1 /* refclock_ees - clock driver for the EES M201 receiver */
2
3 #ifdef HAVE_CONFIG_H
4 #include <config.h>
5 #endif
6
7 #include "ntp_types.h"
8
9 #if defined(REFCLOCK) && defined(CLOCK_MSFEES) && defined(PPS)
10
11 /* Currently REQUIRES STREAM and PPSCD. CLK and CBREAK modes
12 * were removed as the code was overly hairy, they weren't in use
13 * (hence probably didn't work). Still in RCS file at cl.cam.ac.uk
14 */
15
16 #include "ntpd.h"
17 #include "ntp_io.h"
18 #include "ntp_refclock.h"
19 #include "timevalops.h"
20
21 #include <ctype.h>
22 #if defined(HAVE_BSD_TTYS)
23 #include <sgtty.h>
24 #endif /* HAVE_BSD_TTYS */
25 #if defined(HAVE_SYSV_TTYS)
26 #include <termio.h>
27 #endif /* HAVE_SYSV_TTYS */
28 #if defined(HAVE_TERMIOS)
29 #include <termios.h>
30 #endif
31 #if defined(STREAM)
32 #include <stropts.h>
33 #endif
34
35 #ifdef HAVE_SYS_TERMIOS_H
36 # include <sys/termios.h>
37 #endif
38 #ifdef HAVE_SYS_PPSCLOCK_H
39 # include <sys/ppsclock.h>
40 #endif
41
42 #include "ntp_stdlib.h"
43
44 int dbg = 0;
45 /*
46 fudgefactor = fudgetime1;
47 os_delay = fudgetime2;
48 offset_fudge = os_delay + fudgefactor + inherent_delay;
49 stratumtouse = fudgeval1 & 0xf
50 dbg = fudgeval2;
51 sloppyclockflag = flags & CLK_FLAG1;
52 1 log smoothing summary when processing sample
53 4 dump the buffer from the clock
54 8 EIOGETKD the last n uS time stamps
55 if (flags & CLK_FLAG2 && unitinuse) ees->leaphold = 0;
56 ees->dump_vals = flags & CLK_FLAG3;
57 ees->usealldata = flags & CLK_FLAG4;
58
59
60 bug->values[0] = (ees->lasttime) ? current_time - ees->lasttime : 0;
61 bug->values[1] = (ees->clocklastgood)?current_time-ees->clocklastgood:0;
62 bug->values[2] = (u_long)ees->status;
63 bug->values[3] = (u_long)ees->lastevent;
64 bug->values[4] = (u_long)ees->reason;
65 bug->values[5] = (u_long)ees->nsamples;
66 bug->values[6] = (u_long)ees->codestate;
67 bug->values[7] = (u_long)ees->day;
68 bug->values[8] = (u_long)ees->hour;
69 bug->values[9] = (u_long)ees->minute;
70 bug->values[10] = (u_long)ees->second;
71 bug->values[11] = (u_long)ees->tz;
72 bug->values[12] = ees->yearstart;
73 bug->values[13] = (ees->leaphold > current_time) ?
74 ees->leaphold - current_time : 0;
75 bug->values[14] = inherent_delay[unit].l_uf;
76 bug->values[15] = offset_fudge[unit].l_uf;
77
78 bug->times[0] = ees->reftime;
79 bug->times[1] = ees->arrvtime;
80 bug->times[2] = ees->lastsampletime;
81 bug->times[3] = ees->offset;
82 bug->times[4] = ees->lowoffset;
83 bug->times[5] = ees->highoffset;
84 bug->times[6] = inherent_delay[unit];
85 bug->times[8] = os_delay[unit];
86 bug->times[7] = fudgefactor[unit];
87 bug->times[9] = offset_fudge[unit];
88 bug->times[10]= ees->yearstart, 0;
89 */
90
91 /* This should support the use of an EES M201 receiver with RS232
92 * output (modified to transmit time once per second).
93 *
94 * For the format of the message sent by the clock, see the EESM_
95 * definitions below.
96 *
97 * It appears to run free for an integral number of minutes, until the error
98 * reaches 4mS, at which point it steps at second = 01.
99 * It appears that sometimes it steps 4mS (say at 7 min interval),
100 * then the next minute it decides that it was an error, so steps back.
101 * On the next minute it steps forward again :-(
102 * This is typically 16.5uS/S then 3975uS at the 4min re-sync,
103 * or 9.5uS/S then 3990.5uS at a 7min re-sync,
104 * at which point it may lose the "00" second time stamp.
105 * I assume that the most accurate time is just AFTER the re-sync.
106 * Hence remember the last cycle interval,
107 *
108 * Can run in any one of:
109 *
110 * PPSCD PPS signal sets CD which interupts, and grabs the current TOD
111 * (sun) *in the interupt code*, so as to avoid problems with
112 * the STREAMS scheduling.
113 *
114 * It appears that it goes 16.5 uS slow each second, then every 4 mins it
115 * generates no "00" second tick, and gains 3975 uS. Ho Hum ! (93/2/7)
116 */
117
118 /* Definitions */
119 #ifndef MAXUNITS
120 #define MAXUNITS 4 /* maximum number of EES units permitted */
121 #endif
122
123 #ifndef EES232
124 #define EES232 "/dev/ees%d" /* Device to open to read the data */
125 #endif
126
127 /* Other constant stuff */
128 #ifndef EESPRECISION
129 #define EESPRECISION (-10) /* what the heck - 2**-10 = 1ms */
130 #endif
131 #ifndef EESREFID
132 #define EESREFID "MSF\0" /* String to identify the clock */
133 #endif
134 #ifndef EESHSREFID
135 #define EESHSREFID (0x7f7f0000 | ((REFCLK_MSF_EES) << 8)) /* Numeric refid */
136 #endif
137
138 /* Description of clock */
139 #define EESDESCRIPTION "EES M201 MSF Receiver"
140
141 /* Speed we run the clock port at. If this is changed the UARTDELAY
142 * value should be recomputed to suit.
143 */
144 #ifndef SPEED232
145 #define SPEED232 B9600 /* 9600 baud */
146 #endif
147
148 /* What is the inherent delay for this mode of working, i.e. when is the
149 * data time stamped.
150 */
151 #define SAFETY_SHIFT 10 /* Split the shift to avoid overflow */
152 #define BITS_TO_L_FP(bits, baud) \
153 (((((bits)*2 +1) << (FRACTION_PREC-SAFETY_SHIFT)) / (2*baud)) << SAFETY_SHIFT)
154 #define INH_DELAY_CBREAK BITS_TO_L_FP(119, 9600)
155 #define INH_DELAY_PPS BITS_TO_L_FP( 0, 9600)
156
157 #ifndef STREAM_PP1
158 #define STREAM_PP1 "ppsclocd\0<-- patch space for module name1 -->"
159 #endif
160 #ifndef STREAM_PP2
161 #define STREAM_PP2 "ppsclock\0<-- patch space for module name2 -->"
162 #endif
163
164 /* Offsets of the bytes of the serial line code. The clock gives
165 * local time with a GMT/BST indication. The EESM_ definitions
166 * give offsets into ees->lastcode.
167 */
168 #define EESM_CSEC 0 /* centiseconds - always zero in our clock */
169 #define EESM_SEC 1 /* seconds in BCD */
170 #define EESM_MIN 2 /* minutes in BCD */
171 #define EESM_HOUR 3 /* hours in BCD */
172 #define EESM_DAYWK 4 /* day of week (Sun = 0 etc) */
173 #define EESM_DAY 5 /* day of month in BCD */
174 #define EESM_MON 6 /* month in BCD */
175 #define EESM_YEAR 7 /* year MOD 100 in BCD */
176 #define EESM_LEAP 8 /* 0x0f if leap year, otherwise zero */
177 #define EESM_BST 9 /* 0x03 if BST, 0x00 if GMT */
178 #define EESM_MSFOK 10 /* 0x3f if radio good, otherwise zero */
179 /* followed by a frame alignment byte (0xff) /
180 / which is not put into the lastcode buffer*/
181
182 /* Length of the serial time code, in characters. The first length
183 * is less the frame alignment byte.
184 */
185 #define LENEESPRT (EESM_MSFOK+1)
186 #define LENEESCODE (LENEESPRT+1)
187
188 /* Code state. */
189 #define EESCS_WAIT 0 /* waiting for start of timecode */
190 #define EESCS_GOTSOME 1 /* have an incomplete time code buffered */
191
192 /* Default fudge factor and character to receive */
193 #define DEFFUDGETIME 0 /* Default user supplied fudge factor */
194 #ifndef DEFOSTIME
195 #define DEFOSTIME 0 /* Default OS delay -- passed by Make ? */
196 #endif
197 #define DEFINHTIME INH_DELAY_PPS /* inherent delay due to sample point*/
198
199 /* Limits on things. Reduce the number of samples to SAMPLEREDUCE by median
200 * elimination. If we're running with an accurate clock, chose the BESTSAMPLE
201 * as the estimated offset, otherwise average the remainder.
202 */
203 #define FULLSHIFT 6 /* NCODES root 2 */
204 #define NCODES (1<< FULLSHIFT) /* 64 */
205 #define REDUCESHIFT (FULLSHIFT -1) /* SAMPLEREDUCE root 2 */
206
207 /* Towards the high ( Why ?) end of half */
208 #define BESTSAMPLE ((samplereduce * 3) /4) /* 24 */
209
210 /* Leap hold time. After a leap second the clock will no longer be
211 * reliable until it resynchronizes. Hope 40 minutes is enough. */
212 #define EESLEAPHOLD (40 * 60)
213
214 #define EES_STEP_F (1 << 24) /* the receiver steps in units of about 4ms */
215 #define EES_STEP_F_GRACE (EES_STEP_F/8) /*Allow for slop of 1/8 which is .5ms*/
216 #define EES_STEP_NOTE (1 << 21)/* Log any unexpected jumps, say .5 ms .... */
217 #define EES_STEP_NOTES 50 /* Only do a limited number */
218 #define MAX_STEP 16 /* Max number of steps to remember */
219
220 /* debug is a bit mask of debugging that is wanted */
221 #define DB_SYSLOG_SMPLI 0x0001
222 #define DB_SYSLOG_SMPLE 0x0002
223 #define DB_SYSLOG_SMTHI 0x0004
224 #define DB_SYSLOG_NSMTHE 0x0008
225 #define DB_SYSLOG_NSMTHI 0x0010
226 #define DB_SYSLOG_SMTHE 0x0020
227 #define DB_PRINT_EV 0x0040
228 #define DB_PRINT_CDT 0x0080
229 #define DB_PRINT_CDTC 0x0100
230 #define DB_SYSLOG_KEEPD 0x0800
231 #define DB_SYSLOG_KEEPE 0x1000
232 #define DB_LOG_DELTAS 0x2000
233 #define DB_PRINT_DELTAS 0x4000
234 #define DB_LOG_AWAITMORE 0x8000
235 #define DB_LOG_SAMPLES 0x10000
236 #define DB_NO_PPS 0x20000
237 #define DB_INC_PPS 0x40000
238 #define DB_DUMP_DELTAS 0x80000
239
240 struct eesunit { /* EES unit control structure. */
241 struct peer *peer; /* associated peer structure */
242 struct refclockio io; /* given to the I/O handler */
243 l_fp reftime; /* reference time */
244 l_fp lastsampletime; /* time as in txt from last EES msg */
245 l_fp arrvtime; /* Time at which pkt arrived */
246 l_fp codeoffsets[NCODES]; /* the time of arrival of 232 codes */
247 l_fp offset; /* chosen offset (for clkbug) */
248 l_fp lowoffset; /* lowest sample offset (for clkbug) */
249 l_fp highoffset; /* highest " " (for clkbug) */
250 char lastcode[LENEESCODE+6]; /* last time code we received */
251 u_long lasttime; /* last time clock heard from */
252 u_long clocklastgood; /* last time good radio seen */
253 u_char lencode; /* length of code in buffer */
254 u_char nsamples; /* number of samples we've collected */
255 u_char codestate; /* state of 232 code reception */
256 u_char unit; /* unit number for this guy */
257 u_char status; /* clock status */
258 u_char lastevent; /* last clock event */
259 u_char reason; /* reason for last abort */
260 u_char hour; /* hour of day */
261 u_char minute; /* minute of hour */
262 u_char second; /* seconds of minute */
263 char tz; /* timezone from clock */
264 u_char ttytype; /* method used */
265 u_char dump_vals; /* Should clock values be dumped */
266 u_char usealldata; /* Use ALL samples */
267 u_short day; /* day of year from last code */
268 u_long yearstart; /* start of current year */
269 u_long leaphold; /* time of leap hold expiry */
270 u_long badformat; /* number of bad format codes */
271 u_long baddata; /* number of invalid time codes */
272 u_long timestarted; /* time we started this */
273 long last_pps_no; /* The serial # of the last PPS */
274 char fix_pending; /* Is a "sync to time" pending ? */
275 /* Fine tuning - compensate for 4 mS ramping .... */
276 l_fp last_l; /* last time stamp */
277 u_char last_steps[MAX_STEP]; /* Most recent n steps */
278 int best_av_step; /* Best guess at average step */
279 char best_av_step_count; /* # of steps over used above */
280 char this_step; /* Current pos in buffer */
281 int last_step_late; /* How late the last step was (0-59) */
282 long jump_fsecs; /* # of fractions of a sec last jump */
283 u_long last_step; /* time of last step */
284 int last_step_secs; /* Number of seconds in last step */
285 int using_ramp; /* 1 -> noemal, -1 -> over stepped */
286 };
287 #define last_sec last_l.l_ui
288 #define last_sfsec last_l.l_f
289 #define this_uisec ((ees->arrvtime).l_ui)
290 #define this_sfsec ((ees->arrvtime).l_f)
291 #define msec(x) ((x) / (1<<22))
292 #define LAST_STEPS (sizeof ees->last_steps / sizeof ees->last_steps[0])
293 #define subms(x) ((((((x < 0) ? (-(x)) : (x)) % (1<<22))/2) * 625) / (1<<(22 -5)))
294
295 /* Bitmask for what methods to try to use -- currently only PPS enabled */
296 #define T_CBREAK 1
297 #define T_PPS 8
298 /* macros to test above */
299 #define is_cbreak(x) ((x)->ttytype & T_CBREAK)
300 #define is_pps(x) ((x)->ttytype & T_PPS)
301 #define is_any(x) ((x)->ttytype)
302
303 #define CODEREASON 20 /* reason codes */
304
305 /* Data space for the unit structures. Note that we allocate these on
306 * the fly, but never give them back. */
307 static struct eesunit *eesunits[MAXUNITS];
308 static u_char unitinuse[MAXUNITS];
309
310 /* Keep the fudge factors separately so they can be set even
311 * when no clock is configured. */
312 static l_fp inherent_delay[MAXUNITS]; /* when time stamp is taken */
313 static l_fp fudgefactor[MAXUNITS]; /* fudgetime1 */
314 static l_fp os_delay[MAXUNITS]; /* fudgetime2 */
315 static l_fp offset_fudge[MAXUNITS]; /* Sum of above */
316 static u_char stratumtouse[MAXUNITS];
317 static u_char sloppyclockflag[MAXUNITS];
318
319 static int deltas[60];
320
321 static l_fp acceptable_slop; /* = { 0, 1 << (FRACTION_PREC -2) }; */
322 static l_fp onesec; /* = { 1, 0 }; */
323
324 #ifndef DUMP_BUF_SIZE /* Size of buffer to be used by dump_buf */
325 #define DUMP_BUF_SIZE 10112
326 #endif
327
328 /* ees_reset - reset the count back to zero */
329 #define ees_reset(ees) (ees)->nsamples = 0; \
330 (ees)->codestate = EESCS_WAIT
331
332 /* ees_event - record and report an event */
333 #define ees_event(ees, evcode) if ((ees)->status != (u_char)(evcode)) \
334 ees_report_event((ees), (evcode))
335
336 /* Find the precision of the system clock by reading it */
337 #define USECS 1000000
338 #define MINSTEP 5 /* some systems increment uS on each call */
339 #define MAXLOOPS (USECS/9)
340
341 /*
342 * Function prototypes
343 */
344
345 static int msfees_start P((int unit, struct peer *peer));
346 static void msfees_shutdown P((int unit, struct peer *peer));
347 static void msfees_poll P((int unit, struct peer *peer));
348 static void msfees_init P((void));
349 static void dump_buf P((l_fp *coffs, int from, int to, char *text));
350 static void ees_report_event P((struct eesunit *ees, int code));
351 static void ees_receive P((struct recvbuf *rbufp));
352 static void ees_process P((struct eesunit *ees));
353 static int offcompare P((const void *va, const void *vb));
354
355
356 /*
357 * Transfer vector
358 */
359 struct refclock refclock_msfees = {
360 msfees_start, /* start up driver */
361 msfees_shutdown, /* shut down driver */
362 msfees_poll, /* transmit poll message */
363 noentry, /* not used */
364 msfees_init, /* initialize driver */
365 noentry, /* not used */
366 NOFLAGS /* not used */
367 };
368
369
370 static void
dump_buf(l_fp * coffs,int from,int to,char * text)371 dump_buf(
372 l_fp *coffs,
373 int from,
374 int to,
375 char *text
376 )
377 {
378 char buff[DUMP_BUF_SIZE + 80];
379 int i;
380 register char *ptr = buff;
381
382 snprintf(buff, sizeof(buff), text);
383 for (i = from; i < to; i++) {
384 ptr += strlen(ptr);
385 if ((ptr - buff) > DUMP_BUF_SIZE) {
386 msyslog(LOG_DEBUG, "D: %s", buff);
387 ptr = buff;
388 }
389 snprintf(ptr, sizeof(buff) - (ptr - buff),
390 " %06d", ((int)coffs[i].l_f) / 4295);
391 }
392 msyslog(LOG_DEBUG, "D: %s", buff);
393 }
394
395 /* msfees_init - initialize internal ees driver data */
396 static void
msfees_init(void)397 msfees_init(void)
398 {
399 register int i;
400 /* Just zero the data arrays */
401 memset((char *)eesunits, 0, sizeof eesunits);
402 memset((char *)unitinuse, 0, sizeof unitinuse);
403
404 acceptable_slop.l_ui = 0;
405 acceptable_slop.l_uf = 1 << (FRACTION_PREC -2);
406
407 onesec.l_ui = 1;
408 onesec.l_uf = 0;
409
410 /* Initialize fudge factors to default. */
411 for (i = 0; i < MAXUNITS; i++) {
412 fudgefactor[i].l_ui = 0;
413 fudgefactor[i].l_uf = DEFFUDGETIME;
414 os_delay[i].l_ui = 0;
415 os_delay[i].l_uf = DEFOSTIME;
416 inherent_delay[i].l_ui = 0;
417 inherent_delay[i].l_uf = DEFINHTIME;
418 offset_fudge[i] = os_delay[i];
419 L_ADD(&offset_fudge[i], &fudgefactor[i]);
420 L_ADD(&offset_fudge[i], &inherent_delay[i]);
421 stratumtouse[i] = 0;
422 sloppyclockflag[i] = 0;
423 }
424 }
425
426
427 /* msfees_start - open the EES devices and initialize data for processing */
428 static int
msfees_start(int unit,struct peer * peer)429 msfees_start(
430 int unit,
431 struct peer *peer
432 )
433 {
434 register struct eesunit *ees;
435 register int i;
436 int fd232 = -1;
437 char eesdev[20];
438 struct termios ttyb, *ttyp;
439 struct refclockproc *pp;
440 pp = peer->procptr;
441
442 if (unit >= MAXUNITS) {
443 msyslog(LOG_ERR, "ees clock: unit number %d invalid (max %d)",
444 unit, MAXUNITS-1);
445 return 0;
446 }
447 if (unitinuse[unit]) {
448 msyslog(LOG_ERR, "ees clock: unit number %d in use", unit);
449 return 0;
450 }
451
452 /* Unit okay, attempt to open the devices. We do them both at
453 * once to make sure we can */
454 snprintf(eesdev, sizeof(eesdev), EES232, unit);
455
456 fd232 = open(eesdev, O_RDWR, 0777);
457 if (fd232 == -1) {
458 msyslog(LOG_ERR, "ees clock: open of %s failed: %m", eesdev);
459 return 0;
460 }
461
462 #ifdef TIOCEXCL
463 /* Set for exclusive use */
464 if (ioctl(fd232, TIOCEXCL, (char *)0) < 0) {
465 msyslog(LOG_ERR, "ees clock: ioctl(%s, TIOCEXCL): %m", eesdev);
466 goto screwed;
467 }
468 #endif
469
470 /* STRIPPED DOWN VERSION: Only PPS CD is supported at the moment */
471
472 /* Set port characteristics. If we don't have a STREAMS module or
473 * a clock line discipline, cooked mode is just usable, even though it
474 * strips the top bit. The only EES byte which uses the top
475 * bit is the year, and we don't use that anyway. If we do
476 * have the line discipline, we choose raw mode, and the
477 * line discipline code will block up the messages.
478 */
479
480 /* STIPPED DOWN VERSION: Only PPS CD is supported at the moment */
481
482 ttyp = &ttyb;
483 if (tcgetattr(fd232, ttyp) < 0) {
484 msyslog(LOG_ERR, "msfees_start: tcgetattr(%s): %m", eesdev);
485 goto screwed;
486 }
487
488 ttyp->c_iflag = IGNBRK|IGNPAR|ICRNL;
489 ttyp->c_cflag = SPEED232|CS8|CLOCAL|CREAD;
490 ttyp->c_oflag = 0;
491 ttyp->c_lflag = ICANON;
492 ttyp->c_cc[VERASE] = ttyp->c_cc[VKILL] = '\0';
493 if (tcsetattr(fd232, TCSANOW, ttyp) < 0) {
494 msyslog(LOG_ERR, "msfees_start: tcsetattr(%s): %m", eesdev);
495 goto screwed;
496 }
497
498 if (tcflush(fd232, TCIOFLUSH) < 0) {
499 msyslog(LOG_ERR, "msfees_start: tcflush(%s): %m", eesdev);
500 goto screwed;
501 }
502
503 inherent_delay[unit].l_uf = INH_DELAY_PPS;
504
505 /* offset fudge (how *late* the timestamp is) = fudge + os delays */
506 offset_fudge[unit] = os_delay[unit];
507 L_ADD(&offset_fudge[unit], &fudgefactor[unit]);
508 L_ADD(&offset_fudge[unit], &inherent_delay[unit]);
509
510 /* Looks like this might succeed. Find memory for the structure.
511 * Look to see if there are any unused ones, if not we malloc() one.
512 */
513 if (eesunits[unit] != 0) /* The one we want is okay */
514 ees = eesunits[unit];
515 else {
516 /* Look for an unused, but allocated struct */
517 for (i = 0; i < MAXUNITS; i++) {
518 if (!unitinuse[i] && eesunits[i] != 0)
519 break;
520 }
521
522 if (i < MAXUNITS) { /* Reclaim this one */
523 ees = eesunits[i];
524 eesunits[i] = 0;
525 } /* no spare -- make a new one */
526 else ees = (struct eesunit *) emalloc(sizeof(struct eesunit));
527 }
528 memset((char *)ees, 0, sizeof(struct eesunit));
529 eesunits[unit] = ees;
530
531 /* Set up the structures */
532 ees->peer = peer;
533 ees->unit = (u_char)unit;
534 ees->timestarted= current_time;
535 ees->ttytype = 0;
536 ees->io.clock_recv= ees_receive;
537 ees->io.srcclock= peer;
538 ees->io.datalen = 0;
539 ees->io.fd = fd232;
540
541 /* Okay. Push one of the two (linked into the kernel, or dynamically
542 * loaded) STREAMS module, and give it to the I/O code to start
543 * receiving stuff.
544 */
545
546 #ifdef STREAM
547 {
548 int rc1;
549 /* Pop any existing onews first ... */
550 while (ioctl(fd232, I_POP, 0 ) >= 0) ;
551
552 /* Now try pushing either of the possible modules */
553 if ((rc1=ioctl(fd232, I_PUSH, STREAM_PP1)) < 0 &&
554 ioctl(fd232, I_PUSH, STREAM_PP2) < 0) {
555 msyslog(LOG_ERR,
556 "ees clock: Push of `%s' and `%s' to %s failed %m",
557 STREAM_PP1, STREAM_PP2, eesdev);
558 goto screwed;
559 }
560 else {
561 NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
562 msyslog(LOG_INFO, "I: ees clock: PUSHed %s on %s",
563 (rc1 >= 0) ? STREAM_PP1 : STREAM_PP2, eesdev);
564 ees->ttytype |= T_PPS;
565 }
566 }
567 #endif /* STREAM */
568
569 /* Add the clock */
570 if (!io_addclock(&ees->io)) {
571 /* Oh shit. Just close and return. */
572 msyslog(LOG_ERR, "ees clock: io_addclock(%s): %m", eesdev);
573 goto screwed;
574 }
575
576
577 /* All done. Initialize a few random peer variables, then
578 * return success. */
579 peer->precision = sys_precision;
580 peer->stratum = stratumtouse[unit];
581 if (stratumtouse[unit] <= 1) {
582 memcpy((char *)&pp->refid, EESREFID, 4);
583 if (unit > 0 && unit < 10)
584 ((char *)&pp->refid)[3] = '0' + unit;
585 } else {
586 peer->refid = htonl(EESHSREFID);
587 }
588 unitinuse[unit] = 1;
589 pp->unitptr = &eesunits[unit];
590 pp->clockdesc = EESDESCRIPTION;
591 msyslog(LOG_ERR, "ees clock: %s OK on %d", eesdev, unit);
592 return (1);
593
594 screwed:
595 if (fd232 != -1)
596 (void) close(fd232);
597 return (0);
598 }
599
600
601 /* msfees_shutdown - shut down a EES clock */
602 static void
msfees_shutdown(int unit,struct peer * peer)603 msfees_shutdown(
604 int unit,
605 struct peer *peer
606 )
607 {
608 register struct eesunit *ees;
609
610 if (unit >= MAXUNITS) {
611 msyslog(LOG_ERR,
612 "ees clock: INTERNAL ERROR, unit number %d invalid (max %d)",
613 unit, MAXUNITS);
614 return;
615 }
616 if (!unitinuse[unit]) {
617 msyslog(LOG_ERR,
618 "ees clock: INTERNAL ERROR, unit number %d not in use", unit);
619 return;
620 }
621
622 /* Tell the I/O module to turn us off. We're history. */
623 ees = eesunits[unit];
624 io_closeclock(&ees->io);
625 unitinuse[unit] = 0;
626 }
627
628
629 /* ees_report_event - note the occurance of an event */
630 static void
ees_report_event(struct eesunit * ees,int code)631 ees_report_event(
632 struct eesunit *ees,
633 int code
634 )
635 {
636 if (ees->status != (u_char)code) {
637 ees->status = (u_char)code;
638 if (code != CEVNT_NOMINAL)
639 ees->lastevent = (u_char)code;
640 /* Should report event to trap handler in here.
641 * Soon...
642 */
643 }
644 }
645
646
647 /* ees_receive - receive data from the serial interface on an EES clock */
648 static void
ees_receive(struct recvbuf * rbufp)649 ees_receive(
650 struct recvbuf *rbufp
651 )
652 {
653 register int n_sample;
654 register int day;
655 register struct eesunit *ees;
656 register u_char *dpt; /* Data PoinTeR: move along ... */
657 register u_char *dpend; /* Points just *after* last data char */
658 register char *cp;
659 l_fp tmp;
660 int call_pps_sample = 0;
661 l_fp pps_arrvstamp;
662 int sincelast;
663 int pps_step = 0;
664 int suspect_4ms_step = 0;
665 struct ppsclockev ppsclockev;
666 long *ptr = (long *) &ppsclockev;
667 int rc;
668 int request;
669 #ifdef HAVE_CIOGETEV
670 request = CIOGETEV;
671 #endif
672 #ifdef HAVE_TIOCGPPSEV
673 request = TIOCGPPSEV;
674 #endif
675
676 /* Get the clock this applies to and a pointer to the data */
677 ees = (struct eesunit *)rbufp->recv_peer->procptr->unitptr;
678 dpt = (u_char *)&rbufp->recv_space;
679 dpend = dpt + rbufp->recv_length;
680 if ((dbg & DB_LOG_AWAITMORE) && (rbufp->recv_length != LENEESCODE))
681 printf("[%d] ", rbufp->recv_length);
682
683 /* Check out our state and process appropriately */
684 switch (ees->codestate) {
685 case EESCS_WAIT:
686 /* Set an initial guess at the timestamp as the recv time.
687 * If just running in CBREAK mode, we can't improve this.
688 * If we have the CLOCK Line Discipline, PPSCD, or sime such,
689 * then we will do better later ....
690 */
691 ees->arrvtime = rbufp->recv_time;
692 ees->codestate = EESCS_GOTSOME;
693 ees->lencode = 0;
694 /*FALLSTHROUGH*/
695
696 case EESCS_GOTSOME:
697 cp = &(ees->lastcode[ees->lencode]);
698
699 /* Gobble the bytes until the final (possibly stripped) 0xff */
700 while (dpt < dpend && (*dpt & 0x7f) != 0x7f) {
701 *cp++ = (char)*dpt++;
702 ees->lencode++;
703 /* Oh dear -- too many bytes .. */
704 if (ees->lencode > LENEESPRT) {
705 NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
706 msyslog(LOG_INFO,
707 "I: ees clock: %d + %d > %d [%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x]",
708 ees->lencode, dpend - dpt, LENEESPRT,
709 #define D(x) (ees->lastcode[x])
710 D(0), D(1), D(2), D(3), D(4), D(5), D(6),
711 D(7), D(8), D(9), D(10), D(11), D(12));
712 #undef D
713 ees->badformat++;
714 ees->reason = CODEREASON + 1;
715 ees_event(ees, CEVNT_BADREPLY);
716 ees_reset(ees);
717 return;
718 }
719 }
720 /* Gave up because it was end of the buffer, rather than ff */
721 if (dpt == dpend) {
722 /* Incomplete. Wait for more. */
723 if (dbg & DB_LOG_AWAITMORE)
724 msyslog(LOG_INFO,
725 "I: ees clock %d: %p == %p: await more",
726 ees->unit, dpt, dpend);
727 return;
728 }
729
730 /* This shouldn't happen ... ! */
731 if ((*dpt & 0x7f) != 0x7f) {
732 msyslog(LOG_INFO, "I: ees clock: %0x & 0x7f != 0x7f", *dpt);
733 ees->badformat++;
734 ees->reason = CODEREASON + 2;
735 ees_event(ees, CEVNT_BADREPLY);
736 ees_reset(ees);
737 return;
738 }
739
740 /* Skip the 0xff */
741 dpt++;
742
743 /* Finally, got a complete buffer. Mainline code will
744 * continue on. */
745 cp = ees->lastcode;
746 break;
747
748 default:
749 msyslog(LOG_ERR, "ees clock: INTERNAL ERROR: %d state %d",
750 ees->unit, ees->codestate);
751 ees->reason = CODEREASON + 5;
752 ees_event(ees, CEVNT_FAULT);
753 ees_reset(ees);
754 return;
755 }
756
757 /* Boy! After all that crap, the lastcode buffer now contains
758 * something we hope will be a valid time code. Do length
759 * checks and sanity checks on constant data.
760 */
761 ees->codestate = EESCS_WAIT;
762 ees->lasttime = current_time;
763 if (ees->lencode != LENEESPRT) {
764 ees->badformat++;
765 ees->reason = CODEREASON + 6;
766 ees_event(ees, CEVNT_BADREPLY);
767 ees_reset(ees);
768 return;
769 }
770
771 cp = ees->lastcode;
772
773 /* Check that centisecond is zero */
774 if (cp[EESM_CSEC] != 0) {
775 ees->baddata++;
776 ees->reason = CODEREASON + 7;
777 ees_event(ees, CEVNT_BADREPLY);
778 ees_reset(ees);
779 return;
780 }
781
782 /* Check flag formats */
783 if (cp[EESM_LEAP] != 0 && cp[EESM_LEAP] != 0x0f) {
784 ees->badformat++;
785 ees->reason = CODEREASON + 8;
786 ees_event(ees, CEVNT_BADREPLY);
787 ees_reset(ees);
788 return;
789 }
790
791 if (cp[EESM_BST] != 0 && cp[EESM_BST] != 0x03) {
792 ees->badformat++;
793 ees->reason = CODEREASON + 9;
794 ees_event(ees, CEVNT_BADREPLY);
795 ees_reset(ees);
796 return;
797 }
798
799 if (cp[EESM_MSFOK] != 0 && cp[EESM_MSFOK] != 0x3f) {
800 ees->badformat++;
801 ees->reason = CODEREASON + 10;
802 ees_event(ees, CEVNT_BADREPLY);
803 ees_reset(ees);
804 return;
805 }
806
807 /* So far, so good. Compute day, hours, minutes, seconds,
808 * time zone. Do range checks on these.
809 */
810
811 #define bcdunpack(val) ( (((val)>>4) & 0x0f) * 10 + ((val) & 0x0f) )
812 #define istrue(x) ((x)?1:0)
813
814 ees->second = bcdunpack(cp[EESM_SEC]); /* second */
815 ees->minute = bcdunpack(cp[EESM_MIN]); /* minute */
816 ees->hour = bcdunpack(cp[EESM_HOUR]); /* hour */
817
818 day = bcdunpack(cp[EESM_DAY]); /* day of month */
819
820 switch (bcdunpack(cp[EESM_MON])) { /* month */
821
822 /* Add in lengths of all previous months. Add one more
823 if it is a leap year and after February.
824 */
825 case 12: day += NOV; /*FALLSTHROUGH*/
826 case 11: day += OCT; /*FALLSTHROUGH*/
827 case 10: day += SEP; /*FALLSTHROUGH*/
828 case 9: day += AUG; /*FALLSTHROUGH*/
829 case 8: day += JUL; /*FALLSTHROUGH*/
830 case 7: day += JUN; /*FALLSTHROUGH*/
831 case 6: day += MAY; /*FALLSTHROUGH*/
832 case 5: day += APR; /*FALLSTHROUGH*/
833 case 4: day += MAR; /*FALLSTHROUGH*/
834 case 3: day += FEB;
835 if (istrue(cp[EESM_LEAP])) day++; /*FALLSTHROUGH*/
836 case 2: day += JAN; /*FALLSTHROUGH*/
837 case 1: break;
838 default: ees->baddata++;
839 ees->reason = CODEREASON + 11;
840 ees_event(ees, CEVNT_BADDATE);
841 ees_reset(ees);
842 return;
843 }
844
845 ees->day = day;
846
847 /* Get timezone. The clocktime routine wants the number
848 * of hours to add to the delivered time to get UT.
849 * Currently -1 if BST flag set, 0 otherwise. This
850 * is the place to tweak things if double summer time
851 * ever happens.
852 */
853 ees->tz = istrue(cp[EESM_BST]) ? -1 : 0;
854
855 if (ees->day > 366 || ees->day < 1 ||
856 ees->hour > 23 || ees->minute > 59 || ees->second > 59) {
857 ees->baddata++;
858 ees->reason = CODEREASON + 12;
859 ees_event(ees, CEVNT_BADDATE);
860 ees_reset(ees);
861 return;
862 }
863
864 n_sample = ees->nsamples;
865
866 /* Now, compute the reference time value: text -> tmp.l_ui */
867 if (!clocktime(ees->day, ees->hour, ees->minute, ees->second,
868 ees->tz, rbufp->recv_time.l_ui, &ees->yearstart,
869 &tmp.l_ui)) {
870 ees->baddata++;
871 ees->reason = CODEREASON + 13;
872 ees_event(ees, CEVNT_BADDATE);
873 ees_reset(ees);
874 return;
875 }
876 tmp.l_uf = 0;
877
878 /* DON'T use ees->arrvtime -- it may be < reftime */
879 ees->lastsampletime = tmp;
880
881 /* If we are synchronised to the radio, update the reference time.
882 * Also keep a note of when clock was last good.
883 */
884 if (istrue(cp[EESM_MSFOK])) {
885 ees->reftime = tmp;
886 ees->clocklastgood = current_time;
887 }
888
889
890 /* Compute the offset. For the fractional part of the
891 * offset we use the expected delay for the message.
892 */
893 ees->codeoffsets[n_sample].l_ui = tmp.l_ui;
894 ees->codeoffsets[n_sample].l_uf = 0;
895
896 /* Number of seconds since the last step */
897 sincelast = this_uisec - ees->last_step;
898
899 memset((char *) &ppsclockev, 0, sizeof ppsclockev);
900
901 rc = ioctl(ees->io.fd, request, (char *) &ppsclockev);
902 if (dbg & DB_PRINT_EV) fprintf(stderr,
903 "[%x] CIOGETEV u%d %d (%x %d) gave %d (%d): %08lx %08lx %ld\n",
904 DB_PRINT_EV, ees->unit, ees->io.fd, request, is_pps(ees),
905 rc, errno, ptr[0], ptr[1], ptr[2]);
906
907 /* If we managed to get the time of arrival, process the info */
908 if (rc >= 0) {
909 int conv = -1;
910 pps_step = ppsclockev.serial - ees->last_pps_no;
911
912 /* Possible that PPS triggered, but text message didn't */
913 if (pps_step == 2) msyslog(LOG_ERR, "pps step = 2 @ %02d", ees->second);
914 if (pps_step == 2 && ees->second == 1) suspect_4ms_step |= 1;
915 if (pps_step == 2 && ees->second == 2) suspect_4ms_step |= 4;
916
917 /* allow for single loss of PPS only */
918 if (pps_step != 1 && pps_step != 2)
919 fprintf(stderr, "PPS step: %d too far off %ld (%d)\n",
920 ppsclockev.serial, ees->last_pps_no, pps_step);
921 else {
922 pps_arrvstamp = tval_stamp_to_lfp(ppsclockev.tv);
923 /* if ((ABS(time difference) - 0.25) < 0)
924 * then believe it ...
925 */
926 l_fp diff;
927 diff = pps_arrvstamp;
928 conv = 0;
929 L_SUB(&diff, &ees->arrvtime);
930 if (dbg & DB_PRINT_CDT)
931 printf("[%x] Have %lx.%08lx and %lx.%08lx -> %lx.%08lx @ %s",
932 DB_PRINT_CDT, (long)ees->arrvtime.l_ui, (long)ees->arrvtime.l_uf,
933 (long)pps_arrvstamp.l_ui, (long)pps_arrvstamp.l_uf,
934 (long)diff.l_ui, (long)diff.l_uf,
935 ctime(&(ppsclockev.tv.tv_sec)));
936 if (L_ISNEG(&diff)) M_NEG(diff.l_ui, diff.l_uf);
937 L_SUB(&diff, &acceptable_slop);
938 if (L_ISNEG(&diff)) { /* AOK -- pps_sample */
939 ees->arrvtime = pps_arrvstamp;
940 conv++;
941 call_pps_sample++;
942 }
943 /* Some loss of some signals around sec = 1 */
944 else if (ees->second == 1) {
945 diff = pps_arrvstamp;
946 L_ADD(&diff, &onesec);
947 L_SUB(&diff, &ees->arrvtime);
948 if (L_ISNEG(&diff)) M_NEG(diff.l_ui, diff.l_uf);
949 L_SUB(&diff, &acceptable_slop);
950 msyslog(LOG_ERR, "Have sec==1 slip %ds a=%08x-p=%08x -> %x.%08x (u=%d) %s",
951 pps_arrvstamp.l_ui - ees->arrvtime.l_ui,
952 pps_arrvstamp.l_uf,
953 ees->arrvtime.l_uf,
954 diff.l_ui, diff.l_uf,
955 (int)ppsclockev.tv.tv_usec,
956 ctime(&(ppsclockev.tv.tv_sec)));
957 if (L_ISNEG(&diff)) { /* AOK -- pps_sample */
958 suspect_4ms_step |= 2;
959 ees->arrvtime = pps_arrvstamp;
960 L_ADD(&ees->arrvtime, &onesec);
961 conv++;
962 call_pps_sample++;
963 }
964 }
965 }
966 ees->last_pps_no = ppsclockev.serial;
967 if (dbg & DB_PRINT_CDTC)
968 printf(
969 "[%x] %08lx %08lx %d u%d (%d %d)\n",
970 DB_PRINT_CDTC, (long)pps_arrvstamp.l_ui,
971 (long)pps_arrvstamp.l_uf, conv, ees->unit,
972 call_pps_sample, pps_step);
973 }
974
975 /* See if there has been a 4ms jump at a minute boundry */
976 { l_fp delta;
977 #define delta_isec delta.l_ui
978 #define delta_ssec delta.l_i
979 #define delta_sfsec delta.l_f
980 long delta_f_abs;
981
982 delta.l_i = ees->arrvtime.l_i;
983 delta.l_f = ees->arrvtime.l_f;
984
985 L_SUB(&delta, &ees->last_l);
986 delta_f_abs = delta_sfsec;
987 if (delta_f_abs < 0) delta_f_abs = -delta_f_abs;
988
989 /* Dump the deltas each minute */
990 if (dbg & DB_DUMP_DELTAS)
991 {
992 if (/*0 <= ees->second && */
993 ees->second < COUNTOF(deltas))
994 deltas[ees->second] = delta_sfsec;
995 /* Dump on second 1, as second 0 sometimes missed */
996 if (ees->second == 1) {
997 char text[16 * COUNTOF(deltas)];
998 char *cptr=text;
999 int i;
1000 for (i = 0; i < COUNTOF(deltas); i++) {
1001 snprintf(cptr, sizeof(text) / COUNTOF(deltas),
1002 " %d.%04d", msec(deltas[i]),
1003 subms(deltas[i]));
1004 cptr += strlen(cptr);
1005 }
1006 msyslog(LOG_ERR, "Deltas: %d.%04d<->%d.%04d: %s",
1007 msec(EES_STEP_F - EES_STEP_F_GRACE), subms(EES_STEP_F - EES_STEP_F_GRACE),
1008 msec(EES_STEP_F + EES_STEP_F_GRACE), subms(EES_STEP_F + EES_STEP_F_GRACE),
1009 text+1);
1010 for (i=0; i<((sizeof deltas) / (sizeof deltas[0])); i++) deltas[i] = 0;
1011 }
1012 }
1013
1014 /* Lets see if we have a 4 mS step at a minute boundaary */
1015 if ( ((EES_STEP_F - EES_STEP_F_GRACE) < delta_f_abs) &&
1016 (delta_f_abs < (EES_STEP_F + EES_STEP_F_GRACE)) &&
1017 (ees->second == 0 || ees->second == 1 || ees->second == 2) &&
1018 (sincelast < 0 || sincelast > 122)
1019 ) { /* 4ms jump at min boundry */
1020 int old_sincelast;
1021 int count=0;
1022 int sum = 0;
1023 /* Yes -- so compute the ramp time */
1024 if (ees->last_step == 0) sincelast = 0;
1025 old_sincelast = sincelast;
1026
1027 /* First time in, just set "ees->last_step" */
1028 if(ees->last_step) {
1029 int other_step = 0;
1030 int third_step = 0;
1031 int this_step = (sincelast + (60 /2)) / 60;
1032 int p_step = ees->this_step;
1033 int p;
1034 ees->last_steps[p_step] = this_step;
1035 p= p_step;
1036 p_step++;
1037 if (p_step >= LAST_STEPS) p_step = 0;
1038 ees->this_step = p_step;
1039 /* Find the "average" interval */
1040 while (p != p_step) {
1041 int this = ees->last_steps[p];
1042 if (this == 0) break;
1043 if (this != this_step) {
1044 if (other_step == 0 && (
1045 this== (this_step +2) ||
1046 this== (this_step -2) ||
1047 this== (this_step +1) ||
1048 this== (this_step -1)))
1049 other_step = this;
1050 if (other_step != this) {
1051 int idelta = (this_step - other_step);
1052 if (idelta < 0) idelta = - idelta;
1053 if (third_step == 0 && (
1054 (idelta == 1) ? (
1055 this == (other_step +1) ||
1056 this == (other_step -1) ||
1057 this == (this_step +1) ||
1058 this == (this_step -1))
1059 :
1060 (
1061 this == (this_step + other_step)/2
1062 )
1063 )) third_step = this;
1064 if (third_step != this) break;
1065 }
1066 }
1067 sum += this;
1068 p--;
1069 if (p < 0) p += LAST_STEPS;
1070 count++;
1071 }
1072 msyslog(LOG_ERR, "MSF%d: %d: This=%d (%d), other=%d/%d, sum=%d, count=%d, pps_step=%d, suspect=%x", ees->unit, p, ees->last_steps[p], this_step, other_step, third_step, sum, count, pps_step, suspect_4ms_step);
1073 if (count != 0) sum = ((sum * 60) + (count /2)) / count;
1074 #define SV(x) (ees->last_steps[(x + p_step) % LAST_STEPS])
1075 msyslog(LOG_ERR, "MSF%d: %x steps %d: %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d",
1076 ees->unit, suspect_4ms_step, p_step, SV(0), SV(1), SV(2), SV(3), SV(4), SV(5), SV(6),
1077 SV(7), SV(8), SV(9), SV(10), SV(11), SV(12), SV(13), SV(14), SV(15));
1078 printf("MSF%d: steps %d: %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d\n",
1079 ees->unit, p_step, SV(0), SV(1), SV(2), SV(3), SV(4), SV(5), SV(6),
1080 SV(7), SV(8), SV(9), SV(10), SV(11), SV(12), SV(13), SV(14), SV(15));
1081 #undef SV
1082 ees->jump_fsecs = delta_sfsec;
1083 ees->using_ramp = 1;
1084 if (sincelast > 170)
1085 ees->last_step_late += sincelast - ((sum) ? sum : ees->last_step_secs);
1086 else ees->last_step_late = 30;
1087 if (ees->last_step_late < -60 || ees->last_step_late > 120) ees->last_step_late = 30;
1088 if (ees->last_step_late < 0) ees->last_step_late = 0;
1089 if (ees->last_step_late >= 60) ees->last_step_late = 59;
1090 sincelast = 0;
1091 }
1092 else { /* First time in -- just save info */
1093 ees->last_step_late = 30;
1094 ees->jump_fsecs = delta_sfsec;
1095 ees->using_ramp = 1;
1096 sum = 4 * 60;
1097 }
1098 ees->last_step = this_uisec;
1099 printf("MSF%d: d=%3ld.%04ld@%d :%d:%d:$%d:%d:%d\n",
1100 ees->unit, (long)msec(delta_sfsec), (long)subms(delta_sfsec),
1101 ees->second, old_sincelast, ees->last_step_late, count, sum,
1102 ees->last_step_secs);
1103 msyslog(LOG_ERR, "MSF%d: d=%3d.%04d@%d :%d:%d:%d:%d:%d",
1104 ees->unit, msec(delta_sfsec), subms(delta_sfsec), ees->second,
1105 old_sincelast, ees->last_step_late, count, sum, ees->last_step_secs);
1106 if (sum) ees->last_step_secs = sum;
1107 }
1108 /* OK, so not a 4ms step at a minute boundry */
1109 else {
1110 if (suspect_4ms_step) msyslog(LOG_ERR,
1111 "MSF%d: suspect = %x, but delta of %d.%04d [%d.%04d<%d.%04d<%d.%04d: %d %d]",
1112 ees->unit, suspect_4ms_step, msec(delta_sfsec), subms(delta_sfsec),
1113 msec(EES_STEP_F - EES_STEP_F_GRACE),
1114 subms(EES_STEP_F - EES_STEP_F_GRACE),
1115 (int)msec(delta_f_abs),
1116 (int)subms(delta_f_abs),
1117 msec(EES_STEP_F + EES_STEP_F_GRACE),
1118 subms(EES_STEP_F + EES_STEP_F_GRACE),
1119 ees->second,
1120 sincelast);
1121 if ((delta_f_abs > EES_STEP_NOTE) && ees->last_l.l_i) {
1122 static int ees_step_notes = EES_STEP_NOTES;
1123 if (ees_step_notes > 0) {
1124 ees_step_notes--;
1125 printf("MSF%d: D=%3ld.%04ld@%02d :%d%s\n",
1126 ees->unit, (long)msec(delta_sfsec), (long)subms(delta_sfsec),
1127 ees->second, sincelast, ees_step_notes ? "" : " -- NO MORE !");
1128 msyslog(LOG_ERR, "MSF%d: D=%3d.%04d@%02d :%d%s",
1129 ees->unit, msec(delta_sfsec), subms(delta_sfsec), ees->second, (ees->last_step) ? sincelast : -1, ees_step_notes ? "" : " -- NO MORE !");
1130 }
1131 }
1132 }
1133 }
1134 ees->last_l = ees->arrvtime;
1135
1136 /* IF we have found that it's ramping
1137 * && it's within twice the expected ramp period
1138 * && there is a non zero step size (avoid /0 !)
1139 * THEN we twiddle things
1140 */
1141 if (ees->using_ramp &&
1142 sincelast < (ees->last_step_secs)*2 &&
1143 ees->last_step_secs)
1144 { long sec_of_ramp = sincelast + ees->last_step_late;
1145 long fsecs;
1146 l_fp inc;
1147
1148 /* Ramp time may vary, so may ramp for longer than last time */
1149 if (sec_of_ramp > (ees->last_step_secs + 120))
1150 sec_of_ramp = ees->last_step_secs;
1151
1152 /* sec_of_ramp * ees->jump_fsecs may overflow 2**32 */
1153 fsecs = sec_of_ramp * (ees->jump_fsecs / ees->last_step_secs);
1154
1155 if (dbg & DB_LOG_DELTAS) msyslog(LOG_ERR,
1156 "[%x] MSF%d: %3ld/%03d -> d=%11ld (%d|%ld)",
1157 DB_LOG_DELTAS,
1158 ees->unit, sec_of_ramp, ees->last_step_secs, fsecs,
1159 pps_arrvstamp.l_f, pps_arrvstamp.l_f + fsecs);
1160 if (dbg & DB_PRINT_DELTAS) printf(
1161 "MSF%d: %3ld/%03d -> d=%11ld (%ld|%ld)\n",
1162 ees->unit, sec_of_ramp, ees->last_step_secs, fsecs,
1163 (long)pps_arrvstamp.l_f, pps_arrvstamp.l_f + fsecs);
1164
1165 /* Must sign extend the result */
1166 inc.l_i = (fsecs < 0) ? -1 : 0;
1167 inc.l_f = fsecs;
1168 if (dbg & DB_INC_PPS)
1169 { L_SUB(&pps_arrvstamp, &inc);
1170 L_SUB(&ees->arrvtime, &inc);
1171 }
1172 else
1173 { L_ADD(&pps_arrvstamp, &inc);
1174 L_ADD(&ees->arrvtime, &inc);
1175 }
1176 }
1177 else {
1178 if (dbg & DB_LOG_DELTAS) msyslog(LOG_ERR,
1179 "[%x] MSF%d: ees->using_ramp=%d, sincelast=%x / %x, ees->last_step_secs=%x",
1180 DB_LOG_DELTAS,
1181 ees->unit, ees->using_ramp,
1182 sincelast,
1183 (ees->last_step_secs)*2,
1184 ees->last_step_secs);
1185 if (dbg & DB_PRINT_DELTAS) printf(
1186 "[%x] MSF%d: ees->using_ramp=%d, sincelast=%x / %x, ees->last_step_secs=%x\n",
1187 DB_LOG_DELTAS,
1188 ees->unit, ees->using_ramp,
1189 sincelast,
1190 (ees->last_step_secs)*2,
1191 ees->last_step_secs);
1192 }
1193
1194 L_SUB(&ees->arrvtime, &offset_fudge[ees->unit]);
1195 L_SUB(&pps_arrvstamp, &offset_fudge[ees->unit]);
1196
1197 if (call_pps_sample && !(dbg & DB_NO_PPS)) {
1198 /* Sigh -- it expects its args negated */
1199 L_NEG(&pps_arrvstamp);
1200 /*
1201 * I had to disable this here, since it appears there is no pointer to the
1202 * peer structure.
1203 *
1204 (void) pps_sample(peer, &pps_arrvstamp);
1205 */
1206 }
1207
1208 /* Subtract off the local clock time stamp */
1209 L_SUB(&ees->codeoffsets[n_sample], &ees->arrvtime);
1210 if (dbg & DB_LOG_SAMPLES) msyslog(LOG_ERR,
1211 "MSF%d: [%x] %d (ees: %d %d) (pps: %d %d)%s",
1212 ees->unit, DB_LOG_DELTAS, n_sample,
1213 ees->codeoffsets[n_sample].l_f,
1214 ees->codeoffsets[n_sample].l_f / 4295,
1215 pps_arrvstamp.l_f,
1216 pps_arrvstamp.l_f /4295,
1217 (dbg & DB_NO_PPS) ? " [no PPS]" : "");
1218
1219 if (ees->nsamples++ == NCODES-1) ees_process(ees);
1220
1221 /* Done! */
1222 }
1223
1224
1225 /* offcompare - auxiliary comparison routine for offset sort */
1226
1227 static int
offcompare(const void * va,const void * vb)1228 offcompare(
1229 const void *va,
1230 const void *vb
1231 )
1232 {
1233 const l_fp *a = (const l_fp *)va;
1234 const l_fp *b = (const l_fp *)vb;
1235 return(L_ISGEQ(a, b) ? (L_ISEQU(a, b) ? 0 : 1) : -1);
1236 }
1237
1238
1239 /* ees_process - process a pile of samples from the clock */
1240 static void
ees_process(struct eesunit * ees)1241 ees_process(
1242 struct eesunit *ees
1243 )
1244 {
1245 static int last_samples = -1;
1246 register int i, j;
1247 register int noff;
1248 register l_fp *coffs = ees->codeoffsets;
1249 l_fp offset, tmp;
1250 double dispersion; /* ++++ */
1251 int lostsync, isinsync;
1252 int samples = ees->nsamples;
1253 int samplelog = 0; /* keep "gcc -Wall" happy ! */
1254 int samplereduce = (samples + 1) / 2;
1255 double doffset;
1256
1257 /* Reset things to zero so we don't have to worry later */
1258 ees_reset(ees);
1259
1260 if (sloppyclockflag[ees->unit]) {
1261 samplelog = (samples < 2) ? 0 :
1262 (samples < 5) ? 1 :
1263 (samples < 9) ? 2 :
1264 (samples < 17) ? 3 :
1265 (samples < 33) ? 4 : 5;
1266 samplereduce = (1 << samplelog);
1267 }
1268
1269 if (samples != last_samples &&
1270 ((samples != (last_samples-1)) || samples < 3)) {
1271 msyslog(LOG_ERR, "Samples=%d (%d), samplereduce=%d ....",
1272 samples, last_samples, samplereduce);
1273 last_samples = samples;
1274 }
1275 if (samples < 1) return;
1276
1277 /* If requested, dump the raw data we have in the buffer */
1278 if (ees->dump_vals)
1279 dump_buf(coffs, 0, samples, "Raw data is:");
1280
1281 /* Sort the offsets, trim off the extremes, then choose one. */
1282 qsort(coffs, (size_t)samples, sizeof(coffs[0]), offcompare);
1283
1284 noff = samples;
1285 i = 0;
1286 while ((noff - i) > samplereduce) {
1287 /* Trim off the sample which is further away
1288 * from the median. We work this out by doubling
1289 * the median, subtracting off the end samples, and
1290 * looking at the sign of the answer, using the
1291 * identity (c-b)-(b-a) == 2*b-a-c
1292 */
1293 tmp = coffs[(noff + i)/2];
1294 L_ADD(&tmp, &tmp);
1295 L_SUB(&tmp, &coffs[i]);
1296 L_SUB(&tmp, &coffs[noff-1]);
1297 if (L_ISNEG(&tmp)) noff--; else i++;
1298 }
1299
1300 /* If requested, dump the reduce data we have in the buffer */
1301 if (ees->dump_vals) dump_buf(coffs, i, noff, "Reduced to:");
1302
1303 /* What we do next depends on the setting of the sloppy clock flag.
1304 * If it is on, average the remainder to derive our estimate.
1305 * Otherwise, just pick a representative value from the remaining stuff
1306 */
1307 if (sloppyclockflag[ees->unit]) {
1308 offset.l_ui = offset.l_uf = 0;
1309 for (j = i; j < noff; j++)
1310 L_ADD(&offset, &coffs[j]);
1311 for (j = samplelog; j > 0; j--)
1312 L_RSHIFTU(&offset);
1313 }
1314 else offset = coffs[i+BESTSAMPLE];
1315
1316 /* Compute the dispersion as the difference between the
1317 * lowest and highest offsets that remain in the
1318 * consideration list.
1319 *
1320 * It looks like MOST clocks have MOD (max error), so halve it !
1321 */
1322 tmp = coffs[noff-1];
1323 L_SUB(&tmp, &coffs[i]);
1324 #define FRACT_SEC(n) ((1 << 30) / (n/2))
1325 dispersion = LFPTOFP(&tmp) / 2; /* ++++ */
1326 if (dbg & (DB_SYSLOG_SMPLI | DB_SYSLOG_SMPLE)) msyslog(
1327 (dbg & DB_SYSLOG_SMPLE) ? LOG_ERR : LOG_INFO,
1328 "I: [%x] Offset=%06d (%d), disp=%f%s [%d], %d %d=%d %d:%d %d=%d %d",
1329 dbg & (DB_SYSLOG_SMPLI | DB_SYSLOG_SMPLE),
1330 offset.l_f / 4295, offset.l_f,
1331 (dispersion * 1526) / 100,
1332 (sloppyclockflag[ees->unit]) ? " by averaging" : "",
1333 FRACT_SEC(10) / 4295,
1334 (coffs[0].l_f) / 4295,
1335 i,
1336 (coffs[i].l_f) / 4295,
1337 (coffs[samples/2].l_f) / 4295,
1338 (coffs[i+BESTSAMPLE].l_f) / 4295,
1339 noff-1,
1340 (coffs[noff-1].l_f) / 4295,
1341 (coffs[samples-1].l_f) / 4295);
1342
1343 /* Are we playing silly wotsits ?
1344 * If we are using all data, see if there is a "small" delta,
1345 * and if so, blurr this with 3/4 of the delta from the last value
1346 */
1347 if (ees->usealldata && ees->offset.l_uf) {
1348 long diff = (long) (ees->offset.l_uf - offset.l_uf);
1349
1350 /* is the delta small enough ? */
1351 if ((- FRACT_SEC(100)) < diff && diff < FRACT_SEC(100)) {
1352 int samd = (64 * 4) / samples;
1353 long new;
1354 if (samd < 2) samd = 2;
1355 new = offset.l_uf + ((diff * (samd -1)) / samd);
1356
1357 /* Sign change -> need to fix up int part */
1358 if ((new & 0x80000000) !=
1359 (((long) offset.l_uf) & 0x80000000))
1360 { NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
1361 msyslog(LOG_INFO, "I: %lx != %lx (%lx %lx), so add %d",
1362 new & 0x80000000,
1363 ((long) offset.l_uf) & 0x80000000,
1364 new, (long) offset.l_uf,
1365 (new < 0) ? -1 : 1);
1366 offset.l_ui += (new < 0) ? -1 : 1;
1367 }
1368 dispersion /= 4;
1369 if (dbg & (DB_SYSLOG_SMTHI | DB_SYSLOG_SMTHE)) msyslog(
1370 (dbg & DB_SYSLOG_SMTHE) ? LOG_ERR : LOG_INFO,
1371 "I: [%x] Smooth data: %ld -> %ld, dispersion now %f",
1372 dbg & (DB_SYSLOG_SMTHI | DB_SYSLOG_SMTHE),
1373 ((long) offset.l_uf) / 4295, new / 4295,
1374 (dispersion * 1526) / 100);
1375 offset.l_uf = (unsigned long) new;
1376 }
1377 else if (dbg & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE)) msyslog(
1378 (dbg & DB_SYSLOG_NSMTHE) ? LOG_ERR : LOG_INFO,
1379 "[%x] No smooth as delta not %d < %ld < %d",
1380 dbg & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE),
1381 - FRACT_SEC(100), diff, FRACT_SEC(100));
1382 }
1383 else if (dbg & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE)) msyslog(
1384 (dbg & DB_SYSLOG_NSMTHE) ? LOG_ERR : LOG_INFO,
1385 "I: [%x] No smooth as flag=%x and old=%x=%d (%d:%d)",
1386 dbg & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE),
1387 ees->usealldata, ees->offset.l_f, ees->offset.l_uf,
1388 offset.l_f, ees->offset.l_f - offset.l_f);
1389
1390 /* Collect offset info for debugging info */
1391 ees->offset = offset;
1392 ees->lowoffset = coffs[i];
1393 ees->highoffset = coffs[noff-1];
1394
1395 /* Determine synchronization status. Can be unsync'd either
1396 * by a report from the clock or by a leap hold.
1397 *
1398 * Loss of the radio signal for a short time does not cause
1399 * us to go unsynchronised, since the receiver keeps quite
1400 * good time on its own. The spec says 20ms in 4 hours; the
1401 * observed drift in our clock (Cambridge) is about a second
1402 * a day, but even that keeps us within the inherent tolerance
1403 * of the clock for about 15 minutes. Observation shows that
1404 * the typical "short" outage is 3 minutes, so to allow us
1405 * to ride out those, we will give it 5 minutes.
1406 */
1407 lostsync = current_time - ees->clocklastgood > 300 ? 1 : 0;
1408 isinsync = (lostsync || ees->leaphold > current_time) ? 0 : 1;
1409
1410 /* Done. Use time of last good, synchronised code as the
1411 * reference time, and lastsampletime as the receive time.
1412 */
1413 if (ees->fix_pending) {
1414 msyslog(LOG_ERR, "MSF%d: fix_pending=%d -> jump %x.%08x",
1415 ees->fix_pending, ees->unit, offset.l_i, offset.l_f);
1416 ees->fix_pending = 0;
1417 }
1418 LFPTOD(&offset, doffset);
1419 refclock_receive(ees->peer);
1420 ees_event(ees, lostsync ? CEVNT_PROP : CEVNT_NOMINAL);
1421 }
1422
1423 /* msfees_poll - called by the transmit procedure */
1424 static void
msfees_poll(int unit,struct peer * peer)1425 msfees_poll(
1426 int unit,
1427 struct peer *peer
1428 )
1429 {
1430 if (unit >= MAXUNITS) {
1431 msyslog(LOG_ERR, "ees clock poll: INTERNAL: unit %d invalid",
1432 unit);
1433 return;
1434 }
1435 if (!unitinuse[unit]) {
1436 msyslog(LOG_ERR, "ees clock poll: INTERNAL: unit %d unused",
1437 unit);
1438 return;
1439 }
1440
1441 ees_process(eesunits[unit]);
1442
1443 if ((current_time - eesunits[unit]->lasttime) > 150)
1444 ees_event(eesunits[unit], CEVNT_FAULT);
1445 }
1446
1447
1448 #else
1449 NONEMPTY_TRANSLATION_UNIT
1450 #endif /* REFCLOCK */
1451