnt; i++) {
1771 for (j = 0; j < lgrp_plat_node_cnt; j++) {
1772 if (!memnode_info[j].exists)
1773 continue;
1774 /*
1775 * Pick one pair of nodes (i, j)
1776 * and get latency between them
1777 */
1778 t1 = lat_stats->latencies[i][j];
1779
1780 /*
1781 * Skip this pair of nodes if there isn't a latency
1782 * for it yet
1783 */
1784 if (t1 == 0)
1785 continue;
1786
1787 for (k = 0; k < lgrp_plat_node_cnt; k++) {
1788 for (l = 0; l < lgrp_plat_node_cnt; l++) {
1789 if (!memnode_info[l].exists)
1790 continue;
1791 /*
1792 * Pick another pair of nodes (k, l)
1793 * not same as (i, j) and get latency
1794 * between them
1795 */
1796 if (k == i && l == j)
1797 continue;
1798
1799 t2 = lat_stats->latencies[k][l];
1800
1801 /*
1802 * Skip this pair of nodes if there
1803 * isn't a latency for it yet
1804 */
1805
1806 if (t2 == 0)
1807 continue;
1808
1809 /*
1810 * Skip nodes (k, l) if they already
1811 * have same latency as (i, j) or
1812 * their latency isn't close enough to
1813 * be considered/made the same
1814 */
1815 if (t1 == t2 || (t1 > t2 && t1 - t2 >
1816 t1 >> lgrp_plat_probe_lt_shift) ||
1817 (t2 > t1 && t2 - t1 >
1818 t2 >> lgrp_plat_probe_lt_shift))
1819 continue;
1820
1821 /*
1822 * Make latency(i, j) same as
1823 * latency(k, l), try to use latency
1824 * that has been adjusted already to get
1825 * more consistency (if possible), and
1826 * remember which latencies were
1827 * adjusted for next time
1828 */
1829 if (lat_corrected[i][j]) {
1830 t = t1;
1831 lgrp_config(cflag, t2, t);
1832 t2 = t;
1833 } else if (lat_corrected[k][l]) {
1834 t = t2;
1835 lgrp_config(cflag, t1, t);
1836 t1 = t;
1837 } else {
1838 if (t1 > t2)
1839 t = t2;
1840 else
1841 t = t1;
1842 lgrp_config(cflag, t1, t);
1843 lgrp_config(cflag, t2, t);
1844 t1 = t2 = t;
1845 }
1846
1847 lat_stats->latencies[i][j] =
1848 lat_stats->latencies[k][l] = t;
1849
1850 lat_corrected[i][j] =
1851 lat_corrected[k][l] = 1;
1852 }
1853 }
1854 }
1855 }
1856
1857 /*
1858 * Local latencies should be same
1859 * - Find min and max local latencies
1860 * - Make all local latencies be minimum
1861 */
1862 min = -1;
1863 max = 0;
1864 for (i = 0; i < lgrp_plat_node_cnt; i++) {
1865 if (!memnode_info[i].exists)
1866 continue;
1867 t = lat_stats->latencies[i][i];
1868 if (t == 0)
1869 continue;
1870 if (min == -1 || t < min)
1871 min = t;
1872 if (t > max)
1873 max = t;
1874 }
1875 if (min != max) {
1876 for (i = 0; i < lgrp_plat_node_cnt; i++) {
1877 int local;
1878
1879 if (!memnode_info[i].exists)
1880 continue;
1881
1882 local = lat_stats->latencies[i][i];
1883 if (local == 0)
1884 continue;
1885
1886 /*
1887 * Track suspect probe times that aren't within
1888 * tolerance of minimum local latency and how much
1889 * probe times are corrected by
1890 */
1891 if (local - min > min >> lgrp_plat_probe_lt_shift)
1892 probe_stats->probe_suspect[i][i]++;
1893
1894 probe_stats->probe_errors[i][i] += local - min;
1895
1896 /*
1897 * Make local latencies be minimum
1898 */
1899 lgrp_config(LGRP_CONFIG_LAT_CHANGE, i, min);
1900 lat_stats->latencies[i][i] = min;
1901 }
1902 }
1903
1904 /*
1905 * Determine max probe time again since just adjusted latencies
1906 */
1907 lat_stats->latency_max = 0;
1908 for (i = 0; i < lgrp_plat_node_cnt; i++) {
1909 for (j = 0; j < lgrp_plat_node_cnt; j++) {
1910 if (!memnode_info[j].exists)
1911 continue;
1912 t = lat_stats->latencies[i][j];
1913 if (t > lat_stats->latency_max)
1914 lat_stats->latency_max = t;
1915 }
1916 }
1917 }
1918
1919
1920 /*
1921 * Verify following about latencies between nodes:
1922 *
1923 * - Latencies should be symmetric (ie. latency(a, b) == latency(b, a))
1924 * - Local latencies same
1925 * - Local < remote
1926 * - Number of latencies seen is reasonable
1927 * - Number of occurrences of a given latency should be more than 1
1928 *
1929 * Returns:
1930 * 0 Success
1931 * -1 Not symmetric
1932 * -2 Local latencies not same
1933 * -3 Local >= remote
1934 */
1935 static int
lgrp_plat_latency_verify(memnode_phys_addr_map_t * memnode_info,lgrp_plat_latency_stats_t * lat_stats)1936 lgrp_plat_latency_verify(memnode_phys_addr_map_t *memnode_info,
1937 lgrp_plat_latency_stats_t *lat_stats)
1938 {
1939 int i;
1940 int j;
1941 u_longlong_t t1;
1942 u_longlong_t t2;
1943
1944 ASSERT(memnode_info != NULL && lat_stats != NULL);
1945
1946 /*
1947 * Nothing to do when this is an UMA machine, lgroup topology is
1948 * limited to 2 levels, or there aren't any probe times yet
1949 */
1950 if (max_mem_nodes == 1 || lgrp_topo_levels < 2 ||
1951 lat_stats->latencies[0][0] == 0)
1952 return (0);
1953
1954 /*
1955 * Make sure that latencies are symmetric between any two nodes
1956 * (ie. latency(node0, node1) == latency(node1, node0))
1957 */
1958 for (i = 0; i < lgrp_plat_node_cnt; i++) {
1959 if (!memnode_info[i].exists)
1960 continue;
1961 for (j = 0; j < lgrp_plat_node_cnt; j++) {
1962 if (!memnode_info[j].exists)
1963 continue;
1964 t1 = lat_stats->latencies[i][j];
1965 t2 = lat_stats->latencies[j][i];
1966
1967 if (t1 == 0 || t2 == 0 || t1 == t2)
1968 continue;
1969
1970 return (-1);
1971 }
1972 }
1973
1974 /*
1975 * Local latencies should be same
1976 */
1977 t1 = lat_stats->latencies[0][0];
1978 for (i = 1; i < lgrp_plat_node_cnt; i++) {
1979 if (!memnode_info[i].exists)
1980 continue;
1981
1982 t2 = lat_stats->latencies[i][i];
1983 if (t2 == 0)
1984 continue;
1985
1986 if (t1 == 0) {
1987 t1 = t2;
1988 continue;
1989 }
1990
1991 if (t1 != t2)
1992 return (-2);
1993 }
1994
1995 /*
1996 * Local latencies should be less than remote
1997 */
1998 if (t1) {
1999 for (i = 0; i < lgrp_plat_node_cnt; i++) {
2000 for (j = 0; j < lgrp_plat_node_cnt; j++) {
2001 if (!memnode_info[j].exists)
2002 continue;
2003 t2 = lat_stats->latencies[i][j];
2004 if (i == j || t2 == 0)
2005 continue;
2006
2007 if (t1 >= t2)
2008 return (-3);
2009 }
2010 }
2011 }
2012
2013 return (0);
2014 }
2015
2016
2017 /*
2018 * Platform-specific initialization
2019 */
2020 static void
lgrp_plat_main_init(void)2021 lgrp_plat_main_init(void)
2022 {
2023 int curnode;
2024 int ht_limit;
2025 int i;
2026
2027 /*
2028 * Print a notice that MPO is disabled when memory is interleaved
2029 * across nodes....Would do this when it is discovered, but can't
2030 * because it happens way too early during boot....
2031 */
2032 if (lgrp_plat_mem_intrlv)
2033 cmn_err(CE_NOTE,
2034 "MPO disabled because memory is interleaved\n");
2035
2036 /*
2037 * Don't bother to do any probing if it is disabled, there is only one
2038 * node, or the height of the lgroup topology less than or equal to 2
2039 */
2040 ht_limit = lgrp_topo_ht_limit();
2041 if (!(lgrp_plat_probe_flags & LGRP_PLAT_PROBE_ENABLE) ||
2042 max_mem_nodes == 1 || ht_limit <= 2) {
2043 /*
2044 * Setup lgroup latencies for 2 level lgroup topology
2045 * (ie. local and remote only) if they haven't been set yet
2046 */
2047 if (ht_limit == 2 && lgrp_plat_lat_stats.latency_min == -1 &&
2048 lgrp_plat_lat_stats.latency_max == 0)
2049 lgrp_plat_2level_setup(&lgrp_plat_lat_stats);
2050 return;
2051 }
2052
2053 if (lgrp_plat_probe_flags & LGRP_PLAT_PROBE_VENDOR) {
2054 /*
2055 * Should have been able to probe from CPU 0 when it was added
2056 * to lgroup hierarchy, but may not have been able to then
2057 * because it happens so early in boot that gethrtime() hasn't
2058 * been initialized. (:-(
2059 */
2060 curnode = lgrp_plat_cpu_to_node(CPU, lgrp_plat_cpu_node,
2061 lgrp_plat_cpu_node_nentries);
2062 ASSERT3U(curnode, <, lgrp_plat_node_cnt);
2063 if (curnode == (lgrp_handle_t)-1)
2064 return;
2065 if (lgrp_plat_lat_stats.latencies[curnode][curnode] == 0)
2066 lgrp_plat_probe();
2067
2068 return;
2069 }
2070
2071 /*
2072 * When probing memory, use one page for every sample to determine
2073 * lgroup topology and taking multiple samples
2074 */
2075 if (lgrp_plat_probe_mem_config.probe_memsize == 0)
2076 lgrp_plat_probe_mem_config.probe_memsize = PAGESIZE *
2077 lgrp_plat_probe_nsamples;
2078
2079 /*
2080 * Map memory in each node needed for probing to determine latency
2081 * topology
2082 */
2083 for (i = 0; i < lgrp_plat_node_cnt; i++) {
2084 int mnode;
2085
2086 /*
2087 * Skip this node and leave its probe page NULL
2088 * if it doesn't have any memory
2089 */
2090 mnode = i;
2091 if (!mem_node_config[mnode].exists) {
2092 lgrp_plat_probe_mem_config.probe_va[i] = NULL;
2093 continue;
2094 }
2095
2096 /*
2097 * Allocate one kernel virtual page
2098 */
2099 lgrp_plat_probe_mem_config.probe_va[i] = vmem_alloc(heap_arena,
2100 lgrp_plat_probe_mem_config.probe_memsize, VM_NOSLEEP);
2101 if (lgrp_plat_probe_mem_config.probe_va[i] == NULL) {
2102 cmn_err(CE_WARN,
2103 "lgrp_plat_main_init: couldn't allocate memory");
2104 return;
2105 }
2106
2107 /*
2108 * Get PFN for first page in each node
2109 */
2110 lgrp_plat_probe_mem_config.probe_pfn[i] =
2111 mem_node_config[mnode].physbase;
2112
2113 /*
2114 * Map virtual page to first page in node
2115 */
2116 hat_devload(kas.a_hat, lgrp_plat_probe_mem_config.probe_va[i],
2117 lgrp_plat_probe_mem_config.probe_memsize,
2118 lgrp_plat_probe_mem_config.probe_pfn[i],
2119 PROT_READ | PROT_WRITE | HAT_PLAT_NOCACHE,
2120 HAT_LOAD_NOCONSIST);
2121 }
2122
2123 /*
2124 * Probe from current CPU
2125 */
2126 lgrp_plat_probe();
2127 }
2128
2129
2130 /*
2131 * Return the number of free, allocatable, or installed
2132 * pages in an lgroup
2133 * This is a copy of the MAX_MEM_NODES == 1 version of the routine
2134 * used when MPO is disabled (i.e. single lgroup) or this is the root lgroup
2135 */
2136 static pgcnt_t
lgrp_plat_mem_size_default(lgrp_handle_t lgrphand,lgrp_mem_query_t query)2137 lgrp_plat_mem_size_default(lgrp_handle_t lgrphand, lgrp_mem_query_t query)
2138 {
2139 _NOTE(ARGUNUSED(lgrphand));
2140
2141 struct memlist *mlist;
2142 pgcnt_t npgs = 0;
2143 extern struct memlist *phys_avail;
2144 extern struct memlist *phys_install;
2145
2146 switch (query) {
2147 case LGRP_MEM_SIZE_FREE:
2148 return ((pgcnt_t)freemem);
2149 case LGRP_MEM_SIZE_AVAIL:
2150 memlist_read_lock();
2151 for (mlist = phys_avail; mlist; mlist = mlist->ml_next)
2152 npgs += btop(mlist->ml_size);
2153 memlist_read_unlock();
2154 return (npgs);
2155 case LGRP_MEM_SIZE_INSTALL:
2156 memlist_read_lock();
2157 for (mlist = phys_install; mlist; mlist = mlist->ml_next)
2158 npgs += btop(mlist->ml_size);
2159 memlist_read_unlock();
2160 return (npgs);
2161 default:
2162 return ((pgcnt_t)0);
2163 }
2164 }
2165
2166
2167 /*
2168 * Update node to proximity domain mappings for given domain and return node ID
2169 */
2170 static int
lgrp_plat_node_domain_update(node_domain_map_t * node_domain,int node_cnt,uint32_t domain)2171 lgrp_plat_node_domain_update(node_domain_map_t *node_domain, int node_cnt,
2172 uint32_t domain)
2173 {
2174 uint_t node;
2175 uint_t start;
2176
2177 /*
2178 * Hash proximity domain ID into node to domain mapping table (array)
2179 * and add entry for it into first non-existent or matching entry found
2180 */
2181 node = start = NODE_DOMAIN_HASH(domain, node_cnt);
2182 do {
2183 /*
2184 * Entry doesn't exist yet, so create one for this proximity
2185 * domain and return node ID which is index into mapping table.
2186 */
2187 if (!node_domain[node].exists) {
2188 node_domain[node].prox_domain = domain;
2189 membar_producer();
2190 node_domain[node].exists = 1;
2191 return (node);
2192 }
2193
2194 /*
2195 * Entry exists for this proximity domain already, so just
2196 * return node ID (index into table).
2197 */
2198 if (node_domain[node].prox_domain == domain)
2199 return (node);
2200 node = NODE_DOMAIN_HASH(node + 1, node_cnt);
2201 } while (node != start);
2202
2203 /*
2204 * Ran out of supported number of entries which shouldn't happen....
2205 */
2206 ASSERT(node != start);
2207 return (-1);
2208 }
2209
2210 /*
2211 * Update node memory information for given proximity domain with specified
2212 * starting and ending physical address range (and return positive numbers for
2213 * success and negative ones for errors)
2214 */
2215 static int
lgrp_plat_memnode_info_update(node_domain_map_t * node_domain,int node_cnt,memnode_phys_addr_map_t * memnode_info,int memnode_cnt,uint64_t start,uint64_t end,uint32_t domain,uint32_t device_id)2216 lgrp_plat_memnode_info_update(node_domain_map_t *node_domain, int node_cnt,
2217 memnode_phys_addr_map_t *memnode_info, int memnode_cnt, uint64_t start,
2218 uint64_t end, uint32_t domain, uint32_t device_id)
2219 {
2220 int node, mnode;
2221
2222 /*
2223 * Get node number for proximity domain
2224 */
2225 node = lgrp_plat_domain_to_node(node_domain, node_cnt, domain);
2226 if (node == -1) {
2227 node = lgrp_plat_node_domain_update(node_domain, node_cnt,
2228 domain);
2229 if (node == -1)
2230 return (-1);
2231 }
2232
2233 /*
2234 * This function is called during boot if device_id is
2235 * ACPI_MEMNODE_DEVID_BOOT, otherwise it's called at runtime for
2236 * memory DR operations.
2237 */
2238 if (device_id != ACPI_MEMNODE_DEVID_BOOT) {
2239 ASSERT(lgrp_plat_max_mem_node <= memnode_cnt);
2240
2241 for (mnode = lgrp_plat_node_cnt;
2242 mnode < lgrp_plat_max_mem_node; mnode++) {
2243 if (memnode_info[mnode].exists &&
2244 memnode_info[mnode].prox_domain == domain &&
2245 memnode_info[mnode].device_id == device_id) {
2246 if (btop(start) < memnode_info[mnode].start)
2247 memnode_info[mnode].start = btop(start);
2248 if (btop(end) > memnode_info[mnode].end)
2249 memnode_info[mnode].end = btop(end);
2250 return (1);
2251 }
2252 }
2253
2254 if (lgrp_plat_max_mem_node >= memnode_cnt) {
2255 return (-3);
2256 } else {
2257 lgrp_plat_max_mem_node++;
2258 memnode_info[mnode].start = btop(start);
2259 memnode_info[mnode].end = btop(end);
2260 memnode_info[mnode].prox_domain = domain;
2261 memnode_info[mnode].device_id = device_id;
2262 memnode_info[mnode].lgrphand = node;
2263 membar_producer();
2264 memnode_info[mnode].exists = 1;
2265 return (0);
2266 }
2267 }
2268
2269 /*
2270 * Create entry in table for node if it doesn't exist
2271 */
2272 ASSERT(node < memnode_cnt);
2273 if (!memnode_info[node].exists) {
2274 memnode_info[node].start = btop(start);
2275 memnode_info[node].end = btop(end);
2276 memnode_info[node].prox_domain = domain;
2277 memnode_info[node].device_id = device_id;
2278 memnode_info[node].lgrphand = node;
2279 membar_producer();
2280 memnode_info[node].exists = 1;
2281 return (0);
2282 }
2283
2284 /*
2285 * Entry already exists for this proximity domain
2286 *
2287 * There may be more than one SRAT memory entry for a domain, so we may
2288 * need to update existing start or end address for the node.
2289 */
2290 if (memnode_info[node].prox_domain == domain) {
2291 if (btop(start) < memnode_info[node].start)
2292 memnode_info[node].start = btop(start);
2293 if (btop(end) > memnode_info[node].end)
2294 memnode_info[node].end = btop(end);
2295 return (1);
2296 }
2297 return (-2);
2298 }
2299
2300
2301 /*
2302 * Have to sort nodes by starting physical address because plat_mnode_xcheck()
2303 * assumes and expects memnodes to be sorted in ascending order by physical
2304 * address.
2305 */
2306 static void
lgrp_plat_node_sort(node_domain_map_t * node_domain,int node_cnt,cpu_node_map_t * cpu_node,int cpu_count,memnode_phys_addr_map_t * memnode_info)2307 lgrp_plat_node_sort(node_domain_map_t *node_domain, int node_cnt,
2308 cpu_node_map_t *cpu_node, int cpu_count,
2309 memnode_phys_addr_map_t *memnode_info)
2310 {
2311 boolean_t found;
2312 int i;
2313 int j;
2314 int n;
2315 boolean_t sorted;
2316 boolean_t swapped;
2317
2318 if (!lgrp_plat_node_sort_enable || node_cnt <= 1 ||
2319 node_domain == NULL || memnode_info == NULL)
2320 return;
2321
2322 /*
2323 * Sorted already?
2324 */
2325 sorted = B_TRUE;
2326 for (i = 0; i < node_cnt - 1; i++) {
2327 /*
2328 * Skip entries that don't exist
2329 */
2330 if (!memnode_info[i].exists)
2331 continue;
2332
2333 /*
2334 * Try to find next existing entry to compare against
2335 */
2336 found = B_FALSE;
2337 for (j = i + 1; j < node_cnt; j++) {
2338 if (memnode_info[j].exists) {
2339 found = B_TRUE;
2340 break;
2341 }
2342 }
2343
2344 /*
2345 * Done if no more existing entries to compare against
2346 */
2347 if (found == B_FALSE)
2348 break;
2349
2350 /*
2351 * Not sorted if starting address of current entry is bigger
2352 * than starting address of next existing entry
2353 */
2354 if (memnode_info[i].start > memnode_info[j].start) {
2355 sorted = B_FALSE;
2356 break;
2357 }
2358 }
2359
2360 /*
2361 * Don't need to sort if sorted already
2362 */
2363 if (sorted == B_TRUE)
2364 return;
2365
2366 /*
2367 * Just use bubble sort since number of nodes is small
2368 */
2369 n = node_cnt;
2370 do {
2371 swapped = B_FALSE;
2372 n--;
2373 for (i = 0; i < n; i++) {
2374 /*
2375 * Skip entries that don't exist
2376 */
2377 if (!memnode_info[i].exists)
2378 continue;
2379
2380 /*
2381 * Try to find next existing entry to compare against
2382 */
2383 found = B_FALSE;
2384 for (j = i + 1; j <= n; j++) {
2385 if (memnode_info[j].exists) {
2386 found = B_TRUE;
2387 break;
2388 }
2389 }
2390
2391 /*
2392 * Done if no more existing entries to compare against
2393 */
2394 if (found == B_FALSE)
2395 break;
2396
2397 if (memnode_info[i].start > memnode_info[j].start) {
2398 memnode_phys_addr_map_t save_addr;
2399 node_domain_map_t save_node;
2400
2401 /*
2402 * Swap node to proxmity domain ID assignments
2403 */
2404 bcopy(&node_domain[i], &save_node,
2405 sizeof (node_domain_map_t));
2406 bcopy(&node_domain[j], &node_domain[i],
2407 sizeof (node_domain_map_t));
2408 bcopy(&save_node, &node_domain[j],
2409 sizeof (node_domain_map_t));
2410
2411 /*
2412 * Swap node to physical memory assignments
2413 */
2414 bcopy(&memnode_info[i], &save_addr,
2415 sizeof (memnode_phys_addr_map_t));
2416 bcopy(&memnode_info[j], &memnode_info[i],
2417 sizeof (memnode_phys_addr_map_t));
2418 bcopy(&save_addr, &memnode_info[j],
2419 sizeof (memnode_phys_addr_map_t));
2420 swapped = B_TRUE;
2421 }
2422 }
2423 } while (swapped == B_TRUE);
2424
2425 /*
2426 * Check to make sure that CPUs assigned to correct node IDs now since
2427 * node to proximity domain ID assignments may have been changed above
2428 */
2429 if (n == node_cnt - 1 || cpu_node == NULL || cpu_count < 1)
2430 return;
2431 for (i = 0; i < cpu_count; i++) {
2432 int node;
2433
2434 node = lgrp_plat_domain_to_node(node_domain, node_cnt,
2435 cpu_node[i].prox_domain);
2436 if (cpu_node[i].node != node)
2437 cpu_node[i].node = node;
2438 }
2439
2440 }
2441
2442
2443 /*
2444 * Return time needed to probe from current CPU to memory in given node
2445 */
2446 static hrtime_t
lgrp_plat_probe_time(int to,cpu_node_map_t * cpu_node,int cpu_node_nentries,lgrp_plat_probe_mem_config_t * probe_mem_config,lgrp_plat_latency_stats_t * lat_stats,lgrp_plat_probe_stats_t * probe_stats)2447 lgrp_plat_probe_time(int to, cpu_node_map_t *cpu_node, int cpu_node_nentries,
2448 lgrp_plat_probe_mem_config_t *probe_mem_config,
2449 lgrp_plat_latency_stats_t *lat_stats, lgrp_plat_probe_stats_t *probe_stats)
2450 {
2451 caddr_t buf;
2452 hrtime_t elapsed;
2453 hrtime_t end;
2454 int from;
2455 int i;
2456 int ipl;
2457 hrtime_t max;
2458 hrtime_t min;
2459 hrtime_t start;
2460 extern int use_sse_pagecopy;
2461
2462 /*
2463 * Determine ID of node containing current CPU
2464 */
2465 from = lgrp_plat_cpu_to_node(CPU, cpu_node, cpu_node_nentries);
2466 ASSERT3U(from, <, lgrp_plat_node_cnt);
2467 if (from == (lgrp_handle_t)-1)
2468 return (0);
2469
2470 /*
2471 * Do common work for probing main memory
2472 */
2473 if (lgrp_plat_probe_flags & LGRP_PLAT_PROBE_PGCPY) {
2474 /*
2475 * Skip probing any nodes without memory and
2476 * set probe time to 0
2477 */
2478 if (probe_mem_config->probe_va[to] == NULL) {
2479 lat_stats->latencies[from][to] = 0;
2480 return (0);
2481 }
2482
2483 /*
2484 * Invalidate caches once instead of once every sample
2485 * which should cut cost of probing by a lot
2486 */
2487 probe_stats->flush_cost = gethrtime();
2488 invalidate_cache();
2489 probe_stats->flush_cost = gethrtime() -
2490 probe_stats->flush_cost;
2491 probe_stats->probe_cost_total += probe_stats->flush_cost;
2492 }
2493
2494 /*
2495 * Probe from current CPU to given memory using specified operation
2496 * and take specified number of samples
2497 */
2498 max = 0;
2499 min = -1;
2500 for (i = 0; i < lgrp_plat_probe_nsamples; i++) {
2501 probe_stats->probe_cost = gethrtime();
2502
2503 /*
2504 * Can't measure probe time if gethrtime() isn't working yet
2505 */
2506 if (probe_stats->probe_cost == 0 && gethrtime() == 0)
2507 return (0);
2508
2509 if (lgrp_plat_probe_flags & LGRP_PLAT_PROBE_VENDOR) {
2510 /*
2511 * Measure how long it takes to read vendor ID from
2512 * Northbridge
2513 */
2514 elapsed = opt_probe_vendor(to, lgrp_plat_probe_nreads);
2515 } else {
2516 /*
2517 * Measure how long it takes to copy page
2518 * on top of itself
2519 */
2520 buf = probe_mem_config->probe_va[to] + (i * PAGESIZE);
2521
2522 kpreempt_disable();
2523 ipl = splhigh();
2524 start = gethrtime();
2525 if (use_sse_pagecopy)
2526 hwblkpagecopy(buf, buf);
2527 else
2528 bcopy(buf, buf, PAGESIZE);
2529 end = gethrtime();
2530 elapsed = end - start;
2531 splx(ipl);
2532 kpreempt_enable();
2533 }
2534
2535 probe_stats->probe_cost = gethrtime() -
2536 probe_stats->probe_cost;
2537 probe_stats->probe_cost_total += probe_stats->probe_cost;
2538
2539 if (min == -1 || elapsed < min)
2540 min = elapsed;
2541 if (elapsed > max)
2542 max = elapsed;
2543 }
2544
2545 /*
2546 * Update minimum and maximum probe times between
2547 * these two nodes
2548 */
2549 if (min < probe_stats->probe_min[from][to] ||
2550 probe_stats->probe_min[from][to] == 0)
2551 probe_stats->probe_min[from][to] = min;
2552
2553 if (max > probe_stats->probe_max[from][to])
2554 probe_stats->probe_max[from][to] = max;
2555
2556 return (min);
2557 }
2558
2559
2560 /*
2561 * Read boot property with CPU to APIC ID array, fill in CPU to node ID
2562 * mapping table with APIC ID for each CPU (if pointer to table isn't NULL),
2563 * and return number of CPU APIC IDs.
2564 *
2565 * NOTE: This code assumes that CPU IDs are assigned in order that they appear
2566 * in in cpu_apicid_array boot property which is based on and follows
2567 * same ordering as processor list in ACPI MADT. If the code in
2568 * usr/src/uts/i86pc/io/pcplusmp/apic.c that reads MADT and assigns
2569 * CPU IDs ever changes, then this code will need to change too....
2570 */
2571 static int
lgrp_plat_process_cpu_apicids(cpu_node_map_t * cpu_node)2572 lgrp_plat_process_cpu_apicids(cpu_node_map_t *cpu_node)
2573 {
2574 int boot_prop_len;
2575 char *boot_prop_name = BP_CPU_APICID_ARRAY;
2576 uint32_t *cpu_apicid_array;
2577 int i;
2578 int n;
2579
2580 /*
2581 * Check length of property value
2582 */
2583 boot_prop_len = BOP_GETPROPLEN(bootops, boot_prop_name);
2584 if (boot_prop_len <= 0)
2585 return (-1);
2586
2587 /*
2588 * Calculate number of entries in array and return when the system is
2589 * not very interesting for NUMA. It's not interesting for NUMA if
2590 * system has only one CPU and doesn't support CPU hotplug.
2591 */
2592 n = boot_prop_len / sizeof (*cpu_apicid_array);
2593 if (n == 1 && !plat_dr_support_cpu())
2594 return (-2);
2595
2596 cpu_apicid_array = (uint32_t *)BOP_ALLOC(bootops, NULL, boot_prop_len,
2597 sizeof (*cpu_apicid_array));
2598 /*
2599 * Get CPU to APIC ID property value
2600 */
2601 if (cpu_apicid_array == NULL ||
2602 BOP_GETPROP(bootops, boot_prop_name, cpu_apicid_array) < 0)
2603 return (-3);
2604
2605 /*
2606 * Just return number of CPU APIC IDs if CPU to node mapping table is
2607 * NULL
2608 */
2609 if (cpu_node == NULL) {
2610 if (plat_dr_support_cpu() && n >= boot_ncpus) {
2611 return (boot_ncpus);
2612 } else {
2613 return (n);
2614 }
2615 }
2616
2617 /*
2618 * Fill in CPU to node ID mapping table with APIC ID for each CPU
2619 */
2620 for (i = 0; i < n; i++) {
2621 /* Only add boot CPUs into the map if CPU DR is enabled. */
2622 if (plat_dr_support_cpu() && i >= boot_ncpus)
2623 break;
2624 cpu_node[i].exists = 1;
2625 cpu_node[i].apicid = cpu_apicid_array[i];
2626 cpu_node[i].prox_domain = UINT32_MAX;
2627 cpu_node[i].node = UINT_MAX;
2628 }
2629
2630 /*
2631 * Return number of CPUs based on number of APIC IDs
2632 */
2633 return (i);
2634 }
2635
2636
2637 /*
2638 * Read ACPI System Locality Information Table (SLIT) to determine how far each
2639 * NUMA node is from each other
2640 */
2641 static int
lgrp_plat_process_slit(ACPI_TABLE_SLIT * tp,node_domain_map_t * node_domain,uint_t node_cnt,memnode_phys_addr_map_t * memnode_info,lgrp_plat_latency_stats_t * lat_stats)2642 lgrp_plat_process_slit(ACPI_TABLE_SLIT *tp,
2643 node_domain_map_t *node_domain, uint_t node_cnt,
2644 memnode_phys_addr_map_t *memnode_info, lgrp_plat_latency_stats_t *lat_stats)
2645 {
2646 int i;
2647 int j;
2648 int src;
2649 int dst;
2650 int localities;
2651 hrtime_t max;
2652 hrtime_t min;
2653 int retval;
2654 uint8_t *slit_entries;
2655
2656 if (tp == NULL || !lgrp_plat_slit_enable)
2657 return (1);
2658
2659 if (lat_stats == NULL)
2660 return (2);
2661
2662 localities = tp->LocalityCount;
2663
2664 min = lat_stats->latency_min;
2665 max = lat_stats->latency_max;
2666
2667 /*
2668 * Fill in latency matrix based on SLIT entries
2669 */
2670 slit_entries = tp->Entry;
2671 for (i = 0; i < localities; i++) {
2672 src = lgrp_plat_domain_to_node(node_domain,
2673 node_cnt, i);
2674 if (src == -1)
2675 continue;
2676
2677 for (j = 0; j < localities; j++) {
2678 uint8_t latency;
2679
2680 dst = lgrp_plat_domain_to_node(node_domain,
2681 node_cnt, j);
2682 if (dst == -1)
2683 continue;
2684
2685 latency = slit_entries[(i * localities) + j];
2686 lat_stats->latencies[src][dst] = latency;
2687 if (latency < min || min == -1)
2688 min = latency;
2689 if (latency > max)
2690 max = latency;
2691 }
2692 }
2693
2694 /*
2695 * Verify that latencies/distances given in SLIT look reasonable
2696 */
2697 retval = lgrp_plat_latency_verify(memnode_info, lat_stats);
2698
2699 if (retval) {
2700 /*
2701 * Reinitialize (zero) latency table since SLIT doesn't look
2702 * right
2703 */
2704 for (i = 0; i < localities; i++) {
2705 for (j = 0; j < localities; j++)
2706 lat_stats->latencies[i][j] = 0;
2707 }
2708 } else {
2709 /*
2710 * Update min and max latencies seen since SLIT looks valid
2711 */
2712 lat_stats->latency_min = min;
2713 lat_stats->latency_max = max;
2714 }
2715
2716 return (retval);
2717 }
2718
2719
2720 /*
2721 * Update lgrp latencies according to information returned by ACPI _SLI method.
2722 */
2723 static int
lgrp_plat_process_sli(uint32_t domain_id,uchar_t * sli_info,uint32_t sli_cnt,node_domain_map_t * node_domain,uint_t node_cnt,lgrp_plat_latency_stats_t * lat_stats)2724 lgrp_plat_process_sli(uint32_t domain_id, uchar_t *sli_info,
2725 uint32_t sli_cnt, node_domain_map_t *node_domain, uint_t node_cnt,
2726 lgrp_plat_latency_stats_t *lat_stats)
2727 {
2728 int i;
2729 int src, dst;
2730 uint8_t latency;
2731 hrtime_t max, min;
2732
2733 if (lat_stats == NULL || sli_info == NULL ||
2734 sli_cnt == 0 || domain_id >= sli_cnt)
2735 return (-1);
2736
2737 src = lgrp_plat_domain_to_node(node_domain, node_cnt, domain_id);
2738 if (src == -1) {
2739 src = lgrp_plat_node_domain_update(node_domain, node_cnt,
2740 domain_id);
2741 if (src == -1)
2742 return (-1);
2743 }
2744
2745 /*
2746 * Don't update latency info if topology has been flattened to 2 levels.
2747 */
2748 if (lgrp_plat_topo_flatten != 0) {
2749 return (0);
2750 }
2751
2752 /*
2753 * Latency information for proximity domain is ready.
2754 * TODO: support adjusting latency information at runtime.
2755 */
2756 if (lat_stats->latencies[src][src] != 0) {
2757 return (0);
2758 }
2759
2760 /* Validate latency information. */
2761 for (i = 0; i < sli_cnt; i++) {
2762 if (i == domain_id) {
2763 if (sli_info[i] != ACPI_SLIT_SELF_LATENCY ||
2764 sli_info[sli_cnt + i] != ACPI_SLIT_SELF_LATENCY) {
2765 return (-1);
2766 }
2767 } else {
2768 if (sli_info[i] <= ACPI_SLIT_SELF_LATENCY ||
2769 sli_info[sli_cnt + i] <= ACPI_SLIT_SELF_LATENCY ||
2770 sli_info[i] != sli_info[sli_cnt + i]) {
2771 return (-1);
2772 }
2773 }
2774 }
2775
2776 min = lat_stats->latency_min;
2777 max = lat_stats->latency_max;
2778 for (i = 0; i < sli_cnt; i++) {
2779 dst = lgrp_plat_domain_to_node(node_domain, node_cnt, i);
2780 if (dst == -1)
2781 continue;
2782
2783 ASSERT(sli_info[i] == sli_info[sli_cnt + i]);
2784
2785 /* Update row in latencies matrix. */
2786 latency = sli_info[i];
2787 lat_stats->latencies[src][dst] = latency;
2788 if (latency < min || min == -1)
2789 min = latency;
2790 if (latency > max)
2791 max = latency;
2792
2793 /* Update column in latencies matrix. */
2794 latency = sli_info[sli_cnt + i];
2795 lat_stats->latencies[dst][src] = latency;
2796 if (latency < min || min == -1)
2797 min = latency;
2798 if (latency > max)
2799 max = latency;
2800 }
2801 lat_stats->latency_min = min;
2802 lat_stats->latency_max = max;
2803
2804 return (0);
2805 }
2806
2807
2808 /*
2809 * Read ACPI System Resource Affinity Table (SRAT) to determine which CPUs
2810 * and memory are local to each other in the same NUMA node and return number
2811 * of nodes
2812 */
2813 static int
lgrp_plat_process_srat(ACPI_TABLE_SRAT * tp,ACPI_TABLE_MSCT * mp,uint32_t * prox_domain_min,node_domain_map_t * node_domain,cpu_node_map_t * cpu_node,int cpu_count,memnode_phys_addr_map_t * memnode_info)2814 lgrp_plat_process_srat(ACPI_TABLE_SRAT *tp, ACPI_TABLE_MSCT *mp,
2815 uint32_t *prox_domain_min, node_domain_map_t *node_domain,
2816 cpu_node_map_t *cpu_node, int cpu_count,
2817 memnode_phys_addr_map_t *memnode_info)
2818 {
2819 ACPI_SUBTABLE_HEADER *item, *srat_end;
2820 int i;
2821 int node_cnt;
2822 int proc_entry_count;
2823 int rc;
2824
2825 /*
2826 * Nothing to do when no SRAT or disabled
2827 */
2828 if (tp == NULL || !lgrp_plat_srat_enable)
2829 return (-1);
2830
2831 /*
2832 * Try to get domain information from MSCT table.
2833 * ACPI4.0: OSPM will use information provided by the MSCT only
2834 * when the System Resource Affinity Table (SRAT) exists.
2835 */
2836 node_cnt = lgrp_plat_msct_domains(mp, prox_domain_min);
2837 if (node_cnt <= 0) {
2838 /*
2839 * Determine number of nodes by counting number of proximity
2840 * domains in SRAT.
2841 */
2842 node_cnt = lgrp_plat_srat_domains(tp, prox_domain_min);
2843 }
2844 /*
2845 * Return if number of nodes is 1 or less since don't need to read SRAT.
2846 */
2847 if (node_cnt == 1)
2848 return (1);
2849 else if (node_cnt <= 0)
2850 return (-2);
2851
2852 /*
2853 * Walk through SRAT, examining each CPU and memory entry to determine
2854 * which CPUs and memory belong to which node.
2855 */
2856 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2857 srat_end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2858 proc_entry_count = 0;
2859 while (item < srat_end) {
2860 uint32_t apic_id;
2861 uint32_t domain;
2862 uint64_t end;
2863 uint64_t length;
2864 uint64_t start;
2865
2866 switch (item->Type) {
2867 case ACPI_SRAT_TYPE_CPU_AFFINITY: { /* CPU entry */
2868 ACPI_SRAT_CPU_AFFINITY *cpu =
2869 (ACPI_SRAT_CPU_AFFINITY *) item;
2870
2871 if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED) ||
2872 cpu_node == NULL)
2873 break;
2874
2875 /*
2876 * Calculate domain (node) ID and fill in APIC ID to
2877 * domain/node mapping table
2878 */
2879 domain = cpu->ProximityDomainLo;
2880 for (i = 0; i < 3; i++) {
2881 domain += cpu->ProximityDomainHi[i] <<
2882 ((i + 1) * 8);
2883 }
2884 apic_id = cpu->ApicId;
2885
2886 rc = lgrp_plat_cpu_node_update(node_domain, node_cnt,
2887 cpu_node, cpu_count, apic_id, domain);
2888 if (rc < 0)
2889 return (-3);
2890 else if (rc == 0)
2891 proc_entry_count++;
2892 break;
2893 }
2894 case ACPI_SRAT_TYPE_MEMORY_AFFINITY: { /* memory entry */
2895 ACPI_SRAT_MEM_AFFINITY *mem =
2896 (ACPI_SRAT_MEM_AFFINITY *)item;
2897
2898 if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED) ||
2899 memnode_info == NULL)
2900 break;
2901
2902 /*
2903 * Get domain (node) ID and fill in domain/node
2904 * to memory mapping table
2905 */
2906 domain = mem->ProximityDomain;
2907 start = mem->BaseAddress;
2908 length = mem->Length;
2909 end = start + length - 1;
2910
2911 /*
2912 * According to ACPI 4.0, both ENABLE and HOTPLUG flags
2913 * may be set for memory address range entries in SRAT
2914 * table which are reserved for memory hot plug.
2915 * We intersect memory address ranges in SRAT table
2916 * with memory ranges in physinstalled to filter out
2917 * memory address ranges reserved for hot plug.
2918 */
2919 if (mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) {
2920 uint64_t rstart = UINT64_MAX;
2921 uint64_t rend = 0;
2922 struct memlist *ml;
2923 extern struct bootops *bootops;
2924
2925 memlist_read_lock();
2926 for (ml = bootops->boot_mem->physinstalled;
2927 ml; ml = ml->ml_next) {
2928 uint64_t tstart = ml->ml_address;
2929 uint64_t tend;
2930
2931 tend = ml->ml_address + ml->ml_size;
2932 if (tstart > end || tend < start)
2933 continue;
2934 if (start > tstart)
2935 tstart = start;
2936 if (rstart > tstart)
2937 rstart = tstart;
2938 if (end < tend)
2939 tend = end;
2940 if (rend < tend)
2941 rend = tend;
2942 }
2943 memlist_read_unlock();
2944 start = rstart;
2945 end = rend;
2946 /* Skip this entry if no memory installed. */
2947 if (start > end)
2948 break;
2949 }
2950
2951 if (lgrp_plat_memnode_info_update(node_domain,
2952 node_cnt, memnode_info, node_cnt,
2953 start, end, domain, ACPI_MEMNODE_DEVID_BOOT) < 0)
2954 return (-4);
2955 break;
2956 }
2957 case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: { /* x2apic CPU */
2958 ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu =
2959 (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item;
2960
2961 if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED) ||
2962 cpu_node == NULL)
2963 break;
2964
2965 /*
2966 * Calculate domain (node) ID and fill in APIC ID to
2967 * domain/node mapping table
2968 */
2969 domain = x2cpu->ProximityDomain;
2970 apic_id = x2cpu->ApicId;
2971
2972 rc = lgrp_plat_cpu_node_update(node_domain, node_cnt,
2973 cpu_node, cpu_count, apic_id, domain);
2974 if (rc < 0)
2975 return (-3);
2976 else if (rc == 0)
2977 proc_entry_count++;
2978 break;
2979 }
2980 default:
2981 break;
2982 }
2983
2984 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length);
2985 }
2986
2987 /*
2988 * Should have seen at least as many SRAT processor entries as CPUs
2989 */
2990 if (proc_entry_count < cpu_count)
2991 return (-5);
2992
2993 /*
2994 * Need to sort nodes by starting physical address since VM system
2995 * assumes and expects memnodes to be sorted in ascending order by
2996 * physical address
2997 */
2998 lgrp_plat_node_sort(node_domain, node_cnt, cpu_node, cpu_count,
2999 memnode_info);
3000
3001 return (node_cnt);
3002 }
3003
3004
3005 /*
3006 * Allocate permanent memory for any temporary memory that we needed to
3007 * allocate using BOP_ALLOC() before kmem_alloc() and VM system were
3008 * initialized and copy everything from temporary to permanent memory since
3009 * temporary boot memory will eventually be released during boot
3010 */
3011 static void
lgrp_plat_release_bootstrap(void)3012 lgrp_plat_release_bootstrap(void)
3013 {
3014 void *buf;
3015 size_t size;
3016
3017 if (lgrp_plat_cpu_node_nentries > 0) {
3018 size = lgrp_plat_cpu_node_nentries * sizeof (cpu_node_map_t);
3019 buf = kmem_alloc(size, KM_SLEEP);
3020 bcopy(lgrp_plat_cpu_node, buf, size);
3021 lgrp_plat_cpu_node = buf;
3022 }
3023 }
3024
3025
3026 /*
3027 * Return number of proximity domains given in ACPI SRAT
3028 */
3029 static int
lgrp_plat_srat_domains(ACPI_TABLE_SRAT * tp,uint32_t * prox_domain_min)3030 lgrp_plat_srat_domains(ACPI_TABLE_SRAT *tp, uint32_t *prox_domain_min)
3031 {
3032 int domain_cnt;
3033 uint32_t domain_min;
3034 ACPI_SUBTABLE_HEADER *item, *end;
3035 int i;
3036 node_domain_map_t node_domain[MAX_NODES];
3037
3038
3039 if (tp == NULL || !lgrp_plat_srat_enable)
3040 return (1);
3041
3042 /*
3043 * Walk through SRAT to find minimum proximity domain ID
3044 */
3045 domain_min = UINT32_MAX;
3046 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
3047 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
3048 while (item < end) {
3049 uint32_t domain;
3050
3051 switch (item->Type) {
3052 case ACPI_SRAT_TYPE_CPU_AFFINITY: { /* CPU entry */
3053 ACPI_SRAT_CPU_AFFINITY *cpu =
3054 (ACPI_SRAT_CPU_AFFINITY *) item;
3055
3056 if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED)) {
3057 item = (ACPI_SUBTABLE_HEADER *)
3058 ((uintptr_t)item + item->Length);
3059 continue;
3060 }
3061 domain = cpu->ProximityDomainLo;
3062 for (i = 0; i < 3; i++) {
3063 domain += cpu->ProximityDomainHi[i] <<
3064 ((i + 1) * 8);
3065 }
3066 break;
3067 }
3068 case ACPI_SRAT_TYPE_MEMORY_AFFINITY: { /* memory entry */
3069 ACPI_SRAT_MEM_AFFINITY *mem =
3070 (ACPI_SRAT_MEM_AFFINITY *)item;
3071
3072 if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED)) {
3073 item = (ACPI_SUBTABLE_HEADER *)
3074 ((uintptr_t)item + item->Length);
3075 continue;
3076 }
3077 domain = mem->ProximityDomain;
3078 break;
3079 }
3080 case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: { /* x2apic CPU */
3081 ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu =
3082 (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item;
3083
3084 if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED)) {
3085 item = (ACPI_SUBTABLE_HEADER *)
3086 ((uintptr_t)item + item->Length);
3087 continue;
3088 }
3089 domain = x2cpu->ProximityDomain;
3090 break;
3091 }
3092 default:
3093 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item +
3094 item->Length);
3095 continue;
3096 }
3097
3098 /*
3099 * Keep track of minimum proximity domain ID
3100 */
3101 if (domain < domain_min)
3102 domain_min = domain;
3103
3104 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length);
3105 }
3106 if (lgrp_plat_domain_min_enable && prox_domain_min != NULL)
3107 *prox_domain_min = domain_min;
3108
3109 /*
3110 * Walk through SRAT, examining each CPU and memory entry to determine
3111 * proximity domain ID for each.
3112 */
3113 domain_cnt = 0;
3114 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
3115 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
3116 bzero(node_domain, MAX_NODES * sizeof (node_domain_map_t));
3117 while (item < end) {
3118 uint32_t domain;
3119 boolean_t overflow;
3120 uint_t start;
3121
3122 switch (item->Type) {
3123 case ACPI_SRAT_TYPE_CPU_AFFINITY: { /* CPU entry */
3124 ACPI_SRAT_CPU_AFFINITY *cpu =
3125 (ACPI_SRAT_CPU_AFFINITY *) item;
3126
3127 if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED)) {
3128 item = (ACPI_SUBTABLE_HEADER *)
3129 ((uintptr_t)item + item->Length);
3130 continue;
3131 }
3132 domain = cpu->ProximityDomainLo;
3133 for (i = 0; i < 3; i++) {
3134 domain += cpu->ProximityDomainHi[i] <<
3135 ((i + 1) * 8);
3136 }
3137 break;
3138 }
3139 case ACPI_SRAT_TYPE_MEMORY_AFFINITY: { /* memory entry */
3140 ACPI_SRAT_MEM_AFFINITY *mem =
3141 (ACPI_SRAT_MEM_AFFINITY *)item;
3142
3143 if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED)) {
3144 item = (ACPI_SUBTABLE_HEADER *)
3145 ((uintptr_t)item + item->Length);
3146 continue;
3147 }
3148 domain = mem->ProximityDomain;
3149 break;
3150 }
3151 case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: { /* x2apic CPU */
3152 ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu =
3153 (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item;
3154
3155 if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED)) {
3156 item = (ACPI_SUBTABLE_HEADER *)
3157 ((uintptr_t)item + item->Length);
3158 continue;
3159 }
3160 domain = x2cpu->ProximityDomain;
3161 break;
3162 }
3163 default:
3164 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item +
3165 item->Length);
3166 continue;
3167 }
3168
3169 /*
3170 * Count and keep track of which proximity domain IDs seen
3171 */
3172 start = i = domain % MAX_NODES;
3173 overflow = B_TRUE;
3174 do {
3175 /*
3176 * Create entry for proximity domain and increment
3177 * count when no entry exists where proximity domain
3178 * hashed
3179 */
3180 if (!node_domain[i].exists) {
3181 node_domain[i].exists = 1;
3182 node_domain[i].prox_domain = domain;
3183 domain_cnt++;
3184 overflow = B_FALSE;
3185 break;
3186 }
3187
3188 /*
3189 * Nothing to do when proximity domain seen already
3190 * and its entry exists
3191 */
3192 if (node_domain[i].prox_domain == domain) {
3193 overflow = B_FALSE;
3194 break;
3195 }
3196
3197 /*
3198 * Entry exists where proximity domain hashed, but for
3199 * different proximity domain so keep search for empty
3200 * slot to put it or matching entry whichever comes
3201 * first.
3202 */
3203 i = (i + 1) % MAX_NODES;
3204 } while (i != start);
3205
3206 /*
3207 * Didn't find empty or matching entry which means have more
3208 * proximity domains than supported nodes (:-(
3209 */
3210 ASSERT(overflow != B_TRUE);
3211 if (overflow == B_TRUE)
3212 return (-1);
3213
3214 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length);
3215 }
3216 return (domain_cnt);
3217 }
3218
3219
3220 /*
3221 * Parse domain information in ACPI Maximum System Capability Table (MSCT).
3222 * MSCT table has been verified in function process_msct() in fakebop.c.
3223 */
3224 static int
lgrp_plat_msct_domains(ACPI_TABLE_MSCT * tp,uint32_t * prox_domain_min)3225 lgrp_plat_msct_domains(ACPI_TABLE_MSCT *tp, uint32_t *prox_domain_min)
3226 {
3227 int last_seen = 0;
3228 uint32_t proxmin = UINT32_MAX;
3229 ACPI_MSCT_PROXIMITY *item, *end;
3230
3231 if (tp == NULL || lgrp_plat_msct_enable == 0)
3232 return (-1);
3233
3234 if (tp->MaxProximityDomains >= MAX_NODES) {
3235 cmn_err(CE_CONT,
3236 "?lgrp: too many proximity domains (%d), max %d supported, "
3237 "disable support of CPU/memory DR operations.",
3238 tp->MaxProximityDomains + 1, MAX_NODES);
3239 plat_dr_disable_cpu();
3240 plat_dr_disable_memory();
3241 return (-1);
3242 }
3243
3244 if (prox_domain_min != NULL) {
3245 end = (void *)(tp->Header.Length + (uintptr_t)tp);
3246 for (item = (void *)((uintptr_t)tp +
3247 tp->ProximityOffset); item < end;
3248 item = (void *)(item->Length + (uintptr_t)item)) {
3249 if (item->RangeStart < proxmin) {
3250 proxmin = item->RangeStart;
3251 }
3252
3253 last_seen = item->RangeEnd - item->RangeStart + 1;
3254 /*
3255 * Break out if all proximity domains have been
3256 * processed. Some BIOSes may have unused items
3257 * at the end of MSCT table.
3258 */
3259 if (last_seen > tp->MaxProximityDomains) {
3260 break;
3261 }
3262 }
3263 *prox_domain_min = proxmin;
3264 }
3265
3266 return (tp->MaxProximityDomains + 1);
3267 }
3268
3269
3270 /*
3271 * Set lgroup latencies for 2 level lgroup topology
3272 */
3273 static void
lgrp_plat_2level_setup(lgrp_plat_latency_stats_t * lat_stats)3274 lgrp_plat_2level_setup(lgrp_plat_latency_stats_t *lat_stats)
3275 {
3276 int i, j;
3277
3278 ASSERT(lat_stats != NULL);
3279
3280 if (lgrp_plat_node_cnt >= 4)
3281 cmn_err(CE_NOTE,
3282 "MPO only optimizing for local and remote\n");
3283 for (i = 0; i < lgrp_plat_node_cnt; i++) {
3284 for (j = 0; j < lgrp_plat_node_cnt; j++) {
3285 if (i == j)
3286 lat_stats->latencies[i][j] = 2;
3287 else
3288 lat_stats->latencies[i][j] = 3;
3289 }
3290 }
3291 lat_stats->latency_min = 2;
3292 lat_stats->latency_max = 3;
3293 /* TODO: check it. */
3294 lgrp_config(LGRP_CONFIG_FLATTEN, 2, 0);
3295 lgrp_plat_topo_flatten = 1;
3296 }
3297
3298
3299 /*
3300 * The following Opteron specific constants, macros, types, and routines define
3301 * PCI configuration space registers and how to read them to determine the NUMA
3302 * configuration of *supported* Opteron processors. They provide the same
3303 * information that may be gotten from the ACPI System Resource Affinity Table
3304 * (SRAT) if it exists on the machine of interest.
3305 *
3306 * The AMD BIOS and Kernel Developer's Guide (BKDG) for the processor family
3307 * of interest describes all of these registers and their contents. The main
3308 * registers used by this code to determine the NUMA configuration of the
3309 * machine are the node ID register for the number of NUMA nodes and the DRAM
3310 * address map registers for the physical address range of each node.
3311 *
3312 * NOTE: The format and how to determine the NUMA configuration using PCI
3313 * config space registers may change or may not be supported in future
3314 * Opteron processor families.
3315 */
3316
3317 /*
3318 * How many bits to shift Opteron DRAM Address Map base and limit registers
3319 * to get actual value
3320 */
3321 #define OPT_DRAMADDR_HI_LSHIFT_ADDR 40 /* shift left for address */
3322 #define OPT_DRAMADDR_LO_LSHIFT_ADDR 8 /* shift left for address */
3323
3324 #define OPT_DRAMADDR_HI_MASK_ADDR 0x000000FF /* address bits 47-40 */
3325 #define OPT_DRAMADDR_LO_MASK_ADDR 0xFFFF0000 /* address bits 39-24 */
3326
3327 #define OPT_DRAMADDR_LO_MASK_OFF 0xFFFFFF /* offset for address */
3328
3329 /*
3330 * Macros to derive addresses from Opteron DRAM Address Map registers
3331 */
3332 #define OPT_DRAMADDR_HI(reg) \
3333 (((u_longlong_t)reg & OPT_DRAMADDR_HI_MASK_ADDR) << \
3334 OPT_DRAMADDR_HI_LSHIFT_ADDR)
3335
3336 #define OPT_DRAMADDR_LO(reg) \
3337 (((u_longlong_t)reg & OPT_DRAMADDR_LO_MASK_ADDR) << \
3338 OPT_DRAMADDR_LO_LSHIFT_ADDR)
3339
3340 #define OPT_DRAMADDR(high, low) \
3341 (OPT_DRAMADDR_HI(high) | OPT_DRAMADDR_LO(low))
3342
3343 /*
3344 * Bit masks defining what's in Opteron DRAM Address Map base register
3345 */
3346 #define OPT_DRAMBASE_LO_MASK_RE 0x1 /* read enable */
3347 #define OPT_DRAMBASE_LO_MASK_WE 0x2 /* write enable */
3348 #define OPT_DRAMBASE_LO_MASK_INTRLVEN 0x700 /* interleave */
3349
3350 /*
3351 * Bit masks defining what's in Opteron DRAM Address Map limit register
3352 */
3353 #define OPT_DRAMLIMIT_LO_MASK_DSTNODE 0x7 /* destination node */
3354 #define OPT_DRAMLIMIT_LO_MASK_INTRLVSEL 0x700 /* interleave select */
3355
3356
3357 /*
3358 * Opteron Node ID register in PCI configuration space contains
3359 * number of nodes in system, etc. for Opteron K8. The following
3360 * constants and macros define its contents, structure, and access.
3361 */
3362
3363 /*
3364 * Bit masks defining what's in Opteron Node ID register
3365 */
3366 #define OPT_NODE_MASK_ID 0x7 /* node ID */
3367 #define OPT_NODE_MASK_CNT 0x70 /* node count */
3368 #define OPT_NODE_MASK_IONODE 0x700 /* Hypertransport I/O hub node ID */
3369 #define OPT_NODE_MASK_LCKNODE 0x7000 /* lock controller node ID */
3370 #define OPT_NODE_MASK_CPUCNT 0xF0000 /* CPUs in system (0 means 1 CPU) */
3371
3372 /*
3373 * How many bits in Opteron Node ID register to shift right to get actual value
3374 */
3375 #define OPT_NODE_RSHIFT_CNT 0x4 /* shift right for node count value */
3376
3377 /*
3378 * Macros to get values from Opteron Node ID register
3379 */
3380 #define OPT_NODE_CNT(reg) \
3381 ((reg & OPT_NODE_MASK_CNT) >> OPT_NODE_RSHIFT_CNT)
3382
3383 /*
3384 * Macro to setup PCI Extended Configuration Space (ECS) address to give to
3385 * "in/out" instructions
3386 *
3387 * NOTE: Should only be used in lgrp_plat_init() before MMIO setup because any
3388 * other uses should just do MMIO to access PCI ECS.
3389 * Must enable special bit in Northbridge Configuration Register on
3390 * Greyhound for extended CF8 space access to be able to access PCI ECS
3391 * using "in/out" instructions and restore special bit after done
3392 * accessing PCI ECS.
3393 */
3394 #define OPT_PCI_ECS_ADDR(bus, device, function, reg) \
3395 (PCI_CONE | (((bus) & 0xff) << 16) | (((device & 0x1f)) << 11) | \
3396 (((function) & 0x7) << 8) | ((reg) & 0xfc) | \
3397 ((((reg) >> 8) & 0xf) << 24))
3398
3399 /*
3400 * PCI configuration space registers accessed by specifying
3401 * a bus, device, function, and offset. The following constants
3402 * define the values needed to access Opteron K8 configuration
3403 * info to determine its node topology
3404 */
3405
3406 #define OPT_PCS_BUS_CONFIG 0 /* Hypertransport config space bus */
3407
3408 /*
3409 * Opteron PCI configuration space register function values
3410 */
3411 #define OPT_PCS_FUNC_HT 0 /* Hypertransport configuration */
3412 #define OPT_PCS_FUNC_ADDRMAP 1 /* Address map configuration */
3413 #define OPT_PCS_FUNC_DRAM 2 /* DRAM configuration */
3414 #define OPT_PCS_FUNC_MISC 3 /* Miscellaneous configuration */
3415
3416 /*
3417 * PCI Configuration Space register offsets
3418 */
3419 #define OPT_PCS_OFF_VENDOR 0x0 /* device/vendor ID register */
3420 #define OPT_PCS_OFF_DRAMBASE_HI 0x140 /* DRAM Base register (node 0) */
3421 #define OPT_PCS_OFF_DRAMBASE_LO 0x40 /* DRAM Base register (node 0) */
3422 #define OPT_PCS_OFF_NODEID 0x60 /* Node ID register */
3423
3424 /*
3425 * Opteron PCI Configuration Space device IDs for nodes
3426 */
3427 #define OPT_PCS_DEV_NODE0 24 /* device number for node 0 */
3428
3429
3430 /*
3431 * Opteron DRAM address map gives base and limit for physical memory in a node
3432 */
3433 typedef struct opt_dram_addr_map {
3434 uint32_t base_hi;
3435 uint32_t base_lo;
3436 uint32_t limit_hi;
3437 uint32_t limit_lo;
3438 } opt_dram_addr_map_t;
3439
3440
3441 /*
3442 * Supported AMD processor families
3443 */
3444 #define AMD_FAMILY_HAMMER 15
3445 #define AMD_FAMILY_GREYHOUND 16
3446
3447 /*
3448 * Whether to have is_opteron() return 1 even when processor isn't supported
3449 */
3450 uint_t is_opteron_override = 0;
3451
3452 /*
3453 * AMD processor family for current CPU
3454 */
3455 uint_t opt_family = 0;
3456
3457
3458 /*
3459 * Determine whether we're running on a supported AMD Opteron since reading
3460 * node count and DRAM address map registers may have different format or
3461 * may not be supported across processor families
3462 */
3463 static int
is_opteron(void)3464 is_opteron(void)
3465 {
3466
3467 if (x86_vendor != X86_VENDOR_AMD)
3468 return (0);
3469
3470 opt_family = cpuid_getfamily(CPU);
3471 if (opt_family == AMD_FAMILY_HAMMER ||
3472 opt_family == AMD_FAMILY_GREYHOUND || is_opteron_override)
3473 return (1);
3474 else
3475 return (0);
3476 }
3477
3478
3479 /*
3480 * Determine NUMA configuration for Opteron from registers that live in PCI
3481 * configuration space
3482 */
3483 static void
opt_get_numa_config(uint_t * node_cnt,int * mem_intrlv,memnode_phys_addr_map_t * memnode_info)3484 opt_get_numa_config(uint_t *node_cnt, int *mem_intrlv,
3485 memnode_phys_addr_map_t *memnode_info)
3486 {
3487 uint_t bus;
3488 uint_t dev;
3489 struct opt_dram_addr_map dram_map[MAX_NODES];
3490 uint_t node;
3491 uint_t node_info[MAX_NODES];
3492 uint_t off_hi;
3493 uint_t off_lo;
3494 uint64_t nb_cfg_reg;
3495
3496 /*
3497 * Read configuration registers from PCI configuration space to
3498 * determine node information, which memory is in each node, etc.
3499 *
3500 * Write to PCI configuration space address register to specify
3501 * which configuration register to read and read/write PCI
3502 * configuration space data register to get/set contents
3503 */
3504 bus = OPT_PCS_BUS_CONFIG;
3505 dev = OPT_PCS_DEV_NODE0;
3506 off_hi = OPT_PCS_OFF_DRAMBASE_HI;
3507 off_lo = OPT_PCS_OFF_DRAMBASE_LO;
3508
3509 /*
3510 * Read node ID register for node 0 to get node count
3511 */
3512 node_info[0] = pci_getl_func(bus, dev, OPT_PCS_FUNC_HT,
3513 OPT_PCS_OFF_NODEID);
3514 *node_cnt = OPT_NODE_CNT(node_info[0]) + 1;
3515
3516 /*
3517 * If number of nodes is more than maximum supported, then set node
3518 * count to 1 and treat system as UMA instead of NUMA.
3519 */
3520 if (*node_cnt > MAX_NODES) {
3521 *node_cnt = 1;
3522 return;
3523 }
3524
3525 /*
3526 * For Greyhound, PCI Extended Configuration Space must be enabled to
3527 * read high DRAM address map base and limit registers
3528 */
3529 nb_cfg_reg = 0;
3530 if (opt_family == AMD_FAMILY_GREYHOUND) {
3531 nb_cfg_reg = rdmsr(MSR_AMD_NB_CFG);
3532 if ((nb_cfg_reg & AMD_GH_NB_CFG_EN_ECS) == 0)
3533 wrmsr(MSR_AMD_NB_CFG,
3534 nb_cfg_reg | AMD_GH_NB_CFG_EN_ECS);
3535 }
3536
3537 for (node = 0; node < *node_cnt; node++) {
3538 uint32_t base_hi;
3539 uint32_t base_lo;
3540 uint32_t limit_hi;
3541 uint32_t limit_lo;
3542
3543 /*
3544 * Read node ID register (except for node 0 which we just read)
3545 */
3546 if (node > 0) {
3547 node_info[node] = pci_getl_func(bus, dev,
3548 OPT_PCS_FUNC_HT, OPT_PCS_OFF_NODEID);
3549 }
3550
3551 /*
3552 * Read DRAM base and limit registers which specify
3553 * physical memory range of each node
3554 */
3555 if (opt_family != AMD_FAMILY_GREYHOUND)
3556 base_hi = 0;
3557 else {
3558 outl(PCI_CONFADD, OPT_PCI_ECS_ADDR(bus, dev,
3559 OPT_PCS_FUNC_ADDRMAP, off_hi));
3560 base_hi = dram_map[node].base_hi =
3561 inl(PCI_CONFDATA);
3562 }
3563 base_lo = dram_map[node].base_lo = pci_getl_func(bus, dev,
3564 OPT_PCS_FUNC_ADDRMAP, off_lo);
3565
3566 if ((dram_map[node].base_lo & OPT_DRAMBASE_LO_MASK_INTRLVEN) &&
3567 mem_intrlv)
3568 *mem_intrlv = *mem_intrlv + 1;
3569
3570 off_hi += 4; /* high limit register offset */
3571 if (opt_family != AMD_FAMILY_GREYHOUND)
3572 limit_hi = 0;
3573 else {
3574 outl(PCI_CONFADD, OPT_PCI_ECS_ADDR(bus, dev,
3575 OPT_PCS_FUNC_ADDRMAP, off_hi));
3576 limit_hi = dram_map[node].limit_hi =
3577 inl(PCI_CONFDATA);
3578 }
3579
3580 off_lo += 4; /* low limit register offset */
3581 limit_lo = dram_map[node].limit_lo = pci_getl_func(bus,
3582 dev, OPT_PCS_FUNC_ADDRMAP, off_lo);
3583
3584 /*
3585 * Increment device number to next node and register offsets
3586 * for DRAM base register of next node
3587 */
3588 off_hi += 4;
3589 off_lo += 4;
3590 dev++;
3591
3592 /*
3593 * Both read and write enable bits must be enabled in DRAM
3594 * address map base register for physical memory to exist in
3595 * node
3596 */
3597 if ((base_lo & OPT_DRAMBASE_LO_MASK_RE) == 0 ||
3598 (base_lo & OPT_DRAMBASE_LO_MASK_WE) == 0) {
3599 /*
3600 * Mark node memory as non-existent and set start and
3601 * end addresses to be same in memnode_info[]
3602 */
3603 memnode_info[node].exists = 0;
3604 memnode_info[node].start = memnode_info[node].end =
3605 (pfn_t)-1;
3606 continue;
3607 }
3608
3609 /*
3610 * Mark node memory as existing and remember physical address
3611 * range of each node for use later
3612 */
3613 memnode_info[node].exists = 1;
3614
3615 memnode_info[node].start = btop(OPT_DRAMADDR(base_hi, base_lo));
3616
3617 memnode_info[node].end = btop(OPT_DRAMADDR(limit_hi, limit_lo) |
3618 OPT_DRAMADDR_LO_MASK_OFF);
3619 }
3620
3621 /*
3622 * Restore PCI Extended Configuration Space enable bit
3623 */
3624 if (opt_family == AMD_FAMILY_GREYHOUND) {
3625 if ((nb_cfg_reg & AMD_GH_NB_CFG_EN_ECS) == 0)
3626 wrmsr(MSR_AMD_NB_CFG, nb_cfg_reg);
3627 }
3628 }
3629
3630
3631 /*
3632 * Return average amount of time to read vendor ID register on Northbridge
3633 * N times on specified destination node from current CPU
3634 */
3635 static hrtime_t
opt_probe_vendor(int dest_node,int nreads)3636 opt_probe_vendor(int dest_node, int nreads)
3637 {
3638 int cnt;
3639 uint_t dev;
3640 /* LINTED: set but not used in function */
3641 volatile uint_t dev_vendor __unused;
3642 hrtime_t elapsed;
3643 hrtime_t end;
3644 int ipl;
3645 hrtime_t start;
3646
3647 dev = OPT_PCS_DEV_NODE0 + dest_node;
3648 kpreempt_disable();
3649 ipl = spl8();
3650 outl(PCI_CONFADD, PCI_CADDR1(0, dev, OPT_PCS_FUNC_DRAM,
3651 OPT_PCS_OFF_VENDOR));
3652 start = gethrtime();
3653 for (cnt = 0; cnt < nreads; cnt++)
3654 dev_vendor = inl(PCI_CONFDATA);
3655 end = gethrtime();
3656 elapsed = (end - start) / nreads;
3657 splx(ipl);
3658 kpreempt_enable();
3659 return (elapsed);
3660 }
3661