xref: /illumos-gate/usr/src/lib/libefi/common/rdwr_efi.c (revision 598dbe53c90a445a2b43d3cca7b209b3e106bb5e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright 2014 Toomas Soome <tsoome@me.com>
26  * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
27  * Copyright 2019 Joyent, Inc.
28  * Copyright 2022 Jason King
29  * Copyright 2024 MNX Cloud, Inc.
30  */
31 
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <errno.h>
35 #include <strings.h>
36 #include <unistd.h>
37 #include <smbios.h>
38 #include <uuid/uuid.h>
39 #include <libintl.h>
40 #include <sys/debug.h>
41 #include <sys/types.h>
42 #include <sys/dkio.h>
43 #include <sys/vtoc.h>
44 #include <sys/mhd.h>
45 #include <sys/param.h>
46 #include <sys/dktp/fdisk.h>
47 #include <sys/efi_partition.h>
48 #include <sys/byteorder.h>
49 #include <sys/ddi.h>
50 
51 /*
52  * The original conversion array used simple array index, but since
53  * we do need to take account of VTOC tag numbers from other systems,
54  * we need to provide tag values too, or the array will grow too large.
55  *
56  * Still we will fabricate the missing p_tag values.
57  */
58 static struct uuid_to_ptag {
59 	struct uuid	uuid;
60 	ushort_t	p_tag;
61 } conversion_array[] = {
62 	{ EFI_UNUSED, V_UNASSIGNED },
63 	{ EFI_BOOT, V_BOOT },
64 	{ EFI_ROOT, V_ROOT },
65 	{ EFI_SWAP, V_SWAP },
66 	{ EFI_USR, V_USR },
67 	{ EFI_BACKUP, V_BACKUP },
68 	{ EFI_VAR, V_VAR },
69 	{ EFI_HOME, V_HOME },
70 	{ EFI_ALTSCTR, V_ALTSCTR },
71 	{ EFI_RESERVED, V_RESERVED },
72 	{ EFI_SYSTEM, V_SYSTEM },		/* V_SYSTEM is 0xc */
73 	{ EFI_LEGACY_MBR, 0x10 },
74 	{ EFI_SYMC_PUB, 0x11 },
75 	{ EFI_SYMC_CDS, 0x12 },
76 	{ EFI_MSFT_RESV, 0x13 },
77 	{ EFI_DELL_BASIC, 0x14 },
78 	{ EFI_DELL_RAID, 0x15 },
79 	{ EFI_DELL_SWAP, 0x16 },
80 	{ EFI_DELL_LVM, 0x17 },
81 	{ EFI_DELL_RESV, 0x19 },
82 	{ EFI_AAPL_HFS, 0x1a },
83 	{ EFI_AAPL_UFS, 0x1b },
84 	{ EFI_AAPL_ZFS, 0x1c },
85 	{ EFI_AAPL_APFS, 0x1d },
86 	{ EFI_BIOS_BOOT, V_BIOS_BOOT },		/* V_BIOS_BOOT is 0x18 */
87 	{ EFI_FREEBSD_BOOT,  V_FREEBSD_BOOT },
88 	{ EFI_FREEBSD_SWAP, V_FREEBSD_SWAP },
89 	{ EFI_FREEBSD_UFS, V_FREEBSD_UFS },
90 	{ EFI_FREEBSD_VINUM, V_FREEBSD_VINUM },
91 	{ EFI_FREEBSD_ZFS, V_FREEBSD_ZFS },
92 	{ EFI_FREEBSD_NANDFS, V_FREEBSD_NANDFS }
93 };
94 
95 /*
96  * Default vtoc information for non-SVr4 partitions
97  */
98 struct dk_map2  default_vtoc_map[NDKMAP] = {
99 	{	V_ROOT,		0	},		/* a - 0 */
100 	{	V_SWAP,		V_UNMNT	},		/* b - 1 */
101 	{	V_BACKUP,	V_UNMNT	},		/* c - 2 */
102 	{	V_UNASSIGNED,	0	},		/* d - 3 */
103 	{	V_UNASSIGNED,	0	},		/* e - 4 */
104 	{	V_UNASSIGNED,	0	},		/* f - 5 */
105 	{	V_USR,		0	},		/* g - 6 */
106 	{	V_UNASSIGNED,	0	},		/* h - 7 */
107 
108 #if defined(_SUNOS_VTOC_16)
109 
110 #if defined(i386) || defined(__amd64)
111 	{	V_BOOT,		V_UNMNT	},		/* i - 8 */
112 	{	V_ALTSCTR,	0	},		/* j - 9 */
113 
114 #else
115 #error No VTOC format defined.
116 #endif			/* defined(i386) */
117 
118 	{	V_UNASSIGNED,	0	},		/* k - 10 */
119 	{	V_UNASSIGNED,	0	},		/* l - 11 */
120 	{	V_UNASSIGNED,	0	},		/* m - 12 */
121 	{	V_UNASSIGNED,	0	},		/* n - 13 */
122 	{	V_UNASSIGNED,	0	},		/* o - 14 */
123 	{	V_UNASSIGNED,	0	},		/* p - 15 */
124 #endif			/* defined(_SUNOS_VTOC_16) */
125 };
126 
127 #ifdef DEBUG
128 int efi_debug = 1;
129 #else
130 int efi_debug = 0;
131 #endif
132 
133 #define	EFI_FIXES_DB "/usr/share/hwdata/efi.fixes"
134 
135 extern unsigned int	efi_crc32(const unsigned char *, unsigned int);
136 static int		efi_read(int, struct dk_gpt *);
137 
138 static int
read_disk_info(int fd,diskaddr_t * capacity,uint_t * lbsize)139 read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize)
140 {
141 	struct dk_minfo		disk_info;
142 
143 	if ((ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info)) == -1)
144 		return (errno);
145 	*capacity = disk_info.dki_capacity;
146 	*lbsize = disk_info.dki_lbsize;
147 	return (0);
148 }
149 
150 /*
151  * the number of blocks the EFI label takes up (round up to nearest
152  * block)
153  */
154 #define	NBLOCKS(p, l)	(1 + ((((p) * (int)sizeof (efi_gpe_t))  + \
155 				((l) - 1)) / (l)))
156 /* number of partitions -- limited by what we can malloc */
157 #define	MAX_PARTS	((4294967295UL - sizeof (struct dk_gpt)) / \
158 			    sizeof (struct dk_part))
159 
160 /*
161  * The EFI reserved partition size is 8 MiB. This calculates the number of
162  * sectors required to store 8 MiB, taking into account the device's sector
163  * size.
164  */
165 uint_t
efi_reserved_sectors(dk_gpt_t * efi)166 efi_reserved_sectors(dk_gpt_t *efi)
167 {
168 	/* roundup to sector size */
169 	return ((EFI_MIN_RESV_SIZE * DEV_BSIZE + efi->efi_lbasize - 1) /
170 	    efi->efi_lbasize);
171 }
172 
173 int
efi_alloc_and_init(int fd,uint32_t nparts,struct dk_gpt ** vtoc)174 efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc)
175 {
176 	diskaddr_t	capacity;
177 	uint_t		lbsize;
178 	uint_t		nblocks;
179 	size_t		length;
180 	struct dk_gpt	*vptr;
181 	struct uuid	uuid;
182 
183 	if (read_disk_info(fd, &capacity, &lbsize) != 0) {
184 		if (efi_debug)
185 			(void) fprintf(stderr,
186 			    "couldn't read disk information\n");
187 		return (-1);
188 	}
189 
190 	nblocks = NBLOCKS(nparts, lbsize);
191 	if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) {
192 		/* 16K plus one block for the GPT */
193 		nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1;
194 	}
195 
196 	if (nparts > MAX_PARTS) {
197 		if (efi_debug) {
198 			(void) fprintf(stderr,
199 			"the maximum number of partitions supported is %lu\n",
200 			    MAX_PARTS);
201 		}
202 		return (-1);
203 	}
204 
205 	length = sizeof (struct dk_gpt) +
206 	    sizeof (struct dk_part) * (nparts - 1);
207 
208 	if ((*vtoc = calloc(1, length)) == NULL)
209 		return (-1);
210 
211 	vptr = *vtoc;
212 
213 	vptr->efi_version = EFI_VERSION_CURRENT;
214 	vptr->efi_lbasize = lbsize;
215 	vptr->efi_nparts = nparts;
216 	/*
217 	 * add one block here for the PMBR; on disks with a 512 byte
218 	 * block size and 128 or fewer partitions, efi_first_u_lba
219 	 * should work out to "34"
220 	 */
221 	vptr->efi_first_u_lba = nblocks + 1;
222 	vptr->efi_last_lba = capacity - 1;
223 	vptr->efi_altern_lba = capacity - 1;
224 	vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks;
225 
226 	(void) uuid_generate((uchar_t *)&uuid);
227 	UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid);
228 	return (0);
229 }
230 
231 /*
232  * Read EFI - return partition number upon success.
233  */
234 int
efi_alloc_and_read(int fd,struct dk_gpt ** vtoc)235 efi_alloc_and_read(int fd, struct dk_gpt **vtoc)
236 {
237 	int			rval;
238 	uint32_t		nparts;
239 	int			length;
240 	struct mboot		*mbr;
241 	struct ipart		*ipart;
242 	diskaddr_t		capacity;
243 	uint_t			lbsize;
244 	int			i;
245 
246 	if (read_disk_info(fd, &capacity, &lbsize) != 0)
247 		return (VT_ERROR);
248 
249 	if ((mbr = calloc(1, lbsize)) == NULL)
250 		return (VT_ERROR);
251 
252 	if ((ioctl(fd, DKIOCGMBOOT, (caddr_t)mbr)) == -1) {
253 		free(mbr);
254 		return (VT_ERROR);
255 	}
256 
257 	if (mbr->signature != MBB_MAGIC) {
258 		free(mbr);
259 		return (VT_EINVAL);
260 	}
261 	ipart = (struct ipart *)(uintptr_t)mbr->parts;
262 
263 	/* Check if we have partition with ID EFI_PMBR */
264 	for (i = 0; i < FD_NUMPART; i++) {
265 		if (ipart[i].systid == EFI_PMBR)
266 			break;
267 	}
268 	free(mbr);
269 	if (i == FD_NUMPART)
270 		return (VT_EINVAL);
271 
272 	/* figure out the number of entries that would fit into 16K */
273 	nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t);
274 	length = (int) sizeof (struct dk_gpt) +
275 	    (int) sizeof (struct dk_part) * (nparts - 1);
276 	if ((*vtoc = calloc(1, length)) == NULL)
277 		return (VT_ERROR);
278 
279 	(*vtoc)->efi_nparts = nparts;
280 	rval = efi_read(fd, *vtoc);
281 
282 	if ((rval == VT_EINVAL) && (*vtoc)->efi_nparts > nparts) {
283 		void *tmp;
284 		length = (int) sizeof (struct dk_gpt) +
285 		    (int) sizeof (struct dk_part) *
286 		    ((*vtoc)->efi_nparts - 1);
287 		nparts = (*vtoc)->efi_nparts;
288 		if ((tmp = realloc(*vtoc, length)) == NULL) {
289 			free (*vtoc);
290 			*vtoc = NULL;
291 			return (VT_ERROR);
292 		} else {
293 			*vtoc = tmp;
294 			rval = efi_read(fd, *vtoc);
295 		}
296 	}
297 
298 	if (rval < 0) {
299 		if (efi_debug) {
300 			(void) fprintf(stderr,
301 			    "read of EFI table failed, rval=%d\n", rval);
302 		}
303 		free (*vtoc);
304 		*vtoc = NULL;
305 	}
306 
307 	return (rval);
308 }
309 
310 static int
efi_ioctl(int fd,int cmd,dk_efi_t * dk_ioc)311 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
312 {
313 	void *data = dk_ioc->dki_data;
314 	int error;
315 
316 	dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data;
317 	error = ioctl(fd, cmd, (void *)dk_ioc);
318 	dk_ioc->dki_data = data;
319 
320 	return (error);
321 }
322 
323 static int
check_label(int fd,dk_efi_t * dk_ioc)324 check_label(int fd, dk_efi_t *dk_ioc)
325 {
326 	efi_gpt_t		*efi;
327 	uint_t			crc;
328 
329 	if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) {
330 		switch (errno) {
331 		case EIO:
332 			return (VT_EIO);
333 		default:
334 			return (VT_ERROR);
335 		}
336 	}
337 	efi = dk_ioc->dki_data;
338 	if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) {
339 		if (efi_debug)
340 			(void) fprintf(stderr,
341 			    "Bad EFI signature: 0x%llx != 0x%llx\n",
342 			    (long long)efi->efi_gpt_Signature,
343 			    (long long)LE_64(EFI_SIGNATURE));
344 		return (VT_EINVAL);
345 	}
346 
347 	/*
348 	 * check CRC of the header; the size of the header should
349 	 * never be larger than one block
350 	 */
351 	crc = efi->efi_gpt_HeaderCRC32;
352 	efi->efi_gpt_HeaderCRC32 = 0;
353 
354 	if (((len_t)LE_32(efi->efi_gpt_HeaderSize) > dk_ioc->dki_length) ||
355 	    crc != LE_32(efi_crc32((unsigned char *)efi,
356 	    LE_32(efi->efi_gpt_HeaderSize)))) {
357 		if (efi_debug)
358 			(void) fprintf(stderr,
359 			    "Bad EFI CRC: 0x%x != 0x%x\n",
360 			    crc, LE_32(efi_crc32((unsigned char *)efi,
361 			    LE_32(efi->efi_gpt_HeaderSize))));
362 		return (VT_EINVAL);
363 	}
364 
365 	return (0);
366 }
367 
368 static int
efi_read(int fd,struct dk_gpt * vtoc)369 efi_read(int fd, struct dk_gpt *vtoc)
370 {
371 	int			i, j;
372 	int			label_len;
373 	int			rval = 0;
374 	int			vdc_flag = 0;
375 	struct dk_minfo		disk_info;
376 	dk_efi_t		dk_ioc;
377 	efi_gpt_t		*efi;
378 	efi_gpe_t		*efi_parts;
379 	struct dk_cinfo		dki_info;
380 	uint32_t		user_length;
381 	boolean_t		legacy_label = B_FALSE;
382 
383 	/*
384 	 * get the partition number for this file descriptor.
385 	 */
386 	if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) {
387 		if (efi_debug) {
388 			(void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
389 		}
390 		switch (errno) {
391 		case EIO:
392 			return (VT_EIO);
393 		case EINVAL:
394 			return (VT_EINVAL);
395 		default:
396 			return (VT_ERROR);
397 		}
398 	}
399 
400 	if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) &&
401 	    (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) {
402 		/*
403 		 * The controller and drive name "vdc" (virtual disk client)
404 		 * indicates a LDoms virtual disk.
405 		 */
406 		vdc_flag++;
407 	}
408 
409 	/* get the LBA size */
410 	if (ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info) == -1) {
411 		if (efi_debug) {
412 			(void) fprintf(stderr,
413 			    "assuming LBA 512 bytes %d\n",
414 			    errno);
415 		}
416 		disk_info.dki_lbsize = DEV_BSIZE;
417 	}
418 	if (disk_info.dki_lbsize == 0) {
419 		if (efi_debug) {
420 			(void) fprintf(stderr,
421 			    "efi_read: assuming LBA 512 bytes\n");
422 		}
423 		disk_info.dki_lbsize = DEV_BSIZE;
424 	}
425 	/*
426 	 * Read the EFI GPT to figure out how many partitions we need
427 	 * to deal with.
428 	 */
429 	dk_ioc.dki_lba = 1;
430 	if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) {
431 		label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize;
432 	} else {
433 		label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) +
434 		    disk_info.dki_lbsize;
435 		if (label_len % disk_info.dki_lbsize) {
436 			/* pad to physical sector size */
437 			label_len += disk_info.dki_lbsize;
438 			label_len &= ~(disk_info.dki_lbsize - 1);
439 		}
440 	}
441 
442 	if ((dk_ioc.dki_data = calloc(1, label_len)) == NULL)
443 		return (VT_ERROR);
444 
445 	dk_ioc.dki_length = disk_info.dki_lbsize;
446 	user_length = vtoc->efi_nparts;
447 	efi = dk_ioc.dki_data;
448 	if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) {
449 		/*
450 		 * No valid label here; try the alternate. Note that here
451 		 * we just read GPT header and save it into dk_ioc.data,
452 		 * Later, we will read GUID partition entry array if we
453 		 * can get valid GPT header.
454 		 */
455 
456 		/*
457 		 * This is a workaround for legacy systems. In the past, the
458 		 * last sector of SCSI disk was invisible on x86 platform. At
459 		 * that time, backup label was saved on the next to the last
460 		 * sector. It is possible for users to move a disk from previous
461 		 * solaris system to present system. Here, we attempt to search
462 		 * legacy backup EFI label first.
463 		 */
464 		dk_ioc.dki_lba = disk_info.dki_capacity - 2;
465 		dk_ioc.dki_length = disk_info.dki_lbsize;
466 		rval = check_label(fd, &dk_ioc);
467 		if (rval == VT_EINVAL) {
468 			/*
469 			 * we didn't find legacy backup EFI label, try to
470 			 * search backup EFI label in the last block.
471 			 */
472 			dk_ioc.dki_lba = disk_info.dki_capacity - 1;
473 			dk_ioc.dki_length = disk_info.dki_lbsize;
474 			rval = check_label(fd, &dk_ioc);
475 			if (rval == 0) {
476 				legacy_label = B_TRUE;
477 				if (efi_debug)
478 					(void) fprintf(stderr,
479 					    "efi_read: primary label corrupt; "
480 					    "using EFI backup label located on"
481 					    " the last block\n");
482 			}
483 		} else {
484 			if ((efi_debug) && (rval == 0))
485 				(void) fprintf(stderr, "efi_read: primary label"
486 				    " corrupt; using legacy EFI backup label "
487 				    " located on the next to last block\n");
488 		}
489 
490 		if (rval == 0) {
491 			dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
492 			vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT;
493 			vtoc->efi_nparts =
494 			    LE_32(efi->efi_gpt_NumberOfPartitionEntries);
495 			/*
496 			 * Partition tables are between backup GPT header
497 			 * table and ParitionEntryLBA (the starting LBA of
498 			 * the GUID partition entries array). Now that we
499 			 * already got valid GPT header and saved it in
500 			 * dk_ioc.dki_data, we try to get GUID partition
501 			 * entry array here.
502 			 */
503 			/* LINTED */
504 			dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
505 			    + disk_info.dki_lbsize);
506 			if (legacy_label)
507 				dk_ioc.dki_length = disk_info.dki_capacity - 1 -
508 				    dk_ioc.dki_lba;
509 			else
510 				dk_ioc.dki_length = disk_info.dki_capacity - 2 -
511 				    dk_ioc.dki_lba;
512 			dk_ioc.dki_length *= disk_info.dki_lbsize;
513 			if (dk_ioc.dki_length >
514 			    ((len_t)label_len - sizeof (*dk_ioc.dki_data))) {
515 				rval = VT_EINVAL;
516 			} else {
517 				/*
518 				 * read GUID partition entry array
519 				 */
520 				rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
521 			}
522 		}
523 
524 	} else if (rval == 0) {
525 
526 		dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
527 		/* LINTED */
528 		dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
529 		    + disk_info.dki_lbsize);
530 		dk_ioc.dki_length = label_len - disk_info.dki_lbsize;
531 		rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
532 
533 	} else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) {
534 		/*
535 		 * When the device is a LDoms virtual disk, the DKIOCGETEFI
536 		 * ioctl can fail with EINVAL if the virtual disk backend
537 		 * is a ZFS volume serviced by a domain running an old version
538 		 * of Solaris. This is because the DKIOCGETEFI ioctl was
539 		 * initially incorrectly implemented for a ZFS volume and it
540 		 * expected the GPT and GPE to be retrieved with a single ioctl.
541 		 * So we try to read the GPT and the GPE using that old style
542 		 * ioctl.
543 		 */
544 		dk_ioc.dki_lba = 1;
545 		dk_ioc.dki_length = label_len;
546 		rval = check_label(fd, &dk_ioc);
547 	}
548 
549 	if (rval < 0) {
550 		free(efi);
551 		return (rval);
552 	}
553 
554 	/* LINTED -- always longlong aligned */
555 	efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize);
556 
557 	/*
558 	 * Assemble this into a "dk_gpt" struct for easier
559 	 * digestibility by applications.
560 	 */
561 	vtoc->efi_version = LE_32(efi->efi_gpt_Revision);
562 	vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries);
563 	vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry);
564 	vtoc->efi_lbasize = disk_info.dki_lbsize;
565 	vtoc->efi_last_lba = disk_info.dki_capacity - 1;
566 	vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA);
567 	vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA);
568 	vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA);
569 	UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID);
570 
571 	/*
572 	 * If the array the user passed in is too small, set the length
573 	 * to what it needs to be and return
574 	 */
575 	if (user_length < vtoc->efi_nparts) {
576 		return (VT_EINVAL);
577 	}
578 
579 	for (i = 0; i < vtoc->efi_nparts; i++) {
580 
581 		UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid,
582 		    efi_parts[i].efi_gpe_PartitionTypeGUID);
583 
584 		for (j = 0;
585 		    j < sizeof (conversion_array)
586 		    / sizeof (struct uuid_to_ptag); j++) {
587 
588 			if (bcmp(&vtoc->efi_parts[i].p_guid,
589 			    &conversion_array[j].uuid,
590 			    sizeof (struct uuid)) == 0) {
591 				vtoc->efi_parts[i].p_tag =
592 				    conversion_array[j].p_tag;
593 				break;
594 			}
595 		}
596 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
597 			continue;
598 		vtoc->efi_parts[i].p_flag =
599 		    LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs);
600 		vtoc->efi_parts[i].p_start =
601 		    LE_64(efi_parts[i].efi_gpe_StartingLBA);
602 		vtoc->efi_parts[i].p_size =
603 		    LE_64(efi_parts[i].efi_gpe_EndingLBA) -
604 		    vtoc->efi_parts[i].p_start + 1;
605 		for (j = 0; j < EFI_PART_NAME_LEN; j++) {
606 			vtoc->efi_parts[i].p_name[j] =
607 			    (uchar_t)LE_16(
608 			    efi_parts[i].efi_gpe_PartitionName[j]);
609 		}
610 
611 		UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid,
612 		    efi_parts[i].efi_gpe_UniquePartitionGUID);
613 	}
614 	free(efi);
615 
616 	return (dki_info.dki_partition);
617 }
618 
619 static void
hardware_workarounds(int * slot,int * active)620 hardware_workarounds(int *slot, int *active)
621 {
622 	smbios_struct_t s_sys, s_mb;
623 	smbios_info_t sys, mb;
624 	smbios_hdl_t *shp;
625 	char buf[0x400];
626 	FILE *fp;
627 	int err;
628 
629 	if ((fp = fopen(EFI_FIXES_DB, "rF")) == NULL)
630 		return;
631 
632 	if ((shp = smbios_open(NULL, SMB_VERSION, 0, &err)) == NULL) {
633 		if (efi_debug)
634 			(void) fprintf(stderr,
635 			    "libefi failed to load SMBIOS: %s\n",
636 			    smbios_errmsg(err));
637 		(void) fclose(fp);
638 		return;
639 	}
640 
641 	if (smbios_lookup_type(shp, SMB_TYPE_SYSTEM, &s_sys) == SMB_ERR ||
642 	    smbios_info_common(shp, s_sys.smbstr_id, &sys) == SMB_ERR)
643 		(void) memset(&sys, '\0', sizeof (sys));
644 	if (smbios_lookup_type(shp, SMB_TYPE_BASEBOARD, &s_mb) == SMB_ERR ||
645 	    smbios_info_common(shp, s_mb.smbstr_id, &mb) == SMB_ERR)
646 		(void) memset(&mb, '\0', sizeof (mb));
647 
648 	while (fgets(buf, sizeof (buf), fp) != NULL) {
649 		char *tok, *val, *end;
650 
651 		tok = buf + strspn(buf, " \t");
652 		if (*tok == '#')
653 			continue;
654 		while (*tok != '\0') {
655 			tok += strspn(tok, " \t");
656 			if ((val = strchr(tok, '=')) == NULL)
657 				break;
658 			*val++ = '\0';
659 			if (*val == '"')
660 				end = strchr(++val, '"');
661 			else
662 				end = strpbrk(val, " \t\n");
663 			if (end == NULL)
664 				break;
665 			*end++ = '\0';
666 
667 			if (strcmp(tok, "sys.manufacturer") == 0 &&
668 			    (sys.smbi_manufacturer == NULL ||
669 			    strcasecmp(val, sys.smbi_manufacturer)))
670 				break;
671 			if (strcmp(tok, "sys.product") == 0 &&
672 			    (sys.smbi_product == NULL ||
673 			    strcasecmp(val, sys.smbi_product)))
674 				break;
675 			if (strcmp(tok, "sys.version") == 0 &&
676 			    (sys.smbi_version == NULL ||
677 			    strcasecmp(val, sys.smbi_version)))
678 				break;
679 			if (strcmp(tok, "mb.manufacturer") == 0 &&
680 			    (mb.smbi_manufacturer == NULL ||
681 			    strcasecmp(val, mb.smbi_manufacturer)))
682 				break;
683 			if (strcmp(tok, "mb.product") == 0 &&
684 			    (mb.smbi_product == NULL ||
685 			    strcasecmp(val, mb.smbi_product)))
686 				break;
687 			if (strcmp(tok, "mb.version") == 0 &&
688 			    (mb.smbi_version == NULL ||
689 			    strcasecmp(val, mb.smbi_version)))
690 				break;
691 
692 			if (strcmp(tok, "pmbr_slot") == 0) {
693 				*slot = atoi(val);
694 				if (*slot < 0 || *slot > 3)
695 					*slot = 0;
696 				if (efi_debug)
697 					(void) fprintf(stderr,
698 					    "Using slot %d\n", *slot);
699 			}
700 
701 			if (strcmp(tok, "pmbr_active") == 0) {
702 				*active = atoi(val);
703 				if (*active < 0 || *active > 1)
704 					*active = 0;
705 				if (efi_debug)
706 					(void) fprintf(stderr,
707 					    "Using active %d\n", *active);
708 			}
709 
710 			tok = end;
711 		}
712 	}
713 	(void) fclose(fp);
714 	smbios_close(shp);
715 }
716 
717 /* writes a "protective" MBR */
718 static int
write_pmbr(int fd,struct dk_gpt * vtoc)719 write_pmbr(int fd, struct dk_gpt *vtoc)
720 {
721 	dk_efi_t	dk_ioc;
722 	struct mboot	mb;
723 	uchar_t		*cp;
724 	diskaddr_t	size_in_lba;
725 	uchar_t		*buf;
726 	int		len, slot, active;
727 
728 	slot = active = 0;
729 
730 	hardware_workarounds(&slot, &active);
731 
732 	len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize;
733 	buf = calloc(1, len);
734 
735 	/*
736 	 * Preserve any boot code and disk signature if the first block is
737 	 * already an MBR.
738 	 */
739 	dk_ioc.dki_lba = 0;
740 	dk_ioc.dki_length = len;
741 	/* LINTED -- always longlong aligned */
742 	dk_ioc.dki_data = (efi_gpt_t *)buf;
743 	if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
744 		(void) memcpy(&mb, buf, sizeof (mb));
745 		bzero(&mb, sizeof (mb));
746 		mb.signature = LE_16(MBB_MAGIC);
747 	} else {
748 		(void) memcpy(&mb, buf, sizeof (mb));
749 		if (mb.signature != LE_16(MBB_MAGIC)) {
750 			bzero(&mb, sizeof (mb));
751 			mb.signature = LE_16(MBB_MAGIC);
752 		}
753 	}
754 
755 	bzero(&mb.parts, sizeof (mb.parts));
756 	cp = (uchar_t *)&mb.parts[slot * sizeof (struct ipart)];
757 	/* bootable or not */
758 	*cp++ = active ? ACTIVE : NOTACTIVE;
759 	/* beginning CHS; same as starting LBA (but one-based) */
760 	*cp++ = 0x0;
761 	*cp++ = 0x2;
762 	*cp++ = 0x0;
763 	/* OS type */
764 	*cp++ = EFI_PMBR;
765 	/* ending CHS; 0xffffff if not representable */
766 	*cp++ = 0xff;
767 	*cp++ = 0xff;
768 	*cp++ = 0xff;
769 	/* starting LBA: 1 (little endian format) by EFI definition */
770 	*cp++ = 0x01;
771 	*cp++ = 0x00;
772 	*cp++ = 0x00;
773 	*cp++ = 0x00;
774 	/* ending LBA: last block on the disk (little endian format) */
775 	size_in_lba = vtoc->efi_last_lba;
776 	if (size_in_lba < 0xffffffff) {
777 		*cp++ = (size_in_lba & 0x000000ff);
778 		*cp++ = (size_in_lba & 0x0000ff00) >> 8;
779 		*cp++ = (size_in_lba & 0x00ff0000) >> 16;
780 		*cp++ = (size_in_lba & 0xff000000) >> 24;
781 	} else {
782 		*cp++ = 0xff;
783 		*cp++ = 0xff;
784 		*cp++ = 0xff;
785 		*cp++ = 0xff;
786 	}
787 
788 	(void) memcpy(buf, &mb, sizeof (mb));
789 	/* LINTED -- always longlong aligned */
790 	dk_ioc.dki_data = (efi_gpt_t *)buf;
791 	dk_ioc.dki_lba = 0;
792 	dk_ioc.dki_length = len;
793 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
794 		free(buf);
795 		switch (errno) {
796 		case EIO:
797 			return (VT_EIO);
798 		case EINVAL:
799 			return (VT_EINVAL);
800 		default:
801 			return (VT_ERROR);
802 		}
803 	}
804 	free(buf);
805 	return (0);
806 }
807 
808 /* make sure the user specified something reasonable */
809 static int
check_input(struct dk_gpt * vtoc)810 check_input(struct dk_gpt *vtoc)
811 {
812 	int			resv_part = -1;
813 	int			i, j;
814 	diskaddr_t		istart, jstart, isize, jsize, endsect;
815 
816 	/*
817 	 * Sanity-check the input (make sure no partitions overlap)
818 	 */
819 	for (i = 0; i < vtoc->efi_nparts; i++) {
820 		/* It can't be unassigned and have an actual size */
821 		if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
822 		    (vtoc->efi_parts[i].p_size != 0)) {
823 			if (efi_debug) {
824 				(void) fprintf(stderr,
825 "partition %d is \"unassigned\" but has a size of %llu",
826 				    i,
827 				    vtoc->efi_parts[i].p_size);
828 			}
829 			return (VT_EINVAL);
830 		}
831 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
832 			if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
833 				continue;
834 			/* we have encountered an unknown uuid */
835 			vtoc->efi_parts[i].p_tag = 0xff;
836 		}
837 		if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
838 			if (resv_part != -1) {
839 				if (efi_debug) {
840 					(void) fprintf(stderr,
841 "found duplicate reserved partition at %d\n",
842 					    i);
843 				}
844 				return (VT_EINVAL);
845 			}
846 			resv_part = i;
847 		}
848 		if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
849 		    (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
850 			if (efi_debug) {
851 				(void) fprintf(stderr,
852 				    "Partition %d starts at %llu.  ",
853 				    i,
854 				    vtoc->efi_parts[i].p_start);
855 				(void) fprintf(stderr,
856 				    "It must be between %llu and %llu.\n",
857 				    vtoc->efi_first_u_lba,
858 				    vtoc->efi_last_u_lba);
859 			}
860 			return (VT_EINVAL);
861 		}
862 		if ((vtoc->efi_parts[i].p_start +
863 		    vtoc->efi_parts[i].p_size <
864 		    vtoc->efi_first_u_lba) ||
865 		    (vtoc->efi_parts[i].p_start +
866 		    vtoc->efi_parts[i].p_size >
867 		    vtoc->efi_last_u_lba + 1)) {
868 			if (efi_debug) {
869 				(void) fprintf(stderr,
870 				    "Partition %d ends at %llu.  ",
871 				    i,
872 				    vtoc->efi_parts[i].p_start +
873 				    vtoc->efi_parts[i].p_size);
874 				(void) fprintf(stderr,
875 				    "It must be between %llu and %llu.\n",
876 				    vtoc->efi_first_u_lba,
877 				    vtoc->efi_last_u_lba);
878 			}
879 			return (VT_EINVAL);
880 		}
881 
882 		for (j = 0; j < vtoc->efi_nparts; j++) {
883 			isize = vtoc->efi_parts[i].p_size;
884 			jsize = vtoc->efi_parts[j].p_size;
885 			istart = vtoc->efi_parts[i].p_start;
886 			jstart = vtoc->efi_parts[j].p_start;
887 			if ((i != j) && (isize != 0) && (jsize != 0)) {
888 				endsect = jstart + jsize -1;
889 				if ((jstart <= istart) &&
890 				    (istart <= endsect)) {
891 					if (efi_debug) {
892 						(void) fprintf(stderr,
893 "Partition %d overlaps partition %d.",
894 						    i, j);
895 					}
896 					return (VT_EINVAL);
897 				}
898 			}
899 		}
900 	}
901 	/* just a warning for now */
902 	if ((resv_part == -1) && efi_debug) {
903 		(void) fprintf(stderr,
904 		    "no reserved partition found\n");
905 	}
906 	return (0);
907 }
908 
909 /*
910  * Set *lastp_p to the last non-reserved partition with the last (highest)
911  * LBA (and set *last_lbap to the last used LBA). We also will fail if the
912  * partition layout isn't as expected (reserved partiton last, no overlap
913  * with the last partiton).
914  */
915 static int
efi_use_whole_disk_get_last(struct dk_gpt * l,struct dk_part ** lastp_p,diskaddr_t * last_lbap)916 efi_use_whole_disk_get_last(struct dk_gpt *l, struct dk_part **lastp_p,
917     diskaddr_t *last_lbap)
918 {
919 	struct dk_part *last_p = NULL;
920 	struct dk_part *resv_p = NULL;
921 	diskaddr_t last_ulba = 0;
922 	uint_t i;
923 
924 	if (l->efi_nparts < 2) {
925 		if (efi_debug) {
926 			(void) fprintf(stderr, "%s: too few (%u) partitions",
927 			    __func__, l->efi_nparts);
928 		}
929 		return (-1);
930 	}
931 
932 	/*
933 	 * Look for the last (highest) used LBA. We ignore the last
934 	 * (efi_nparts - 1) partition since that should be the reserved
935 	 * partition (which is checked later).
936 	 */
937 	for (i = 0; i < l->efi_nparts - 1; i++) {
938 		struct dk_part *p = &l->efi_parts[i];
939 		diskaddr_t end;
940 
941 		if (p->p_tag == V_RESERVED) {
942 			if (efi_debug) {
943 				/*
944 				 * Output the error message now so we can
945 				 * indicate which partition is the problem.
946 				 * We'll return failure later.
947 				 */
948 				(void) fprintf(stderr, "%s: reserved partition "
949 				    "found at unexpected position (%u)\n",
950 				    __func__, i);
951 			}
952 			return (-1);
953 		}
954 
955 		/* Ignore empty partitions */
956 		if (p->p_size == 0)
957 			continue;
958 
959 		end = p->p_start + p->p_size - 1;
960 		if (last_ulba < end) {
961 			last_p = p;
962 			last_ulba = end;
963 		}
964 	}
965 
966 	if (l->efi_parts[l->efi_nparts - 1].p_tag != V_RESERVED) {
967 		if (efi_debug) {
968 			(void) fprintf(stderr, "%s: no reserved partition\n",
969 			    __func__);
970 		}
971 		return (-1);
972 	}
973 
974 	resv_p = &l->efi_parts[l->efi_nparts - 1];
975 
976 	/*
977 	 * The reserved partition should start after the last (highest)
978 	 * LBA used by any other partition.
979 	 */
980 	if (resv_p->p_start <= last_ulba) {
981 		if (efi_debug) {
982 			(void) fprintf(stderr, "%s: reserved partition not "
983 			    "after other partitions\n", __func__);
984 		}
985 		return (-1);
986 	}
987 
988 	*lastp_p = last_p;
989 	*last_lbap = last_ulba;
990 	return (0);
991 }
992 
993 /*
994  * add all the unallocated space to the current label
995  */
996 int
efi_use_whole_disk(int fd)997 efi_use_whole_disk(int fd)
998 {
999 	struct dk_gpt		*efi_label;
1000 	struct dk_part		*resv_p = NULL;
1001 	struct dk_part		*last_p = NULL;
1002 	diskaddr_t		last_lba = 0;
1003 	int			rval;
1004 	uint_t			nblocks;
1005 	boolean_t		save = B_FALSE;
1006 
1007 	rval = efi_alloc_and_read(fd, &efi_label);
1008 	if (rval < 0) {
1009 		return (rval);
1010 	}
1011 
1012 	rval = efi_use_whole_disk_get_last(efi_label, &last_p, &last_lba);
1013 	if (rval < 0) {
1014 		efi_free(efi_label);
1015 		return (VT_EINVAL);
1016 	}
1017 	resv_p = &efi_label->efi_parts[efi_label->efi_nparts - 1];
1018 	ASSERT3U(resv_p->p_tag, ==, V_RESERVED);
1019 
1020 	/*
1021 	 * If we aren't using the backup label (efi_altern_lba == 1)
1022 	 * and the backup label isn't at the end of the disk, move the backup
1023 	 * label to the end of the disk. efi_read() sets efi_last_lba based
1024 	 * on the capacity of the disk, so we don't need to re-read the
1025 	 * capacity again to get the last LBA.
1026 	 */
1027 	if (efi_label->efi_altern_lba != 1 &&
1028 	    efi_label->efi_altern_lba != efi_label->efi_last_lba) {
1029 		efi_label->efi_altern_lba = efi_label->efi_last_lba;
1030 		save = B_TRUE;
1031 	}
1032 
1033 	/*
1034 	 * This is similar to the logic used in efi_alloc_and_init(). Based
1035 	 * on the number of partitions (and the minimum number of entries
1036 	 * required for an EFI label), determine the size of the backup label.
1037 	 */
1038 	nblocks = NBLOCKS(efi_label->efi_nparts, efi_label->efi_lbasize);
1039 	if ((nblocks * efi_label->efi_lbasize) < EFI_MIN_ARRAY_SIZE +
1040 	    efi_label->efi_lbasize) {
1041 		nblocks = EFI_MIN_ARRAY_SIZE / efi_label->efi_lbasize + 1;
1042 	}
1043 
1044 	/* efi_last_u_lba should be the last LBA before the backup label */
1045 	if (efi_label->efi_last_u_lba < efi_label->efi_last_lba - nblocks) {
1046 		efi_label->efi_last_u_lba = efi_label->efi_last_lba - nblocks;
1047 		save = B_TRUE;
1048 	}
1049 
1050 	/*
1051 	 * If there is unused space after the reserved partition, move it to
1052 	 * the end of the disk. There is currently no data in here except
1053 	 * fabricated devids (which are generated via efi_write()). Therefore,
1054 	 * there is no need to copy the contents.
1055 	 */
1056 	if (resv_p->p_start + resv_p->p_size - 1 < efi_label->efi_last_u_lba) {
1057 		diskaddr_t new_start =
1058 		    efi_label->efi_last_u_lba - resv_p->p_size + 1;
1059 
1060 		if (resv_p->p_start > new_start) {
1061 			if (efi_debug) {
1062 				(void) fprintf(stderr, "%s: reserved partition "
1063 				    "size mismatch\n", __func__);
1064 			}
1065 			efi_free(efi_label);
1066 			return (VT_EINVAL);
1067 		}
1068 
1069 		resv_p->p_start = new_start;
1070 		save = B_TRUE;
1071 	}
1072 
1073 	/*
1074 	 * If there is space between the last (non-reserved) partition and
1075 	 * the reserved partition, grow the last partition.
1076 	 */
1077 	if (last_lba < resv_p->p_start) {
1078 		last_p->p_size += resv_p->p_start - last_lba - 1;
1079 		save = B_TRUE;
1080 	}
1081 
1082 	if (!save) {
1083 		efi_free(efi_label);
1084 		return (0);
1085 	}
1086 
1087 	rval = efi_write(fd, efi_label);
1088 	if (rval < 0) {
1089 		if (efi_debug) {
1090 			(void) fprintf(stderr,
1091 			    "efi_use_whole_disk:fail to write label, rval=%d\n",
1092 			    rval);
1093 		}
1094 		efi_free(efi_label);
1095 		return (rval);
1096 	}
1097 
1098 	efi_free(efi_label);
1099 	return (0);
1100 }
1101 
1102 
1103 /*
1104  * write EFI label and backup label
1105  */
1106 int
efi_write(int fd,struct dk_gpt * vtoc)1107 efi_write(int fd, struct dk_gpt *vtoc)
1108 {
1109 	dk_efi_t		dk_ioc;
1110 	efi_gpt_t		*efi;
1111 	efi_gpe_t		*efi_parts;
1112 	int			i, j;
1113 	struct dk_cinfo		dki_info;
1114 	int			nblocks;
1115 	diskaddr_t		lba_backup_gpt_hdr;
1116 
1117 	if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) {
1118 		if (efi_debug)
1119 			(void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
1120 		switch (errno) {
1121 		case EIO:
1122 			return (VT_EIO);
1123 		case EINVAL:
1124 			return (VT_EINVAL);
1125 		default:
1126 			return (VT_ERROR);
1127 		}
1128 	}
1129 
1130 	if (check_input(vtoc))
1131 		return (VT_EINVAL);
1132 
1133 	dk_ioc.dki_lba = 1;
1134 	if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) {
1135 		dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize;
1136 	} else {
1137 		dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts,
1138 		    vtoc->efi_lbasize) *
1139 		    vtoc->efi_lbasize;
1140 	}
1141 
1142 	/*
1143 	 * the number of blocks occupied by GUID partition entry array
1144 	 */
1145 	nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1;
1146 
1147 	/*
1148 	 * Backup GPT header is located on the block after GUID
1149 	 * partition entry array. Here, we calculate the address
1150 	 * for backup GPT header.
1151 	 */
1152 	lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks;
1153 	if ((dk_ioc.dki_data = calloc(1, dk_ioc.dki_length)) == NULL)
1154 		return (VT_ERROR);
1155 
1156 	efi = dk_ioc.dki_data;
1157 
1158 	/* stuff user's input into EFI struct */
1159 	efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
1160 	efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */
1161 	efi->efi_gpt_HeaderSize = LE_32(EFI_HEADER_SIZE);
1162 	efi->efi_gpt_Reserved1 = 0;
1163 	efi->efi_gpt_MyLBA = LE_64(1ULL);
1164 	efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr);
1165 	efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba);
1166 	efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba);
1167 	efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
1168 	efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts);
1169 	efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe));
1170 	UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid);
1171 
1172 	/* LINTED -- always longlong aligned */
1173 	efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize);
1174 
1175 	for (i = 0; i < vtoc->efi_nparts; i++) {
1176 		for (j = 0;
1177 		    j < sizeof (conversion_array) /
1178 		    sizeof (struct uuid_to_ptag); j++) {
1179 
1180 			if (vtoc->efi_parts[i].p_tag ==
1181 			    conversion_array[j].p_tag) {
1182 				UUID_LE_CONVERT(
1183 				    efi_parts[i].efi_gpe_PartitionTypeGUID,
1184 				    conversion_array[j].uuid);
1185 				break;
1186 			}
1187 		}
1188 
1189 		if (j == sizeof (conversion_array) /
1190 		    sizeof (struct uuid_to_ptag)) {
1191 			/*
1192 			 * If we didn't have a matching uuid match, bail here.
1193 			 * Don't write a label with unknown uuid.
1194 			 */
1195 			if (efi_debug) {
1196 				(void) fprintf(stderr,
1197 				    "Unknown uuid for p_tag %d\n",
1198 				    vtoc->efi_parts[i].p_tag);
1199 			}
1200 			return (VT_EINVAL);
1201 		}
1202 
1203 		efi_parts[i].efi_gpe_StartingLBA =
1204 		    LE_64(vtoc->efi_parts[i].p_start);
1205 		efi_parts[i].efi_gpe_EndingLBA =
1206 		    LE_64(vtoc->efi_parts[i].p_start +
1207 		    vtoc->efi_parts[i].p_size - 1);
1208 		efi_parts[i].efi_gpe_Attributes.PartitionAttrs =
1209 		    LE_16(vtoc->efi_parts[i].p_flag);
1210 		for (j = 0; j < EFI_PART_NAME_LEN; j++) {
1211 			efi_parts[i].efi_gpe_PartitionName[j] =
1212 			    LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]);
1213 		}
1214 		if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) &&
1215 		    uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) {
1216 			(void) uuid_generate((uchar_t *)
1217 			    &vtoc->efi_parts[i].p_uguid);
1218 		}
1219 		bcopy(&vtoc->efi_parts[i].p_uguid,
1220 		    &efi_parts[i].efi_gpe_UniquePartitionGUID,
1221 		    sizeof (uuid_t));
1222 	}
1223 	efi->efi_gpt_PartitionEntryArrayCRC32 =
1224 	    LE_32(efi_crc32((unsigned char *)efi_parts,
1225 	    vtoc->efi_nparts * (int)sizeof (struct efi_gpe)));
1226 	efi->efi_gpt_HeaderCRC32 = LE_32(efi_crc32((unsigned char *)efi,
1227 	    EFI_HEADER_SIZE));
1228 
1229 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1230 		free(dk_ioc.dki_data);
1231 		switch (errno) {
1232 		case EIO:
1233 			return (VT_EIO);
1234 		case EINVAL:
1235 			return (VT_EINVAL);
1236 		default:
1237 			return (VT_ERROR);
1238 		}
1239 	}
1240 
1241 	/* write backup partition array */
1242 	dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1;
1243 	dk_ioc.dki_length -= vtoc->efi_lbasize;
1244 	/* LINTED */
1245 	dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data +
1246 	    vtoc->efi_lbasize);
1247 
1248 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1249 		/*
1250 		 * we wrote the primary label okay, so don't fail
1251 		 */
1252 		if (efi_debug) {
1253 			(void) fprintf(stderr,
1254 			    "write of backup partitions to block %llu "
1255 			    "failed, errno %d\n",
1256 			    vtoc->efi_last_u_lba + 1,
1257 			    errno);
1258 		}
1259 	}
1260 	/*
1261 	 * now swap MyLBA and AlternateLBA fields and write backup
1262 	 * partition table header
1263 	 */
1264 	dk_ioc.dki_lba = lba_backup_gpt_hdr;
1265 	dk_ioc.dki_length = vtoc->efi_lbasize;
1266 	/* LINTED */
1267 	dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data -
1268 	    vtoc->efi_lbasize);
1269 	efi->efi_gpt_AlternateLBA = LE_64(1ULL);
1270 	efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr);
1271 	efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1);
1272 	efi->efi_gpt_HeaderCRC32 = 0;
1273 	efi->efi_gpt_HeaderCRC32 =
1274 	    LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data, EFI_HEADER_SIZE));
1275 
1276 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1277 		if (efi_debug) {
1278 			(void) fprintf(stderr,
1279 			    "write of backup header to block %llu failed, "
1280 			    "errno %d\n",
1281 			    lba_backup_gpt_hdr,
1282 			    errno);
1283 		}
1284 	}
1285 	/* write the PMBR */
1286 	(void) write_pmbr(fd, vtoc);
1287 	free(dk_ioc.dki_data);
1288 	return (0);
1289 }
1290 
1291 void
efi_free(struct dk_gpt * ptr)1292 efi_free(struct dk_gpt *ptr)
1293 {
1294 	free(ptr);
1295 }
1296 
1297 /*
1298  * Input: File descriptor
1299  * Output: 1 if disk has an EFI label, or > 2TB with no VTOC or legacy MBR.
1300  * Otherwise 0.
1301  */
1302 int
efi_type(int fd)1303 efi_type(int fd)
1304 {
1305 	struct vtoc vtoc;
1306 	struct extvtoc extvtoc;
1307 
1308 	if (ioctl(fd, DKIOCGEXTVTOC, &extvtoc) == -1) {
1309 		if (errno == ENOTSUP)
1310 			return (1);
1311 		else if (errno == ENOTTY) {
1312 			if (ioctl(fd, DKIOCGVTOC, &vtoc) == -1)
1313 				if (errno == ENOTSUP)
1314 					return (1);
1315 		}
1316 	}
1317 	return (0);
1318 }
1319 
1320 void
efi_err_check(struct dk_gpt * vtoc)1321 efi_err_check(struct dk_gpt *vtoc)
1322 {
1323 	int			resv_part = -1;
1324 	int			i, j;
1325 	diskaddr_t		istart, jstart, isize, jsize, endsect;
1326 	int			overlap = 0;
1327 	uint_t			reserved;
1328 
1329 	/*
1330 	 * make sure no partitions overlap
1331 	 */
1332 	reserved = efi_reserved_sectors(vtoc);
1333 	for (i = 0; i < vtoc->efi_nparts; i++) {
1334 		/* It can't be unassigned and have an actual size */
1335 		if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
1336 		    (vtoc->efi_parts[i].p_size != 0)) {
1337 			(void) fprintf(stderr,
1338 			    "partition %d is \"unassigned\" but has a size "
1339 			    "of %llu\n", i, vtoc->efi_parts[i].p_size);
1340 		}
1341 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
1342 			continue;
1343 		}
1344 		if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
1345 			if (resv_part != -1) {
1346 				(void) fprintf(stderr,
1347 				    "found duplicate reserved partition at "
1348 				    "%d\n", i);
1349 			}
1350 			resv_part = i;
1351 			if (vtoc->efi_parts[i].p_size != reserved)
1352 				(void) fprintf(stderr,
1353 				    "Warning: reserved partition size must "
1354 				    "be %u sectors\n", reserved);
1355 		}
1356 		if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
1357 		    (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
1358 			(void) fprintf(stderr,
1359 			    "Partition %d starts at %llu\n",
1360 			    i,
1361 			    vtoc->efi_parts[i].p_start);
1362 			(void) fprintf(stderr,
1363 			    "It must be between %llu and %llu.\n",
1364 			    vtoc->efi_first_u_lba,
1365 			    vtoc->efi_last_u_lba);
1366 		}
1367 		if ((vtoc->efi_parts[i].p_start +
1368 		    vtoc->efi_parts[i].p_size <
1369 		    vtoc->efi_first_u_lba) ||
1370 		    (vtoc->efi_parts[i].p_start +
1371 		    vtoc->efi_parts[i].p_size >
1372 		    vtoc->efi_last_u_lba + 1)) {
1373 			(void) fprintf(stderr,
1374 			    "Partition %d ends at %llu\n",
1375 			    i,
1376 			    vtoc->efi_parts[i].p_start +
1377 			    vtoc->efi_parts[i].p_size);
1378 			(void) fprintf(stderr,
1379 			    "It must be between %llu and %llu.\n",
1380 			    vtoc->efi_first_u_lba,
1381 			    vtoc->efi_last_u_lba);
1382 		}
1383 
1384 		for (j = 0; j < vtoc->efi_nparts; j++) {
1385 			isize = vtoc->efi_parts[i].p_size;
1386 			jsize = vtoc->efi_parts[j].p_size;
1387 			istart = vtoc->efi_parts[i].p_start;
1388 			jstart = vtoc->efi_parts[j].p_start;
1389 			if ((i != j) && (isize != 0) && (jsize != 0)) {
1390 				endsect = jstart + jsize -1;
1391 				if ((jstart <= istart) &&
1392 				    (istart <= endsect)) {
1393 					if (!overlap) {
1394 					(void) fprintf(stderr,
1395 					    "label error: EFI Labels do not "
1396 					    "support overlapping partitions\n");
1397 					}
1398 					(void) fprintf(stderr,
1399 					    "Partition %d overlaps partition "
1400 					    "%d.\n", i, j);
1401 					overlap = 1;
1402 				}
1403 			}
1404 		}
1405 	}
1406 	/* make sure there is a reserved partition */
1407 	if (resv_part == -1) {
1408 		(void) fprintf(stderr,
1409 		    "no reserved partition found\n");
1410 	}
1411 }
1412 
1413 /*
1414  * We need to get information necessary to construct a *new* efi
1415  * label type
1416  */
1417 int
efi_auto_sense(int fd,struct dk_gpt ** vtoc)1418 efi_auto_sense(int fd, struct dk_gpt **vtoc)
1419 {
1420 
1421 	int	i;
1422 
1423 	/*
1424 	 * Now build the default partition table
1425 	 */
1426 	if (efi_alloc_and_init(fd, EFI_NUMPAR, vtoc) != 0) {
1427 		if (efi_debug) {
1428 			(void) fprintf(stderr, "efi_alloc_and_init failed.\n");
1429 		}
1430 		return (-1);
1431 	}
1432 
1433 	for (i = 0; i < min((*vtoc)->efi_nparts, V_NUMPAR); i++) {
1434 		(*vtoc)->efi_parts[i].p_tag = default_vtoc_map[i].p_tag;
1435 		(*vtoc)->efi_parts[i].p_flag = default_vtoc_map[i].p_flag;
1436 		(*vtoc)->efi_parts[i].p_start = 0;
1437 		(*vtoc)->efi_parts[i].p_size = 0;
1438 	}
1439 
1440 	/* root partition - s0 128 MB */
1441 	(*vtoc)->efi_parts[0].p_start =
1442 	    EFI_MIN_ARRAY_SIZE / (*vtoc)->efi_lbasize + 2;
1443 	(*vtoc)->efi_parts[0].p_size =
1444 	    (128 * 1024 * 1024) / (*vtoc)->efi_lbasize;
1445 
1446 	/* partition - s1  128 MB */
1447 	(*vtoc)->efi_parts[1].p_start = (*vtoc)->efi_parts[0].p_start +
1448 	    (*vtoc)->efi_parts[0].p_size;
1449 	(*vtoc)->efi_parts[1].p_size = (*vtoc)->efi_parts[0].p_size;
1450 
1451 	/* partition -s2 is NOT the Backup disk */
1452 	(*vtoc)->efi_parts[2].p_tag = V_UNASSIGNED;
1453 
1454 	/* partition -s6 /usr partition - HOG */
1455 	(*vtoc)->efi_parts[6].p_start = (*vtoc)->efi_parts[1].p_start +
1456 	    (*vtoc)->efi_parts[1].p_size;
1457 	(*vtoc)->efi_parts[6].p_size = (*vtoc)->efi_last_u_lba + 1 -
1458 	    (*vtoc)->efi_parts[6].p_start - efi_reserved_sectors(*vtoc);
1459 
1460 	/* efi reserved partition - s9 16K */
1461 	(*vtoc)->efi_parts[8].p_start = (*vtoc)->efi_parts[6].p_start +
1462 	    (*vtoc)->efi_parts[6].p_size;
1463 	(*vtoc)->efi_parts[8].p_size = efi_reserved_sectors(*vtoc);
1464 	(*vtoc)->efi_parts[8].p_tag = V_RESERVED;
1465 	return (0);
1466 }
1467