xref: /freebsd/sys/contrib/openzfs/cmd/zdb/zdb.c (revision 5c65a0a9163cc00389d8527ee12c4e69df07ea42)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  * Copyright 2016 Nexenta Systems, Inc.
27  * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC.
28  * Copyright (c) 2015, 2017, Intel Corporation.
29  * Copyright (c) 2020 Datto Inc.
30  * Copyright (c) 2020, The FreeBSD Foundation [1]
31  *
32  * [1] Portions of this software were developed by Allan Jude
33  *     under sponsorship from the FreeBSD Foundation.
34  * Copyright (c) 2021 Allan Jude
35  * Copyright (c) 2021 Toomas Soome <tsoome@me.com>
36  * Copyright (c) 2023, 2024, Klara Inc.
37  * Copyright (c) 2023, Rob Norris <robn@despairlabs.com>
38  */
39 
40 #include <stdio.h>
41 #include <unistd.h>
42 #include <stdlib.h>
43 #include <ctype.h>
44 #include <getopt.h>
45 #include <openssl/evp.h>
46 #include <sys/zfs_context.h>
47 #include <sys/spa.h>
48 #include <sys/spa_impl.h>
49 #include <sys/dmu.h>
50 #include <sys/zap.h>
51 #include <sys/zap_impl.h>
52 #include <sys/fs/zfs.h>
53 #include <sys/zfs_znode.h>
54 #include <sys/zfs_sa.h>
55 #include <sys/sa.h>
56 #include <sys/sa_impl.h>
57 #include <sys/vdev.h>
58 #include <sys/vdev_impl.h>
59 #include <sys/metaslab_impl.h>
60 #include <sys/dmu_objset.h>
61 #include <sys/dsl_dir.h>
62 #include <sys/dsl_dataset.h>
63 #include <sys/dsl_pool.h>
64 #include <sys/dsl_bookmark.h>
65 #include <sys/dbuf.h>
66 #include <sys/zil.h>
67 #include <sys/zil_impl.h>
68 #include <sys/stat.h>
69 #include <sys/resource.h>
70 #include <sys/dmu_send.h>
71 #include <sys/dmu_traverse.h>
72 #include <sys/zio_checksum.h>
73 #include <sys/zio_compress.h>
74 #include <sys/zfs_fuid.h>
75 #include <sys/arc.h>
76 #include <sys/arc_impl.h>
77 #include <sys/ddt.h>
78 #include <sys/ddt_impl.h>
79 #include <sys/zfeature.h>
80 #include <sys/abd.h>
81 #include <sys/blkptr.h>
82 #include <sys/dsl_crypt.h>
83 #include <sys/dsl_scan.h>
84 #include <sys/btree.h>
85 #include <sys/brt.h>
86 #include <sys/brt_impl.h>
87 #include <zfs_comutil.h>
88 #include <sys/zstd/zstd.h>
89 #include <sys/backtrace.h>
90 
91 #include <libnvpair.h>
92 #include <libzutil.h>
93 #include <libzfs_core.h>
94 
95 #include <libzdb.h>
96 
97 #include "zdb.h"
98 
99 
100 extern int reference_tracking_enable;
101 extern int zfs_recover;
102 extern uint_t zfs_vdev_async_read_max_active;
103 extern boolean_t spa_load_verify_dryrun;
104 extern boolean_t spa_mode_readable_spacemaps;
105 extern uint_t zfs_reconstruct_indirect_combinations_max;
106 extern uint_t zfs_btree_verify_intensity;
107 
108 static const char cmdname[] = "zdb";
109 uint8_t dump_opt[256];
110 
111 typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size);
112 
113 static uint64_t *zopt_metaslab = NULL;
114 static unsigned zopt_metaslab_args = 0;
115 
116 
117 static zopt_object_range_t *zopt_object_ranges = NULL;
118 static unsigned zopt_object_args = 0;
119 
120 static int flagbits[256];
121 
122 
123 static uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */
124 static int leaked_objects = 0;
125 static range_tree_t *mos_refd_objs;
126 static spa_t *spa;
127 static objset_t *os;
128 static boolean_t kernel_init_done;
129 
130 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *,
131     boolean_t);
132 static void mos_obj_refd(uint64_t);
133 static void mos_obj_refd_multiple(uint64_t);
134 static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free,
135     dmu_tx_t *tx);
136 
137 
138 
139 static void zdb_print_blkptr(const blkptr_t *bp, int flags);
140 static void zdb_exit(int reason);
141 
142 typedef struct sublivelist_verify_block_refcnt {
143 	/* block pointer entry in livelist being verified */
144 	blkptr_t svbr_blk;
145 
146 	/*
147 	 * Refcount gets incremented to 1 when we encounter the first
148 	 * FREE entry for the svfbr block pointer and a node for it
149 	 * is created in our ZDB verification/tracking metadata.
150 	 *
151 	 * As we encounter more FREE entries we increment this counter
152 	 * and similarly decrement it whenever we find the respective
153 	 * ALLOC entries for this block.
154 	 *
155 	 * When the refcount gets to 0 it means that all the FREE and
156 	 * ALLOC entries of this block have paired up and we no longer
157 	 * need to track it in our verification logic (e.g. the node
158 	 * containing this struct in our verification data structure
159 	 * should be freed).
160 	 *
161 	 * [refer to sublivelist_verify_blkptr() for the actual code]
162 	 */
163 	uint32_t svbr_refcnt;
164 } sublivelist_verify_block_refcnt_t;
165 
166 static int
sublivelist_block_refcnt_compare(const void * larg,const void * rarg)167 sublivelist_block_refcnt_compare(const void *larg, const void *rarg)
168 {
169 	const sublivelist_verify_block_refcnt_t *l = larg;
170 	const sublivelist_verify_block_refcnt_t *r = rarg;
171 	return (livelist_compare(&l->svbr_blk, &r->svbr_blk));
172 }
173 
174 static int
sublivelist_verify_blkptr(void * arg,const blkptr_t * bp,boolean_t free,dmu_tx_t * tx)175 sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free,
176     dmu_tx_t *tx)
177 {
178 	ASSERT3P(tx, ==, NULL);
179 	struct sublivelist_verify *sv = arg;
180 	sublivelist_verify_block_refcnt_t current = {
181 			.svbr_blk = *bp,
182 
183 			/*
184 			 * Start with 1 in case this is the first free entry.
185 			 * This field is not used for our B-Tree comparisons
186 			 * anyway.
187 			 */
188 			.svbr_refcnt = 1,
189 	};
190 
191 	zfs_btree_index_t where;
192 	sublivelist_verify_block_refcnt_t *pair =
193 	    zfs_btree_find(&sv->sv_pair, &current, &where);
194 	if (free) {
195 		if (pair == NULL) {
196 			/* first free entry for this block pointer */
197 			zfs_btree_add(&sv->sv_pair, &current);
198 		} else {
199 			pair->svbr_refcnt++;
200 		}
201 	} else {
202 		if (pair == NULL) {
203 			/* block that is currently marked as allocated */
204 			for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
205 				if (DVA_IS_EMPTY(&bp->blk_dva[i]))
206 					break;
207 				sublivelist_verify_block_t svb = {
208 				    .svb_dva = bp->blk_dva[i],
209 				    .svb_allocated_txg =
210 				    BP_GET_LOGICAL_BIRTH(bp)
211 				};
212 
213 				if (zfs_btree_find(&sv->sv_leftover, &svb,
214 				    &where) == NULL) {
215 					zfs_btree_add_idx(&sv->sv_leftover,
216 					    &svb, &where);
217 				}
218 			}
219 		} else {
220 			/* alloc matches a free entry */
221 			pair->svbr_refcnt--;
222 			if (pair->svbr_refcnt == 0) {
223 				/* all allocs and frees have been matched */
224 				zfs_btree_remove_idx(&sv->sv_pair, &where);
225 			}
226 		}
227 	}
228 
229 	return (0);
230 }
231 
232 static int
sublivelist_verify_func(void * args,dsl_deadlist_entry_t * dle)233 sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle)
234 {
235 	int err;
236 	struct sublivelist_verify *sv = args;
237 
238 	zfs_btree_create(&sv->sv_pair, sublivelist_block_refcnt_compare, NULL,
239 	    sizeof (sublivelist_verify_block_refcnt_t));
240 
241 	err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr,
242 	    sv, NULL);
243 
244 	sublivelist_verify_block_refcnt_t *e;
245 	zfs_btree_index_t *cookie = NULL;
246 	while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) {
247 		char blkbuf[BP_SPRINTF_LEN];
248 		snprintf_blkptr_compact(blkbuf, sizeof (blkbuf),
249 		    &e->svbr_blk, B_TRUE);
250 		(void) printf("\tERROR: %d unmatched FREE(s): %s\n",
251 		    e->svbr_refcnt, blkbuf);
252 	}
253 	zfs_btree_destroy(&sv->sv_pair);
254 
255 	return (err);
256 }
257 
258 static int
livelist_block_compare(const void * larg,const void * rarg)259 livelist_block_compare(const void *larg, const void *rarg)
260 {
261 	const sublivelist_verify_block_t *l = larg;
262 	const sublivelist_verify_block_t *r = rarg;
263 
264 	if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva))
265 		return (-1);
266 	else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva))
267 		return (+1);
268 
269 	if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva))
270 		return (-1);
271 	else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva))
272 		return (+1);
273 
274 	if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva))
275 		return (-1);
276 	else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva))
277 		return (+1);
278 
279 	return (0);
280 }
281 
282 /*
283  * Check for errors in a livelist while tracking all unfreed ALLOCs in the
284  * sublivelist_verify_t: sv->sv_leftover
285  */
286 static void
livelist_verify(dsl_deadlist_t * dl,void * arg)287 livelist_verify(dsl_deadlist_t *dl, void *arg)
288 {
289 	sublivelist_verify_t *sv = arg;
290 	dsl_deadlist_iterate(dl, sublivelist_verify_func, sv);
291 }
292 
293 /*
294  * Check for errors in the livelist entry and discard the intermediary
295  * data structures
296  */
297 static int
sublivelist_verify_lightweight(void * args,dsl_deadlist_entry_t * dle)298 sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle)
299 {
300 	(void) args;
301 	sublivelist_verify_t sv;
302 	zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL,
303 	    sizeof (sublivelist_verify_block_t));
304 	int err = sublivelist_verify_func(&sv, dle);
305 	zfs_btree_clear(&sv.sv_leftover);
306 	zfs_btree_destroy(&sv.sv_leftover);
307 	return (err);
308 }
309 
310 typedef struct metaslab_verify {
311 	/*
312 	 * Tree containing all the leftover ALLOCs from the livelists
313 	 * that are part of this metaslab.
314 	 */
315 	zfs_btree_t mv_livelist_allocs;
316 
317 	/*
318 	 * Metaslab information.
319 	 */
320 	uint64_t mv_vdid;
321 	uint64_t mv_msid;
322 	uint64_t mv_start;
323 	uint64_t mv_end;
324 
325 	/*
326 	 * What's currently allocated for this metaslab.
327 	 */
328 	range_tree_t *mv_allocated;
329 } metaslab_verify_t;
330 
331 typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg);
332 
333 typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg,
334     void *arg);
335 
336 typedef struct unflushed_iter_cb_arg {
337 	spa_t *uic_spa;
338 	uint64_t uic_txg;
339 	void *uic_arg;
340 	zdb_log_sm_cb_t uic_cb;
341 } unflushed_iter_cb_arg_t;
342 
343 static int
iterate_through_spacemap_logs_cb(space_map_entry_t * sme,void * arg)344 iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg)
345 {
346 	unflushed_iter_cb_arg_t *uic = arg;
347 	return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg));
348 }
349 
350 static void
iterate_through_spacemap_logs(spa_t * spa,zdb_log_sm_cb_t cb,void * arg)351 iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg)
352 {
353 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
354 		return;
355 
356 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
357 	for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
358 	    sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
359 		space_map_t *sm = NULL;
360 		VERIFY0(space_map_open(&sm, spa_meta_objset(spa),
361 		    sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT));
362 
363 		unflushed_iter_cb_arg_t uic = {
364 			.uic_spa = spa,
365 			.uic_txg = sls->sls_txg,
366 			.uic_arg = arg,
367 			.uic_cb = cb
368 		};
369 		VERIFY0(space_map_iterate(sm, space_map_length(sm),
370 		    iterate_through_spacemap_logs_cb, &uic));
371 		space_map_close(sm);
372 	}
373 	spa_config_exit(spa, SCL_CONFIG, FTAG);
374 }
375 
376 static void
verify_livelist_allocs(metaslab_verify_t * mv,uint64_t txg,uint64_t offset,uint64_t size)377 verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg,
378     uint64_t offset, uint64_t size)
379 {
380 	sublivelist_verify_block_t svb = {{{0}}};
381 	DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid);
382 	DVA_SET_OFFSET(&svb.svb_dva, offset);
383 	DVA_SET_ASIZE(&svb.svb_dva, size);
384 	zfs_btree_index_t where;
385 	uint64_t end_offset = offset + size;
386 
387 	/*
388 	 *  Look for an exact match for spacemap entry in the livelist entries.
389 	 *  Then, look for other livelist entries that fall within the range
390 	 *  of the spacemap entry as it may have been condensed
391 	 */
392 	sublivelist_verify_block_t *found =
393 	    zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where);
394 	if (found == NULL) {
395 		found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where);
396 	}
397 	for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid &&
398 	    DVA_GET_OFFSET(&found->svb_dva) < end_offset;
399 	    found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) {
400 		if (found->svb_allocated_txg <= txg) {
401 			(void) printf("ERROR: Livelist ALLOC [%llx:%llx] "
402 			    "from TXG %llx FREED at TXG %llx\n",
403 			    (u_longlong_t)DVA_GET_OFFSET(&found->svb_dva),
404 			    (u_longlong_t)DVA_GET_ASIZE(&found->svb_dva),
405 			    (u_longlong_t)found->svb_allocated_txg,
406 			    (u_longlong_t)txg);
407 		}
408 	}
409 }
410 
411 static int
metaslab_spacemap_validation_cb(space_map_entry_t * sme,void * arg)412 metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg)
413 {
414 	metaslab_verify_t *mv = arg;
415 	uint64_t offset = sme->sme_offset;
416 	uint64_t size = sme->sme_run;
417 	uint64_t txg = sme->sme_txg;
418 
419 	if (sme->sme_type == SM_ALLOC) {
420 		if (range_tree_contains(mv->mv_allocated,
421 		    offset, size)) {
422 			(void) printf("ERROR: DOUBLE ALLOC: "
423 			    "%llu [%llx:%llx] "
424 			    "%llu:%llu LOG_SM\n",
425 			    (u_longlong_t)txg, (u_longlong_t)offset,
426 			    (u_longlong_t)size, (u_longlong_t)mv->mv_vdid,
427 			    (u_longlong_t)mv->mv_msid);
428 		} else {
429 			range_tree_add(mv->mv_allocated,
430 			    offset, size);
431 		}
432 	} else {
433 		if (!range_tree_contains(mv->mv_allocated,
434 		    offset, size)) {
435 			(void) printf("ERROR: DOUBLE FREE: "
436 			    "%llu [%llx:%llx] "
437 			    "%llu:%llu LOG_SM\n",
438 			    (u_longlong_t)txg, (u_longlong_t)offset,
439 			    (u_longlong_t)size, (u_longlong_t)mv->mv_vdid,
440 			    (u_longlong_t)mv->mv_msid);
441 		} else {
442 			range_tree_remove(mv->mv_allocated,
443 			    offset, size);
444 		}
445 	}
446 
447 	if (sme->sme_type != SM_ALLOC) {
448 		/*
449 		 * If something is freed in the spacemap, verify that
450 		 * it is not listed as allocated in the livelist.
451 		 */
452 		verify_livelist_allocs(mv, txg, offset, size);
453 	}
454 	return (0);
455 }
456 
457 static int
spacemap_check_sm_log_cb(spa_t * spa,space_map_entry_t * sme,uint64_t txg,void * arg)458 spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme,
459     uint64_t txg, void *arg)
460 {
461 	metaslab_verify_t *mv = arg;
462 	uint64_t offset = sme->sme_offset;
463 	uint64_t vdev_id = sme->sme_vdev;
464 
465 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
466 
467 	/* skip indirect vdevs */
468 	if (!vdev_is_concrete(vd))
469 		return (0);
470 
471 	if (vdev_id != mv->mv_vdid)
472 		return (0);
473 
474 	metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
475 	if (ms->ms_id != mv->mv_msid)
476 		return (0);
477 
478 	if (txg < metaslab_unflushed_txg(ms))
479 		return (0);
480 
481 
482 	ASSERT3U(txg, ==, sme->sme_txg);
483 	return (metaslab_spacemap_validation_cb(sme, mv));
484 }
485 
486 static void
spacemap_check_sm_log(spa_t * spa,metaslab_verify_t * mv)487 spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv)
488 {
489 	iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv);
490 }
491 
492 static void
spacemap_check_ms_sm(space_map_t * sm,metaslab_verify_t * mv)493 spacemap_check_ms_sm(space_map_t  *sm, metaslab_verify_t *mv)
494 {
495 	if (sm == NULL)
496 		return;
497 
498 	VERIFY0(space_map_iterate(sm, space_map_length(sm),
499 	    metaslab_spacemap_validation_cb, mv));
500 }
501 
502 static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg);
503 
504 /*
505  * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if
506  * they are part of that metaslab (mv_msid).
507  */
508 static void
mv_populate_livelist_allocs(metaslab_verify_t * mv,sublivelist_verify_t * sv)509 mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv)
510 {
511 	zfs_btree_index_t where;
512 	sublivelist_verify_block_t *svb;
513 	ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0);
514 	for (svb = zfs_btree_first(&sv->sv_leftover, &where);
515 	    svb != NULL;
516 	    svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) {
517 		if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid)
518 			continue;
519 
520 		if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start &&
521 		    (DVA_GET_OFFSET(&svb->svb_dva) +
522 		    DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) {
523 			(void) printf("ERROR: Found block that crosses "
524 			    "metaslab boundary: <%llu:%llx:%llx>\n",
525 			    (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva),
526 			    (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
527 			    (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva));
528 			continue;
529 		}
530 
531 		if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start)
532 			continue;
533 
534 		if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end)
535 			continue;
536 
537 		if ((DVA_GET_OFFSET(&svb->svb_dva) +
538 		    DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) {
539 			(void) printf("ERROR: Found block that crosses "
540 			    "metaslab boundary: <%llu:%llx:%llx>\n",
541 			    (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva),
542 			    (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
543 			    (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva));
544 			continue;
545 		}
546 
547 		zfs_btree_add(&mv->mv_livelist_allocs, svb);
548 	}
549 
550 	for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where);
551 	    svb != NULL;
552 	    svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) {
553 		zfs_btree_remove(&sv->sv_leftover, svb);
554 	}
555 }
556 
557 /*
558  * [Livelist Check]
559  * Iterate through all the sublivelists and:
560  * - report leftover frees (**)
561  * - record leftover ALLOCs together with their TXG [see Cross Check]
562  *
563  * (**) Note: Double ALLOCs are valid in datasets that have dedup
564  *      enabled. Similarly double FREEs are allowed as well but
565  *      only if they pair up with a corresponding ALLOC entry once
566  *      we our done with our sublivelist iteration.
567  *
568  * [Spacemap Check]
569  * for each metaslab:
570  * - iterate over spacemap and then the metaslab's entries in the
571  *   spacemap log, then report any double FREEs and ALLOCs (do not
572  *   blow up).
573  *
574  * [Cross Check]
575  * After finishing the Livelist Check phase and while being in the
576  * Spacemap Check phase, we find all the recorded leftover ALLOCs
577  * of the livelist check that are part of the metaslab that we are
578  * currently looking at in the Spacemap Check. We report any entries
579  * that are marked as ALLOCs in the livelists but have been actually
580  * freed (and potentially allocated again) after their TXG stamp in
581  * the spacemaps. Also report any ALLOCs from the livelists that
582  * belong to indirect vdevs (e.g. their vdev completed removal).
583  *
584  * Note that this will miss Log Spacemap entries that cancelled each other
585  * out before being flushed to the metaslab, so we are not guaranteed
586  * to match all erroneous ALLOCs.
587  */
588 static void
livelist_metaslab_validate(spa_t * spa)589 livelist_metaslab_validate(spa_t *spa)
590 {
591 	(void) printf("Verifying deleted livelist entries\n");
592 
593 	sublivelist_verify_t sv;
594 	zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL,
595 	    sizeof (sublivelist_verify_block_t));
596 	iterate_deleted_livelists(spa, livelist_verify, &sv);
597 
598 	(void) printf("Verifying metaslab entries\n");
599 	vdev_t *rvd = spa->spa_root_vdev;
600 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
601 		vdev_t *vd = rvd->vdev_child[c];
602 
603 		if (!vdev_is_concrete(vd))
604 			continue;
605 
606 		for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) {
607 			metaslab_t *m = vd->vdev_ms[mid];
608 
609 			(void) fprintf(stderr,
610 			    "\rverifying concrete vdev %llu, "
611 			    "metaslab %llu of %llu ...",
612 			    (longlong_t)vd->vdev_id,
613 			    (longlong_t)mid,
614 			    (longlong_t)vd->vdev_ms_count);
615 
616 			uint64_t shift, start;
617 			range_seg_type_t type =
618 			    metaslab_calculate_range_tree_type(vd, m,
619 			    &start, &shift);
620 			metaslab_verify_t mv;
621 			mv.mv_allocated = range_tree_create(NULL,
622 			    type, NULL, start, shift);
623 			mv.mv_vdid = vd->vdev_id;
624 			mv.mv_msid = m->ms_id;
625 			mv.mv_start = m->ms_start;
626 			mv.mv_end = m->ms_start + m->ms_size;
627 			zfs_btree_create(&mv.mv_livelist_allocs,
628 			    livelist_block_compare, NULL,
629 			    sizeof (sublivelist_verify_block_t));
630 
631 			mv_populate_livelist_allocs(&mv, &sv);
632 
633 			spacemap_check_ms_sm(m->ms_sm, &mv);
634 			spacemap_check_sm_log(spa, &mv);
635 
636 			range_tree_vacate(mv.mv_allocated, NULL, NULL);
637 			range_tree_destroy(mv.mv_allocated);
638 			zfs_btree_clear(&mv.mv_livelist_allocs);
639 			zfs_btree_destroy(&mv.mv_livelist_allocs);
640 		}
641 	}
642 	(void) fprintf(stderr, "\n");
643 
644 	/*
645 	 * If there are any segments in the leftover tree after we walked
646 	 * through all the metaslabs in the concrete vdevs then this means
647 	 * that we have segments in the livelists that belong to indirect
648 	 * vdevs and are marked as allocated.
649 	 */
650 	if (zfs_btree_numnodes(&sv.sv_leftover) == 0) {
651 		zfs_btree_destroy(&sv.sv_leftover);
652 		return;
653 	}
654 	(void) printf("ERROR: Found livelist blocks marked as allocated "
655 	    "for indirect vdevs:\n");
656 
657 	zfs_btree_index_t *where = NULL;
658 	sublivelist_verify_block_t *svb;
659 	while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) !=
660 	    NULL) {
661 		int vdev_id = DVA_GET_VDEV(&svb->svb_dva);
662 		ASSERT3U(vdev_id, <, rvd->vdev_children);
663 		vdev_t *vd = rvd->vdev_child[vdev_id];
664 		ASSERT(!vdev_is_concrete(vd));
665 		(void) printf("<%d:%llx:%llx> TXG %llx\n",
666 		    vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
667 		    (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva),
668 		    (u_longlong_t)svb->svb_allocated_txg);
669 	}
670 	(void) printf("\n");
671 	zfs_btree_destroy(&sv.sv_leftover);
672 }
673 
674 /*
675  * These libumem hooks provide a reasonable set of defaults for the allocator's
676  * debugging facilities.
677  */
678 const char *
_umem_debug_init(void)679 _umem_debug_init(void)
680 {
681 	return ("default,verbose"); /* $UMEM_DEBUG setting */
682 }
683 
684 const char *
_umem_logging_init(void)685 _umem_logging_init(void)
686 {
687 	return ("fail,contents"); /* $UMEM_LOGGING setting */
688 }
689 
690 static void
usage(void)691 usage(void)
692 {
693 	(void) fprintf(stderr,
694 	    "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] "
695 	    "[-I <inflight I/Os>]\n"
696 	    "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n"
697 	    "\t\t[-K <key>]\n"
698 	    "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n"
699 	    "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>] [-K <key>]\n"
700 	    "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n"
701 	    "\t%s -B [-e [-V] [-p <path> ...]] [-I <inflight I/Os>]\n"
702 	    "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n"
703 	    "\t\t[-K <key>] <poolname>/<objset id> [<backupflags>]\n"
704 	    "\t%s [-v] <bookmark>\n"
705 	    "\t%s -C [-A] [-U <cache>] [<poolname>]\n"
706 	    "\t%s -l [-Aqu] <device>\n"
707 	    "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] "
708 	    "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n"
709 	    "\t%s -O [-K <key>] <dataset> <path>\n"
710 	    "\t%s -r [-K <key>] <dataset> <path> <destination>\n"
711 	    "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n"
712 	    "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n"
713 	    "\t%s -E [-A] word0:word1:...:word15\n"
714 	    "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] "
715 	    "<poolname>\n\n",
716 	    cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname,
717 	    cmdname, cmdname, cmdname, cmdname, cmdname);
718 
719 	(void) fprintf(stderr, "    Dataset name must include at least one "
720 	    "separator character '/' or '@'\n");
721 	(void) fprintf(stderr, "    If dataset name is specified, only that "
722 	    "dataset is dumped\n");
723 	(void) fprintf(stderr,  "    If object numbers or object number "
724 	    "ranges are specified, only those\n"
725 	    "    objects or ranges are dumped.\n\n");
726 	(void) fprintf(stderr,
727 	    "    Object ranges take the form <start>:<end>[:<flags>]\n"
728 	    "        start    Starting object number\n"
729 	    "        end      Ending object number, or -1 for no upper bound\n"
730 	    "        flags    Optional flags to select object types:\n"
731 	    "            A     All objects (this is the default)\n"
732 	    "            d     ZFS directories\n"
733 	    "            f     ZFS files \n"
734 	    "            m     SPA space maps\n"
735 	    "            z     ZAPs\n"
736 	    "            -     Negate effect of next flag\n\n");
737 	(void) fprintf(stderr, "    Options to control amount of output:\n");
738 	(void) fprintf(stderr, "        -b --block-stats             "
739 	    "block statistics\n");
740 	(void) fprintf(stderr, "        -B --backup                  "
741 	    "backup stream\n");
742 	(void) fprintf(stderr, "        -c --checksum                "
743 	    "checksum all metadata (twice for all data) blocks\n");
744 	(void) fprintf(stderr, "        -C --config                  "
745 	    "config (or cachefile if alone)\n");
746 	(void) fprintf(stderr, "        -d --datasets                "
747 	    "dataset(s)\n");
748 	(void) fprintf(stderr, "        -D --dedup-stats             "
749 	    "dedup statistics\n");
750 	(void) fprintf(stderr, "        -E --embedded-block-pointer=INTEGER\n"
751 	    "                                     decode and display block "
752 	    "from an embedded block pointer\n");
753 	(void) fprintf(stderr, "        -h --history                 "
754 	    "pool history\n");
755 	(void) fprintf(stderr, "        -i --intent-logs             "
756 	    "intent logs\n");
757 	(void) fprintf(stderr, "        -l --label                   "
758 	    "read label contents\n");
759 	(void) fprintf(stderr, "        -k --checkpointed-state      "
760 	    "examine the checkpointed state of the pool\n");
761 	(void) fprintf(stderr, "        -L --disable-leak-tracking   "
762 	    "disable leak tracking (do not load spacemaps)\n");
763 	(void) fprintf(stderr, "        -m --metaslabs               "
764 	    "metaslabs\n");
765 	(void) fprintf(stderr, "        -M --metaslab-groups         "
766 	    "metaslab groups\n");
767 	(void) fprintf(stderr, "        -O --object-lookups          "
768 	    "perform object lookups by path\n");
769 	(void) fprintf(stderr, "        -r --copy-object             "
770 	    "copy an object by path to file\n");
771 	(void) fprintf(stderr, "        -R --read-block              "
772 	    "read and display block from a device\n");
773 	(void) fprintf(stderr, "        -s --io-stats                "
774 	    "report stats on zdb's I/O\n");
775 	(void) fprintf(stderr, "        -S --simulate-dedup          "
776 	    "simulate dedup to measure effect\n");
777 	(void) fprintf(stderr, "        -v --verbose                 "
778 	    "verbose (applies to all others)\n");
779 	(void) fprintf(stderr, "        -y --livelist                "
780 	    "perform livelist and metaslab validation on any livelists being "
781 	    "deleted\n\n");
782 	(void) fprintf(stderr, "    Below options are intended for use "
783 	    "with other options:\n");
784 	(void) fprintf(stderr, "        -A --ignore-assertions       "
785 	    "ignore assertions (-A), enable panic recovery (-AA) or both "
786 	    "(-AAA)\n");
787 	(void) fprintf(stderr, "        -e --exported                "
788 	    "pool is exported/destroyed/has altroot/not in a cachefile\n");
789 	(void) fprintf(stderr, "        -F --automatic-rewind        "
790 	    "attempt automatic rewind within safe range of transaction "
791 	    "groups\n");
792 	(void) fprintf(stderr, "        -G --dump-debug-msg          "
793 	    "dump zfs_dbgmsg buffer before exiting\n");
794 	(void) fprintf(stderr, "        -I --inflight=INTEGER        "
795 	    "specify the maximum number of checksumming I/Os "
796 	    "[default is 200]\n");
797 	(void) fprintf(stderr, "        -K --key=KEY                 "
798 	    "decryption key for encrypted dataset\n");
799 	(void) fprintf(stderr, "        -o --option=\"OPTION=INTEGER\" "
800 	    "set global variable to an unsigned 32-bit integer\n");
801 	(void) fprintf(stderr, "        -p --path==PATH              "
802 	    "use one or more with -e to specify path to vdev dir\n");
803 	(void) fprintf(stderr, "        -P --parseable               "
804 	    "print numbers in parseable form\n");
805 	(void) fprintf(stderr, "        -q --skip-label              "
806 	    "don't print label contents\n");
807 	(void) fprintf(stderr, "        -t --txg=INTEGER             "
808 	    "highest txg to use when searching for uberblocks\n");
809 	(void) fprintf(stderr, "        -T --brt-stats               "
810 	    "BRT statistics\n");
811 	(void) fprintf(stderr, "        -u --uberblock               "
812 	    "uberblock\n");
813 	(void) fprintf(stderr, "        -U --cachefile=PATH          "
814 	    "use alternate cachefile\n");
815 	(void) fprintf(stderr, "        -V --verbatim                "
816 	    "do verbatim import\n");
817 	(void) fprintf(stderr, "        -x --dump-blocks=PATH        "
818 	    "dump all read blocks into specified directory\n");
819 	(void) fprintf(stderr, "        -X --extreme-rewind          "
820 	    "attempt extreme rewind (does not work with dataset)\n");
821 	(void) fprintf(stderr, "        -Y --all-reconstruction      "
822 	    "attempt all reconstruction combinations for split blocks\n");
823 	(void) fprintf(stderr, "        -Z --zstd-headers            "
824 	    "show ZSTD headers \n");
825 	(void) fprintf(stderr, "Specify an option more than once (e.g. -bb) "
826 	    "to make only that option verbose\n");
827 	(void) fprintf(stderr, "Default is to dump everything non-verbosely\n");
828 	zdb_exit(1);
829 }
830 
831 static void
dump_debug_buffer(void)832 dump_debug_buffer(void)
833 {
834 	ssize_t ret __attribute__((unused));
835 
836 	if (!dump_opt['G'])
837 		return;
838 	/*
839 	 * We use write() instead of printf() so that this function
840 	 * is safe to call from a signal handler.
841 	 */
842 	ret = write(STDERR_FILENO, "\n", 1);
843 	zfs_dbgmsg_print(STDERR_FILENO, "zdb");
844 }
845 
sig_handler(int signo)846 static void sig_handler(int signo)
847 {
848 	struct sigaction action;
849 
850 	libspl_backtrace(STDERR_FILENO);
851 	dump_debug_buffer();
852 
853 	/*
854 	 * Restore default action and re-raise signal so SIGSEGV and
855 	 * SIGABRT can trigger a core dump.
856 	 */
857 	action.sa_handler = SIG_DFL;
858 	sigemptyset(&action.sa_mask);
859 	action.sa_flags = 0;
860 	(void) sigaction(signo, &action, NULL);
861 	raise(signo);
862 }
863 
864 /*
865  * Called for usage errors that are discovered after a call to spa_open(),
866  * dmu_bonus_hold(), or pool_match().  abort() is called for other errors.
867  */
868 
869 static void
fatal(const char * fmt,...)870 fatal(const char *fmt, ...)
871 {
872 	va_list ap;
873 
874 	va_start(ap, fmt);
875 	(void) fprintf(stderr, "%s: ", cmdname);
876 	(void) vfprintf(stderr, fmt, ap);
877 	va_end(ap);
878 	(void) fprintf(stderr, "\n");
879 
880 	dump_debug_buffer();
881 
882 	zdb_exit(1);
883 }
884 
885 static void
dump_packed_nvlist(objset_t * os,uint64_t object,void * data,size_t size)886 dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size)
887 {
888 	(void) size;
889 	nvlist_t *nv;
890 	size_t nvsize = *(uint64_t *)data;
891 	char *packed = umem_alloc(nvsize, UMEM_NOFAIL);
892 
893 	VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH));
894 
895 	VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0);
896 
897 	umem_free(packed, nvsize);
898 
899 	dump_nvlist(nv, 8);
900 
901 	nvlist_free(nv);
902 }
903 
904 static void
dump_history_offsets(objset_t * os,uint64_t object,void * data,size_t size)905 dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size)
906 {
907 	(void) os, (void) object, (void) size;
908 	spa_history_phys_t *shp = data;
909 
910 	if (shp == NULL)
911 		return;
912 
913 	(void) printf("\t\tpool_create_len = %llu\n",
914 	    (u_longlong_t)shp->sh_pool_create_len);
915 	(void) printf("\t\tphys_max_off = %llu\n",
916 	    (u_longlong_t)shp->sh_phys_max_off);
917 	(void) printf("\t\tbof = %llu\n",
918 	    (u_longlong_t)shp->sh_bof);
919 	(void) printf("\t\teof = %llu\n",
920 	    (u_longlong_t)shp->sh_eof);
921 	(void) printf("\t\trecords_lost = %llu\n",
922 	    (u_longlong_t)shp->sh_records_lost);
923 }
924 
925 static void
zdb_nicenum(uint64_t num,char * buf,size_t buflen)926 zdb_nicenum(uint64_t num, char *buf, size_t buflen)
927 {
928 	if (dump_opt['P'])
929 		(void) snprintf(buf, buflen, "%llu", (longlong_t)num);
930 	else
931 		nicenum(num, buf, buflen);
932 }
933 
934 static void
zdb_nicebytes(uint64_t bytes,char * buf,size_t buflen)935 zdb_nicebytes(uint64_t bytes, char *buf, size_t buflen)
936 {
937 	if (dump_opt['P'])
938 		(void) snprintf(buf, buflen, "%llu", (longlong_t)bytes);
939 	else
940 		zfs_nicebytes(bytes, buf, buflen);
941 }
942 
943 static const char histo_stars[] = "****************************************";
944 static const uint64_t histo_width = sizeof (histo_stars) - 1;
945 
946 static void
dump_histogram(const uint64_t * histo,int size,int offset)947 dump_histogram(const uint64_t *histo, int size, int offset)
948 {
949 	int i;
950 	int minidx = size - 1;
951 	int maxidx = 0;
952 	uint64_t max = 0;
953 
954 	for (i = 0; i < size; i++) {
955 		if (histo[i] == 0)
956 			continue;
957 		if (histo[i] > max)
958 			max = histo[i];
959 		if (i > maxidx)
960 			maxidx = i;
961 		if (i < minidx)
962 			minidx = i;
963 	}
964 
965 	if (max < histo_width)
966 		max = histo_width;
967 
968 	for (i = minidx; i <= maxidx; i++) {
969 		(void) printf("\t\t\t%3u: %6llu %s\n",
970 		    i + offset, (u_longlong_t)histo[i],
971 		    &histo_stars[(max - histo[i]) * histo_width / max]);
972 	}
973 }
974 
975 static void
dump_zap_stats(objset_t * os,uint64_t object)976 dump_zap_stats(objset_t *os, uint64_t object)
977 {
978 	int error;
979 	zap_stats_t zs;
980 
981 	error = zap_get_stats(os, object, &zs);
982 	if (error)
983 		return;
984 
985 	if (zs.zs_ptrtbl_len == 0) {
986 		ASSERT(zs.zs_num_blocks == 1);
987 		(void) printf("\tmicrozap: %llu bytes, %llu entries\n",
988 		    (u_longlong_t)zs.zs_blocksize,
989 		    (u_longlong_t)zs.zs_num_entries);
990 		return;
991 	}
992 
993 	(void) printf("\tFat ZAP stats:\n");
994 
995 	(void) printf("\t\tPointer table:\n");
996 	(void) printf("\t\t\t%llu elements\n",
997 	    (u_longlong_t)zs.zs_ptrtbl_len);
998 	(void) printf("\t\t\tzt_blk: %llu\n",
999 	    (u_longlong_t)zs.zs_ptrtbl_zt_blk);
1000 	(void) printf("\t\t\tzt_numblks: %llu\n",
1001 	    (u_longlong_t)zs.zs_ptrtbl_zt_numblks);
1002 	(void) printf("\t\t\tzt_shift: %llu\n",
1003 	    (u_longlong_t)zs.zs_ptrtbl_zt_shift);
1004 	(void) printf("\t\t\tzt_blks_copied: %llu\n",
1005 	    (u_longlong_t)zs.zs_ptrtbl_blks_copied);
1006 	(void) printf("\t\t\tzt_nextblk: %llu\n",
1007 	    (u_longlong_t)zs.zs_ptrtbl_nextblk);
1008 
1009 	(void) printf("\t\tZAP entries: %llu\n",
1010 	    (u_longlong_t)zs.zs_num_entries);
1011 	(void) printf("\t\tLeaf blocks: %llu\n",
1012 	    (u_longlong_t)zs.zs_num_leafs);
1013 	(void) printf("\t\tTotal blocks: %llu\n",
1014 	    (u_longlong_t)zs.zs_num_blocks);
1015 	(void) printf("\t\tzap_block_type: 0x%llx\n",
1016 	    (u_longlong_t)zs.zs_block_type);
1017 	(void) printf("\t\tzap_magic: 0x%llx\n",
1018 	    (u_longlong_t)zs.zs_magic);
1019 	(void) printf("\t\tzap_salt: 0x%llx\n",
1020 	    (u_longlong_t)zs.zs_salt);
1021 
1022 	(void) printf("\t\tLeafs with 2^n pointers:\n");
1023 	dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0);
1024 
1025 	(void) printf("\t\tBlocks with n*5 entries:\n");
1026 	dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0);
1027 
1028 	(void) printf("\t\tBlocks n/10 full:\n");
1029 	dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0);
1030 
1031 	(void) printf("\t\tEntries with n chunks:\n");
1032 	dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0);
1033 
1034 	(void) printf("\t\tBuckets with n entries:\n");
1035 	dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0);
1036 }
1037 
1038 static void
dump_none(objset_t * os,uint64_t object,void * data,size_t size)1039 dump_none(objset_t *os, uint64_t object, void *data, size_t size)
1040 {
1041 	(void) os, (void) object, (void) data, (void) size;
1042 }
1043 
1044 static void
dump_unknown(objset_t * os,uint64_t object,void * data,size_t size)1045 dump_unknown(objset_t *os, uint64_t object, void *data, size_t size)
1046 {
1047 	(void) os, (void) object, (void) data, (void) size;
1048 	(void) printf("\tUNKNOWN OBJECT TYPE\n");
1049 }
1050 
1051 static void
dump_uint8(objset_t * os,uint64_t object,void * data,size_t size)1052 dump_uint8(objset_t *os, uint64_t object, void *data, size_t size)
1053 {
1054 	(void) os, (void) object, (void) data, (void) size;
1055 }
1056 
1057 static void
dump_uint64(objset_t * os,uint64_t object,void * data,size_t size)1058 dump_uint64(objset_t *os, uint64_t object, void *data, size_t size)
1059 {
1060 	uint64_t *arr;
1061 	uint64_t oursize;
1062 	if (dump_opt['d'] < 6)
1063 		return;
1064 
1065 	if (data == NULL) {
1066 		dmu_object_info_t doi;
1067 
1068 		VERIFY0(dmu_object_info(os, object, &doi));
1069 		size = doi.doi_max_offset;
1070 		/*
1071 		 * We cap the size at 1 mebibyte here to prevent
1072 		 * allocation failures and nigh-infinite printing if the
1073 		 * object is extremely large.
1074 		 */
1075 		oursize = MIN(size, 1 << 20);
1076 		arr = kmem_alloc(oursize, KM_SLEEP);
1077 
1078 		int err = dmu_read(os, object, 0, oursize, arr, 0);
1079 		if (err != 0) {
1080 			(void) printf("got error %u from dmu_read\n", err);
1081 			kmem_free(arr, oursize);
1082 			return;
1083 		}
1084 	} else {
1085 		/*
1086 		 * Even though the allocation is already done in this code path,
1087 		 * we still cap the size to prevent excessive printing.
1088 		 */
1089 		oursize = MIN(size, 1 << 20);
1090 		arr = data;
1091 	}
1092 
1093 	if (size == 0) {
1094 		if (data == NULL)
1095 			kmem_free(arr, oursize);
1096 		(void) printf("\t\t[]\n");
1097 		return;
1098 	}
1099 
1100 	(void) printf("\t\t[%0llx", (u_longlong_t)arr[0]);
1101 	for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) {
1102 		if (i % 4 != 0)
1103 			(void) printf(", %0llx", (u_longlong_t)arr[i]);
1104 		else
1105 			(void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]);
1106 	}
1107 	if (oursize != size)
1108 		(void) printf(", ... ");
1109 	(void) printf("]\n");
1110 
1111 	if (data == NULL)
1112 		kmem_free(arr, oursize);
1113 }
1114 
1115 static void
dump_zap(objset_t * os,uint64_t object,void * data,size_t size)1116 dump_zap(objset_t *os, uint64_t object, void *data, size_t size)
1117 {
1118 	(void) data, (void) size;
1119 	zap_cursor_t zc;
1120 	zap_attribute_t *attrp = zap_attribute_long_alloc();
1121 	void *prop;
1122 	unsigned i;
1123 
1124 	dump_zap_stats(os, object);
1125 	(void) printf("\n");
1126 
1127 	for (zap_cursor_init(&zc, os, object);
1128 	    zap_cursor_retrieve(&zc, attrp) == 0;
1129 	    zap_cursor_advance(&zc)) {
1130 		boolean_t key64 =
1131 		    !!(zap_getflags(zc.zc_zap) & ZAP_FLAG_UINT64_KEY);
1132 
1133 		if (key64)
1134 			(void) printf("\t\t0x%010" PRIu64 "x = ",
1135 			    *(uint64_t *)attrp->za_name);
1136 		else
1137 			(void) printf("\t\t%s = ", attrp->za_name);
1138 
1139 		if (attrp->za_num_integers == 0) {
1140 			(void) printf("\n");
1141 			continue;
1142 		}
1143 		prop = umem_zalloc(attrp->za_num_integers *
1144 		    attrp->za_integer_length, UMEM_NOFAIL);
1145 
1146 		if (key64)
1147 			(void) zap_lookup_uint64(os, object,
1148 			    (const uint64_t *)attrp->za_name, 1,
1149 			    attrp->za_integer_length, attrp->za_num_integers,
1150 			    prop);
1151 		else
1152 			(void) zap_lookup(os, object, attrp->za_name,
1153 			    attrp->za_integer_length, attrp->za_num_integers,
1154 			    prop);
1155 
1156 		if (attrp->za_integer_length == 1 && !key64) {
1157 			if (strcmp(attrp->za_name,
1158 			    DSL_CRYPTO_KEY_MASTER_KEY) == 0 ||
1159 			    strcmp(attrp->za_name,
1160 			    DSL_CRYPTO_KEY_HMAC_KEY) == 0 ||
1161 			    strcmp(attrp->za_name, DSL_CRYPTO_KEY_IV) == 0 ||
1162 			    strcmp(attrp->za_name, DSL_CRYPTO_KEY_MAC) == 0 ||
1163 			    strcmp(attrp->za_name,
1164 			    DMU_POOL_CHECKSUM_SALT) == 0) {
1165 				uint8_t *u8 = prop;
1166 
1167 				for (i = 0; i < attrp->za_num_integers; i++) {
1168 					(void) printf("%02x", u8[i]);
1169 				}
1170 			} else {
1171 				(void) printf("%s", (char *)prop);
1172 			}
1173 		} else {
1174 			for (i = 0; i < attrp->za_num_integers; i++) {
1175 				switch (attrp->za_integer_length) {
1176 				case 1:
1177 					(void) printf("%u ",
1178 					    ((uint8_t *)prop)[i]);
1179 					break;
1180 				case 2:
1181 					(void) printf("%u ",
1182 					    ((uint16_t *)prop)[i]);
1183 					break;
1184 				case 4:
1185 					(void) printf("%u ",
1186 					    ((uint32_t *)prop)[i]);
1187 					break;
1188 				case 8:
1189 					(void) printf("%lld ",
1190 					    (u_longlong_t)((int64_t *)prop)[i]);
1191 					break;
1192 				}
1193 			}
1194 		}
1195 		(void) printf("\n");
1196 		umem_free(prop,
1197 		    attrp->za_num_integers * attrp->za_integer_length);
1198 	}
1199 	zap_cursor_fini(&zc);
1200 	zap_attribute_free(attrp);
1201 }
1202 
1203 static void
dump_bpobj(objset_t * os,uint64_t object,void * data,size_t size)1204 dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size)
1205 {
1206 	bpobj_phys_t *bpop = data;
1207 	uint64_t i;
1208 	char bytes[32], comp[32], uncomp[32];
1209 
1210 	/* make sure the output won't get truncated */
1211 	_Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
1212 	_Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
1213 	_Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
1214 
1215 	if (bpop == NULL)
1216 		return;
1217 
1218 	zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes));
1219 	zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp));
1220 	zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp));
1221 
1222 	(void) printf("\t\tnum_blkptrs = %llu\n",
1223 	    (u_longlong_t)bpop->bpo_num_blkptrs);
1224 	(void) printf("\t\tbytes = %s\n", bytes);
1225 	if (size >= BPOBJ_SIZE_V1) {
1226 		(void) printf("\t\tcomp = %s\n", comp);
1227 		(void) printf("\t\tuncomp = %s\n", uncomp);
1228 	}
1229 	if (size >= BPOBJ_SIZE_V2) {
1230 		(void) printf("\t\tsubobjs = %llu\n",
1231 		    (u_longlong_t)bpop->bpo_subobjs);
1232 		(void) printf("\t\tnum_subobjs = %llu\n",
1233 		    (u_longlong_t)bpop->bpo_num_subobjs);
1234 	}
1235 	if (size >= sizeof (*bpop)) {
1236 		(void) printf("\t\tnum_freed = %llu\n",
1237 		    (u_longlong_t)bpop->bpo_num_freed);
1238 	}
1239 
1240 	if (dump_opt['d'] < 5)
1241 		return;
1242 
1243 	for (i = 0; i < bpop->bpo_num_blkptrs; i++) {
1244 		char blkbuf[BP_SPRINTF_LEN];
1245 		blkptr_t bp;
1246 
1247 		int err = dmu_read(os, object,
1248 		    i * sizeof (bp), sizeof (bp), &bp, 0);
1249 		if (err != 0) {
1250 			(void) printf("got error %u from dmu_read\n", err);
1251 			break;
1252 		}
1253 		snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp,
1254 		    BP_GET_FREE(&bp));
1255 		(void) printf("\t%s\n", blkbuf);
1256 	}
1257 }
1258 
1259 static void
dump_bpobj_subobjs(objset_t * os,uint64_t object,void * data,size_t size)1260 dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size)
1261 {
1262 	(void) data, (void) size;
1263 	dmu_object_info_t doi;
1264 	int64_t i;
1265 
1266 	VERIFY0(dmu_object_info(os, object, &doi));
1267 	uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP);
1268 
1269 	int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0);
1270 	if (err != 0) {
1271 		(void) printf("got error %u from dmu_read\n", err);
1272 		kmem_free(subobjs, doi.doi_max_offset);
1273 		return;
1274 	}
1275 
1276 	int64_t last_nonzero = -1;
1277 	for (i = 0; i < doi.doi_max_offset / 8; i++) {
1278 		if (subobjs[i] != 0)
1279 			last_nonzero = i;
1280 	}
1281 
1282 	for (i = 0; i <= last_nonzero; i++) {
1283 		(void) printf("\t%llu\n", (u_longlong_t)subobjs[i]);
1284 	}
1285 	kmem_free(subobjs, doi.doi_max_offset);
1286 }
1287 
1288 static void
dump_ddt_zap(objset_t * os,uint64_t object,void * data,size_t size)1289 dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size)
1290 {
1291 	(void) data, (void) size;
1292 	dump_zap_stats(os, object);
1293 	/* contents are printed elsewhere, properly decoded */
1294 }
1295 
1296 static void
dump_sa_attrs(objset_t * os,uint64_t object,void * data,size_t size)1297 dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size)
1298 {
1299 	(void) data, (void) size;
1300 	zap_cursor_t zc;
1301 	zap_attribute_t *attrp = zap_attribute_alloc();
1302 
1303 	dump_zap_stats(os, object);
1304 	(void) printf("\n");
1305 
1306 	for (zap_cursor_init(&zc, os, object);
1307 	    zap_cursor_retrieve(&zc, attrp) == 0;
1308 	    zap_cursor_advance(&zc)) {
1309 		(void) printf("\t\t%s = ", attrp->za_name);
1310 		if (attrp->za_num_integers == 0) {
1311 			(void) printf("\n");
1312 			continue;
1313 		}
1314 		(void) printf(" %llx : [%d:%d:%d]\n",
1315 		    (u_longlong_t)attrp->za_first_integer,
1316 		    (int)ATTR_LENGTH(attrp->za_first_integer),
1317 		    (int)ATTR_BSWAP(attrp->za_first_integer),
1318 		    (int)ATTR_NUM(attrp->za_first_integer));
1319 	}
1320 	zap_cursor_fini(&zc);
1321 	zap_attribute_free(attrp);
1322 }
1323 
1324 static void
dump_sa_layouts(objset_t * os,uint64_t object,void * data,size_t size)1325 dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size)
1326 {
1327 	(void) data, (void) size;
1328 	zap_cursor_t zc;
1329 	zap_attribute_t *attrp = zap_attribute_alloc();
1330 	uint16_t *layout_attrs;
1331 	unsigned i;
1332 
1333 	dump_zap_stats(os, object);
1334 	(void) printf("\n");
1335 
1336 	for (zap_cursor_init(&zc, os, object);
1337 	    zap_cursor_retrieve(&zc, attrp) == 0;
1338 	    zap_cursor_advance(&zc)) {
1339 		(void) printf("\t\t%s = [", attrp->za_name);
1340 		if (attrp->za_num_integers == 0) {
1341 			(void) printf("\n");
1342 			continue;
1343 		}
1344 
1345 		VERIFY(attrp->za_integer_length == 2);
1346 		layout_attrs = umem_zalloc(attrp->za_num_integers *
1347 		    attrp->za_integer_length, UMEM_NOFAIL);
1348 
1349 		VERIFY(zap_lookup(os, object, attrp->za_name,
1350 		    attrp->za_integer_length,
1351 		    attrp->za_num_integers, layout_attrs) == 0);
1352 
1353 		for (i = 0; i != attrp->za_num_integers; i++)
1354 			(void) printf(" %d ", (int)layout_attrs[i]);
1355 		(void) printf("]\n");
1356 		umem_free(layout_attrs,
1357 		    attrp->za_num_integers * attrp->za_integer_length);
1358 	}
1359 	zap_cursor_fini(&zc);
1360 	zap_attribute_free(attrp);
1361 }
1362 
1363 static void
dump_zpldir(objset_t * os,uint64_t object,void * data,size_t size)1364 dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size)
1365 {
1366 	(void) data, (void) size;
1367 	zap_cursor_t zc;
1368 	zap_attribute_t *attrp = zap_attribute_long_alloc();
1369 	const char *typenames[] = {
1370 		/* 0 */ "not specified",
1371 		/* 1 */ "FIFO",
1372 		/* 2 */ "Character Device",
1373 		/* 3 */ "3 (invalid)",
1374 		/* 4 */ "Directory",
1375 		/* 5 */ "5 (invalid)",
1376 		/* 6 */ "Block Device",
1377 		/* 7 */ "7 (invalid)",
1378 		/* 8 */ "Regular File",
1379 		/* 9 */ "9 (invalid)",
1380 		/* 10 */ "Symbolic Link",
1381 		/* 11 */ "11 (invalid)",
1382 		/* 12 */ "Socket",
1383 		/* 13 */ "Door",
1384 		/* 14 */ "Event Port",
1385 		/* 15 */ "15 (invalid)",
1386 	};
1387 
1388 	dump_zap_stats(os, object);
1389 	(void) printf("\n");
1390 
1391 	for (zap_cursor_init(&zc, os, object);
1392 	    zap_cursor_retrieve(&zc, attrp) == 0;
1393 	    zap_cursor_advance(&zc)) {
1394 		(void) printf("\t\t%s = %lld (type: %s)\n",
1395 		    attrp->za_name, ZFS_DIRENT_OBJ(attrp->za_first_integer),
1396 		    typenames[ZFS_DIRENT_TYPE(attrp->za_first_integer)]);
1397 	}
1398 	zap_cursor_fini(&zc);
1399 	zap_attribute_free(attrp);
1400 }
1401 
1402 static int
get_dtl_refcount(vdev_t * vd)1403 get_dtl_refcount(vdev_t *vd)
1404 {
1405 	int refcount = 0;
1406 
1407 	if (vd->vdev_ops->vdev_op_leaf) {
1408 		space_map_t *sm = vd->vdev_dtl_sm;
1409 
1410 		if (sm != NULL &&
1411 		    sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
1412 			return (1);
1413 		return (0);
1414 	}
1415 
1416 	for (unsigned c = 0; c < vd->vdev_children; c++)
1417 		refcount += get_dtl_refcount(vd->vdev_child[c]);
1418 	return (refcount);
1419 }
1420 
1421 static int
get_metaslab_refcount(vdev_t * vd)1422 get_metaslab_refcount(vdev_t *vd)
1423 {
1424 	int refcount = 0;
1425 
1426 	if (vd->vdev_top == vd) {
1427 		for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
1428 			space_map_t *sm = vd->vdev_ms[m]->ms_sm;
1429 
1430 			if (sm != NULL &&
1431 			    sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
1432 				refcount++;
1433 		}
1434 	}
1435 	for (unsigned c = 0; c < vd->vdev_children; c++)
1436 		refcount += get_metaslab_refcount(vd->vdev_child[c]);
1437 
1438 	return (refcount);
1439 }
1440 
1441 static int
get_obsolete_refcount(vdev_t * vd)1442 get_obsolete_refcount(vdev_t *vd)
1443 {
1444 	uint64_t obsolete_sm_object;
1445 	int refcount = 0;
1446 
1447 	VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1448 	if (vd->vdev_top == vd && obsolete_sm_object != 0) {
1449 		dmu_object_info_t doi;
1450 		VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset,
1451 		    obsolete_sm_object, &doi));
1452 		if (doi.doi_bonus_size == sizeof (space_map_phys_t)) {
1453 			refcount++;
1454 		}
1455 	} else {
1456 		ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
1457 		ASSERT3U(obsolete_sm_object, ==, 0);
1458 	}
1459 	for (unsigned c = 0; c < vd->vdev_children; c++) {
1460 		refcount += get_obsolete_refcount(vd->vdev_child[c]);
1461 	}
1462 
1463 	return (refcount);
1464 }
1465 
1466 static int
get_prev_obsolete_spacemap_refcount(spa_t * spa)1467 get_prev_obsolete_spacemap_refcount(spa_t *spa)
1468 {
1469 	uint64_t prev_obj =
1470 	    spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object;
1471 	if (prev_obj != 0) {
1472 		dmu_object_info_t doi;
1473 		VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi));
1474 		if (doi.doi_bonus_size == sizeof (space_map_phys_t)) {
1475 			return (1);
1476 		}
1477 	}
1478 	return (0);
1479 }
1480 
1481 static int
get_checkpoint_refcount(vdev_t * vd)1482 get_checkpoint_refcount(vdev_t *vd)
1483 {
1484 	int refcount = 0;
1485 
1486 	if (vd->vdev_top == vd && vd->vdev_top_zap != 0 &&
1487 	    zap_contains(spa_meta_objset(vd->vdev_spa),
1488 	    vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0)
1489 		refcount++;
1490 
1491 	for (uint64_t c = 0; c < vd->vdev_children; c++)
1492 		refcount += get_checkpoint_refcount(vd->vdev_child[c]);
1493 
1494 	return (refcount);
1495 }
1496 
1497 static int
get_log_spacemap_refcount(spa_t * spa)1498 get_log_spacemap_refcount(spa_t *spa)
1499 {
1500 	return (avl_numnodes(&spa->spa_sm_logs_by_txg));
1501 }
1502 
1503 static int
verify_spacemap_refcounts(spa_t * spa)1504 verify_spacemap_refcounts(spa_t *spa)
1505 {
1506 	uint64_t expected_refcount = 0;
1507 	uint64_t actual_refcount;
1508 
1509 	(void) feature_get_refcount(spa,
1510 	    &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM],
1511 	    &expected_refcount);
1512 	actual_refcount = get_dtl_refcount(spa->spa_root_vdev);
1513 	actual_refcount += get_metaslab_refcount(spa->spa_root_vdev);
1514 	actual_refcount += get_obsolete_refcount(spa->spa_root_vdev);
1515 	actual_refcount += get_prev_obsolete_spacemap_refcount(spa);
1516 	actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev);
1517 	actual_refcount += get_log_spacemap_refcount(spa);
1518 
1519 	if (expected_refcount != actual_refcount) {
1520 		(void) printf("space map refcount mismatch: expected %lld != "
1521 		    "actual %lld\n",
1522 		    (longlong_t)expected_refcount,
1523 		    (longlong_t)actual_refcount);
1524 		return (2);
1525 	}
1526 	return (0);
1527 }
1528 
1529 static void
dump_spacemap(objset_t * os,space_map_t * sm)1530 dump_spacemap(objset_t *os, space_map_t *sm)
1531 {
1532 	const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID",
1533 	    "INVALID", "INVALID", "INVALID", "INVALID" };
1534 
1535 	if (sm == NULL)
1536 		return;
1537 
1538 	(void) printf("space map object %llu:\n",
1539 	    (longlong_t)sm->sm_object);
1540 	(void) printf("  smp_length = 0x%llx\n",
1541 	    (longlong_t)sm->sm_phys->smp_length);
1542 	(void) printf("  smp_alloc = 0x%llx\n",
1543 	    (longlong_t)sm->sm_phys->smp_alloc);
1544 
1545 	if (dump_opt['d'] < 6 && dump_opt['m'] < 4)
1546 		return;
1547 
1548 	/*
1549 	 * Print out the freelist entries in both encoded and decoded form.
1550 	 */
1551 	uint8_t mapshift = sm->sm_shift;
1552 	int64_t alloc = 0;
1553 	uint64_t word, entry_id = 0;
1554 	for (uint64_t offset = 0; offset < space_map_length(sm);
1555 	    offset += sizeof (word)) {
1556 
1557 		VERIFY0(dmu_read(os, space_map_object(sm), offset,
1558 		    sizeof (word), &word, DMU_READ_PREFETCH));
1559 
1560 		if (sm_entry_is_debug(word)) {
1561 			uint64_t de_txg = SM_DEBUG_TXG_DECODE(word);
1562 			uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word);
1563 			if (de_txg == 0) {
1564 				(void) printf(
1565 				    "\t    [%6llu] PADDING\n",
1566 				    (u_longlong_t)entry_id);
1567 			} else {
1568 				(void) printf(
1569 				    "\t    [%6llu] %s: txg %llu pass %llu\n",
1570 				    (u_longlong_t)entry_id,
1571 				    ddata[SM_DEBUG_ACTION_DECODE(word)],
1572 				    (u_longlong_t)de_txg,
1573 				    (u_longlong_t)de_sync_pass);
1574 			}
1575 			entry_id++;
1576 			continue;
1577 		}
1578 
1579 		uint8_t words;
1580 		char entry_type;
1581 		uint64_t entry_off, entry_run, entry_vdev = SM_NO_VDEVID;
1582 
1583 		if (sm_entry_is_single_word(word)) {
1584 			entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ?
1585 			    'A' : 'F';
1586 			entry_off = (SM_OFFSET_DECODE(word) << mapshift) +
1587 			    sm->sm_start;
1588 			entry_run = SM_RUN_DECODE(word) << mapshift;
1589 			words = 1;
1590 		} else {
1591 			/* it is a two-word entry so we read another word */
1592 			ASSERT(sm_entry_is_double_word(word));
1593 
1594 			uint64_t extra_word;
1595 			offset += sizeof (extra_word);
1596 			VERIFY0(dmu_read(os, space_map_object(sm), offset,
1597 			    sizeof (extra_word), &extra_word,
1598 			    DMU_READ_PREFETCH));
1599 
1600 			ASSERT3U(offset, <=, space_map_length(sm));
1601 
1602 			entry_run = SM2_RUN_DECODE(word) << mapshift;
1603 			entry_vdev = SM2_VDEV_DECODE(word);
1604 			entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ?
1605 			    'A' : 'F';
1606 			entry_off = (SM2_OFFSET_DECODE(extra_word) <<
1607 			    mapshift) + sm->sm_start;
1608 			words = 2;
1609 		}
1610 
1611 		(void) printf("\t    [%6llu]    %c  range:"
1612 		    " %010llx-%010llx  size: %06llx vdev: %06llu words: %u\n",
1613 		    (u_longlong_t)entry_id,
1614 		    entry_type, (u_longlong_t)entry_off,
1615 		    (u_longlong_t)(entry_off + entry_run),
1616 		    (u_longlong_t)entry_run,
1617 		    (u_longlong_t)entry_vdev, words);
1618 
1619 		if (entry_type == 'A')
1620 			alloc += entry_run;
1621 		else
1622 			alloc -= entry_run;
1623 		entry_id++;
1624 	}
1625 	if (alloc != space_map_allocated(sm)) {
1626 		(void) printf("space_map_object alloc (%lld) INCONSISTENT "
1627 		    "with space map summary (%lld)\n",
1628 		    (longlong_t)space_map_allocated(sm), (longlong_t)alloc);
1629 	}
1630 }
1631 
1632 static void
dump_metaslab_stats(metaslab_t * msp)1633 dump_metaslab_stats(metaslab_t *msp)
1634 {
1635 	char maxbuf[32];
1636 	range_tree_t *rt = msp->ms_allocatable;
1637 	zfs_btree_t *t = &msp->ms_allocatable_by_size;
1638 	int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1639 
1640 	/* max sure nicenum has enough space */
1641 	_Static_assert(sizeof (maxbuf) >= NN_NUMBUF_SZ, "maxbuf truncated");
1642 
1643 	zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf));
1644 
1645 	(void) printf("\t %25s %10lu   %7s  %6s   %4s %4d%%\n",
1646 	    "segments", zfs_btree_numnodes(t), "maxsize", maxbuf,
1647 	    "freepct", free_pct);
1648 	(void) printf("\tIn-memory histogram:\n");
1649 	dump_histogram(rt->rt_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1650 }
1651 
1652 static void
dump_metaslab(metaslab_t * msp)1653 dump_metaslab(metaslab_t *msp)
1654 {
1655 	vdev_t *vd = msp->ms_group->mg_vd;
1656 	spa_t *spa = vd->vdev_spa;
1657 	space_map_t *sm = msp->ms_sm;
1658 	char freebuf[32];
1659 
1660 	zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf,
1661 	    sizeof (freebuf));
1662 
1663 	(void) printf(
1664 	    "\tmetaslab %6llu   offset %12llx   spacemap %6llu   free    %5s\n",
1665 	    (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start,
1666 	    (u_longlong_t)space_map_object(sm), freebuf);
1667 
1668 	if (dump_opt['m'] > 2 && !dump_opt['L']) {
1669 		mutex_enter(&msp->ms_lock);
1670 		VERIFY0(metaslab_load(msp));
1671 		range_tree_stat_verify(msp->ms_allocatable);
1672 		dump_metaslab_stats(msp);
1673 		metaslab_unload(msp);
1674 		mutex_exit(&msp->ms_lock);
1675 	}
1676 
1677 	if (dump_opt['m'] > 1 && sm != NULL &&
1678 	    spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
1679 		/*
1680 		 * The space map histogram represents free space in chunks
1681 		 * of sm_shift (i.e. bucket 0 refers to 2^sm_shift).
1682 		 */
1683 		(void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n",
1684 		    (u_longlong_t)msp->ms_fragmentation);
1685 		dump_histogram(sm->sm_phys->smp_histogram,
1686 		    SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift);
1687 	}
1688 
1689 	if (vd->vdev_ops == &vdev_draid_ops)
1690 		ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift);
1691 	else
1692 		ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift);
1693 
1694 	dump_spacemap(spa->spa_meta_objset, msp->ms_sm);
1695 
1696 	if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
1697 		(void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n",
1698 		    (u_longlong_t)metaslab_unflushed_txg(msp));
1699 	}
1700 }
1701 
1702 static void
print_vdev_metaslab_header(vdev_t * vd)1703 print_vdev_metaslab_header(vdev_t *vd)
1704 {
1705 	vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
1706 	const char *bias_str = "";
1707 	if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) {
1708 		bias_str = VDEV_ALLOC_BIAS_LOG;
1709 	} else if (alloc_bias == VDEV_BIAS_SPECIAL) {
1710 		bias_str = VDEV_ALLOC_BIAS_SPECIAL;
1711 	} else if (alloc_bias == VDEV_BIAS_DEDUP) {
1712 		bias_str = VDEV_ALLOC_BIAS_DEDUP;
1713 	}
1714 
1715 	uint64_t ms_flush_data_obj = 0;
1716 	if (vd->vdev_top_zap != 0) {
1717 		int error = zap_lookup(spa_meta_objset(vd->vdev_spa),
1718 		    vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS,
1719 		    sizeof (uint64_t), 1, &ms_flush_data_obj);
1720 		if (error != ENOENT) {
1721 			ASSERT0(error);
1722 		}
1723 	}
1724 
1725 	(void) printf("\tvdev %10llu   %s",
1726 	    (u_longlong_t)vd->vdev_id, bias_str);
1727 
1728 	if (ms_flush_data_obj != 0) {
1729 		(void) printf("   ms_unflushed_phys object %llu",
1730 		    (u_longlong_t)ms_flush_data_obj);
1731 	}
1732 
1733 	(void) printf("\n\t%-10s%5llu   %-19s   %-15s   %-12s\n",
1734 	    "metaslabs", (u_longlong_t)vd->vdev_ms_count,
1735 	    "offset", "spacemap", "free");
1736 	(void) printf("\t%15s   %19s   %15s   %12s\n",
1737 	    "---------------", "-------------------",
1738 	    "---------------", "------------");
1739 }
1740 
1741 static void
dump_metaslab_groups(spa_t * spa,boolean_t show_special)1742 dump_metaslab_groups(spa_t *spa, boolean_t show_special)
1743 {
1744 	vdev_t *rvd = spa->spa_root_vdev;
1745 	metaslab_class_t *mc = spa_normal_class(spa);
1746 	metaslab_class_t *smc = spa_special_class(spa);
1747 	uint64_t fragmentation;
1748 
1749 	metaslab_class_histogram_verify(mc);
1750 
1751 	for (unsigned c = 0; c < rvd->vdev_children; c++) {
1752 		vdev_t *tvd = rvd->vdev_child[c];
1753 		metaslab_group_t *mg = tvd->vdev_mg;
1754 
1755 		if (mg == NULL || (mg->mg_class != mc &&
1756 		    (!show_special || mg->mg_class != smc)))
1757 			continue;
1758 
1759 		metaslab_group_histogram_verify(mg);
1760 		mg->mg_fragmentation = metaslab_group_fragmentation(mg);
1761 
1762 		(void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t"
1763 		    "fragmentation",
1764 		    (u_longlong_t)tvd->vdev_id,
1765 		    (u_longlong_t)tvd->vdev_ms_count);
1766 		if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
1767 			(void) printf("%3s\n", "-");
1768 		} else {
1769 			(void) printf("%3llu%%\n",
1770 			    (u_longlong_t)mg->mg_fragmentation);
1771 		}
1772 		dump_histogram(mg->mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1773 	}
1774 
1775 	(void) printf("\tpool %s\tfragmentation", spa_name(spa));
1776 	fragmentation = metaslab_class_fragmentation(mc);
1777 	if (fragmentation == ZFS_FRAG_INVALID)
1778 		(void) printf("\t%3s\n", "-");
1779 	else
1780 		(void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation);
1781 	dump_histogram(mc->mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1782 }
1783 
1784 static void
print_vdev_indirect(vdev_t * vd)1785 print_vdev_indirect(vdev_t *vd)
1786 {
1787 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1788 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1789 	vdev_indirect_births_t *vib = vd->vdev_indirect_births;
1790 
1791 	if (vim == NULL) {
1792 		ASSERT3P(vib, ==, NULL);
1793 		return;
1794 	}
1795 
1796 	ASSERT3U(vdev_indirect_mapping_object(vim), ==,
1797 	    vic->vic_mapping_object);
1798 	ASSERT3U(vdev_indirect_births_object(vib), ==,
1799 	    vic->vic_births_object);
1800 
1801 	(void) printf("indirect births obj %llu:\n",
1802 	    (longlong_t)vic->vic_births_object);
1803 	(void) printf("    vib_count = %llu\n",
1804 	    (longlong_t)vdev_indirect_births_count(vib));
1805 	for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) {
1806 		vdev_indirect_birth_entry_phys_t *cur_vibe =
1807 		    &vib->vib_entries[i];
1808 		(void) printf("\toffset %llx -> txg %llu\n",
1809 		    (longlong_t)cur_vibe->vibe_offset,
1810 		    (longlong_t)cur_vibe->vibe_phys_birth_txg);
1811 	}
1812 	(void) printf("\n");
1813 
1814 	(void) printf("indirect mapping obj %llu:\n",
1815 	    (longlong_t)vic->vic_mapping_object);
1816 	(void) printf("    vim_max_offset = 0x%llx\n",
1817 	    (longlong_t)vdev_indirect_mapping_max_offset(vim));
1818 	(void) printf("    vim_bytes_mapped = 0x%llx\n",
1819 	    (longlong_t)vdev_indirect_mapping_bytes_mapped(vim));
1820 	(void) printf("    vim_count = %llu\n",
1821 	    (longlong_t)vdev_indirect_mapping_num_entries(vim));
1822 
1823 	if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3)
1824 		return;
1825 
1826 	uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim);
1827 
1828 	for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) {
1829 		vdev_indirect_mapping_entry_phys_t *vimep =
1830 		    &vim->vim_entries[i];
1831 		(void) printf("\t<%llx:%llx:%llx> -> "
1832 		    "<%llx:%llx:%llx> (%x obsolete)\n",
1833 		    (longlong_t)vd->vdev_id,
1834 		    (longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep),
1835 		    (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
1836 		    (longlong_t)DVA_GET_VDEV(&vimep->vimep_dst),
1837 		    (longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst),
1838 		    (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
1839 		    counts[i]);
1840 	}
1841 	(void) printf("\n");
1842 
1843 	uint64_t obsolete_sm_object;
1844 	VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1845 	if (obsolete_sm_object != 0) {
1846 		objset_t *mos = vd->vdev_spa->spa_meta_objset;
1847 		(void) printf("obsolete space map object %llu:\n",
1848 		    (u_longlong_t)obsolete_sm_object);
1849 		ASSERT(vd->vdev_obsolete_sm != NULL);
1850 		ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==,
1851 		    obsolete_sm_object);
1852 		dump_spacemap(mos, vd->vdev_obsolete_sm);
1853 		(void) printf("\n");
1854 	}
1855 }
1856 
1857 static void
dump_metaslabs(spa_t * spa)1858 dump_metaslabs(spa_t *spa)
1859 {
1860 	vdev_t *vd, *rvd = spa->spa_root_vdev;
1861 	uint64_t m, c = 0, children = rvd->vdev_children;
1862 
1863 	(void) printf("\nMetaslabs:\n");
1864 
1865 	if (!dump_opt['d'] && zopt_metaslab_args > 0) {
1866 		c = zopt_metaslab[0];
1867 
1868 		if (c >= children)
1869 			(void) fatal("bad vdev id: %llu", (u_longlong_t)c);
1870 
1871 		if (zopt_metaslab_args > 1) {
1872 			vd = rvd->vdev_child[c];
1873 			print_vdev_metaslab_header(vd);
1874 
1875 			for (m = 1; m < zopt_metaslab_args; m++) {
1876 				if (zopt_metaslab[m] < vd->vdev_ms_count)
1877 					dump_metaslab(
1878 					    vd->vdev_ms[zopt_metaslab[m]]);
1879 				else
1880 					(void) fprintf(stderr, "bad metaslab "
1881 					    "number %llu\n",
1882 					    (u_longlong_t)zopt_metaslab[m]);
1883 			}
1884 			(void) printf("\n");
1885 			return;
1886 		}
1887 		children = c + 1;
1888 	}
1889 	for (; c < children; c++) {
1890 		vd = rvd->vdev_child[c];
1891 		print_vdev_metaslab_header(vd);
1892 
1893 		print_vdev_indirect(vd);
1894 
1895 		for (m = 0; m < vd->vdev_ms_count; m++)
1896 			dump_metaslab(vd->vdev_ms[m]);
1897 		(void) printf("\n");
1898 	}
1899 }
1900 
1901 static void
dump_log_spacemaps(spa_t * spa)1902 dump_log_spacemaps(spa_t *spa)
1903 {
1904 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1905 		return;
1906 
1907 	(void) printf("\nLog Space Maps in Pool:\n");
1908 	for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
1909 	    sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
1910 		space_map_t *sm = NULL;
1911 		VERIFY0(space_map_open(&sm, spa_meta_objset(spa),
1912 		    sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT));
1913 
1914 		(void) printf("Log Spacemap object %llu txg %llu\n",
1915 		    (u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg);
1916 		dump_spacemap(spa->spa_meta_objset, sm);
1917 		space_map_close(sm);
1918 	}
1919 	(void) printf("\n");
1920 }
1921 
1922 static void
dump_ddt_entry(const ddt_t * ddt,const ddt_lightweight_entry_t * ddlwe,uint64_t index)1923 dump_ddt_entry(const ddt_t *ddt, const ddt_lightweight_entry_t *ddlwe,
1924     uint64_t index)
1925 {
1926 	const ddt_key_t *ddk = &ddlwe->ddlwe_key;
1927 	char blkbuf[BP_SPRINTF_LEN];
1928 	blkptr_t blk;
1929 	int p;
1930 
1931 	for (p = 0; p < DDT_NPHYS(ddt); p++) {
1932 		const ddt_univ_phys_t *ddp = &ddlwe->ddlwe_phys;
1933 		ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
1934 
1935 		if (ddt_phys_birth(ddp, v) == 0)
1936 			continue;
1937 		ddt_bp_create(ddt->ddt_checksum, ddk, ddp, v, &blk);
1938 		snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk);
1939 		(void) printf("index %llx refcnt %llu phys %d %s\n",
1940 		    (u_longlong_t)index, (u_longlong_t)ddt_phys_refcnt(ddp, v),
1941 		    p, blkbuf);
1942 	}
1943 }
1944 
1945 static void
dump_dedup_ratio(const ddt_stat_t * dds)1946 dump_dedup_ratio(const ddt_stat_t *dds)
1947 {
1948 	double rL, rP, rD, D, dedup, compress, copies;
1949 
1950 	if (dds->dds_blocks == 0)
1951 		return;
1952 
1953 	rL = (double)dds->dds_ref_lsize;
1954 	rP = (double)dds->dds_ref_psize;
1955 	rD = (double)dds->dds_ref_dsize;
1956 	D = (double)dds->dds_dsize;
1957 
1958 	dedup = rD / D;
1959 	compress = rL / rP;
1960 	copies = rD / rP;
1961 
1962 	(void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, "
1963 	    "dedup * compress / copies = %.2f\n\n",
1964 	    dedup, compress, copies, dedup * compress / copies);
1965 }
1966 
1967 static void
dump_ddt_log(ddt_t * ddt)1968 dump_ddt_log(ddt_t *ddt)
1969 {
1970 	for (int n = 0; n < 2; n++) {
1971 		ddt_log_t *ddl = &ddt->ddt_log[n];
1972 
1973 		uint64_t count = avl_numnodes(&ddl->ddl_tree);
1974 		if (count == 0)
1975 			continue;
1976 
1977 		printf(DMU_POOL_DDT_LOG ": %" PRIu64 " log entries\n",
1978 		    zio_checksum_table[ddt->ddt_checksum].ci_name, n, count);
1979 
1980 		if (dump_opt['D'] < 4)
1981 			continue;
1982 
1983 		ddt_lightweight_entry_t ddlwe;
1984 		uint64_t index = 0;
1985 		for (ddt_log_entry_t *ddle = avl_first(&ddl->ddl_tree);
1986 		    ddle; ddle = AVL_NEXT(&ddl->ddl_tree, ddle)) {
1987 			DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt, ddle, &ddlwe);
1988 			dump_ddt_entry(ddt, &ddlwe, index++);
1989 		}
1990 	}
1991 }
1992 
1993 static void
dump_ddt(ddt_t * ddt,ddt_type_t type,ddt_class_t class)1994 dump_ddt(ddt_t *ddt, ddt_type_t type, ddt_class_t class)
1995 {
1996 	char name[DDT_NAMELEN];
1997 	ddt_lightweight_entry_t ddlwe;
1998 	uint64_t walk = 0;
1999 	dmu_object_info_t doi;
2000 	uint64_t count, dspace, mspace;
2001 	int error;
2002 
2003 	error = ddt_object_info(ddt, type, class, &doi);
2004 
2005 	if (error == ENOENT)
2006 		return;
2007 	ASSERT(error == 0);
2008 
2009 	error = ddt_object_count(ddt, type, class, &count);
2010 	ASSERT(error == 0);
2011 	if (count == 0)
2012 		return;
2013 
2014 	dspace = doi.doi_physical_blocks_512 << 9;
2015 	mspace = doi.doi_fill_count * doi.doi_data_block_size;
2016 
2017 	ddt_object_name(ddt, type, class, name);
2018 
2019 	(void) printf("%s: %llu entries, size %llu on disk, %llu in core\n",
2020 	    name,
2021 	    (u_longlong_t)count,
2022 	    (u_longlong_t)dspace,
2023 	    (u_longlong_t)mspace);
2024 
2025 	if (dump_opt['D'] < 3)
2026 		return;
2027 
2028 	zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]);
2029 
2030 	if (dump_opt['D'] < 4)
2031 		return;
2032 
2033 	if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE)
2034 		return;
2035 
2036 	(void) printf("%s contents:\n\n", name);
2037 
2038 	while ((error = ddt_object_walk(ddt, type, class, &walk, &ddlwe)) == 0)
2039 		dump_ddt_entry(ddt, &ddlwe, walk);
2040 
2041 	ASSERT3U(error, ==, ENOENT);
2042 
2043 	(void) printf("\n");
2044 }
2045 
2046 static void
dump_all_ddts(spa_t * spa)2047 dump_all_ddts(spa_t *spa)
2048 {
2049 	ddt_histogram_t ddh_total = {{{0}}};
2050 	ddt_stat_t dds_total = {0};
2051 
2052 	for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
2053 		ddt_t *ddt = spa->spa_ddt[c];
2054 		if (!ddt || ddt->ddt_version == DDT_VERSION_UNCONFIGURED)
2055 			continue;
2056 		for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
2057 			for (ddt_class_t class = 0; class < DDT_CLASSES;
2058 			    class++) {
2059 				dump_ddt(ddt, type, class);
2060 			}
2061 		}
2062 		dump_ddt_log(ddt);
2063 	}
2064 
2065 	ddt_get_dedup_stats(spa, &dds_total);
2066 
2067 	if (dds_total.dds_blocks == 0) {
2068 		(void) printf("All DDTs are empty\n");
2069 		return;
2070 	}
2071 
2072 	(void) printf("\n");
2073 
2074 	if (dump_opt['D'] > 1) {
2075 		(void) printf("DDT histogram (aggregated over all DDTs):\n");
2076 		ddt_get_dedup_histogram(spa, &ddh_total);
2077 		zpool_dump_ddt(&dds_total, &ddh_total);
2078 	}
2079 
2080 	dump_dedup_ratio(&dds_total);
2081 
2082 	/*
2083 	 * Dump a histogram of unique class entry age
2084 	 */
2085 	if (dump_opt['D'] == 3 && getenv("ZDB_DDT_UNIQUE_AGE_HIST") != NULL) {
2086 		ddt_age_histo_t histogram;
2087 
2088 		(void) printf("DDT walk unique, building age histogram...\n");
2089 		ddt_prune_walk(spa, 0, &histogram);
2090 
2091 		/*
2092 		 * print out histogram for unique entry class birth
2093 		 */
2094 		if (histogram.dah_entries > 0) {
2095 			(void) printf("%5s  %9s  %4s\n",
2096 			    "age", "blocks", "amnt");
2097 			(void) printf("%5s  %9s  %4s\n",
2098 			    "-----", "---------", "----");
2099 			for (int i = 0; i < HIST_BINS; i++) {
2100 				(void) printf("%5d  %9d %4d%%\n", 1 << i,
2101 				    (int)histogram.dah_age_histo[i],
2102 				    (int)((histogram.dah_age_histo[i] * 100) /
2103 				    histogram.dah_entries));
2104 			}
2105 		}
2106 	}
2107 }
2108 
2109 static void
dump_brt(spa_t * spa)2110 dump_brt(spa_t *spa)
2111 {
2112 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_BLOCK_CLONING)) {
2113 		printf("BRT: unsupported on this pool\n");
2114 		return;
2115 	}
2116 
2117 	if (!spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) {
2118 		printf("BRT: empty\n");
2119 		return;
2120 	}
2121 
2122 	brt_t *brt = spa->spa_brt;
2123 	VERIFY(brt);
2124 
2125 	char count[32], used[32], saved[32];
2126 	zdb_nicebytes(brt_get_used(spa), used, sizeof (used));
2127 	zdb_nicebytes(brt_get_saved(spa), saved, sizeof (saved));
2128 	uint64_t ratio = brt_get_ratio(spa);
2129 	printf("BRT: used %s; saved %s; ratio %llu.%02llux\n", used, saved,
2130 	    (u_longlong_t)(ratio / 100), (u_longlong_t)(ratio % 100));
2131 
2132 	if (dump_opt['T'] < 2)
2133 		return;
2134 
2135 	for (uint64_t vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) {
2136 		brt_vdev_t *brtvd = &brt->brt_vdevs[vdevid];
2137 		if (brtvd == NULL)
2138 			continue;
2139 
2140 		if (!brtvd->bv_initiated) {
2141 			printf("BRT: vdev %" PRIu64 ": empty\n", vdevid);
2142 			continue;
2143 		}
2144 
2145 		zdb_nicenum(brtvd->bv_totalcount, count, sizeof (count));
2146 		zdb_nicebytes(brtvd->bv_usedspace, used, sizeof (used));
2147 		zdb_nicebytes(brtvd->bv_savedspace, saved, sizeof (saved));
2148 		printf("BRT: vdev %" PRIu64 ": refcnt %s; used %s; saved %s\n",
2149 		    vdevid, count, used, saved);
2150 	}
2151 
2152 	if (dump_opt['T'] < 3)
2153 		return;
2154 
2155 	/* -TTT shows a per-vdev histograms; -TTTT shows all entries */
2156 	boolean_t do_histo = dump_opt['T'] == 3;
2157 
2158 	char dva[64];
2159 
2160 	if (!do_histo)
2161 		printf("\n%-16s %-10s\n", "DVA", "REFCNT");
2162 
2163 	for (uint64_t vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) {
2164 		brt_vdev_t *brtvd = &brt->brt_vdevs[vdevid];
2165 		if (brtvd == NULL || !brtvd->bv_initiated)
2166 			continue;
2167 
2168 		uint64_t counts[64] = {};
2169 
2170 		zap_cursor_t zc;
2171 		zap_attribute_t *za = zap_attribute_alloc();
2172 		for (zap_cursor_init(&zc, brt->brt_mos, brtvd->bv_mos_entries);
2173 		    zap_cursor_retrieve(&zc, za) == 0;
2174 		    zap_cursor_advance(&zc)) {
2175 			uint64_t refcnt;
2176 			VERIFY0(zap_lookup_uint64(brt->brt_mos,
2177 			    brtvd->bv_mos_entries,
2178 			    (const uint64_t *)za->za_name, 1,
2179 			    za->za_integer_length, za->za_num_integers,
2180 			    &refcnt));
2181 
2182 			if (do_histo)
2183 				counts[highbit64(refcnt)]++;
2184 			else {
2185 				uint64_t offset =
2186 				    *(const uint64_t *)za->za_name;
2187 
2188 				snprintf(dva, sizeof (dva), "%" PRIu64 ":%llx",
2189 				    vdevid, (u_longlong_t)offset);
2190 				printf("%-16s %-10llu\n", dva,
2191 				    (u_longlong_t)refcnt);
2192 			}
2193 		}
2194 		zap_cursor_fini(&zc);
2195 		zap_attribute_free(za);
2196 
2197 		if (do_histo) {
2198 			printf("\nBRT: vdev %" PRIu64
2199 			    ": DVAs with 2^n refcnts:\n", vdevid);
2200 			dump_histogram(counts, 64, 0);
2201 		}
2202 	}
2203 }
2204 
2205 static void
dump_dtl_seg(void * arg,uint64_t start,uint64_t size)2206 dump_dtl_seg(void *arg, uint64_t start, uint64_t size)
2207 {
2208 	char *prefix = arg;
2209 
2210 	(void) printf("%s [%llu,%llu) length %llu\n",
2211 	    prefix,
2212 	    (u_longlong_t)start,
2213 	    (u_longlong_t)(start + size),
2214 	    (u_longlong_t)(size));
2215 }
2216 
2217 static void
dump_dtl(vdev_t * vd,int indent)2218 dump_dtl(vdev_t *vd, int indent)
2219 {
2220 	spa_t *spa = vd->vdev_spa;
2221 	boolean_t required;
2222 	const char *name[DTL_TYPES] = { "missing", "partial", "scrub",
2223 		"outage" };
2224 	char prefix[256];
2225 
2226 	spa_vdev_state_enter(spa, SCL_NONE);
2227 	required = vdev_dtl_required(vd);
2228 	(void) spa_vdev_state_exit(spa, NULL, 0);
2229 
2230 	if (indent == 0)
2231 		(void) printf("\nDirty time logs:\n\n");
2232 
2233 	(void) printf("\t%*s%s [%s]\n", indent, "",
2234 	    vd->vdev_path ? vd->vdev_path :
2235 	    vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa),
2236 	    required ? "DTL-required" : "DTL-expendable");
2237 
2238 	for (int t = 0; t < DTL_TYPES; t++) {
2239 		range_tree_t *rt = vd->vdev_dtl[t];
2240 		if (range_tree_space(rt) == 0)
2241 			continue;
2242 		(void) snprintf(prefix, sizeof (prefix), "\t%*s%s",
2243 		    indent + 2, "", name[t]);
2244 		range_tree_walk(rt, dump_dtl_seg, prefix);
2245 		if (dump_opt['d'] > 5 && vd->vdev_children == 0)
2246 			dump_spacemap(spa->spa_meta_objset,
2247 			    vd->vdev_dtl_sm);
2248 	}
2249 
2250 	for (unsigned c = 0; c < vd->vdev_children; c++)
2251 		dump_dtl(vd->vdev_child[c], indent + 4);
2252 }
2253 
2254 static void
dump_history(spa_t * spa)2255 dump_history(spa_t *spa)
2256 {
2257 	nvlist_t **events = NULL;
2258 	char *buf;
2259 	uint64_t resid, len, off = 0;
2260 	uint_t num = 0;
2261 	int error;
2262 	char tbuf[30];
2263 
2264 	if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) {
2265 		(void) fprintf(stderr, "%s: unable to allocate I/O buffer\n",
2266 		    __func__);
2267 		return;
2268 	}
2269 
2270 	do {
2271 		len = SPA_OLD_MAXBLOCKSIZE;
2272 
2273 		if ((error = spa_history_get(spa, &off, &len, buf)) != 0) {
2274 			(void) fprintf(stderr, "Unable to read history: "
2275 			    "error %d\n", error);
2276 			free(buf);
2277 			return;
2278 		}
2279 
2280 		if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0)
2281 			break;
2282 
2283 		off -= resid;
2284 	} while (len != 0);
2285 
2286 	(void) printf("\nHistory:\n");
2287 	for (unsigned i = 0; i < num; i++) {
2288 		boolean_t printed = B_FALSE;
2289 
2290 		if (nvlist_exists(events[i], ZPOOL_HIST_TIME)) {
2291 			time_t tsec;
2292 			struct tm t;
2293 
2294 			tsec = fnvlist_lookup_uint64(events[i],
2295 			    ZPOOL_HIST_TIME);
2296 			(void) localtime_r(&tsec, &t);
2297 			(void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t);
2298 		} else {
2299 			tbuf[0] = '\0';
2300 		}
2301 
2302 		if (nvlist_exists(events[i], ZPOOL_HIST_CMD)) {
2303 			(void) printf("%s %s\n", tbuf,
2304 			    fnvlist_lookup_string(events[i], ZPOOL_HIST_CMD));
2305 		} else if (nvlist_exists(events[i], ZPOOL_HIST_INT_EVENT)) {
2306 			uint64_t ievent;
2307 
2308 			ievent = fnvlist_lookup_uint64(events[i],
2309 			    ZPOOL_HIST_INT_EVENT);
2310 			if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS)
2311 				goto next;
2312 
2313 			(void) printf(" %s [internal %s txg:%ju] %s\n",
2314 			    tbuf,
2315 			    zfs_history_event_names[ievent],
2316 			    fnvlist_lookup_uint64(events[i],
2317 			    ZPOOL_HIST_TXG),
2318 			    fnvlist_lookup_string(events[i],
2319 			    ZPOOL_HIST_INT_STR));
2320 		} else if (nvlist_exists(events[i], ZPOOL_HIST_INT_NAME)) {
2321 			(void) printf("%s [txg:%ju] %s", tbuf,
2322 			    fnvlist_lookup_uint64(events[i],
2323 			    ZPOOL_HIST_TXG),
2324 			    fnvlist_lookup_string(events[i],
2325 			    ZPOOL_HIST_INT_NAME));
2326 
2327 			if (nvlist_exists(events[i], ZPOOL_HIST_DSNAME)) {
2328 				(void) printf(" %s (%llu)",
2329 				    fnvlist_lookup_string(events[i],
2330 				    ZPOOL_HIST_DSNAME),
2331 				    (u_longlong_t)fnvlist_lookup_uint64(
2332 				    events[i],
2333 				    ZPOOL_HIST_DSID));
2334 			}
2335 
2336 			(void) printf(" %s\n", fnvlist_lookup_string(events[i],
2337 			    ZPOOL_HIST_INT_STR));
2338 		} else if (nvlist_exists(events[i], ZPOOL_HIST_IOCTL)) {
2339 			(void) printf("%s ioctl %s\n", tbuf,
2340 			    fnvlist_lookup_string(events[i],
2341 			    ZPOOL_HIST_IOCTL));
2342 
2343 			if (nvlist_exists(events[i], ZPOOL_HIST_INPUT_NVL)) {
2344 				(void) printf("    input:\n");
2345 				dump_nvlist(fnvlist_lookup_nvlist(events[i],
2346 				    ZPOOL_HIST_INPUT_NVL), 8);
2347 			}
2348 			if (nvlist_exists(events[i], ZPOOL_HIST_OUTPUT_NVL)) {
2349 				(void) printf("    output:\n");
2350 				dump_nvlist(fnvlist_lookup_nvlist(events[i],
2351 				    ZPOOL_HIST_OUTPUT_NVL), 8);
2352 			}
2353 			if (nvlist_exists(events[i], ZPOOL_HIST_ERRNO)) {
2354 				(void) printf("    errno: %lld\n",
2355 				    (longlong_t)fnvlist_lookup_int64(events[i],
2356 				    ZPOOL_HIST_ERRNO));
2357 			}
2358 		} else {
2359 			goto next;
2360 		}
2361 
2362 		printed = B_TRUE;
2363 next:
2364 		if (dump_opt['h'] > 1) {
2365 			if (!printed)
2366 				(void) printf("unrecognized record:\n");
2367 			dump_nvlist(events[i], 2);
2368 		}
2369 	}
2370 	free(buf);
2371 }
2372 
2373 static void
dump_dnode(objset_t * os,uint64_t object,void * data,size_t size)2374 dump_dnode(objset_t *os, uint64_t object, void *data, size_t size)
2375 {
2376 	(void) os, (void) object, (void) data, (void) size;
2377 }
2378 
2379 static uint64_t
blkid2offset(const dnode_phys_t * dnp,const blkptr_t * bp,const zbookmark_phys_t * zb)2380 blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp,
2381     const zbookmark_phys_t *zb)
2382 {
2383 	if (dnp == NULL) {
2384 		ASSERT(zb->zb_level < 0);
2385 		if (zb->zb_object == 0)
2386 			return (zb->zb_blkid);
2387 		return (zb->zb_blkid * BP_GET_LSIZE(bp));
2388 	}
2389 
2390 	ASSERT(zb->zb_level >= 0);
2391 
2392 	return ((zb->zb_blkid <<
2393 	    (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) *
2394 	    dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
2395 }
2396 
2397 static void
snprintf_zstd_header(spa_t * spa,char * blkbuf,size_t buflen,const blkptr_t * bp)2398 snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen,
2399     const blkptr_t *bp)
2400 {
2401 	static abd_t *pabd = NULL;
2402 	void *buf;
2403 	zio_t *zio;
2404 	zfs_zstdhdr_t zstd_hdr;
2405 	int error;
2406 
2407 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD)
2408 		return;
2409 
2410 	if (BP_IS_HOLE(bp))
2411 		return;
2412 
2413 	if (BP_IS_EMBEDDED(bp)) {
2414 		buf = malloc(SPA_MAXBLOCKSIZE);
2415 		if (buf == NULL) {
2416 			(void) fprintf(stderr, "out of memory\n");
2417 			zdb_exit(1);
2418 		}
2419 		decode_embedded_bp_compressed(bp, buf);
2420 		memcpy(&zstd_hdr, buf, sizeof (zstd_hdr));
2421 		free(buf);
2422 		zstd_hdr.c_len = BE_32(zstd_hdr.c_len);
2423 		zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level);
2424 		(void) snprintf(blkbuf + strlen(blkbuf),
2425 		    buflen - strlen(blkbuf),
2426 		    " ZSTD:size=%u:version=%u:level=%u:EMBEDDED",
2427 		    zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr),
2428 		    zfs_get_hdrlevel(&zstd_hdr));
2429 		return;
2430 	}
2431 
2432 	if (!pabd)
2433 		pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE);
2434 	zio = zio_root(spa, NULL, NULL, 0);
2435 
2436 	/* Decrypt but don't decompress so we can read the compression header */
2437 	zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL,
2438 	    ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS,
2439 	    NULL));
2440 	error = zio_wait(zio);
2441 	if (error) {
2442 		(void) fprintf(stderr, "read failed: %d\n", error);
2443 		return;
2444 	}
2445 	buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp));
2446 	memcpy(&zstd_hdr, buf, sizeof (zstd_hdr));
2447 	zstd_hdr.c_len = BE_32(zstd_hdr.c_len);
2448 	zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level);
2449 
2450 	(void) snprintf(blkbuf + strlen(blkbuf),
2451 	    buflen - strlen(blkbuf),
2452 	    " ZSTD:size=%u:version=%u:level=%u:NORMAL",
2453 	    zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr),
2454 	    zfs_get_hdrlevel(&zstd_hdr));
2455 
2456 	abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp));
2457 }
2458 
2459 static void
snprintf_blkptr_compact(char * blkbuf,size_t buflen,const blkptr_t * bp,boolean_t bp_freed)2460 snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp,
2461     boolean_t bp_freed)
2462 {
2463 	const dva_t *dva = bp->blk_dva;
2464 	int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1;
2465 	int i;
2466 
2467 	if (dump_opt['b'] >= 6) {
2468 		snprintf_blkptr(blkbuf, buflen, bp);
2469 		if (bp_freed) {
2470 			(void) snprintf(blkbuf + strlen(blkbuf),
2471 			    buflen - strlen(blkbuf), " %s", "FREE");
2472 		}
2473 		return;
2474 	}
2475 
2476 	if (BP_IS_EMBEDDED(bp)) {
2477 		(void) sprintf(blkbuf,
2478 		    "EMBEDDED et=%u %llxL/%llxP B=%llu",
2479 		    (int)BPE_GET_ETYPE(bp),
2480 		    (u_longlong_t)BPE_GET_LSIZE(bp),
2481 		    (u_longlong_t)BPE_GET_PSIZE(bp),
2482 		    (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp));
2483 		return;
2484 	}
2485 
2486 	blkbuf[0] = '\0';
2487 
2488 	for (i = 0; i < ndvas; i++)
2489 		(void) snprintf(blkbuf + strlen(blkbuf),
2490 		    buflen - strlen(blkbuf), "%llu:%llx:%llx ",
2491 		    (u_longlong_t)DVA_GET_VDEV(&dva[i]),
2492 		    (u_longlong_t)DVA_GET_OFFSET(&dva[i]),
2493 		    (u_longlong_t)DVA_GET_ASIZE(&dva[i]));
2494 
2495 	if (BP_IS_HOLE(bp)) {
2496 		(void) snprintf(blkbuf + strlen(blkbuf),
2497 		    buflen - strlen(blkbuf),
2498 		    "%llxL B=%llu",
2499 		    (u_longlong_t)BP_GET_LSIZE(bp),
2500 		    (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp));
2501 	} else {
2502 		(void) snprintf(blkbuf + strlen(blkbuf),
2503 		    buflen - strlen(blkbuf),
2504 		    "%llxL/%llxP F=%llu B=%llu/%llu",
2505 		    (u_longlong_t)BP_GET_LSIZE(bp),
2506 		    (u_longlong_t)BP_GET_PSIZE(bp),
2507 		    (u_longlong_t)BP_GET_FILL(bp),
2508 		    (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp),
2509 		    (u_longlong_t)BP_GET_BIRTH(bp));
2510 		if (bp_freed)
2511 			(void) snprintf(blkbuf + strlen(blkbuf),
2512 			    buflen - strlen(blkbuf), " %s", "FREE");
2513 		(void) snprintf(blkbuf + strlen(blkbuf),
2514 		    buflen - strlen(blkbuf),
2515 		    " cksum=%016llx:%016llx:%016llx:%016llx",
2516 		    (u_longlong_t)bp->blk_cksum.zc_word[0],
2517 		    (u_longlong_t)bp->blk_cksum.zc_word[1],
2518 		    (u_longlong_t)bp->blk_cksum.zc_word[2],
2519 		    (u_longlong_t)bp->blk_cksum.zc_word[3]);
2520 	}
2521 }
2522 
2523 static void
print_indirect(spa_t * spa,blkptr_t * bp,const zbookmark_phys_t * zb,const dnode_phys_t * dnp)2524 print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb,
2525     const dnode_phys_t *dnp)
2526 {
2527 	char blkbuf[BP_SPRINTF_LEN];
2528 	int l;
2529 
2530 	if (!BP_IS_EMBEDDED(bp)) {
2531 		ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type);
2532 		ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level);
2533 	}
2534 
2535 	(void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb));
2536 
2537 	ASSERT(zb->zb_level >= 0);
2538 
2539 	for (l = dnp->dn_nlevels - 1; l >= -1; l--) {
2540 		if (l == zb->zb_level) {
2541 			(void) printf("L%llx", (u_longlong_t)zb->zb_level);
2542 		} else {
2543 			(void) printf(" ");
2544 		}
2545 	}
2546 
2547 	snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE);
2548 	if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD)
2549 		snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp);
2550 	(void) printf("%s\n", blkbuf);
2551 }
2552 
2553 static int
visit_indirect(spa_t * spa,const dnode_phys_t * dnp,blkptr_t * bp,const zbookmark_phys_t * zb)2554 visit_indirect(spa_t *spa, const dnode_phys_t *dnp,
2555     blkptr_t *bp, const zbookmark_phys_t *zb)
2556 {
2557 	int err = 0;
2558 
2559 	if (BP_GET_LOGICAL_BIRTH(bp) == 0)
2560 		return (0);
2561 
2562 	print_indirect(spa, bp, zb, dnp);
2563 
2564 	if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) {
2565 		arc_flags_t flags = ARC_FLAG_WAIT;
2566 		int i;
2567 		blkptr_t *cbp;
2568 		int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2569 		arc_buf_t *buf;
2570 		uint64_t fill = 0;
2571 		ASSERT(!BP_IS_REDACTED(bp));
2572 
2573 		err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2574 		    ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb);
2575 		if (err)
2576 			return (err);
2577 		ASSERT(buf->b_data);
2578 
2579 		/* recursively visit blocks below this */
2580 		cbp = buf->b_data;
2581 		for (i = 0; i < epb; i++, cbp++) {
2582 			zbookmark_phys_t czb;
2583 
2584 			SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2585 			    zb->zb_level - 1,
2586 			    zb->zb_blkid * epb + i);
2587 			err = visit_indirect(spa, dnp, cbp, &czb);
2588 			if (err)
2589 				break;
2590 			fill += BP_GET_FILL(cbp);
2591 		}
2592 		if (!err)
2593 			ASSERT3U(fill, ==, BP_GET_FILL(bp));
2594 		arc_buf_destroy(buf, &buf);
2595 	}
2596 
2597 	return (err);
2598 }
2599 
2600 static void
dump_indirect(dnode_t * dn)2601 dump_indirect(dnode_t *dn)
2602 {
2603 	dnode_phys_t *dnp = dn->dn_phys;
2604 	zbookmark_phys_t czb;
2605 
2606 	(void) printf("Indirect blocks:\n");
2607 
2608 	SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset),
2609 	    dn->dn_object, dnp->dn_nlevels - 1, 0);
2610 	for (int j = 0; j < dnp->dn_nblkptr; j++) {
2611 		czb.zb_blkid = j;
2612 		(void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp,
2613 		    &dnp->dn_blkptr[j], &czb);
2614 	}
2615 
2616 	(void) printf("\n");
2617 }
2618 
2619 static void
dump_dsl_dir(objset_t * os,uint64_t object,void * data,size_t size)2620 dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size)
2621 {
2622 	(void) os, (void) object;
2623 	dsl_dir_phys_t *dd = data;
2624 	time_t crtime;
2625 	char nice[32];
2626 
2627 	/* make sure nicenum has enough space */
2628 	_Static_assert(sizeof (nice) >= NN_NUMBUF_SZ, "nice truncated");
2629 
2630 	if (dd == NULL)
2631 		return;
2632 
2633 	ASSERT3U(size, >=, sizeof (dsl_dir_phys_t));
2634 
2635 	crtime = dd->dd_creation_time;
2636 	(void) printf("\t\tcreation_time = %s", ctime(&crtime));
2637 	(void) printf("\t\thead_dataset_obj = %llu\n",
2638 	    (u_longlong_t)dd->dd_head_dataset_obj);
2639 	(void) printf("\t\tparent_dir_obj = %llu\n",
2640 	    (u_longlong_t)dd->dd_parent_obj);
2641 	(void) printf("\t\torigin_obj = %llu\n",
2642 	    (u_longlong_t)dd->dd_origin_obj);
2643 	(void) printf("\t\tchild_dir_zapobj = %llu\n",
2644 	    (u_longlong_t)dd->dd_child_dir_zapobj);
2645 	zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice));
2646 	(void) printf("\t\tused_bytes = %s\n", nice);
2647 	zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice));
2648 	(void) printf("\t\tcompressed_bytes = %s\n", nice);
2649 	zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice));
2650 	(void) printf("\t\tuncompressed_bytes = %s\n", nice);
2651 	zdb_nicenum(dd->dd_quota, nice, sizeof (nice));
2652 	(void) printf("\t\tquota = %s\n", nice);
2653 	zdb_nicenum(dd->dd_reserved, nice, sizeof (nice));
2654 	(void) printf("\t\treserved = %s\n", nice);
2655 	(void) printf("\t\tprops_zapobj = %llu\n",
2656 	    (u_longlong_t)dd->dd_props_zapobj);
2657 	(void) printf("\t\tdeleg_zapobj = %llu\n",
2658 	    (u_longlong_t)dd->dd_deleg_zapobj);
2659 	(void) printf("\t\tflags = %llx\n",
2660 	    (u_longlong_t)dd->dd_flags);
2661 
2662 #define	DO(which) \
2663 	zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \
2664 	    sizeof (nice)); \
2665 	(void) printf("\t\tused_breakdown[" #which "] = %s\n", nice)
2666 	DO(HEAD);
2667 	DO(SNAP);
2668 	DO(CHILD);
2669 	DO(CHILD_RSRV);
2670 	DO(REFRSRV);
2671 #undef DO
2672 	(void) printf("\t\tclones = %llu\n",
2673 	    (u_longlong_t)dd->dd_clones);
2674 }
2675 
2676 static void
dump_dsl_dataset(objset_t * os,uint64_t object,void * data,size_t size)2677 dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size)
2678 {
2679 	(void) os, (void) object;
2680 	dsl_dataset_phys_t *ds = data;
2681 	time_t crtime;
2682 	char used[32], compressed[32], uncompressed[32], unique[32];
2683 	char blkbuf[BP_SPRINTF_LEN];
2684 
2685 	/* make sure nicenum has enough space */
2686 	_Static_assert(sizeof (used) >= NN_NUMBUF_SZ, "used truncated");
2687 	_Static_assert(sizeof (compressed) >= NN_NUMBUF_SZ,
2688 	    "compressed truncated");
2689 	_Static_assert(sizeof (uncompressed) >= NN_NUMBUF_SZ,
2690 	    "uncompressed truncated");
2691 	_Static_assert(sizeof (unique) >= NN_NUMBUF_SZ, "unique truncated");
2692 
2693 	if (ds == NULL)
2694 		return;
2695 
2696 	ASSERT(size == sizeof (*ds));
2697 	crtime = ds->ds_creation_time;
2698 	zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used));
2699 	zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed));
2700 	zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed,
2701 	    sizeof (uncompressed));
2702 	zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique));
2703 	snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp);
2704 
2705 	(void) printf("\t\tdir_obj = %llu\n",
2706 	    (u_longlong_t)ds->ds_dir_obj);
2707 	(void) printf("\t\tprev_snap_obj = %llu\n",
2708 	    (u_longlong_t)ds->ds_prev_snap_obj);
2709 	(void) printf("\t\tprev_snap_txg = %llu\n",
2710 	    (u_longlong_t)ds->ds_prev_snap_txg);
2711 	(void) printf("\t\tnext_snap_obj = %llu\n",
2712 	    (u_longlong_t)ds->ds_next_snap_obj);
2713 	(void) printf("\t\tsnapnames_zapobj = %llu\n",
2714 	    (u_longlong_t)ds->ds_snapnames_zapobj);
2715 	(void) printf("\t\tnum_children = %llu\n",
2716 	    (u_longlong_t)ds->ds_num_children);
2717 	(void) printf("\t\tuserrefs_obj = %llu\n",
2718 	    (u_longlong_t)ds->ds_userrefs_obj);
2719 	(void) printf("\t\tcreation_time = %s", ctime(&crtime));
2720 	(void) printf("\t\tcreation_txg = %llu\n",
2721 	    (u_longlong_t)ds->ds_creation_txg);
2722 	(void) printf("\t\tdeadlist_obj = %llu\n",
2723 	    (u_longlong_t)ds->ds_deadlist_obj);
2724 	(void) printf("\t\tused_bytes = %s\n", used);
2725 	(void) printf("\t\tcompressed_bytes = %s\n", compressed);
2726 	(void) printf("\t\tuncompressed_bytes = %s\n", uncompressed);
2727 	(void) printf("\t\tunique = %s\n", unique);
2728 	(void) printf("\t\tfsid_guid = %llu\n",
2729 	    (u_longlong_t)ds->ds_fsid_guid);
2730 	(void) printf("\t\tguid = %llu\n",
2731 	    (u_longlong_t)ds->ds_guid);
2732 	(void) printf("\t\tflags = %llx\n",
2733 	    (u_longlong_t)ds->ds_flags);
2734 	(void) printf("\t\tnext_clones_obj = %llu\n",
2735 	    (u_longlong_t)ds->ds_next_clones_obj);
2736 	(void) printf("\t\tprops_obj = %llu\n",
2737 	    (u_longlong_t)ds->ds_props_obj);
2738 	(void) printf("\t\tbp = %s\n", blkbuf);
2739 }
2740 
2741 static int
dump_bptree_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)2742 dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2743 {
2744 	(void) arg, (void) tx;
2745 	char blkbuf[BP_SPRINTF_LEN];
2746 
2747 	if (BP_GET_LOGICAL_BIRTH(bp) != 0) {
2748 		snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
2749 		(void) printf("\t%s\n", blkbuf);
2750 	}
2751 	return (0);
2752 }
2753 
2754 static void
dump_bptree(objset_t * os,uint64_t obj,const char * name)2755 dump_bptree(objset_t *os, uint64_t obj, const char *name)
2756 {
2757 	char bytes[32];
2758 	bptree_phys_t *bt;
2759 	dmu_buf_t *db;
2760 
2761 	/* make sure nicenum has enough space */
2762 	_Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
2763 
2764 	if (dump_opt['d'] < 3)
2765 		return;
2766 
2767 	VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db));
2768 	bt = db->db_data;
2769 	zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes));
2770 	(void) printf("\n    %s: %llu datasets, %s\n",
2771 	    name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes);
2772 	dmu_buf_rele(db, FTAG);
2773 
2774 	if (dump_opt['d'] < 5)
2775 		return;
2776 
2777 	(void) printf("\n");
2778 
2779 	(void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL);
2780 }
2781 
2782 static int
dump_bpobj_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)2783 dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx)
2784 {
2785 	(void) arg, (void) tx;
2786 	char blkbuf[BP_SPRINTF_LEN];
2787 
2788 	ASSERT(BP_GET_LOGICAL_BIRTH(bp) != 0);
2789 	snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed);
2790 	(void) printf("\t%s\n", blkbuf);
2791 	return (0);
2792 }
2793 
2794 static void
dump_full_bpobj(bpobj_t * bpo,const char * name,int indent)2795 dump_full_bpobj(bpobj_t *bpo, const char *name, int indent)
2796 {
2797 	char bytes[32];
2798 	char comp[32];
2799 	char uncomp[32];
2800 	uint64_t i;
2801 
2802 	/* make sure nicenum has enough space */
2803 	_Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
2804 	_Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
2805 	_Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
2806 
2807 	if (dump_opt['d'] < 3)
2808 		return;
2809 
2810 	zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes));
2811 	if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
2812 		zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp));
2813 		zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp));
2814 		if (bpo->bpo_havefreed) {
2815 			(void) printf("    %*s: object %llu, %llu local "
2816 			    "blkptrs, %llu freed, %llu subobjs in object %llu, "
2817 			    "%s (%s/%s comp)\n",
2818 			    indent * 8, name,
2819 			    (u_longlong_t)bpo->bpo_object,
2820 			    (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2821 			    (u_longlong_t)bpo->bpo_phys->bpo_num_freed,
2822 			    (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs,
2823 			    (u_longlong_t)bpo->bpo_phys->bpo_subobjs,
2824 			    bytes, comp, uncomp);
2825 		} else {
2826 			(void) printf("    %*s: object %llu, %llu local "
2827 			    "blkptrs, %llu subobjs in object %llu, "
2828 			    "%s (%s/%s comp)\n",
2829 			    indent * 8, name,
2830 			    (u_longlong_t)bpo->bpo_object,
2831 			    (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2832 			    (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs,
2833 			    (u_longlong_t)bpo->bpo_phys->bpo_subobjs,
2834 			    bytes, comp, uncomp);
2835 		}
2836 
2837 		for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
2838 			uint64_t subobj;
2839 			bpobj_t subbpo;
2840 			int error;
2841 			VERIFY0(dmu_read(bpo->bpo_os,
2842 			    bpo->bpo_phys->bpo_subobjs,
2843 			    i * sizeof (subobj), sizeof (subobj), &subobj, 0));
2844 			error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
2845 			if (error != 0) {
2846 				(void) printf("ERROR %u while trying to open "
2847 				    "subobj id %llu\n",
2848 				    error, (u_longlong_t)subobj);
2849 				continue;
2850 			}
2851 			dump_full_bpobj(&subbpo, "subobj", indent + 1);
2852 			bpobj_close(&subbpo);
2853 		}
2854 	} else {
2855 		if (bpo->bpo_havefreed) {
2856 			(void) printf("    %*s: object %llu, %llu blkptrs, "
2857 			    "%llu freed, %s\n",
2858 			    indent * 8, name,
2859 			    (u_longlong_t)bpo->bpo_object,
2860 			    (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2861 			    (u_longlong_t)bpo->bpo_phys->bpo_num_freed,
2862 			    bytes);
2863 		} else {
2864 			(void) printf("    %*s: object %llu, %llu blkptrs, "
2865 			    "%s\n",
2866 			    indent * 8, name,
2867 			    (u_longlong_t)bpo->bpo_object,
2868 			    (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2869 			    bytes);
2870 		}
2871 	}
2872 
2873 	if (dump_opt['d'] < 5)
2874 		return;
2875 
2876 
2877 	if (indent == 0) {
2878 		(void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL);
2879 		(void) printf("\n");
2880 	}
2881 }
2882 
2883 static int
dump_bookmark(dsl_pool_t * dp,char * name,boolean_t print_redact,boolean_t print_list)2884 dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact,
2885     boolean_t print_list)
2886 {
2887 	int err = 0;
2888 	zfs_bookmark_phys_t prop;
2889 	objset_t *mos = dp->dp_spa->spa_meta_objset;
2890 	err = dsl_bookmark_lookup(dp, name, NULL, &prop);
2891 
2892 	if (err != 0) {
2893 		return (err);
2894 	}
2895 
2896 	(void) printf("\t#%s: ", strchr(name, '#') + 1);
2897 	(void) printf("{guid: %llx creation_txg: %llu creation_time: "
2898 	    "%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid,
2899 	    (u_longlong_t)prop.zbm_creation_txg,
2900 	    (u_longlong_t)prop.zbm_creation_time,
2901 	    (u_longlong_t)prop.zbm_redaction_obj);
2902 
2903 	IMPLY(print_list, print_redact);
2904 	if (!print_redact || prop.zbm_redaction_obj == 0)
2905 		return (0);
2906 
2907 	redaction_list_t *rl;
2908 	VERIFY0(dsl_redaction_list_hold_obj(dp,
2909 	    prop.zbm_redaction_obj, FTAG, &rl));
2910 
2911 	redaction_list_phys_t *rlp = rl->rl_phys;
2912 	(void) printf("\tRedacted:\n\t\tProgress: ");
2913 	if (rlp->rlp_last_object != UINT64_MAX ||
2914 	    rlp->rlp_last_blkid != UINT64_MAX) {
2915 		(void) printf("%llu %llu (incomplete)\n",
2916 		    (u_longlong_t)rlp->rlp_last_object,
2917 		    (u_longlong_t)rlp->rlp_last_blkid);
2918 	} else {
2919 		(void) printf("complete\n");
2920 	}
2921 	(void) printf("\t\tSnapshots: [");
2922 	for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) {
2923 		if (i > 0)
2924 			(void) printf(", ");
2925 		(void) printf("%0llu",
2926 		    (u_longlong_t)rlp->rlp_snaps[i]);
2927 	}
2928 	(void) printf("]\n\t\tLength: %llu\n",
2929 	    (u_longlong_t)rlp->rlp_num_entries);
2930 
2931 	if (!print_list) {
2932 		dsl_redaction_list_rele(rl, FTAG);
2933 		return (0);
2934 	}
2935 
2936 	if (rlp->rlp_num_entries == 0) {
2937 		dsl_redaction_list_rele(rl, FTAG);
2938 		(void) printf("\t\tRedaction List: []\n\n");
2939 		return (0);
2940 	}
2941 
2942 	redact_block_phys_t *rbp_buf;
2943 	uint64_t size;
2944 	dmu_object_info_t doi;
2945 
2946 	VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi));
2947 	size = doi.doi_max_offset;
2948 	rbp_buf = kmem_alloc(size, KM_SLEEP);
2949 
2950 	err = dmu_read(mos, prop.zbm_redaction_obj, 0, size,
2951 	    rbp_buf, 0);
2952 	if (err != 0) {
2953 		dsl_redaction_list_rele(rl, FTAG);
2954 		kmem_free(rbp_buf, size);
2955 		return (err);
2956 	}
2957 
2958 	(void) printf("\t\tRedaction List: [{object: %llx, offset: "
2959 	    "%llx, blksz: %x, count: %llx}",
2960 	    (u_longlong_t)rbp_buf[0].rbp_object,
2961 	    (u_longlong_t)rbp_buf[0].rbp_blkid,
2962 	    (uint_t)(redact_block_get_size(&rbp_buf[0])),
2963 	    (u_longlong_t)redact_block_get_count(&rbp_buf[0]));
2964 
2965 	for (size_t i = 1; i < rlp->rlp_num_entries; i++) {
2966 		(void) printf(",\n\t\t{object: %llx, offset: %llx, "
2967 		    "blksz: %x, count: %llx}",
2968 		    (u_longlong_t)rbp_buf[i].rbp_object,
2969 		    (u_longlong_t)rbp_buf[i].rbp_blkid,
2970 		    (uint_t)(redact_block_get_size(&rbp_buf[i])),
2971 		    (u_longlong_t)redact_block_get_count(&rbp_buf[i]));
2972 	}
2973 	dsl_redaction_list_rele(rl, FTAG);
2974 	kmem_free(rbp_buf, size);
2975 	(void) printf("]\n\n");
2976 	return (0);
2977 }
2978 
2979 static void
dump_bookmarks(objset_t * os,int verbosity)2980 dump_bookmarks(objset_t *os, int verbosity)
2981 {
2982 	zap_cursor_t zc;
2983 	zap_attribute_t *attrp;
2984 	dsl_dataset_t *ds = dmu_objset_ds(os);
2985 	dsl_pool_t *dp = spa_get_dsl(os->os_spa);
2986 	objset_t *mos = os->os_spa->spa_meta_objset;
2987 	if (verbosity < 4)
2988 		return;
2989 	attrp = zap_attribute_alloc();
2990 	dsl_pool_config_enter(dp, FTAG);
2991 
2992 	for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj);
2993 	    zap_cursor_retrieve(&zc, attrp) == 0;
2994 	    zap_cursor_advance(&zc)) {
2995 		char osname[ZFS_MAX_DATASET_NAME_LEN];
2996 		char buf[ZFS_MAX_DATASET_NAME_LEN];
2997 		int len;
2998 		dmu_objset_name(os, osname);
2999 		len = snprintf(buf, sizeof (buf), "%s#%s", osname,
3000 		    attrp->za_name);
3001 		VERIFY3S(len, <, ZFS_MAX_DATASET_NAME_LEN);
3002 		(void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6);
3003 	}
3004 	zap_cursor_fini(&zc);
3005 	dsl_pool_config_exit(dp, FTAG);
3006 	zap_attribute_free(attrp);
3007 }
3008 
3009 static void
bpobj_count_refd(bpobj_t * bpo)3010 bpobj_count_refd(bpobj_t *bpo)
3011 {
3012 	mos_obj_refd(bpo->bpo_object);
3013 
3014 	if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
3015 		mos_obj_refd(bpo->bpo_phys->bpo_subobjs);
3016 		for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
3017 			uint64_t subobj;
3018 			bpobj_t subbpo;
3019 			int error;
3020 			VERIFY0(dmu_read(bpo->bpo_os,
3021 			    bpo->bpo_phys->bpo_subobjs,
3022 			    i * sizeof (subobj), sizeof (subobj), &subobj, 0));
3023 			error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
3024 			if (error != 0) {
3025 				(void) printf("ERROR %u while trying to open "
3026 				    "subobj id %llu\n",
3027 				    error, (u_longlong_t)subobj);
3028 				continue;
3029 			}
3030 			bpobj_count_refd(&subbpo);
3031 			bpobj_close(&subbpo);
3032 		}
3033 	}
3034 }
3035 
3036 static int
dsl_deadlist_entry_count_refd(void * arg,dsl_deadlist_entry_t * dle)3037 dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle)
3038 {
3039 	spa_t *spa = arg;
3040 	uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj;
3041 	if (dle->dle_bpobj.bpo_object != empty_bpobj)
3042 		bpobj_count_refd(&dle->dle_bpobj);
3043 	return (0);
3044 }
3045 
3046 static int
dsl_deadlist_entry_dump(void * arg,dsl_deadlist_entry_t * dle)3047 dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle)
3048 {
3049 	ASSERT(arg == NULL);
3050 	if (dump_opt['d'] >= 5) {
3051 		char buf[128];
3052 		(void) snprintf(buf, sizeof (buf),
3053 		    "mintxg %llu -> obj %llu",
3054 		    (longlong_t)dle->dle_mintxg,
3055 		    (longlong_t)dle->dle_bpobj.bpo_object);
3056 
3057 		dump_full_bpobj(&dle->dle_bpobj, buf, 0);
3058 	} else {
3059 		(void) printf("mintxg %llu -> obj %llu\n",
3060 		    (longlong_t)dle->dle_mintxg,
3061 		    (longlong_t)dle->dle_bpobj.bpo_object);
3062 	}
3063 	return (0);
3064 }
3065 
3066 static void
dump_blkptr_list(dsl_deadlist_t * dl,const char * name)3067 dump_blkptr_list(dsl_deadlist_t *dl, const char *name)
3068 {
3069 	char bytes[32];
3070 	char comp[32];
3071 	char uncomp[32];
3072 	char entries[32];
3073 	spa_t *spa = dmu_objset_spa(dl->dl_os);
3074 	uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj;
3075 
3076 	if (dl->dl_oldfmt) {
3077 		if (dl->dl_bpobj.bpo_object != empty_bpobj)
3078 			bpobj_count_refd(&dl->dl_bpobj);
3079 	} else {
3080 		mos_obj_refd(dl->dl_object);
3081 		dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa);
3082 	}
3083 
3084 	/* make sure nicenum has enough space */
3085 	_Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
3086 	_Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
3087 	_Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
3088 	_Static_assert(sizeof (entries) >= NN_NUMBUF_SZ, "entries truncated");
3089 
3090 	if (dump_opt['d'] < 3)
3091 		return;
3092 
3093 	if (dl->dl_oldfmt) {
3094 		dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0);
3095 		return;
3096 	}
3097 
3098 	zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes));
3099 	zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp));
3100 	zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp));
3101 	zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries));
3102 	(void) printf("\n    %s: %s (%s/%s comp), %s entries\n",
3103 	    name, bytes, comp, uncomp, entries);
3104 
3105 	if (dump_opt['d'] < 4)
3106 		return;
3107 
3108 	(void) putchar('\n');
3109 
3110 	dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL);
3111 }
3112 
3113 static int
verify_dd_livelist(objset_t * os)3114 verify_dd_livelist(objset_t *os)
3115 {
3116 	uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp;
3117 	dsl_pool_t *dp = spa_get_dsl(os->os_spa);
3118 	dsl_dir_t  *dd = os->os_dsl_dataset->ds_dir;
3119 
3120 	ASSERT(!dmu_objset_is_snapshot(os));
3121 	if (!dsl_deadlist_is_open(&dd->dd_livelist))
3122 		return (0);
3123 
3124 	/* Iterate through the livelist to check for duplicates */
3125 	dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight,
3126 	    NULL);
3127 
3128 	dsl_pool_config_enter(dp, FTAG);
3129 	dsl_deadlist_space(&dd->dd_livelist, &ll_used,
3130 	    &ll_comp, &ll_uncomp);
3131 
3132 	dsl_dataset_t *origin_ds;
3133 	ASSERT(dsl_pool_config_held(dp));
3134 	VERIFY0(dsl_dataset_hold_obj(dp,
3135 	    dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds));
3136 	VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset,
3137 	    &used, &comp, &uncomp));
3138 	dsl_dataset_rele(origin_ds, FTAG);
3139 	dsl_pool_config_exit(dp, FTAG);
3140 	/*
3141 	 *  It's possible that the dataset's uncomp space is larger than the
3142 	 *  livelist's because livelists do not track embedded block pointers
3143 	 */
3144 	if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) {
3145 		char nice_used[32], nice_comp[32], nice_uncomp[32];
3146 		(void) printf("Discrepancy in space accounting:\n");
3147 		zdb_nicenum(used, nice_used, sizeof (nice_used));
3148 		zdb_nicenum(comp, nice_comp, sizeof (nice_comp));
3149 		zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp));
3150 		(void) printf("dir: used %s, comp %s, uncomp %s\n",
3151 		    nice_used, nice_comp, nice_uncomp);
3152 		zdb_nicenum(ll_used, nice_used, sizeof (nice_used));
3153 		zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp));
3154 		zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp));
3155 		(void) printf("livelist: used %s, comp %s, uncomp %s\n",
3156 		    nice_used, nice_comp, nice_uncomp);
3157 		return (1);
3158 	}
3159 	return (0);
3160 }
3161 
3162 static char *key_material = NULL;
3163 
3164 static boolean_t
zdb_derive_key(dsl_dir_t * dd,uint8_t * key_out)3165 zdb_derive_key(dsl_dir_t *dd, uint8_t *key_out)
3166 {
3167 	uint64_t keyformat, salt, iters;
3168 	int i;
3169 	unsigned char c;
3170 
3171 	VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
3172 	    zfs_prop_to_name(ZFS_PROP_KEYFORMAT), sizeof (uint64_t),
3173 	    1, &keyformat));
3174 
3175 	switch (keyformat) {
3176 	case ZFS_KEYFORMAT_HEX:
3177 		for (i = 0; i < WRAPPING_KEY_LEN * 2; i += 2) {
3178 			if (!isxdigit(key_material[i]) ||
3179 			    !isxdigit(key_material[i+1]))
3180 				return (B_FALSE);
3181 			if (sscanf(&key_material[i], "%02hhx", &c) != 1)
3182 				return (B_FALSE);
3183 			key_out[i / 2] = c;
3184 		}
3185 		break;
3186 
3187 	case ZFS_KEYFORMAT_PASSPHRASE:
3188 		VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset,
3189 		    dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT),
3190 		    sizeof (uint64_t), 1, &salt));
3191 		VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset,
3192 		    dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS),
3193 		    sizeof (uint64_t), 1, &iters));
3194 
3195 		if (PKCS5_PBKDF2_HMAC_SHA1(key_material, strlen(key_material),
3196 		    ((uint8_t *)&salt), sizeof (uint64_t), iters,
3197 		    WRAPPING_KEY_LEN, key_out) != 1)
3198 			return (B_FALSE);
3199 
3200 		break;
3201 
3202 	default:
3203 		fatal("no support for key format %u\n",
3204 		    (unsigned int) keyformat);
3205 	}
3206 
3207 	return (B_TRUE);
3208 }
3209 
3210 static char encroot[ZFS_MAX_DATASET_NAME_LEN];
3211 static boolean_t key_loaded = B_FALSE;
3212 
3213 static void
zdb_load_key(objset_t * os)3214 zdb_load_key(objset_t *os)
3215 {
3216 	dsl_pool_t *dp;
3217 	dsl_dir_t *dd, *rdd;
3218 	uint8_t key[WRAPPING_KEY_LEN];
3219 	uint64_t rddobj;
3220 	int err;
3221 
3222 	dp = spa_get_dsl(os->os_spa);
3223 	dd = os->os_dsl_dataset->ds_dir;
3224 
3225 	dsl_pool_config_enter(dp, FTAG);
3226 	VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
3227 	    DSL_CRYPTO_KEY_ROOT_DDOBJ, sizeof (uint64_t), 1, &rddobj));
3228 	VERIFY0(dsl_dir_hold_obj(dd->dd_pool, rddobj, NULL, FTAG, &rdd));
3229 	dsl_dir_name(rdd, encroot);
3230 	dsl_dir_rele(rdd, FTAG);
3231 
3232 	if (!zdb_derive_key(dd, key))
3233 		fatal("couldn't derive encryption key");
3234 
3235 	dsl_pool_config_exit(dp, FTAG);
3236 
3237 	ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_UNAVAILABLE);
3238 
3239 	dsl_crypto_params_t *dcp;
3240 	nvlist_t *crypto_args;
3241 
3242 	crypto_args = fnvlist_alloc();
3243 	fnvlist_add_uint8_array(crypto_args, "wkeydata",
3244 	    (uint8_t *)key, WRAPPING_KEY_LEN);
3245 	VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
3246 	    NULL, crypto_args, &dcp));
3247 	err = spa_keystore_load_wkey(encroot, dcp, B_FALSE);
3248 
3249 	dsl_crypto_params_free(dcp, (err != 0));
3250 	fnvlist_free(crypto_args);
3251 
3252 	if (err != 0)
3253 		fatal(
3254 		    "couldn't load encryption key for %s: %s",
3255 		    encroot, err == ZFS_ERR_CRYPTO_NOTSUP ?
3256 		    "crypto params not supported" : strerror(err));
3257 
3258 	ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_AVAILABLE);
3259 
3260 	printf("Unlocked encryption root: %s\n", encroot);
3261 	key_loaded = B_TRUE;
3262 }
3263 
3264 static void
zdb_unload_key(void)3265 zdb_unload_key(void)
3266 {
3267 	if (!key_loaded)
3268 		return;
3269 
3270 	VERIFY0(spa_keystore_unload_wkey(encroot));
3271 	key_loaded = B_FALSE;
3272 }
3273 
3274 static avl_tree_t idx_tree;
3275 static avl_tree_t domain_tree;
3276 static boolean_t fuid_table_loaded;
3277 static objset_t *sa_os = NULL;
3278 static sa_attr_type_t *sa_attr_table = NULL;
3279 
3280 static int
open_objset(const char * path,const void * tag,objset_t ** osp)3281 open_objset(const char *path, const void *tag, objset_t **osp)
3282 {
3283 	int err;
3284 	uint64_t sa_attrs = 0;
3285 	uint64_t version = 0;
3286 
3287 	VERIFY3P(sa_os, ==, NULL);
3288 
3289 	/*
3290 	 * We can't own an objset if it's redacted.  Therefore, we do this
3291 	 * dance: hold the objset, then acquire a long hold on its dataset, then
3292 	 * release the pool (which is held as part of holding the objset).
3293 	 */
3294 
3295 	if (dump_opt['K']) {
3296 		/* decryption requested, try to load keys */
3297 		err = dmu_objset_hold(path, tag, osp);
3298 		if (err != 0) {
3299 			(void) fprintf(stderr, "failed to hold dataset "
3300 			    "'%s': %s\n",
3301 			    path, strerror(err));
3302 			return (err);
3303 		}
3304 		dsl_dataset_long_hold(dmu_objset_ds(*osp), tag);
3305 		dsl_pool_rele(dmu_objset_pool(*osp), tag);
3306 
3307 		/* succeeds or dies */
3308 		zdb_load_key(*osp);
3309 
3310 		/* release it all */
3311 		dsl_dataset_long_rele(dmu_objset_ds(*osp), tag);
3312 		dsl_dataset_rele(dmu_objset_ds(*osp), tag);
3313 	}
3314 
3315 	int ds_hold_flags = key_loaded ? DS_HOLD_FLAG_DECRYPT : 0;
3316 
3317 	err = dmu_objset_hold_flags(path, ds_hold_flags, tag, osp);
3318 	if (err != 0) {
3319 		(void) fprintf(stderr, "failed to hold dataset '%s': %s\n",
3320 		    path, strerror(err));
3321 		return (err);
3322 	}
3323 	dsl_dataset_long_hold(dmu_objset_ds(*osp), tag);
3324 	dsl_pool_rele(dmu_objset_pool(*osp), tag);
3325 
3326 	if (dmu_objset_type(*osp) == DMU_OST_ZFS &&
3327 	    (key_loaded || !(*osp)->os_encrypted)) {
3328 		(void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR,
3329 		    8, 1, &version);
3330 		if (version >= ZPL_VERSION_SA) {
3331 			(void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS,
3332 			    8, 1, &sa_attrs);
3333 		}
3334 		err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END,
3335 		    &sa_attr_table);
3336 		if (err != 0) {
3337 			(void) fprintf(stderr, "sa_setup failed: %s\n",
3338 			    strerror(err));
3339 			dsl_dataset_long_rele(dmu_objset_ds(*osp), tag);
3340 			dsl_dataset_rele_flags(dmu_objset_ds(*osp),
3341 			    ds_hold_flags, tag);
3342 			*osp = NULL;
3343 		}
3344 	}
3345 	sa_os = *osp;
3346 
3347 	return (err);
3348 }
3349 
3350 static void
close_objset(objset_t * os,const void * tag)3351 close_objset(objset_t *os, const void *tag)
3352 {
3353 	VERIFY3P(os, ==, sa_os);
3354 	if (os->os_sa != NULL)
3355 		sa_tear_down(os);
3356 	dsl_dataset_long_rele(dmu_objset_ds(os), tag);
3357 	dsl_dataset_rele_flags(dmu_objset_ds(os),
3358 	    key_loaded ? DS_HOLD_FLAG_DECRYPT : 0, tag);
3359 	sa_attr_table = NULL;
3360 	sa_os = NULL;
3361 
3362 	zdb_unload_key();
3363 }
3364 
3365 static void
fuid_table_destroy(void)3366 fuid_table_destroy(void)
3367 {
3368 	if (fuid_table_loaded) {
3369 		zfs_fuid_table_destroy(&idx_tree, &domain_tree);
3370 		fuid_table_loaded = B_FALSE;
3371 	}
3372 }
3373 
3374 /*
3375  * Clean up DDT internal state. ddt_lookup() adds entries to ddt_tree, which on
3376  * a live pool are normally cleaned up during ddt_sync(). We can't do that (and
3377  * wouldn't want to anyway), but if we don't clean up the presence of stuff on
3378  * ddt_tree will trip asserts in ddt_table_free(). So, we clean up ourselves.
3379  *
3380  * Note that this is not a particularly efficient way to do this, but
3381  * ddt_remove() is the only public method that can do the work we need, and it
3382  * requires the right locks and etc to do the job. This is only ever called
3383  * during zdb shutdown so efficiency is not especially important.
3384  */
3385 static void
zdb_ddt_cleanup(spa_t * spa)3386 zdb_ddt_cleanup(spa_t *spa)
3387 {
3388 	for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
3389 		ddt_t *ddt = spa->spa_ddt[c];
3390 		if (!ddt)
3391 			continue;
3392 
3393 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3394 		ddt_enter(ddt);
3395 		ddt_entry_t *dde = avl_first(&ddt->ddt_tree), *next;
3396 		while (dde) {
3397 			next = AVL_NEXT(&ddt->ddt_tree, dde);
3398 			dde->dde_io = NULL;
3399 			ddt_remove(ddt, dde);
3400 			dde = next;
3401 		}
3402 		ddt_exit(ddt);
3403 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3404 	}
3405 }
3406 
3407 static void
zdb_exit(int reason)3408 zdb_exit(int reason)
3409 {
3410 	if (spa != NULL)
3411 		zdb_ddt_cleanup(spa);
3412 
3413 	if (os != NULL) {
3414 		close_objset(os, FTAG);
3415 	} else if (spa != NULL) {
3416 		spa_close(spa, FTAG);
3417 	}
3418 
3419 	fuid_table_destroy();
3420 
3421 	if (kernel_init_done)
3422 		kernel_fini();
3423 
3424 	exit(reason);
3425 }
3426 
3427 /*
3428  * print uid or gid information.
3429  * For normal POSIX id just the id is printed in decimal format.
3430  * For CIFS files with FUID the fuid is printed in hex followed by
3431  * the domain-rid string.
3432  */
3433 static void
print_idstr(uint64_t id,const char * id_type)3434 print_idstr(uint64_t id, const char *id_type)
3435 {
3436 	if (FUID_INDEX(id)) {
3437 		const char *domain =
3438 		    zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id));
3439 		(void) printf("\t%s     %llx [%s-%d]\n", id_type,
3440 		    (u_longlong_t)id, domain, (int)FUID_RID(id));
3441 	} else {
3442 		(void) printf("\t%s     %llu\n", id_type, (u_longlong_t)id);
3443 	}
3444 
3445 }
3446 
3447 static void
dump_uidgid(objset_t * os,uint64_t uid,uint64_t gid)3448 dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid)
3449 {
3450 	uint32_t uid_idx, gid_idx;
3451 
3452 	uid_idx = FUID_INDEX(uid);
3453 	gid_idx = FUID_INDEX(gid);
3454 
3455 	/* Load domain table, if not already loaded */
3456 	if (!fuid_table_loaded && (uid_idx || gid_idx)) {
3457 		uint64_t fuid_obj;
3458 
3459 		/* first find the fuid object.  It lives in the master node */
3460 		VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES,
3461 		    8, 1, &fuid_obj) == 0);
3462 		zfs_fuid_avl_tree_create(&idx_tree, &domain_tree);
3463 		(void) zfs_fuid_table_load(os, fuid_obj,
3464 		    &idx_tree, &domain_tree);
3465 		fuid_table_loaded = B_TRUE;
3466 	}
3467 
3468 	print_idstr(uid, "uid");
3469 	print_idstr(gid, "gid");
3470 }
3471 
3472 static void
dump_znode_sa_xattr(sa_handle_t * hdl)3473 dump_znode_sa_xattr(sa_handle_t *hdl)
3474 {
3475 	nvlist_t *sa_xattr;
3476 	nvpair_t *elem = NULL;
3477 	int sa_xattr_size = 0;
3478 	int sa_xattr_entries = 0;
3479 	int error;
3480 	char *sa_xattr_packed;
3481 
3482 	error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size);
3483 	if (error || sa_xattr_size == 0)
3484 		return;
3485 
3486 	sa_xattr_packed = malloc(sa_xattr_size);
3487 	if (sa_xattr_packed == NULL)
3488 		return;
3489 
3490 	error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR],
3491 	    sa_xattr_packed, sa_xattr_size);
3492 	if (error) {
3493 		free(sa_xattr_packed);
3494 		return;
3495 	}
3496 
3497 	error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0);
3498 	if (error) {
3499 		free(sa_xattr_packed);
3500 		return;
3501 	}
3502 
3503 	while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL)
3504 		sa_xattr_entries++;
3505 
3506 	(void) printf("\tSA xattrs: %d bytes, %d entries\n\n",
3507 	    sa_xattr_size, sa_xattr_entries);
3508 	while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) {
3509 		boolean_t can_print = !dump_opt['P'];
3510 		uchar_t *value;
3511 		uint_t cnt, idx;
3512 
3513 		(void) printf("\t\t%s = ", nvpair_name(elem));
3514 		nvpair_value_byte_array(elem, &value, &cnt);
3515 
3516 		for (idx = 0; idx < cnt; ++idx) {
3517 			if (!isprint(value[idx])) {
3518 				can_print = B_FALSE;
3519 				break;
3520 			}
3521 		}
3522 
3523 		for (idx = 0; idx < cnt; ++idx) {
3524 			if (can_print)
3525 				(void) putchar(value[idx]);
3526 			else
3527 				(void) printf("\\%3.3o", value[idx]);
3528 		}
3529 		(void) putchar('\n');
3530 	}
3531 
3532 	nvlist_free(sa_xattr);
3533 	free(sa_xattr_packed);
3534 }
3535 
3536 static void
dump_znode_symlink(sa_handle_t * hdl)3537 dump_znode_symlink(sa_handle_t *hdl)
3538 {
3539 	int sa_symlink_size = 0;
3540 	char linktarget[MAXPATHLEN];
3541 	int error;
3542 
3543 	error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size);
3544 	if (error || sa_symlink_size == 0) {
3545 		return;
3546 	}
3547 	if (sa_symlink_size >= sizeof (linktarget)) {
3548 		(void) printf("symlink size %d is too large\n",
3549 		    sa_symlink_size);
3550 		return;
3551 	}
3552 	linktarget[sa_symlink_size] = '\0';
3553 	if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK],
3554 	    &linktarget, sa_symlink_size) == 0)
3555 		(void) printf("\ttarget	%s\n", linktarget);
3556 }
3557 
3558 static void
dump_znode(objset_t * os,uint64_t object,void * data,size_t size)3559 dump_znode(objset_t *os, uint64_t object, void *data, size_t size)
3560 {
3561 	(void) data, (void) size;
3562 	char path[MAXPATHLEN * 2];	/* allow for xattr and failure prefix */
3563 	sa_handle_t *hdl;
3564 	uint64_t xattr, rdev, gen;
3565 	uint64_t uid, gid, mode, fsize, parent, links;
3566 	uint64_t pflags;
3567 	uint64_t acctm[2], modtm[2], chgtm[2], crtm[2];
3568 	time_t z_crtime, z_atime, z_mtime, z_ctime;
3569 	sa_bulk_attr_t bulk[12];
3570 	int idx = 0;
3571 	int error;
3572 
3573 	VERIFY3P(os, ==, sa_os);
3574 	if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) {
3575 		(void) printf("Failed to get handle for SA znode\n");
3576 		return;
3577 	}
3578 
3579 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8);
3580 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8);
3581 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL,
3582 	    &links, 8);
3583 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8);
3584 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL,
3585 	    &mode, 8);
3586 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT],
3587 	    NULL, &parent, 8);
3588 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL,
3589 	    &fsize, 8);
3590 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL,
3591 	    acctm, 16);
3592 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL,
3593 	    modtm, 16);
3594 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL,
3595 	    crtm, 16);
3596 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL,
3597 	    chgtm, 16);
3598 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL,
3599 	    &pflags, 8);
3600 
3601 	if (sa_bulk_lookup(hdl, bulk, idx)) {
3602 		(void) sa_handle_destroy(hdl);
3603 		return;
3604 	}
3605 
3606 	z_crtime = (time_t)crtm[0];
3607 	z_atime = (time_t)acctm[0];
3608 	z_mtime = (time_t)modtm[0];
3609 	z_ctime = (time_t)chgtm[0];
3610 
3611 	if (dump_opt['d'] > 4) {
3612 		error = zfs_obj_to_path(os, object, path, sizeof (path));
3613 		if (error == ESTALE) {
3614 			(void) snprintf(path, sizeof (path), "on delete queue");
3615 		} else if (error != 0) {
3616 			leaked_objects++;
3617 			(void) snprintf(path, sizeof (path),
3618 			    "path not found, possibly leaked");
3619 		}
3620 		(void) printf("\tpath	%s\n", path);
3621 	}
3622 
3623 	if (S_ISLNK(mode))
3624 		dump_znode_symlink(hdl);
3625 	dump_uidgid(os, uid, gid);
3626 	(void) printf("\tatime	%s", ctime(&z_atime));
3627 	(void) printf("\tmtime	%s", ctime(&z_mtime));
3628 	(void) printf("\tctime	%s", ctime(&z_ctime));
3629 	(void) printf("\tcrtime	%s", ctime(&z_crtime));
3630 	(void) printf("\tgen	%llu\n", (u_longlong_t)gen);
3631 	(void) printf("\tmode	%llo\n", (u_longlong_t)mode);
3632 	(void) printf("\tsize	%llu\n", (u_longlong_t)fsize);
3633 	(void) printf("\tparent	%llu\n", (u_longlong_t)parent);
3634 	(void) printf("\tlinks	%llu\n", (u_longlong_t)links);
3635 	(void) printf("\tpflags	%llx\n", (u_longlong_t)pflags);
3636 	if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) {
3637 		uint64_t projid;
3638 
3639 		if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid,
3640 		    sizeof (uint64_t)) == 0)
3641 			(void) printf("\tprojid	%llu\n", (u_longlong_t)projid);
3642 	}
3643 	if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr,
3644 	    sizeof (uint64_t)) == 0)
3645 		(void) printf("\txattr	%llu\n", (u_longlong_t)xattr);
3646 	if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev,
3647 	    sizeof (uint64_t)) == 0)
3648 		(void) printf("\trdev	0x%016llx\n", (u_longlong_t)rdev);
3649 	dump_znode_sa_xattr(hdl);
3650 	sa_handle_destroy(hdl);
3651 }
3652 
3653 static void
dump_acl(objset_t * os,uint64_t object,void * data,size_t size)3654 dump_acl(objset_t *os, uint64_t object, void *data, size_t size)
3655 {
3656 	(void) os, (void) object, (void) data, (void) size;
3657 }
3658 
3659 static void
dump_dmu_objset(objset_t * os,uint64_t object,void * data,size_t size)3660 dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size)
3661 {
3662 	(void) os, (void) object, (void) data, (void) size;
3663 }
3664 
3665 static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = {
3666 	dump_none,		/* unallocated			*/
3667 	dump_zap,		/* object directory		*/
3668 	dump_uint64,		/* object array			*/
3669 	dump_none,		/* packed nvlist		*/
3670 	dump_packed_nvlist,	/* packed nvlist size		*/
3671 	dump_none,		/* bpobj			*/
3672 	dump_bpobj,		/* bpobj header			*/
3673 	dump_none,		/* SPA space map header		*/
3674 	dump_none,		/* SPA space map		*/
3675 	dump_none,		/* ZIL intent log		*/
3676 	dump_dnode,		/* DMU dnode			*/
3677 	dump_dmu_objset,	/* DMU objset			*/
3678 	dump_dsl_dir,		/* DSL directory		*/
3679 	dump_zap,		/* DSL directory child map	*/
3680 	dump_zap,		/* DSL dataset snap map		*/
3681 	dump_zap,		/* DSL props			*/
3682 	dump_dsl_dataset,	/* DSL dataset			*/
3683 	dump_znode,		/* ZFS znode			*/
3684 	dump_acl,		/* ZFS V0 ACL			*/
3685 	dump_uint8,		/* ZFS plain file		*/
3686 	dump_zpldir,		/* ZFS directory		*/
3687 	dump_zap,		/* ZFS master node		*/
3688 	dump_zap,		/* ZFS delete queue		*/
3689 	dump_uint8,		/* zvol object			*/
3690 	dump_zap,		/* zvol prop			*/
3691 	dump_uint8,		/* other uint8[]		*/
3692 	dump_uint64,		/* other uint64[]		*/
3693 	dump_zap,		/* other ZAP			*/
3694 	dump_zap,		/* persistent error log		*/
3695 	dump_uint8,		/* SPA history			*/
3696 	dump_history_offsets,	/* SPA history offsets		*/
3697 	dump_zap,		/* Pool properties		*/
3698 	dump_zap,		/* DSL permissions		*/
3699 	dump_acl,		/* ZFS ACL			*/
3700 	dump_uint8,		/* ZFS SYSACL			*/
3701 	dump_none,		/* FUID nvlist			*/
3702 	dump_packed_nvlist,	/* FUID nvlist size		*/
3703 	dump_zap,		/* DSL dataset next clones	*/
3704 	dump_zap,		/* DSL scrub queue		*/
3705 	dump_zap,		/* ZFS user/group/project used	*/
3706 	dump_zap,		/* ZFS user/group/project quota	*/
3707 	dump_zap,		/* snapshot refcount tags	*/
3708 	dump_ddt_zap,		/* DDT ZAP object		*/
3709 	dump_zap,		/* DDT statistics		*/
3710 	dump_znode,		/* SA object			*/
3711 	dump_zap,		/* SA Master Node		*/
3712 	dump_sa_attrs,		/* SA attribute registration	*/
3713 	dump_sa_layouts,	/* SA attribute layouts		*/
3714 	dump_zap,		/* DSL scrub translations	*/
3715 	dump_none,		/* fake dedup BP		*/
3716 	dump_zap,		/* deadlist			*/
3717 	dump_none,		/* deadlist hdr			*/
3718 	dump_zap,		/* dsl clones			*/
3719 	dump_bpobj_subobjs,	/* bpobj subobjs		*/
3720 	dump_unknown,		/* Unknown type, must be last	*/
3721 };
3722 
3723 static boolean_t
match_object_type(dmu_object_type_t obj_type,uint64_t flags)3724 match_object_type(dmu_object_type_t obj_type, uint64_t flags)
3725 {
3726 	boolean_t match = B_TRUE;
3727 
3728 	switch (obj_type) {
3729 	case DMU_OT_DIRECTORY_CONTENTS:
3730 		if (!(flags & ZOR_FLAG_DIRECTORY))
3731 			match = B_FALSE;
3732 		break;
3733 	case DMU_OT_PLAIN_FILE_CONTENTS:
3734 		if (!(flags & ZOR_FLAG_PLAIN_FILE))
3735 			match = B_FALSE;
3736 		break;
3737 	case DMU_OT_SPACE_MAP:
3738 		if (!(flags & ZOR_FLAG_SPACE_MAP))
3739 			match = B_FALSE;
3740 		break;
3741 	default:
3742 		if (strcmp(zdb_ot_name(obj_type), "zap") == 0) {
3743 			if (!(flags & ZOR_FLAG_ZAP))
3744 				match = B_FALSE;
3745 			break;
3746 		}
3747 
3748 		/*
3749 		 * If all bits except some of the supported flags are
3750 		 * set, the user combined the all-types flag (A) with
3751 		 * a negated flag to exclude some types (e.g. A-f to
3752 		 * show all object types except plain files).
3753 		 */
3754 		if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES)
3755 			match = B_FALSE;
3756 
3757 		break;
3758 	}
3759 
3760 	return (match);
3761 }
3762 
3763 static void
dump_object(objset_t * os,uint64_t object,int verbosity,boolean_t * print_header,uint64_t * dnode_slots_used,uint64_t flags)3764 dump_object(objset_t *os, uint64_t object, int verbosity,
3765     boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags)
3766 {
3767 	dmu_buf_t *db = NULL;
3768 	dmu_object_info_t doi;
3769 	dnode_t *dn;
3770 	boolean_t dnode_held = B_FALSE;
3771 	void *bonus = NULL;
3772 	size_t bsize = 0;
3773 	char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32];
3774 	char bonus_size[32];
3775 	char aux[50];
3776 	int error;
3777 
3778 	/* make sure nicenum has enough space */
3779 	_Static_assert(sizeof (iblk) >= NN_NUMBUF_SZ, "iblk truncated");
3780 	_Static_assert(sizeof (dblk) >= NN_NUMBUF_SZ, "dblk truncated");
3781 	_Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, "lsize truncated");
3782 	_Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, "asize truncated");
3783 	_Static_assert(sizeof (bonus_size) >= NN_NUMBUF_SZ,
3784 	    "bonus_size truncated");
3785 
3786 	if (*print_header) {
3787 		(void) printf("\n%10s  %3s  %5s  %5s  %5s  %6s  %5s  %6s  %s\n",
3788 		    "Object", "lvl", "iblk", "dblk", "dsize", "dnsize",
3789 		    "lsize", "%full", "type");
3790 		*print_header = 0;
3791 	}
3792 
3793 	if (object == 0) {
3794 		dn = DMU_META_DNODE(os);
3795 		dmu_object_info_from_dnode(dn, &doi);
3796 	} else {
3797 		/*
3798 		 * Encrypted datasets will have sensitive bonus buffers
3799 		 * encrypted. Therefore we cannot hold the bonus buffer and
3800 		 * must hold the dnode itself instead.
3801 		 */
3802 		error = dmu_object_info(os, object, &doi);
3803 		if (error)
3804 			fatal("dmu_object_info() failed, errno %u", error);
3805 
3806 		if (!key_loaded && os->os_encrypted &&
3807 		    DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) {
3808 			error = dnode_hold(os, object, FTAG, &dn);
3809 			if (error)
3810 				fatal("dnode_hold() failed, errno %u", error);
3811 			dnode_held = B_TRUE;
3812 		} else {
3813 			error = dmu_bonus_hold(os, object, FTAG, &db);
3814 			if (error)
3815 				fatal("dmu_bonus_hold(%llu) failed, errno %u",
3816 				    object, error);
3817 			bonus = db->db_data;
3818 			bsize = db->db_size;
3819 			dn = DB_DNODE((dmu_buf_impl_t *)db);
3820 		}
3821 	}
3822 
3823 	/*
3824 	 * Default to showing all object types if no flags were specified.
3825 	 */
3826 	if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES &&
3827 	    !match_object_type(doi.doi_type, flags))
3828 		goto out;
3829 
3830 	if (dnode_slots_used)
3831 		*dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE;
3832 
3833 	zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk));
3834 	zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk));
3835 	zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize));
3836 	zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize));
3837 	zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size));
3838 	zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize));
3839 	(void) snprintf(fill, sizeof (fill), "%6.2f", 100.0 *
3840 	    doi.doi_fill_count * doi.doi_data_block_size / (object == 0 ?
3841 	    DNODES_PER_BLOCK : 1) / doi.doi_max_offset);
3842 
3843 	aux[0] = '\0';
3844 
3845 	if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) {
3846 		(void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3847 		    " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum));
3848 	}
3849 
3850 	if (doi.doi_compress == ZIO_COMPRESS_INHERIT &&
3851 	    ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) {
3852 		const char *compname = NULL;
3853 		if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION,
3854 		    ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel),
3855 		    &compname) == 0) {
3856 			(void) snprintf(aux + strlen(aux),
3857 			    sizeof (aux) - strlen(aux), " (Z=inherit=%s)",
3858 			    compname);
3859 		} else {
3860 			(void) snprintf(aux + strlen(aux),
3861 			    sizeof (aux) - strlen(aux),
3862 			    " (Z=inherit=%s-unknown)",
3863 			    ZDB_COMPRESS_NAME(os->os_compress));
3864 		}
3865 	} else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) {
3866 		(void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3867 		    " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress));
3868 	} else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) {
3869 		(void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3870 		    " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress));
3871 	}
3872 
3873 	(void) printf("%10lld  %3u  %5s  %5s  %5s  %6s  %5s  %6s  %s%s\n",
3874 	    (u_longlong_t)object, doi.doi_indirection, iblk, dblk,
3875 	    asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux);
3876 
3877 	if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) {
3878 		(void) printf("%10s  %3s  %5s  %5s  %5s  %5s  %5s  %6s  %s\n",
3879 		    "", "", "", "", "", "", bonus_size, "bonus",
3880 		    zdb_ot_name(doi.doi_bonus_type));
3881 	}
3882 
3883 	if (verbosity >= 4) {
3884 		(void) printf("\tdnode flags: %s%s%s%s\n",
3885 		    (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ?
3886 		    "USED_BYTES " : "",
3887 		    (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ?
3888 		    "USERUSED_ACCOUNTED " : "",
3889 		    (dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ?
3890 		    "USEROBJUSED_ACCOUNTED " : "",
3891 		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ?
3892 		    "SPILL_BLKPTR" : "");
3893 		(void) printf("\tdnode maxblkid: %llu\n",
3894 		    (longlong_t)dn->dn_phys->dn_maxblkid);
3895 
3896 		if (!dnode_held) {
3897 			object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os,
3898 			    object, bonus, bsize);
3899 		} else {
3900 			(void) printf("\t\t(bonus encrypted)\n");
3901 		}
3902 
3903 		if (key_loaded ||
3904 		    (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type))) {
3905 			object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object,
3906 			    NULL, 0);
3907 		} else {
3908 			(void) printf("\t\t(object encrypted)\n");
3909 		}
3910 
3911 		*print_header = B_TRUE;
3912 	}
3913 
3914 	if (verbosity >= 5) {
3915 		if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
3916 			char blkbuf[BP_SPRINTF_LEN];
3917 			snprintf_blkptr_compact(blkbuf, sizeof (blkbuf),
3918 			    DN_SPILL_BLKPTR(dn->dn_phys), B_FALSE);
3919 			(void) printf("\nSpill block: %s\n", blkbuf);
3920 		}
3921 		dump_indirect(dn);
3922 	}
3923 
3924 	if (verbosity >= 5) {
3925 		/*
3926 		 * Report the list of segments that comprise the object.
3927 		 */
3928 		uint64_t start = 0;
3929 		uint64_t end;
3930 		uint64_t blkfill = 1;
3931 		int minlvl = 1;
3932 
3933 		if (dn->dn_type == DMU_OT_DNODE) {
3934 			minlvl = 0;
3935 			blkfill = DNODES_PER_BLOCK;
3936 		}
3937 
3938 		for (;;) {
3939 			char segsize[32];
3940 			/* make sure nicenum has enough space */
3941 			_Static_assert(sizeof (segsize) >= NN_NUMBUF_SZ,
3942 			    "segsize truncated");
3943 			error = dnode_next_offset(dn,
3944 			    0, &start, minlvl, blkfill, 0);
3945 			if (error)
3946 				break;
3947 			end = start;
3948 			error = dnode_next_offset(dn,
3949 			    DNODE_FIND_HOLE, &end, minlvl, blkfill, 0);
3950 			zdb_nicenum(end - start, segsize, sizeof (segsize));
3951 			(void) printf("\t\tsegment [%016llx, %016llx)"
3952 			    " size %5s\n", (u_longlong_t)start,
3953 			    (u_longlong_t)end, segsize);
3954 			if (error)
3955 				break;
3956 			start = end;
3957 		}
3958 	}
3959 
3960 out:
3961 	if (db != NULL)
3962 		dmu_buf_rele(db, FTAG);
3963 	if (dnode_held)
3964 		dnode_rele(dn, FTAG);
3965 }
3966 
3967 static void
count_dir_mos_objects(dsl_dir_t * dd)3968 count_dir_mos_objects(dsl_dir_t *dd)
3969 {
3970 	mos_obj_refd(dd->dd_object);
3971 	mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj);
3972 	mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj);
3973 	mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj);
3974 	mos_obj_refd(dsl_dir_phys(dd)->dd_clones);
3975 
3976 	/*
3977 	 * The dd_crypto_obj can be referenced by multiple dsl_dir's.
3978 	 * Ignore the references after the first one.
3979 	 */
3980 	mos_obj_refd_multiple(dd->dd_crypto_obj);
3981 }
3982 
3983 static void
count_ds_mos_objects(dsl_dataset_t * ds)3984 count_ds_mos_objects(dsl_dataset_t *ds)
3985 {
3986 	mos_obj_refd(ds->ds_object);
3987 	mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj);
3988 	mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj);
3989 	mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj);
3990 	mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj);
3991 	mos_obj_refd(ds->ds_bookmarks_obj);
3992 
3993 	if (!dsl_dataset_is_snapshot(ds)) {
3994 		count_dir_mos_objects(ds->ds_dir);
3995 	}
3996 }
3997 
3998 static const char *const objset_types[DMU_OST_NUMTYPES] = {
3999 	"NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" };
4000 
4001 /*
4002  * Parse a string denoting a range of object IDs of the form
4003  * <start>[:<end>[:flags]], and store the results in zor.
4004  * Return 0 on success. On error, return 1 and update the msg
4005  * pointer to point to a descriptive error message.
4006  */
4007 static int
parse_object_range(char * range,zopt_object_range_t * zor,const char ** msg)4008 parse_object_range(char *range, zopt_object_range_t *zor, const char **msg)
4009 {
4010 	uint64_t flags = 0;
4011 	char *p, *s, *dup, *flagstr, *tmp = NULL;
4012 	size_t len;
4013 	int i;
4014 	int rc = 0;
4015 
4016 	if (strchr(range, ':') == NULL) {
4017 		zor->zor_obj_start = strtoull(range, &p, 0);
4018 		if (*p != '\0') {
4019 			*msg = "Invalid characters in object ID";
4020 			rc = 1;
4021 		}
4022 		zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start);
4023 		zor->zor_obj_end = zor->zor_obj_start;
4024 		return (rc);
4025 	}
4026 
4027 	if (strchr(range, ':') == range) {
4028 		*msg = "Invalid leading colon";
4029 		rc = 1;
4030 		return (rc);
4031 	}
4032 
4033 	len = strlen(range);
4034 	if (range[len - 1] == ':') {
4035 		*msg = "Invalid trailing colon";
4036 		rc = 1;
4037 		return (rc);
4038 	}
4039 
4040 	dup = strdup(range);
4041 	s = strtok_r(dup, ":", &tmp);
4042 	zor->zor_obj_start = strtoull(s, &p, 0);
4043 
4044 	if (*p != '\0') {
4045 		*msg = "Invalid characters in start object ID";
4046 		rc = 1;
4047 		goto out;
4048 	}
4049 
4050 	s = strtok_r(NULL, ":", &tmp);
4051 	zor->zor_obj_end = strtoull(s, &p, 0);
4052 
4053 	if (*p != '\0') {
4054 		*msg = "Invalid characters in end object ID";
4055 		rc = 1;
4056 		goto out;
4057 	}
4058 
4059 	if (zor->zor_obj_start > zor->zor_obj_end) {
4060 		*msg = "Start object ID may not exceed end object ID";
4061 		rc = 1;
4062 		goto out;
4063 	}
4064 
4065 	s = strtok_r(NULL, ":", &tmp);
4066 	if (s == NULL) {
4067 		zor->zor_flags = ZOR_FLAG_ALL_TYPES;
4068 		goto out;
4069 	} else if (strtok_r(NULL, ":", &tmp) != NULL) {
4070 		*msg = "Invalid colon-delimited field after flags";
4071 		rc = 1;
4072 		goto out;
4073 	}
4074 
4075 	flagstr = s;
4076 	for (i = 0; flagstr[i]; i++) {
4077 		int bit;
4078 		boolean_t negation = (flagstr[i] == '-');
4079 
4080 		if (negation) {
4081 			i++;
4082 			if (flagstr[i] == '\0') {
4083 				*msg = "Invalid trailing negation operator";
4084 				rc = 1;
4085 				goto out;
4086 			}
4087 		}
4088 		bit = flagbits[(uchar_t)flagstr[i]];
4089 		if (bit == 0) {
4090 			*msg = "Invalid flag";
4091 			rc = 1;
4092 			goto out;
4093 		}
4094 		if (negation)
4095 			flags &= ~bit;
4096 		else
4097 			flags |= bit;
4098 	}
4099 	zor->zor_flags = flags;
4100 
4101 	zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start);
4102 	zor->zor_obj_end = ZDB_MAP_OBJECT_ID(zor->zor_obj_end);
4103 
4104 out:
4105 	free(dup);
4106 	return (rc);
4107 }
4108 
4109 static void
dump_objset(objset_t * os)4110 dump_objset(objset_t *os)
4111 {
4112 	dmu_objset_stats_t dds = { 0 };
4113 	uint64_t object, object_count;
4114 	uint64_t refdbytes, usedobjs, scratch;
4115 	char numbuf[32];
4116 	char blkbuf[BP_SPRINTF_LEN + 20];
4117 	char osname[ZFS_MAX_DATASET_NAME_LEN];
4118 	const char *type = "UNKNOWN";
4119 	int verbosity = dump_opt['d'];
4120 	boolean_t print_header;
4121 	unsigned i;
4122 	int error;
4123 	uint64_t total_slots_used = 0;
4124 	uint64_t max_slot_used = 0;
4125 	uint64_t dnode_slots;
4126 	uint64_t obj_start;
4127 	uint64_t obj_end;
4128 	uint64_t flags;
4129 
4130 	/* make sure nicenum has enough space */
4131 	_Static_assert(sizeof (numbuf) >= NN_NUMBUF_SZ, "numbuf truncated");
4132 
4133 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
4134 	dmu_objset_fast_stat(os, &dds);
4135 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
4136 
4137 	print_header = B_TRUE;
4138 
4139 	if (dds.dds_type < DMU_OST_NUMTYPES)
4140 		type = objset_types[dds.dds_type];
4141 
4142 	if (dds.dds_type == DMU_OST_META) {
4143 		dds.dds_creation_txg = TXG_INITIAL;
4144 		usedobjs = BP_GET_FILL(os->os_rootbp);
4145 		refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)->
4146 		    dd_used_bytes;
4147 	} else {
4148 		dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch);
4149 	}
4150 
4151 	ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp));
4152 
4153 	zdb_nicenum(refdbytes, numbuf, sizeof (numbuf));
4154 
4155 	if (verbosity >= 4) {
4156 		(void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp ");
4157 		(void) snprintf_blkptr(blkbuf + strlen(blkbuf),
4158 		    sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp);
4159 	} else {
4160 		blkbuf[0] = '\0';
4161 	}
4162 
4163 	dmu_objset_name(os, osname);
4164 
4165 	(void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, "
4166 	    "%s, %llu objects%s%s\n",
4167 	    osname, type, (u_longlong_t)dmu_objset_id(os),
4168 	    (u_longlong_t)dds.dds_creation_txg,
4169 	    numbuf, (u_longlong_t)usedobjs, blkbuf,
4170 	    (dds.dds_inconsistent) ? " (inconsistent)" : "");
4171 
4172 	for (i = 0; i < zopt_object_args; i++) {
4173 		obj_start = zopt_object_ranges[i].zor_obj_start;
4174 		obj_end = zopt_object_ranges[i].zor_obj_end;
4175 		flags = zopt_object_ranges[i].zor_flags;
4176 
4177 		object = obj_start;
4178 		if (object == 0 || obj_start == obj_end)
4179 			dump_object(os, object, verbosity, &print_header, NULL,
4180 			    flags);
4181 		else
4182 			object--;
4183 
4184 		while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) &&
4185 		    object <= obj_end) {
4186 			dump_object(os, object, verbosity, &print_header, NULL,
4187 			    flags);
4188 		}
4189 	}
4190 
4191 	if (zopt_object_args > 0) {
4192 		(void) printf("\n");
4193 		return;
4194 	}
4195 
4196 	if (dump_opt['i'] != 0 || verbosity >= 2)
4197 		dump_intent_log(dmu_objset_zil(os));
4198 
4199 	if (dmu_objset_ds(os) != NULL) {
4200 		dsl_dataset_t *ds = dmu_objset_ds(os);
4201 		dump_blkptr_list(&ds->ds_deadlist, "Deadlist");
4202 		if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
4203 		    !dmu_objset_is_snapshot(os)) {
4204 			dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist");
4205 			if (verify_dd_livelist(os) != 0)
4206 				fatal("livelist is incorrect");
4207 		}
4208 
4209 		if (dsl_dataset_remap_deadlist_exists(ds)) {
4210 			(void) printf("ds_remap_deadlist:\n");
4211 			dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist");
4212 		}
4213 		count_ds_mos_objects(ds);
4214 	}
4215 
4216 	if (dmu_objset_ds(os) != NULL)
4217 		dump_bookmarks(os, verbosity);
4218 
4219 	if (verbosity < 2)
4220 		return;
4221 
4222 	if (BP_IS_HOLE(os->os_rootbp))
4223 		return;
4224 
4225 	dump_object(os, 0, verbosity, &print_header, NULL, 0);
4226 	object_count = 0;
4227 	if (DMU_USERUSED_DNODE(os) != NULL &&
4228 	    DMU_USERUSED_DNODE(os)->dn_type != 0) {
4229 		dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header,
4230 		    NULL, 0);
4231 		dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header,
4232 		    NULL, 0);
4233 	}
4234 
4235 	if (DMU_PROJECTUSED_DNODE(os) != NULL &&
4236 	    DMU_PROJECTUSED_DNODE(os)->dn_type != 0)
4237 		dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity,
4238 		    &print_header, NULL, 0);
4239 
4240 	object = 0;
4241 	while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) {
4242 		dump_object(os, object, verbosity, &print_header, &dnode_slots,
4243 		    0);
4244 		object_count++;
4245 		total_slots_used += dnode_slots;
4246 		max_slot_used = object + dnode_slots - 1;
4247 	}
4248 
4249 	(void) printf("\n");
4250 
4251 	(void) printf("    Dnode slots:\n");
4252 	(void) printf("\tTotal used:    %10llu\n",
4253 	    (u_longlong_t)total_slots_used);
4254 	(void) printf("\tMax used:      %10llu\n",
4255 	    (u_longlong_t)max_slot_used);
4256 	(void) printf("\tPercent empty: %10lf\n",
4257 	    (double)(max_slot_used - total_slots_used)*100 /
4258 	    (double)max_slot_used);
4259 	(void) printf("\n");
4260 
4261 	if (error != ESRCH) {
4262 		(void) fprintf(stderr, "dmu_object_next() = %d\n", error);
4263 		abort();
4264 	}
4265 
4266 	ASSERT3U(object_count, ==, usedobjs);
4267 
4268 	if (leaked_objects != 0) {
4269 		(void) printf("%d potentially leaked objects detected\n",
4270 		    leaked_objects);
4271 		leaked_objects = 0;
4272 	}
4273 }
4274 
4275 static void
dump_uberblock(uberblock_t * ub,const char * header,const char * footer)4276 dump_uberblock(uberblock_t *ub, const char *header, const char *footer)
4277 {
4278 	time_t timestamp = ub->ub_timestamp;
4279 
4280 	(void) printf("%s", header ? header : "");
4281 	(void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic);
4282 	(void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version);
4283 	(void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg);
4284 	(void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum);
4285 	(void) printf("\ttimestamp = %llu UTC = %s",
4286 	    (u_longlong_t)ub->ub_timestamp, ctime(&timestamp));
4287 
4288 	char blkbuf[BP_SPRINTF_LEN];
4289 	snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp);
4290 	(void) printf("\tbp = %s\n", blkbuf);
4291 
4292 	(void) printf("\tmmp_magic = %016llx\n",
4293 	    (u_longlong_t)ub->ub_mmp_magic);
4294 	if (MMP_VALID(ub)) {
4295 		(void) printf("\tmmp_delay = %0llu\n",
4296 		    (u_longlong_t)ub->ub_mmp_delay);
4297 		if (MMP_SEQ_VALID(ub))
4298 			(void) printf("\tmmp_seq = %u\n",
4299 			    (unsigned int) MMP_SEQ(ub));
4300 		if (MMP_FAIL_INT_VALID(ub))
4301 			(void) printf("\tmmp_fail = %u\n",
4302 			    (unsigned int) MMP_FAIL_INT(ub));
4303 		if (MMP_INTERVAL_VALID(ub))
4304 			(void) printf("\tmmp_write = %u\n",
4305 			    (unsigned int) MMP_INTERVAL(ub));
4306 		/* After MMP_* to make summarize_uberblock_mmp cleaner */
4307 		(void) printf("\tmmp_valid = %x\n",
4308 		    (unsigned int) ub->ub_mmp_config & 0xFF);
4309 	}
4310 
4311 	if (dump_opt['u'] >= 4) {
4312 		char blkbuf[BP_SPRINTF_LEN];
4313 		snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp);
4314 		(void) printf("\trootbp = %s\n", blkbuf);
4315 	}
4316 	(void) printf("\tcheckpoint_txg = %llu\n",
4317 	    (u_longlong_t)ub->ub_checkpoint_txg);
4318 
4319 	(void) printf("\traidz_reflow state=%u off=%llu\n",
4320 	    (int)RRSS_GET_STATE(ub),
4321 	    (u_longlong_t)RRSS_GET_OFFSET(ub));
4322 
4323 	(void) printf("%s", footer ? footer : "");
4324 }
4325 
4326 static void
dump_config(spa_t * spa)4327 dump_config(spa_t *spa)
4328 {
4329 	dmu_buf_t *db;
4330 	size_t nvsize = 0;
4331 	int error = 0;
4332 
4333 
4334 	error = dmu_bonus_hold(spa->spa_meta_objset,
4335 	    spa->spa_config_object, FTAG, &db);
4336 
4337 	if (error == 0) {
4338 		nvsize = *(uint64_t *)db->db_data;
4339 		dmu_buf_rele(db, FTAG);
4340 
4341 		(void) printf("\nMOS Configuration:\n");
4342 		dump_packed_nvlist(spa->spa_meta_objset,
4343 		    spa->spa_config_object, (void *)&nvsize, 1);
4344 	} else {
4345 		(void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d",
4346 		    (u_longlong_t)spa->spa_config_object, error);
4347 	}
4348 }
4349 
4350 static void
dump_cachefile(const char * cachefile)4351 dump_cachefile(const char *cachefile)
4352 {
4353 	int fd;
4354 	struct stat64 statbuf;
4355 	char *buf;
4356 	nvlist_t *config;
4357 
4358 	if ((fd = open64(cachefile, O_RDONLY)) < 0) {
4359 		(void) printf("cannot open '%s': %s\n", cachefile,
4360 		    strerror(errno));
4361 		zdb_exit(1);
4362 	}
4363 
4364 	if (fstat64(fd, &statbuf) != 0) {
4365 		(void) printf("failed to stat '%s': %s\n", cachefile,
4366 		    strerror(errno));
4367 		zdb_exit(1);
4368 	}
4369 
4370 	if ((buf = malloc(statbuf.st_size)) == NULL) {
4371 		(void) fprintf(stderr, "failed to allocate %llu bytes\n",
4372 		    (u_longlong_t)statbuf.st_size);
4373 		zdb_exit(1);
4374 	}
4375 
4376 	if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
4377 		(void) fprintf(stderr, "failed to read %llu bytes\n",
4378 		    (u_longlong_t)statbuf.st_size);
4379 		zdb_exit(1);
4380 	}
4381 
4382 	(void) close(fd);
4383 
4384 	if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) {
4385 		(void) fprintf(stderr, "failed to unpack nvlist\n");
4386 		zdb_exit(1);
4387 	}
4388 
4389 	free(buf);
4390 
4391 	dump_nvlist(config, 0);
4392 
4393 	nvlist_free(config);
4394 }
4395 
4396 /*
4397  * ZFS label nvlist stats
4398  */
4399 typedef struct zdb_nvl_stats {
4400 	int		zns_list_count;
4401 	int		zns_leaf_count;
4402 	size_t		zns_leaf_largest;
4403 	size_t		zns_leaf_total;
4404 	nvlist_t	*zns_string;
4405 	nvlist_t	*zns_uint64;
4406 	nvlist_t	*zns_boolean;
4407 } zdb_nvl_stats_t;
4408 
4409 static void
collect_nvlist_stats(nvlist_t * nvl,zdb_nvl_stats_t * stats)4410 collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats)
4411 {
4412 	nvlist_t *list, **array;
4413 	nvpair_t *nvp = NULL;
4414 	const char *name;
4415 	uint_t i, items;
4416 
4417 	stats->zns_list_count++;
4418 
4419 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4420 		name = nvpair_name(nvp);
4421 
4422 		switch (nvpair_type(nvp)) {
4423 		case DATA_TYPE_STRING:
4424 			fnvlist_add_string(stats->zns_string, name,
4425 			    fnvpair_value_string(nvp));
4426 			break;
4427 		case DATA_TYPE_UINT64:
4428 			fnvlist_add_uint64(stats->zns_uint64, name,
4429 			    fnvpair_value_uint64(nvp));
4430 			break;
4431 		case DATA_TYPE_BOOLEAN:
4432 			fnvlist_add_boolean(stats->zns_boolean, name);
4433 			break;
4434 		case DATA_TYPE_NVLIST:
4435 			if (nvpair_value_nvlist(nvp, &list) == 0)
4436 				collect_nvlist_stats(list, stats);
4437 			break;
4438 		case DATA_TYPE_NVLIST_ARRAY:
4439 			if (nvpair_value_nvlist_array(nvp, &array, &items) != 0)
4440 				break;
4441 
4442 			for (i = 0; i < items; i++) {
4443 				collect_nvlist_stats(array[i], stats);
4444 
4445 				/* collect stats on leaf vdev */
4446 				if (strcmp(name, "children") == 0) {
4447 					size_t size;
4448 
4449 					(void) nvlist_size(array[i], &size,
4450 					    NV_ENCODE_XDR);
4451 					stats->zns_leaf_total += size;
4452 					if (size > stats->zns_leaf_largest)
4453 						stats->zns_leaf_largest = size;
4454 					stats->zns_leaf_count++;
4455 				}
4456 			}
4457 			break;
4458 		default:
4459 			(void) printf("skip type %d!\n", (int)nvpair_type(nvp));
4460 		}
4461 	}
4462 }
4463 
4464 static void
dump_nvlist_stats(nvlist_t * nvl,size_t cap)4465 dump_nvlist_stats(nvlist_t *nvl, size_t cap)
4466 {
4467 	zdb_nvl_stats_t stats = { 0 };
4468 	size_t size, sum = 0, total;
4469 	size_t noise;
4470 
4471 	/* requires nvlist with non-unique names for stat collection */
4472 	VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0));
4473 	VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0));
4474 	VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0));
4475 	VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR));
4476 
4477 	(void) printf("\n\nZFS Label NVList Config Stats:\n");
4478 
4479 	VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR));
4480 	(void) printf("  %d bytes used, %d bytes free (using %4.1f%%)\n\n",
4481 	    (int)total, (int)(cap - total), 100.0 * total / cap);
4482 
4483 	collect_nvlist_stats(nvl, &stats);
4484 
4485 	VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR));
4486 	size -= noise;
4487 	sum += size;
4488 	(void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:",
4489 	    (int)fnvlist_num_pairs(stats.zns_uint64),
4490 	    (int)size, 100.0 * size / total);
4491 
4492 	VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR));
4493 	size -= noise;
4494 	sum += size;
4495 	(void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:",
4496 	    (int)fnvlist_num_pairs(stats.zns_string),
4497 	    (int)size, 100.0 * size / total);
4498 
4499 	VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR));
4500 	size -= noise;
4501 	sum += size;
4502 	(void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:",
4503 	    (int)fnvlist_num_pairs(stats.zns_boolean),
4504 	    (int)size, 100.0 * size / total);
4505 
4506 	size = total - sum;	/* treat remainder as nvlist overhead */
4507 	(void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:",
4508 	    stats.zns_list_count, (int)size, 100.0 * size / total);
4509 
4510 	if (stats.zns_leaf_count > 0) {
4511 		size_t average = stats.zns_leaf_total / stats.zns_leaf_count;
4512 
4513 		(void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:",
4514 		    stats.zns_leaf_count, (int)average);
4515 		(void) printf("%24d bytes largest\n",
4516 		    (int)stats.zns_leaf_largest);
4517 
4518 		if (dump_opt['l'] >= 3 && average > 0)
4519 			(void) printf("  space for %d additional leaf vdevs\n",
4520 			    (int)((cap - total) / average));
4521 	}
4522 	(void) printf("\n");
4523 
4524 	nvlist_free(stats.zns_string);
4525 	nvlist_free(stats.zns_uint64);
4526 	nvlist_free(stats.zns_boolean);
4527 }
4528 
4529 typedef struct cksum_record {
4530 	zio_cksum_t cksum;
4531 	boolean_t labels[VDEV_LABELS];
4532 	avl_node_t link;
4533 } cksum_record_t;
4534 
4535 static int
cksum_record_compare(const void * x1,const void * x2)4536 cksum_record_compare(const void *x1, const void *x2)
4537 {
4538 	const cksum_record_t *l = (cksum_record_t *)x1;
4539 	const cksum_record_t *r = (cksum_record_t *)x2;
4540 	int arraysize = ARRAY_SIZE(l->cksum.zc_word);
4541 	int difference = 0;
4542 
4543 	for (int i = 0; i < arraysize; i++) {
4544 		difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]);
4545 		if (difference)
4546 			break;
4547 	}
4548 
4549 	return (difference);
4550 }
4551 
4552 static cksum_record_t *
cksum_record_alloc(zio_cksum_t * cksum,int l)4553 cksum_record_alloc(zio_cksum_t *cksum, int l)
4554 {
4555 	cksum_record_t *rec;
4556 
4557 	rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL);
4558 	rec->cksum = *cksum;
4559 	rec->labels[l] = B_TRUE;
4560 
4561 	return (rec);
4562 }
4563 
4564 static cksum_record_t *
cksum_record_lookup(avl_tree_t * tree,zio_cksum_t * cksum)4565 cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum)
4566 {
4567 	cksum_record_t lookup = { .cksum = *cksum };
4568 	avl_index_t where;
4569 
4570 	return (avl_find(tree, &lookup, &where));
4571 }
4572 
4573 static cksum_record_t *
cksum_record_insert(avl_tree_t * tree,zio_cksum_t * cksum,int l)4574 cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l)
4575 {
4576 	cksum_record_t *rec;
4577 
4578 	rec = cksum_record_lookup(tree, cksum);
4579 	if (rec) {
4580 		rec->labels[l] = B_TRUE;
4581 	} else {
4582 		rec = cksum_record_alloc(cksum, l);
4583 		avl_add(tree, rec);
4584 	}
4585 
4586 	return (rec);
4587 }
4588 
4589 static int
first_label(cksum_record_t * rec)4590 first_label(cksum_record_t *rec)
4591 {
4592 	for (int i = 0; i < VDEV_LABELS; i++)
4593 		if (rec->labels[i])
4594 			return (i);
4595 
4596 	return (-1);
4597 }
4598 
4599 static void
print_label_numbers(const char * prefix,const cksum_record_t * rec)4600 print_label_numbers(const char *prefix, const cksum_record_t *rec)
4601 {
4602 	fputs(prefix, stdout);
4603 	for (int i = 0; i < VDEV_LABELS; i++)
4604 		if (rec->labels[i] == B_TRUE)
4605 			printf("%d ", i);
4606 	putchar('\n');
4607 }
4608 
4609 #define	MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT)
4610 
4611 typedef struct zdb_label {
4612 	vdev_label_t label;
4613 	uint64_t label_offset;
4614 	nvlist_t *config_nv;
4615 	cksum_record_t *config;
4616 	cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT];
4617 	boolean_t header_printed;
4618 	boolean_t read_failed;
4619 	boolean_t cksum_valid;
4620 } zdb_label_t;
4621 
4622 static void
print_label_header(zdb_label_t * label,int l)4623 print_label_header(zdb_label_t *label, int l)
4624 {
4625 
4626 	if (dump_opt['q'])
4627 		return;
4628 
4629 	if (label->header_printed == B_TRUE)
4630 		return;
4631 
4632 	(void) printf("------------------------------------\n");
4633 	(void) printf("LABEL %d %s\n", l,
4634 	    label->cksum_valid ? "" : "(Bad label cksum)");
4635 	(void) printf("------------------------------------\n");
4636 
4637 	label->header_printed = B_TRUE;
4638 }
4639 
4640 static void
print_l2arc_header(void)4641 print_l2arc_header(void)
4642 {
4643 	(void) printf("------------------------------------\n");
4644 	(void) printf("L2ARC device header\n");
4645 	(void) printf("------------------------------------\n");
4646 }
4647 
4648 static void
print_l2arc_log_blocks(void)4649 print_l2arc_log_blocks(void)
4650 {
4651 	(void) printf("------------------------------------\n");
4652 	(void) printf("L2ARC device log blocks\n");
4653 	(void) printf("------------------------------------\n");
4654 }
4655 
4656 static void
dump_l2arc_log_entries(uint64_t log_entries,l2arc_log_ent_phys_t * le,uint64_t i)4657 dump_l2arc_log_entries(uint64_t log_entries,
4658     l2arc_log_ent_phys_t *le, uint64_t i)
4659 {
4660 	for (int j = 0; j < log_entries; j++) {
4661 		dva_t dva = le[j].le_dva;
4662 		(void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, "
4663 		    "vdev: %llu, offset: %llu\n",
4664 		    (u_longlong_t)i, j + 1,
4665 		    (u_longlong_t)DVA_GET_ASIZE(&dva),
4666 		    (u_longlong_t)DVA_GET_VDEV(&dva),
4667 		    (u_longlong_t)DVA_GET_OFFSET(&dva));
4668 		(void) printf("|\t\t\t\tbirth: %llu\n",
4669 		    (u_longlong_t)le[j].le_birth);
4670 		(void) printf("|\t\t\t\tlsize: %llu\n",
4671 		    (u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop));
4672 		(void) printf("|\t\t\t\tpsize: %llu\n",
4673 		    (u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop));
4674 		(void) printf("|\t\t\t\tcompr: %llu\n",
4675 		    (u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop));
4676 		(void) printf("|\t\t\t\tcomplevel: %llu\n",
4677 		    (u_longlong_t)(&le[j])->le_complevel);
4678 		(void) printf("|\t\t\t\ttype: %llu\n",
4679 		    (u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop));
4680 		(void) printf("|\t\t\t\tprotected: %llu\n",
4681 		    (u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop));
4682 		(void) printf("|\t\t\t\tprefetch: %llu\n",
4683 		    (u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop));
4684 		(void) printf("|\t\t\t\taddress: %llu\n",
4685 		    (u_longlong_t)le[j].le_daddr);
4686 		(void) printf("|\t\t\t\tARC state: %llu\n",
4687 		    (u_longlong_t)L2BLK_GET_STATE((&le[j])->le_prop));
4688 		(void) printf("|\n");
4689 	}
4690 	(void) printf("\n");
4691 }
4692 
4693 static void
dump_l2arc_log_blkptr(const l2arc_log_blkptr_t * lbps)4694 dump_l2arc_log_blkptr(const l2arc_log_blkptr_t *lbps)
4695 {
4696 	(void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps->lbp_daddr);
4697 	(void) printf("|\t\tpayload_asize: %llu\n",
4698 	    (u_longlong_t)lbps->lbp_payload_asize);
4699 	(void) printf("|\t\tpayload_start: %llu\n",
4700 	    (u_longlong_t)lbps->lbp_payload_start);
4701 	(void) printf("|\t\tlsize: %llu\n",
4702 	    (u_longlong_t)L2BLK_GET_LSIZE(lbps->lbp_prop));
4703 	(void) printf("|\t\tasize: %llu\n",
4704 	    (u_longlong_t)L2BLK_GET_PSIZE(lbps->lbp_prop));
4705 	(void) printf("|\t\tcompralgo: %llu\n",
4706 	    (u_longlong_t)L2BLK_GET_COMPRESS(lbps->lbp_prop));
4707 	(void) printf("|\t\tcksumalgo: %llu\n",
4708 	    (u_longlong_t)L2BLK_GET_CHECKSUM(lbps->lbp_prop));
4709 	(void) printf("|\n\n");
4710 }
4711 
4712 static void
dump_l2arc_log_blocks(int fd,const l2arc_dev_hdr_phys_t * l2dhdr,l2arc_dev_hdr_phys_t * rebuild)4713 dump_l2arc_log_blocks(int fd, const l2arc_dev_hdr_phys_t *l2dhdr,
4714     l2arc_dev_hdr_phys_t *rebuild)
4715 {
4716 	l2arc_log_blk_phys_t this_lb;
4717 	uint64_t asize;
4718 	l2arc_log_blkptr_t lbps[2];
4719 	zio_cksum_t cksum;
4720 	int failed = 0;
4721 	l2arc_dev_t dev;
4722 
4723 	if (!dump_opt['q'])
4724 		print_l2arc_log_blocks();
4725 	memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps));
4726 
4727 	dev.l2ad_evict = l2dhdr->dh_evict;
4728 	dev.l2ad_start = l2dhdr->dh_start;
4729 	dev.l2ad_end = l2dhdr->dh_end;
4730 
4731 	if (l2dhdr->dh_start_lbps[0].lbp_daddr == 0) {
4732 		/* no log blocks to read */
4733 		if (!dump_opt['q']) {
4734 			(void) printf("No log blocks to read\n");
4735 			(void) printf("\n");
4736 		}
4737 		return;
4738 	} else {
4739 		dev.l2ad_hand = lbps[0].lbp_daddr +
4740 		    L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
4741 	}
4742 
4743 	dev.l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
4744 
4745 	for (;;) {
4746 		if (!l2arc_log_blkptr_valid(&dev, &lbps[0]))
4747 			break;
4748 
4749 		/* L2BLK_GET_PSIZE returns aligned size for log blocks */
4750 		asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
4751 		if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) {
4752 			if (!dump_opt['q']) {
4753 				(void) printf("Error while reading next log "
4754 				    "block\n\n");
4755 			}
4756 			break;
4757 		}
4758 
4759 		fletcher_4_native_varsize(&this_lb, asize, &cksum);
4760 		if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) {
4761 			failed++;
4762 			if (!dump_opt['q']) {
4763 				(void) printf("Invalid cksum\n");
4764 				dump_l2arc_log_blkptr(&lbps[0]);
4765 			}
4766 			break;
4767 		}
4768 
4769 		switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) {
4770 		case ZIO_COMPRESS_OFF:
4771 			break;
4772 		default: {
4773 			abd_t *abd = abd_alloc_linear(asize, B_TRUE);
4774 			abd_copy_from_buf_off(abd, &this_lb, 0, asize);
4775 			abd_t dabd;
4776 			abd_get_from_buf_struct(&dabd, &this_lb,
4777 			    sizeof (this_lb));
4778 			int err = zio_decompress_data(L2BLK_GET_COMPRESS(
4779 			    (&lbps[0])->lbp_prop), abd, &dabd,
4780 			    asize, sizeof (this_lb), NULL);
4781 			abd_free(&dabd);
4782 			abd_free(abd);
4783 			if (err != 0) {
4784 				(void) printf("L2ARC block decompression "
4785 				    "failed\n");
4786 				goto out;
4787 			}
4788 			break;
4789 		}
4790 		}
4791 
4792 		if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
4793 			byteswap_uint64_array(&this_lb, sizeof (this_lb));
4794 		if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) {
4795 			if (!dump_opt['q'])
4796 				(void) printf("Invalid log block magic\n\n");
4797 			break;
4798 		}
4799 
4800 		rebuild->dh_lb_count++;
4801 		rebuild->dh_lb_asize += asize;
4802 		if (dump_opt['l'] > 1 && !dump_opt['q']) {
4803 			(void) printf("lb[%4llu]\tmagic: %llu\n",
4804 			    (u_longlong_t)rebuild->dh_lb_count,
4805 			    (u_longlong_t)this_lb.lb_magic);
4806 			dump_l2arc_log_blkptr(&lbps[0]);
4807 		}
4808 
4809 		if (dump_opt['l'] > 2 && !dump_opt['q'])
4810 			dump_l2arc_log_entries(l2dhdr->dh_log_entries,
4811 			    this_lb.lb_entries,
4812 			    rebuild->dh_lb_count);
4813 
4814 		if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
4815 		    lbps[0].lbp_payload_start, dev.l2ad_evict) &&
4816 		    !dev.l2ad_first)
4817 			break;
4818 
4819 		lbps[0] = lbps[1];
4820 		lbps[1] = this_lb.lb_prev_lbp;
4821 	}
4822 out:
4823 	if (!dump_opt['q']) {
4824 		(void) printf("log_blk_count:\t %llu with valid cksum\n",
4825 		    (u_longlong_t)rebuild->dh_lb_count);
4826 		(void) printf("\t\t %d with invalid cksum\n", failed);
4827 		(void) printf("log_blk_asize:\t %llu\n\n",
4828 		    (u_longlong_t)rebuild->dh_lb_asize);
4829 	}
4830 }
4831 
4832 static int
dump_l2arc_header(int fd)4833 dump_l2arc_header(int fd)
4834 {
4835 	l2arc_dev_hdr_phys_t l2dhdr = {0}, rebuild = {0};
4836 	int error = B_FALSE;
4837 
4838 	if (pread64(fd, &l2dhdr, sizeof (l2dhdr),
4839 	    VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) {
4840 		error = B_TRUE;
4841 	} else {
4842 		if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
4843 			byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr));
4844 
4845 		if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC)
4846 			error = B_TRUE;
4847 	}
4848 
4849 	if (error) {
4850 		(void) printf("L2ARC device header not found\n\n");
4851 		/* Do not return an error here for backward compatibility */
4852 		return (0);
4853 	} else if (!dump_opt['q']) {
4854 		print_l2arc_header();
4855 
4856 		(void) printf("    magic: %llu\n",
4857 		    (u_longlong_t)l2dhdr.dh_magic);
4858 		(void) printf("    version: %llu\n",
4859 		    (u_longlong_t)l2dhdr.dh_version);
4860 		(void) printf("    pool_guid: %llu\n",
4861 		    (u_longlong_t)l2dhdr.dh_spa_guid);
4862 		(void) printf("    flags: %llu\n",
4863 		    (u_longlong_t)l2dhdr.dh_flags);
4864 		(void) printf("    start_lbps[0]: %llu\n",
4865 		    (u_longlong_t)
4866 		    l2dhdr.dh_start_lbps[0].lbp_daddr);
4867 		(void) printf("    start_lbps[1]: %llu\n",
4868 		    (u_longlong_t)
4869 		    l2dhdr.dh_start_lbps[1].lbp_daddr);
4870 		(void) printf("    log_blk_ent: %llu\n",
4871 		    (u_longlong_t)l2dhdr.dh_log_entries);
4872 		(void) printf("    start: %llu\n",
4873 		    (u_longlong_t)l2dhdr.dh_start);
4874 		(void) printf("    end: %llu\n",
4875 		    (u_longlong_t)l2dhdr.dh_end);
4876 		(void) printf("    evict: %llu\n",
4877 		    (u_longlong_t)l2dhdr.dh_evict);
4878 		(void) printf("    lb_asize_refcount: %llu\n",
4879 		    (u_longlong_t)l2dhdr.dh_lb_asize);
4880 		(void) printf("    lb_count_refcount: %llu\n",
4881 		    (u_longlong_t)l2dhdr.dh_lb_count);
4882 		(void) printf("    trim_action_time: %llu\n",
4883 		    (u_longlong_t)l2dhdr.dh_trim_action_time);
4884 		(void) printf("    trim_state: %llu\n\n",
4885 		    (u_longlong_t)l2dhdr.dh_trim_state);
4886 	}
4887 
4888 	dump_l2arc_log_blocks(fd, &l2dhdr, &rebuild);
4889 	/*
4890 	 * The total aligned size of log blocks and the number of log blocks
4891 	 * reported in the header of the device may be less than what zdb
4892 	 * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild().
4893 	 * This happens because dump_l2arc_log_blocks() lacks the memory
4894 	 * pressure valve that l2arc_rebuild() has. Thus, if we are on a system
4895 	 * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize
4896 	 * and dh_lb_count will be lower to begin with than what exists on the
4897 	 * device. This is normal and zdb should not exit with an error. The
4898 	 * opposite case should never happen though, the values reported in the
4899 	 * header should never be higher than what dump_l2arc_log_blocks() and
4900 	 * l2arc_rebuild() report. If this happens there is a leak in the
4901 	 * accounting of log blocks.
4902 	 */
4903 	if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize ||
4904 	    l2dhdr.dh_lb_count > rebuild.dh_lb_count)
4905 		return (1);
4906 
4907 	return (0);
4908 }
4909 
4910 static void
dump_config_from_label(zdb_label_t * label,size_t buflen,int l)4911 dump_config_from_label(zdb_label_t *label, size_t buflen, int l)
4912 {
4913 	if (dump_opt['q'])
4914 		return;
4915 
4916 	if ((dump_opt['l'] < 3) && (first_label(label->config) != l))
4917 		return;
4918 
4919 	print_label_header(label, l);
4920 	dump_nvlist(label->config_nv, 4);
4921 	print_label_numbers("    labels = ", label->config);
4922 
4923 	if (dump_opt['l'] >= 2)
4924 		dump_nvlist_stats(label->config_nv, buflen);
4925 }
4926 
4927 #define	ZDB_MAX_UB_HEADER_SIZE 32
4928 
4929 static void
dump_label_uberblocks(zdb_label_t * label,uint64_t ashift,int label_num)4930 dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num)
4931 {
4932 
4933 	vdev_t vd;
4934 	char header[ZDB_MAX_UB_HEADER_SIZE];
4935 
4936 	vd.vdev_ashift = ashift;
4937 	vd.vdev_top = &vd;
4938 
4939 	for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) {
4940 		uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i);
4941 		uberblock_t *ub = (void *)((char *)&label->label + uoff);
4942 		cksum_record_t *rec = label->uberblocks[i];
4943 
4944 		if (rec == NULL) {
4945 			if (dump_opt['u'] >= 2) {
4946 				print_label_header(label, label_num);
4947 				(void) printf("    Uberblock[%d] invalid\n", i);
4948 			}
4949 			continue;
4950 		}
4951 
4952 		if ((dump_opt['u'] < 3) && (first_label(rec) != label_num))
4953 			continue;
4954 
4955 		if ((dump_opt['u'] < 4) &&
4956 		    (ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay &&
4957 		    (i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL))
4958 			continue;
4959 
4960 		print_label_header(label, label_num);
4961 		(void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE,
4962 		    "    Uberblock[%d]\n", i);
4963 		dump_uberblock(ub, header, "");
4964 		print_label_numbers("        labels = ", rec);
4965 	}
4966 }
4967 
4968 static char curpath[PATH_MAX];
4969 
4970 /*
4971  * Iterate through the path components, recursively passing
4972  * current one's obj and remaining path until we find the obj
4973  * for the last one.
4974  */
4975 static int
dump_path_impl(objset_t * os,uint64_t obj,char * name,uint64_t * retobj)4976 dump_path_impl(objset_t *os, uint64_t obj, char *name, uint64_t *retobj)
4977 {
4978 	int err;
4979 	boolean_t header = B_TRUE;
4980 	uint64_t child_obj;
4981 	char *s;
4982 	dmu_buf_t *db;
4983 	dmu_object_info_t doi;
4984 
4985 	if ((s = strchr(name, '/')) != NULL)
4986 		*s = '\0';
4987 	err = zap_lookup(os, obj, name, 8, 1, &child_obj);
4988 
4989 	(void) strlcat(curpath, name, sizeof (curpath));
4990 
4991 	if (err != 0) {
4992 		(void) fprintf(stderr, "failed to lookup %s: %s\n",
4993 		    curpath, strerror(err));
4994 		return (err);
4995 	}
4996 
4997 	child_obj = ZFS_DIRENT_OBJ(child_obj);
4998 	err = sa_buf_hold(os, child_obj, FTAG, &db);
4999 	if (err != 0) {
5000 		(void) fprintf(stderr,
5001 		    "failed to get SA dbuf for obj %llu: %s\n",
5002 		    (u_longlong_t)child_obj, strerror(err));
5003 		return (EINVAL);
5004 	}
5005 	dmu_object_info_from_db(db, &doi);
5006 	sa_buf_rele(db, FTAG);
5007 
5008 	if (doi.doi_bonus_type != DMU_OT_SA &&
5009 	    doi.doi_bonus_type != DMU_OT_ZNODE) {
5010 		(void) fprintf(stderr, "invalid bonus type %d for obj %llu\n",
5011 		    doi.doi_bonus_type, (u_longlong_t)child_obj);
5012 		return (EINVAL);
5013 	}
5014 
5015 	if (dump_opt['v'] > 6) {
5016 		(void) printf("obj=%llu %s type=%d bonustype=%d\n",
5017 		    (u_longlong_t)child_obj, curpath, doi.doi_type,
5018 		    doi.doi_bonus_type);
5019 	}
5020 
5021 	(void) strlcat(curpath, "/", sizeof (curpath));
5022 
5023 	switch (doi.doi_type) {
5024 	case DMU_OT_DIRECTORY_CONTENTS:
5025 		if (s != NULL && *(s + 1) != '\0')
5026 			return (dump_path_impl(os, child_obj, s + 1, retobj));
5027 		zfs_fallthrough;
5028 	case DMU_OT_PLAIN_FILE_CONTENTS:
5029 		if (retobj != NULL) {
5030 			*retobj = child_obj;
5031 		} else {
5032 			dump_object(os, child_obj, dump_opt['v'], &header,
5033 			    NULL, 0);
5034 		}
5035 		return (0);
5036 	default:
5037 		(void) fprintf(stderr, "object %llu has non-file/directory "
5038 		    "type %d\n", (u_longlong_t)obj, doi.doi_type);
5039 		break;
5040 	}
5041 
5042 	return (EINVAL);
5043 }
5044 
5045 /*
5046  * Dump the blocks for the object specified by path inside the dataset.
5047  */
5048 static int
dump_path(char * ds,char * path,uint64_t * retobj)5049 dump_path(char *ds, char *path, uint64_t *retobj)
5050 {
5051 	int err;
5052 	objset_t *os;
5053 	uint64_t root_obj;
5054 
5055 	err = open_objset(ds, FTAG, &os);
5056 	if (err != 0)
5057 		return (err);
5058 
5059 	err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj);
5060 	if (err != 0) {
5061 		(void) fprintf(stderr, "can't lookup root znode: %s\n",
5062 		    strerror(err));
5063 		close_objset(os, FTAG);
5064 		return (EINVAL);
5065 	}
5066 
5067 	(void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds);
5068 
5069 	err = dump_path_impl(os, root_obj, path, retobj);
5070 
5071 	close_objset(os, FTAG);
5072 	return (err);
5073 }
5074 
5075 static int
dump_backup_bytes(objset_t * os,void * buf,int len,void * arg)5076 dump_backup_bytes(objset_t *os, void *buf, int len, void *arg)
5077 {
5078 	const char *p = (const char *)buf;
5079 	ssize_t nwritten;
5080 
5081 	(void) os;
5082 	(void) arg;
5083 
5084 	/* Write the data out, handling short writes and signals. */
5085 	while ((nwritten = write(STDOUT_FILENO, p, len)) < len) {
5086 		if (nwritten < 0) {
5087 			if (errno == EINTR)
5088 				continue;
5089 			return (errno);
5090 		}
5091 		p += nwritten;
5092 		len -= nwritten;
5093 	}
5094 
5095 	return (0);
5096 }
5097 
5098 static void
dump_backup(const char * pool,uint64_t objset_id,const char * flagstr)5099 dump_backup(const char *pool, uint64_t objset_id, const char *flagstr)
5100 {
5101 	boolean_t embed = B_FALSE;
5102 	boolean_t large_block = B_FALSE;
5103 	boolean_t compress = B_FALSE;
5104 	boolean_t raw = B_FALSE;
5105 
5106 	const char *c;
5107 	for (c = flagstr; c != NULL && *c != '\0'; c++) {
5108 		switch (*c) {
5109 			case 'e':
5110 				embed = B_TRUE;
5111 				break;
5112 			case 'L':
5113 				large_block = B_TRUE;
5114 				break;
5115 			case 'c':
5116 				compress = B_TRUE;
5117 				break;
5118 			case 'w':
5119 				raw = B_TRUE;
5120 				break;
5121 			default:
5122 				fprintf(stderr, "dump_backup: invalid flag "
5123 				    "'%c'\n", *c);
5124 				return;
5125 		}
5126 	}
5127 
5128 	if (isatty(STDOUT_FILENO)) {
5129 		fprintf(stderr, "dump_backup: stream cannot be written "
5130 		    "to a terminal\n");
5131 		return;
5132 	}
5133 
5134 	offset_t off = 0;
5135 	dmu_send_outparams_t out = {
5136 	    .dso_outfunc = dump_backup_bytes,
5137 	    .dso_dryrun  = B_FALSE,
5138 	};
5139 
5140 	int err = dmu_send_obj(pool, objset_id, /* fromsnap */0, embed,
5141 	    large_block, compress, raw, /* saved */ B_FALSE, STDOUT_FILENO,
5142 	    &off, &out);
5143 	if (err != 0) {
5144 		fprintf(stderr, "dump_backup: dmu_send_obj: %s\n",
5145 		    strerror(err));
5146 		return;
5147 	}
5148 }
5149 
5150 static int
zdb_copy_object(objset_t * os,uint64_t srcobj,char * destfile)5151 zdb_copy_object(objset_t *os, uint64_t srcobj, char *destfile)
5152 {
5153 	int err = 0;
5154 	uint64_t size, readsize, oursize, offset;
5155 	ssize_t writesize;
5156 	sa_handle_t *hdl;
5157 
5158 	(void) printf("Copying object %" PRIu64 " to file %s\n", srcobj,
5159 	    destfile);
5160 
5161 	VERIFY3P(os, ==, sa_os);
5162 	if ((err = sa_handle_get(os, srcobj, NULL, SA_HDL_PRIVATE, &hdl))) {
5163 		(void) printf("Failed to get handle for SA znode\n");
5164 		return (err);
5165 	}
5166 	if ((err = sa_lookup(hdl, sa_attr_table[ZPL_SIZE], &size, 8))) {
5167 		(void) sa_handle_destroy(hdl);
5168 		return (err);
5169 	}
5170 	(void) sa_handle_destroy(hdl);
5171 
5172 	(void) printf("Object %" PRIu64 " is %" PRIu64 " bytes\n", srcobj,
5173 	    size);
5174 	if (size == 0) {
5175 		return (EINVAL);
5176 	}
5177 
5178 	int fd = open(destfile, O_WRONLY | O_CREAT | O_TRUNC, 0644);
5179 	if (fd == -1)
5180 		return (errno);
5181 	/*
5182 	 * We cap the size at 1 mebibyte here to prevent
5183 	 * allocation failures and nigh-infinite printing if the
5184 	 * object is extremely large.
5185 	 */
5186 	oursize = MIN(size, 1 << 20);
5187 	offset = 0;
5188 	char *buf = kmem_alloc(oursize, KM_NOSLEEP);
5189 	if (buf == NULL) {
5190 		(void) close(fd);
5191 		return (ENOMEM);
5192 	}
5193 
5194 	while (offset < size) {
5195 		readsize = MIN(size - offset, 1 << 20);
5196 		err = dmu_read(os, srcobj, offset, readsize, buf, 0);
5197 		if (err != 0) {
5198 			(void) printf("got error %u from dmu_read\n", err);
5199 			kmem_free(buf, oursize);
5200 			(void) close(fd);
5201 			return (err);
5202 		}
5203 		if (dump_opt['v'] > 3) {
5204 			(void) printf("Read offset=%" PRIu64 " size=%" PRIu64
5205 			    " error=%d\n", offset, readsize, err);
5206 		}
5207 
5208 		writesize = write(fd, buf, readsize);
5209 		if (writesize < 0) {
5210 			err = errno;
5211 			break;
5212 		} else if (writesize != readsize) {
5213 			/* Incomplete write */
5214 			(void) fprintf(stderr, "Short write, only wrote %llu of"
5215 			    " %" PRIu64 " bytes, exiting...\n",
5216 			    (u_longlong_t)writesize, readsize);
5217 			break;
5218 		}
5219 
5220 		offset += readsize;
5221 	}
5222 
5223 	(void) close(fd);
5224 
5225 	if (buf != NULL)
5226 		kmem_free(buf, oursize);
5227 
5228 	return (err);
5229 }
5230 
5231 static boolean_t
label_cksum_valid(vdev_label_t * label,uint64_t offset)5232 label_cksum_valid(vdev_label_t *label, uint64_t offset)
5233 {
5234 	zio_checksum_info_t *ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL];
5235 	zio_cksum_t expected_cksum;
5236 	zio_cksum_t actual_cksum;
5237 	zio_cksum_t verifier;
5238 	zio_eck_t *eck;
5239 	int byteswap;
5240 
5241 	void *data = (char *)label + offsetof(vdev_label_t, vl_vdev_phys);
5242 	eck = (zio_eck_t *)((char *)(data) + VDEV_PHYS_SIZE) - 1;
5243 
5244 	offset += offsetof(vdev_label_t, vl_vdev_phys);
5245 	ZIO_SET_CHECKSUM(&verifier, offset, 0, 0, 0);
5246 
5247 	byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC));
5248 	if (byteswap)
5249 		byteswap_uint64_array(&verifier, sizeof (zio_cksum_t));
5250 
5251 	expected_cksum = eck->zec_cksum;
5252 	eck->zec_cksum = verifier;
5253 
5254 	abd_t *abd = abd_get_from_buf(data, VDEV_PHYS_SIZE);
5255 	ci->ci_func[byteswap](abd, VDEV_PHYS_SIZE, NULL, &actual_cksum);
5256 	abd_free(abd);
5257 
5258 	if (byteswap)
5259 		byteswap_uint64_array(&expected_cksum, sizeof (zio_cksum_t));
5260 
5261 	if (ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum))
5262 		return (B_TRUE);
5263 
5264 	return (B_FALSE);
5265 }
5266 
5267 static int
dump_label(const char * dev)5268 dump_label(const char *dev)
5269 {
5270 	char path[MAXPATHLEN];
5271 	zdb_label_t labels[VDEV_LABELS] = {{{{0}}}};
5272 	uint64_t psize, ashift, l2cache;
5273 	struct stat64 statbuf;
5274 	boolean_t config_found = B_FALSE;
5275 	boolean_t error = B_FALSE;
5276 	boolean_t read_l2arc_header = B_FALSE;
5277 	avl_tree_t config_tree;
5278 	avl_tree_t uberblock_tree;
5279 	void *node, *cookie;
5280 	int fd;
5281 
5282 	/*
5283 	 * Check if we were given absolute path and use it as is.
5284 	 * Otherwise if the provided vdev name doesn't point to a file,
5285 	 * try prepending expected disk paths and partition numbers.
5286 	 */
5287 	(void) strlcpy(path, dev, sizeof (path));
5288 	if (dev[0] != '/' && stat64(path, &statbuf) != 0) {
5289 		int error;
5290 
5291 		error = zfs_resolve_shortname(dev, path, MAXPATHLEN);
5292 		if (error == 0 && zfs_dev_is_whole_disk(path)) {
5293 			if (zfs_append_partition(path, MAXPATHLEN) == -1)
5294 				error = ENOENT;
5295 		}
5296 
5297 		if (error || (stat64(path, &statbuf) != 0)) {
5298 			(void) printf("failed to find device %s, try "
5299 			    "specifying absolute path instead\n", dev);
5300 			return (1);
5301 		}
5302 	}
5303 
5304 	if ((fd = open64(path, O_RDONLY)) < 0) {
5305 		(void) printf("cannot open '%s': %s\n", path, strerror(errno));
5306 		zdb_exit(1);
5307 	}
5308 
5309 	if (fstat64_blk(fd, &statbuf) != 0) {
5310 		(void) printf("failed to stat '%s': %s\n", path,
5311 		    strerror(errno));
5312 		(void) close(fd);
5313 		zdb_exit(1);
5314 	}
5315 
5316 	if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0)
5317 		(void) printf("failed to invalidate cache '%s' : %s\n", path,
5318 		    strerror(errno));
5319 
5320 	avl_create(&config_tree, cksum_record_compare,
5321 	    sizeof (cksum_record_t), offsetof(cksum_record_t, link));
5322 	avl_create(&uberblock_tree, cksum_record_compare,
5323 	    sizeof (cksum_record_t), offsetof(cksum_record_t, link));
5324 
5325 	psize = statbuf.st_size;
5326 	psize = P2ALIGN_TYPED(psize, sizeof (vdev_label_t), uint64_t);
5327 	ashift = SPA_MINBLOCKSHIFT;
5328 
5329 	/*
5330 	 * 1. Read the label from disk
5331 	 * 2. Verify label cksum
5332 	 * 3. Unpack the configuration and insert in config tree.
5333 	 * 4. Traverse all uberblocks and insert in uberblock tree.
5334 	 */
5335 	for (int l = 0; l < VDEV_LABELS; l++) {
5336 		zdb_label_t *label = &labels[l];
5337 		char *buf = label->label.vl_vdev_phys.vp_nvlist;
5338 		size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist);
5339 		nvlist_t *config;
5340 		cksum_record_t *rec;
5341 		zio_cksum_t cksum;
5342 		vdev_t vd;
5343 
5344 		label->label_offset = vdev_label_offset(psize, l, 0);
5345 
5346 		if (pread64(fd, &label->label, sizeof (label->label),
5347 		    label->label_offset) != sizeof (label->label)) {
5348 			if (!dump_opt['q'])
5349 				(void) printf("failed to read label %d\n", l);
5350 			label->read_failed = B_TRUE;
5351 			error = B_TRUE;
5352 			continue;
5353 		}
5354 
5355 		label->read_failed = B_FALSE;
5356 		label->cksum_valid = label_cksum_valid(&label->label,
5357 		    label->label_offset);
5358 
5359 		if (nvlist_unpack(buf, buflen, &config, 0) == 0) {
5360 			nvlist_t *vdev_tree = NULL;
5361 			size_t size;
5362 
5363 			if ((nvlist_lookup_nvlist(config,
5364 			    ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) ||
5365 			    (nvlist_lookup_uint64(vdev_tree,
5366 			    ZPOOL_CONFIG_ASHIFT, &ashift) != 0))
5367 				ashift = SPA_MINBLOCKSHIFT;
5368 
5369 			if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0)
5370 				size = buflen;
5371 
5372 			/* If the device is a cache device read the header. */
5373 			if (!read_l2arc_header) {
5374 				if (nvlist_lookup_uint64(config,
5375 				    ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 &&
5376 				    l2cache == POOL_STATE_L2CACHE) {
5377 					read_l2arc_header = B_TRUE;
5378 				}
5379 			}
5380 
5381 			fletcher_4_native_varsize(buf, size, &cksum);
5382 			rec = cksum_record_insert(&config_tree, &cksum, l);
5383 
5384 			label->config = rec;
5385 			label->config_nv = config;
5386 			config_found = B_TRUE;
5387 		} else {
5388 			error = B_TRUE;
5389 		}
5390 
5391 		vd.vdev_ashift = ashift;
5392 		vd.vdev_top = &vd;
5393 
5394 		for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) {
5395 			uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i);
5396 			uberblock_t *ub = (void *)((char *)label + uoff);
5397 
5398 			if (uberblock_verify(ub))
5399 				continue;
5400 
5401 			fletcher_4_native_varsize(ub, sizeof (*ub), &cksum);
5402 			rec = cksum_record_insert(&uberblock_tree, &cksum, l);
5403 
5404 			label->uberblocks[i] = rec;
5405 		}
5406 	}
5407 
5408 	/*
5409 	 * Dump the label and uberblocks.
5410 	 */
5411 	for (int l = 0; l < VDEV_LABELS; l++) {
5412 		zdb_label_t *label = &labels[l];
5413 		size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist);
5414 
5415 		if (label->read_failed == B_TRUE)
5416 			continue;
5417 
5418 		if (label->config_nv) {
5419 			dump_config_from_label(label, buflen, l);
5420 		} else {
5421 			if (!dump_opt['q'])
5422 				(void) printf("failed to unpack label %d\n", l);
5423 		}
5424 
5425 		if (dump_opt['u'])
5426 			dump_label_uberblocks(label, ashift, l);
5427 
5428 		nvlist_free(label->config_nv);
5429 	}
5430 
5431 	/*
5432 	 * Dump the L2ARC header, if existent.
5433 	 */
5434 	if (read_l2arc_header)
5435 		error |= dump_l2arc_header(fd);
5436 
5437 	cookie = NULL;
5438 	while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL)
5439 		umem_free(node, sizeof (cksum_record_t));
5440 
5441 	cookie = NULL;
5442 	while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL)
5443 		umem_free(node, sizeof (cksum_record_t));
5444 
5445 	avl_destroy(&config_tree);
5446 	avl_destroy(&uberblock_tree);
5447 
5448 	(void) close(fd);
5449 
5450 	return (config_found == B_FALSE ? 2 :
5451 	    (error == B_TRUE ? 1 : 0));
5452 }
5453 
5454 static uint64_t dataset_feature_count[SPA_FEATURES];
5455 static uint64_t global_feature_count[SPA_FEATURES];
5456 static uint64_t remap_deadlist_count = 0;
5457 
5458 static int
dump_one_objset(const char * dsname,void * arg)5459 dump_one_objset(const char *dsname, void *arg)
5460 {
5461 	(void) arg;
5462 	int error;
5463 	objset_t *os;
5464 	spa_feature_t f;
5465 
5466 	error = open_objset(dsname, FTAG, &os);
5467 	if (error != 0)
5468 		return (0);
5469 
5470 	for (f = 0; f < SPA_FEATURES; f++) {
5471 		if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f))
5472 			continue;
5473 		ASSERT(spa_feature_table[f].fi_flags &
5474 		    ZFEATURE_FLAG_PER_DATASET);
5475 		dataset_feature_count[f]++;
5476 	}
5477 
5478 	if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) {
5479 		remap_deadlist_count++;
5480 	}
5481 
5482 	for (dsl_bookmark_node_t *dbn =
5483 	    avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL;
5484 	    dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) {
5485 		mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj);
5486 		if (dbn->dbn_phys.zbm_redaction_obj != 0) {
5487 			global_feature_count[
5488 			    SPA_FEATURE_REDACTION_BOOKMARKS]++;
5489 			objset_t *mos = os->os_spa->spa_meta_objset;
5490 			dnode_t *rl;
5491 			VERIFY0(dnode_hold(mos,
5492 			    dbn->dbn_phys.zbm_redaction_obj, FTAG, &rl));
5493 			if (rl->dn_have_spill) {
5494 				global_feature_count[
5495 				    SPA_FEATURE_REDACTION_LIST_SPILL]++;
5496 			}
5497 		}
5498 		if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN)
5499 			global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++;
5500 	}
5501 
5502 	if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) &&
5503 	    !dmu_objset_is_snapshot(os)) {
5504 		global_feature_count[SPA_FEATURE_LIVELIST]++;
5505 	}
5506 
5507 	dump_objset(os);
5508 	close_objset(os, FTAG);
5509 	fuid_table_destroy();
5510 	return (0);
5511 }
5512 
5513 /*
5514  * Block statistics.
5515  */
5516 #define	PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2)
5517 typedef struct zdb_blkstats {
5518 	uint64_t zb_asize;
5519 	uint64_t zb_lsize;
5520 	uint64_t zb_psize;
5521 	uint64_t zb_count;
5522 	uint64_t zb_gangs;
5523 	uint64_t zb_ditto_samevdev;
5524 	uint64_t zb_ditto_same_ms;
5525 	uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE];
5526 } zdb_blkstats_t;
5527 
5528 /*
5529  * Extended object types to report deferred frees and dedup auto-ditto blocks.
5530  */
5531 #define	ZDB_OT_DEFERRED	(DMU_OT_NUMTYPES + 0)
5532 #define	ZDB_OT_DITTO	(DMU_OT_NUMTYPES + 1)
5533 #define	ZDB_OT_OTHER	(DMU_OT_NUMTYPES + 2)
5534 #define	ZDB_OT_TOTAL	(DMU_OT_NUMTYPES + 3)
5535 
5536 static const char *zdb_ot_extname[] = {
5537 	"deferred free",
5538 	"dedup ditto",
5539 	"other",
5540 	"Total",
5541 };
5542 
5543 #define	ZB_TOTAL	DN_MAX_LEVELS
5544 #define	SPA_MAX_FOR_16M	(SPA_MAXBLOCKSHIFT+1)
5545 
5546 typedef struct zdb_brt_entry {
5547 	dva_t		zbre_dva;
5548 	uint64_t	zbre_refcount;
5549 	avl_node_t	zbre_node;
5550 } zdb_brt_entry_t;
5551 
5552 typedef struct zdb_cb {
5553 	zdb_blkstats_t	zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1];
5554 	uint64_t	zcb_removing_size;
5555 	uint64_t	zcb_checkpoint_size;
5556 	uint64_t	zcb_dedup_asize;
5557 	uint64_t	zcb_dedup_blocks;
5558 	uint64_t	zcb_clone_asize;
5559 	uint64_t	zcb_clone_blocks;
5560 	uint64_t	zcb_psize_count[SPA_MAX_FOR_16M];
5561 	uint64_t	zcb_lsize_count[SPA_MAX_FOR_16M];
5562 	uint64_t	zcb_asize_count[SPA_MAX_FOR_16M];
5563 	uint64_t	zcb_psize_len[SPA_MAX_FOR_16M];
5564 	uint64_t	zcb_lsize_len[SPA_MAX_FOR_16M];
5565 	uint64_t	zcb_asize_len[SPA_MAX_FOR_16M];
5566 	uint64_t	zcb_psize_total;
5567 	uint64_t	zcb_lsize_total;
5568 	uint64_t	zcb_asize_total;
5569 	uint64_t	zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES];
5570 	uint64_t	zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES]
5571 	    [BPE_PAYLOAD_SIZE + 1];
5572 	uint64_t	zcb_start;
5573 	hrtime_t	zcb_lastprint;
5574 	uint64_t	zcb_totalasize;
5575 	uint64_t	zcb_errors[256];
5576 	int		zcb_readfails;
5577 	int		zcb_haderrors;
5578 	spa_t		*zcb_spa;
5579 	uint32_t	**zcb_vd_obsolete_counts;
5580 	avl_tree_t	zcb_brt;
5581 	boolean_t	zcb_brt_is_active;
5582 } zdb_cb_t;
5583 
5584 /* test if two DVA offsets from same vdev are within the same metaslab */
5585 static boolean_t
same_metaslab(spa_t * spa,uint64_t vdev,uint64_t off1,uint64_t off2)5586 same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2)
5587 {
5588 	vdev_t *vd = vdev_lookup_top(spa, vdev);
5589 	uint64_t ms_shift = vd->vdev_ms_shift;
5590 
5591 	return ((off1 >> ms_shift) == (off2 >> ms_shift));
5592 }
5593 
5594 /*
5595  * Used to simplify reporting of the histogram data.
5596  */
5597 typedef struct one_histo {
5598 	const char *name;
5599 	uint64_t *count;
5600 	uint64_t *len;
5601 	uint64_t cumulative;
5602 } one_histo_t;
5603 
5604 /*
5605  * The number of separate histograms processed for psize, lsize and asize.
5606  */
5607 #define	NUM_HISTO 3
5608 
5609 /*
5610  * This routine will create a fixed column size output of three different
5611  * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M
5612  * the count, length and cumulative length of the psize, lsize and
5613  * asize blocks.
5614  *
5615  * All three types of blocks are listed on a single line
5616  *
5617  * By default the table is printed in nicenumber format (e.g. 123K) but
5618  * if the '-P' parameter is specified then the full raw number (parseable)
5619  * is printed out.
5620  */
5621 static void
dump_size_histograms(zdb_cb_t * zcb)5622 dump_size_histograms(zdb_cb_t *zcb)
5623 {
5624 	/*
5625 	 * A temporary buffer that allows us to convert a number into
5626 	 * a string using zdb_nicenumber to allow either raw or human
5627 	 * readable numbers to be output.
5628 	 */
5629 	char numbuf[32];
5630 
5631 	/*
5632 	 * Define titles which are used in the headers of the tables
5633 	 * printed by this routine.
5634 	 */
5635 	const char blocksize_title1[] = "block";
5636 	const char blocksize_title2[] = "size";
5637 	const char count_title[] = "Count";
5638 	const char length_title[] = "Size";
5639 	const char cumulative_title[] = "Cum.";
5640 
5641 	/*
5642 	 * Setup the histogram arrays (psize, lsize, and asize).
5643 	 */
5644 	one_histo_t parm_histo[NUM_HISTO];
5645 
5646 	parm_histo[0].name = "psize";
5647 	parm_histo[0].count = zcb->zcb_psize_count;
5648 	parm_histo[0].len = zcb->zcb_psize_len;
5649 	parm_histo[0].cumulative = 0;
5650 
5651 	parm_histo[1].name = "lsize";
5652 	parm_histo[1].count = zcb->zcb_lsize_count;
5653 	parm_histo[1].len = zcb->zcb_lsize_len;
5654 	parm_histo[1].cumulative = 0;
5655 
5656 	parm_histo[2].name = "asize";
5657 	parm_histo[2].count = zcb->zcb_asize_count;
5658 	parm_histo[2].len = zcb->zcb_asize_len;
5659 	parm_histo[2].cumulative = 0;
5660 
5661 
5662 	(void) printf("\nBlock Size Histogram\n");
5663 	/*
5664 	 * Print the first line titles
5665 	 */
5666 	if (dump_opt['P'])
5667 		(void) printf("\n%s\t", blocksize_title1);
5668 	else
5669 		(void) printf("\n%7s   ", blocksize_title1);
5670 
5671 	for (int j = 0; j < NUM_HISTO; j++) {
5672 		if (dump_opt['P']) {
5673 			if (j < NUM_HISTO - 1) {
5674 				(void) printf("%s\t\t\t", parm_histo[j].name);
5675 			} else {
5676 				/* Don't print trailing spaces */
5677 				(void) printf("  %s", parm_histo[j].name);
5678 			}
5679 		} else {
5680 			if (j < NUM_HISTO - 1) {
5681 				/* Left aligned strings in the output */
5682 				(void) printf("%-7s              ",
5683 				    parm_histo[j].name);
5684 			} else {
5685 				/* Don't print trailing spaces */
5686 				(void) printf("%s", parm_histo[j].name);
5687 			}
5688 		}
5689 	}
5690 	(void) printf("\n");
5691 
5692 	/*
5693 	 * Print the second line titles
5694 	 */
5695 	if (dump_opt['P']) {
5696 		(void) printf("%s\t", blocksize_title2);
5697 	} else {
5698 		(void) printf("%7s ", blocksize_title2);
5699 	}
5700 
5701 	for (int i = 0; i < NUM_HISTO; i++) {
5702 		if (dump_opt['P']) {
5703 			(void) printf("%s\t%s\t%s\t",
5704 			    count_title, length_title, cumulative_title);
5705 		} else {
5706 			(void) printf("%7s%7s%7s",
5707 			    count_title, length_title, cumulative_title);
5708 		}
5709 	}
5710 	(void) printf("\n");
5711 
5712 	/*
5713 	 * Print the rows
5714 	 */
5715 	for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) {
5716 
5717 		/*
5718 		 * Print the first column showing the blocksize
5719 		 */
5720 		zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf));
5721 
5722 		if (dump_opt['P']) {
5723 			printf("%s", numbuf);
5724 		} else {
5725 			printf("%7s:", numbuf);
5726 		}
5727 
5728 		/*
5729 		 * Print the remaining set of 3 columns per size:
5730 		 * for psize, lsize and asize
5731 		 */
5732 		for (int j = 0; j < NUM_HISTO; j++) {
5733 			parm_histo[j].cumulative += parm_histo[j].len[i];
5734 
5735 			zdb_nicenum(parm_histo[j].count[i],
5736 			    numbuf, sizeof (numbuf));
5737 			if (dump_opt['P'])
5738 				(void) printf("\t%s", numbuf);
5739 			else
5740 				(void) printf("%7s", numbuf);
5741 
5742 			zdb_nicenum(parm_histo[j].len[i],
5743 			    numbuf, sizeof (numbuf));
5744 			if (dump_opt['P'])
5745 				(void) printf("\t%s", numbuf);
5746 			else
5747 				(void) printf("%7s", numbuf);
5748 
5749 			zdb_nicenum(parm_histo[j].cumulative,
5750 			    numbuf, sizeof (numbuf));
5751 			if (dump_opt['P'])
5752 				(void) printf("\t%s", numbuf);
5753 			else
5754 				(void) printf("%7s", numbuf);
5755 		}
5756 		(void) printf("\n");
5757 	}
5758 }
5759 
5760 static void
zdb_count_block(zdb_cb_t * zcb,zilog_t * zilog,const blkptr_t * bp,dmu_object_type_t type)5761 zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp,
5762     dmu_object_type_t type)
5763 {
5764 	int i;
5765 
5766 	ASSERT(type < ZDB_OT_TOTAL);
5767 
5768 	if (zilog && zil_bp_tree_add(zilog, bp) != 0)
5769 		return;
5770 
5771 	/*
5772 	 * This flag controls if we will issue a claim for the block while
5773 	 * counting it, to ensure that all blocks are referenced in space maps.
5774 	 * We don't issue claims if we're not doing leak tracking, because it's
5775 	 * expensive if the user isn't interested. We also don't claim the
5776 	 * second or later occurences of cloned or dedup'd blocks, because we
5777 	 * already claimed them the first time.
5778 	 */
5779 	boolean_t do_claim = !dump_opt['L'];
5780 
5781 	spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER);
5782 
5783 	blkptr_t tempbp;
5784 	if (BP_GET_DEDUP(bp)) {
5785 		/*
5786 		 * Dedup'd blocks are special. We need to count them, so we can
5787 		 * later uncount them when reporting leaked space, and we must
5788 		 * only claim them once.
5789 		 *
5790 		 * We use the existing dedup system to track what we've seen.
5791 		 * The first time we see a block, we do a ddt_lookup() to see
5792 		 * if it exists in the DDT. If we're doing leak tracking, we
5793 		 * claim the block at this time.
5794 		 *
5795 		 * Each time we see a block, we reduce the refcount in the
5796 		 * entry by one, and add to the size and count of dedup'd
5797 		 * blocks to report at the end.
5798 		 */
5799 
5800 		ddt_t *ddt = ddt_select(zcb->zcb_spa, bp);
5801 
5802 		ddt_enter(ddt);
5803 
5804 		/*
5805 		 * Find the block. This will create the entry in memory, but
5806 		 * we'll know if that happened by its refcount.
5807 		 */
5808 		ddt_entry_t *dde = ddt_lookup(ddt, bp);
5809 
5810 		/*
5811 		 * ddt_lookup() can return NULL if this block didn't exist
5812 		 * in the DDT and creating it would take the DDT over its
5813 		 * quota. Since we got the block from disk, it must exist in
5814 		 * the DDT, so this can't happen. However, when unique entries
5815 		 * are pruned, the dedup bit can be set with no corresponding
5816 		 * entry in the DDT.
5817 		 */
5818 		if (dde == NULL) {
5819 			ddt_exit(ddt);
5820 			goto skipped;
5821 		}
5822 
5823 		/* Get the phys for this variant */
5824 		ddt_phys_variant_t v = ddt_phys_select(ddt, dde, bp);
5825 
5826 		/*
5827 		 * This entry may have multiple sets of DVAs. We must claim
5828 		 * each set the first time we see them in a real block on disk,
5829 		 * or count them on subsequent occurences. We don't have a
5830 		 * convenient way to track the first time we see each variant,
5831 		 * so we repurpose dde_io as a set of "seen" flag bits. We can
5832 		 * do this safely in zdb because it never writes, so it will
5833 		 * never have a writing zio for this block in that pointer.
5834 		 */
5835 		boolean_t seen = !!(((uintptr_t)dde->dde_io) & (1 << v));
5836 		if (!seen)
5837 			dde->dde_io =
5838 			    (void *)(((uintptr_t)dde->dde_io) | (1 << v));
5839 
5840 		/* Consume a reference for this block. */
5841 		if (ddt_phys_total_refcnt(ddt, dde->dde_phys) > 0)
5842 			ddt_phys_decref(dde->dde_phys, v);
5843 
5844 		/*
5845 		 * If this entry has a single flat phys, it may have been
5846 		 * extended with additional DVAs at some time in its life.
5847 		 * This block might be from before it was fully extended, and
5848 		 * so have fewer DVAs.
5849 		 *
5850 		 * If this is the first time we've seen this block, and we
5851 		 * claimed it as-is, then we would miss the claim on some
5852 		 * number of DVAs, which would then be seen as leaked.
5853 		 *
5854 		 * In all cases, if we've had fewer DVAs, then the asize would
5855 		 * be too small, and would lead to the pool apparently using
5856 		 * more space than allocated.
5857 		 *
5858 		 * To handle this, we copy the canonical set of DVAs from the
5859 		 * entry back to the block pointer before we claim it.
5860 		 */
5861 		if (v == DDT_PHYS_FLAT) {
5862 			ASSERT3U(BP_GET_BIRTH(bp), ==,
5863 			    ddt_phys_birth(dde->dde_phys, v));
5864 			tempbp = *bp;
5865 			ddt_bp_fill(dde->dde_phys, v, &tempbp,
5866 			    BP_GET_BIRTH(bp));
5867 			bp = &tempbp;
5868 		}
5869 
5870 		if (seen) {
5871 			/*
5872 			 * The second or later time we see this block,
5873 			 * it's a duplicate and we count it.
5874 			 */
5875 			zcb->zcb_dedup_asize += BP_GET_ASIZE(bp);
5876 			zcb->zcb_dedup_blocks++;
5877 
5878 			/* Already claimed, don't do it again. */
5879 			do_claim = B_FALSE;
5880 		}
5881 
5882 		ddt_exit(ddt);
5883 	} else if (zcb->zcb_brt_is_active &&
5884 	    brt_maybe_exists(zcb->zcb_spa, bp)) {
5885 		/*
5886 		 * Cloned blocks are special. We need to count them, so we can
5887 		 * later uncount them when reporting leaked space, and we must
5888 		 * only claim them once.
5889 		 *
5890 		 * To do this, we keep our own in-memory BRT. For each block
5891 		 * we haven't seen before, we look it up in the real BRT and
5892 		 * if its there, we note it and its refcount then proceed as
5893 		 * normal. If we see the block again, we count it as a clone
5894 		 * and then give it no further consideration.
5895 		 */
5896 		zdb_brt_entry_t zbre_search, *zbre;
5897 		avl_index_t where;
5898 
5899 		zbre_search.zbre_dva = bp->blk_dva[0];
5900 		zbre = avl_find(&zcb->zcb_brt, &zbre_search, &where);
5901 		if (zbre == NULL) {
5902 			/* Not seen before; track it */
5903 			uint64_t refcnt =
5904 			    brt_entry_get_refcount(zcb->zcb_spa, bp);
5905 			if (refcnt > 0) {
5906 				zbre = umem_zalloc(sizeof (zdb_brt_entry_t),
5907 				    UMEM_NOFAIL);
5908 				zbre->zbre_dva = bp->blk_dva[0];
5909 				zbre->zbre_refcount = refcnt;
5910 				avl_insert(&zcb->zcb_brt, zbre, where);
5911 			}
5912 		} else  {
5913 			/*
5914 			 * Second or later occurrence, count it and take a
5915 			 * refcount.
5916 			 */
5917 			zcb->zcb_clone_asize += BP_GET_ASIZE(bp);
5918 			zcb->zcb_clone_blocks++;
5919 
5920 			zbre->zbre_refcount--;
5921 			if (zbre->zbre_refcount == 0) {
5922 				avl_remove(&zcb->zcb_brt, zbre);
5923 				umem_free(zbre, sizeof (zdb_brt_entry_t));
5924 			}
5925 
5926 			/* Already claimed, don't do it again. */
5927 			do_claim = B_FALSE;
5928 		}
5929 	}
5930 
5931 skipped:
5932 	for (i = 0; i < 4; i++) {
5933 		int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL;
5934 		int t = (i & 1) ? type : ZDB_OT_TOTAL;
5935 		int equal;
5936 		zdb_blkstats_t *zb = &zcb->zcb_type[l][t];
5937 
5938 		zb->zb_asize += BP_GET_ASIZE(bp);
5939 		zb->zb_lsize += BP_GET_LSIZE(bp);
5940 		zb->zb_psize += BP_GET_PSIZE(bp);
5941 		zb->zb_count++;
5942 
5943 		/*
5944 		 * The histogram is only big enough to record blocks up to
5945 		 * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last,
5946 		 * "other", bucket.
5947 		 */
5948 		unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT;
5949 		idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1);
5950 		zb->zb_psize_histogram[idx]++;
5951 
5952 		zb->zb_gangs += BP_COUNT_GANG(bp);
5953 
5954 		switch (BP_GET_NDVAS(bp)) {
5955 		case 2:
5956 			if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5957 			    DVA_GET_VDEV(&bp->blk_dva[1])) {
5958 				zb->zb_ditto_samevdev++;
5959 
5960 				if (same_metaslab(zcb->zcb_spa,
5961 				    DVA_GET_VDEV(&bp->blk_dva[0]),
5962 				    DVA_GET_OFFSET(&bp->blk_dva[0]),
5963 				    DVA_GET_OFFSET(&bp->blk_dva[1])))
5964 					zb->zb_ditto_same_ms++;
5965 			}
5966 			break;
5967 		case 3:
5968 			equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5969 			    DVA_GET_VDEV(&bp->blk_dva[1])) +
5970 			    (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5971 			    DVA_GET_VDEV(&bp->blk_dva[2])) +
5972 			    (DVA_GET_VDEV(&bp->blk_dva[1]) ==
5973 			    DVA_GET_VDEV(&bp->blk_dva[2]));
5974 			if (equal != 0) {
5975 				zb->zb_ditto_samevdev++;
5976 
5977 				if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5978 				    DVA_GET_VDEV(&bp->blk_dva[1]) &&
5979 				    same_metaslab(zcb->zcb_spa,
5980 				    DVA_GET_VDEV(&bp->blk_dva[0]),
5981 				    DVA_GET_OFFSET(&bp->blk_dva[0]),
5982 				    DVA_GET_OFFSET(&bp->blk_dva[1])))
5983 					zb->zb_ditto_same_ms++;
5984 				else if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5985 				    DVA_GET_VDEV(&bp->blk_dva[2]) &&
5986 				    same_metaslab(zcb->zcb_spa,
5987 				    DVA_GET_VDEV(&bp->blk_dva[0]),
5988 				    DVA_GET_OFFSET(&bp->blk_dva[0]),
5989 				    DVA_GET_OFFSET(&bp->blk_dva[2])))
5990 					zb->zb_ditto_same_ms++;
5991 				else if (DVA_GET_VDEV(&bp->blk_dva[1]) ==
5992 				    DVA_GET_VDEV(&bp->blk_dva[2]) &&
5993 				    same_metaslab(zcb->zcb_spa,
5994 				    DVA_GET_VDEV(&bp->blk_dva[1]),
5995 				    DVA_GET_OFFSET(&bp->blk_dva[1]),
5996 				    DVA_GET_OFFSET(&bp->blk_dva[2])))
5997 					zb->zb_ditto_same_ms++;
5998 			}
5999 			break;
6000 		}
6001 	}
6002 
6003 	spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG);
6004 
6005 	if (BP_IS_EMBEDDED(bp)) {
6006 		zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++;
6007 		zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)]
6008 		    [BPE_GET_PSIZE(bp)]++;
6009 		return;
6010 	}
6011 	/*
6012 	 * The binning histogram bins by powers of two up to
6013 	 * SPA_MAXBLOCKSIZE rather than creating bins for
6014 	 * every possible blocksize found in the pool.
6015 	 */
6016 	int bin = highbit64(BP_GET_PSIZE(bp)) - 1;
6017 
6018 	zcb->zcb_psize_count[bin]++;
6019 	zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp);
6020 	zcb->zcb_psize_total += BP_GET_PSIZE(bp);
6021 
6022 	bin = highbit64(BP_GET_LSIZE(bp)) - 1;
6023 
6024 	zcb->zcb_lsize_count[bin]++;
6025 	zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp);
6026 	zcb->zcb_lsize_total += BP_GET_LSIZE(bp);
6027 
6028 	bin = highbit64(BP_GET_ASIZE(bp)) - 1;
6029 
6030 	zcb->zcb_asize_count[bin]++;
6031 	zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp);
6032 	zcb->zcb_asize_total += BP_GET_ASIZE(bp);
6033 
6034 	if (!do_claim)
6035 		return;
6036 
6037 	VERIFY0(zio_wait(zio_claim(NULL, zcb->zcb_spa,
6038 	    spa_min_claim_txg(zcb->zcb_spa), bp, NULL, NULL,
6039 	    ZIO_FLAG_CANFAIL)));
6040 }
6041 
6042 static void
zdb_blkptr_done(zio_t * zio)6043 zdb_blkptr_done(zio_t *zio)
6044 {
6045 	spa_t *spa = zio->io_spa;
6046 	blkptr_t *bp = zio->io_bp;
6047 	int ioerr = zio->io_error;
6048 	zdb_cb_t *zcb = zio->io_private;
6049 	zbookmark_phys_t *zb = &zio->io_bookmark;
6050 
6051 	mutex_enter(&spa->spa_scrub_lock);
6052 	spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
6053 	cv_broadcast(&spa->spa_scrub_io_cv);
6054 
6055 	if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
6056 		char blkbuf[BP_SPRINTF_LEN];
6057 
6058 		zcb->zcb_haderrors = 1;
6059 		zcb->zcb_errors[ioerr]++;
6060 
6061 		if (dump_opt['b'] >= 2)
6062 			snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
6063 		else
6064 			blkbuf[0] = '\0';
6065 
6066 		(void) printf("zdb_blkptr_cb: "
6067 		    "Got error %d reading "
6068 		    "<%llu, %llu, %lld, %llx> %s -- skipping\n",
6069 		    ioerr,
6070 		    (u_longlong_t)zb->zb_objset,
6071 		    (u_longlong_t)zb->zb_object,
6072 		    (u_longlong_t)zb->zb_level,
6073 		    (u_longlong_t)zb->zb_blkid,
6074 		    blkbuf);
6075 	}
6076 	mutex_exit(&spa->spa_scrub_lock);
6077 
6078 	abd_free(zio->io_abd);
6079 }
6080 
6081 static int
zdb_blkptr_cb(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_phys_t * zb,const dnode_phys_t * dnp,void * arg)6082 zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
6083     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
6084 {
6085 	zdb_cb_t *zcb = arg;
6086 	dmu_object_type_t type;
6087 	boolean_t is_metadata;
6088 
6089 	if (zb->zb_level == ZB_DNODE_LEVEL)
6090 		return (0);
6091 
6092 	if (dump_opt['b'] >= 5 && BP_GET_LOGICAL_BIRTH(bp) > 0) {
6093 		char blkbuf[BP_SPRINTF_LEN];
6094 		snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
6095 		(void) printf("objset %llu object %llu "
6096 		    "level %lld offset 0x%llx %s\n",
6097 		    (u_longlong_t)zb->zb_objset,
6098 		    (u_longlong_t)zb->zb_object,
6099 		    (longlong_t)zb->zb_level,
6100 		    (u_longlong_t)blkid2offset(dnp, bp, zb),
6101 		    blkbuf);
6102 	}
6103 
6104 	if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp))
6105 		return (0);
6106 
6107 	type = BP_GET_TYPE(bp);
6108 
6109 	zdb_count_block(zcb, zilog, bp,
6110 	    (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type);
6111 
6112 	is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type));
6113 
6114 	if (!BP_IS_EMBEDDED(bp) &&
6115 	    (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) {
6116 		size_t size = BP_GET_PSIZE(bp);
6117 		abd_t *abd = abd_alloc(size, B_FALSE);
6118 		int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW;
6119 
6120 		/* If it's an intent log block, failure is expected. */
6121 		if (zb->zb_level == ZB_ZIL_LEVEL)
6122 			flags |= ZIO_FLAG_SPECULATIVE;
6123 
6124 		mutex_enter(&spa->spa_scrub_lock);
6125 		while (spa->spa_load_verify_bytes > max_inflight_bytes)
6126 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
6127 		spa->spa_load_verify_bytes += size;
6128 		mutex_exit(&spa->spa_scrub_lock);
6129 
6130 		zio_nowait(zio_read(NULL, spa, bp, abd, size,
6131 		    zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb));
6132 	}
6133 
6134 	zcb->zcb_readfails = 0;
6135 
6136 	/* only call gethrtime() every 100 blocks */
6137 	static int iters;
6138 	if (++iters > 100)
6139 		iters = 0;
6140 	else
6141 		return (0);
6142 
6143 	if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) {
6144 		uint64_t now = gethrtime();
6145 		char buf[10];
6146 		uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize;
6147 		uint64_t kb_per_sec =
6148 		    1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000));
6149 		uint64_t sec_remaining =
6150 		    (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec;
6151 
6152 		/* make sure nicenum has enough space */
6153 		_Static_assert(sizeof (buf) >= NN_NUMBUF_SZ, "buf truncated");
6154 
6155 		zfs_nicebytes(bytes, buf, sizeof (buf));
6156 		(void) fprintf(stderr,
6157 		    "\r%5s completed (%4"PRIu64"MB/s) "
6158 		    "estimated time remaining: "
6159 		    "%"PRIu64"hr %02"PRIu64"min %02"PRIu64"sec        ",
6160 		    buf, kb_per_sec / 1024,
6161 		    sec_remaining / 60 / 60,
6162 		    sec_remaining / 60 % 60,
6163 		    sec_remaining % 60);
6164 
6165 		zcb->zcb_lastprint = now;
6166 	}
6167 
6168 	return (0);
6169 }
6170 
6171 static void
zdb_leak(void * arg,uint64_t start,uint64_t size)6172 zdb_leak(void *arg, uint64_t start, uint64_t size)
6173 {
6174 	vdev_t *vd = arg;
6175 
6176 	(void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n",
6177 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size);
6178 }
6179 
6180 static metaslab_ops_t zdb_metaslab_ops = {
6181 	NULL	/* alloc */
6182 };
6183 
6184 static int
load_unflushed_svr_segs_cb(spa_t * spa,space_map_entry_t * sme,uint64_t txg,void * arg)6185 load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme,
6186     uint64_t txg, void *arg)
6187 {
6188 	spa_vdev_removal_t *svr = arg;
6189 
6190 	uint64_t offset = sme->sme_offset;
6191 	uint64_t size = sme->sme_run;
6192 
6193 	/* skip vdevs we don't care about */
6194 	if (sme->sme_vdev != svr->svr_vdev_id)
6195 		return (0);
6196 
6197 	vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev);
6198 	metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6199 	ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
6200 
6201 	if (txg < metaslab_unflushed_txg(ms))
6202 		return (0);
6203 
6204 	if (sme->sme_type == SM_ALLOC)
6205 		range_tree_add(svr->svr_allocd_segs, offset, size);
6206 	else
6207 		range_tree_remove(svr->svr_allocd_segs, offset, size);
6208 
6209 	return (0);
6210 }
6211 
6212 static void
claim_segment_impl_cb(uint64_t inner_offset,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)6213 claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
6214     uint64_t size, void *arg)
6215 {
6216 	(void) inner_offset, (void) arg;
6217 
6218 	/*
6219 	 * This callback was called through a remap from
6220 	 * a device being removed. Therefore, the vdev that
6221 	 * this callback is applied to is a concrete
6222 	 * vdev.
6223 	 */
6224 	ASSERT(vdev_is_concrete(vd));
6225 
6226 	VERIFY0(metaslab_claim_impl(vd, offset, size,
6227 	    spa_min_claim_txg(vd->vdev_spa)));
6228 }
6229 
6230 static void
claim_segment_cb(void * arg,uint64_t offset,uint64_t size)6231 claim_segment_cb(void *arg, uint64_t offset, uint64_t size)
6232 {
6233 	vdev_t *vd = arg;
6234 
6235 	vdev_indirect_ops.vdev_op_remap(vd, offset, size,
6236 	    claim_segment_impl_cb, NULL);
6237 }
6238 
6239 /*
6240  * After accounting for all allocated blocks that are directly referenced,
6241  * we might have missed a reference to a block from a partially complete
6242  * (and thus unused) indirect mapping object. We perform a secondary pass
6243  * through the metaslabs we have already mapped and claim the destination
6244  * blocks.
6245  */
6246 static void
zdb_claim_removing(spa_t * spa,zdb_cb_t * zcb)6247 zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb)
6248 {
6249 	if (dump_opt['L'])
6250 		return;
6251 
6252 	if (spa->spa_vdev_removal == NULL)
6253 		return;
6254 
6255 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6256 
6257 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
6258 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
6259 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6260 
6261 	ASSERT0(range_tree_space(svr->svr_allocd_segs));
6262 
6263 	range_tree_t *allocs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
6264 	for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
6265 		metaslab_t *msp = vd->vdev_ms[msi];
6266 
6267 		ASSERT0(range_tree_space(allocs));
6268 		if (msp->ms_sm != NULL)
6269 			VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC));
6270 		range_tree_vacate(allocs, range_tree_add, svr->svr_allocd_segs);
6271 	}
6272 	range_tree_destroy(allocs);
6273 
6274 	iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr);
6275 
6276 	/*
6277 	 * Clear everything past what has been synced,
6278 	 * because we have not allocated mappings for
6279 	 * it yet.
6280 	 */
6281 	range_tree_clear(svr->svr_allocd_segs,
6282 	    vdev_indirect_mapping_max_offset(vim),
6283 	    vd->vdev_asize - vdev_indirect_mapping_max_offset(vim));
6284 
6285 	zcb->zcb_removing_size += range_tree_space(svr->svr_allocd_segs);
6286 	range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd);
6287 
6288 	spa_config_exit(spa, SCL_CONFIG, FTAG);
6289 }
6290 
6291 static int
increment_indirect_mapping_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)6292 increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
6293     dmu_tx_t *tx)
6294 {
6295 	(void) tx;
6296 	zdb_cb_t *zcb = arg;
6297 	spa_t *spa = zcb->zcb_spa;
6298 	vdev_t *vd;
6299 	const dva_t *dva = &bp->blk_dva[0];
6300 
6301 	ASSERT(!bp_freed);
6302 	ASSERT(!dump_opt['L']);
6303 	ASSERT3U(BP_GET_NDVAS(bp), ==, 1);
6304 
6305 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6306 	vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva));
6307 	ASSERT3P(vd, !=, NULL);
6308 	spa_config_exit(spa, SCL_VDEV, FTAG);
6309 
6310 	ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
6311 	ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL);
6312 
6313 	vdev_indirect_mapping_increment_obsolete_count(
6314 	    vd->vdev_indirect_mapping,
6315 	    DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva),
6316 	    zcb->zcb_vd_obsolete_counts[vd->vdev_id]);
6317 
6318 	return (0);
6319 }
6320 
6321 static uint32_t *
zdb_load_obsolete_counts(vdev_t * vd)6322 zdb_load_obsolete_counts(vdev_t *vd)
6323 {
6324 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6325 	spa_t *spa = vd->vdev_spa;
6326 	spa_condensing_indirect_phys_t *scip =
6327 	    &spa->spa_condensing_indirect_phys;
6328 	uint64_t obsolete_sm_object;
6329 	uint32_t *counts;
6330 
6331 	VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
6332 	EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL);
6333 	counts = vdev_indirect_mapping_load_obsolete_counts(vim);
6334 	if (vd->vdev_obsolete_sm != NULL) {
6335 		vdev_indirect_mapping_load_obsolete_spacemap(vim, counts,
6336 		    vd->vdev_obsolete_sm);
6337 	}
6338 	if (scip->scip_vdev == vd->vdev_id &&
6339 	    scip->scip_prev_obsolete_sm_object != 0) {
6340 		space_map_t *prev_obsolete_sm = NULL;
6341 		VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
6342 		    scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
6343 		vdev_indirect_mapping_load_obsolete_spacemap(vim, counts,
6344 		    prev_obsolete_sm);
6345 		space_map_close(prev_obsolete_sm);
6346 	}
6347 	return (counts);
6348 }
6349 
6350 typedef struct checkpoint_sm_exclude_entry_arg {
6351 	vdev_t *cseea_vd;
6352 	uint64_t cseea_checkpoint_size;
6353 } checkpoint_sm_exclude_entry_arg_t;
6354 
6355 static int
checkpoint_sm_exclude_entry_cb(space_map_entry_t * sme,void * arg)6356 checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg)
6357 {
6358 	checkpoint_sm_exclude_entry_arg_t *cseea = arg;
6359 	vdev_t *vd = cseea->cseea_vd;
6360 	metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
6361 	uint64_t end = sme->sme_offset + sme->sme_run;
6362 
6363 	ASSERT(sme->sme_type == SM_FREE);
6364 
6365 	/*
6366 	 * Since the vdev_checkpoint_sm exists in the vdev level
6367 	 * and the ms_sm space maps exist in the metaslab level,
6368 	 * an entry in the checkpoint space map could theoretically
6369 	 * cross the boundaries of the metaslab that it belongs.
6370 	 *
6371 	 * In reality, because of the way that we populate and
6372 	 * manipulate the checkpoint's space maps currently,
6373 	 * there shouldn't be any entries that cross metaslabs.
6374 	 * Hence the assertion below.
6375 	 *
6376 	 * That said, there is no fundamental requirement that
6377 	 * the checkpoint's space map entries should not cross
6378 	 * metaslab boundaries. So if needed we could add code
6379 	 * that handles metaslab-crossing segments in the future.
6380 	 */
6381 	VERIFY3U(sme->sme_offset, >=, ms->ms_start);
6382 	VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
6383 
6384 	/*
6385 	 * By removing the entry from the allocated segments we
6386 	 * also verify that the entry is there to begin with.
6387 	 */
6388 	mutex_enter(&ms->ms_lock);
6389 	range_tree_remove(ms->ms_allocatable, sme->sme_offset, sme->sme_run);
6390 	mutex_exit(&ms->ms_lock);
6391 
6392 	cseea->cseea_checkpoint_size += sme->sme_run;
6393 	return (0);
6394 }
6395 
6396 static void
zdb_leak_init_vdev_exclude_checkpoint(vdev_t * vd,zdb_cb_t * zcb)6397 zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb)
6398 {
6399 	spa_t *spa = vd->vdev_spa;
6400 	space_map_t *checkpoint_sm = NULL;
6401 	uint64_t checkpoint_sm_obj;
6402 
6403 	/*
6404 	 * If there is no vdev_top_zap, we are in a pool whose
6405 	 * version predates the pool checkpoint feature.
6406 	 */
6407 	if (vd->vdev_top_zap == 0)
6408 		return;
6409 
6410 	/*
6411 	 * If there is no reference of the vdev_checkpoint_sm in
6412 	 * the vdev_top_zap, then one of the following scenarios
6413 	 * is true:
6414 	 *
6415 	 * 1] There is no checkpoint
6416 	 * 2] There is a checkpoint, but no checkpointed blocks
6417 	 *    have been freed yet
6418 	 * 3] The current vdev is indirect
6419 	 *
6420 	 * In these cases we return immediately.
6421 	 */
6422 	if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap,
6423 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
6424 		return;
6425 
6426 	VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap,
6427 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1,
6428 	    &checkpoint_sm_obj));
6429 
6430 	checkpoint_sm_exclude_entry_arg_t cseea;
6431 	cseea.cseea_vd = vd;
6432 	cseea.cseea_checkpoint_size = 0;
6433 
6434 	VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa),
6435 	    checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift));
6436 
6437 	VERIFY0(space_map_iterate(checkpoint_sm,
6438 	    space_map_length(checkpoint_sm),
6439 	    checkpoint_sm_exclude_entry_cb, &cseea));
6440 	space_map_close(checkpoint_sm);
6441 
6442 	zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size;
6443 }
6444 
6445 static void
zdb_leak_init_exclude_checkpoint(spa_t * spa,zdb_cb_t * zcb)6446 zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb)
6447 {
6448 	ASSERT(!dump_opt['L']);
6449 
6450 	vdev_t *rvd = spa->spa_root_vdev;
6451 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
6452 		ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id);
6453 		zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb);
6454 	}
6455 }
6456 
6457 static int
count_unflushed_space_cb(spa_t * spa,space_map_entry_t * sme,uint64_t txg,void * arg)6458 count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme,
6459     uint64_t txg, void *arg)
6460 {
6461 	int64_t *ualloc_space = arg;
6462 
6463 	uint64_t offset = sme->sme_offset;
6464 	uint64_t vdev_id = sme->sme_vdev;
6465 
6466 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
6467 	if (!vdev_is_concrete(vd))
6468 		return (0);
6469 
6470 	metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6471 	ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
6472 
6473 	if (txg < metaslab_unflushed_txg(ms))
6474 		return (0);
6475 
6476 	if (sme->sme_type == SM_ALLOC)
6477 		*ualloc_space += sme->sme_run;
6478 	else
6479 		*ualloc_space -= sme->sme_run;
6480 
6481 	return (0);
6482 }
6483 
6484 static int64_t
get_unflushed_alloc_space(spa_t * spa)6485 get_unflushed_alloc_space(spa_t *spa)
6486 {
6487 	if (dump_opt['L'])
6488 		return (0);
6489 
6490 	int64_t ualloc_space = 0;
6491 	iterate_through_spacemap_logs(spa, count_unflushed_space_cb,
6492 	    &ualloc_space);
6493 	return (ualloc_space);
6494 }
6495 
6496 static int
load_unflushed_cb(spa_t * spa,space_map_entry_t * sme,uint64_t txg,void * arg)6497 load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg)
6498 {
6499 	maptype_t *uic_maptype = arg;
6500 
6501 	uint64_t offset = sme->sme_offset;
6502 	uint64_t size = sme->sme_run;
6503 	uint64_t vdev_id = sme->sme_vdev;
6504 
6505 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
6506 
6507 	/* skip indirect vdevs */
6508 	if (!vdev_is_concrete(vd))
6509 		return (0);
6510 
6511 	metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6512 
6513 	ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
6514 	ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE);
6515 
6516 	if (txg < metaslab_unflushed_txg(ms))
6517 		return (0);
6518 
6519 	if (*uic_maptype == sme->sme_type)
6520 		range_tree_add(ms->ms_allocatable, offset, size);
6521 	else
6522 		range_tree_remove(ms->ms_allocatable, offset, size);
6523 
6524 	return (0);
6525 }
6526 
6527 static void
load_unflushed_to_ms_allocatables(spa_t * spa,maptype_t maptype)6528 load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype)
6529 {
6530 	iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype);
6531 }
6532 
6533 static void
load_concrete_ms_allocatable_trees(spa_t * spa,maptype_t maptype)6534 load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype)
6535 {
6536 	vdev_t *rvd = spa->spa_root_vdev;
6537 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
6538 		vdev_t *vd = rvd->vdev_child[i];
6539 
6540 		ASSERT3U(i, ==, vd->vdev_id);
6541 
6542 		if (vd->vdev_ops == &vdev_indirect_ops)
6543 			continue;
6544 
6545 		for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6546 			metaslab_t *msp = vd->vdev_ms[m];
6547 
6548 			(void) fprintf(stderr,
6549 			    "\rloading concrete vdev %llu, "
6550 			    "metaslab %llu of %llu ...",
6551 			    (longlong_t)vd->vdev_id,
6552 			    (longlong_t)msp->ms_id,
6553 			    (longlong_t)vd->vdev_ms_count);
6554 
6555 			mutex_enter(&msp->ms_lock);
6556 			range_tree_vacate(msp->ms_allocatable, NULL, NULL);
6557 
6558 			/*
6559 			 * We don't want to spend the CPU manipulating the
6560 			 * size-ordered tree, so clear the range_tree ops.
6561 			 */
6562 			msp->ms_allocatable->rt_ops = NULL;
6563 
6564 			if (msp->ms_sm != NULL) {
6565 				VERIFY0(space_map_load(msp->ms_sm,
6566 				    msp->ms_allocatable, maptype));
6567 			}
6568 			if (!msp->ms_loaded)
6569 				msp->ms_loaded = B_TRUE;
6570 			mutex_exit(&msp->ms_lock);
6571 		}
6572 	}
6573 
6574 	load_unflushed_to_ms_allocatables(spa, maptype);
6575 }
6576 
6577 /*
6578  * vm_idxp is an in-out parameter which (for indirect vdevs) is the
6579  * index in vim_entries that has the first entry in this metaslab.
6580  * On return, it will be set to the first entry after this metaslab.
6581  */
6582 static void
load_indirect_ms_allocatable_tree(vdev_t * vd,metaslab_t * msp,uint64_t * vim_idxp)6583 load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp,
6584     uint64_t *vim_idxp)
6585 {
6586 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6587 
6588 	mutex_enter(&msp->ms_lock);
6589 	range_tree_vacate(msp->ms_allocatable, NULL, NULL);
6590 
6591 	/*
6592 	 * We don't want to spend the CPU manipulating the
6593 	 * size-ordered tree, so clear the range_tree ops.
6594 	 */
6595 	msp->ms_allocatable->rt_ops = NULL;
6596 
6597 	for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim);
6598 	    (*vim_idxp)++) {
6599 		vdev_indirect_mapping_entry_phys_t *vimep =
6600 		    &vim->vim_entries[*vim_idxp];
6601 		uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep);
6602 		uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst);
6603 		ASSERT3U(ent_offset, >=, msp->ms_start);
6604 		if (ent_offset >= msp->ms_start + msp->ms_size)
6605 			break;
6606 
6607 		/*
6608 		 * Mappings do not cross metaslab boundaries,
6609 		 * because we create them by walking the metaslabs.
6610 		 */
6611 		ASSERT3U(ent_offset + ent_len, <=,
6612 		    msp->ms_start + msp->ms_size);
6613 		range_tree_add(msp->ms_allocatable, ent_offset, ent_len);
6614 	}
6615 
6616 	if (!msp->ms_loaded)
6617 		msp->ms_loaded = B_TRUE;
6618 	mutex_exit(&msp->ms_lock);
6619 }
6620 
6621 static void
zdb_leak_init_prepare_indirect_vdevs(spa_t * spa,zdb_cb_t * zcb)6622 zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb)
6623 {
6624 	ASSERT(!dump_opt['L']);
6625 
6626 	vdev_t *rvd = spa->spa_root_vdev;
6627 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
6628 		vdev_t *vd = rvd->vdev_child[c];
6629 
6630 		ASSERT3U(c, ==, vd->vdev_id);
6631 
6632 		if (vd->vdev_ops != &vdev_indirect_ops)
6633 			continue;
6634 
6635 		/*
6636 		 * Note: we don't check for mapping leaks on
6637 		 * removing vdevs because their ms_allocatable's
6638 		 * are used to look for leaks in allocated space.
6639 		 */
6640 		zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd);
6641 
6642 		/*
6643 		 * Normally, indirect vdevs don't have any
6644 		 * metaslabs.  We want to set them up for
6645 		 * zio_claim().
6646 		 */
6647 		vdev_metaslab_group_create(vd);
6648 		VERIFY0(vdev_metaslab_init(vd, 0));
6649 
6650 		vdev_indirect_mapping_t *vim __maybe_unused =
6651 		    vd->vdev_indirect_mapping;
6652 		uint64_t vim_idx = 0;
6653 		for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6654 
6655 			(void) fprintf(stderr,
6656 			    "\rloading indirect vdev %llu, "
6657 			    "metaslab %llu of %llu ...",
6658 			    (longlong_t)vd->vdev_id,
6659 			    (longlong_t)vd->vdev_ms[m]->ms_id,
6660 			    (longlong_t)vd->vdev_ms_count);
6661 
6662 			load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m],
6663 			    &vim_idx);
6664 		}
6665 		ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim));
6666 	}
6667 }
6668 
6669 static void
zdb_leak_init(spa_t * spa,zdb_cb_t * zcb)6670 zdb_leak_init(spa_t *spa, zdb_cb_t *zcb)
6671 {
6672 	zcb->zcb_spa = spa;
6673 
6674 	if (dump_opt['L'])
6675 		return;
6676 
6677 	dsl_pool_t *dp = spa->spa_dsl_pool;
6678 	vdev_t *rvd = spa->spa_root_vdev;
6679 
6680 	/*
6681 	 * We are going to be changing the meaning of the metaslab's
6682 	 * ms_allocatable.  Ensure that the allocator doesn't try to
6683 	 * use the tree.
6684 	 */
6685 	spa->spa_normal_class->mc_ops = &zdb_metaslab_ops;
6686 	spa->spa_log_class->mc_ops = &zdb_metaslab_ops;
6687 	spa->spa_embedded_log_class->mc_ops = &zdb_metaslab_ops;
6688 
6689 	zcb->zcb_vd_obsolete_counts =
6690 	    umem_zalloc(rvd->vdev_children * sizeof (uint32_t *),
6691 	    UMEM_NOFAIL);
6692 
6693 	/*
6694 	 * For leak detection, we overload the ms_allocatable trees
6695 	 * to contain allocated segments instead of free segments.
6696 	 * As a result, we can't use the normal metaslab_load/unload
6697 	 * interfaces.
6698 	 */
6699 	zdb_leak_init_prepare_indirect_vdevs(spa, zcb);
6700 	load_concrete_ms_allocatable_trees(spa, SM_ALLOC);
6701 
6702 	/*
6703 	 * On load_concrete_ms_allocatable_trees() we loaded all the
6704 	 * allocated entries from the ms_sm to the ms_allocatable for
6705 	 * each metaslab. If the pool has a checkpoint or is in the
6706 	 * middle of discarding a checkpoint, some of these blocks
6707 	 * may have been freed but their ms_sm may not have been
6708 	 * updated because they are referenced by the checkpoint. In
6709 	 * order to avoid false-positives during leak-detection, we
6710 	 * go through the vdev's checkpoint space map and exclude all
6711 	 * its entries from their relevant ms_allocatable.
6712 	 *
6713 	 * We also aggregate the space held by the checkpoint and add
6714 	 * it to zcb_checkpoint_size.
6715 	 *
6716 	 * Note that at this point we are also verifying that all the
6717 	 * entries on the checkpoint_sm are marked as allocated in
6718 	 * the ms_sm of their relevant metaslab.
6719 	 * [see comment in checkpoint_sm_exclude_entry_cb()]
6720 	 */
6721 	zdb_leak_init_exclude_checkpoint(spa, zcb);
6722 	ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa));
6723 
6724 	/* for cleaner progress output */
6725 	(void) fprintf(stderr, "\n");
6726 
6727 	if (bpobj_is_open(&dp->dp_obsolete_bpobj)) {
6728 		ASSERT(spa_feature_is_enabled(spa,
6729 		    SPA_FEATURE_DEVICE_REMOVAL));
6730 		(void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj,
6731 		    increment_indirect_mapping_cb, zcb, NULL);
6732 	}
6733 }
6734 
6735 static boolean_t
zdb_check_for_obsolete_leaks(vdev_t * vd,zdb_cb_t * zcb)6736 zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb)
6737 {
6738 	boolean_t leaks = B_FALSE;
6739 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6740 	uint64_t total_leaked = 0;
6741 	boolean_t are_precise = B_FALSE;
6742 
6743 	ASSERT(vim != NULL);
6744 
6745 	for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) {
6746 		vdev_indirect_mapping_entry_phys_t *vimep =
6747 		    &vim->vim_entries[i];
6748 		uint64_t obsolete_bytes = 0;
6749 		uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep);
6750 		metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6751 
6752 		/*
6753 		 * This is not very efficient but it's easy to
6754 		 * verify correctness.
6755 		 */
6756 		for (uint64_t inner_offset = 0;
6757 		    inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst);
6758 		    inner_offset += 1ULL << vd->vdev_ashift) {
6759 			if (range_tree_contains(msp->ms_allocatable,
6760 			    offset + inner_offset, 1ULL << vd->vdev_ashift)) {
6761 				obsolete_bytes += 1ULL << vd->vdev_ashift;
6762 			}
6763 		}
6764 
6765 		int64_t bytes_leaked = obsolete_bytes -
6766 		    zcb->zcb_vd_obsolete_counts[vd->vdev_id][i];
6767 		ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=,
6768 		    zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]);
6769 
6770 		VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
6771 		if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) {
6772 			(void) printf("obsolete indirect mapping count "
6773 			    "mismatch on %llu:%llx:%llx : %llx bytes leaked\n",
6774 			    (u_longlong_t)vd->vdev_id,
6775 			    (u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep),
6776 			    (u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
6777 			    (u_longlong_t)bytes_leaked);
6778 		}
6779 		total_leaked += ABS(bytes_leaked);
6780 	}
6781 
6782 	VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
6783 	if (!are_precise && total_leaked > 0) {
6784 		int pct_leaked = total_leaked * 100 /
6785 		    vdev_indirect_mapping_bytes_mapped(vim);
6786 		(void) printf("cannot verify obsolete indirect mapping "
6787 		    "counts of vdev %llu because precise feature was not "
6788 		    "enabled when it was removed: %d%% (%llx bytes) of mapping"
6789 		    "unreferenced\n",
6790 		    (u_longlong_t)vd->vdev_id, pct_leaked,
6791 		    (u_longlong_t)total_leaked);
6792 	} else if (total_leaked > 0) {
6793 		(void) printf("obsolete indirect mapping count mismatch "
6794 		    "for vdev %llu -- %llx total bytes mismatched\n",
6795 		    (u_longlong_t)vd->vdev_id,
6796 		    (u_longlong_t)total_leaked);
6797 		leaks |= B_TRUE;
6798 	}
6799 
6800 	vdev_indirect_mapping_free_obsolete_counts(vim,
6801 	    zcb->zcb_vd_obsolete_counts[vd->vdev_id]);
6802 	zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL;
6803 
6804 	return (leaks);
6805 }
6806 
6807 static boolean_t
zdb_leak_fini(spa_t * spa,zdb_cb_t * zcb)6808 zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb)
6809 {
6810 	if (dump_opt['L'])
6811 		return (B_FALSE);
6812 
6813 	boolean_t leaks = B_FALSE;
6814 	vdev_t *rvd = spa->spa_root_vdev;
6815 	for (unsigned c = 0; c < rvd->vdev_children; c++) {
6816 		vdev_t *vd = rvd->vdev_child[c];
6817 
6818 		if (zcb->zcb_vd_obsolete_counts[c] != NULL) {
6819 			leaks |= zdb_check_for_obsolete_leaks(vd, zcb);
6820 		}
6821 
6822 		for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6823 			metaslab_t *msp = vd->vdev_ms[m];
6824 			ASSERT3P(msp->ms_group, ==, (msp->ms_group->mg_class ==
6825 			    spa_embedded_log_class(spa)) ?
6826 			    vd->vdev_log_mg : vd->vdev_mg);
6827 
6828 			/*
6829 			 * ms_allocatable has been overloaded
6830 			 * to contain allocated segments. Now that
6831 			 * we finished traversing all blocks, any
6832 			 * block that remains in the ms_allocatable
6833 			 * represents an allocated block that we
6834 			 * did not claim during the traversal.
6835 			 * Claimed blocks would have been removed
6836 			 * from the ms_allocatable.  For indirect
6837 			 * vdevs, space remaining in the tree
6838 			 * represents parts of the mapping that are
6839 			 * not referenced, which is not a bug.
6840 			 */
6841 			if (vd->vdev_ops == &vdev_indirect_ops) {
6842 				range_tree_vacate(msp->ms_allocatable,
6843 				    NULL, NULL);
6844 			} else {
6845 				range_tree_vacate(msp->ms_allocatable,
6846 				    zdb_leak, vd);
6847 			}
6848 			if (msp->ms_loaded) {
6849 				msp->ms_loaded = B_FALSE;
6850 			}
6851 		}
6852 	}
6853 
6854 	umem_free(zcb->zcb_vd_obsolete_counts,
6855 	    rvd->vdev_children * sizeof (uint32_t *));
6856 	zcb->zcb_vd_obsolete_counts = NULL;
6857 
6858 	return (leaks);
6859 }
6860 
6861 static int
count_block_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)6862 count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6863 {
6864 	(void) tx;
6865 	zdb_cb_t *zcb = arg;
6866 
6867 	if (dump_opt['b'] >= 5) {
6868 		char blkbuf[BP_SPRINTF_LEN];
6869 		snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
6870 		(void) printf("[%s] %s\n",
6871 		    "deferred free", blkbuf);
6872 	}
6873 	zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED);
6874 	return (0);
6875 }
6876 
6877 /*
6878  * Iterate over livelists which have been destroyed by the user but
6879  * are still present in the MOS, waiting to be freed
6880  */
6881 static void
iterate_deleted_livelists(spa_t * spa,ll_iter_t func,void * arg)6882 iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg)
6883 {
6884 	objset_t *mos = spa->spa_meta_objset;
6885 	uint64_t zap_obj;
6886 	int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
6887 	    DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj);
6888 	if (err == ENOENT)
6889 		return;
6890 	ASSERT0(err);
6891 
6892 	zap_cursor_t zc;
6893 	zap_attribute_t *attrp = zap_attribute_alloc();
6894 	dsl_deadlist_t ll;
6895 	/* NULL out os prior to dsl_deadlist_open in case it's garbage */
6896 	ll.dl_os = NULL;
6897 	for (zap_cursor_init(&zc, mos, zap_obj);
6898 	    zap_cursor_retrieve(&zc, attrp) == 0;
6899 	    (void) zap_cursor_advance(&zc)) {
6900 		dsl_deadlist_open(&ll, mos, attrp->za_first_integer);
6901 		func(&ll, arg);
6902 		dsl_deadlist_close(&ll);
6903 	}
6904 	zap_cursor_fini(&zc);
6905 	zap_attribute_free(attrp);
6906 }
6907 
6908 static int
bpobj_count_block_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)6909 bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
6910     dmu_tx_t *tx)
6911 {
6912 	ASSERT(!bp_freed);
6913 	return (count_block_cb(arg, bp, tx));
6914 }
6915 
6916 static int
livelist_entry_count_blocks_cb(void * args,dsl_deadlist_entry_t * dle)6917 livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle)
6918 {
6919 	zdb_cb_t *zbc = args;
6920 	bplist_t blks;
6921 	bplist_create(&blks);
6922 	/* determine which blocks have been alloc'd but not freed */
6923 	VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL));
6924 	/* count those blocks */
6925 	(void) bplist_iterate(&blks, count_block_cb, zbc, NULL);
6926 	bplist_destroy(&blks);
6927 	return (0);
6928 }
6929 
6930 static void
livelist_count_blocks(dsl_deadlist_t * ll,void * arg)6931 livelist_count_blocks(dsl_deadlist_t *ll, void *arg)
6932 {
6933 	dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg);
6934 }
6935 
6936 /*
6937  * Count the blocks in the livelists that have been destroyed by the user
6938  * but haven't yet been freed.
6939  */
6940 static void
deleted_livelists_count_blocks(spa_t * spa,zdb_cb_t * zbc)6941 deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc)
6942 {
6943 	iterate_deleted_livelists(spa, livelist_count_blocks, zbc);
6944 }
6945 
6946 static void
dump_livelist_cb(dsl_deadlist_t * ll,void * arg)6947 dump_livelist_cb(dsl_deadlist_t *ll, void *arg)
6948 {
6949 	ASSERT3P(arg, ==, NULL);
6950 	global_feature_count[SPA_FEATURE_LIVELIST]++;
6951 	dump_blkptr_list(ll, "Deleted Livelist");
6952 	dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL);
6953 }
6954 
6955 /*
6956  * Print out, register object references to, and increment feature counts for
6957  * livelists that have been destroyed by the user but haven't yet been freed.
6958  */
6959 static void
deleted_livelists_dump_mos(spa_t * spa)6960 deleted_livelists_dump_mos(spa_t *spa)
6961 {
6962 	uint64_t zap_obj;
6963 	objset_t *mos = spa->spa_meta_objset;
6964 	int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
6965 	    DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj);
6966 	if (err == ENOENT)
6967 		return;
6968 	mos_obj_refd(zap_obj);
6969 	iterate_deleted_livelists(spa, dump_livelist_cb, NULL);
6970 }
6971 
6972 static int
zdb_brt_entry_compare(const void * zcn1,const void * zcn2)6973 zdb_brt_entry_compare(const void *zcn1, const void *zcn2)
6974 {
6975 	const dva_t *dva1 = &((const zdb_brt_entry_t *)zcn1)->zbre_dva;
6976 	const dva_t *dva2 = &((const zdb_brt_entry_t *)zcn2)->zbre_dva;
6977 	int cmp;
6978 
6979 	cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
6980 	if (cmp == 0)
6981 		cmp = TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2));
6982 
6983 	return (cmp);
6984 }
6985 
6986 static int
dump_block_stats(spa_t * spa)6987 dump_block_stats(spa_t *spa)
6988 {
6989 	zdb_cb_t *zcb;
6990 	zdb_blkstats_t *zb, *tzb;
6991 	uint64_t norm_alloc, norm_space, total_alloc, total_found;
6992 	int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
6993 	    TRAVERSE_NO_DECRYPT | TRAVERSE_HARD;
6994 	boolean_t leaks = B_FALSE;
6995 	int e, c, err;
6996 	bp_embedded_type_t i;
6997 
6998 	ddt_prefetch_all(spa);
6999 
7000 	zcb = umem_zalloc(sizeof (zdb_cb_t), UMEM_NOFAIL);
7001 
7002 	if (spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) {
7003 		avl_create(&zcb->zcb_brt, zdb_brt_entry_compare,
7004 		    sizeof (zdb_brt_entry_t),
7005 		    offsetof(zdb_brt_entry_t, zbre_node));
7006 		zcb->zcb_brt_is_active = B_TRUE;
7007 	}
7008 
7009 	(void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n",
7010 	    (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "",
7011 	    (dump_opt['c'] == 1) ? "metadata " : "",
7012 	    dump_opt['c'] ? "checksums " : "",
7013 	    (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "",
7014 	    !dump_opt['L'] ? "nothing leaked " : "");
7015 
7016 	/*
7017 	 * When leak detection is enabled we load all space maps as SM_ALLOC
7018 	 * maps, then traverse the pool claiming each block we discover. If
7019 	 * the pool is perfectly consistent, the segment trees will be empty
7020 	 * when we're done. Anything left over is a leak; any block we can't
7021 	 * claim (because it's not part of any space map) is a double
7022 	 * allocation, reference to a freed block, or an unclaimed log block.
7023 	 *
7024 	 * When leak detection is disabled (-L option) we still traverse the
7025 	 * pool claiming each block we discover, but we skip opening any space
7026 	 * maps.
7027 	 */
7028 	zdb_leak_init(spa, zcb);
7029 
7030 	/*
7031 	 * If there's a deferred-free bplist, process that first.
7032 	 */
7033 	(void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj,
7034 	    bpobj_count_block_cb, zcb, NULL);
7035 
7036 	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
7037 		(void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj,
7038 		    bpobj_count_block_cb, zcb, NULL);
7039 	}
7040 
7041 	zdb_claim_removing(spa, zcb);
7042 
7043 	if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
7044 		VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset,
7045 		    spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb,
7046 		    zcb, NULL));
7047 	}
7048 
7049 	deleted_livelists_count_blocks(spa, zcb);
7050 
7051 	if (dump_opt['c'] > 1)
7052 		flags |= TRAVERSE_PREFETCH_DATA;
7053 
7054 	zcb->zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa));
7055 	zcb->zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa));
7056 	zcb->zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa));
7057 	zcb->zcb_totalasize +=
7058 	    metaslab_class_get_alloc(spa_embedded_log_class(spa));
7059 	zcb->zcb_start = zcb->zcb_lastprint = gethrtime();
7060 	err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, zcb);
7061 
7062 	/*
7063 	 * If we've traversed the data blocks then we need to wait for those
7064 	 * I/Os to complete. We leverage "The Godfather" zio to wait on
7065 	 * all async I/Os to complete.
7066 	 */
7067 	if (dump_opt['c']) {
7068 		for (c = 0; c < max_ncpus; c++) {
7069 			(void) zio_wait(spa->spa_async_zio_root[c]);
7070 			spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL,
7071 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
7072 			    ZIO_FLAG_GODFATHER);
7073 		}
7074 	}
7075 	ASSERT0(spa->spa_load_verify_bytes);
7076 
7077 	/*
7078 	 * Done after zio_wait() since zcb_haderrors is modified in
7079 	 * zdb_blkptr_done()
7080 	 */
7081 	zcb->zcb_haderrors |= err;
7082 
7083 	if (zcb->zcb_haderrors) {
7084 		(void) printf("\nError counts:\n\n");
7085 		(void) printf("\t%5s  %s\n", "errno", "count");
7086 		for (e = 0; e < 256; e++) {
7087 			if (zcb->zcb_errors[e] != 0) {
7088 				(void) printf("\t%5d  %llu\n",
7089 				    e, (u_longlong_t)zcb->zcb_errors[e]);
7090 			}
7091 		}
7092 	}
7093 
7094 	/*
7095 	 * Report any leaked segments.
7096 	 */
7097 	leaks |= zdb_leak_fini(spa, zcb);
7098 
7099 	tzb = &zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL];
7100 
7101 	norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
7102 	norm_space = metaslab_class_get_space(spa_normal_class(spa));
7103 
7104 	total_alloc = norm_alloc +
7105 	    metaslab_class_get_alloc(spa_log_class(spa)) +
7106 	    metaslab_class_get_alloc(spa_embedded_log_class(spa)) +
7107 	    metaslab_class_get_alloc(spa_special_class(spa)) +
7108 	    metaslab_class_get_alloc(spa_dedup_class(spa)) +
7109 	    get_unflushed_alloc_space(spa);
7110 	total_found =
7111 	    tzb->zb_asize - zcb->zcb_dedup_asize - zcb->zcb_clone_asize +
7112 	    zcb->zcb_removing_size + zcb->zcb_checkpoint_size;
7113 
7114 	if (total_found == total_alloc && !dump_opt['L']) {
7115 		(void) printf("\n\tNo leaks (block sum matches space"
7116 		    " maps exactly)\n");
7117 	} else if (!dump_opt['L']) {
7118 		(void) printf("block traversal size %llu != alloc %llu "
7119 		    "(%s %lld)\n",
7120 		    (u_longlong_t)total_found,
7121 		    (u_longlong_t)total_alloc,
7122 		    (dump_opt['L']) ? "unreachable" : "leaked",
7123 		    (longlong_t)(total_alloc - total_found));
7124 	}
7125 
7126 	if (tzb->zb_count == 0) {
7127 		umem_free(zcb, sizeof (zdb_cb_t));
7128 		return (2);
7129 	}
7130 
7131 	(void) printf("\n");
7132 	(void) printf("\t%-16s %14llu\n", "bp count:",
7133 	    (u_longlong_t)tzb->zb_count);
7134 	(void) printf("\t%-16s %14llu\n", "ganged count:",
7135 	    (longlong_t)tzb->zb_gangs);
7136 	(void) printf("\t%-16s %14llu      avg: %6llu\n", "bp logical:",
7137 	    (u_longlong_t)tzb->zb_lsize,
7138 	    (u_longlong_t)(tzb->zb_lsize / tzb->zb_count));
7139 	(void) printf("\t%-16s %14llu      avg: %6llu     compression: %6.2f\n",
7140 	    "bp physical:", (u_longlong_t)tzb->zb_psize,
7141 	    (u_longlong_t)(tzb->zb_psize / tzb->zb_count),
7142 	    (double)tzb->zb_lsize / tzb->zb_psize);
7143 	(void) printf("\t%-16s %14llu      avg: %6llu     compression: %6.2f\n",
7144 	    "bp allocated:", (u_longlong_t)tzb->zb_asize,
7145 	    (u_longlong_t)(tzb->zb_asize / tzb->zb_count),
7146 	    (double)tzb->zb_lsize / tzb->zb_asize);
7147 	(void) printf("\t%-16s %14llu    ref>1: %6llu   deduplication: %6.2f\n",
7148 	    "bp deduped:", (u_longlong_t)zcb->zcb_dedup_asize,
7149 	    (u_longlong_t)zcb->zcb_dedup_blocks,
7150 	    (double)zcb->zcb_dedup_asize / tzb->zb_asize + 1.0);
7151 	(void) printf("\t%-16s %14llu    count: %6llu\n",
7152 	    "bp cloned:", (u_longlong_t)zcb->zcb_clone_asize,
7153 	    (u_longlong_t)zcb->zcb_clone_blocks);
7154 	(void) printf("\t%-16s %14llu     used: %5.2f%%\n", "Normal class:",
7155 	    (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space);
7156 
7157 	if (spa_special_class(spa)->mc_allocator[0].mca_rotor != NULL) {
7158 		uint64_t alloc = metaslab_class_get_alloc(
7159 		    spa_special_class(spa));
7160 		uint64_t space = metaslab_class_get_space(
7161 		    spa_special_class(spa));
7162 
7163 		(void) printf("\t%-16s %14llu     used: %5.2f%%\n",
7164 		    "Special class", (u_longlong_t)alloc,
7165 		    100.0 * alloc / space);
7166 	}
7167 
7168 	if (spa_dedup_class(spa)->mc_allocator[0].mca_rotor != NULL) {
7169 		uint64_t alloc = metaslab_class_get_alloc(
7170 		    spa_dedup_class(spa));
7171 		uint64_t space = metaslab_class_get_space(
7172 		    spa_dedup_class(spa));
7173 
7174 		(void) printf("\t%-16s %14llu     used: %5.2f%%\n",
7175 		    "Dedup class", (u_longlong_t)alloc,
7176 		    100.0 * alloc / space);
7177 	}
7178 
7179 	if (spa_embedded_log_class(spa)->mc_allocator[0].mca_rotor != NULL) {
7180 		uint64_t alloc = metaslab_class_get_alloc(
7181 		    spa_embedded_log_class(spa));
7182 		uint64_t space = metaslab_class_get_space(
7183 		    spa_embedded_log_class(spa));
7184 
7185 		(void) printf("\t%-16s %14llu     used: %5.2f%%\n",
7186 		    "Embedded log class", (u_longlong_t)alloc,
7187 		    100.0 * alloc / space);
7188 	}
7189 
7190 	for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) {
7191 		if (zcb->zcb_embedded_blocks[i] == 0)
7192 			continue;
7193 		(void) printf("\n");
7194 		(void) printf("\tadditional, non-pointer bps of type %u: "
7195 		    "%10llu\n",
7196 		    i, (u_longlong_t)zcb->zcb_embedded_blocks[i]);
7197 
7198 		if (dump_opt['b'] >= 3) {
7199 			(void) printf("\t number of (compressed) bytes:  "
7200 			    "number of bps\n");
7201 			dump_histogram(zcb->zcb_embedded_histogram[i],
7202 			    sizeof (zcb->zcb_embedded_histogram[i]) /
7203 			    sizeof (zcb->zcb_embedded_histogram[i][0]), 0);
7204 		}
7205 	}
7206 
7207 	if (tzb->zb_ditto_samevdev != 0) {
7208 		(void) printf("\tDittoed blocks on same vdev: %llu\n",
7209 		    (longlong_t)tzb->zb_ditto_samevdev);
7210 	}
7211 	if (tzb->zb_ditto_same_ms != 0) {
7212 		(void) printf("\tDittoed blocks in same metaslab: %llu\n",
7213 		    (longlong_t)tzb->zb_ditto_same_ms);
7214 	}
7215 
7216 	for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) {
7217 		vdev_t *vd = spa->spa_root_vdev->vdev_child[v];
7218 		vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
7219 
7220 		if (vim == NULL) {
7221 			continue;
7222 		}
7223 
7224 		char mem[32];
7225 		zdb_nicenum(vdev_indirect_mapping_num_entries(vim),
7226 		    mem, vdev_indirect_mapping_size(vim));
7227 
7228 		(void) printf("\tindirect vdev id %llu has %llu segments "
7229 		    "(%s in memory)\n",
7230 		    (longlong_t)vd->vdev_id,
7231 		    (longlong_t)vdev_indirect_mapping_num_entries(vim), mem);
7232 	}
7233 
7234 	if (dump_opt['b'] >= 2) {
7235 		int l, t, level;
7236 		char csize[32], lsize[32], psize[32], asize[32];
7237 		char avg[32], gang[32];
7238 		(void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE"
7239 		    "\t  avg\t comp\t%%Total\tType\n");
7240 
7241 		zfs_blkstat_t *mdstats = umem_zalloc(sizeof (zfs_blkstat_t),
7242 		    UMEM_NOFAIL);
7243 
7244 		for (t = 0; t <= ZDB_OT_TOTAL; t++) {
7245 			const char *typename;
7246 
7247 			/* make sure nicenum has enough space */
7248 			_Static_assert(sizeof (csize) >= NN_NUMBUF_SZ,
7249 			    "csize truncated");
7250 			_Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ,
7251 			    "lsize truncated");
7252 			_Static_assert(sizeof (psize) >= NN_NUMBUF_SZ,
7253 			    "psize truncated");
7254 			_Static_assert(sizeof (asize) >= NN_NUMBUF_SZ,
7255 			    "asize truncated");
7256 			_Static_assert(sizeof (avg) >= NN_NUMBUF_SZ,
7257 			    "avg truncated");
7258 			_Static_assert(sizeof (gang) >= NN_NUMBUF_SZ,
7259 			    "gang truncated");
7260 
7261 			if (t < DMU_OT_NUMTYPES)
7262 				typename = dmu_ot[t].ot_name;
7263 			else
7264 				typename = zdb_ot_extname[t - DMU_OT_NUMTYPES];
7265 
7266 			if (zcb->zcb_type[ZB_TOTAL][t].zb_asize == 0) {
7267 				(void) printf("%6s\t%5s\t%5s\t%5s"
7268 				    "\t%5s\t%5s\t%6s\t%s\n",
7269 				    "-",
7270 				    "-",
7271 				    "-",
7272 				    "-",
7273 				    "-",
7274 				    "-",
7275 				    "-",
7276 				    typename);
7277 				continue;
7278 			}
7279 
7280 			for (l = ZB_TOTAL - 1; l >= -1; l--) {
7281 				level = (l == -1 ? ZB_TOTAL : l);
7282 				zb = &zcb->zcb_type[level][t];
7283 
7284 				if (zb->zb_asize == 0)
7285 					continue;
7286 
7287 				if (level != ZB_TOTAL && t < DMU_OT_NUMTYPES &&
7288 				    (level > 0 || DMU_OT_IS_METADATA(t))) {
7289 					mdstats->zb_count += zb->zb_count;
7290 					mdstats->zb_lsize += zb->zb_lsize;
7291 					mdstats->zb_psize += zb->zb_psize;
7292 					mdstats->zb_asize += zb->zb_asize;
7293 					mdstats->zb_gangs += zb->zb_gangs;
7294 				}
7295 
7296 				if (dump_opt['b'] < 3 && level != ZB_TOTAL)
7297 					continue;
7298 
7299 				if (level == 0 && zb->zb_asize ==
7300 				    zcb->zcb_type[ZB_TOTAL][t].zb_asize)
7301 					continue;
7302 
7303 				zdb_nicenum(zb->zb_count, csize,
7304 				    sizeof (csize));
7305 				zdb_nicenum(zb->zb_lsize, lsize,
7306 				    sizeof (lsize));
7307 				zdb_nicenum(zb->zb_psize, psize,
7308 				    sizeof (psize));
7309 				zdb_nicenum(zb->zb_asize, asize,
7310 				    sizeof (asize));
7311 				zdb_nicenum(zb->zb_asize / zb->zb_count, avg,
7312 				    sizeof (avg));
7313 				zdb_nicenum(zb->zb_gangs, gang, sizeof (gang));
7314 
7315 				(void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
7316 				    "\t%5.2f\t%6.2f\t",
7317 				    csize, lsize, psize, asize, avg,
7318 				    (double)zb->zb_lsize / zb->zb_psize,
7319 				    100.0 * zb->zb_asize / tzb->zb_asize);
7320 
7321 				if (level == ZB_TOTAL)
7322 					(void) printf("%s\n", typename);
7323 				else
7324 					(void) printf("    L%d %s\n",
7325 					    level, typename);
7326 
7327 				if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) {
7328 					(void) printf("\t number of ganged "
7329 					    "blocks: %s\n", gang);
7330 				}
7331 
7332 				if (dump_opt['b'] >= 4) {
7333 					(void) printf("psize "
7334 					    "(in 512-byte sectors): "
7335 					    "number of blocks\n");
7336 					dump_histogram(zb->zb_psize_histogram,
7337 					    PSIZE_HISTO_SIZE, 0);
7338 				}
7339 			}
7340 		}
7341 		zdb_nicenum(mdstats->zb_count, csize,
7342 		    sizeof (csize));
7343 		zdb_nicenum(mdstats->zb_lsize, lsize,
7344 		    sizeof (lsize));
7345 		zdb_nicenum(mdstats->zb_psize, psize,
7346 		    sizeof (psize));
7347 		zdb_nicenum(mdstats->zb_asize, asize,
7348 		    sizeof (asize));
7349 		zdb_nicenum(mdstats->zb_asize / mdstats->zb_count, avg,
7350 		    sizeof (avg));
7351 		zdb_nicenum(mdstats->zb_gangs, gang, sizeof (gang));
7352 
7353 		(void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
7354 		    "\t%5.2f\t%6.2f\t",
7355 		    csize, lsize, psize, asize, avg,
7356 		    (double)mdstats->zb_lsize / mdstats->zb_psize,
7357 		    100.0 * mdstats->zb_asize / tzb->zb_asize);
7358 		(void) printf("%s\n", "Metadata Total");
7359 
7360 		/* Output a table summarizing block sizes in the pool */
7361 		if (dump_opt['b'] >= 2) {
7362 			dump_size_histograms(zcb);
7363 		}
7364 
7365 		umem_free(mdstats, sizeof (zfs_blkstat_t));
7366 	}
7367 
7368 	(void) printf("\n");
7369 
7370 	if (leaks) {
7371 		umem_free(zcb, sizeof (zdb_cb_t));
7372 		return (2);
7373 	}
7374 
7375 	if (zcb->zcb_haderrors) {
7376 		umem_free(zcb, sizeof (zdb_cb_t));
7377 		return (3);
7378 	}
7379 
7380 	umem_free(zcb, sizeof (zdb_cb_t));
7381 	return (0);
7382 }
7383 
7384 typedef struct zdb_ddt_entry {
7385 	/* key must be first for ddt_key_compare */
7386 	ddt_key_t	zdde_key;
7387 	uint64_t	zdde_ref_blocks;
7388 	uint64_t	zdde_ref_lsize;
7389 	uint64_t	zdde_ref_psize;
7390 	uint64_t	zdde_ref_dsize;
7391 	avl_node_t	zdde_node;
7392 } zdb_ddt_entry_t;
7393 
7394 static int
zdb_ddt_add_cb(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_phys_t * zb,const dnode_phys_t * dnp,void * arg)7395 zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
7396     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
7397 {
7398 	(void) zilog, (void) dnp;
7399 	avl_tree_t *t = arg;
7400 	avl_index_t where;
7401 	zdb_ddt_entry_t *zdde, zdde_search;
7402 
7403 	if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
7404 	    BP_IS_EMBEDDED(bp))
7405 		return (0);
7406 
7407 	if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) {
7408 		(void) printf("traversing objset %llu, %llu objects, "
7409 		    "%lu blocks so far\n",
7410 		    (u_longlong_t)zb->zb_objset,
7411 		    (u_longlong_t)BP_GET_FILL(bp),
7412 		    avl_numnodes(t));
7413 	}
7414 
7415 	if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF ||
7416 	    BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp)))
7417 		return (0);
7418 
7419 	ddt_key_fill(&zdde_search.zdde_key, bp);
7420 
7421 	zdde = avl_find(t, &zdde_search, &where);
7422 
7423 	if (zdde == NULL) {
7424 		zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL);
7425 		zdde->zdde_key = zdde_search.zdde_key;
7426 		avl_insert(t, zdde, where);
7427 	}
7428 
7429 	zdde->zdde_ref_blocks += 1;
7430 	zdde->zdde_ref_lsize += BP_GET_LSIZE(bp);
7431 	zdde->zdde_ref_psize += BP_GET_PSIZE(bp);
7432 	zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp);
7433 
7434 	return (0);
7435 }
7436 
7437 static void
dump_simulated_ddt(spa_t * spa)7438 dump_simulated_ddt(spa_t *spa)
7439 {
7440 	avl_tree_t t;
7441 	void *cookie = NULL;
7442 	zdb_ddt_entry_t *zdde;
7443 	ddt_histogram_t ddh_total = {{{0}}};
7444 	ddt_stat_t dds_total = {0};
7445 
7446 	avl_create(&t, ddt_key_compare,
7447 	    sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node));
7448 
7449 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7450 
7451 	(void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
7452 	    TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t);
7453 
7454 	spa_config_exit(spa, SCL_CONFIG, FTAG);
7455 
7456 	while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) {
7457 		uint64_t refcnt = zdde->zdde_ref_blocks;
7458 		ASSERT(refcnt != 0);
7459 
7460 		ddt_stat_t *dds = &ddh_total.ddh_stat[highbit64(refcnt) - 1];
7461 
7462 		dds->dds_blocks += zdde->zdde_ref_blocks / refcnt;
7463 		dds->dds_lsize += zdde->zdde_ref_lsize / refcnt;
7464 		dds->dds_psize += zdde->zdde_ref_psize / refcnt;
7465 		dds->dds_dsize += zdde->zdde_ref_dsize / refcnt;
7466 
7467 		dds->dds_ref_blocks += zdde->zdde_ref_blocks;
7468 		dds->dds_ref_lsize += zdde->zdde_ref_lsize;
7469 		dds->dds_ref_psize += zdde->zdde_ref_psize;
7470 		dds->dds_ref_dsize += zdde->zdde_ref_dsize;
7471 
7472 		umem_free(zdde, sizeof (*zdde));
7473 	}
7474 
7475 	avl_destroy(&t);
7476 
7477 	ddt_histogram_total(&dds_total, &ddh_total);
7478 
7479 	(void) printf("Simulated DDT histogram:\n");
7480 
7481 	zpool_dump_ddt(&dds_total, &ddh_total);
7482 
7483 	dump_dedup_ratio(&dds_total);
7484 }
7485 
7486 static int
verify_device_removal_feature_counts(spa_t * spa)7487 verify_device_removal_feature_counts(spa_t *spa)
7488 {
7489 	uint64_t dr_feature_refcount = 0;
7490 	uint64_t oc_feature_refcount = 0;
7491 	uint64_t indirect_vdev_count = 0;
7492 	uint64_t precise_vdev_count = 0;
7493 	uint64_t obsolete_counts_object_count = 0;
7494 	uint64_t obsolete_sm_count = 0;
7495 	uint64_t obsolete_counts_count = 0;
7496 	uint64_t scip_count = 0;
7497 	uint64_t obsolete_bpobj_count = 0;
7498 	int ret = 0;
7499 
7500 	spa_condensing_indirect_phys_t *scip =
7501 	    &spa->spa_condensing_indirect_phys;
7502 	if (scip->scip_next_mapping_object != 0) {
7503 		vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev];
7504 		ASSERT(scip->scip_prev_obsolete_sm_object != 0);
7505 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
7506 
7507 		(void) printf("Condensing indirect vdev %llu: new mapping "
7508 		    "object %llu, prev obsolete sm %llu\n",
7509 		    (u_longlong_t)scip->scip_vdev,
7510 		    (u_longlong_t)scip->scip_next_mapping_object,
7511 		    (u_longlong_t)scip->scip_prev_obsolete_sm_object);
7512 		if (scip->scip_prev_obsolete_sm_object != 0) {
7513 			space_map_t *prev_obsolete_sm = NULL;
7514 			VERIFY0(space_map_open(&prev_obsolete_sm,
7515 			    spa->spa_meta_objset,
7516 			    scip->scip_prev_obsolete_sm_object,
7517 			    0, vd->vdev_asize, 0));
7518 			dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm);
7519 			(void) printf("\n");
7520 			space_map_close(prev_obsolete_sm);
7521 		}
7522 
7523 		scip_count += 2;
7524 	}
7525 
7526 	for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
7527 		vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
7528 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
7529 
7530 		if (vic->vic_mapping_object != 0) {
7531 			ASSERT(vd->vdev_ops == &vdev_indirect_ops ||
7532 			    vd->vdev_removing);
7533 			indirect_vdev_count++;
7534 
7535 			if (vd->vdev_indirect_mapping->vim_havecounts) {
7536 				obsolete_counts_count++;
7537 			}
7538 		}
7539 
7540 		boolean_t are_precise;
7541 		VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
7542 		if (are_precise) {
7543 			ASSERT(vic->vic_mapping_object != 0);
7544 			precise_vdev_count++;
7545 		}
7546 
7547 		uint64_t obsolete_sm_object;
7548 		VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
7549 		if (obsolete_sm_object != 0) {
7550 			ASSERT(vic->vic_mapping_object != 0);
7551 			obsolete_sm_count++;
7552 		}
7553 	}
7554 
7555 	(void) feature_get_refcount(spa,
7556 	    &spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL],
7557 	    &dr_feature_refcount);
7558 	(void) feature_get_refcount(spa,
7559 	    &spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS],
7560 	    &oc_feature_refcount);
7561 
7562 	if (dr_feature_refcount != indirect_vdev_count) {
7563 		ret = 1;
7564 		(void) printf("Number of indirect vdevs (%llu) " \
7565 		    "does not match feature count (%llu)\n",
7566 		    (u_longlong_t)indirect_vdev_count,
7567 		    (u_longlong_t)dr_feature_refcount);
7568 	} else {
7569 		(void) printf("Verified device_removal feature refcount " \
7570 		    "of %llu is correct\n",
7571 		    (u_longlong_t)dr_feature_refcount);
7572 	}
7573 
7574 	if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT,
7575 	    DMU_POOL_OBSOLETE_BPOBJ) == 0) {
7576 		obsolete_bpobj_count++;
7577 	}
7578 
7579 
7580 	obsolete_counts_object_count = precise_vdev_count;
7581 	obsolete_counts_object_count += obsolete_sm_count;
7582 	obsolete_counts_object_count += obsolete_counts_count;
7583 	obsolete_counts_object_count += scip_count;
7584 	obsolete_counts_object_count += obsolete_bpobj_count;
7585 	obsolete_counts_object_count += remap_deadlist_count;
7586 
7587 	if (oc_feature_refcount != obsolete_counts_object_count) {
7588 		ret = 1;
7589 		(void) printf("Number of obsolete counts objects (%llu) " \
7590 		    "does not match feature count (%llu)\n",
7591 		    (u_longlong_t)obsolete_counts_object_count,
7592 		    (u_longlong_t)oc_feature_refcount);
7593 		(void) printf("pv:%llu os:%llu oc:%llu sc:%llu "
7594 		    "ob:%llu rd:%llu\n",
7595 		    (u_longlong_t)precise_vdev_count,
7596 		    (u_longlong_t)obsolete_sm_count,
7597 		    (u_longlong_t)obsolete_counts_count,
7598 		    (u_longlong_t)scip_count,
7599 		    (u_longlong_t)obsolete_bpobj_count,
7600 		    (u_longlong_t)remap_deadlist_count);
7601 	} else {
7602 		(void) printf("Verified indirect_refcount feature refcount " \
7603 		    "of %llu is correct\n",
7604 		    (u_longlong_t)oc_feature_refcount);
7605 	}
7606 	return (ret);
7607 }
7608 
7609 static void
zdb_set_skip_mmp(char * target)7610 zdb_set_skip_mmp(char *target)
7611 {
7612 	spa_t *spa;
7613 
7614 	/*
7615 	 * Disable the activity check to allow examination of
7616 	 * active pools.
7617 	 */
7618 	mutex_enter(&spa_namespace_lock);
7619 	if ((spa = spa_lookup(target)) != NULL) {
7620 		spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP;
7621 	}
7622 	mutex_exit(&spa_namespace_lock);
7623 }
7624 
7625 #define	BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE"
7626 /*
7627  * Import the checkpointed state of the pool specified by the target
7628  * parameter as readonly. The function also accepts a pool config
7629  * as an optional parameter, else it attempts to infer the config by
7630  * the name of the target pool.
7631  *
7632  * Note that the checkpointed state's pool name will be the name of
7633  * the original pool with the above suffix appended to it. In addition,
7634  * if the target is not a pool name (e.g. a path to a dataset) then
7635  * the new_path parameter is populated with the updated path to
7636  * reflect the fact that we are looking into the checkpointed state.
7637  *
7638  * The function returns a newly-allocated copy of the name of the
7639  * pool containing the checkpointed state. When this copy is no
7640  * longer needed it should be freed with free(3C). Same thing
7641  * applies to the new_path parameter if allocated.
7642  */
7643 static char *
import_checkpointed_state(char * target,nvlist_t * cfg,char ** new_path)7644 import_checkpointed_state(char *target, nvlist_t *cfg, char **new_path)
7645 {
7646 	int error = 0;
7647 	char *poolname, *bogus_name = NULL;
7648 	boolean_t freecfg = B_FALSE;
7649 
7650 	/* If the target is not a pool, the extract the pool name */
7651 	char *path_start = strchr(target, '/');
7652 	if (path_start != NULL) {
7653 		size_t poolname_len = path_start - target;
7654 		poolname = strndup(target, poolname_len);
7655 	} else {
7656 		poolname = target;
7657 	}
7658 
7659 	if (cfg == NULL) {
7660 		zdb_set_skip_mmp(poolname);
7661 		error = spa_get_stats(poolname, &cfg, NULL, 0);
7662 		if (error != 0) {
7663 			fatal("Tried to read config of pool \"%s\" but "
7664 			    "spa_get_stats() failed with error %d\n",
7665 			    poolname, error);
7666 		}
7667 		freecfg = B_TRUE;
7668 	}
7669 
7670 	if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1) {
7671 		if (target != poolname)
7672 			free(poolname);
7673 		return (NULL);
7674 	}
7675 	fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name);
7676 
7677 	error = spa_import(bogus_name, cfg, NULL,
7678 	    ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT |
7679 	    ZFS_IMPORT_SKIP_MMP);
7680 	if (freecfg)
7681 		nvlist_free(cfg);
7682 	if (error != 0) {
7683 		fatal("Tried to import pool \"%s\" but spa_import() failed "
7684 		    "with error %d\n", bogus_name, error);
7685 	}
7686 
7687 	if (new_path != NULL && path_start != NULL) {
7688 		if (asprintf(new_path, "%s%s", bogus_name, path_start) == -1) {
7689 			free(bogus_name);
7690 			if (path_start != NULL)
7691 				free(poolname);
7692 			return (NULL);
7693 		}
7694 	}
7695 
7696 	if (target != poolname)
7697 		free(poolname);
7698 
7699 	return (bogus_name);
7700 }
7701 
7702 typedef struct verify_checkpoint_sm_entry_cb_arg {
7703 	vdev_t *vcsec_vd;
7704 
7705 	/* the following fields are only used for printing progress */
7706 	uint64_t vcsec_entryid;
7707 	uint64_t vcsec_num_entries;
7708 } verify_checkpoint_sm_entry_cb_arg_t;
7709 
7710 #define	ENTRIES_PER_PROGRESS_UPDATE 10000
7711 
7712 static int
verify_checkpoint_sm_entry_cb(space_map_entry_t * sme,void * arg)7713 verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg)
7714 {
7715 	verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg;
7716 	vdev_t *vd = vcsec->vcsec_vd;
7717 	metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
7718 	uint64_t end = sme->sme_offset + sme->sme_run;
7719 
7720 	ASSERT(sme->sme_type == SM_FREE);
7721 
7722 	if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) {
7723 		(void) fprintf(stderr,
7724 		    "\rverifying vdev %llu, space map entry %llu of %llu ...",
7725 		    (longlong_t)vd->vdev_id,
7726 		    (longlong_t)vcsec->vcsec_entryid,
7727 		    (longlong_t)vcsec->vcsec_num_entries);
7728 	}
7729 	vcsec->vcsec_entryid++;
7730 
7731 	/*
7732 	 * See comment in checkpoint_sm_exclude_entry_cb()
7733 	 */
7734 	VERIFY3U(sme->sme_offset, >=, ms->ms_start);
7735 	VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
7736 
7737 	/*
7738 	 * The entries in the vdev_checkpoint_sm should be marked as
7739 	 * allocated in the checkpointed state of the pool, therefore
7740 	 * their respective ms_allocateable trees should not contain them.
7741 	 */
7742 	mutex_enter(&ms->ms_lock);
7743 	range_tree_verify_not_present(ms->ms_allocatable,
7744 	    sme->sme_offset, sme->sme_run);
7745 	mutex_exit(&ms->ms_lock);
7746 
7747 	return (0);
7748 }
7749 
7750 /*
7751  * Verify that all segments in the vdev_checkpoint_sm are allocated
7752  * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's
7753  * ms_allocatable).
7754  *
7755  * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of
7756  * each vdev in the current state of the pool to the metaslab space maps
7757  * (ms_sm) of the checkpointed state of the pool.
7758  *
7759  * Note that the function changes the state of the ms_allocatable
7760  * trees of the current spa_t. The entries of these ms_allocatable
7761  * trees are cleared out and then repopulated from with the free
7762  * entries of their respective ms_sm space maps.
7763  */
7764 static void
verify_checkpoint_vdev_spacemaps(spa_t * checkpoint,spa_t * current)7765 verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current)
7766 {
7767 	vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev;
7768 	vdev_t *current_rvd = current->spa_root_vdev;
7769 
7770 	load_concrete_ms_allocatable_trees(checkpoint, SM_FREE);
7771 
7772 	for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) {
7773 		vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c];
7774 		vdev_t *current_vd = current_rvd->vdev_child[c];
7775 
7776 		space_map_t *checkpoint_sm = NULL;
7777 		uint64_t checkpoint_sm_obj;
7778 
7779 		if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) {
7780 			/*
7781 			 * Since we don't allow device removal in a pool
7782 			 * that has a checkpoint, we expect that all removed
7783 			 * vdevs were removed from the pool before the
7784 			 * checkpoint.
7785 			 */
7786 			ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops);
7787 			continue;
7788 		}
7789 
7790 		/*
7791 		 * If the checkpoint space map doesn't exist, then nothing
7792 		 * here is checkpointed so there's nothing to verify.
7793 		 */
7794 		if (current_vd->vdev_top_zap == 0 ||
7795 		    zap_contains(spa_meta_objset(current),
7796 		    current_vd->vdev_top_zap,
7797 		    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
7798 			continue;
7799 
7800 		VERIFY0(zap_lookup(spa_meta_objset(current),
7801 		    current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
7802 		    sizeof (uint64_t), 1, &checkpoint_sm_obj));
7803 
7804 		VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current),
7805 		    checkpoint_sm_obj, 0, current_vd->vdev_asize,
7806 		    current_vd->vdev_ashift));
7807 
7808 		verify_checkpoint_sm_entry_cb_arg_t vcsec;
7809 		vcsec.vcsec_vd = ckpoint_vd;
7810 		vcsec.vcsec_entryid = 0;
7811 		vcsec.vcsec_num_entries =
7812 		    space_map_length(checkpoint_sm) / sizeof (uint64_t);
7813 		VERIFY0(space_map_iterate(checkpoint_sm,
7814 		    space_map_length(checkpoint_sm),
7815 		    verify_checkpoint_sm_entry_cb, &vcsec));
7816 		if (dump_opt['m'] > 3)
7817 			dump_spacemap(current->spa_meta_objset, checkpoint_sm);
7818 		space_map_close(checkpoint_sm);
7819 	}
7820 
7821 	/*
7822 	 * If we've added vdevs since we took the checkpoint, ensure
7823 	 * that their checkpoint space maps are empty.
7824 	 */
7825 	if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) {
7826 		for (uint64_t c = ckpoint_rvd->vdev_children;
7827 		    c < current_rvd->vdev_children; c++) {
7828 			vdev_t *current_vd = current_rvd->vdev_child[c];
7829 			VERIFY3P(current_vd->vdev_checkpoint_sm, ==, NULL);
7830 		}
7831 	}
7832 
7833 	/* for cleaner progress output */
7834 	(void) fprintf(stderr, "\n");
7835 }
7836 
7837 /*
7838  * Verifies that all space that's allocated in the checkpoint is
7839  * still allocated in the current version, by checking that everything
7840  * in checkpoint's ms_allocatable (which is actually allocated, not
7841  * allocatable/free) is not present in current's ms_allocatable.
7842  *
7843  * Note that the function changes the state of the ms_allocatable
7844  * trees of both spas when called. The entries of all ms_allocatable
7845  * trees are cleared out and then repopulated from their respective
7846  * ms_sm space maps. In the checkpointed state we load the allocated
7847  * entries, and in the current state we load the free entries.
7848  */
7849 static void
verify_checkpoint_ms_spacemaps(spa_t * checkpoint,spa_t * current)7850 verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current)
7851 {
7852 	vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev;
7853 	vdev_t *current_rvd = current->spa_root_vdev;
7854 
7855 	load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC);
7856 	load_concrete_ms_allocatable_trees(current, SM_FREE);
7857 
7858 	for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) {
7859 		vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i];
7860 		vdev_t *current_vd = current_rvd->vdev_child[i];
7861 
7862 		if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) {
7863 			/*
7864 			 * See comment in verify_checkpoint_vdev_spacemaps()
7865 			 */
7866 			ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops);
7867 			continue;
7868 		}
7869 
7870 		for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) {
7871 			metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m];
7872 			metaslab_t *current_msp = current_vd->vdev_ms[m];
7873 
7874 			(void) fprintf(stderr,
7875 			    "\rverifying vdev %llu of %llu, "
7876 			    "metaslab %llu of %llu ...",
7877 			    (longlong_t)current_vd->vdev_id,
7878 			    (longlong_t)current_rvd->vdev_children,
7879 			    (longlong_t)current_vd->vdev_ms[m]->ms_id,
7880 			    (longlong_t)current_vd->vdev_ms_count);
7881 
7882 			/*
7883 			 * We walk through the ms_allocatable trees that
7884 			 * are loaded with the allocated blocks from the
7885 			 * ms_sm spacemaps of the checkpoint. For each
7886 			 * one of these ranges we ensure that none of them
7887 			 * exists in the ms_allocatable trees of the
7888 			 * current state which are loaded with the ranges
7889 			 * that are currently free.
7890 			 *
7891 			 * This way we ensure that none of the blocks that
7892 			 * are part of the checkpoint were freed by mistake.
7893 			 */
7894 			range_tree_walk(ckpoint_msp->ms_allocatable,
7895 			    (range_tree_func_t *)range_tree_verify_not_present,
7896 			    current_msp->ms_allocatable);
7897 		}
7898 	}
7899 
7900 	/* for cleaner progress output */
7901 	(void) fprintf(stderr, "\n");
7902 }
7903 
7904 static void
verify_checkpoint_blocks(spa_t * spa)7905 verify_checkpoint_blocks(spa_t *spa)
7906 {
7907 	ASSERT(!dump_opt['L']);
7908 
7909 	spa_t *checkpoint_spa;
7910 	char *checkpoint_pool;
7911 	int error = 0;
7912 
7913 	/*
7914 	 * We import the checkpointed state of the pool (under a different
7915 	 * name) so we can do verification on it against the current state
7916 	 * of the pool.
7917 	 */
7918 	checkpoint_pool = import_checkpointed_state(spa->spa_name, NULL,
7919 	    NULL);
7920 	ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0);
7921 
7922 	error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG);
7923 	if (error != 0) {
7924 		fatal("Tried to open pool \"%s\" but spa_open() failed with "
7925 		    "error %d\n", checkpoint_pool, error);
7926 	}
7927 
7928 	/*
7929 	 * Ensure that ranges in the checkpoint space maps of each vdev
7930 	 * are allocated according to the checkpointed state's metaslab
7931 	 * space maps.
7932 	 */
7933 	verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa);
7934 
7935 	/*
7936 	 * Ensure that allocated ranges in the checkpoint's metaslab
7937 	 * space maps remain allocated in the metaslab space maps of
7938 	 * the current state.
7939 	 */
7940 	verify_checkpoint_ms_spacemaps(checkpoint_spa, spa);
7941 
7942 	/*
7943 	 * Once we are done, we get rid of the checkpointed state.
7944 	 */
7945 	spa_close(checkpoint_spa, FTAG);
7946 	free(checkpoint_pool);
7947 }
7948 
7949 static void
dump_leftover_checkpoint_blocks(spa_t * spa)7950 dump_leftover_checkpoint_blocks(spa_t *spa)
7951 {
7952 	vdev_t *rvd = spa->spa_root_vdev;
7953 
7954 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
7955 		vdev_t *vd = rvd->vdev_child[i];
7956 
7957 		space_map_t *checkpoint_sm = NULL;
7958 		uint64_t checkpoint_sm_obj;
7959 
7960 		if (vd->vdev_top_zap == 0)
7961 			continue;
7962 
7963 		if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap,
7964 		    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
7965 			continue;
7966 
7967 		VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap,
7968 		    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
7969 		    sizeof (uint64_t), 1, &checkpoint_sm_obj));
7970 
7971 		VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa),
7972 		    checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift));
7973 		dump_spacemap(spa->spa_meta_objset, checkpoint_sm);
7974 		space_map_close(checkpoint_sm);
7975 	}
7976 }
7977 
7978 static int
verify_checkpoint(spa_t * spa)7979 verify_checkpoint(spa_t *spa)
7980 {
7981 	uberblock_t checkpoint;
7982 	int error;
7983 
7984 	if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT))
7985 		return (0);
7986 
7987 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
7988 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
7989 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
7990 
7991 	if (error == ENOENT && !dump_opt['L']) {
7992 		/*
7993 		 * If the feature is active but the uberblock is missing
7994 		 * then we must be in the middle of discarding the
7995 		 * checkpoint.
7996 		 */
7997 		(void) printf("\nPartially discarded checkpoint "
7998 		    "state found:\n");
7999 		if (dump_opt['m'] > 3)
8000 			dump_leftover_checkpoint_blocks(spa);
8001 		return (0);
8002 	} else if (error != 0) {
8003 		(void) printf("lookup error %d when looking for "
8004 		    "checkpointed uberblock in MOS\n", error);
8005 		return (error);
8006 	}
8007 	dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n");
8008 
8009 	if (checkpoint.ub_checkpoint_txg == 0) {
8010 		(void) printf("\nub_checkpoint_txg not set in checkpointed "
8011 		    "uberblock\n");
8012 		error = 3;
8013 	}
8014 
8015 	if (error == 0 && !dump_opt['L'])
8016 		verify_checkpoint_blocks(spa);
8017 
8018 	return (error);
8019 }
8020 
8021 static void
mos_leaks_cb(void * arg,uint64_t start,uint64_t size)8022 mos_leaks_cb(void *arg, uint64_t start, uint64_t size)
8023 {
8024 	(void) arg;
8025 	for (uint64_t i = start; i < size; i++) {
8026 		(void) printf("MOS object %llu referenced but not allocated\n",
8027 		    (u_longlong_t)i);
8028 	}
8029 }
8030 
8031 static void
mos_obj_refd(uint64_t obj)8032 mos_obj_refd(uint64_t obj)
8033 {
8034 	if (obj != 0 && mos_refd_objs != NULL)
8035 		range_tree_add(mos_refd_objs, obj, 1);
8036 }
8037 
8038 /*
8039  * Call on a MOS object that may already have been referenced.
8040  */
8041 static void
mos_obj_refd_multiple(uint64_t obj)8042 mos_obj_refd_multiple(uint64_t obj)
8043 {
8044 	if (obj != 0 && mos_refd_objs != NULL &&
8045 	    !range_tree_contains(mos_refd_objs, obj, 1))
8046 		range_tree_add(mos_refd_objs, obj, 1);
8047 }
8048 
8049 static void
mos_leak_vdev_top_zap(vdev_t * vd)8050 mos_leak_vdev_top_zap(vdev_t *vd)
8051 {
8052 	uint64_t ms_flush_data_obj;
8053 	int error = zap_lookup(spa_meta_objset(vd->vdev_spa),
8054 	    vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS,
8055 	    sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj);
8056 	if (error == ENOENT)
8057 		return;
8058 	ASSERT0(error);
8059 
8060 	mos_obj_refd(ms_flush_data_obj);
8061 }
8062 
8063 static void
mos_leak_vdev(vdev_t * vd)8064 mos_leak_vdev(vdev_t *vd)
8065 {
8066 	mos_obj_refd(vd->vdev_dtl_object);
8067 	mos_obj_refd(vd->vdev_ms_array);
8068 	mos_obj_refd(vd->vdev_indirect_config.vic_births_object);
8069 	mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object);
8070 	mos_obj_refd(vd->vdev_leaf_zap);
8071 	if (vd->vdev_checkpoint_sm != NULL)
8072 		mos_obj_refd(vd->vdev_checkpoint_sm->sm_object);
8073 	if (vd->vdev_indirect_mapping != NULL) {
8074 		mos_obj_refd(vd->vdev_indirect_mapping->
8075 		    vim_phys->vimp_counts_object);
8076 	}
8077 	if (vd->vdev_obsolete_sm != NULL)
8078 		mos_obj_refd(vd->vdev_obsolete_sm->sm_object);
8079 
8080 	for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
8081 		metaslab_t *ms = vd->vdev_ms[m];
8082 		mos_obj_refd(space_map_object(ms->ms_sm));
8083 	}
8084 
8085 	if (vd->vdev_root_zap != 0)
8086 		mos_obj_refd(vd->vdev_root_zap);
8087 
8088 	if (vd->vdev_top_zap != 0) {
8089 		mos_obj_refd(vd->vdev_top_zap);
8090 		mos_leak_vdev_top_zap(vd);
8091 	}
8092 
8093 	for (uint64_t c = 0; c < vd->vdev_children; c++) {
8094 		mos_leak_vdev(vd->vdev_child[c]);
8095 	}
8096 }
8097 
8098 static void
mos_leak_log_spacemaps(spa_t * spa)8099 mos_leak_log_spacemaps(spa_t *spa)
8100 {
8101 	uint64_t spacemap_zap;
8102 	int error = zap_lookup(spa_meta_objset(spa),
8103 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP,
8104 	    sizeof (spacemap_zap), 1, &spacemap_zap);
8105 	if (error == ENOENT)
8106 		return;
8107 	ASSERT0(error);
8108 
8109 	mos_obj_refd(spacemap_zap);
8110 	for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
8111 	    sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls))
8112 		mos_obj_refd(sls->sls_sm_obj);
8113 }
8114 
8115 static void
errorlog_count_refd(objset_t * mos,uint64_t errlog)8116 errorlog_count_refd(objset_t *mos, uint64_t errlog)
8117 {
8118 	zap_cursor_t zc;
8119 	zap_attribute_t *za = zap_attribute_alloc();
8120 	for (zap_cursor_init(&zc, mos, errlog);
8121 	    zap_cursor_retrieve(&zc, za) == 0;
8122 	    zap_cursor_advance(&zc)) {
8123 		mos_obj_refd(za->za_first_integer);
8124 	}
8125 	zap_cursor_fini(&zc);
8126 	zap_attribute_free(za);
8127 }
8128 
8129 static int
dump_mos_leaks(spa_t * spa)8130 dump_mos_leaks(spa_t *spa)
8131 {
8132 	int rv = 0;
8133 	objset_t *mos = spa->spa_meta_objset;
8134 	dsl_pool_t *dp = spa->spa_dsl_pool;
8135 
8136 	/* Visit and mark all referenced objects in the MOS */
8137 
8138 	mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT);
8139 	mos_obj_refd(spa->spa_pool_props_object);
8140 	mos_obj_refd(spa->spa_config_object);
8141 	mos_obj_refd(spa->spa_ddt_stat_object);
8142 	mos_obj_refd(spa->spa_feat_desc_obj);
8143 	mos_obj_refd(spa->spa_feat_enabled_txg_obj);
8144 	mos_obj_refd(spa->spa_feat_for_read_obj);
8145 	mos_obj_refd(spa->spa_feat_for_write_obj);
8146 	mos_obj_refd(spa->spa_history);
8147 	mos_obj_refd(spa->spa_errlog_last);
8148 	mos_obj_refd(spa->spa_errlog_scrub);
8149 
8150 	if (spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) {
8151 		errorlog_count_refd(mos, spa->spa_errlog_last);
8152 		errorlog_count_refd(mos, spa->spa_errlog_scrub);
8153 	}
8154 
8155 	mos_obj_refd(spa->spa_all_vdev_zaps);
8156 	mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj);
8157 	mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj);
8158 	mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj);
8159 	bpobj_count_refd(&spa->spa_deferred_bpobj);
8160 	mos_obj_refd(dp->dp_empty_bpobj);
8161 	bpobj_count_refd(&dp->dp_obsolete_bpobj);
8162 	bpobj_count_refd(&dp->dp_free_bpobj);
8163 	mos_obj_refd(spa->spa_l2cache.sav_object);
8164 	mos_obj_refd(spa->spa_spares.sav_object);
8165 
8166 	if (spa->spa_syncing_log_sm != NULL)
8167 		mos_obj_refd(spa->spa_syncing_log_sm->sm_object);
8168 	mos_leak_log_spacemaps(spa);
8169 
8170 	mos_obj_refd(spa->spa_condensing_indirect_phys.
8171 	    scip_next_mapping_object);
8172 	mos_obj_refd(spa->spa_condensing_indirect_phys.
8173 	    scip_prev_obsolete_sm_object);
8174 	if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) {
8175 		vdev_indirect_mapping_t *vim =
8176 		    vdev_indirect_mapping_open(mos,
8177 		    spa->spa_condensing_indirect_phys.scip_next_mapping_object);
8178 		mos_obj_refd(vim->vim_phys->vimp_counts_object);
8179 		vdev_indirect_mapping_close(vim);
8180 	}
8181 	deleted_livelists_dump_mos(spa);
8182 
8183 	if (dp->dp_origin_snap != NULL) {
8184 		dsl_dataset_t *ds;
8185 
8186 		dsl_pool_config_enter(dp, FTAG);
8187 		VERIFY0(dsl_dataset_hold_obj(dp,
8188 		    dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj,
8189 		    FTAG, &ds));
8190 		count_ds_mos_objects(ds);
8191 		dump_blkptr_list(&ds->ds_deadlist, "Deadlist");
8192 		dsl_dataset_rele(ds, FTAG);
8193 		dsl_pool_config_exit(dp, FTAG);
8194 
8195 		count_ds_mos_objects(dp->dp_origin_snap);
8196 		dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist");
8197 	}
8198 	count_dir_mos_objects(dp->dp_mos_dir);
8199 	if (dp->dp_free_dir != NULL)
8200 		count_dir_mos_objects(dp->dp_free_dir);
8201 	if (dp->dp_leak_dir != NULL)
8202 		count_dir_mos_objects(dp->dp_leak_dir);
8203 
8204 	mos_leak_vdev(spa->spa_root_vdev);
8205 
8206 	for (uint64_t c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
8207 		ddt_t *ddt = spa->spa_ddt[c];
8208 		if (!ddt || ddt->ddt_version == DDT_VERSION_UNCONFIGURED)
8209 			continue;
8210 
8211 		/* DDT store objects */
8212 		for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
8213 			for (ddt_class_t class = 0; class < DDT_CLASSES;
8214 			    class++) {
8215 				mos_obj_refd(ddt->ddt_object[type][class]);
8216 			}
8217 		}
8218 
8219 		/* FDT container */
8220 		if (ddt->ddt_version == DDT_VERSION_FDT)
8221 			mos_obj_refd(ddt->ddt_dir_object);
8222 
8223 		/* FDT log objects */
8224 		if (ddt->ddt_flags & DDT_FLAG_LOG) {
8225 			mos_obj_refd(ddt->ddt_log[0].ddl_object);
8226 			mos_obj_refd(ddt->ddt_log[1].ddl_object);
8227 		}
8228 	}
8229 
8230 	if (spa->spa_brt != NULL) {
8231 		brt_t *brt = spa->spa_brt;
8232 		for (uint64_t vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) {
8233 			brt_vdev_t *brtvd = &brt->brt_vdevs[vdevid];
8234 			if (brtvd != NULL && brtvd->bv_initiated) {
8235 				mos_obj_refd(brtvd->bv_mos_brtvdev);
8236 				mos_obj_refd(brtvd->bv_mos_entries);
8237 			}
8238 		}
8239 	}
8240 
8241 	/*
8242 	 * Visit all allocated objects and make sure they are referenced.
8243 	 */
8244 	uint64_t object = 0;
8245 	while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) {
8246 		if (range_tree_contains(mos_refd_objs, object, 1)) {
8247 			range_tree_remove(mos_refd_objs, object, 1);
8248 		} else {
8249 			dmu_object_info_t doi;
8250 			const char *name;
8251 			VERIFY0(dmu_object_info(mos, object, &doi));
8252 			if (doi.doi_type & DMU_OT_NEWTYPE) {
8253 				dmu_object_byteswap_t bswap =
8254 				    DMU_OT_BYTESWAP(doi.doi_type);
8255 				name = dmu_ot_byteswap[bswap].ob_name;
8256 			} else {
8257 				name = dmu_ot[doi.doi_type].ot_name;
8258 			}
8259 
8260 			(void) printf("MOS object %llu (%s) leaked\n",
8261 			    (u_longlong_t)object, name);
8262 			rv = 2;
8263 		}
8264 	}
8265 	(void) range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL);
8266 	if (!range_tree_is_empty(mos_refd_objs))
8267 		rv = 2;
8268 	range_tree_vacate(mos_refd_objs, NULL, NULL);
8269 	range_tree_destroy(mos_refd_objs);
8270 	return (rv);
8271 }
8272 
8273 typedef struct log_sm_obsolete_stats_arg {
8274 	uint64_t lsos_current_txg;
8275 
8276 	uint64_t lsos_total_entries;
8277 	uint64_t lsos_valid_entries;
8278 
8279 	uint64_t lsos_sm_entries;
8280 	uint64_t lsos_valid_sm_entries;
8281 } log_sm_obsolete_stats_arg_t;
8282 
8283 static int
log_spacemap_obsolete_stats_cb(spa_t * spa,space_map_entry_t * sme,uint64_t txg,void * arg)8284 log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme,
8285     uint64_t txg, void *arg)
8286 {
8287 	log_sm_obsolete_stats_arg_t *lsos = arg;
8288 
8289 	uint64_t offset = sme->sme_offset;
8290 	uint64_t vdev_id = sme->sme_vdev;
8291 
8292 	if (lsos->lsos_current_txg == 0) {
8293 		/* this is the first log */
8294 		lsos->lsos_current_txg = txg;
8295 	} else if (lsos->lsos_current_txg < txg) {
8296 		/* we just changed log - print stats and reset */
8297 		(void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
8298 		    (u_longlong_t)lsos->lsos_valid_sm_entries,
8299 		    (u_longlong_t)lsos->lsos_sm_entries,
8300 		    (u_longlong_t)lsos->lsos_current_txg);
8301 		lsos->lsos_valid_sm_entries = 0;
8302 		lsos->lsos_sm_entries = 0;
8303 		lsos->lsos_current_txg = txg;
8304 	}
8305 	ASSERT3U(lsos->lsos_current_txg, ==, txg);
8306 
8307 	lsos->lsos_sm_entries++;
8308 	lsos->lsos_total_entries++;
8309 
8310 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
8311 	if (!vdev_is_concrete(vd))
8312 		return (0);
8313 
8314 	metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
8315 	ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
8316 
8317 	if (txg < metaslab_unflushed_txg(ms))
8318 		return (0);
8319 	lsos->lsos_valid_sm_entries++;
8320 	lsos->lsos_valid_entries++;
8321 	return (0);
8322 }
8323 
8324 static void
dump_log_spacemap_obsolete_stats(spa_t * spa)8325 dump_log_spacemap_obsolete_stats(spa_t *spa)
8326 {
8327 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
8328 		return;
8329 
8330 	log_sm_obsolete_stats_arg_t lsos = {0};
8331 
8332 	(void) printf("Log Space Map Obsolete Entry Statistics:\n");
8333 
8334 	iterate_through_spacemap_logs(spa,
8335 	    log_spacemap_obsolete_stats_cb, &lsos);
8336 
8337 	/* print stats for latest log */
8338 	(void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
8339 	    (u_longlong_t)lsos.lsos_valid_sm_entries,
8340 	    (u_longlong_t)lsos.lsos_sm_entries,
8341 	    (u_longlong_t)lsos.lsos_current_txg);
8342 
8343 	(void) printf("%-8llu valid entries out of %-8llu - total\n\n",
8344 	    (u_longlong_t)lsos.lsos_valid_entries,
8345 	    (u_longlong_t)lsos.lsos_total_entries);
8346 }
8347 
8348 static void
dump_zpool(spa_t * spa)8349 dump_zpool(spa_t *spa)
8350 {
8351 	dsl_pool_t *dp = spa_get_dsl(spa);
8352 	int rc = 0;
8353 
8354 	if (dump_opt['y']) {
8355 		livelist_metaslab_validate(spa);
8356 	}
8357 
8358 	if (dump_opt['S']) {
8359 		dump_simulated_ddt(spa);
8360 		return;
8361 	}
8362 
8363 	if (!dump_opt['e'] && dump_opt['C'] > 1) {
8364 		(void) printf("\nCached configuration:\n");
8365 		dump_nvlist(spa->spa_config, 8);
8366 	}
8367 
8368 	if (dump_opt['C'])
8369 		dump_config(spa);
8370 
8371 	if (dump_opt['u'])
8372 		dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n");
8373 
8374 	if (dump_opt['D'])
8375 		dump_all_ddts(spa);
8376 
8377 	if (dump_opt['T'])
8378 		dump_brt(spa);
8379 
8380 	if (dump_opt['d'] > 2 || dump_opt['m'])
8381 		dump_metaslabs(spa);
8382 	if (dump_opt['M'])
8383 		dump_metaslab_groups(spa, dump_opt['M'] > 1);
8384 	if (dump_opt['d'] > 2 || dump_opt['m']) {
8385 		dump_log_spacemaps(spa);
8386 		dump_log_spacemap_obsolete_stats(spa);
8387 	}
8388 
8389 	if (dump_opt['d'] || dump_opt['i']) {
8390 		spa_feature_t f;
8391 		mos_refd_objs = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
8392 		    0);
8393 		dump_objset(dp->dp_meta_objset);
8394 
8395 		if (dump_opt['d'] >= 3) {
8396 			dsl_pool_t *dp = spa->spa_dsl_pool;
8397 			dump_full_bpobj(&spa->spa_deferred_bpobj,
8398 			    "Deferred frees", 0);
8399 			if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
8400 				dump_full_bpobj(&dp->dp_free_bpobj,
8401 				    "Pool snapshot frees", 0);
8402 			}
8403 			if (bpobj_is_open(&dp->dp_obsolete_bpobj)) {
8404 				ASSERT(spa_feature_is_enabled(spa,
8405 				    SPA_FEATURE_DEVICE_REMOVAL));
8406 				dump_full_bpobj(&dp->dp_obsolete_bpobj,
8407 				    "Pool obsolete blocks", 0);
8408 			}
8409 
8410 			if (spa_feature_is_active(spa,
8411 			    SPA_FEATURE_ASYNC_DESTROY)) {
8412 				dump_bptree(spa->spa_meta_objset,
8413 				    dp->dp_bptree_obj,
8414 				    "Pool dataset frees");
8415 			}
8416 			dump_dtl(spa->spa_root_vdev, 0);
8417 		}
8418 
8419 		for (spa_feature_t f = 0; f < SPA_FEATURES; f++)
8420 			global_feature_count[f] = UINT64_MAX;
8421 		global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0;
8422 		global_feature_count[SPA_FEATURE_REDACTION_LIST_SPILL] = 0;
8423 		global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0;
8424 		global_feature_count[SPA_FEATURE_LIVELIST] = 0;
8425 
8426 		(void) dmu_objset_find(spa_name(spa), dump_one_objset,
8427 		    NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
8428 
8429 		if (rc == 0 && !dump_opt['L'])
8430 			rc = dump_mos_leaks(spa);
8431 
8432 		for (f = 0; f < SPA_FEATURES; f++) {
8433 			uint64_t refcount;
8434 
8435 			uint64_t *arr;
8436 			if (!(spa_feature_table[f].fi_flags &
8437 			    ZFEATURE_FLAG_PER_DATASET)) {
8438 				if (global_feature_count[f] == UINT64_MAX)
8439 					continue;
8440 				if (!spa_feature_is_enabled(spa, f)) {
8441 					ASSERT0(global_feature_count[f]);
8442 					continue;
8443 				}
8444 				arr = global_feature_count;
8445 			} else {
8446 				if (!spa_feature_is_enabled(spa, f)) {
8447 					ASSERT0(dataset_feature_count[f]);
8448 					continue;
8449 				}
8450 				arr = dataset_feature_count;
8451 			}
8452 			if (feature_get_refcount(spa, &spa_feature_table[f],
8453 			    &refcount) == ENOTSUP)
8454 				continue;
8455 			if (arr[f] != refcount) {
8456 				(void) printf("%s feature refcount mismatch: "
8457 				    "%lld consumers != %lld refcount\n",
8458 				    spa_feature_table[f].fi_uname,
8459 				    (longlong_t)arr[f], (longlong_t)refcount);
8460 				rc = 2;
8461 			} else {
8462 				(void) printf("Verified %s feature refcount "
8463 				    "of %llu is correct\n",
8464 				    spa_feature_table[f].fi_uname,
8465 				    (longlong_t)refcount);
8466 			}
8467 		}
8468 
8469 		if (rc == 0)
8470 			rc = verify_device_removal_feature_counts(spa);
8471 	}
8472 
8473 	if (rc == 0 && (dump_opt['b'] || dump_opt['c']))
8474 		rc = dump_block_stats(spa);
8475 
8476 	if (rc == 0)
8477 		rc = verify_spacemap_refcounts(spa);
8478 
8479 	if (dump_opt['s'])
8480 		show_pool_stats(spa);
8481 
8482 	if (dump_opt['h'])
8483 		dump_history(spa);
8484 
8485 	if (rc == 0)
8486 		rc = verify_checkpoint(spa);
8487 
8488 	if (rc != 0) {
8489 		dump_debug_buffer();
8490 		zdb_exit(rc);
8491 	}
8492 }
8493 
8494 #define	ZDB_FLAG_CHECKSUM	0x0001
8495 #define	ZDB_FLAG_DECOMPRESS	0x0002
8496 #define	ZDB_FLAG_BSWAP		0x0004
8497 #define	ZDB_FLAG_GBH		0x0008
8498 #define	ZDB_FLAG_INDIRECT	0x0010
8499 #define	ZDB_FLAG_RAW		0x0020
8500 #define	ZDB_FLAG_PRINT_BLKPTR	0x0040
8501 #define	ZDB_FLAG_VERBOSE	0x0080
8502 
8503 static int flagbits[256];
8504 static char flagbitstr[16];
8505 
8506 static void
zdb_print_blkptr(const blkptr_t * bp,int flags)8507 zdb_print_blkptr(const blkptr_t *bp, int flags)
8508 {
8509 	char blkbuf[BP_SPRINTF_LEN];
8510 
8511 	if (flags & ZDB_FLAG_BSWAP)
8512 		byteswap_uint64_array((void *)bp, sizeof (blkptr_t));
8513 
8514 	snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
8515 	(void) printf("%s\n", blkbuf);
8516 }
8517 
8518 static void
zdb_dump_indirect(blkptr_t * bp,int nbps,int flags)8519 zdb_dump_indirect(blkptr_t *bp, int nbps, int flags)
8520 {
8521 	int i;
8522 
8523 	for (i = 0; i < nbps; i++)
8524 		zdb_print_blkptr(&bp[i], flags);
8525 }
8526 
8527 static void
zdb_dump_gbh(void * buf,int flags)8528 zdb_dump_gbh(void *buf, int flags)
8529 {
8530 	zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags);
8531 }
8532 
8533 static void
zdb_dump_block_raw(void * buf,uint64_t size,int flags)8534 zdb_dump_block_raw(void *buf, uint64_t size, int flags)
8535 {
8536 	if (flags & ZDB_FLAG_BSWAP)
8537 		byteswap_uint64_array(buf, size);
8538 	VERIFY(write(fileno(stdout), buf, size) == size);
8539 }
8540 
8541 static void
zdb_dump_block(char * label,void * buf,uint64_t size,int flags)8542 zdb_dump_block(char *label, void *buf, uint64_t size, int flags)
8543 {
8544 	uint64_t *d = (uint64_t *)buf;
8545 	unsigned nwords = size / sizeof (uint64_t);
8546 	int do_bswap = !!(flags & ZDB_FLAG_BSWAP);
8547 	unsigned i, j;
8548 	const char *hdr;
8549 	char *c;
8550 
8551 
8552 	if (do_bswap)
8553 		hdr = " 7 6 5 4 3 2 1 0   f e d c b a 9 8";
8554 	else
8555 		hdr = " 0 1 2 3 4 5 6 7   8 9 a b c d e f";
8556 
8557 	(void) printf("\n%s\n%6s   %s  0123456789abcdef\n", label, "", hdr);
8558 
8559 #ifdef _ZFS_LITTLE_ENDIAN
8560 	/* correct the endianness */
8561 	do_bswap = !do_bswap;
8562 #endif
8563 	for (i = 0; i < nwords; i += 2) {
8564 		(void) printf("%06llx:  %016llx  %016llx  ",
8565 		    (u_longlong_t)(i * sizeof (uint64_t)),
8566 		    (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]),
8567 		    (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1]));
8568 
8569 		c = (char *)&d[i];
8570 		for (j = 0; j < 2 * sizeof (uint64_t); j++)
8571 			(void) printf("%c", isprint(c[j]) ? c[j] : '.');
8572 		(void) printf("\n");
8573 	}
8574 }
8575 
8576 /*
8577  * There are two acceptable formats:
8578  *	leaf_name	  - For example: c1t0d0 or /tmp/ztest.0a
8579  *	child[.child]*    - For example: 0.1.1
8580  *
8581  * The second form can be used to specify arbitrary vdevs anywhere
8582  * in the hierarchy.  For example, in a pool with a mirror of
8583  * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 .
8584  */
8585 static vdev_t *
zdb_vdev_lookup(vdev_t * vdev,const char * path)8586 zdb_vdev_lookup(vdev_t *vdev, const char *path)
8587 {
8588 	char *s, *p, *q;
8589 	unsigned i;
8590 
8591 	if (vdev == NULL)
8592 		return (NULL);
8593 
8594 	/* First, assume the x.x.x.x format */
8595 	i = strtoul(path, &s, 10);
8596 	if (s == path || (s && *s != '.' && *s != '\0'))
8597 		goto name;
8598 	if (i >= vdev->vdev_children)
8599 		return (NULL);
8600 
8601 	vdev = vdev->vdev_child[i];
8602 	if (s && *s == '\0')
8603 		return (vdev);
8604 	return (zdb_vdev_lookup(vdev, s+1));
8605 
8606 name:
8607 	for (i = 0; i < vdev->vdev_children; i++) {
8608 		vdev_t *vc = vdev->vdev_child[i];
8609 
8610 		if (vc->vdev_path == NULL) {
8611 			vc = zdb_vdev_lookup(vc, path);
8612 			if (vc == NULL)
8613 				continue;
8614 			else
8615 				return (vc);
8616 		}
8617 
8618 		p = strrchr(vc->vdev_path, '/');
8619 		p = p ? p + 1 : vc->vdev_path;
8620 		q = &vc->vdev_path[strlen(vc->vdev_path) - 2];
8621 
8622 		if (strcmp(vc->vdev_path, path) == 0)
8623 			return (vc);
8624 		if (strcmp(p, path) == 0)
8625 			return (vc);
8626 		if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0)
8627 			return (vc);
8628 	}
8629 
8630 	return (NULL);
8631 }
8632 
8633 static int
name_from_objset_id(spa_t * spa,uint64_t objset_id,char * outstr)8634 name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr)
8635 {
8636 	dsl_dataset_t *ds;
8637 
8638 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
8639 	int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id,
8640 	    NULL, &ds);
8641 	if (error != 0) {
8642 		(void) fprintf(stderr, "failed to hold objset %llu: %s\n",
8643 		    (u_longlong_t)objset_id, strerror(error));
8644 		dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
8645 		return (error);
8646 	}
8647 	dsl_dataset_name(ds, outstr);
8648 	dsl_dataset_rele(ds, NULL);
8649 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
8650 	return (0);
8651 }
8652 
8653 static boolean_t
zdb_parse_block_sizes(char * sizes,uint64_t * lsize,uint64_t * psize)8654 zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize)
8655 {
8656 	char *s0, *s1, *tmp = NULL;
8657 
8658 	if (sizes == NULL)
8659 		return (B_FALSE);
8660 
8661 	s0 = strtok_r(sizes, "/", &tmp);
8662 	if (s0 == NULL)
8663 		return (B_FALSE);
8664 	s1 = strtok_r(NULL, "/", &tmp);
8665 	*lsize = strtoull(s0, NULL, 16);
8666 	*psize = s1 ? strtoull(s1, NULL, 16) : *lsize;
8667 	return (*lsize >= *psize && *psize > 0);
8668 }
8669 
8670 #define	ZIO_COMPRESS_MASK(alg)	(1ULL << (ZIO_COMPRESS_##alg))
8671 
8672 static boolean_t
try_decompress_block(abd_t * pabd,uint64_t lsize,uint64_t psize,int flags,int cfunc,void * lbuf,void * lbuf2)8673 try_decompress_block(abd_t *pabd, uint64_t lsize, uint64_t psize,
8674     int flags, int cfunc, void *lbuf, void *lbuf2)
8675 {
8676 	if (flags & ZDB_FLAG_VERBOSE) {
8677 		(void) fprintf(stderr,
8678 		    "Trying %05llx -> %05llx (%s)\n",
8679 		    (u_longlong_t)psize,
8680 		    (u_longlong_t)lsize,
8681 		    zio_compress_table[cfunc].ci_name);
8682 	}
8683 
8684 	/*
8685 	 * We set lbuf to all zeros and lbuf2 to all
8686 	 * ones, then decompress to both buffers and
8687 	 * compare their contents. This way we can
8688 	 * know if decompression filled exactly to
8689 	 * lsize or if it left some bytes unwritten.
8690 	 */
8691 
8692 	memset(lbuf, 0x00, lsize);
8693 	memset(lbuf2, 0xff, lsize);
8694 
8695 	abd_t labd, labd2;
8696 	abd_get_from_buf_struct(&labd, lbuf, lsize);
8697 	abd_get_from_buf_struct(&labd2, lbuf2, lsize);
8698 
8699 	boolean_t ret = B_FALSE;
8700 	if (zio_decompress_data(cfunc, pabd,
8701 	    &labd, psize, lsize, NULL) == 0 &&
8702 	    zio_decompress_data(cfunc, pabd,
8703 	    &labd2, psize, lsize, NULL) == 0 &&
8704 	    memcmp(lbuf, lbuf2, lsize) == 0)
8705 		ret = B_TRUE;
8706 
8707 	abd_free(&labd2);
8708 	abd_free(&labd);
8709 
8710 	return (ret);
8711 }
8712 
8713 static uint64_t
zdb_decompress_block(abd_t * pabd,void * buf,void * lbuf,uint64_t lsize,uint64_t psize,int flags)8714 zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize,
8715     uint64_t psize, int flags)
8716 {
8717 	(void) buf;
8718 	uint64_t orig_lsize = lsize;
8719 	boolean_t tryzle = ((getenv("ZDB_NO_ZLE") == NULL));
8720 	boolean_t found = B_FALSE;
8721 	/*
8722 	 * We don't know how the data was compressed, so just try
8723 	 * every decompress function at every inflated blocksize.
8724 	 */
8725 	void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
8726 	int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 };
8727 	int *cfuncp = cfuncs;
8728 	uint64_t maxlsize = SPA_MAXBLOCKSIZE;
8729 	uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) |
8730 	    ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) |
8731 	    ZIO_COMPRESS_MASK(ZLE);
8732 	*cfuncp++ = ZIO_COMPRESS_LZ4;
8733 	*cfuncp++ = ZIO_COMPRESS_LZJB;
8734 	mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB);
8735 	/*
8736 	 * Every gzip level has the same decompressor, no need to
8737 	 * run it 9 times per bruteforce attempt.
8738 	 */
8739 	mask |= ZIO_COMPRESS_MASK(GZIP_2) | ZIO_COMPRESS_MASK(GZIP_3);
8740 	mask |= ZIO_COMPRESS_MASK(GZIP_4) | ZIO_COMPRESS_MASK(GZIP_5);
8741 	mask |= ZIO_COMPRESS_MASK(GZIP_6) | ZIO_COMPRESS_MASK(GZIP_7);
8742 	mask |= ZIO_COMPRESS_MASK(GZIP_8) | ZIO_COMPRESS_MASK(GZIP_9);
8743 	for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++)
8744 		if (((1ULL << c) & mask) == 0)
8745 			*cfuncp++ = c;
8746 
8747 	/*
8748 	 * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this
8749 	 * could take a while and we should let the user know
8750 	 * we are not stuck.  On the other hand, printing progress
8751 	 * info gets old after a while.  User can specify 'v' flag
8752 	 * to see the progression.
8753 	 */
8754 	if (lsize == psize)
8755 		lsize += SPA_MINBLOCKSIZE;
8756 	else
8757 		maxlsize = lsize;
8758 
8759 	for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) {
8760 		for (cfuncp = cfuncs; *cfuncp; cfuncp++) {
8761 			if (try_decompress_block(pabd, lsize, psize, flags,
8762 			    *cfuncp, lbuf, lbuf2)) {
8763 				found = B_TRUE;
8764 				break;
8765 			}
8766 		}
8767 		if (*cfuncp != 0)
8768 			break;
8769 	}
8770 	if (!found && tryzle) {
8771 		for (lsize = orig_lsize; lsize <= maxlsize;
8772 		    lsize += SPA_MINBLOCKSIZE) {
8773 			if (try_decompress_block(pabd, lsize, psize, flags,
8774 			    ZIO_COMPRESS_ZLE, lbuf, lbuf2)) {
8775 				*cfuncp = ZIO_COMPRESS_ZLE;
8776 				found = B_TRUE;
8777 				break;
8778 			}
8779 		}
8780 	}
8781 	umem_free(lbuf2, SPA_MAXBLOCKSIZE);
8782 
8783 	if (*cfuncp == ZIO_COMPRESS_ZLE) {
8784 		printf("\nZLE decompression was selected. If you "
8785 		    "suspect the results are wrong,\ntry avoiding ZLE "
8786 		    "by setting and exporting ZDB_NO_ZLE=\"true\"\n");
8787 	}
8788 
8789 	return (lsize > maxlsize ? -1 : lsize);
8790 }
8791 
8792 /*
8793  * Read a block from a pool and print it out.  The syntax of the
8794  * block descriptor is:
8795  *
8796  *	pool:vdev_specifier:offset:[lsize/]psize[:flags]
8797  *
8798  *	pool           - The name of the pool you wish to read from
8799  *	vdev_specifier - Which vdev (see comment for zdb_vdev_lookup)
8800  *	offset         - offset, in hex, in bytes
8801  *	size           - Amount of data to read, in hex, in bytes
8802  *	flags          - A string of characters specifying options
8803  *		 b: Decode a blkptr at given offset within block
8804  *		 c: Calculate and display checksums
8805  *		 d: Decompress data before dumping
8806  *		 e: Byteswap data before dumping
8807  *		 g: Display data as a gang block header
8808  *		 i: Display as an indirect block
8809  *		 r: Dump raw data to stdout
8810  *		 v: Verbose
8811  *
8812  */
8813 static void
zdb_read_block(char * thing,spa_t * spa)8814 zdb_read_block(char *thing, spa_t *spa)
8815 {
8816 	blkptr_t blk, *bp = &blk;
8817 	dva_t *dva = bp->blk_dva;
8818 	int flags = 0;
8819 	uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0;
8820 	zio_t *zio;
8821 	vdev_t *vd;
8822 	abd_t *pabd;
8823 	void *lbuf, *buf;
8824 	char *s, *p, *dup, *flagstr, *sizes, *tmp = NULL;
8825 	const char *vdev, *errmsg = NULL;
8826 	int i, len, error;
8827 	boolean_t borrowed = B_FALSE, found = B_FALSE;
8828 
8829 	dup = strdup(thing);
8830 	s = strtok_r(dup, ":", &tmp);
8831 	vdev = s ?: "";
8832 	s = strtok_r(NULL, ":", &tmp);
8833 	offset = strtoull(s ? s : "", NULL, 16);
8834 	sizes = strtok_r(NULL, ":", &tmp);
8835 	s = strtok_r(NULL, ":", &tmp);
8836 	flagstr = strdup(s ?: "");
8837 
8838 	if (!zdb_parse_block_sizes(sizes, &lsize, &psize))
8839 		errmsg = "invalid size(s)";
8840 	if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE))
8841 		errmsg = "size must be a multiple of sector size";
8842 	if (!IS_P2ALIGNED(offset, DEV_BSIZE))
8843 		errmsg = "offset must be a multiple of sector size";
8844 	if (errmsg) {
8845 		(void) printf("Invalid block specifier: %s  - %s\n",
8846 		    thing, errmsg);
8847 		goto done;
8848 	}
8849 
8850 	tmp = NULL;
8851 	for (s = strtok_r(flagstr, ":", &tmp);
8852 	    s != NULL;
8853 	    s = strtok_r(NULL, ":", &tmp)) {
8854 		len = strlen(flagstr);
8855 		for (i = 0; i < len; i++) {
8856 			int bit = flagbits[(uchar_t)flagstr[i]];
8857 
8858 			if (bit == 0) {
8859 				(void) printf("***Ignoring flag: %c\n",
8860 				    (uchar_t)flagstr[i]);
8861 				continue;
8862 			}
8863 			found = B_TRUE;
8864 			flags |= bit;
8865 
8866 			p = &flagstr[i + 1];
8867 			if (*p != ':' && *p != '\0') {
8868 				int j = 0, nextbit = flagbits[(uchar_t)*p];
8869 				char *end, offstr[8] = { 0 };
8870 				if ((bit == ZDB_FLAG_PRINT_BLKPTR) &&
8871 				    (nextbit == 0)) {
8872 					/* look ahead to isolate the offset */
8873 					while (nextbit == 0 &&
8874 					    strchr(flagbitstr, *p) == NULL) {
8875 						offstr[j] = *p;
8876 						j++;
8877 						if (i + j > strlen(flagstr))
8878 							break;
8879 						p++;
8880 						nextbit = flagbits[(uchar_t)*p];
8881 					}
8882 					blkptr_offset = strtoull(offstr, &end,
8883 					    16);
8884 					i += j;
8885 				} else if (nextbit == 0) {
8886 					(void) printf("***Ignoring flag arg:"
8887 					    " '%c'\n", (uchar_t)*p);
8888 				}
8889 			}
8890 		}
8891 	}
8892 	if (blkptr_offset % sizeof (blkptr_t)) {
8893 		printf("Block pointer offset 0x%llx "
8894 		    "must be divisible by 0x%x\n",
8895 		    (longlong_t)blkptr_offset, (int)sizeof (blkptr_t));
8896 		goto done;
8897 	}
8898 	if (found == B_FALSE && strlen(flagstr) > 0) {
8899 		printf("Invalid flag arg: '%s'\n", flagstr);
8900 		goto done;
8901 	}
8902 
8903 	vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev);
8904 	if (vd == NULL) {
8905 		(void) printf("***Invalid vdev: %s\n", vdev);
8906 		goto done;
8907 	} else {
8908 		if (vd->vdev_path)
8909 			(void) fprintf(stderr, "Found vdev: %s\n",
8910 			    vd->vdev_path);
8911 		else
8912 			(void) fprintf(stderr, "Found vdev type: %s\n",
8913 			    vd->vdev_ops->vdev_op_type);
8914 	}
8915 
8916 	pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE);
8917 	lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
8918 
8919 	BP_ZERO(bp);
8920 
8921 	DVA_SET_VDEV(&dva[0], vd->vdev_id);
8922 	DVA_SET_OFFSET(&dva[0], offset);
8923 	DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH));
8924 	DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize));
8925 
8926 	BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
8927 
8928 	BP_SET_LSIZE(bp, lsize);
8929 	BP_SET_PSIZE(bp, psize);
8930 	BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
8931 	BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
8932 	BP_SET_TYPE(bp, DMU_OT_NONE);
8933 	BP_SET_LEVEL(bp, 0);
8934 	BP_SET_DEDUP(bp, 0);
8935 	BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
8936 
8937 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8938 	zio = zio_root(spa, NULL, NULL, 0);
8939 
8940 	if (vd == vd->vdev_top) {
8941 		/*
8942 		 * Treat this as a normal block read.
8943 		 */
8944 		zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL,
8945 		    ZIO_PRIORITY_SYNC_READ,
8946 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL));
8947 	} else {
8948 		/*
8949 		 * Treat this as a vdev child I/O.
8950 		 */
8951 		zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd,
8952 		    psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ,
8953 		    ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
8954 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | ZIO_FLAG_OPTIONAL,
8955 		    NULL, NULL));
8956 	}
8957 
8958 	error = zio_wait(zio);
8959 	spa_config_exit(spa, SCL_STATE, FTAG);
8960 
8961 	if (error) {
8962 		(void) printf("Read of %s failed, error: %d\n", thing, error);
8963 		goto out;
8964 	}
8965 
8966 	uint64_t orig_lsize = lsize;
8967 	buf = lbuf;
8968 	if (flags & ZDB_FLAG_DECOMPRESS) {
8969 		lsize = zdb_decompress_block(pabd, buf, lbuf,
8970 		    lsize, psize, flags);
8971 		if (lsize == -1) {
8972 			(void) printf("Decompress of %s failed\n", thing);
8973 			goto out;
8974 		}
8975 	} else {
8976 		buf = abd_borrow_buf_copy(pabd, lsize);
8977 		borrowed = B_TRUE;
8978 	}
8979 	/*
8980 	 * Try to detect invalid block pointer.  If invalid, try
8981 	 * decompressing.
8982 	 */
8983 	if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) &&
8984 	    !(flags & ZDB_FLAG_DECOMPRESS)) {
8985 		const blkptr_t *b = (const blkptr_t *)(void *)
8986 		    ((uintptr_t)buf + (uintptr_t)blkptr_offset);
8987 		if (zfs_blkptr_verify(spa, b,
8988 		    BLK_CONFIG_NEEDED, BLK_VERIFY_ONLY) == B_FALSE) {
8989 			abd_return_buf_copy(pabd, buf, lsize);
8990 			borrowed = B_FALSE;
8991 			buf = lbuf;
8992 			lsize = zdb_decompress_block(pabd, buf,
8993 			    lbuf, lsize, psize, flags);
8994 			b = (const blkptr_t *)(void *)
8995 			    ((uintptr_t)buf + (uintptr_t)blkptr_offset);
8996 			if (lsize == -1 || zfs_blkptr_verify(spa, b,
8997 			    BLK_CONFIG_NEEDED, BLK_VERIFY_LOG) == B_FALSE) {
8998 				printf("invalid block pointer at this DVA\n");
8999 				goto out;
9000 			}
9001 		}
9002 	}
9003 
9004 	if (flags & ZDB_FLAG_PRINT_BLKPTR)
9005 		zdb_print_blkptr((blkptr_t *)(void *)
9006 		    ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags);
9007 	else if (flags & ZDB_FLAG_RAW)
9008 		zdb_dump_block_raw(buf, lsize, flags);
9009 	else if (flags & ZDB_FLAG_INDIRECT)
9010 		zdb_dump_indirect((blkptr_t *)buf,
9011 		    orig_lsize / sizeof (blkptr_t), flags);
9012 	else if (flags & ZDB_FLAG_GBH)
9013 		zdb_dump_gbh(buf, flags);
9014 	else
9015 		zdb_dump_block(thing, buf, lsize, flags);
9016 
9017 	/*
9018 	 * If :c was specified, iterate through the checksum table to
9019 	 * calculate and display each checksum for our specified
9020 	 * DVA and length.
9021 	 */
9022 	if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) &&
9023 	    !(flags & ZDB_FLAG_GBH)) {
9024 		zio_t *czio;
9025 		(void) printf("\n");
9026 		for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL;
9027 		    ck < ZIO_CHECKSUM_FUNCTIONS; ck++) {
9028 
9029 			if ((zio_checksum_table[ck].ci_flags &
9030 			    ZCHECKSUM_FLAG_EMBEDDED) ||
9031 			    ck == ZIO_CHECKSUM_NOPARITY) {
9032 				continue;
9033 			}
9034 			BP_SET_CHECKSUM(bp, ck);
9035 			spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9036 			czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
9037 			if (vd == vd->vdev_top) {
9038 				zio_nowait(zio_read(czio, spa, bp, pabd, psize,
9039 				    NULL, NULL,
9040 				    ZIO_PRIORITY_SYNC_READ,
9041 				    ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
9042 				    ZIO_FLAG_DONT_RETRY, NULL));
9043 			} else {
9044 				zio_nowait(zio_vdev_child_io(czio, bp, vd,
9045 				    offset, pabd, psize, ZIO_TYPE_READ,
9046 				    ZIO_PRIORITY_SYNC_READ,
9047 				    ZIO_FLAG_DONT_PROPAGATE |
9048 				    ZIO_FLAG_DONT_RETRY |
9049 				    ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
9050 				    ZIO_FLAG_SPECULATIVE |
9051 				    ZIO_FLAG_OPTIONAL, NULL, NULL));
9052 			}
9053 			error = zio_wait(czio);
9054 			if (error == 0 || error == ECKSUM) {
9055 				zio_t *ck_zio = zio_null(NULL, spa, NULL,
9056 				    NULL, NULL, 0);
9057 				ck_zio->io_offset =
9058 				    DVA_GET_OFFSET(&bp->blk_dva[0]);
9059 				ck_zio->io_bp = bp;
9060 				zio_checksum_compute(ck_zio, ck, pabd, lsize);
9061 				printf(
9062 				    "%12s\t"
9063 				    "cksum=%016llx:%016llx:%016llx:%016llx\n",
9064 				    zio_checksum_table[ck].ci_name,
9065 				    (u_longlong_t)bp->blk_cksum.zc_word[0],
9066 				    (u_longlong_t)bp->blk_cksum.zc_word[1],
9067 				    (u_longlong_t)bp->blk_cksum.zc_word[2],
9068 				    (u_longlong_t)bp->blk_cksum.zc_word[3]);
9069 				zio_wait(ck_zio);
9070 			} else {
9071 				printf("error %d reading block\n", error);
9072 			}
9073 			spa_config_exit(spa, SCL_STATE, FTAG);
9074 		}
9075 	}
9076 
9077 	if (borrowed)
9078 		abd_return_buf_copy(pabd, buf, lsize);
9079 
9080 out:
9081 	abd_free(pabd);
9082 	umem_free(lbuf, SPA_MAXBLOCKSIZE);
9083 done:
9084 	free(flagstr);
9085 	free(dup);
9086 }
9087 
9088 static void
zdb_embedded_block(char * thing)9089 zdb_embedded_block(char *thing)
9090 {
9091 	blkptr_t bp = {{{{0}}}};
9092 	unsigned long long *words = (void *)&bp;
9093 	char *buf;
9094 	int err;
9095 
9096 	err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:"
9097 	    "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx",
9098 	    words + 0, words + 1, words + 2, words + 3,
9099 	    words + 4, words + 5, words + 6, words + 7,
9100 	    words + 8, words + 9, words + 10, words + 11,
9101 	    words + 12, words + 13, words + 14, words + 15);
9102 	if (err != 16) {
9103 		(void) fprintf(stderr, "invalid input format\n");
9104 		zdb_exit(1);
9105 	}
9106 	ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE);
9107 	buf = malloc(SPA_MAXBLOCKSIZE);
9108 	if (buf == NULL) {
9109 		(void) fprintf(stderr, "out of memory\n");
9110 		zdb_exit(1);
9111 	}
9112 	err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp));
9113 	if (err != 0) {
9114 		(void) fprintf(stderr, "decode failed: %u\n", err);
9115 		zdb_exit(1);
9116 	}
9117 	zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0);
9118 	free(buf);
9119 }
9120 
9121 /* check for valid hex or decimal numeric string */
9122 static boolean_t
zdb_numeric(char * str)9123 zdb_numeric(char *str)
9124 {
9125 	int i = 0, len;
9126 
9127 	len = strlen(str);
9128 	if (len == 0)
9129 		return (B_FALSE);
9130 	if (strncmp(str, "0x", 2) == 0 || strncmp(str, "0X", 2) == 0)
9131 		i = 2;
9132 	for (; i < len; i++) {
9133 		if (!isxdigit(str[i]))
9134 			return (B_FALSE);
9135 	}
9136 	return (B_TRUE);
9137 }
9138 
9139 static int
dummy_get_file_info(dmu_object_type_t bonustype,const void * data,zfs_file_info_t * zoi)9140 dummy_get_file_info(dmu_object_type_t bonustype, const void *data,
9141     zfs_file_info_t *zoi)
9142 {
9143 	(void) data, (void) zoi;
9144 
9145 	if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
9146 		return (ENOENT);
9147 
9148 	(void) fprintf(stderr, "dummy_get_file_info: not implemented");
9149 	abort();
9150 }
9151 
9152 int
main(int argc,char ** argv)9153 main(int argc, char **argv)
9154 {
9155 	int c;
9156 	int dump_all = 1;
9157 	int verbose = 0;
9158 	int error = 0;
9159 	char **searchdirs = NULL;
9160 	int nsearch = 0;
9161 	char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN];
9162 	nvlist_t *policy = NULL;
9163 	uint64_t max_txg = UINT64_MAX;
9164 	int64_t objset_id = -1;
9165 	uint64_t object;
9166 	int flags = ZFS_IMPORT_MISSING_LOG;
9167 	int rewind = ZPOOL_NEVER_REWIND;
9168 	char *spa_config_path_env, *objset_str;
9169 	boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE;
9170 	nvlist_t *cfg = NULL;
9171 	struct sigaction action;
9172 	boolean_t force_import = B_FALSE;
9173 	boolean_t config_path_console = B_FALSE;
9174 	char pbuf[MAXPATHLEN];
9175 
9176 	dprintf_setup(&argc, argv);
9177 
9178 	/*
9179 	 * Set up signal handlers, so if we crash due to bad on-disk data we
9180 	 * can get more info. Unlike ztest, we don't bail out if we can't set
9181 	 * up signal handlers, because zdb is very useful without them.
9182 	 */
9183 	action.sa_handler = sig_handler;
9184 	sigemptyset(&action.sa_mask);
9185 	action.sa_flags = 0;
9186 	if (sigaction(SIGSEGV, &action, NULL) < 0) {
9187 		(void) fprintf(stderr, "zdb: cannot catch SIGSEGV: %s\n",
9188 		    strerror(errno));
9189 	}
9190 	if (sigaction(SIGABRT, &action, NULL) < 0) {
9191 		(void) fprintf(stderr, "zdb: cannot catch SIGABRT: %s\n",
9192 		    strerror(errno));
9193 	}
9194 
9195 	/*
9196 	 * If there is an environment variable SPA_CONFIG_PATH it overrides
9197 	 * default spa_config_path setting. If -U flag is specified it will
9198 	 * override this environment variable settings once again.
9199 	 */
9200 	spa_config_path_env = getenv("SPA_CONFIG_PATH");
9201 	if (spa_config_path_env != NULL)
9202 		spa_config_path = spa_config_path_env;
9203 
9204 	/*
9205 	 * For performance reasons, we set this tunable down. We do so before
9206 	 * the arg parsing section so that the user can override this value if
9207 	 * they choose.
9208 	 */
9209 	zfs_btree_verify_intensity = 3;
9210 
9211 	struct option long_options[] = {
9212 		{"ignore-assertions",	no_argument,		NULL, 'A'},
9213 		{"block-stats",		no_argument,		NULL, 'b'},
9214 		{"backup",		no_argument,		NULL, 'B'},
9215 		{"checksum",		no_argument,		NULL, 'c'},
9216 		{"config",		no_argument,		NULL, 'C'},
9217 		{"datasets",		no_argument,		NULL, 'd'},
9218 		{"dedup-stats",		no_argument,		NULL, 'D'},
9219 		{"exported",		no_argument,		NULL, 'e'},
9220 		{"embedded-block-pointer",	no_argument,	NULL, 'E'},
9221 		{"automatic-rewind",	no_argument,		NULL, 'F'},
9222 		{"dump-debug-msg",	no_argument,		NULL, 'G'},
9223 		{"history",		no_argument,		NULL, 'h'},
9224 		{"intent-logs",		no_argument,		NULL, 'i'},
9225 		{"inflight",		required_argument,	NULL, 'I'},
9226 		{"checkpointed-state",	no_argument,		NULL, 'k'},
9227 		{"key",			required_argument,	NULL, 'K'},
9228 		{"label",		no_argument,		NULL, 'l'},
9229 		{"disable-leak-tracking",	no_argument,	NULL, 'L'},
9230 		{"metaslabs",		no_argument,		NULL, 'm'},
9231 		{"metaslab-groups",	no_argument,		NULL, 'M'},
9232 		{"numeric",		no_argument,		NULL, 'N'},
9233 		{"option",		required_argument,	NULL, 'o'},
9234 		{"object-lookups",	no_argument,		NULL, 'O'},
9235 		{"path",		required_argument,	NULL, 'p'},
9236 		{"parseable",		no_argument,		NULL, 'P'},
9237 		{"skip-label",		no_argument,		NULL, 'q'},
9238 		{"copy-object",		no_argument,		NULL, 'r'},
9239 		{"read-block",		no_argument,		NULL, 'R'},
9240 		{"io-stats",		no_argument,		NULL, 's'},
9241 		{"simulate-dedup",	no_argument,		NULL, 'S'},
9242 		{"txg",			required_argument,	NULL, 't'},
9243 		{"brt-stats",		no_argument,		NULL, 'T'},
9244 		{"uberblock",		no_argument,		NULL, 'u'},
9245 		{"cachefile",		required_argument,	NULL, 'U'},
9246 		{"verbose",		no_argument,		NULL, 'v'},
9247 		{"verbatim",		no_argument,		NULL, 'V'},
9248 		{"dump-blocks",		required_argument,	NULL, 'x'},
9249 		{"extreme-rewind",	no_argument,		NULL, 'X'},
9250 		{"all-reconstruction",	no_argument,		NULL, 'Y'},
9251 		{"livelist",		no_argument,		NULL, 'y'},
9252 		{"zstd-headers",	no_argument,		NULL, 'Z'},
9253 		{0, 0, 0, 0}
9254 	};
9255 
9256 	while ((c = getopt_long(argc, argv,
9257 	    "AbBcCdDeEFGhiI:kK:lLmMNo:Op:PqrRsSt:TuU:vVx:XYyZ",
9258 	    long_options, NULL)) != -1) {
9259 		switch (c) {
9260 		case 'b':
9261 		case 'B':
9262 		case 'c':
9263 		case 'C':
9264 		case 'd':
9265 		case 'D':
9266 		case 'E':
9267 		case 'G':
9268 		case 'h':
9269 		case 'i':
9270 		case 'l':
9271 		case 'm':
9272 		case 'M':
9273 		case 'N':
9274 		case 'O':
9275 		case 'r':
9276 		case 'R':
9277 		case 's':
9278 		case 'S':
9279 		case 'T':
9280 		case 'u':
9281 		case 'y':
9282 		case 'Z':
9283 			dump_opt[c]++;
9284 			dump_all = 0;
9285 			break;
9286 		case 'A':
9287 		case 'e':
9288 		case 'F':
9289 		case 'k':
9290 		case 'L':
9291 		case 'P':
9292 		case 'q':
9293 		case 'X':
9294 			dump_opt[c]++;
9295 			break;
9296 		case 'Y':
9297 			zfs_reconstruct_indirect_combinations_max = INT_MAX;
9298 			zfs_deadman_enabled = 0;
9299 			break;
9300 		/* NB: Sort single match options below. */
9301 		case 'I':
9302 			max_inflight_bytes = strtoull(optarg, NULL, 0);
9303 			if (max_inflight_bytes == 0) {
9304 				(void) fprintf(stderr, "maximum number "
9305 				    "of inflight bytes must be greater "
9306 				    "than 0\n");
9307 				usage();
9308 			}
9309 			break;
9310 		case 'K':
9311 			dump_opt[c]++;
9312 			key_material = strdup(optarg);
9313 			/* redact key material in process table */
9314 			while (*optarg != '\0') { *optarg++ = '*'; }
9315 			break;
9316 		case 'o':
9317 			error = set_global_var(optarg);
9318 			if (error != 0)
9319 				usage();
9320 			break;
9321 		case 'p':
9322 			if (searchdirs == NULL) {
9323 				searchdirs = umem_alloc(sizeof (char *),
9324 				    UMEM_NOFAIL);
9325 			} else {
9326 				char **tmp = umem_alloc((nsearch + 1) *
9327 				    sizeof (char *), UMEM_NOFAIL);
9328 				memcpy(tmp, searchdirs, nsearch *
9329 				    sizeof (char *));
9330 				umem_free(searchdirs,
9331 				    nsearch * sizeof (char *));
9332 				searchdirs = tmp;
9333 			}
9334 			searchdirs[nsearch++] = optarg;
9335 			break;
9336 		case 't':
9337 			max_txg = strtoull(optarg, NULL, 0);
9338 			if (max_txg < TXG_INITIAL) {
9339 				(void) fprintf(stderr, "incorrect txg "
9340 				    "specified: %s\n", optarg);
9341 				usage();
9342 			}
9343 			break;
9344 		case 'U':
9345 			config_path_console = B_TRUE;
9346 			spa_config_path = optarg;
9347 			if (spa_config_path[0] != '/') {
9348 				(void) fprintf(stderr,
9349 				    "cachefile must be an absolute path "
9350 				    "(i.e. start with a slash)\n");
9351 				usage();
9352 			}
9353 			break;
9354 		case 'v':
9355 			verbose++;
9356 			break;
9357 		case 'V':
9358 			flags = ZFS_IMPORT_VERBATIM;
9359 			break;
9360 		case 'x':
9361 			vn_dumpdir = optarg;
9362 			break;
9363 		default:
9364 			usage();
9365 			break;
9366 		}
9367 	}
9368 
9369 	if (!dump_opt['e'] && searchdirs != NULL) {
9370 		(void) fprintf(stderr, "-p option requires use of -e\n");
9371 		usage();
9372 	}
9373 #if defined(_LP64)
9374 	/*
9375 	 * ZDB does not typically re-read blocks; therefore limit the ARC
9376 	 * to 256 MB, which can be used entirely for metadata.
9377 	 */
9378 	zfs_arc_min = 2ULL << SPA_MAXBLOCKSHIFT;
9379 	zfs_arc_max = 256 * 1024 * 1024;
9380 #endif
9381 
9382 	/*
9383 	 * "zdb -c" uses checksum-verifying scrub i/os which are async reads.
9384 	 * "zdb -b" uses traversal prefetch which uses async reads.
9385 	 * For good performance, let several of them be active at once.
9386 	 */
9387 	zfs_vdev_async_read_max_active = 10;
9388 
9389 	/*
9390 	 * Disable reference tracking for better performance.
9391 	 */
9392 	reference_tracking_enable = B_FALSE;
9393 
9394 	/*
9395 	 * Do not fail spa_load when spa_load_verify fails. This is needed
9396 	 * to load non-idle pools.
9397 	 */
9398 	spa_load_verify_dryrun = B_TRUE;
9399 
9400 	/*
9401 	 * ZDB should have ability to read spacemaps.
9402 	 */
9403 	spa_mode_readable_spacemaps = B_TRUE;
9404 
9405 	if (dump_all)
9406 		verbose = MAX(verbose, 1);
9407 
9408 	for (c = 0; c < 256; c++) {
9409 		if (dump_all && strchr("ABeEFkKlLNOPrRSXy", c) == NULL)
9410 			dump_opt[c] = 1;
9411 		if (dump_opt[c])
9412 			dump_opt[c] += verbose;
9413 	}
9414 
9415 	libspl_set_assert_ok((dump_opt['A'] == 1) || (dump_opt['A'] > 2));
9416 	zfs_recover = (dump_opt['A'] > 1);
9417 
9418 	argc -= optind;
9419 	argv += optind;
9420 	if (argc < 2 && dump_opt['R'])
9421 		usage();
9422 
9423 	target = argv[0];
9424 
9425 	/*
9426 	 * Automate cachefile
9427 	 */
9428 	if (!spa_config_path_env && !config_path_console && target &&
9429 	    libzfs_core_init() == 0) {
9430 		char *pname = strdup(target);
9431 		const char *value;
9432 		nvlist_t *pnvl = NULL;
9433 		nvlist_t *vnvl = NULL;
9434 
9435 		if (strpbrk(pname, "/@") != NULL)
9436 			*strpbrk(pname, "/@") = '\0';
9437 
9438 		if (pname && lzc_get_props(pname, &pnvl) == 0) {
9439 			if (nvlist_lookup_nvlist(pnvl, "cachefile",
9440 			    &vnvl) == 0) {
9441 				value = fnvlist_lookup_string(vnvl,
9442 				    ZPROP_VALUE);
9443 			} else {
9444 				value = "-";
9445 			}
9446 			strlcpy(pbuf, value, sizeof (pbuf));
9447 			if (pbuf[0] != '\0') {
9448 				if (pbuf[0] == '/') {
9449 					if (access(pbuf, F_OK) == 0)
9450 						spa_config_path = pbuf;
9451 					else
9452 						force_import = B_TRUE;
9453 				} else if ((strcmp(pbuf, "-") == 0 &&
9454 				    access(ZPOOL_CACHE, F_OK) != 0) ||
9455 				    strcmp(pbuf, "none") == 0) {
9456 					force_import = B_TRUE;
9457 				}
9458 			}
9459 			nvlist_free(vnvl);
9460 		}
9461 
9462 		free(pname);
9463 		nvlist_free(pnvl);
9464 		libzfs_core_fini();
9465 	}
9466 
9467 	dmu_objset_register_type(DMU_OST_ZFS, dummy_get_file_info);
9468 	kernel_init(SPA_MODE_READ);
9469 	kernel_init_done = B_TRUE;
9470 
9471 	if (dump_opt['E']) {
9472 		if (argc != 1)
9473 			usage();
9474 		zdb_embedded_block(argv[0]);
9475 		error = 0;
9476 		goto fini;
9477 	}
9478 
9479 	if (argc < 1) {
9480 		if (!dump_opt['e'] && dump_opt['C']) {
9481 			dump_cachefile(spa_config_path);
9482 			error = 0;
9483 			goto fini;
9484 		}
9485 		usage();
9486 	}
9487 
9488 	if (dump_opt['l']) {
9489 		error = dump_label(argv[0]);
9490 		goto fini;
9491 	}
9492 
9493 	if (dump_opt['X'] || dump_opt['F'])
9494 		rewind = ZPOOL_DO_REWIND |
9495 		    (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0);
9496 
9497 	/* -N implies -d */
9498 	if (dump_opt['N'] && dump_opt['d'] == 0)
9499 		dump_opt['d'] = dump_opt['N'];
9500 
9501 	if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 ||
9502 	    nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 ||
9503 	    nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0)
9504 		fatal("internal error: %s", strerror(ENOMEM));
9505 
9506 	error = 0;
9507 
9508 	if (strpbrk(target, "/@") != NULL) {
9509 		size_t targetlen;
9510 
9511 		target_pool = strdup(target);
9512 		*strpbrk(target_pool, "/@") = '\0';
9513 
9514 		target_is_spa = B_FALSE;
9515 		targetlen = strlen(target);
9516 		if (targetlen && target[targetlen - 1] == '/')
9517 			target[targetlen - 1] = '\0';
9518 
9519 		/*
9520 		 * See if an objset ID was supplied (-d <pool>/<objset ID>).
9521 		 * To disambiguate tank/100, consider the 100 as objsetID
9522 		 * if -N was given, otherwise 100 is an objsetID iff
9523 		 * tank/100 as a named dataset fails on lookup.
9524 		 */
9525 		objset_str = strchr(target, '/');
9526 		if (objset_str && strlen(objset_str) > 1 &&
9527 		    zdb_numeric(objset_str + 1)) {
9528 			char *endptr;
9529 			errno = 0;
9530 			objset_str++;
9531 			objset_id = strtoull(objset_str, &endptr, 0);
9532 			/* dataset 0 is the same as opening the pool */
9533 			if (errno == 0 && endptr != objset_str &&
9534 			    objset_id != 0) {
9535 				if (dump_opt['N'])
9536 					dataset_lookup = B_TRUE;
9537 			}
9538 			/* normal dataset name not an objset ID */
9539 			if (endptr == objset_str) {
9540 				objset_id = -1;
9541 			}
9542 		} else if (objset_str && !zdb_numeric(objset_str + 1) &&
9543 		    dump_opt['N']) {
9544 			printf("Supply a numeric objset ID with -N\n");
9545 			error = 1;
9546 			goto fini;
9547 		}
9548 	} else {
9549 		target_pool = target;
9550 	}
9551 
9552 	if (dump_opt['e'] || force_import) {
9553 		importargs_t args = { 0 };
9554 
9555 		/*
9556 		 * If path is not provided, search in /dev
9557 		 */
9558 		if (searchdirs == NULL) {
9559 			searchdirs = umem_alloc(sizeof (char *), UMEM_NOFAIL);
9560 			searchdirs[nsearch++] = (char *)ZFS_DEVDIR;
9561 		}
9562 
9563 		args.paths = nsearch;
9564 		args.path = searchdirs;
9565 		args.can_be_active = B_TRUE;
9566 
9567 		libpc_handle_t lpch = {
9568 			.lpc_lib_handle = NULL,
9569 			.lpc_ops = &libzpool_config_ops,
9570 			.lpc_printerr = B_TRUE
9571 		};
9572 		error = zpool_find_config(&lpch, target_pool, &cfg, &args);
9573 
9574 		if (error == 0) {
9575 
9576 			if (nvlist_add_nvlist(cfg,
9577 			    ZPOOL_LOAD_POLICY, policy) != 0) {
9578 				fatal("can't open '%s': %s",
9579 				    target, strerror(ENOMEM));
9580 			}
9581 
9582 			if (dump_opt['C'] > 1) {
9583 				(void) printf("\nConfiguration for import:\n");
9584 				dump_nvlist(cfg, 8);
9585 			}
9586 
9587 			/*
9588 			 * Disable the activity check to allow examination of
9589 			 * active pools.
9590 			 */
9591 			error = spa_import(target_pool, cfg, NULL,
9592 			    flags | ZFS_IMPORT_SKIP_MMP);
9593 		}
9594 	}
9595 
9596 	if (searchdirs != NULL) {
9597 		umem_free(searchdirs, nsearch * sizeof (char *));
9598 		searchdirs = NULL;
9599 	}
9600 
9601 	/*
9602 	 * We need to make sure to process -O option or call
9603 	 * dump_path after the -e option has been processed,
9604 	 * which imports the pool to the namespace if it's
9605 	 * not in the cachefile.
9606 	 */
9607 	if (dump_opt['O']) {
9608 		if (argc != 2)
9609 			usage();
9610 		dump_opt['v'] = verbose + 3;
9611 		error = dump_path(argv[0], argv[1], NULL);
9612 		goto fini;
9613 	}
9614 
9615 	if (dump_opt['r']) {
9616 		target_is_spa = B_FALSE;
9617 		if (argc != 3)
9618 			usage();
9619 		dump_opt['v'] = verbose;
9620 		error = dump_path(argv[0], argv[1], &object);
9621 		if (error != 0)
9622 			fatal("internal error: %s", strerror(error));
9623 	}
9624 
9625 	/*
9626 	 * import_checkpointed_state makes the assumption that the
9627 	 * target pool that we pass it is already part of the spa
9628 	 * namespace. Because of that we need to make sure to call
9629 	 * it always after the -e option has been processed, which
9630 	 * imports the pool to the namespace if it's not in the
9631 	 * cachefile.
9632 	 */
9633 	char *checkpoint_pool = NULL;
9634 	char *checkpoint_target = NULL;
9635 	if (dump_opt['k']) {
9636 		checkpoint_pool = import_checkpointed_state(target, cfg,
9637 		    &checkpoint_target);
9638 
9639 		if (checkpoint_target != NULL)
9640 			target = checkpoint_target;
9641 	}
9642 
9643 	if (cfg != NULL) {
9644 		nvlist_free(cfg);
9645 		cfg = NULL;
9646 	}
9647 
9648 	if (target_pool != target)
9649 		free(target_pool);
9650 
9651 	if (error == 0) {
9652 		if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) {
9653 			ASSERT(checkpoint_pool != NULL);
9654 			ASSERT(checkpoint_target == NULL);
9655 
9656 			error = spa_open(checkpoint_pool, &spa, FTAG);
9657 			if (error != 0) {
9658 				fatal("Tried to open pool \"%s\" but "
9659 				    "spa_open() failed with error %d\n",
9660 				    checkpoint_pool, error);
9661 			}
9662 
9663 		} else if (target_is_spa || dump_opt['R'] || dump_opt['B'] ||
9664 		    objset_id == 0) {
9665 			zdb_set_skip_mmp(target);
9666 			error = spa_open_rewind(target, &spa, FTAG, policy,
9667 			    NULL);
9668 			if (error) {
9669 				/*
9670 				 * If we're missing the log device then
9671 				 * try opening the pool after clearing the
9672 				 * log state.
9673 				 */
9674 				mutex_enter(&spa_namespace_lock);
9675 				if ((spa = spa_lookup(target)) != NULL &&
9676 				    spa->spa_log_state == SPA_LOG_MISSING) {
9677 					spa->spa_log_state = SPA_LOG_CLEAR;
9678 					error = 0;
9679 				}
9680 				mutex_exit(&spa_namespace_lock);
9681 
9682 				if (!error) {
9683 					error = spa_open_rewind(target, &spa,
9684 					    FTAG, policy, NULL);
9685 				}
9686 			}
9687 		} else if (strpbrk(target, "#") != NULL) {
9688 			dsl_pool_t *dp;
9689 			error = dsl_pool_hold(target, FTAG, &dp);
9690 			if (error != 0) {
9691 				fatal("can't dump '%s': %s", target,
9692 				    strerror(error));
9693 			}
9694 			error = dump_bookmark(dp, target, B_TRUE, verbose > 1);
9695 			dsl_pool_rele(dp, FTAG);
9696 			if (error != 0) {
9697 				fatal("can't dump '%s': %s", target,
9698 				    strerror(error));
9699 			}
9700 			goto fini;
9701 		} else {
9702 			target_pool = strdup(target);
9703 			if (strpbrk(target, "/@") != NULL)
9704 				*strpbrk(target_pool, "/@") = '\0';
9705 
9706 			zdb_set_skip_mmp(target);
9707 			/*
9708 			 * If -N was supplied, the user has indicated that
9709 			 * zdb -d <pool>/<objsetID> is in effect.  Otherwise
9710 			 * we first assume that the dataset string is the
9711 			 * dataset name.  If dmu_objset_hold fails with the
9712 			 * dataset string, and we have an objset_id, retry the
9713 			 * lookup with the objsetID.
9714 			 */
9715 			boolean_t retry = B_TRUE;
9716 retry_lookup:
9717 			if (dataset_lookup == B_TRUE) {
9718 				/*
9719 				 * Use the supplied id to get the name
9720 				 * for open_objset.
9721 				 */
9722 				error = spa_open(target_pool, &spa, FTAG);
9723 				if (error == 0) {
9724 					error = name_from_objset_id(spa,
9725 					    objset_id, dsname);
9726 					spa_close(spa, FTAG);
9727 					if (error == 0)
9728 						target = dsname;
9729 				}
9730 			}
9731 			if (error == 0) {
9732 				if (objset_id > 0 && retry) {
9733 					int err = dmu_objset_hold(target, FTAG,
9734 					    &os);
9735 					if (err) {
9736 						dataset_lookup = B_TRUE;
9737 						retry = B_FALSE;
9738 						goto retry_lookup;
9739 					} else {
9740 						dmu_objset_rele(os, FTAG);
9741 					}
9742 				}
9743 				error = open_objset(target, FTAG, &os);
9744 			}
9745 			if (error == 0)
9746 				spa = dmu_objset_spa(os);
9747 			free(target_pool);
9748 		}
9749 	}
9750 	nvlist_free(policy);
9751 
9752 	if (error)
9753 		fatal("can't open '%s': %s", target, strerror(error));
9754 
9755 	/*
9756 	 * Set the pool failure mode to panic in order to prevent the pool
9757 	 * from suspending.  A suspended I/O will have no way to resume and
9758 	 * can prevent the zdb(8) command from terminating as expected.
9759 	 */
9760 	if (spa != NULL)
9761 		spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
9762 
9763 	argv++;
9764 	argc--;
9765 	if (dump_opt['r']) {
9766 		error = zdb_copy_object(os, object, argv[1]);
9767 	} else if (!dump_opt['R']) {
9768 		flagbits['d'] = ZOR_FLAG_DIRECTORY;
9769 		flagbits['f'] = ZOR_FLAG_PLAIN_FILE;
9770 		flagbits['m'] = ZOR_FLAG_SPACE_MAP;
9771 		flagbits['z'] = ZOR_FLAG_ZAP;
9772 		flagbits['A'] = ZOR_FLAG_ALL_TYPES;
9773 
9774 		if (argc > 0 && dump_opt['d']) {
9775 			zopt_object_args = argc;
9776 			zopt_object_ranges = calloc(zopt_object_args,
9777 			    sizeof (zopt_object_range_t));
9778 			for (unsigned i = 0; i < zopt_object_args; i++) {
9779 				int err;
9780 				const char *msg = NULL;
9781 
9782 				err = parse_object_range(argv[i],
9783 				    &zopt_object_ranges[i], &msg);
9784 				if (err != 0)
9785 					fatal("Bad object or range: '%s': %s\n",
9786 					    argv[i], msg ?: "");
9787 			}
9788 		} else if (argc > 0 && dump_opt['m']) {
9789 			zopt_metaslab_args = argc;
9790 			zopt_metaslab = calloc(zopt_metaslab_args,
9791 			    sizeof (uint64_t));
9792 			for (unsigned i = 0; i < zopt_metaslab_args; i++) {
9793 				errno = 0;
9794 				zopt_metaslab[i] = strtoull(argv[i], NULL, 0);
9795 				if (zopt_metaslab[i] == 0 && errno != 0)
9796 					fatal("bad number %s: %s", argv[i],
9797 					    strerror(errno));
9798 			}
9799 		}
9800 		if (dump_opt['B']) {
9801 			dump_backup(target, objset_id,
9802 			    argc > 0 ? argv[0] : NULL);
9803 		} else if (os != NULL) {
9804 			dump_objset(os);
9805 		} else if (zopt_object_args > 0 && !dump_opt['m']) {
9806 			dump_objset(spa->spa_meta_objset);
9807 		} else {
9808 			dump_zpool(spa);
9809 		}
9810 	} else {
9811 		flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR;
9812 		flagbits['c'] = ZDB_FLAG_CHECKSUM;
9813 		flagbits['d'] = ZDB_FLAG_DECOMPRESS;
9814 		flagbits['e'] = ZDB_FLAG_BSWAP;
9815 		flagbits['g'] = ZDB_FLAG_GBH;
9816 		flagbits['i'] = ZDB_FLAG_INDIRECT;
9817 		flagbits['r'] = ZDB_FLAG_RAW;
9818 		flagbits['v'] = ZDB_FLAG_VERBOSE;
9819 
9820 		for (int i = 0; i < argc; i++)
9821 			zdb_read_block(argv[i], spa);
9822 	}
9823 
9824 	if (dump_opt['k']) {
9825 		free(checkpoint_pool);
9826 		if (!target_is_spa)
9827 			free(checkpoint_target);
9828 	}
9829 
9830 fini:
9831 	if (spa != NULL)
9832 		zdb_ddt_cleanup(spa);
9833 
9834 	if (os != NULL) {
9835 		close_objset(os, FTAG);
9836 	} else if (spa != NULL) {
9837 		spa_close(spa, FTAG);
9838 	}
9839 
9840 	fuid_table_destroy();
9841 
9842 	dump_debug_buffer();
9843 
9844 	if (kernel_init_done)
9845 		kernel_fini();
9846 
9847 	return (error);
9848 }
9849