xref: /freebsd/contrib/jemalloc/src/sc.c (revision c43cad87172039ccf38172129c79755ea79e6102)
1 #include "jemalloc/internal/jemalloc_preamble.h"
2 
3 #include "jemalloc/internal/assert.h"
4 #include "jemalloc/internal/bit_util.h"
5 #include "jemalloc/internal/bitmap.h"
6 #include "jemalloc/internal/pages.h"
7 #include "jemalloc/internal/sc.h"
8 
9 /*
10  * This module computes the size classes used to satisfy allocations.  The logic
11  * here was ported more or less line-by-line from a shell script, and because of
12  * that is not the most idiomatic C.  Eventually we should fix this, but for now
13  * at least the damage is compartmentalized to this file.
14  */
15 
16 size_t
17 reg_size_compute(int lg_base, int lg_delta, int ndelta) {
18 	return (ZU(1) << lg_base) + (ZU(ndelta) << lg_delta);
19 }
20 
21 /* Returns the number of pages in the slab. */
22 static int
23 slab_size(int lg_page, int lg_base, int lg_delta, int ndelta) {
24 	size_t page = (ZU(1) << lg_page);
25 	size_t reg_size = reg_size_compute(lg_base, lg_delta, ndelta);
26 
27 	size_t try_slab_size = page;
28 	size_t try_nregs = try_slab_size / reg_size;
29 	size_t perfect_slab_size = 0;
30 	bool perfect = false;
31 	/*
32 	 * This loop continues until we find the least common multiple of the
33 	 * page size and size class size.  Size classes are all of the form
34 	 * base + ndelta * delta == (ndelta + base/ndelta) * delta, which is
35 	 * (ndelta + ngroup) * delta.  The way we choose slabbing strategies
36 	 * means that delta is at most the page size and ndelta < ngroup.  So
37 	 * the loop executes for at most 2 * ngroup - 1 iterations, which is
38 	 * also the bound on the number of pages in a slab chosen by default.
39 	 * With the current default settings, this is at most 7.
40 	 */
41 	while (!perfect) {
42 		perfect_slab_size = try_slab_size;
43 		size_t perfect_nregs = try_nregs;
44 		try_slab_size += page;
45 		try_nregs = try_slab_size / reg_size;
46 		if (perfect_slab_size == perfect_nregs * reg_size) {
47 			perfect = true;
48 		}
49 	}
50 	return (int)(perfect_slab_size / page);
51 }
52 
53 static void
54 size_class(
55     /* Output. */
56     sc_t *sc,
57     /* Configuration decisions. */
58     int lg_max_lookup, int lg_page, int lg_ngroup,
59     /* Inputs specific to the size class. */
60     int index, int lg_base, int lg_delta, int ndelta) {
61 	sc->index = index;
62 	sc->lg_base = lg_base;
63 	sc->lg_delta = lg_delta;
64 	sc->ndelta = ndelta;
65 	size_t size = reg_size_compute(lg_base, lg_delta, ndelta);
66 	sc->psz = (size % (ZU(1) << lg_page) == 0);
67 	if (index == 0) {
68 		assert(!sc->psz);
69 	}
70 	if (size < (ZU(1) << (lg_page + lg_ngroup))) {
71 		sc->bin = true;
72 		sc->pgs = slab_size(lg_page, lg_base, lg_delta, ndelta);
73 	} else {
74 		sc->bin = false;
75 		sc->pgs = 0;
76 	}
77 	if (size <= (ZU(1) << lg_max_lookup)) {
78 		sc->lg_delta_lookup = lg_delta;
79 	} else {
80 		sc->lg_delta_lookup = 0;
81 	}
82 }
83 
84 static void
85 size_classes(
86     /* Output. */
87     sc_data_t *sc_data,
88     /* Determined by the system. */
89     size_t lg_ptr_size, int lg_quantum,
90     /* Configuration decisions. */
91     int lg_tiny_min, int lg_max_lookup, int lg_page, int lg_ngroup) {
92 	int ptr_bits = (1 << lg_ptr_size) * 8;
93 	int ngroup = (1 << lg_ngroup);
94 	int ntiny = 0;
95 	int nlbins = 0;
96 	int lg_tiny_maxclass = (unsigned)-1;
97 	int nbins = 0;
98 	int npsizes = 0;
99 
100 	int index = 0;
101 
102 	int ndelta = 0;
103 	int lg_base = lg_tiny_min;
104 	int lg_delta = lg_base;
105 
106 	/* Outputs that we update as we go. */
107 	size_t lookup_maxclass = 0;
108 	size_t small_maxclass = 0;
109 	int lg_large_minclass = 0;
110 	size_t large_maxclass = 0;
111 
112 	/* Tiny size classes. */
113 	while (lg_base < lg_quantum) {
114 		sc_t *sc = &sc_data->sc[index];
115 		size_class(sc, lg_max_lookup, lg_page, lg_ngroup, index,
116 		    lg_base, lg_delta, ndelta);
117 		if (sc->lg_delta_lookup != 0) {
118 			nlbins = index + 1;
119 		}
120 		if (sc->psz) {
121 			npsizes++;
122 		}
123 		if (sc->bin) {
124 			nbins++;
125 		}
126 		ntiny++;
127 		/* Final written value is correct. */
128 		lg_tiny_maxclass = lg_base;
129 		index++;
130 		lg_delta = lg_base;
131 		lg_base++;
132 	}
133 
134 	/* First non-tiny (pseudo) group. */
135 	if (ntiny != 0) {
136 		sc_t *sc = &sc_data->sc[index];
137 		/*
138 		 * See the note in sc.h; the first non-tiny size class has an
139 		 * unusual encoding.
140 		 */
141 		lg_base--;
142 		ndelta = 1;
143 		size_class(sc, lg_max_lookup, lg_page, lg_ngroup, index,
144 		    lg_base, lg_delta, ndelta);
145 		index++;
146 		lg_base++;
147 		lg_delta++;
148 		if (sc->psz) {
149 			npsizes++;
150 		}
151 		if (sc->bin) {
152 			nbins++;
153 		}
154 	}
155 	while (ndelta < ngroup) {
156 		sc_t *sc = &sc_data->sc[index];
157 		size_class(sc, lg_max_lookup, lg_page, lg_ngroup, index,
158 		    lg_base, lg_delta, ndelta);
159 		index++;
160 		ndelta++;
161 		if (sc->psz) {
162 			npsizes++;
163 		}
164 		if (sc->bin) {
165 			nbins++;
166 		}
167 	}
168 
169 	/* All remaining groups. */
170 	lg_base = lg_base + lg_ngroup;
171 	while (lg_base < ptr_bits - 1) {
172 		ndelta = 1;
173 		int ndelta_limit;
174 		if (lg_base == ptr_bits - 2) {
175 			ndelta_limit = ngroup - 1;
176 		} else {
177 			ndelta_limit = ngroup;
178 		}
179 		while (ndelta <= ndelta_limit) {
180 			sc_t *sc = &sc_data->sc[index];
181 			size_class(sc, lg_max_lookup, lg_page, lg_ngroup, index,
182 			    lg_base, lg_delta, ndelta);
183 			if (sc->lg_delta_lookup != 0) {
184 				nlbins = index + 1;
185 				/* Final written value is correct. */
186 				lookup_maxclass = (ZU(1) << lg_base)
187 				    + (ZU(ndelta) << lg_delta);
188 			}
189 			if (sc->psz) {
190 				npsizes++;
191 			}
192 			if (sc->bin) {
193 				nbins++;
194 				/* Final written value is correct. */
195 				small_maxclass = (ZU(1) << lg_base)
196 				    + (ZU(ndelta) << lg_delta);
197 				if (lg_ngroup > 0) {
198 					lg_large_minclass = lg_base + 1;
199 				} else {
200 					lg_large_minclass = lg_base + 2;
201 				}
202 			}
203 			large_maxclass = (ZU(1) << lg_base)
204 			    + (ZU(ndelta) << lg_delta);
205 			index++;
206 			ndelta++;
207 		}
208 		lg_base++;
209 		lg_delta++;
210 	}
211 	/* Additional outputs. */
212 	int nsizes = index;
213 	unsigned lg_ceil_nsizes = lg_ceil(nsizes);
214 
215 	/* Fill in the output data. */
216 	sc_data->ntiny = ntiny;
217 	sc_data->nlbins = nlbins;
218 	sc_data->nbins = nbins;
219 	sc_data->nsizes = nsizes;
220 	sc_data->lg_ceil_nsizes = lg_ceil_nsizes;
221 	sc_data->npsizes = npsizes;
222 	sc_data->lg_tiny_maxclass = lg_tiny_maxclass;
223 	sc_data->lookup_maxclass = lookup_maxclass;
224 	sc_data->small_maxclass = small_maxclass;
225 	sc_data->lg_large_minclass = lg_large_minclass;
226 	sc_data->large_minclass = (ZU(1) << lg_large_minclass);
227 	sc_data->large_maxclass = large_maxclass;
228 
229 	/*
230 	 * We compute these values in two ways:
231 	 *   - Incrementally, as above.
232 	 *   - In macros, in sc.h.
233 	 * The computation is easier when done incrementally, but putting it in
234 	 * a constant makes it available to the fast paths without having to
235 	 * touch the extra global cacheline.  We assert, however, that the two
236 	 * computations are equivalent.
237 	 */
238 	assert(sc_data->npsizes == SC_NPSIZES);
239 	assert(sc_data->lg_tiny_maxclass == SC_LG_TINY_MAXCLASS);
240 	assert(sc_data->small_maxclass == SC_SMALL_MAXCLASS);
241 	assert(sc_data->large_minclass == SC_LARGE_MINCLASS);
242 	assert(sc_data->lg_large_minclass == SC_LG_LARGE_MINCLASS);
243 	assert(sc_data->large_maxclass == SC_LARGE_MAXCLASS);
244 
245 	/*
246 	 * In the allocation fastpath, we want to assume that we can
247 	 * unconditionally subtract the requested allocation size from
248 	 * a ssize_t, and detect passing through 0 correctly.  This
249 	 * results in optimal generated code.  For this to work, the
250 	 * maximum allocation size must be less than SSIZE_MAX.
251 	 */
252 	assert(SC_LARGE_MAXCLASS < SSIZE_MAX);
253 }
254 
255 void
256 sc_data_init(sc_data_t *sc_data) {
257 	size_classes(sc_data, LG_SIZEOF_PTR, LG_QUANTUM, SC_LG_TINY_MIN,
258 	    SC_LG_MAX_LOOKUP, LG_PAGE, SC_LG_NGROUP);
259 
260 	sc_data->initialized = true;
261 }
262 
263 static void
264 sc_data_update_sc_slab_size(sc_t *sc, size_t reg_size, size_t pgs_guess) {
265 	size_t min_pgs = reg_size / PAGE;
266 	if (reg_size % PAGE != 0) {
267 		min_pgs++;
268 	}
269 	/*
270 	 * BITMAP_MAXBITS is actually determined by putting the smallest
271 	 * possible size-class on one page, so this can never be 0.
272 	 */
273 	size_t max_pgs = BITMAP_MAXBITS * reg_size / PAGE;
274 
275 	assert(min_pgs <= max_pgs);
276 	assert(min_pgs > 0);
277 	assert(max_pgs >= 1);
278 	if (pgs_guess < min_pgs) {
279 		sc->pgs = (int)min_pgs;
280 	} else if (pgs_guess > max_pgs) {
281 		sc->pgs = (int)max_pgs;
282 	} else {
283 		sc->pgs = (int)pgs_guess;
284 	}
285 }
286 
287 void
288 sc_data_update_slab_size(sc_data_t *data, size_t begin, size_t end, int pgs) {
289 	assert(data->initialized);
290 	for (int i = 0; i < data->nsizes; i++) {
291 		sc_t *sc = &data->sc[i];
292 		if (!sc->bin) {
293 			break;
294 		}
295 		size_t reg_size = reg_size_compute(sc->lg_base, sc->lg_delta,
296 		    sc->ndelta);
297 		if (begin <= reg_size && reg_size <= end) {
298 			sc_data_update_sc_slab_size(sc, reg_size, pgs);
299 		}
300 	}
301 }
302 
303 void
304 sc_boot(sc_data_t *data) {
305 	sc_data_init(data);
306 }
307