1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 * Copyright 2014 Toomas Soome <tsoome@me.com>
26 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
27 * Copyright 2019 Joyent, Inc.
28 * Copyright 2022 Jason King
29 * Copyright 2024 MNX Cloud, Inc.
30 */
31
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <errno.h>
35 #include <strings.h>
36 #include <unistd.h>
37 #include <smbios.h>
38 #include <uuid/uuid.h>
39 #include <libintl.h>
40 #include <sys/debug.h>
41 #include <sys/types.h>
42 #include <sys/dkio.h>
43 #include <sys/vtoc.h>
44 #include <sys/mhd.h>
45 #include <sys/param.h>
46 #include <sys/dktp/fdisk.h>
47 #include <sys/efi_partition.h>
48 #include <sys/byteorder.h>
49 #include <sys/ddi.h>
50
51 /*
52 * The original conversion array used simple array index, but since
53 * we do need to take account of VTOC tag numbers from other systems,
54 * we need to provide tag values too, or the array will grow too large.
55 *
56 * Still we will fabricate the missing p_tag values.
57 */
58 static struct uuid_to_ptag {
59 struct uuid uuid;
60 ushort_t p_tag;
61 } conversion_array[] = {
62 { EFI_UNUSED, V_UNASSIGNED },
63 { EFI_BOOT, V_BOOT },
64 { EFI_ROOT, V_ROOT },
65 { EFI_SWAP, V_SWAP },
66 { EFI_USR, V_USR },
67 { EFI_BACKUP, V_BACKUP },
68 { EFI_VAR, V_VAR },
69 { EFI_HOME, V_HOME },
70 { EFI_ALTSCTR, V_ALTSCTR },
71 { EFI_RESERVED, V_RESERVED },
72 { EFI_SYSTEM, V_SYSTEM }, /* V_SYSTEM is 0xc */
73 { EFI_LEGACY_MBR, 0x10 },
74 { EFI_SYMC_PUB, 0x11 },
75 { EFI_SYMC_CDS, 0x12 },
76 { EFI_MSFT_RESV, 0x13 },
77 { EFI_DELL_BASIC, 0x14 },
78 { EFI_DELL_RAID, 0x15 },
79 { EFI_DELL_SWAP, 0x16 },
80 { EFI_DELL_LVM, 0x17 },
81 { EFI_DELL_RESV, 0x19 },
82 { EFI_AAPL_HFS, 0x1a },
83 { EFI_AAPL_UFS, 0x1b },
84 { EFI_AAPL_ZFS, 0x1c },
85 { EFI_AAPL_APFS, 0x1d },
86 { EFI_BIOS_BOOT, V_BIOS_BOOT }, /* V_BIOS_BOOT is 0x18 */
87 { EFI_FREEBSD_BOOT, V_FREEBSD_BOOT },
88 { EFI_FREEBSD_SWAP, V_FREEBSD_SWAP },
89 { EFI_FREEBSD_UFS, V_FREEBSD_UFS },
90 { EFI_FREEBSD_VINUM, V_FREEBSD_VINUM },
91 { EFI_FREEBSD_ZFS, V_FREEBSD_ZFS },
92 { EFI_FREEBSD_NANDFS, V_FREEBSD_NANDFS }
93 };
94
95 /*
96 * Default vtoc information for non-SVr4 partitions
97 */
98 struct dk_map2 default_vtoc_map[NDKMAP] = {
99 { V_ROOT, 0 }, /* a - 0 */
100 { V_SWAP, V_UNMNT }, /* b - 1 */
101 { V_BACKUP, V_UNMNT }, /* c - 2 */
102 { V_UNASSIGNED, 0 }, /* d - 3 */
103 { V_UNASSIGNED, 0 }, /* e - 4 */
104 { V_UNASSIGNED, 0 }, /* f - 5 */
105 { V_USR, 0 }, /* g - 6 */
106 { V_UNASSIGNED, 0 }, /* h - 7 */
107
108 #if defined(_SUNOS_VTOC_16)
109
110 #if defined(i386) || defined(__amd64)
111 { V_BOOT, V_UNMNT }, /* i - 8 */
112 { V_ALTSCTR, 0 }, /* j - 9 */
113
114 #else
115 #error No VTOC format defined.
116 #endif /* defined(i386) */
117
118 { V_UNASSIGNED, 0 }, /* k - 10 */
119 { V_UNASSIGNED, 0 }, /* l - 11 */
120 { V_UNASSIGNED, 0 }, /* m - 12 */
121 { V_UNASSIGNED, 0 }, /* n - 13 */
122 { V_UNASSIGNED, 0 }, /* o - 14 */
123 { V_UNASSIGNED, 0 }, /* p - 15 */
124 #endif /* defined(_SUNOS_VTOC_16) */
125 };
126
127 #ifdef DEBUG
128 int efi_debug = 1;
129 #else
130 int efi_debug = 0;
131 #endif
132
133 #define EFI_FIXES_DB "/usr/share/hwdata/efi.fixes"
134
135 extern unsigned int efi_crc32(const unsigned char *, unsigned int);
136 static int efi_read(int, struct dk_gpt *);
137
138 static int
read_disk_info(int fd,diskaddr_t * capacity,uint_t * lbsize)139 read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize)
140 {
141 struct dk_minfo disk_info;
142
143 if ((ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info)) == -1)
144 return (errno);
145 *capacity = disk_info.dki_capacity;
146 *lbsize = disk_info.dki_lbsize;
147 return (0);
148 }
149
150 /*
151 * the number of blocks the EFI label takes up (round up to nearest
152 * block)
153 */
154 #define NBLOCKS(p, l) (1 + ((((p) * (int)sizeof (efi_gpe_t)) + \
155 ((l) - 1)) / (l)))
156 /* number of partitions -- limited by what we can malloc */
157 #define MAX_PARTS ((4294967295UL - sizeof (struct dk_gpt)) / \
158 sizeof (struct dk_part))
159
160 /*
161 * The EFI reserved partition size is 8 MiB. This calculates the number of
162 * sectors required to store 8 MiB, taking into account the device's sector
163 * size.
164 */
165 uint_t
efi_reserved_sectors(dk_gpt_t * efi)166 efi_reserved_sectors(dk_gpt_t *efi)
167 {
168 /* roundup to sector size */
169 return ((EFI_MIN_RESV_SIZE * DEV_BSIZE + efi->efi_lbasize - 1) /
170 efi->efi_lbasize);
171 }
172
173 int
efi_alloc_and_init(int fd,uint32_t nparts,struct dk_gpt ** vtoc)174 efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc)
175 {
176 diskaddr_t capacity;
177 uint_t lbsize;
178 uint_t nblocks;
179 size_t length;
180 struct dk_gpt *vptr;
181 struct uuid uuid;
182
183 if (read_disk_info(fd, &capacity, &lbsize) != 0) {
184 if (efi_debug)
185 (void) fprintf(stderr,
186 "couldn't read disk information\n");
187 return (-1);
188 }
189
190 nblocks = NBLOCKS(nparts, lbsize);
191 if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) {
192 /* 16K plus one block for the GPT */
193 nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1;
194 }
195
196 if (nparts > MAX_PARTS) {
197 if (efi_debug) {
198 (void) fprintf(stderr,
199 "the maximum number of partitions supported is %lu\n",
200 MAX_PARTS);
201 }
202 return (-1);
203 }
204
205 length = sizeof (struct dk_gpt) +
206 sizeof (struct dk_part) * (nparts - 1);
207
208 if ((*vtoc = calloc(1, length)) == NULL)
209 return (-1);
210
211 vptr = *vtoc;
212
213 vptr->efi_version = EFI_VERSION_CURRENT;
214 vptr->efi_lbasize = lbsize;
215 vptr->efi_nparts = nparts;
216 /*
217 * add one block here for the PMBR; on disks with a 512 byte
218 * block size and 128 or fewer partitions, efi_first_u_lba
219 * should work out to "34"
220 */
221 vptr->efi_first_u_lba = nblocks + 1;
222 vptr->efi_last_lba = capacity - 1;
223 vptr->efi_altern_lba = capacity - 1;
224 vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks;
225
226 (void) uuid_generate((uchar_t *)&uuid);
227 UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid);
228 return (0);
229 }
230
231 /*
232 * Read EFI - return partition number upon success.
233 */
234 int
efi_alloc_and_read(int fd,struct dk_gpt ** vtoc)235 efi_alloc_and_read(int fd, struct dk_gpt **vtoc)
236 {
237 int rval;
238 uint32_t nparts;
239 int length;
240 struct mboot *mbr;
241 struct ipart *ipart;
242 diskaddr_t capacity;
243 uint_t lbsize;
244 int i;
245
246 if (read_disk_info(fd, &capacity, &lbsize) != 0)
247 return (VT_ERROR);
248
249 if ((mbr = calloc(1, lbsize)) == NULL)
250 return (VT_ERROR);
251
252 if ((ioctl(fd, DKIOCGMBOOT, (caddr_t)mbr)) == -1) {
253 free(mbr);
254 return (VT_ERROR);
255 }
256
257 if (mbr->signature != MBB_MAGIC) {
258 free(mbr);
259 return (VT_EINVAL);
260 }
261 ipart = (struct ipart *)(uintptr_t)mbr->parts;
262
263 /* Check if we have partition with ID EFI_PMBR */
264 for (i = 0; i < FD_NUMPART; i++) {
265 if (ipart[i].systid == EFI_PMBR)
266 break;
267 }
268 free(mbr);
269 if (i == FD_NUMPART)
270 return (VT_EINVAL);
271
272 /* figure out the number of entries that would fit into 16K */
273 nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t);
274 length = (int) sizeof (struct dk_gpt) +
275 (int) sizeof (struct dk_part) * (nparts - 1);
276 if ((*vtoc = calloc(1, length)) == NULL)
277 return (VT_ERROR);
278
279 (*vtoc)->efi_nparts = nparts;
280 rval = efi_read(fd, *vtoc);
281
282 if ((rval == VT_EINVAL) && (*vtoc)->efi_nparts > nparts) {
283 void *tmp;
284 length = (int) sizeof (struct dk_gpt) +
285 (int) sizeof (struct dk_part) *
286 ((*vtoc)->efi_nparts - 1);
287 nparts = (*vtoc)->efi_nparts;
288 if ((tmp = realloc(*vtoc, length)) == NULL) {
289 free (*vtoc);
290 *vtoc = NULL;
291 return (VT_ERROR);
292 } else {
293 *vtoc = tmp;
294 rval = efi_read(fd, *vtoc);
295 }
296 }
297
298 if (rval < 0) {
299 if (efi_debug) {
300 (void) fprintf(stderr,
301 "read of EFI table failed, rval=%d\n", rval);
302 }
303 free (*vtoc);
304 *vtoc = NULL;
305 }
306
307 return (rval);
308 }
309
310 static int
efi_ioctl(int fd,int cmd,dk_efi_t * dk_ioc)311 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
312 {
313 void *data = dk_ioc->dki_data;
314 int error;
315
316 dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data;
317 error = ioctl(fd, cmd, (void *)dk_ioc);
318 dk_ioc->dki_data = data;
319
320 return (error);
321 }
322
323 static int
check_label(int fd,dk_efi_t * dk_ioc)324 check_label(int fd, dk_efi_t *dk_ioc)
325 {
326 efi_gpt_t *efi;
327 uint_t crc;
328
329 if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) {
330 switch (errno) {
331 case EIO:
332 return (VT_EIO);
333 default:
334 return (VT_ERROR);
335 }
336 }
337 efi = dk_ioc->dki_data;
338 if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) {
339 if (efi_debug)
340 (void) fprintf(stderr,
341 "Bad EFI signature: 0x%llx != 0x%llx\n",
342 (long long)efi->efi_gpt_Signature,
343 (long long)LE_64(EFI_SIGNATURE));
344 return (VT_EINVAL);
345 }
346
347 /*
348 * check CRC of the header; the size of the header should
349 * never be larger than one block
350 */
351 crc = efi->efi_gpt_HeaderCRC32;
352 efi->efi_gpt_HeaderCRC32 = 0;
353
354 if (((len_t)LE_32(efi->efi_gpt_HeaderSize) > dk_ioc->dki_length) ||
355 crc != LE_32(efi_crc32((unsigned char *)efi,
356 LE_32(efi->efi_gpt_HeaderSize)))) {
357 if (efi_debug)
358 (void) fprintf(stderr,
359 "Bad EFI CRC: 0x%x != 0x%x\n",
360 crc, LE_32(efi_crc32((unsigned char *)efi,
361 LE_32(efi->efi_gpt_HeaderSize))));
362 return (VT_EINVAL);
363 }
364
365 return (0);
366 }
367
368 static int
efi_read(int fd,struct dk_gpt * vtoc)369 efi_read(int fd, struct dk_gpt *vtoc)
370 {
371 int i, j;
372 int label_len;
373 int rval = 0;
374 int vdc_flag = 0;
375 struct dk_minfo disk_info;
376 dk_efi_t dk_ioc;
377 efi_gpt_t *efi;
378 efi_gpe_t *efi_parts;
379 struct dk_cinfo dki_info;
380 uint32_t user_length;
381 boolean_t legacy_label = B_FALSE;
382
383 /*
384 * get the partition number for this file descriptor.
385 */
386 if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) {
387 if (efi_debug) {
388 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
389 }
390 switch (errno) {
391 case EIO:
392 return (VT_EIO);
393 case EINVAL:
394 return (VT_EINVAL);
395 default:
396 return (VT_ERROR);
397 }
398 }
399
400 if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) &&
401 (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) {
402 /*
403 * The controller and drive name "vdc" (virtual disk client)
404 * indicates a LDoms virtual disk.
405 */
406 vdc_flag++;
407 }
408
409 /* get the LBA size */
410 if (ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info) == -1) {
411 if (efi_debug) {
412 (void) fprintf(stderr,
413 "assuming LBA 512 bytes %d\n",
414 errno);
415 }
416 disk_info.dki_lbsize = DEV_BSIZE;
417 }
418 if (disk_info.dki_lbsize == 0) {
419 if (efi_debug) {
420 (void) fprintf(stderr,
421 "efi_read: assuming LBA 512 bytes\n");
422 }
423 disk_info.dki_lbsize = DEV_BSIZE;
424 }
425 /*
426 * Read the EFI GPT to figure out how many partitions we need
427 * to deal with.
428 */
429 dk_ioc.dki_lba = 1;
430 if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) {
431 label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize;
432 } else {
433 label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) +
434 disk_info.dki_lbsize;
435 if (label_len % disk_info.dki_lbsize) {
436 /* pad to physical sector size */
437 label_len += disk_info.dki_lbsize;
438 label_len &= ~(disk_info.dki_lbsize - 1);
439 }
440 }
441
442 if ((dk_ioc.dki_data = calloc(1, label_len)) == NULL)
443 return (VT_ERROR);
444
445 dk_ioc.dki_length = disk_info.dki_lbsize;
446 user_length = vtoc->efi_nparts;
447 efi = dk_ioc.dki_data;
448 if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) {
449 /*
450 * No valid label here; try the alternate. Note that here
451 * we just read GPT header and save it into dk_ioc.data,
452 * Later, we will read GUID partition entry array if we
453 * can get valid GPT header.
454 */
455
456 /*
457 * This is a workaround for legacy systems. In the past, the
458 * last sector of SCSI disk was invisible on x86 platform. At
459 * that time, backup label was saved on the next to the last
460 * sector. It is possible for users to move a disk from previous
461 * solaris system to present system. Here, we attempt to search
462 * legacy backup EFI label first.
463 */
464 dk_ioc.dki_lba = disk_info.dki_capacity - 2;
465 dk_ioc.dki_length = disk_info.dki_lbsize;
466 rval = check_label(fd, &dk_ioc);
467 if (rval == VT_EINVAL) {
468 /*
469 * we didn't find legacy backup EFI label, try to
470 * search backup EFI label in the last block.
471 */
472 dk_ioc.dki_lba = disk_info.dki_capacity - 1;
473 dk_ioc.dki_length = disk_info.dki_lbsize;
474 rval = check_label(fd, &dk_ioc);
475 if (rval == 0) {
476 legacy_label = B_TRUE;
477 if (efi_debug)
478 (void) fprintf(stderr,
479 "efi_read: primary label corrupt; "
480 "using EFI backup label located on"
481 " the last block\n");
482 }
483 } else {
484 if ((efi_debug) && (rval == 0))
485 (void) fprintf(stderr, "efi_read: primary label"
486 " corrupt; using legacy EFI backup label "
487 " located on the next to last block\n");
488 }
489
490 if (rval == 0) {
491 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
492 vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT;
493 vtoc->efi_nparts =
494 LE_32(efi->efi_gpt_NumberOfPartitionEntries);
495 /*
496 * Partition tables are between backup GPT header
497 * table and ParitionEntryLBA (the starting LBA of
498 * the GUID partition entries array). Now that we
499 * already got valid GPT header and saved it in
500 * dk_ioc.dki_data, we try to get GUID partition
501 * entry array here.
502 */
503 /* LINTED */
504 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
505 + disk_info.dki_lbsize);
506 if (legacy_label)
507 dk_ioc.dki_length = disk_info.dki_capacity - 1 -
508 dk_ioc.dki_lba;
509 else
510 dk_ioc.dki_length = disk_info.dki_capacity - 2 -
511 dk_ioc.dki_lba;
512 dk_ioc.dki_length *= disk_info.dki_lbsize;
513 if (dk_ioc.dki_length >
514 ((len_t)label_len - sizeof (*dk_ioc.dki_data))) {
515 rval = VT_EINVAL;
516 } else {
517 /*
518 * read GUID partition entry array
519 */
520 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
521 }
522 }
523
524 } else if (rval == 0) {
525
526 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
527 /* LINTED */
528 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
529 + disk_info.dki_lbsize);
530 dk_ioc.dki_length = label_len - disk_info.dki_lbsize;
531 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
532
533 } else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) {
534 /*
535 * When the device is a LDoms virtual disk, the DKIOCGETEFI
536 * ioctl can fail with EINVAL if the virtual disk backend
537 * is a ZFS volume serviced by a domain running an old version
538 * of Solaris. This is because the DKIOCGETEFI ioctl was
539 * initially incorrectly implemented for a ZFS volume and it
540 * expected the GPT and GPE to be retrieved with a single ioctl.
541 * So we try to read the GPT and the GPE using that old style
542 * ioctl.
543 */
544 dk_ioc.dki_lba = 1;
545 dk_ioc.dki_length = label_len;
546 rval = check_label(fd, &dk_ioc);
547 }
548
549 if (rval < 0) {
550 free(efi);
551 return (rval);
552 }
553
554 /* LINTED -- always longlong aligned */
555 efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize);
556
557 /*
558 * Assemble this into a "dk_gpt" struct for easier
559 * digestibility by applications.
560 */
561 vtoc->efi_version = LE_32(efi->efi_gpt_Revision);
562 vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries);
563 vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry);
564 vtoc->efi_lbasize = disk_info.dki_lbsize;
565 vtoc->efi_last_lba = disk_info.dki_capacity - 1;
566 vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA);
567 vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA);
568 vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA);
569 UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID);
570
571 /*
572 * If the array the user passed in is too small, set the length
573 * to what it needs to be and return
574 */
575 if (user_length < vtoc->efi_nparts) {
576 return (VT_EINVAL);
577 }
578
579 for (i = 0; i < vtoc->efi_nparts; i++) {
580
581 UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid,
582 efi_parts[i].efi_gpe_PartitionTypeGUID);
583
584 for (j = 0;
585 j < sizeof (conversion_array)
586 / sizeof (struct uuid_to_ptag); j++) {
587
588 if (bcmp(&vtoc->efi_parts[i].p_guid,
589 &conversion_array[j].uuid,
590 sizeof (struct uuid)) == 0) {
591 vtoc->efi_parts[i].p_tag =
592 conversion_array[j].p_tag;
593 break;
594 }
595 }
596 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
597 continue;
598 vtoc->efi_parts[i].p_flag =
599 LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs);
600 vtoc->efi_parts[i].p_start =
601 LE_64(efi_parts[i].efi_gpe_StartingLBA);
602 vtoc->efi_parts[i].p_size =
603 LE_64(efi_parts[i].efi_gpe_EndingLBA) -
604 vtoc->efi_parts[i].p_start + 1;
605 for (j = 0; j < EFI_PART_NAME_LEN; j++) {
606 vtoc->efi_parts[i].p_name[j] =
607 (uchar_t)LE_16(
608 efi_parts[i].efi_gpe_PartitionName[j]);
609 }
610
611 UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid,
612 efi_parts[i].efi_gpe_UniquePartitionGUID);
613 }
614 free(efi);
615
616 return (dki_info.dki_partition);
617 }
618
619 static void
hardware_workarounds(int * slot,int * active)620 hardware_workarounds(int *slot, int *active)
621 {
622 smbios_struct_t s_sys, s_mb;
623 smbios_info_t sys, mb;
624 smbios_hdl_t *shp;
625 char buf[0x400];
626 FILE *fp;
627 int err;
628
629 if ((fp = fopen(EFI_FIXES_DB, "rF")) == NULL)
630 return;
631
632 if ((shp = smbios_open(NULL, SMB_VERSION, 0, &err)) == NULL) {
633 if (efi_debug)
634 (void) fprintf(stderr,
635 "libefi failed to load SMBIOS: %s\n",
636 smbios_errmsg(err));
637 (void) fclose(fp);
638 return;
639 }
640
641 if (smbios_lookup_type(shp, SMB_TYPE_SYSTEM, &s_sys) == SMB_ERR ||
642 smbios_info_common(shp, s_sys.smbstr_id, &sys) == SMB_ERR)
643 (void) memset(&sys, '\0', sizeof (sys));
644 if (smbios_lookup_type(shp, SMB_TYPE_BASEBOARD, &s_mb) == SMB_ERR ||
645 smbios_info_common(shp, s_mb.smbstr_id, &mb) == SMB_ERR)
646 (void) memset(&mb, '\0', sizeof (mb));
647
648 while (fgets(buf, sizeof (buf), fp) != NULL) {
649 char *tok, *val, *end;
650
651 tok = buf + strspn(buf, " \t");
652 if (*tok == '#')
653 continue;
654 while (*tok != '\0') {
655 tok += strspn(tok, " \t");
656 if ((val = strchr(tok, '=')) == NULL)
657 break;
658 *val++ = '\0';
659 if (*val == '"')
660 end = strchr(++val, '"');
661 else
662 end = strpbrk(val, " \t\n");
663 if (end == NULL)
664 break;
665 *end++ = '\0';
666
667 if (strcmp(tok, "sys.manufacturer") == 0 &&
668 (sys.smbi_manufacturer == NULL ||
669 strcasecmp(val, sys.smbi_manufacturer)))
670 break;
671 if (strcmp(tok, "sys.product") == 0 &&
672 (sys.smbi_product == NULL ||
673 strcasecmp(val, sys.smbi_product)))
674 break;
675 if (strcmp(tok, "sys.version") == 0 &&
676 (sys.smbi_version == NULL ||
677 strcasecmp(val, sys.smbi_version)))
678 break;
679 if (strcmp(tok, "mb.manufacturer") == 0 &&
680 (mb.smbi_manufacturer == NULL ||
681 strcasecmp(val, mb.smbi_manufacturer)))
682 break;
683 if (strcmp(tok, "mb.product") == 0 &&
684 (mb.smbi_product == NULL ||
685 strcasecmp(val, mb.smbi_product)))
686 break;
687 if (strcmp(tok, "mb.version") == 0 &&
688 (mb.smbi_version == NULL ||
689 strcasecmp(val, mb.smbi_version)))
690 break;
691
692 if (strcmp(tok, "pmbr_slot") == 0) {
693 *slot = atoi(val);
694 if (*slot < 0 || *slot > 3)
695 *slot = 0;
696 if (efi_debug)
697 (void) fprintf(stderr,
698 "Using slot %d\n", *slot);
699 }
700
701 if (strcmp(tok, "pmbr_active") == 0) {
702 *active = atoi(val);
703 if (*active < 0 || *active > 1)
704 *active = 0;
705 if (efi_debug)
706 (void) fprintf(stderr,
707 "Using active %d\n", *active);
708 }
709
710 tok = end;
711 }
712 }
713 (void) fclose(fp);
714 smbios_close(shp);
715 }
716
717 /* writes a "protective" MBR */
718 static int
write_pmbr(int fd,struct dk_gpt * vtoc)719 write_pmbr(int fd, struct dk_gpt *vtoc)
720 {
721 dk_efi_t dk_ioc;
722 struct mboot mb;
723 uchar_t *cp;
724 diskaddr_t size_in_lba;
725 uchar_t *buf;
726 int len, slot, active;
727
728 slot = active = 0;
729
730 hardware_workarounds(&slot, &active);
731
732 len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize;
733 buf = calloc(1, len);
734
735 /*
736 * Preserve any boot code and disk signature if the first block is
737 * already an MBR.
738 */
739 dk_ioc.dki_lba = 0;
740 dk_ioc.dki_length = len;
741 /* LINTED -- always longlong aligned */
742 dk_ioc.dki_data = (efi_gpt_t *)buf;
743 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
744 (void) memcpy(&mb, buf, sizeof (mb));
745 bzero(&mb, sizeof (mb));
746 mb.signature = LE_16(MBB_MAGIC);
747 } else {
748 (void) memcpy(&mb, buf, sizeof (mb));
749 if (mb.signature != LE_16(MBB_MAGIC)) {
750 bzero(&mb, sizeof (mb));
751 mb.signature = LE_16(MBB_MAGIC);
752 }
753 }
754
755 bzero(&mb.parts, sizeof (mb.parts));
756 cp = (uchar_t *)&mb.parts[slot * sizeof (struct ipart)];
757 /* bootable or not */
758 *cp++ = active ? ACTIVE : NOTACTIVE;
759 /* beginning CHS; same as starting LBA (but one-based) */
760 *cp++ = 0x0;
761 *cp++ = 0x2;
762 *cp++ = 0x0;
763 /* OS type */
764 *cp++ = EFI_PMBR;
765 /* ending CHS; 0xffffff if not representable */
766 *cp++ = 0xff;
767 *cp++ = 0xff;
768 *cp++ = 0xff;
769 /* starting LBA: 1 (little endian format) by EFI definition */
770 *cp++ = 0x01;
771 *cp++ = 0x00;
772 *cp++ = 0x00;
773 *cp++ = 0x00;
774 /* ending LBA: last block on the disk (little endian format) */
775 size_in_lba = vtoc->efi_last_lba;
776 if (size_in_lba < 0xffffffff) {
777 *cp++ = (size_in_lba & 0x000000ff);
778 *cp++ = (size_in_lba & 0x0000ff00) >> 8;
779 *cp++ = (size_in_lba & 0x00ff0000) >> 16;
780 *cp++ = (size_in_lba & 0xff000000) >> 24;
781 } else {
782 *cp++ = 0xff;
783 *cp++ = 0xff;
784 *cp++ = 0xff;
785 *cp++ = 0xff;
786 }
787
788 (void) memcpy(buf, &mb, sizeof (mb));
789 /* LINTED -- always longlong aligned */
790 dk_ioc.dki_data = (efi_gpt_t *)buf;
791 dk_ioc.dki_lba = 0;
792 dk_ioc.dki_length = len;
793 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
794 free(buf);
795 switch (errno) {
796 case EIO:
797 return (VT_EIO);
798 case EINVAL:
799 return (VT_EINVAL);
800 default:
801 return (VT_ERROR);
802 }
803 }
804 free(buf);
805 return (0);
806 }
807
808 /* make sure the user specified something reasonable */
809 static int
check_input(struct dk_gpt * vtoc)810 check_input(struct dk_gpt *vtoc)
811 {
812 int resv_part = -1;
813 int i, j;
814 diskaddr_t istart, jstart, isize, jsize, endsect;
815
816 /*
817 * Sanity-check the input (make sure no partitions overlap)
818 */
819 for (i = 0; i < vtoc->efi_nparts; i++) {
820 /* It can't be unassigned and have an actual size */
821 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
822 (vtoc->efi_parts[i].p_size != 0)) {
823 if (efi_debug) {
824 (void) fprintf(stderr,
825 "partition %d is \"unassigned\" but has a size of %llu",
826 i,
827 vtoc->efi_parts[i].p_size);
828 }
829 return (VT_EINVAL);
830 }
831 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
832 if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
833 continue;
834 /* we have encountered an unknown uuid */
835 vtoc->efi_parts[i].p_tag = 0xff;
836 }
837 if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
838 if (resv_part != -1) {
839 if (efi_debug) {
840 (void) fprintf(stderr,
841 "found duplicate reserved partition at %d\n",
842 i);
843 }
844 return (VT_EINVAL);
845 }
846 resv_part = i;
847 }
848 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
849 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
850 if (efi_debug) {
851 (void) fprintf(stderr,
852 "Partition %d starts at %llu. ",
853 i,
854 vtoc->efi_parts[i].p_start);
855 (void) fprintf(stderr,
856 "It must be between %llu and %llu.\n",
857 vtoc->efi_first_u_lba,
858 vtoc->efi_last_u_lba);
859 }
860 return (VT_EINVAL);
861 }
862 if ((vtoc->efi_parts[i].p_start +
863 vtoc->efi_parts[i].p_size <
864 vtoc->efi_first_u_lba) ||
865 (vtoc->efi_parts[i].p_start +
866 vtoc->efi_parts[i].p_size >
867 vtoc->efi_last_u_lba + 1)) {
868 if (efi_debug) {
869 (void) fprintf(stderr,
870 "Partition %d ends at %llu. ",
871 i,
872 vtoc->efi_parts[i].p_start +
873 vtoc->efi_parts[i].p_size);
874 (void) fprintf(stderr,
875 "It must be between %llu and %llu.\n",
876 vtoc->efi_first_u_lba,
877 vtoc->efi_last_u_lba);
878 }
879 return (VT_EINVAL);
880 }
881
882 for (j = 0; j < vtoc->efi_nparts; j++) {
883 isize = vtoc->efi_parts[i].p_size;
884 jsize = vtoc->efi_parts[j].p_size;
885 istart = vtoc->efi_parts[i].p_start;
886 jstart = vtoc->efi_parts[j].p_start;
887 if ((i != j) && (isize != 0) && (jsize != 0)) {
888 endsect = jstart + jsize -1;
889 if ((jstart <= istart) &&
890 (istart <= endsect)) {
891 if (efi_debug) {
892 (void) fprintf(stderr,
893 "Partition %d overlaps partition %d.",
894 i, j);
895 }
896 return (VT_EINVAL);
897 }
898 }
899 }
900 }
901 /* just a warning for now */
902 if ((resv_part == -1) && efi_debug) {
903 (void) fprintf(stderr,
904 "no reserved partition found\n");
905 }
906 return (0);
907 }
908
909 /*
910 * Set *lastp_p to the last non-reserved partition with the last (highest)
911 * LBA (and set *last_lbap to the last used LBA). We also will fail if the
912 * partition layout isn't as expected (reserved partiton last, no overlap
913 * with the last partiton).
914 */
915 static int
efi_use_whole_disk_get_last(struct dk_gpt * l,struct dk_part ** lastp_p,diskaddr_t * last_lbap)916 efi_use_whole_disk_get_last(struct dk_gpt *l, struct dk_part **lastp_p,
917 diskaddr_t *last_lbap)
918 {
919 struct dk_part *last_p = NULL;
920 struct dk_part *resv_p = NULL;
921 diskaddr_t last_ulba = 0;
922 uint_t i;
923
924 if (l->efi_nparts < 2) {
925 if (efi_debug) {
926 (void) fprintf(stderr, "%s: too few (%u) partitions",
927 __func__, l->efi_nparts);
928 }
929 return (-1);
930 }
931
932 /*
933 * Look for the last (highest) used LBA. We ignore the last
934 * (efi_nparts - 1) partition since that should be the reserved
935 * partition (which is checked later).
936 */
937 for (i = 0; i < l->efi_nparts - 1; i++) {
938 struct dk_part *p = &l->efi_parts[i];
939 diskaddr_t end;
940
941 if (p->p_tag == V_RESERVED) {
942 if (efi_debug) {
943 /*
944 * Output the error message now so we can
945 * indicate which partition is the problem.
946 * We'll return failure later.
947 */
948 (void) fprintf(stderr, "%s: reserved partition "
949 "found at unexpected position (%u)\n",
950 __func__, i);
951 }
952 return (-1);
953 }
954
955 /* Ignore empty partitions */
956 if (p->p_size == 0)
957 continue;
958
959 end = p->p_start + p->p_size - 1;
960 if (last_ulba < end) {
961 last_p = p;
962 last_ulba = end;
963 }
964 }
965
966 if (l->efi_parts[l->efi_nparts - 1].p_tag != V_RESERVED) {
967 if (efi_debug) {
968 (void) fprintf(stderr, "%s: no reserved partition\n",
969 __func__);
970 }
971 return (-1);
972 }
973
974 resv_p = &l->efi_parts[l->efi_nparts - 1];
975
976 /*
977 * The reserved partition should start after the last (highest)
978 * LBA used by any other partition.
979 */
980 if (resv_p->p_start <= last_ulba) {
981 if (efi_debug) {
982 (void) fprintf(stderr, "%s: reserved partition not "
983 "after other partitions\n", __func__);
984 }
985 return (-1);
986 }
987
988 *lastp_p = last_p;
989 *last_lbap = last_ulba;
990 return (0);
991 }
992
993 /*
994 * add all the unallocated space to the current label
995 */
996 int
efi_use_whole_disk(int fd)997 efi_use_whole_disk(int fd)
998 {
999 struct dk_gpt *efi_label;
1000 struct dk_part *resv_p = NULL;
1001 struct dk_part *last_p = NULL;
1002 diskaddr_t last_lba = 0;
1003 int rval;
1004 uint_t nblocks;
1005 boolean_t save = B_FALSE;
1006
1007 rval = efi_alloc_and_read(fd, &efi_label);
1008 if (rval < 0) {
1009 return (rval);
1010 }
1011
1012 rval = efi_use_whole_disk_get_last(efi_label, &last_p, &last_lba);
1013 if (rval < 0) {
1014 efi_free(efi_label);
1015 return (VT_EINVAL);
1016 }
1017 resv_p = &efi_label->efi_parts[efi_label->efi_nparts - 1];
1018 ASSERT3U(resv_p->p_tag, ==, V_RESERVED);
1019
1020 /*
1021 * If we aren't using the backup label (efi_altern_lba == 1)
1022 * and the backup label isn't at the end of the disk, move the backup
1023 * label to the end of the disk. efi_read() sets efi_last_lba based
1024 * on the capacity of the disk, so we don't need to re-read the
1025 * capacity again to get the last LBA.
1026 */
1027 if (efi_label->efi_altern_lba != 1 &&
1028 efi_label->efi_altern_lba != efi_label->efi_last_lba) {
1029 efi_label->efi_altern_lba = efi_label->efi_last_lba;
1030 save = B_TRUE;
1031 }
1032
1033 /*
1034 * This is similar to the logic used in efi_alloc_and_init(). Based
1035 * on the number of partitions (and the minimum number of entries
1036 * required for an EFI label), determine the size of the backup label.
1037 */
1038 nblocks = NBLOCKS(efi_label->efi_nparts, efi_label->efi_lbasize);
1039 if ((nblocks * efi_label->efi_lbasize) < EFI_MIN_ARRAY_SIZE +
1040 efi_label->efi_lbasize) {
1041 nblocks = EFI_MIN_ARRAY_SIZE / efi_label->efi_lbasize + 1;
1042 }
1043
1044 /* efi_last_u_lba should be the last LBA before the backup label */
1045 if (efi_label->efi_last_u_lba < efi_label->efi_last_lba - nblocks) {
1046 efi_label->efi_last_u_lba = efi_label->efi_last_lba - nblocks;
1047 save = B_TRUE;
1048 }
1049
1050 /*
1051 * If there is unused space after the reserved partition, move it to
1052 * the end of the disk. There is currently no data in here except
1053 * fabricated devids (which are generated via efi_write()). Therefore,
1054 * there is no need to copy the contents.
1055 */
1056 if (resv_p->p_start + resv_p->p_size - 1 < efi_label->efi_last_u_lba) {
1057 diskaddr_t new_start =
1058 efi_label->efi_last_u_lba - resv_p->p_size + 1;
1059
1060 if (resv_p->p_start > new_start) {
1061 if (efi_debug) {
1062 (void) fprintf(stderr, "%s: reserved partition "
1063 "size mismatch\n", __func__);
1064 }
1065 efi_free(efi_label);
1066 return (VT_EINVAL);
1067 }
1068
1069 resv_p->p_start = new_start;
1070 save = B_TRUE;
1071 }
1072
1073 /*
1074 * If there is space between the last (non-reserved) partition and
1075 * the reserved partition, grow the last partition.
1076 */
1077 if (last_lba < resv_p->p_start) {
1078 last_p->p_size += resv_p->p_start - last_lba - 1;
1079 save = B_TRUE;
1080 }
1081
1082 if (!save) {
1083 efi_free(efi_label);
1084 return (0);
1085 }
1086
1087 rval = efi_write(fd, efi_label);
1088 if (rval < 0) {
1089 if (efi_debug) {
1090 (void) fprintf(stderr,
1091 "efi_use_whole_disk:fail to write label, rval=%d\n",
1092 rval);
1093 }
1094 efi_free(efi_label);
1095 return (rval);
1096 }
1097
1098 efi_free(efi_label);
1099 return (0);
1100 }
1101
1102
1103 /*
1104 * write EFI label and backup label
1105 */
1106 int
efi_write(int fd,struct dk_gpt * vtoc)1107 efi_write(int fd, struct dk_gpt *vtoc)
1108 {
1109 dk_efi_t dk_ioc;
1110 efi_gpt_t *efi;
1111 efi_gpe_t *efi_parts;
1112 int i, j;
1113 struct dk_cinfo dki_info;
1114 int nblocks;
1115 diskaddr_t lba_backup_gpt_hdr;
1116
1117 if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) {
1118 if (efi_debug)
1119 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
1120 switch (errno) {
1121 case EIO:
1122 return (VT_EIO);
1123 case EINVAL:
1124 return (VT_EINVAL);
1125 default:
1126 return (VT_ERROR);
1127 }
1128 }
1129
1130 if (check_input(vtoc))
1131 return (VT_EINVAL);
1132
1133 dk_ioc.dki_lba = 1;
1134 if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) {
1135 dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize;
1136 } else {
1137 dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts,
1138 vtoc->efi_lbasize) *
1139 vtoc->efi_lbasize;
1140 }
1141
1142 /*
1143 * the number of blocks occupied by GUID partition entry array
1144 */
1145 nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1;
1146
1147 /*
1148 * Backup GPT header is located on the block after GUID
1149 * partition entry array. Here, we calculate the address
1150 * for backup GPT header.
1151 */
1152 lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks;
1153 if ((dk_ioc.dki_data = calloc(1, dk_ioc.dki_length)) == NULL)
1154 return (VT_ERROR);
1155
1156 efi = dk_ioc.dki_data;
1157
1158 /* stuff user's input into EFI struct */
1159 efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
1160 efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */
1161 efi->efi_gpt_HeaderSize = LE_32(EFI_HEADER_SIZE);
1162 efi->efi_gpt_Reserved1 = 0;
1163 efi->efi_gpt_MyLBA = LE_64(1ULL);
1164 efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr);
1165 efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba);
1166 efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba);
1167 efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
1168 efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts);
1169 efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe));
1170 UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid);
1171
1172 /* LINTED -- always longlong aligned */
1173 efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize);
1174
1175 for (i = 0; i < vtoc->efi_nparts; i++) {
1176 for (j = 0;
1177 j < sizeof (conversion_array) /
1178 sizeof (struct uuid_to_ptag); j++) {
1179
1180 if (vtoc->efi_parts[i].p_tag ==
1181 conversion_array[j].p_tag) {
1182 UUID_LE_CONVERT(
1183 efi_parts[i].efi_gpe_PartitionTypeGUID,
1184 conversion_array[j].uuid);
1185 break;
1186 }
1187 }
1188
1189 if (j == sizeof (conversion_array) /
1190 sizeof (struct uuid_to_ptag)) {
1191 /*
1192 * If we didn't have a matching uuid match, bail here.
1193 * Don't write a label with unknown uuid.
1194 */
1195 if (efi_debug) {
1196 (void) fprintf(stderr,
1197 "Unknown uuid for p_tag %d\n",
1198 vtoc->efi_parts[i].p_tag);
1199 }
1200 return (VT_EINVAL);
1201 }
1202
1203 efi_parts[i].efi_gpe_StartingLBA =
1204 LE_64(vtoc->efi_parts[i].p_start);
1205 efi_parts[i].efi_gpe_EndingLBA =
1206 LE_64(vtoc->efi_parts[i].p_start +
1207 vtoc->efi_parts[i].p_size - 1);
1208 efi_parts[i].efi_gpe_Attributes.PartitionAttrs =
1209 LE_16(vtoc->efi_parts[i].p_flag);
1210 for (j = 0; j < EFI_PART_NAME_LEN; j++) {
1211 efi_parts[i].efi_gpe_PartitionName[j] =
1212 LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]);
1213 }
1214 if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) &&
1215 uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) {
1216 (void) uuid_generate((uchar_t *)
1217 &vtoc->efi_parts[i].p_uguid);
1218 }
1219 bcopy(&vtoc->efi_parts[i].p_uguid,
1220 &efi_parts[i].efi_gpe_UniquePartitionGUID,
1221 sizeof (uuid_t));
1222 }
1223 efi->efi_gpt_PartitionEntryArrayCRC32 =
1224 LE_32(efi_crc32((unsigned char *)efi_parts,
1225 vtoc->efi_nparts * (int)sizeof (struct efi_gpe)));
1226 efi->efi_gpt_HeaderCRC32 = LE_32(efi_crc32((unsigned char *)efi,
1227 EFI_HEADER_SIZE));
1228
1229 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1230 free(dk_ioc.dki_data);
1231 switch (errno) {
1232 case EIO:
1233 return (VT_EIO);
1234 case EINVAL:
1235 return (VT_EINVAL);
1236 default:
1237 return (VT_ERROR);
1238 }
1239 }
1240
1241 /* write backup partition array */
1242 dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1;
1243 dk_ioc.dki_length -= vtoc->efi_lbasize;
1244 /* LINTED */
1245 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data +
1246 vtoc->efi_lbasize);
1247
1248 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1249 /*
1250 * we wrote the primary label okay, so don't fail
1251 */
1252 if (efi_debug) {
1253 (void) fprintf(stderr,
1254 "write of backup partitions to block %llu "
1255 "failed, errno %d\n",
1256 vtoc->efi_last_u_lba + 1,
1257 errno);
1258 }
1259 }
1260 /*
1261 * now swap MyLBA and AlternateLBA fields and write backup
1262 * partition table header
1263 */
1264 dk_ioc.dki_lba = lba_backup_gpt_hdr;
1265 dk_ioc.dki_length = vtoc->efi_lbasize;
1266 /* LINTED */
1267 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data -
1268 vtoc->efi_lbasize);
1269 efi->efi_gpt_AlternateLBA = LE_64(1ULL);
1270 efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr);
1271 efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1);
1272 efi->efi_gpt_HeaderCRC32 = 0;
1273 efi->efi_gpt_HeaderCRC32 =
1274 LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data, EFI_HEADER_SIZE));
1275
1276 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1277 if (efi_debug) {
1278 (void) fprintf(stderr,
1279 "write of backup header to block %llu failed, "
1280 "errno %d\n",
1281 lba_backup_gpt_hdr,
1282 errno);
1283 }
1284 }
1285 /* write the PMBR */
1286 (void) write_pmbr(fd, vtoc);
1287 free(dk_ioc.dki_data);
1288 return (0);
1289 }
1290
1291 void
efi_free(struct dk_gpt * ptr)1292 efi_free(struct dk_gpt *ptr)
1293 {
1294 free(ptr);
1295 }
1296
1297 /*
1298 * Input: File descriptor
1299 * Output: 1 if disk has an EFI label, or > 2TB with no VTOC or legacy MBR.
1300 * Otherwise 0.
1301 */
1302 int
efi_type(int fd)1303 efi_type(int fd)
1304 {
1305 struct vtoc vtoc;
1306 struct extvtoc extvtoc;
1307
1308 if (ioctl(fd, DKIOCGEXTVTOC, &extvtoc) == -1) {
1309 if (errno == ENOTSUP)
1310 return (1);
1311 else if (errno == ENOTTY) {
1312 if (ioctl(fd, DKIOCGVTOC, &vtoc) == -1)
1313 if (errno == ENOTSUP)
1314 return (1);
1315 }
1316 }
1317 return (0);
1318 }
1319
1320 void
efi_err_check(struct dk_gpt * vtoc)1321 efi_err_check(struct dk_gpt *vtoc)
1322 {
1323 int resv_part = -1;
1324 int i, j;
1325 diskaddr_t istart, jstart, isize, jsize, endsect;
1326 int overlap = 0;
1327 uint_t reserved;
1328
1329 /*
1330 * make sure no partitions overlap
1331 */
1332 reserved = efi_reserved_sectors(vtoc);
1333 for (i = 0; i < vtoc->efi_nparts; i++) {
1334 /* It can't be unassigned and have an actual size */
1335 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
1336 (vtoc->efi_parts[i].p_size != 0)) {
1337 (void) fprintf(stderr,
1338 "partition %d is \"unassigned\" but has a size "
1339 "of %llu\n", i, vtoc->efi_parts[i].p_size);
1340 }
1341 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
1342 continue;
1343 }
1344 if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
1345 if (resv_part != -1) {
1346 (void) fprintf(stderr,
1347 "found duplicate reserved partition at "
1348 "%d\n", i);
1349 }
1350 resv_part = i;
1351 if (vtoc->efi_parts[i].p_size != reserved)
1352 (void) fprintf(stderr,
1353 "Warning: reserved partition size must "
1354 "be %u sectors\n", reserved);
1355 }
1356 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
1357 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
1358 (void) fprintf(stderr,
1359 "Partition %d starts at %llu\n",
1360 i,
1361 vtoc->efi_parts[i].p_start);
1362 (void) fprintf(stderr,
1363 "It must be between %llu and %llu.\n",
1364 vtoc->efi_first_u_lba,
1365 vtoc->efi_last_u_lba);
1366 }
1367 if ((vtoc->efi_parts[i].p_start +
1368 vtoc->efi_parts[i].p_size <
1369 vtoc->efi_first_u_lba) ||
1370 (vtoc->efi_parts[i].p_start +
1371 vtoc->efi_parts[i].p_size >
1372 vtoc->efi_last_u_lba + 1)) {
1373 (void) fprintf(stderr,
1374 "Partition %d ends at %llu\n",
1375 i,
1376 vtoc->efi_parts[i].p_start +
1377 vtoc->efi_parts[i].p_size);
1378 (void) fprintf(stderr,
1379 "It must be between %llu and %llu.\n",
1380 vtoc->efi_first_u_lba,
1381 vtoc->efi_last_u_lba);
1382 }
1383
1384 for (j = 0; j < vtoc->efi_nparts; j++) {
1385 isize = vtoc->efi_parts[i].p_size;
1386 jsize = vtoc->efi_parts[j].p_size;
1387 istart = vtoc->efi_parts[i].p_start;
1388 jstart = vtoc->efi_parts[j].p_start;
1389 if ((i != j) && (isize != 0) && (jsize != 0)) {
1390 endsect = jstart + jsize -1;
1391 if ((jstart <= istart) &&
1392 (istart <= endsect)) {
1393 if (!overlap) {
1394 (void) fprintf(stderr,
1395 "label error: EFI Labels do not "
1396 "support overlapping partitions\n");
1397 }
1398 (void) fprintf(stderr,
1399 "Partition %d overlaps partition "
1400 "%d.\n", i, j);
1401 overlap = 1;
1402 }
1403 }
1404 }
1405 }
1406 /* make sure there is a reserved partition */
1407 if (resv_part == -1) {
1408 (void) fprintf(stderr,
1409 "no reserved partition found\n");
1410 }
1411 }
1412
1413 /*
1414 * We need to get information necessary to construct a *new* efi
1415 * label type
1416 */
1417 int
efi_auto_sense(int fd,struct dk_gpt ** vtoc)1418 efi_auto_sense(int fd, struct dk_gpt **vtoc)
1419 {
1420
1421 int i;
1422
1423 /*
1424 * Now build the default partition table
1425 */
1426 if (efi_alloc_and_init(fd, EFI_NUMPAR, vtoc) != 0) {
1427 if (efi_debug) {
1428 (void) fprintf(stderr, "efi_alloc_and_init failed.\n");
1429 }
1430 return (-1);
1431 }
1432
1433 for (i = 0; i < min((*vtoc)->efi_nparts, V_NUMPAR); i++) {
1434 (*vtoc)->efi_parts[i].p_tag = default_vtoc_map[i].p_tag;
1435 (*vtoc)->efi_parts[i].p_flag = default_vtoc_map[i].p_flag;
1436 (*vtoc)->efi_parts[i].p_start = 0;
1437 (*vtoc)->efi_parts[i].p_size = 0;
1438 }
1439
1440 /* root partition - s0 128 MB */
1441 (*vtoc)->efi_parts[0].p_start =
1442 EFI_MIN_ARRAY_SIZE / (*vtoc)->efi_lbasize + 2;
1443 (*vtoc)->efi_parts[0].p_size =
1444 (128 * 1024 * 1024) / (*vtoc)->efi_lbasize;
1445
1446 /* partition - s1 128 MB */
1447 (*vtoc)->efi_parts[1].p_start = (*vtoc)->efi_parts[0].p_start +
1448 (*vtoc)->efi_parts[0].p_size;
1449 (*vtoc)->efi_parts[1].p_size = (*vtoc)->efi_parts[0].p_size;
1450
1451 /* partition -s2 is NOT the Backup disk */
1452 (*vtoc)->efi_parts[2].p_tag = V_UNASSIGNED;
1453
1454 /* partition -s6 /usr partition - HOG */
1455 (*vtoc)->efi_parts[6].p_start = (*vtoc)->efi_parts[1].p_start +
1456 (*vtoc)->efi_parts[1].p_size;
1457 (*vtoc)->efi_parts[6].p_size = (*vtoc)->efi_last_u_lba + 1 -
1458 (*vtoc)->efi_parts[6].p_start - efi_reserved_sectors(*vtoc);
1459
1460 /* efi reserved partition - s9 16K */
1461 (*vtoc)->efi_parts[8].p_start = (*vtoc)->efi_parts[6].p_start +
1462 (*vtoc)->efi_parts[6].p_size;
1463 (*vtoc)->efi_parts[8].p_size = efi_reserved_sectors(*vtoc);
1464 (*vtoc)->efi_parts[8].p_tag = V_RESERVED;
1465 return (0);
1466 }
1467