xref: /freebsd/contrib/jemalloc/include/jemalloc/internal/sc.h (revision c43cad87172039ccf38172129c79755ea79e6102)
1 #ifndef JEMALLOC_INTERNAL_SC_H
2 #define JEMALLOC_INTERNAL_SC_H
3 
4 #include "jemalloc/internal/jemalloc_internal_types.h"
5 
6 /*
7  * Size class computations:
8  *
9  * These are a little tricky; we'll first start by describing how things
10  * generally work, and then describe some of the details.
11  *
12  * Ignore the first few size classes for a moment. We can then split all the
13  * remaining size classes into groups. The size classes in a group are spaced
14  * such that they cover allocation request sizes in a power-of-2 range. The
15  * power of two is called the base of the group, and the size classes in it
16  * satisfy allocations in the half-open range (base, base * 2]. There are
17  * SC_NGROUP size classes in each group, equally spaced in the range, so that
18  * each one covers allocations for base / SC_NGROUP possible allocation sizes.
19  * We call that value (base / SC_NGROUP) the delta of the group. Each size class
20  * is delta larger than the one before it (including the initial size class in a
21  * group, which is delta larger than base, the largest size class in the
22  * previous group).
23  * To make the math all work out nicely, we require that SC_NGROUP is a power of
24  * two, and define it in terms of SC_LG_NGROUP. We'll often talk in terms of
25  * lg_base and lg_delta. For each of these groups then, we have that
26  * lg_delta == lg_base - SC_LG_NGROUP.
27  * The size classes in a group with a given lg_base and lg_delta (which, recall,
28  * can be computed from lg_base for these groups) are therefore:
29  *   base + 1 * delta
30  *     which covers allocations in (base, base + 1 * delta]
31  *   base + 2 * delta
32  *     which covers allocations in (base + 1 * delta, base + 2 * delta].
33  *   base + 3 * delta
34  *     which covers allocations in (base + 2 * delta, base + 3 * delta].
35  *   ...
36  *   base + SC_NGROUP * delta ( == 2 * base)
37  *     which covers allocations in (base + (SC_NGROUP - 1) * delta, 2 * base].
38  * (Note that currently SC_NGROUP is always 4, so the "..." is empty in
39  * practice.)
40  * Note that the last size class in the group is the next power of two (after
41  * base), so that we've set up the induction correctly for the next group's
42  * selection of delta.
43  *
44  * Now, let's start considering the first few size classes. Two extra constants
45  * come into play here: LG_QUANTUM and SC_LG_TINY_MIN. LG_QUANTUM ensures
46  * correct platform alignment; all objects of size (1 << LG_QUANTUM) or larger
47  * are at least (1 << LG_QUANTUM) aligned; this can be used to ensure that we
48  * never return improperly aligned memory, by making (1 << LG_QUANTUM) equal the
49  * highest required alignment of a platform. For allocation sizes smaller than
50  * (1 << LG_QUANTUM) though, we can be more relaxed (since we don't support
51  * platforms with types with alignment larger than their size). To allow such
52  * allocations (without wasting space unnecessarily), we introduce tiny size
53  * classes; one per power of two, up until we hit the quantum size. There are
54  * therefore LG_QUANTUM - SC_LG_TINY_MIN such size classes.
55  *
56  * Next, we have a size class of size (1 << LG_QUANTUM).  This can't be the
57  * start of a group in the sense we described above (covering a power of two
58  * range) since, if we divided into it to pick a value of delta, we'd get a
59  * delta smaller than (1 << LG_QUANTUM) for sizes >= (1 << LG_QUANTUM), which
60  * is against the rules.
61  *
62  * The first base we can divide by SC_NGROUP while still being at least
63  * (1 << LG_QUANTUM) is SC_NGROUP * (1 << LG_QUANTUM). We can get there by
64  * having SC_NGROUP size classes, spaced (1 << LG_QUANTUM) apart. These size
65  * classes are:
66  *   1 * (1 << LG_QUANTUM)
67  *   2 * (1 << LG_QUANTUM)
68  *   3 * (1 << LG_QUANTUM)
69  *   ... (although, as above, this "..." is empty in practice)
70  *   SC_NGROUP * (1 << LG_QUANTUM).
71  *
72  * There are SC_NGROUP of these size classes, so we can regard it as a sort of
73  * pseudo-group, even though it spans multiple powers of 2, is divided
74  * differently, and both starts and ends on a power of 2 (as opposed to just
75  * ending). SC_NGROUP is itself a power of two, so the first group after the
76  * pseudo-group has the power-of-two base SC_NGROUP * (1 << LG_QUANTUM), for a
77  * lg_base of LG_QUANTUM + SC_LG_NGROUP. We can divide this base into SC_NGROUP
78  * sizes without violating our LG_QUANTUM requirements, so we can safely set
79  * lg_delta = lg_base - SC_LG_GROUP (== LG_QUANTUM).
80  *
81  * So, in order, the size classes are:
82  *
83  * Tiny size classes:
84  * - Count: LG_QUANTUM - SC_LG_TINY_MIN.
85  * - Sizes:
86  *     1 << SC_LG_TINY_MIN
87  *     1 << (SC_LG_TINY_MIN + 1)
88  *     1 << (SC_LG_TINY_MIN + 2)
89  *     ...
90  *     1 << (LG_QUANTUM - 1)
91  *
92  * Initial pseudo-group:
93  * - Count: SC_NGROUP
94  * - Sizes:
95  *     1 * (1 << LG_QUANTUM)
96  *     2 * (1 << LG_QUANTUM)
97  *     3 * (1 << LG_QUANTUM)
98  *     ...
99  *     SC_NGROUP * (1 << LG_QUANTUM)
100  *
101  * Regular group 0:
102  * - Count: SC_NGROUP
103  * - Sizes:
104  *   (relative to lg_base of LG_QUANTUM + SC_LG_NGROUP and lg_delta of
105  *   lg_base - SC_LG_NGROUP)
106  *     (1 << lg_base) + 1 * (1 << lg_delta)
107  *     (1 << lg_base) + 2 * (1 << lg_delta)
108  *     (1 << lg_base) + 3 * (1 << lg_delta)
109  *     ...
110  *     (1 << lg_base) + SC_NGROUP * (1 << lg_delta) [ == (1 << (lg_base + 1)) ]
111  *
112  * Regular group 1:
113  * - Count: SC_NGROUP
114  * - Sizes:
115  *   (relative to lg_base of LG_QUANTUM + SC_LG_NGROUP + 1 and lg_delta of
116  *   lg_base - SC_LG_NGROUP)
117  *     (1 << lg_base) + 1 * (1 << lg_delta)
118  *     (1 << lg_base) + 2 * (1 << lg_delta)
119  *     (1 << lg_base) + 3 * (1 << lg_delta)
120  *     ...
121  *     (1 << lg_base) + SC_NGROUP * (1 << lg_delta) [ == (1 << (lg_base + 1)) ]
122  *
123  * ...
124  *
125  * Regular group N:
126  * - Count: SC_NGROUP
127  * - Sizes:
128  *   (relative to lg_base of LG_QUANTUM + SC_LG_NGROUP + N and lg_delta of
129  *   lg_base - SC_LG_NGROUP)
130  *     (1 << lg_base) + 1 * (1 << lg_delta)
131  *     (1 << lg_base) + 2 * (1 << lg_delta)
132  *     (1 << lg_base) + 3 * (1 << lg_delta)
133  *     ...
134  *     (1 << lg_base) + SC_NGROUP * (1 << lg_delta) [ == (1 << (lg_base + 1)) ]
135  *
136  *
137  * Representation of metadata:
138  * To make the math easy, we'll mostly work in lg quantities. We record lg_base,
139  * lg_delta, and ndelta (i.e. number of deltas above the base) on a
140  * per-size-class basis, and maintain the invariant that, across all size
141  * classes, size == (1 << lg_base) + ndelta * (1 << lg_delta).
142  *
143  * For regular groups (i.e. those with lg_base >= LG_QUANTUM + SC_LG_NGROUP),
144  * lg_delta is lg_base - SC_LG_NGROUP, and ndelta goes from 1 to SC_NGROUP.
145  *
146  * For the initial tiny size classes (if any), lg_base is lg(size class size).
147  * lg_delta is lg_base for the first size class, and lg_base - 1 for all
148  * subsequent ones. ndelta is always 0.
149  *
150  * For the pseudo-group, if there are no tiny size classes, then we set
151  * lg_base == LG_QUANTUM, lg_delta == LG_QUANTUM, and have ndelta range from 0
152  * to SC_NGROUP - 1. (Note that delta == base, so base + (SC_NGROUP - 1) * delta
153  * is just SC_NGROUP * base, or (1 << (SC_LG_NGROUP + LG_QUANTUM)), so we do
154  * indeed get a power of two that way). If there *are* tiny size classes, then
155  * the first size class needs to have lg_delta relative to the largest tiny size
156  * class. We therefore set lg_base == LG_QUANTUM - 1,
157  * lg_delta == LG_QUANTUM - 1, and ndelta == 1, keeping the rest of the
158  * pseudo-group the same.
159  *
160  *
161  * Other terminology:
162  * "Small" size classes mean those that are allocated out of bins, which is the
163  * same as those that are slab allocated.
164  * "Large" size classes are those that are not small. The cutoff for counting as
165  * large is page size * group size.
166  */
167 
168 /*
169  * Size class N + (1 << SC_LG_NGROUP) twice the size of size class N.
170  */
171 #define SC_LG_NGROUP 2
172 #define SC_LG_TINY_MIN 3
173 
174 #if SC_LG_TINY_MIN == 0
175 /* The div module doesn't support division by 1, which this would require. */
176 #error "Unsupported LG_TINY_MIN"
177 #endif
178 
179 /*
180  * The definitions below are all determined by the above settings and system
181  * characteristics.
182  */
183 #define SC_NGROUP (1ULL << SC_LG_NGROUP)
184 #define SC_PTR_BITS ((1ULL << LG_SIZEOF_PTR) * 8)
185 #define SC_NTINY (LG_QUANTUM - SC_LG_TINY_MIN)
186 #define SC_LG_TINY_MAXCLASS (LG_QUANTUM > SC_LG_TINY_MIN ? LG_QUANTUM - 1 : -1)
187 #define SC_NPSEUDO SC_NGROUP
188 #define SC_LG_FIRST_REGULAR_BASE (LG_QUANTUM + SC_LG_NGROUP)
189 /*
190  * We cap allocations to be less than 2 ** (ptr_bits - 1), so the highest base
191  * we need is 2 ** (ptr_bits - 2). (This also means that the last group is 1
192  * size class shorter than the others).
193  * We could probably save some space in arenas by capping this at LG_VADDR size.
194  */
195 #define SC_LG_BASE_MAX (SC_PTR_BITS - 2)
196 #define SC_NREGULAR (SC_NGROUP * 					\
197     (SC_LG_BASE_MAX - SC_LG_FIRST_REGULAR_BASE + 1) - 1)
198 #define SC_NSIZES (SC_NTINY + SC_NPSEUDO + SC_NREGULAR)
199 
200 /*
201  * The number of size classes that are a multiple of the page size.
202  *
203  * Here are the first few bases that have a page-sized SC.
204  *
205  *      lg(base) |     base | highest SC | page-multiple SCs
206  * --------------|------------------------------------------
207  *   LG_PAGE - 1 | PAGE / 2 |       PAGE | 1
208  *       LG_PAGE |     PAGE |   2 * PAGE | 1
209  *   LG_PAGE + 1 | 2 * PAGE |   4 * PAGE | 2
210  *   LG_PAGE + 2 | 4 * PAGE |   8 * PAGE | 4
211  *
212  * The number of page-multiple SCs continues to grow in powers of two, up until
213  * lg_delta == lg_page, which corresponds to setting lg_base to lg_page +
214  * SC_LG_NGROUP.  So, then, the number of size classes that are multiples of the
215  * page size whose lg_delta is less than the page size are
216  * is 1 + (2**0 + 2**1 + ... + 2**(lg_ngroup - 1) == 2**lg_ngroup.
217  *
218  * For each base with lg_base in [lg_page + lg_ngroup, lg_base_max), there are
219  * NGROUP page-sized size classes, and when lg_base == lg_base_max, there are
220  * NGROUP - 1.
221  *
222  * This gives us the quantity we seek.
223  */
224 #define SC_NPSIZES (							\
225     SC_NGROUP								\
226     + (SC_LG_BASE_MAX - (LG_PAGE + SC_LG_NGROUP)) * SC_NGROUP		\
227     + SC_NGROUP - 1)
228 
229 /*
230  * We declare a size class is binnable if size < page size * group. Or, in other
231  * words, lg(size) < lg(page size) + lg(group size).
232  */
233 #define SC_NBINS (							\
234     /* Sub-regular size classes. */					\
235     SC_NTINY + SC_NPSEUDO						\
236     /* Groups with lg_regular_min_base <= lg_base <= lg_base_max */	\
237     + SC_NGROUP * (LG_PAGE + SC_LG_NGROUP - SC_LG_FIRST_REGULAR_BASE)	\
238     /* Last SC of the last group hits the bound exactly; exclude it. */	\
239     - 1)
240 
241 /*
242  * The size2index_tab lookup table uses uint8_t to encode each bin index, so we
243  * cannot support more than 256 small size classes.
244  */
245 #if (SC_NBINS > 256)
246 #  error "Too many small size classes"
247 #endif
248 
249 /* The largest size class in the lookup table, and its binary log. */
250 #define SC_LG_MAX_LOOKUP 12
251 #define SC_LOOKUP_MAXCLASS (1 << SC_LG_MAX_LOOKUP)
252 
253 /* Internal, only used for the definition of SC_SMALL_MAXCLASS. */
254 #define SC_SMALL_MAX_BASE (1 << (LG_PAGE + SC_LG_NGROUP - 1))
255 #define SC_SMALL_MAX_DELTA (1 << (LG_PAGE - 1))
256 
257 /* The largest size class allocated out of a slab. */
258 #define SC_SMALL_MAXCLASS (SC_SMALL_MAX_BASE				\
259     + (SC_NGROUP - 1) * SC_SMALL_MAX_DELTA)
260 
261 /* The fastpath assumes all lookup-able sizes are small. */
262 #if (SC_SMALL_MAXCLASS < SC_LOOKUP_MAXCLASS)
263 #  error "Lookup table sizes must be small"
264 #endif
265 
266 /* The smallest size class not allocated out of a slab. */
267 #define SC_LARGE_MINCLASS ((size_t)1ULL << (LG_PAGE + SC_LG_NGROUP))
268 #define SC_LG_LARGE_MINCLASS (LG_PAGE + SC_LG_NGROUP)
269 
270 /* Internal; only used for the definition of SC_LARGE_MAXCLASS. */
271 #define SC_MAX_BASE ((size_t)1 << (SC_PTR_BITS - 2))
272 #define SC_MAX_DELTA ((size_t)1 << (SC_PTR_BITS - 2 - SC_LG_NGROUP))
273 
274 /* The largest size class supported. */
275 #define SC_LARGE_MAXCLASS (SC_MAX_BASE + (SC_NGROUP - 1) * SC_MAX_DELTA)
276 
277 /* Maximum number of regions in one slab. */
278 #ifndef CONFIG_LG_SLAB_MAXREGS
279 #  define SC_LG_SLAB_MAXREGS (LG_PAGE - SC_LG_TINY_MIN)
280 #else
281 #  if CONFIG_LG_SLAB_MAXREGS < (LG_PAGE - SC_LG_TINY_MIN)
282 #    error "Unsupported SC_LG_SLAB_MAXREGS"
283 #  else
284 #    define SC_LG_SLAB_MAXREGS CONFIG_LG_SLAB_MAXREGS
285 #  endif
286 #endif
287 
288 #define SC_SLAB_MAXREGS (1U << SC_LG_SLAB_MAXREGS)
289 
290 typedef struct sc_s sc_t;
291 struct sc_s {
292 	/* Size class index, or -1 if not a valid size class. */
293 	int index;
294 	/* Lg group base size (no deltas added). */
295 	int lg_base;
296 	/* Lg delta to previous size class. */
297 	int lg_delta;
298 	/* Delta multiplier.  size == 1<<lg_base + ndelta<<lg_delta */
299 	int ndelta;
300 	/*
301 	 * True if the size class is a multiple of the page size, false
302 	 * otherwise.
303 	 */
304 	bool psz;
305 	/*
306 	 * True if the size class is a small, bin, size class. False otherwise.
307 	 */
308 	bool bin;
309 	/* The slab page count if a small bin size class, 0 otherwise. */
310 	int pgs;
311 	/* Same as lg_delta if a lookup table size class, 0 otherwise. */
312 	int lg_delta_lookup;
313 };
314 
315 typedef struct sc_data_s sc_data_t;
316 struct sc_data_s {
317 	/* Number of tiny size classes. */
318 	unsigned ntiny;
319 	/* Number of bins supported by the lookup table. */
320 	int nlbins;
321 	/* Number of small size class bins. */
322 	int nbins;
323 	/* Number of size classes. */
324 	int nsizes;
325 	/* Number of bits required to store NSIZES. */
326 	int lg_ceil_nsizes;
327 	/* Number of size classes that are a multiple of (1U << LG_PAGE). */
328 	unsigned npsizes;
329 	/* Lg of maximum tiny size class (or -1, if none). */
330 	int lg_tiny_maxclass;
331 	/* Maximum size class included in lookup table. */
332 	size_t lookup_maxclass;
333 	/* Maximum small size class. */
334 	size_t small_maxclass;
335 	/* Lg of minimum large size class. */
336 	int lg_large_minclass;
337 	/* The minimum large size class. */
338 	size_t large_minclass;
339 	/* Maximum (large) size class. */
340 	size_t large_maxclass;
341 	/* True if the sc_data_t has been initialized (for debugging only). */
342 	bool initialized;
343 
344 	sc_t sc[SC_NSIZES];
345 };
346 
347 size_t reg_size_compute(int lg_base, int lg_delta, int ndelta);
348 void sc_data_init(sc_data_t *data);
349 /*
350  * Updates slab sizes in [begin, end] to be pgs pages in length, if possible.
351  * Otherwise, does its best to accommodate the request.
352  */
353 void sc_data_update_slab_size(sc_data_t *data, size_t begin, size_t end,
354     int pgs);
355 void sc_boot(sc_data_t *data);
356 
357 #endif /* JEMALLOC_INTERNAL_SC_H */
358