1 /*
2 * util.c
3 *
4 * some general memory functions
5 *
6 * a Net::DNS like library for C
7 *
8 * (c) NLnet Labs, 2004-2006
9 *
10 * See the file LICENSE for the license
11 */
12
13 #include <ldns/config.h>
14
15 #include <ldns/rdata.h>
16 #include <ldns/rr.h>
17 #include <ldns/util.h>
18 #include <strings.h>
19 #include <stdlib.h>
20 #include <stdio.h>
21 #include <sys/time.h>
22 #include <time.h>
23 #include <ctype.h>
24
25 #ifdef HAVE_SSL
26 #include <openssl/rand.h>
27 #endif
28
29 ldns_lookup_table *
ldns_lookup_by_name(ldns_lookup_table * table,const char * name)30 ldns_lookup_by_name(ldns_lookup_table *table, const char *name)
31 {
32 while (table->name != NULL) {
33 if (strcasecmp(name, table->name) == 0)
34 return table;
35 table++;
36 }
37 return NULL;
38 }
39
40 ldns_lookup_table *
ldns_lookup_by_id(ldns_lookup_table * table,int id)41 ldns_lookup_by_id(ldns_lookup_table *table, int id)
42 {
43 while (table->name != NULL) {
44 if (table->id == id)
45 return table;
46 table++;
47 }
48 return NULL;
49 }
50
51 int
ldns_get_bit(uint8_t bits[],size_t index)52 ldns_get_bit(uint8_t bits[], size_t index)
53 {
54 /*
55 * The bits are counted from left to right, so bit #0 is the
56 * left most bit.
57 */
58 return (int) (bits[index / 8] & (1 << (7 - index % 8)));
59 }
60
61 int
ldns_get_bit_r(uint8_t bits[],size_t index)62 ldns_get_bit_r(uint8_t bits[], size_t index)
63 {
64 /*
65 * The bits are counted from right to left, so bit #0 is the
66 * right most bit.
67 */
68 return (int) bits[index / 8] & (1 << (index % 8));
69 }
70
71 void
ldns_set_bit(uint8_t * byte,int bit_nr,bool value)72 ldns_set_bit(uint8_t *byte, int bit_nr, bool value)
73 {
74 /*
75 * The bits are counted from right to left, so bit #0 is the
76 * right most bit.
77 */
78 if (bit_nr >= 0 && bit_nr < 8) {
79 if (value) {
80 *byte = *byte | (0x01 << bit_nr);
81 } else {
82 *byte = *byte & ~(0x01 << bit_nr);
83 }
84 }
85 }
86
87 int
ldns_hexdigit_to_int(char ch)88 ldns_hexdigit_to_int(char ch)
89 {
90 switch (ch) {
91 case '0': return 0;
92 case '1': return 1;
93 case '2': return 2;
94 case '3': return 3;
95 case '4': return 4;
96 case '5': return 5;
97 case '6': return 6;
98 case '7': return 7;
99 case '8': return 8;
100 case '9': return 9;
101 case 'a': case 'A': return 10;
102 case 'b': case 'B': return 11;
103 case 'c': case 'C': return 12;
104 case 'd': case 'D': return 13;
105 case 'e': case 'E': return 14;
106 case 'f': case 'F': return 15;
107 default:
108 return -1;
109 }
110 }
111
112 char
ldns_int_to_hexdigit(int i)113 ldns_int_to_hexdigit(int i)
114 {
115 switch (i) {
116 case 0: return '0';
117 case 1: return '1';
118 case 2: return '2';
119 case 3: return '3';
120 case 4: return '4';
121 case 5: return '5';
122 case 6: return '6';
123 case 7: return '7';
124 case 8: return '8';
125 case 9: return '9';
126 case 10: return 'a';
127 case 11: return 'b';
128 case 12: return 'c';
129 case 13: return 'd';
130 case 14: return 'e';
131 case 15: return 'f';
132 default:
133 abort();
134 }
135 }
136
137 int
ldns_hexstring_to_data(uint8_t * data,const char * str)138 ldns_hexstring_to_data(uint8_t *data, const char *str)
139 {
140 size_t i;
141
142 if (!str || !data) {
143 return -1;
144 }
145
146 if (strlen(str) % 2 != 0) {
147 return -2;
148 }
149
150 for (i = 0; i < strlen(str) / 2; i++) {
151 data[i] =
152 16 * (uint8_t) ldns_hexdigit_to_int(str[i*2]) +
153 (uint8_t) ldns_hexdigit_to_int(str[i*2 + 1]);
154 }
155
156 return (int) i;
157 }
158
159 const char *
ldns_version(void)160 ldns_version(void)
161 {
162 return (char*)LDNS_VERSION;
163 }
164
165 /* Number of days per month (except for February in leap years). */
166 static const int mdays[] = {
167 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
168 };
169
170 #define LDNS_MOD(x,y) (((x) % (y) < 0) ? ((x) % (y) + (y)) : ((x) % (y)))
171 #define LDNS_DIV(x,y) (((x) % (y) < 0) ? ((x) / (y) - 1 ) : ((x) / (y)))
172
173 static int
is_leap_year(int year)174 is_leap_year(int year)
175 {
176 return LDNS_MOD(year, 4) == 0 && (LDNS_MOD(year, 100) != 0
177 || LDNS_MOD(year, 400) == 0);
178 }
179
180 static int
leap_days(int y1,int y2)181 leap_days(int y1, int y2)
182 {
183 --y1;
184 --y2;
185 return (LDNS_DIV(y2, 4) - LDNS_DIV(y1, 4)) -
186 (LDNS_DIV(y2, 100) - LDNS_DIV(y1, 100)) +
187 (LDNS_DIV(y2, 400) - LDNS_DIV(y1, 400));
188 }
189
190 /*
191 * Code adapted from Python 2.4.1 sources (Lib/calendar.py).
192 */
193 time_t
ldns_mktime_from_utc(const struct tm * tm)194 ldns_mktime_from_utc(const struct tm *tm)
195 {
196 int year = 1900 + tm->tm_year;
197 time_t days = 365 * ((time_t) year - 1970) + leap_days(1970, year);
198 time_t hours;
199 time_t minutes;
200 time_t seconds;
201 int i;
202
203 for (i = 0; i < tm->tm_mon; ++i) {
204 days += mdays[i];
205 }
206 if (tm->tm_mon > 1 && is_leap_year(year)) {
207 ++days;
208 }
209 days += tm->tm_mday - 1;
210
211 hours = days * 24 + tm->tm_hour;
212 minutes = hours * 60 + tm->tm_min;
213 seconds = minutes * 60 + tm->tm_sec;
214
215 return seconds;
216 }
217
218 time_t
mktime_from_utc(const struct tm * tm)219 mktime_from_utc(const struct tm *tm)
220 {
221 return ldns_mktime_from_utc(tm);
222 }
223
224 #if SIZEOF_TIME_T <= 4
225
226 static void
ldns_year_and_yday_from_days_since_epoch(int64_t days,struct tm * result)227 ldns_year_and_yday_from_days_since_epoch(int64_t days, struct tm *result)
228 {
229 int year = 1970;
230 int new_year;
231
232 while (days < 0 || days >= (int64_t) (is_leap_year(year) ? 366 : 365)) {
233 new_year = year + (int) LDNS_DIV(days, 365);
234 days -= (new_year - year) * 365;
235 days -= leap_days(year, new_year);
236 year = new_year;
237 }
238 result->tm_year = year;
239 result->tm_yday = (int) days;
240 }
241
242 /* Number of days per month in a leap year. */
243 static const int leap_year_mdays[] = {
244 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
245 };
246
247 static void
ldns_mon_and_mday_from_year_and_yday(struct tm * result)248 ldns_mon_and_mday_from_year_and_yday(struct tm *result)
249 {
250 int idays = result->tm_yday;
251 const int *mon_lengths = is_leap_year(result->tm_year) ?
252 leap_year_mdays : mdays;
253
254 result->tm_mon = 0;
255 while (idays >= mon_lengths[result->tm_mon]) {
256 idays -= mon_lengths[result->tm_mon++];
257 }
258 result->tm_mday = idays + 1;
259 }
260
261 static void
ldns_wday_from_year_and_yday(struct tm * result)262 ldns_wday_from_year_and_yday(struct tm *result)
263 {
264 result->tm_wday = 4 /* 1-1-1970 was a thursday */
265 + LDNS_MOD((result->tm_year - 1970), 7) * LDNS_MOD(365, 7)
266 + leap_days(1970, result->tm_year)
267 + result->tm_yday;
268 result->tm_wday = LDNS_MOD(result->tm_wday, 7);
269 if (result->tm_wday < 0) {
270 result->tm_wday += 7;
271 }
272 }
273
274 static struct tm *
ldns_gmtime64_r(int64_t clock,struct tm * result)275 ldns_gmtime64_r(int64_t clock, struct tm *result)
276 {
277 result->tm_isdst = 0;
278 result->tm_sec = (int) LDNS_MOD(clock, 60);
279 clock = LDNS_DIV(clock, 60);
280 result->tm_min = (int) LDNS_MOD(clock, 60);
281 clock = LDNS_DIV(clock, 60);
282 result->tm_hour = (int) LDNS_MOD(clock, 24);
283 clock = LDNS_DIV(clock, 24);
284
285 ldns_year_and_yday_from_days_since_epoch(clock, result);
286 ldns_mon_and_mday_from_year_and_yday(result);
287 ldns_wday_from_year_and_yday(result);
288 result->tm_year -= 1900;
289
290 return result;
291 }
292
293 #endif /* SIZEOF_TIME_T <= 4 */
294
295 static int64_t
ldns_serial_arithmetics_time(int32_t time,time_t now)296 ldns_serial_arithmetics_time(int32_t time, time_t now)
297 {
298 /* Casting due to https://github.com/NLnetLabs/ldns/issues/71 */
299 int32_t offset = (int32_t) ((uint32_t) time - (uint32_t) now);
300 return (int64_t) now + offset;
301 }
302
303 struct tm *
ldns_serial_arithmetics_gmtime_r(int32_t time,time_t now,struct tm * result)304 ldns_serial_arithmetics_gmtime_r(int32_t time, time_t now, struct tm *result)
305 {
306 #if SIZEOF_TIME_T <= 4
307 int64_t secs_since_epoch = ldns_serial_arithmetics_time(time, now);
308 return ldns_gmtime64_r(secs_since_epoch, result);
309 #else
310 time_t secs_since_epoch = ldns_serial_arithmetics_time(time, now);
311 return gmtime_r(&secs_since_epoch, result);
312 #endif
313 }
314
315 #ifdef ldns_serial_arithmitics_gmtime_r
316 #undef ldns_serial_arithmitics_gmtime_r
317 #endif
318 /* alias function because of previously used wrong spelling */
319 struct tm *ldns_serial_arithmitics_gmtime_r(int32_t, time_t, struct tm *);
320 struct tm *
ldns_serial_arithmitics_gmtime_r(int32_t time,time_t now,struct tm * result)321 ldns_serial_arithmitics_gmtime_r(int32_t time, time_t now, struct tm *result)
322 {
323 return ldns_serial_arithmetics_gmtime_r(time, now, result);
324 }
325
326 /**
327 * Init the random source
328 * applications should call this if they need entropy data within ldns
329 * If openSSL is available, it is automatically seeded from /dev/urandom
330 * or /dev/random
331 *
332 * If you need more entropy, or have no openssl available, this function
333 * MUST be called at the start of the program
334 *
335 * If openssl *is* available, this function just adds more entropy
336 **/
337 int
ldns_init_random(FILE * fd,unsigned int size)338 ldns_init_random(FILE *fd, unsigned int size)
339 {
340 /* if fp is given, seed srandom with data from file
341 otherwise use /dev/urandom */
342 FILE *rand_f;
343 uint8_t *seed;
344 size_t read = 0;
345 unsigned int seed_i;
346 struct timeval tv;
347
348 /* we'll need at least sizeof(unsigned int) bytes for the
349 standard prng seed */
350 if (size < (unsigned int) sizeof(seed_i)){
351 size = (unsigned int) sizeof(seed_i);
352 }
353
354 seed = LDNS_XMALLOC(uint8_t, size);
355 if(!seed) {
356 return 1;
357 }
358
359 if (!fd) {
360 if ((rand_f = fopen("/dev/urandom", "r")) == NULL) {
361 /* no readable /dev/urandom, try /dev/random */
362 if ((rand_f = fopen("/dev/random", "r")) == NULL) {
363 /* no readable /dev/random either, and no entropy
364 source given. we'll have to improvise */
365 for (read = 0; read < size; read++) {
366 gettimeofday(&tv, NULL);
367 seed[read] = (uint8_t) (tv.tv_usec % 256);
368 }
369 } else {
370 read = fread(seed, 1, size, rand_f);
371 }
372 } else {
373 read = fread(seed, 1, size, rand_f);
374 }
375 } else {
376 rand_f = fd;
377 read = fread(seed, 1, size, rand_f);
378 }
379
380 if (read < size) {
381 LDNS_FREE(seed);
382 if (!fd) fclose(rand_f);
383 return 1;
384 } else {
385 #ifdef HAVE_SSL
386 /* Seed the OpenSSL prng (most systems have it seeded
387 automatically, in that case this call just adds entropy */
388 RAND_seed(seed, (int) size);
389 #else
390 /* Seed the standard prng, only uses the first
391 * unsigned sizeof(unsigned int) bytes found in the entropy pool
392 */
393 memcpy(&seed_i, seed, sizeof(seed_i));
394 srandom(seed_i);
395 #endif
396 LDNS_FREE(seed);
397 }
398
399 if (!fd) {
400 if (rand_f) fclose(rand_f);
401 }
402
403 return 0;
404 }
405
406 /**
407 * Get random number.
408 *
409 */
410 uint16_t
ldns_get_random(void)411 ldns_get_random(void)
412 {
413 uint16_t rid = 0;
414 #ifdef HAVE_SSL
415 if (RAND_bytes((unsigned char*)&rid, 2) != 1) {
416 rid = (uint16_t) random();
417 }
418 #else
419 rid = (uint16_t) random();
420 #endif
421 return rid;
422 }
423
424 /*
425 * BubbleBabble code taken from OpenSSH
426 * Copyright (c) 2001 Carsten Raskgaard. All rights reserved.
427 */
428 char *
ldns_bubblebabble(uint8_t * data,size_t len)429 ldns_bubblebabble(uint8_t *data, size_t len)
430 {
431 char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' };
432 char consonants[] = { 'b', 'c', 'd', 'f', 'g', 'h', 'k', 'l', 'm',
433 'n', 'p', 'r', 's', 't', 'v', 'z', 'x' };
434 size_t i, j = 0, rounds, seed = 1;
435 char *retval;
436
437 rounds = (len / 2) + 1;
438 retval = LDNS_XMALLOC(char, rounds * 6);
439 if(!retval) return NULL;
440 retval[j++] = 'x';
441 for (i = 0; i < rounds; i++) {
442 size_t idx0, idx1, idx2, idx3, idx4;
443 if ((i + 1 < rounds) || (len % 2 != 0)) {
444 idx0 = (((((size_t)(data[2 * i])) >> 6) & 3) +
445 seed) % 6;
446 idx1 = (((size_t)(data[2 * i])) >> 2) & 15;
447 idx2 = ((((size_t)(data[2 * i])) & 3) +
448 (seed / 6)) % 6;
449 retval[j++] = vowels[idx0];
450 retval[j++] = consonants[idx1];
451 retval[j++] = vowels[idx2];
452 if ((i + 1) < rounds) {
453 idx3 = (((size_t)(data[(2 * i) + 1])) >> 4) & 15;
454 idx4 = (((size_t)(data[(2 * i) + 1]))) & 15;
455 retval[j++] = consonants[idx3];
456 retval[j++] = '-';
457 retval[j++] = consonants[idx4];
458 seed = ((seed * 5) +
459 ((((size_t)(data[2 * i])) * 7) +
460 ((size_t)(data[(2 * i) + 1])))) % 36;
461 }
462 } else {
463 idx0 = seed % 6;
464 idx1 = 16;
465 idx2 = seed / 6;
466 retval[j++] = vowels[idx0];
467 retval[j++] = consonants[idx1];
468 retval[j++] = vowels[idx2];
469 }
470 }
471 retval[j++] = 'x';
472 retval[j++] = '\0';
473 return retval;
474 }
475
476 /*
477 * For backwards compatibility, because we have always exported this symbol.
478 */
479 #ifdef HAVE_B64_NTOP
480 int ldns_b64_ntop(const uint8_t* src, size_t srclength,
481 char *target, size_t targsize);
482 {
483 return b64_ntop(src, srclength, target, targsize);
484 }
485 #endif
486
487 /*
488 * For backwards compatibility, because we have always exported this symbol.
489 */
490 #ifdef HAVE_B64_PTON
ldns_b64_pton(const char * src,uint8_t * target,size_t targsize)491 int ldns_b64_pton(const char* src, uint8_t *target, size_t targsize)
492 {
493 return b64_pton(src, target, targsize);
494 }
495 #endif
496
497
498 static int
ldns_b32_ntop_base(const uint8_t * src,size_t src_sz,char * dst,size_t dst_sz,bool extended_hex,bool add_padding)499 ldns_b32_ntop_base(const uint8_t* src, size_t src_sz,
500 char* dst, size_t dst_sz,
501 bool extended_hex, bool add_padding)
502 {
503 size_t ret_sz;
504 const char* b32 = extended_hex ? "0123456789abcdefghijklmnopqrstuv"
505 : "abcdefghijklmnopqrstuvwxyz234567";
506
507 size_t c = 0; /* c is used to carry partial base32 character over
508 * byte boundaries for sizes with a remainder.
509 * (i.e. src_sz % 5 != 0)
510 */
511
512 ret_sz = add_padding ? ldns_b32_ntop_calculate_size(src_sz)
513 : ldns_b32_ntop_calculate_size_no_padding(src_sz);
514
515 /* Do we have enough space? */
516 if (dst_sz < ret_sz + 1)
517 return -1;
518
519 /* We know the size; terminate the string */
520 dst[ret_sz] = '\0';
521
522 /* First process all chunks of five */
523 while (src_sz >= 5) {
524 /* 00000... ........ ........ ........ ........ */
525 dst[0] = b32[(src[0] ) >> 3];
526
527 /* .....111 11...... ........ ........ ........ */
528 dst[1] = b32[(src[0] & 0x07) << 2 | src[1] >> 6];
529
530 /* ........ ..22222. ........ ........ ........ */
531 dst[2] = b32[(src[1] & 0x3e) >> 1];
532
533 /* ........ .......3 3333.... ........ ........ */
534 dst[3] = b32[(src[1] & 0x01) << 4 | src[2] >> 4];
535
536 /* ........ ........ ....4444 4....... ........ */
537 dst[4] = b32[(src[2] & 0x0f) << 1 | src[3] >> 7];
538
539 /* ........ ........ ........ .55555.. ........ */
540 dst[5] = b32[(src[3] & 0x7c) >> 2];
541
542 /* ........ ........ ........ ......66 666..... */
543 dst[6] = b32[(src[3] & 0x03) << 3 | src[4] >> 5];
544
545 /* ........ ........ ........ ........ ...77777 */
546 dst[7] = b32[(src[4] & 0x1f) ];
547
548 src_sz -= 5;
549 src += 5;
550 dst += 8;
551 }
552 /* Process what remains */
553 switch (src_sz) {
554 case 4: /* ........ ........ ........ ......66 666..... */
555 dst[6] = b32[(src[3] & 0x03) << 3];
556
557 /* ........ ........ ........ .55555.. ........ */
558 dst[5] = b32[(src[3] & 0x7c) >> 2];
559
560 /* ........ ........ ....4444 4....... ........ */
561 c = src[3] >> 7 ;
562 /* fallthrough */
563 case 3: dst[4] = b32[(src[2] & 0x0f) << 1 | c];
564
565 /* ........ .......3 3333.... ........ ........ */
566 c = src[2] >> 4 ;
567 /* fallthrough */
568 case 2: dst[3] = b32[(src[1] & 0x01) << 4 | c];
569
570 /* ........ ..22222. ........ ........ ........ */
571 dst[2] = b32[(src[1] & 0x3e) >> 1];
572
573 /* .....111 11...... ........ ........ ........ */
574 c = src[1] >> 6 ;
575 /* fallthrough */
576 case 1: dst[1] = b32[(src[0] & 0x07) << 2 | c];
577
578 /* 00000... ........ ........ ........ ........ */
579 dst[0] = b32[ src[0] >> 3];
580 }
581 /* Add padding */
582 if (add_padding) {
583 switch (src_sz) {
584 case 1: dst[2] = '=';
585 dst[3] = '=';
586 /* fallthrough */
587 case 2: dst[4] = '=';
588 /* fallthrough */
589 case 3: dst[5] = '=';
590 dst[6] = '=';
591 /* fallthrough */
592 case 4: dst[7] = '=';
593 }
594 }
595 return (int)ret_sz;
596 }
597
598 int
ldns_b32_ntop(const uint8_t * src,size_t src_sz,char * dst,size_t dst_sz)599 ldns_b32_ntop(const uint8_t* src, size_t src_sz, char* dst, size_t dst_sz)
600 {
601 return ldns_b32_ntop_base(src, src_sz, dst, dst_sz, false, true);
602 }
603
604 int
ldns_b32_ntop_extended_hex(const uint8_t * src,size_t src_sz,char * dst,size_t dst_sz)605 ldns_b32_ntop_extended_hex(const uint8_t* src, size_t src_sz,
606 char* dst, size_t dst_sz)
607 {
608 return ldns_b32_ntop_base(src, src_sz, dst, dst_sz, true, true);
609 }
610
611 #ifndef HAVE_B32_NTOP
612
613 int
b32_ntop(const uint8_t * src,size_t src_sz,char * dst,size_t dst_sz)614 b32_ntop(const uint8_t* src, size_t src_sz, char* dst, size_t dst_sz)
615 {
616 return ldns_b32_ntop_base(src, src_sz, dst, dst_sz, false, true);
617 }
618
619 int
b32_ntop_extended_hex(const uint8_t * src,size_t src_sz,char * dst,size_t dst_sz)620 b32_ntop_extended_hex(const uint8_t* src, size_t src_sz,
621 char* dst, size_t dst_sz)
622 {
623 return ldns_b32_ntop_base(src, src_sz, dst, dst_sz, true, true);
624 }
625
626 #endif /* ! HAVE_B32_NTOP */
627
628 static int
ldns_b32_pton_base(const char * src,size_t src_sz,uint8_t * dst,size_t dst_sz,bool extended_hex,bool check_padding)629 ldns_b32_pton_base(const char* src, size_t src_sz,
630 uint8_t* dst, size_t dst_sz,
631 bool extended_hex, bool check_padding)
632 {
633 size_t i = 0;
634 char ch = '\0';
635 uint8_t buf[8];
636 uint8_t* start = dst;
637
638 while (src_sz) {
639 /* Collect 8 characters in buf (if possible) */
640 for (i = 0; i < 8; i++) {
641
642 do {
643 ch = *src++;
644 --src_sz;
645
646 } while (isspace((unsigned char)ch) && src_sz > 0);
647
648 if (ch == '=' || ch == '\0')
649 break;
650
651 else if (extended_hex)
652
653 if (ch >= '0' && ch <= '9')
654 buf[i] = (uint8_t)ch - '0';
655 else if (ch >= 'a' && ch <= 'v')
656 buf[i] = (uint8_t)ch - 'a' + 10;
657 else if (ch >= 'A' && ch <= 'V')
658 buf[i] = (uint8_t)ch - 'A' + 10;
659 else
660 return -1;
661
662 else if (ch >= 'a' && ch <= 'z')
663 buf[i] = (uint8_t)ch - 'a';
664 else if (ch >= 'A' && ch <= 'Z')
665 buf[i] = (uint8_t)ch - 'A';
666 else if (ch >= '2' && ch <= '7')
667 buf[i] = (uint8_t)ch - '2' + 26;
668 else
669 return -1;
670 }
671 /* Less that 8 characters. We're done. */
672 if (i < 8)
673 break;
674
675 /* Enough space available at the destination? */
676 if (dst_sz < 5)
677 return -1;
678
679 /* 00000... ........ ........ ........ ........ */
680 /* .....111 11...... ........ ........ ........ */
681 dst[0] = buf[0] << 3 | buf[1] >> 2;
682
683 /* .....111 11...... ........ ........ ........ */
684 /* ........ ..22222. ........ ........ ........ */
685 /* ........ .......3 3333.... ........ ........ */
686 dst[1] = buf[1] << 6 | buf[2] << 1 | buf[3] >> 4;
687
688 /* ........ .......3 3333.... ........ ........ */
689 /* ........ ........ ....4444 4....... ........ */
690 dst[2] = buf[3] << 4 | buf[4] >> 1;
691
692 /* ........ ........ ....4444 4....... ........ */
693 /* ........ ........ ........ .55555.. ........ */
694 /* ........ ........ ........ ......66 666..... */
695 dst[3] = buf[4] << 7 | buf[5] << 2 | buf[6] >> 3;
696
697 /* ........ ........ ........ ......66 666..... */
698 /* ........ ........ ........ ........ ...77777 */
699 dst[4] = buf[6] << 5 | buf[7];
700
701 dst += 5;
702 dst_sz -= 5;
703 }
704 /* Not ending on a eight byte boundary? */
705 if (i > 0 && i < 8) {
706
707 /* Enough space available at the destination? */
708 if (dst_sz < (i + 1) / 2)
709 return -1;
710
711 switch (i) {
712 case 7: /* ........ ........ ........ ......66 666..... */
713 /* ........ ........ ........ .55555.. ........ */
714 /* ........ ........ ....4444 4....... ........ */
715 dst[3] = buf[4] << 7 | buf[5] << 2 | buf[6] >> 3;
716 /* fallthrough */
717
718 case 5: /* ........ ........ ....4444 4....... ........ */
719 /* ........ .......3 3333.... ........ ........ */
720 dst[2] = buf[3] << 4 | buf[4] >> 1;
721 /* fallthrough */
722
723 case 4: /* ........ .......3 3333.... ........ ........ */
724 /* ........ ..22222. ........ ........ ........ */
725 /* .....111 11...... ........ ........ ........ */
726 dst[1] = buf[1] << 6 | buf[2] << 1 | buf[3] >> 4;
727 /* fallthrough */
728
729 case 2: /* .....111 11...... ........ ........ ........ */
730 /* 00000... ........ ........ ........ ........ */
731 dst[0] = buf[0] << 3 | buf[1] >> 2;
732
733 break;
734
735 default:
736 return -1;
737 }
738 dst += (i + 1) / 2;
739
740 if (check_padding) {
741 /* Check remaining padding characters */
742 if (ch != '=')
743 return -1;
744
745 /* One down, 8 - i - 1 more to come... */
746 for (i = 8 - i - 1; i > 0; i--) {
747
748 do {
749 if (src_sz == 0)
750 return -1;
751 ch = *src++;
752 src_sz--;
753
754 } while (isspace((unsigned char)ch));
755
756 if (ch != '=')
757 return -1;
758 }
759 }
760 }
761 return dst - start;
762 }
763
764 int
ldns_b32_pton(const char * src,size_t src_sz,uint8_t * dst,size_t dst_sz)765 ldns_b32_pton(const char* src, size_t src_sz, uint8_t* dst, size_t dst_sz)
766 {
767 return ldns_b32_pton_base(src, src_sz, dst, dst_sz, false, true);
768 }
769
770 int
ldns_b32_pton_extended_hex(const char * src,size_t src_sz,uint8_t * dst,size_t dst_sz)771 ldns_b32_pton_extended_hex(const char* src, size_t src_sz,
772 uint8_t* dst, size_t dst_sz)
773 {
774 return ldns_b32_pton_base(src, src_sz, dst, dst_sz, true, true);
775 }
776
777 #ifndef HAVE_B32_PTON
778
779 int
b32_pton(const char * src,size_t src_sz,uint8_t * dst,size_t dst_sz)780 b32_pton(const char* src, size_t src_sz, uint8_t* dst, size_t dst_sz)
781 {
782 return ldns_b32_pton_base(src, src_sz, dst, dst_sz, false, true);
783 }
784
785 int
b32_pton_extended_hex(const char * src,size_t src_sz,uint8_t * dst,size_t dst_sz)786 b32_pton_extended_hex(const char* src, size_t src_sz,
787 uint8_t* dst, size_t dst_sz)
788 {
789 return ldns_b32_pton_base(src, src_sz, dst, dst_sz, true, true);
790 }
791
792 #endif /* ! HAVE_B32_PTON */
793
794