1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6 * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7 * Copyright 2012 John Marino <draco@marino.st>.
8 * Copyright 2014-2017 The FreeBSD Foundation
9 * All rights reserved.
10 *
11 * Portions of this software were developed by Konstantin Belousov
12 * under sponsorship from the FreeBSD Foundation.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Dynamic linker for ELF.
37 *
38 * John Polstra <jdp@polstra.com>.
39 */
40
41 #include <sys/param.h>
42 #include <sys/ktrace.h>
43 #include <sys/mman.h>
44 #include <sys/mount.h>
45 #include <sys/stat.h>
46 #include <sys/sysctl.h>
47 #include <sys/uio.h>
48 #include <sys/utsname.h>
49
50 #include <dlfcn.h>
51 #include <err.h>
52 #include <errno.h>
53 #include <fcntl.h>
54 #include <stdarg.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <unistd.h>
59
60 #include "debug.h"
61 #include "libmap.h"
62 #include "notes.h"
63 #include "rtld.h"
64 #include "rtld_libc.h"
65 #include "rtld_malloc.h"
66 #include "rtld_paths.h"
67 #include "rtld_printf.h"
68 #include "rtld_tls.h"
69 #include "rtld_utrace.h"
70
71 /* Types. */
72 typedef void (*func_ptr_type)(void);
73 typedef void *(*path_enum_proc)(const char *path, size_t len, void *arg);
74
75 /* Variables that cannot be static: */
76 extern struct r_debug r_debug; /* For GDB */
77 extern int _thread_autoinit_dummy_decl;
78 extern void (*__cleanup)(void);
79
80 struct dlerror_save {
81 int seen;
82 char *msg;
83 };
84
85 struct tcb_list_entry {
86 TAILQ_ENTRY(tcb_list_entry) next;
87 };
88
89 /*
90 * Function declarations.
91 */
92 static bool allocate_tls_offset_common(size_t *offp, size_t tlssize,
93 size_t tlsalign, size_t tlspoffset);
94 static const char *basename(const char *);
95 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
96 const Elf_Dyn **, const Elf_Dyn **);
97 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
98 const Elf_Dyn *);
99 static bool digest_dynamic(Obj_Entry *, int);
100 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
101 static void distribute_static_tls(Objlist *);
102 static Obj_Entry *dlcheck(void *);
103 static int dlclose_locked(void *, RtldLockState *);
104 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
105 int lo_flags, int mode, RtldLockState *lockstate);
106 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
107 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
108 static bool donelist_check(DoneList *, const Obj_Entry *);
109 static void dump_auxv(Elf_Auxinfo **aux_info);
110 static void errmsg_restore(struct dlerror_save *);
111 static struct dlerror_save *errmsg_save(void);
112 static void *fill_search_info(const char *, size_t, void *);
113 static char *find_library(const char *, const Obj_Entry *, int *);
114 static const char *gethints(bool);
115 static void hold_object(Obj_Entry *);
116 static void unhold_object(Obj_Entry *);
117 static void init_dag(Obj_Entry *);
118 static void init_marker(Obj_Entry *);
119 static void init_pagesizes(Elf_Auxinfo **aux_info);
120 static void init_rtld(caddr_t, Elf_Auxinfo **);
121 static void initlist_add_neededs(Needed_Entry *, Objlist *, Objlist *);
122 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *,
123 Objlist *);
124 static void initlist_for_loaded_obj(Obj_Entry *obj, Obj_Entry *tail,
125 Objlist *list);
126 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
127 static void linkmap_add(Obj_Entry *);
128 static void linkmap_delete(Obj_Entry *);
129 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
130 static void unload_filtees(Obj_Entry *, RtldLockState *);
131 static int load_needed_objects(Obj_Entry *, int);
132 static int load_preload_objects(const char *, bool);
133 static int load_kpreload(const void *addr);
134 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
135 static void map_stacks_exec(RtldLockState *);
136 static int obj_disable_relro(Obj_Entry *);
137 static int obj_enforce_relro(Obj_Entry *);
138 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
139 static void objlist_call_init(Objlist *, RtldLockState *);
140 static void objlist_clear(Objlist *);
141 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
142 static void objlist_init(Objlist *);
143 static void objlist_push_head(Objlist *, Obj_Entry *);
144 static void objlist_push_tail(Objlist *, Obj_Entry *);
145 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
146 static void objlist_remove(Objlist *, Obj_Entry *);
147 static int open_binary_fd(const char *argv0, bool search_in_path,
148 const char **binpath_res);
149 static int parse_args(char *argv[], int argc, bool *use_pathp, int *fdp,
150 const char **argv0, bool *dir_ignore);
151 static int parse_integer(const char *);
152 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
153 static void print_usage(const char *argv0);
154 static void release_object(Obj_Entry *);
155 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
156 Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
157 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
158 int flags, RtldLockState *lockstate);
159 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
160 RtldLockState *);
161 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
162 static int rtld_dirname(const char *, char *);
163 static int rtld_dirname_abs(const char *, char *);
164 static void *rtld_dlopen(const char *name, int fd, int mode);
165 static void rtld_exit(void);
166 static void rtld_nop_exit(void);
167 static char *search_library_path(const char *, const char *, const char *,
168 int *);
169 static char *search_library_pathfds(const char *, const char *, int *);
170 static const void **get_program_var_addr(const char *, RtldLockState *);
171 static void set_program_var(const char *, const void *);
172 static int symlook_default(SymLook *, const Obj_Entry *refobj);
173 static int symlook_global(SymLook *, DoneList *);
174 static void symlook_init_from_req(SymLook *, const SymLook *);
175 static int symlook_list(SymLook *, const Objlist *, DoneList *);
176 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
177 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
178 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
179 static void *tls_get_addr_slow(struct tcb *, int, size_t, bool) __noinline;
180 static void trace_loaded_objects(Obj_Entry *, bool);
181 static void unlink_object(Obj_Entry *);
182 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
183 static void unref_dag(Obj_Entry *);
184 static void ref_dag(Obj_Entry *);
185 static char *origin_subst_one(Obj_Entry *, char *, const char *, const char *,
186 bool);
187 static char *origin_subst(Obj_Entry *, const char *);
188 static bool obj_resolve_origin(Obj_Entry *obj);
189 static void preinit_main(void);
190 static int rtld_verify_versions(const Objlist *);
191 static int rtld_verify_object_versions(Obj_Entry *);
192 static void object_add_name(Obj_Entry *, const char *);
193 static int object_match_name(const Obj_Entry *, const char *);
194 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
195 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
196 struct dl_phdr_info *phdr_info);
197 static uint32_t gnu_hash(const char *);
198 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
199 const unsigned long);
200
201 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
202 void _r_debug_postinit(struct link_map *) __noinline __exported;
203
204 int __sys_openat(int, const char *, int, ...);
205
206 /*
207 * Data declarations.
208 */
209 struct r_debug r_debug __exported; /* for GDB; */
210 static bool libmap_disable; /* Disable libmap */
211 static bool ld_loadfltr; /* Immediate filters processing */
212 static const char *libmap_override; /* Maps to use in addition to libmap.conf */
213 static bool trust; /* False for setuid and setgid programs */
214 static bool dangerous_ld_env; /* True if environment variables have been
215 used to affect the libraries loaded */
216 bool ld_bind_not; /* Disable PLT update */
217 static const char *ld_bind_now; /* Environment variable for immediate binding */
218 static const char *ld_debug; /* Environment variable for debugging */
219 static bool ld_dynamic_weak = true; /* True if non-weak definition overrides
220 weak definition */
221 static const char *ld_library_path; /* Environment variable for search path */
222 static const char
223 *ld_library_dirs; /* Environment variable for library descriptors */
224 static const char *ld_preload; /* Environment variable for libraries to
225 load first */
226 static const char *ld_preload_fds; /* Environment variable for libraries
227 represented by descriptors */
228 static const char
229 *ld_elf_hints_path; /* Environment variable for alternative hints path */
230 static const char *ld_tracing; /* Called from ldd to print libs */
231 static const char *ld_utrace; /* Use utrace() to log events. */
232 static struct obj_entry_q obj_list; /* Queue of all loaded objects */
233 static Obj_Entry *obj_main; /* The main program shared object */
234 static Obj_Entry obj_rtld; /* The dynamic linker shared object */
235 static unsigned int obj_count; /* Number of objects in obj_list */
236 static unsigned int obj_loads; /* Number of loads of objects (gen count) */
237 size_t ld_static_tls_extra = /* Static TLS extra space (bytes) */
238 RTLD_STATIC_TLS_EXTRA;
239
240 static Objlist list_global = /* Objects dlopened with RTLD_GLOBAL */
241 STAILQ_HEAD_INITIALIZER(list_global);
242 static Objlist list_main = /* Objects loaded at program startup */
243 STAILQ_HEAD_INITIALIZER(list_main);
244 static Objlist list_fini = /* Objects needing fini() calls */
245 STAILQ_HEAD_INITIALIZER(list_fini);
246
247 Elf_Sym sym_zero; /* For resolving undefined weak refs. */
248
249 #define GDB_STATE(s, m) \
250 r_debug.r_state = s; \
251 r_debug_state(&r_debug, m);
252
253 extern Elf_Dyn _DYNAMIC;
254 #pragma weak _DYNAMIC
255
256 int dlclose(void *) __exported;
257 char *dlerror(void) __exported;
258 void *dlopen(const char *, int) __exported;
259 void *fdlopen(int, int) __exported;
260 void *dlsym(void *, const char *) __exported;
261 dlfunc_t dlfunc(void *, const char *) __exported;
262 void *dlvsym(void *, const char *, const char *) __exported;
263 int dladdr(const void *, Dl_info *) __exported;
264 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
265 void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
266 int dlinfo(void *, int, void *) __exported;
267 int _dl_iterate_phdr_locked(__dl_iterate_hdr_callback, void *) __exported;
268 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
269 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
270 int _rtld_get_stack_prot(void) __exported;
271 int _rtld_is_dlopened(void *) __exported;
272 void _rtld_error(const char *, ...) __exported;
273 const char *rtld_get_var(const char *name) __exported;
274 int rtld_set_var(const char *name, const char *val) __exported;
275
276 /* Only here to fix -Wmissing-prototypes warnings */
277 int __getosreldate(void);
278 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
279 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
280
281 int npagesizes;
282 static int osreldate;
283 size_t *pagesizes;
284 size_t page_size;
285
286 static int stack_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
287 static int max_stack_flags;
288
289 /*
290 * Global declarations normally provided by crt1. The dynamic linker is
291 * not built with crt1, so we have to provide them ourselves.
292 */
293 char *__progname;
294 char **environ;
295
296 /*
297 * Used to pass argc, argv to init functions.
298 */
299 int main_argc;
300 char **main_argv;
301
302 /*
303 * Globals to control TLS allocation.
304 */
305 size_t tls_last_offset; /* Static TLS offset of last module */
306 size_t tls_last_size; /* Static TLS size of last module */
307 size_t tls_static_space; /* Static TLS space allocated */
308 static size_t tls_static_max_align;
309 Elf_Addr tls_dtv_generation = 1; /* Used to detect when dtv size changes */
310 int tls_max_index = 1; /* Largest module index allocated */
311
312 static TAILQ_HEAD(, tcb_list_entry) tcb_list =
313 TAILQ_HEAD_INITIALIZER(tcb_list);
314 static size_t tcb_list_entry_offset;
315
316 static bool ld_library_path_rpath = false;
317 bool ld_fast_sigblock = false;
318
319 /*
320 * Globals for path names, and such
321 */
322 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
323 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
324 const char *ld_path_rtld = _PATH_RTLD;
325 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
326 const char *ld_env_prefix = LD_;
327
328 static void (*rtld_exit_ptr)(void);
329
330 /*
331 * Fill in a DoneList with an allocation large enough to hold all of
332 * the currently-loaded objects. Keep this as a macro since it calls
333 * alloca and we want that to occur within the scope of the caller.
334 */
335 #define donelist_init(dlp) \
336 ((dlp)->objs = alloca(obj_count * sizeof(dlp)->objs[0]), \
337 assert((dlp)->objs != NULL), (dlp)->num_alloc = obj_count, \
338 (dlp)->num_used = 0)
339
340 #define LD_UTRACE(e, h, mb, ms, r, n) \
341 do { \
342 if (ld_utrace != NULL) \
343 ld_utrace_log(e, h, mb, ms, r, n); \
344 } while (0)
345
346 static void
ld_utrace_log(int event,void * handle,void * mapbase,size_t mapsize,int refcnt,const char * name)347 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
348 int refcnt, const char *name)
349 {
350 struct utrace_rtld ut;
351 static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
352
353 memset(&ut, 0, sizeof(ut)); /* clear holes */
354 memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
355 ut.event = event;
356 ut.handle = handle;
357 ut.mapbase = mapbase;
358 ut.mapsize = mapsize;
359 ut.refcnt = refcnt;
360 if (name != NULL)
361 strlcpy(ut.name, name, sizeof(ut.name));
362 utrace(&ut, sizeof(ut));
363 }
364
365 struct ld_env_var_desc {
366 const char *const n;
367 const char *val;
368 const bool unsecure : 1;
369 const bool can_update : 1;
370 const bool debug : 1;
371 bool owned : 1;
372 };
373 #define LD_ENV_DESC(var, unsec, ...) \
374 [LD_##var] = { .n = #var, .unsecure = unsec, __VA_ARGS__ }
375
376 static struct ld_env_var_desc ld_env_vars[] = {
377 LD_ENV_DESC(BIND_NOW, false),
378 LD_ENV_DESC(PRELOAD, true),
379 LD_ENV_DESC(LIBMAP, true),
380 LD_ENV_DESC(LIBRARY_PATH, true, .can_update = true),
381 LD_ENV_DESC(LIBRARY_PATH_FDS, true, .can_update = true),
382 LD_ENV_DESC(LIBMAP_DISABLE, true),
383 LD_ENV_DESC(BIND_NOT, true),
384 LD_ENV_DESC(DEBUG, true, .can_update = true, .debug = true),
385 LD_ENV_DESC(ELF_HINTS_PATH, true),
386 LD_ENV_DESC(LOADFLTR, true),
387 LD_ENV_DESC(LIBRARY_PATH_RPATH, true, .can_update = true),
388 LD_ENV_DESC(PRELOAD_FDS, true),
389 LD_ENV_DESC(DYNAMIC_WEAK, true, .can_update = true),
390 LD_ENV_DESC(TRACE_LOADED_OBJECTS, false),
391 LD_ENV_DESC(UTRACE, false, .can_update = true),
392 LD_ENV_DESC(DUMP_REL_PRE, false, .can_update = true),
393 LD_ENV_DESC(DUMP_REL_POST, false, .can_update = true),
394 LD_ENV_DESC(TRACE_LOADED_OBJECTS_PROGNAME, false),
395 LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT1, false),
396 LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT2, false),
397 LD_ENV_DESC(TRACE_LOADED_OBJECTS_ALL, false),
398 LD_ENV_DESC(SHOW_AUXV, false),
399 LD_ENV_DESC(STATIC_TLS_EXTRA, false),
400 LD_ENV_DESC(NO_DL_ITERATE_PHDR_AFTER_FORK, false),
401 };
402
403 const char *
ld_get_env_var(int idx)404 ld_get_env_var(int idx)
405 {
406 return (ld_env_vars[idx].val);
407 }
408
409 static const char *
rtld_get_env_val(char ** env,const char * name,size_t name_len)410 rtld_get_env_val(char **env, const char *name, size_t name_len)
411 {
412 char **m, *n, *v;
413
414 for (m = env; *m != NULL; m++) {
415 n = *m;
416 v = strchr(n, '=');
417 if (v == NULL) {
418 /* corrupt environment? */
419 continue;
420 }
421 if (v - n == (ptrdiff_t)name_len &&
422 strncmp(name, n, name_len) == 0)
423 return (v + 1);
424 }
425 return (NULL);
426 }
427
428 static void
rtld_init_env_vars_for_prefix(char ** env,const char * env_prefix)429 rtld_init_env_vars_for_prefix(char **env, const char *env_prefix)
430 {
431 struct ld_env_var_desc *lvd;
432 size_t prefix_len, nlen;
433 char **m, *n, *v;
434 int i;
435
436 prefix_len = strlen(env_prefix);
437 for (m = env; *m != NULL; m++) {
438 n = *m;
439 if (strncmp(env_prefix, n, prefix_len) != 0) {
440 /* Not a rtld environment variable. */
441 continue;
442 }
443 n += prefix_len;
444 v = strchr(n, '=');
445 if (v == NULL) {
446 /* corrupt environment? */
447 continue;
448 }
449 for (i = 0; i < (int)nitems(ld_env_vars); i++) {
450 lvd = &ld_env_vars[i];
451 if (lvd->val != NULL) {
452 /* Saw higher-priority variable name already. */
453 continue;
454 }
455 nlen = strlen(lvd->n);
456 if (v - n == (ptrdiff_t)nlen &&
457 strncmp(lvd->n, n, nlen) == 0) {
458 lvd->val = v + 1;
459 break;
460 }
461 }
462 }
463 }
464
465 static void
rtld_init_env_vars(char ** env)466 rtld_init_env_vars(char **env)
467 {
468 rtld_init_env_vars_for_prefix(env, ld_env_prefix);
469 }
470
471 static void
set_ld_elf_hints_path(void)472 set_ld_elf_hints_path(void)
473 {
474 if (ld_elf_hints_path == NULL || strlen(ld_elf_hints_path) == 0)
475 ld_elf_hints_path = ld_elf_hints_default;
476 }
477
478 uintptr_t
rtld_round_page(uintptr_t x)479 rtld_round_page(uintptr_t x)
480 {
481 return (roundup2(x, page_size));
482 }
483
484 uintptr_t
rtld_trunc_page(uintptr_t x)485 rtld_trunc_page(uintptr_t x)
486 {
487 return (rounddown2(x, page_size));
488 }
489
490 /*
491 * Main entry point for dynamic linking. The first argument is the
492 * stack pointer. The stack is expected to be laid out as described
493 * in the SVR4 ABI specification, Intel 386 Processor Supplement.
494 * Specifically, the stack pointer points to a word containing
495 * ARGC. Following that in the stack is a null-terminated sequence
496 * of pointers to argument strings. Then comes a null-terminated
497 * sequence of pointers to environment strings. Finally, there is a
498 * sequence of "auxiliary vector" entries.
499 *
500 * The second argument points to a place to store the dynamic linker's
501 * exit procedure pointer and the third to a place to store the main
502 * program's object.
503 *
504 * The return value is the main program's entry point.
505 */
506 func_ptr_type
_rtld(Elf_Addr * sp,func_ptr_type * exit_proc,Obj_Entry ** objp)507 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
508 {
509 Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT], auxtmp;
510 Objlist_Entry *entry;
511 Obj_Entry *last_interposer, *obj, *preload_tail;
512 const Elf_Phdr *phdr;
513 Objlist initlist;
514 RtldLockState lockstate;
515 struct stat st;
516 Elf_Addr *argcp;
517 char **argv, **env, **envp, *kexecpath;
518 const char *argv0, *binpath, *library_path_rpath, *static_tls_extra;
519 struct ld_env_var_desc *lvd;
520 caddr_t imgentry;
521 char buf[MAXPATHLEN];
522 int argc, fd, i, mib[4], old_osrel, osrel, phnum, rtld_argc;
523 size_t sz;
524 bool dir_enable, dir_ignore, direct_exec, explicit_fd, search_in_path;
525
526 /*
527 * On entry, the dynamic linker itself has not been relocated yet.
528 * Be very careful not to reference any global data until after
529 * init_rtld has returned. It is OK to reference file-scope statics
530 * and string constants, and to call static and global functions.
531 */
532
533 /* Find the auxiliary vector on the stack. */
534 argcp = sp;
535 argc = *sp++;
536 argv = (char **)sp;
537 sp += argc + 1; /* Skip over arguments and NULL terminator */
538 env = (char **)sp;
539 while (*sp++ != 0) /* Skip over environment, and NULL terminator */
540 ;
541 aux = (Elf_Auxinfo *)sp;
542
543 /* Digest the auxiliary vector. */
544 for (i = 0; i < AT_COUNT; i++)
545 aux_info[i] = NULL;
546 for (auxp = aux; auxp->a_type != AT_NULL; auxp++) {
547 if (auxp->a_type < AT_COUNT)
548 aux_info[auxp->a_type] = auxp;
549 }
550 arch_fix_auxv(aux, aux_info);
551
552 /* Initialize and relocate ourselves. */
553 assert(aux_info[AT_BASE] != NULL);
554 init_rtld((caddr_t)aux_info[AT_BASE]->a_un.a_ptr, aux_info);
555
556 dlerror_dflt_init();
557
558 __progname = obj_rtld.path;
559 argv0 = argv[0] != NULL ? argv[0] : "(null)";
560 environ = env;
561 main_argc = argc;
562 main_argv = argv;
563
564 if (aux_info[AT_BSDFLAGS] != NULL &&
565 (aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
566 ld_fast_sigblock = true;
567
568 trust = !issetugid();
569 direct_exec = false;
570
571 md_abi_variant_hook(aux_info);
572 rtld_init_env_vars(env);
573
574 fd = -1;
575 if (aux_info[AT_EXECFD] != NULL) {
576 fd = aux_info[AT_EXECFD]->a_un.a_val;
577 } else {
578 assert(aux_info[AT_PHDR] != NULL);
579 phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
580 if (phdr == obj_rtld.phdr) {
581 if (!trust) {
582 _rtld_error(
583 "Tainted process refusing to run binary %s",
584 argv0);
585 rtld_die();
586 }
587 direct_exec = true;
588
589 dbg("opening main program in direct exec mode");
590 if (argc >= 2) {
591 rtld_argc = parse_args(argv, argc,
592 &search_in_path, &fd, &argv0, &dir_ignore);
593 explicit_fd = (fd != -1);
594 binpath = NULL;
595 if (!explicit_fd)
596 fd = open_binary_fd(argv0,
597 search_in_path, &binpath);
598 if (fstat(fd, &st) == -1) {
599 _rtld_error(
600 "Failed to fstat FD %d (%s): %s",
601 fd,
602 explicit_fd ?
603 "user-provided descriptor" :
604 argv0,
605 rtld_strerror(errno));
606 rtld_die();
607 }
608
609 /*
610 * Rough emulation of the permission checks done
611 * by execve(2), only Unix DACs are checked,
612 * ACLs are ignored. Preserve the semantic of
613 * disabling owner to execute if owner x bit is
614 * cleared, even if others x bit is enabled.
615 * mmap(2) does not allow to mmap with PROT_EXEC
616 * if binary' file comes from noexec mount. We
617 * cannot set a text reference on the binary.
618 */
619 dir_enable = false;
620 if (st.st_uid == geteuid()) {
621 if ((st.st_mode & S_IXUSR) != 0)
622 dir_enable = true;
623 } else if (st.st_gid == getegid()) {
624 if ((st.st_mode & S_IXGRP) != 0)
625 dir_enable = true;
626 } else if ((st.st_mode & S_IXOTH) != 0) {
627 dir_enable = true;
628 }
629 if (!dir_enable && !dir_ignore) {
630 _rtld_error(
631 "No execute permission for binary %s",
632 argv0);
633 rtld_die();
634 }
635
636 /*
637 * For direct exec mode, argv[0] is the
638 * interpreter name, we must remove it and shift
639 * arguments left before invoking binary main.
640 * Since stack layout places environment
641 * pointers and aux vectors right after the
642 * terminating NULL, we must shift environment
643 * and aux as well.
644 */
645 main_argc = argc - rtld_argc;
646 for (i = 0; i <= main_argc; i++)
647 argv[i] = argv[i + rtld_argc];
648 *argcp -= rtld_argc;
649 environ = env = envp = argv + main_argc + 1;
650 dbg("move env from %p to %p", envp + rtld_argc,
651 envp);
652 do {
653 *envp = *(envp + rtld_argc);
654 } while (*envp++ != NULL);
655 aux = auxp = (Elf_Auxinfo *)envp;
656 auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
657 dbg("move aux from %p to %p", auxpf, aux);
658 /*
659 * XXXKIB insert place for AT_EXECPATH if not
660 * present
661 */
662 for (;; auxp++, auxpf++) {
663 /*
664 * NB: Use a temporary since *auxpf and
665 * *auxp overlap if rtld_argc is 1
666 */
667 auxtmp = *auxpf;
668 *auxp = auxtmp;
669 if (auxp->a_type == AT_NULL)
670 break;
671 }
672 /*
673 * Since the auxiliary vector has moved,
674 * redigest it.
675 */
676 for (i = 0; i < AT_COUNT; i++)
677 aux_info[i] = NULL;
678 for (auxp = aux; auxp->a_type != AT_NULL;
679 auxp++) {
680 if (auxp->a_type < AT_COUNT)
681 aux_info[auxp->a_type] = auxp;
682 }
683
684 /*
685 * Point AT_EXECPATH auxv and aux_info to the
686 * binary path.
687 */
688 if (binpath == NULL) {
689 aux_info[AT_EXECPATH] = NULL;
690 } else {
691 if (aux_info[AT_EXECPATH] == NULL) {
692 aux_info[AT_EXECPATH] = xmalloc(
693 sizeof(Elf_Auxinfo));
694 aux_info[AT_EXECPATH]->a_type =
695 AT_EXECPATH;
696 }
697 aux_info[AT_EXECPATH]->a_un.a_ptr =
698 __DECONST(void *, binpath);
699 }
700 } else {
701 _rtld_error("No binary");
702 rtld_die();
703 }
704 }
705 }
706
707 ld_bind_now = ld_get_env_var(LD_BIND_NOW);
708
709 /*
710 * If the process is tainted, then we un-set the dangerous environment
711 * variables. The process will be marked as tainted until setuid(2)
712 * is called. If any child process calls setuid(2) we do not want any
713 * future processes to honor the potentially un-safe variables.
714 */
715 if (!trust) {
716 for (i = 0; i < (int)nitems(ld_env_vars); i++) {
717 lvd = &ld_env_vars[i];
718 if (lvd->unsecure)
719 lvd->val = NULL;
720 }
721 }
722
723 ld_debug = ld_get_env_var(LD_DEBUG);
724 if (ld_bind_now == NULL)
725 ld_bind_not = ld_get_env_var(LD_BIND_NOT) != NULL;
726 ld_dynamic_weak = ld_get_env_var(LD_DYNAMIC_WEAK) == NULL;
727 libmap_disable = ld_get_env_var(LD_LIBMAP_DISABLE) != NULL;
728 libmap_override = ld_get_env_var(LD_LIBMAP);
729 ld_library_path = ld_get_env_var(LD_LIBRARY_PATH);
730 ld_library_dirs = ld_get_env_var(LD_LIBRARY_PATH_FDS);
731 ld_preload = ld_get_env_var(LD_PRELOAD);
732 ld_preload_fds = ld_get_env_var(LD_PRELOAD_FDS);
733 ld_elf_hints_path = ld_get_env_var(LD_ELF_HINTS_PATH);
734 ld_loadfltr = ld_get_env_var(LD_LOADFLTR) != NULL;
735 library_path_rpath = ld_get_env_var(LD_LIBRARY_PATH_RPATH);
736 if (library_path_rpath != NULL) {
737 if (library_path_rpath[0] == 'y' ||
738 library_path_rpath[0] == 'Y' ||
739 library_path_rpath[0] == '1')
740 ld_library_path_rpath = true;
741 else
742 ld_library_path_rpath = false;
743 }
744 static_tls_extra = ld_get_env_var(LD_STATIC_TLS_EXTRA);
745 if (static_tls_extra != NULL && static_tls_extra[0] != '\0') {
746 sz = parse_integer(static_tls_extra);
747 if (sz >= RTLD_STATIC_TLS_EXTRA && sz <= SIZE_T_MAX)
748 ld_static_tls_extra = sz;
749 }
750 dangerous_ld_env = libmap_disable || libmap_override != NULL ||
751 ld_library_path != NULL || ld_preload != NULL ||
752 ld_elf_hints_path != NULL || ld_loadfltr || !ld_dynamic_weak ||
753 static_tls_extra != NULL;
754 ld_tracing = ld_get_env_var(LD_TRACE_LOADED_OBJECTS);
755 ld_utrace = ld_get_env_var(LD_UTRACE);
756
757 set_ld_elf_hints_path();
758 if (ld_debug != NULL && *ld_debug != '\0')
759 debug = 1;
760 dbg("%s is initialized, base address = %p", __progname,
761 (caddr_t)aux_info[AT_BASE]->a_un.a_ptr);
762 dbg("RTLD dynamic = %p", obj_rtld.dynamic);
763 dbg("RTLD pltgot = %p", obj_rtld.pltgot);
764
765 dbg("initializing thread locks");
766 lockdflt_init();
767
768 /*
769 * Load the main program, or process its program header if it is
770 * already loaded.
771 */
772 if (fd != -1) { /* Load the main program. */
773 dbg("loading main program");
774 obj_main = map_object(fd, argv0, NULL, true);
775 close(fd);
776 if (obj_main == NULL)
777 rtld_die();
778 max_stack_flags = obj_main->stack_flags;
779 } else { /* Main program already loaded. */
780 dbg("processing main program's program header");
781 assert(aux_info[AT_PHDR] != NULL);
782 phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
783 assert(aux_info[AT_PHNUM] != NULL);
784 phnum = aux_info[AT_PHNUM]->a_un.a_val;
785 assert(aux_info[AT_PHENT] != NULL);
786 assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
787 assert(aux_info[AT_ENTRY] != NULL);
788 imgentry = (caddr_t)aux_info[AT_ENTRY]->a_un.a_ptr;
789 if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) ==
790 NULL)
791 rtld_die();
792 }
793
794 if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
795 kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
796 dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
797 if (kexecpath[0] == '/')
798 obj_main->path = kexecpath;
799 else if (getcwd(buf, sizeof(buf)) == NULL ||
800 strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
801 strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
802 obj_main->path = xstrdup(argv0);
803 else
804 obj_main->path = xstrdup(buf);
805 } else {
806 dbg("No AT_EXECPATH or direct exec");
807 obj_main->path = xstrdup(argv0);
808 }
809 dbg("obj_main path %s", obj_main->path);
810 obj_main->mainprog = true;
811
812 if (aux_info[AT_STACKPROT] != NULL &&
813 aux_info[AT_STACKPROT]->a_un.a_val != 0)
814 stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
815
816 #ifndef COMPAT_libcompat
817 /*
818 * Get the actual dynamic linker pathname from the executable if
819 * possible. (It should always be possible.) That ensures that
820 * gdb will find the right dynamic linker even if a non-standard
821 * one is being used.
822 */
823 if (obj_main->interp != NULL &&
824 strcmp(obj_main->interp, obj_rtld.path) != 0) {
825 free(obj_rtld.path);
826 obj_rtld.path = xstrdup(obj_main->interp);
827 __progname = obj_rtld.path;
828 }
829 #endif
830
831 if (!digest_dynamic(obj_main, 0))
832 rtld_die();
833 dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
834 obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
835 obj_main->dynsymcount);
836
837 linkmap_add(obj_main);
838 linkmap_add(&obj_rtld);
839 LD_UTRACE(UTRACE_LOAD_OBJECT, obj_main, obj_main->mapbase,
840 obj_main->mapsize, 0, obj_main->path);
841 LD_UTRACE(UTRACE_LOAD_OBJECT, &obj_rtld, obj_rtld.mapbase,
842 obj_rtld.mapsize, 0, obj_rtld.path);
843
844 /* Link the main program into the list of objects. */
845 TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
846 obj_count++;
847 obj_loads++;
848
849 /* Initialize a fake symbol for resolving undefined weak references. */
850 sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
851 sym_zero.st_shndx = SHN_UNDEF;
852 sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
853
854 if (!libmap_disable)
855 libmap_disable = (bool)lm_init(libmap_override);
856
857 if (aux_info[AT_KPRELOAD] != NULL &&
858 aux_info[AT_KPRELOAD]->a_un.a_ptr != NULL) {
859 dbg("loading kernel vdso");
860 if (load_kpreload(aux_info[AT_KPRELOAD]->a_un.a_ptr) == -1)
861 rtld_die();
862 }
863
864 dbg("loading LD_PRELOAD_FDS libraries");
865 if (load_preload_objects(ld_preload_fds, true) == -1)
866 rtld_die();
867
868 dbg("loading LD_PRELOAD libraries");
869 if (load_preload_objects(ld_preload, false) == -1)
870 rtld_die();
871 preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
872
873 dbg("loading needed objects");
874 if (load_needed_objects(obj_main,
875 ld_tracing != NULL ? RTLD_LO_TRACE : 0) == -1)
876 rtld_die();
877
878 /* Make a list of all objects loaded at startup. */
879 last_interposer = obj_main;
880 TAILQ_FOREACH(obj, &obj_list, next) {
881 if (obj->marker)
882 continue;
883 if (obj->z_interpose && obj != obj_main) {
884 objlist_put_after(&list_main, last_interposer, obj);
885 last_interposer = obj;
886 } else {
887 objlist_push_tail(&list_main, obj);
888 }
889 obj->refcount++;
890 }
891
892 dbg("checking for required versions");
893 if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
894 rtld_die();
895
896 if (ld_get_env_var(LD_SHOW_AUXV) != NULL)
897 dump_auxv(aux_info);
898
899 if (ld_tracing) { /* We're done */
900 trace_loaded_objects(obj_main, true);
901 exit(0);
902 }
903
904 if (ld_get_env_var(LD_DUMP_REL_PRE) != NULL) {
905 dump_relocations(obj_main);
906 exit(0);
907 }
908
909 /*
910 * Processing tls relocations requires having the tls offsets
911 * initialized. Prepare offsets before starting initial
912 * relocation processing.
913 */
914 dbg("initializing initial thread local storage offsets");
915 STAILQ_FOREACH(entry, &list_main, link) {
916 /*
917 * Allocate all the initial objects out of the static TLS
918 * block even if they didn't ask for it.
919 */
920 allocate_tls_offset(entry->obj);
921 }
922
923 if (!allocate_tls_offset_common(&tcb_list_entry_offset,
924 sizeof(struct tcb_list_entry), _Alignof(struct tcb_list_entry),
925 0)) {
926 /*
927 * This should be impossible as the static block size is not
928 * yet fixed, but catch and diagnose it failing if that ever
929 * changes or somehow turns out to be false.
930 */
931 _rtld_error("Could not allocate offset for tcb_list_entry");
932 rtld_die();
933 }
934 dbg("tcb_list_entry_offset %zu", tcb_list_entry_offset);
935
936 if (relocate_objects(obj_main,
937 ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld,
938 SYMLOOK_EARLY, NULL) == -1)
939 rtld_die();
940
941 dbg("doing copy relocations");
942 if (do_copy_relocations(obj_main) == -1)
943 rtld_die();
944
945 if (ld_get_env_var(LD_DUMP_REL_POST) != NULL) {
946 dump_relocations(obj_main);
947 exit(0);
948 }
949
950 ifunc_init(aux_info);
951
952 /*
953 * Setup TLS for main thread. This must be done after the
954 * relocations are processed, since tls initialization section
955 * might be the subject for relocations.
956 */
957 dbg("initializing initial thread local storage");
958 allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
959
960 dbg("initializing key program variables");
961 set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
962 set_program_var("environ", env);
963 set_program_var("__elf_aux_vector", aux);
964
965 /* Make a list of init functions to call. */
966 objlist_init(&initlist);
967 initlist_for_loaded_obj(globallist_curr(TAILQ_FIRST(&obj_list)),
968 preload_tail, &initlist);
969
970 r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
971
972 map_stacks_exec(NULL);
973
974 if (!obj_main->crt_no_init) {
975 /*
976 * Make sure we don't call the main program's init and fini
977 * functions for binaries linked with old crt1 which calls
978 * _init itself.
979 */
980 obj_main->init = obj_main->fini = (Elf_Addr)NULL;
981 obj_main->preinit_array = obj_main->init_array =
982 obj_main->fini_array = (Elf_Addr)NULL;
983 }
984
985 if (direct_exec) {
986 /* Set osrel for direct-execed binary */
987 mib[0] = CTL_KERN;
988 mib[1] = KERN_PROC;
989 mib[2] = KERN_PROC_OSREL;
990 mib[3] = getpid();
991 osrel = obj_main->osrel;
992 sz = sizeof(old_osrel);
993 dbg("setting osrel to %d", osrel);
994 (void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel));
995 }
996
997 wlock_acquire(rtld_bind_lock, &lockstate);
998
999 dbg("resolving ifuncs");
1000 if (initlist_objects_ifunc(&initlist,
1001 ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
1002 &lockstate) == -1)
1003 rtld_die();
1004
1005 rtld_exit_ptr = rtld_exit;
1006 if (obj_main->crt_no_init)
1007 preinit_main();
1008 objlist_call_init(&initlist, &lockstate);
1009 _r_debug_postinit(&obj_main->linkmap);
1010 objlist_clear(&initlist);
1011 dbg("loading filtees");
1012 TAILQ_FOREACH(obj, &obj_list, next) {
1013 if (obj->marker)
1014 continue;
1015 if (ld_loadfltr || obj->z_loadfltr)
1016 load_filtees(obj, 0, &lockstate);
1017 }
1018
1019 dbg("enforcing main obj relro");
1020 if (obj_enforce_relro(obj_main) == -1)
1021 rtld_die();
1022
1023 lock_release(rtld_bind_lock, &lockstate);
1024
1025 dbg("transferring control to program entry point = %p",
1026 obj_main->entry);
1027
1028 /* Return the exit procedure and the program entry point. */
1029 *exit_proc = rtld_exit_ptr;
1030 *objp = obj_main;
1031 return ((func_ptr_type)obj_main->entry);
1032 }
1033
1034 void *
rtld_resolve_ifunc(const Obj_Entry * obj,const Elf_Sym * def)1035 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
1036 {
1037 void *ptr;
1038 Elf_Addr target;
1039
1040 ptr = (void *)make_function_pointer(def, obj);
1041 target = call_ifunc_resolver(ptr);
1042 return ((void *)target);
1043 }
1044
1045 Elf_Addr
_rtld_bind(Obj_Entry * obj,Elf_Size reloff)1046 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
1047 {
1048 const Elf_Rel *rel;
1049 const Elf_Sym *def;
1050 const Obj_Entry *defobj;
1051 Elf_Addr *where;
1052 Elf_Addr target;
1053 RtldLockState lockstate;
1054
1055 relock:
1056 rlock_acquire(rtld_bind_lock, &lockstate);
1057 if (sigsetjmp(lockstate.env, 0) != 0)
1058 lock_upgrade(rtld_bind_lock, &lockstate);
1059 if (obj->pltrel)
1060 rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
1061 else
1062 rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
1063
1064 where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
1065 def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
1066 NULL, &lockstate);
1067 if (def == NULL)
1068 rtld_die();
1069 if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC) {
1070 if (lockstate_wlocked(&lockstate)) {
1071 lock_release(rtld_bind_lock, &lockstate);
1072 goto relock;
1073 }
1074 target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
1075 } else {
1076 target = (Elf_Addr)(defobj->relocbase + def->st_value);
1077 }
1078
1079 dbg("\"%s\" in \"%s\" ==> %p in \"%s\"", defobj->strtab + def->st_name,
1080 obj->path == NULL ? NULL : basename(obj->path), (void *)target,
1081 defobj->path == NULL ? NULL : basename(defobj->path));
1082
1083 /*
1084 * Write the new contents for the jmpslot. Note that depending on
1085 * architecture, the value which we need to return back to the
1086 * lazy binding trampoline may or may not be the target
1087 * address. The value returned from reloc_jmpslot() is the value
1088 * that the trampoline needs.
1089 */
1090 target = reloc_jmpslot(where, target, defobj, obj, rel);
1091 lock_release(rtld_bind_lock, &lockstate);
1092 return (target);
1093 }
1094
1095 /*
1096 * Error reporting function. Use it like printf. If formats the message
1097 * into a buffer, and sets things up so that the next call to dlerror()
1098 * will return the message.
1099 */
1100 void
_rtld_error(const char * fmt,...)1101 _rtld_error(const char *fmt, ...)
1102 {
1103 va_list ap;
1104
1105 va_start(ap, fmt);
1106 rtld_vsnprintf(lockinfo.dlerror_loc(), lockinfo.dlerror_loc_sz, fmt,
1107 ap);
1108 va_end(ap);
1109 *lockinfo.dlerror_seen() = 0;
1110 dbg("rtld_error: %s", lockinfo.dlerror_loc());
1111 LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, lockinfo.dlerror_loc());
1112 }
1113
1114 /*
1115 * Return a dynamically-allocated copy of the current error message, if any.
1116 */
1117 static struct dlerror_save *
errmsg_save(void)1118 errmsg_save(void)
1119 {
1120 struct dlerror_save *res;
1121
1122 res = xmalloc(sizeof(*res));
1123 res->seen = *lockinfo.dlerror_seen();
1124 if (res->seen == 0)
1125 res->msg = xstrdup(lockinfo.dlerror_loc());
1126 return (res);
1127 }
1128
1129 /*
1130 * Restore the current error message from a copy which was previously saved
1131 * by errmsg_save(). The copy is freed.
1132 */
1133 static void
errmsg_restore(struct dlerror_save * saved_msg)1134 errmsg_restore(struct dlerror_save *saved_msg)
1135 {
1136 if (saved_msg == NULL || saved_msg->seen == 1) {
1137 *lockinfo.dlerror_seen() = 1;
1138 } else {
1139 *lockinfo.dlerror_seen() = 0;
1140 strlcpy(lockinfo.dlerror_loc(), saved_msg->msg,
1141 lockinfo.dlerror_loc_sz);
1142 free(saved_msg->msg);
1143 }
1144 free(saved_msg);
1145 }
1146
1147 static const char *
basename(const char * name)1148 basename(const char *name)
1149 {
1150 const char *p;
1151
1152 p = strrchr(name, '/');
1153 return (p != NULL ? p + 1 : name);
1154 }
1155
1156 static struct utsname uts;
1157
1158 static char *
origin_subst_one(Obj_Entry * obj,char * real,const char * kw,const char * subst,bool may_free)1159 origin_subst_one(Obj_Entry *obj, char *real, const char *kw, const char *subst,
1160 bool may_free)
1161 {
1162 char *p, *p1, *res, *resp;
1163 int subst_len, kw_len, subst_count, old_len, new_len;
1164
1165 kw_len = strlen(kw);
1166
1167 /*
1168 * First, count the number of the keyword occurrences, to
1169 * preallocate the final string.
1170 */
1171 for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
1172 p1 = strstr(p, kw);
1173 if (p1 == NULL)
1174 break;
1175 }
1176
1177 /*
1178 * If the keyword is not found, just return.
1179 *
1180 * Return non-substituted string if resolution failed. We
1181 * cannot do anything more reasonable, the failure mode of the
1182 * caller is unresolved library anyway.
1183 */
1184 if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
1185 return (may_free ? real : xstrdup(real));
1186 if (obj != NULL)
1187 subst = obj->origin_path;
1188
1189 /*
1190 * There is indeed something to substitute. Calculate the
1191 * length of the resulting string, and allocate it.
1192 */
1193 subst_len = strlen(subst);
1194 old_len = strlen(real);
1195 new_len = old_len + (subst_len - kw_len) * subst_count;
1196 res = xmalloc(new_len + 1);
1197
1198 /*
1199 * Now, execute the substitution loop.
1200 */
1201 for (p = real, resp = res, *resp = '\0';;) {
1202 p1 = strstr(p, kw);
1203 if (p1 != NULL) {
1204 /* Copy the prefix before keyword. */
1205 memcpy(resp, p, p1 - p);
1206 resp += p1 - p;
1207 /* Keyword replacement. */
1208 memcpy(resp, subst, subst_len);
1209 resp += subst_len;
1210 *resp = '\0';
1211 p = p1 + kw_len;
1212 } else
1213 break;
1214 }
1215
1216 /* Copy to the end of string and finish. */
1217 strcat(resp, p);
1218 if (may_free)
1219 free(real);
1220 return (res);
1221 }
1222
1223 static const struct {
1224 const char *kw;
1225 bool pass_obj;
1226 const char *subst;
1227 } tokens[] = {
1228 { .kw = "$ORIGIN", .pass_obj = true, .subst = NULL },
1229 { .kw = "${ORIGIN}", .pass_obj = true, .subst = NULL },
1230 { .kw = "$OSNAME", .pass_obj = false, .subst = uts.sysname },
1231 { .kw = "${OSNAME}", .pass_obj = false, .subst = uts.sysname },
1232 { .kw = "$OSREL", .pass_obj = false, .subst = uts.release },
1233 { .kw = "${OSREL}", .pass_obj = false, .subst = uts.release },
1234 { .kw = "$PLATFORM", .pass_obj = false, .subst = uts.machine },
1235 { .kw = "${PLATFORM}", .pass_obj = false, .subst = uts.machine },
1236 { .kw = "$LIB", .pass_obj = false, .subst = TOKEN_LIB },
1237 { .kw = "${LIB}", .pass_obj = false, .subst = TOKEN_LIB },
1238 };
1239
1240 static char *
origin_subst(Obj_Entry * obj,const char * real)1241 origin_subst(Obj_Entry *obj, const char *real)
1242 {
1243 char *res;
1244 int i;
1245
1246 if (obj == NULL || !trust)
1247 return (xstrdup(real));
1248 if (uts.sysname[0] == '\0') {
1249 if (uname(&uts) != 0) {
1250 _rtld_error("utsname failed: %d", errno);
1251 return (NULL);
1252 }
1253 }
1254
1255 /* __DECONST is safe here since without may_free real is unchanged */
1256 res = __DECONST(char *, real);
1257 for (i = 0; i < (int)nitems(tokens); i++) {
1258 res = origin_subst_one(tokens[i].pass_obj ? obj : NULL, res,
1259 tokens[i].kw, tokens[i].subst, i != 0);
1260 }
1261 return (res);
1262 }
1263
1264 void
rtld_die(void)1265 rtld_die(void)
1266 {
1267 const char *msg = dlerror();
1268
1269 if (msg == NULL)
1270 msg = "Fatal error";
1271 rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1272 rtld_fdputstr(STDERR_FILENO, msg);
1273 rtld_fdputchar(STDERR_FILENO, '\n');
1274 _exit(1);
1275 }
1276
1277 /*
1278 * Process a shared object's DYNAMIC section, and save the important
1279 * information in its Obj_Entry structure.
1280 */
1281 static void
digest_dynamic1(Obj_Entry * obj,int early,const Elf_Dyn ** dyn_rpath,const Elf_Dyn ** dyn_soname,const Elf_Dyn ** dyn_runpath)1282 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1283 const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1284 {
1285 const Elf_Dyn *dynp;
1286 Needed_Entry **needed_tail = &obj->needed;
1287 Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1288 Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1289 const Elf_Hashelt *hashtab;
1290 const Elf32_Word *hashval;
1291 Elf32_Word bkt, nmaskwords;
1292 int bloom_size32;
1293 int plttype = DT_REL;
1294
1295 *dyn_rpath = NULL;
1296 *dyn_soname = NULL;
1297 *dyn_runpath = NULL;
1298
1299 obj->bind_now = false;
1300 dynp = obj->dynamic;
1301 if (dynp == NULL)
1302 return;
1303 for (; dynp->d_tag != DT_NULL; dynp++) {
1304 switch (dynp->d_tag) {
1305 case DT_REL:
1306 obj->rel = (const Elf_Rel *)(obj->relocbase +
1307 dynp->d_un.d_ptr);
1308 break;
1309
1310 case DT_RELSZ:
1311 obj->relsize = dynp->d_un.d_val;
1312 break;
1313
1314 case DT_RELENT:
1315 assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1316 break;
1317
1318 case DT_JMPREL:
1319 obj->pltrel = (const Elf_Rel *)(obj->relocbase +
1320 dynp->d_un.d_ptr);
1321 break;
1322
1323 case DT_PLTRELSZ:
1324 obj->pltrelsize = dynp->d_un.d_val;
1325 break;
1326
1327 case DT_RELA:
1328 obj->rela = (const Elf_Rela *)(obj->relocbase +
1329 dynp->d_un.d_ptr);
1330 break;
1331
1332 case DT_RELASZ:
1333 obj->relasize = dynp->d_un.d_val;
1334 break;
1335
1336 case DT_RELAENT:
1337 assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1338 break;
1339
1340 case DT_RELR:
1341 obj->relr = (const Elf_Relr *)(obj->relocbase +
1342 dynp->d_un.d_ptr);
1343 break;
1344
1345 case DT_RELRSZ:
1346 obj->relrsize = dynp->d_un.d_val;
1347 break;
1348
1349 case DT_RELRENT:
1350 assert(dynp->d_un.d_val == sizeof(Elf_Relr));
1351 break;
1352
1353 case DT_PLTREL:
1354 plttype = dynp->d_un.d_val;
1355 assert(
1356 dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1357 break;
1358
1359 case DT_SYMTAB:
1360 obj->symtab = (const Elf_Sym *)(obj->relocbase +
1361 dynp->d_un.d_ptr);
1362 break;
1363
1364 case DT_SYMENT:
1365 assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1366 break;
1367
1368 case DT_STRTAB:
1369 obj->strtab = (const char *)(obj->relocbase +
1370 dynp->d_un.d_ptr);
1371 break;
1372
1373 case DT_STRSZ:
1374 obj->strsize = dynp->d_un.d_val;
1375 break;
1376
1377 case DT_VERNEED:
1378 obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1379 dynp->d_un.d_val);
1380 break;
1381
1382 case DT_VERNEEDNUM:
1383 obj->verneednum = dynp->d_un.d_val;
1384 break;
1385
1386 case DT_VERDEF:
1387 obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1388 dynp->d_un.d_val);
1389 break;
1390
1391 case DT_VERDEFNUM:
1392 obj->verdefnum = dynp->d_un.d_val;
1393 break;
1394
1395 case DT_VERSYM:
1396 obj->versyms = (const Elf_Versym *)(obj->relocbase +
1397 dynp->d_un.d_val);
1398 break;
1399
1400 case DT_HASH: {
1401 hashtab = (const Elf_Hashelt *)(obj->relocbase +
1402 dynp->d_un.d_ptr);
1403 obj->nbuckets = hashtab[0];
1404 obj->nchains = hashtab[1];
1405 obj->buckets = hashtab + 2;
1406 obj->chains = obj->buckets + obj->nbuckets;
1407 obj->valid_hash_sysv = obj->nbuckets > 0 &&
1408 obj->nchains > 0 && obj->buckets != NULL;
1409 } break;
1410
1411 case DT_GNU_HASH: {
1412 hashtab = (const Elf_Hashelt *)(obj->relocbase +
1413 dynp->d_un.d_ptr);
1414 obj->nbuckets_gnu = hashtab[0];
1415 obj->symndx_gnu = hashtab[1];
1416 nmaskwords = hashtab[2];
1417 bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1418 obj->maskwords_bm_gnu = nmaskwords - 1;
1419 obj->shift2_gnu = hashtab[3];
1420 obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1421 obj->buckets_gnu = hashtab + 4 + bloom_size32;
1422 obj->chain_zero_gnu = obj->buckets_gnu +
1423 obj->nbuckets_gnu - obj->symndx_gnu;
1424 /* Number of bitmask words is required to be power of 2
1425 */
1426 obj->valid_hash_gnu = powerof2(nmaskwords) &&
1427 obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1428 } break;
1429
1430 case DT_NEEDED:
1431 if (!obj->rtld) {
1432 Needed_Entry *nep = NEW(Needed_Entry);
1433 nep->name = dynp->d_un.d_val;
1434 nep->obj = NULL;
1435 nep->next = NULL;
1436
1437 *needed_tail = nep;
1438 needed_tail = &nep->next;
1439 }
1440 break;
1441
1442 case DT_FILTER:
1443 if (!obj->rtld) {
1444 Needed_Entry *nep = NEW(Needed_Entry);
1445 nep->name = dynp->d_un.d_val;
1446 nep->obj = NULL;
1447 nep->next = NULL;
1448
1449 *needed_filtees_tail = nep;
1450 needed_filtees_tail = &nep->next;
1451
1452 if (obj->linkmap.l_refname == NULL)
1453 obj->linkmap.l_refname =
1454 (char *)dynp->d_un.d_val;
1455 }
1456 break;
1457
1458 case DT_AUXILIARY:
1459 if (!obj->rtld) {
1460 Needed_Entry *nep = NEW(Needed_Entry);
1461 nep->name = dynp->d_un.d_val;
1462 nep->obj = NULL;
1463 nep->next = NULL;
1464
1465 *needed_aux_filtees_tail = nep;
1466 needed_aux_filtees_tail = &nep->next;
1467 }
1468 break;
1469
1470 case DT_PLTGOT:
1471 obj->pltgot = (Elf_Addr *)(obj->relocbase +
1472 dynp->d_un.d_ptr);
1473 break;
1474
1475 case DT_TEXTREL:
1476 obj->textrel = true;
1477 break;
1478
1479 case DT_SYMBOLIC:
1480 obj->symbolic = true;
1481 break;
1482
1483 case DT_RPATH:
1484 /*
1485 * We have to wait until later to process this, because
1486 * we might not have gotten the address of the string
1487 * table yet.
1488 */
1489 *dyn_rpath = dynp;
1490 break;
1491
1492 case DT_SONAME:
1493 *dyn_soname = dynp;
1494 break;
1495
1496 case DT_RUNPATH:
1497 *dyn_runpath = dynp;
1498 break;
1499
1500 case DT_INIT:
1501 obj->init = (Elf_Addr)(obj->relocbase +
1502 dynp->d_un.d_ptr);
1503 break;
1504
1505 case DT_PREINIT_ARRAY:
1506 obj->preinit_array = (Elf_Addr)(obj->relocbase +
1507 dynp->d_un.d_ptr);
1508 break;
1509
1510 case DT_PREINIT_ARRAYSZ:
1511 obj->preinit_array_num = dynp->d_un.d_val /
1512 sizeof(Elf_Addr);
1513 break;
1514
1515 case DT_INIT_ARRAY:
1516 obj->init_array = (Elf_Addr)(obj->relocbase +
1517 dynp->d_un.d_ptr);
1518 break;
1519
1520 case DT_INIT_ARRAYSZ:
1521 obj->init_array_num = dynp->d_un.d_val /
1522 sizeof(Elf_Addr);
1523 break;
1524
1525 case DT_FINI:
1526 obj->fini = (Elf_Addr)(obj->relocbase +
1527 dynp->d_un.d_ptr);
1528 break;
1529
1530 case DT_FINI_ARRAY:
1531 obj->fini_array = (Elf_Addr)(obj->relocbase +
1532 dynp->d_un.d_ptr);
1533 break;
1534
1535 case DT_FINI_ARRAYSZ:
1536 obj->fini_array_num = dynp->d_un.d_val /
1537 sizeof(Elf_Addr);
1538 break;
1539
1540 case DT_DEBUG:
1541 if (!early)
1542 dbg("Filling in DT_DEBUG entry");
1543 (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr =
1544 (Elf_Addr)&r_debug;
1545 break;
1546
1547 case DT_FLAGS:
1548 if (dynp->d_un.d_val & DF_ORIGIN)
1549 obj->z_origin = true;
1550 if (dynp->d_un.d_val & DF_SYMBOLIC)
1551 obj->symbolic = true;
1552 if (dynp->d_un.d_val & DF_TEXTREL)
1553 obj->textrel = true;
1554 if (dynp->d_un.d_val & DF_BIND_NOW)
1555 obj->bind_now = true;
1556 if (dynp->d_un.d_val & DF_STATIC_TLS)
1557 obj->static_tls = true;
1558 break;
1559
1560 case DT_FLAGS_1:
1561 if (dynp->d_un.d_val & DF_1_NOOPEN)
1562 obj->z_noopen = true;
1563 if (dynp->d_un.d_val & DF_1_ORIGIN)
1564 obj->z_origin = true;
1565 if (dynp->d_un.d_val & DF_1_GLOBAL)
1566 obj->z_global = true;
1567 if (dynp->d_un.d_val & DF_1_BIND_NOW)
1568 obj->bind_now = true;
1569 if (dynp->d_un.d_val & DF_1_NODELETE)
1570 obj->z_nodelete = true;
1571 if (dynp->d_un.d_val & DF_1_LOADFLTR)
1572 obj->z_loadfltr = true;
1573 if (dynp->d_un.d_val & DF_1_INTERPOSE)
1574 obj->z_interpose = true;
1575 if (dynp->d_un.d_val & DF_1_NODEFLIB)
1576 obj->z_nodeflib = true;
1577 if (dynp->d_un.d_val & DF_1_PIE)
1578 obj->z_pie = true;
1579 if (dynp->d_un.d_val & DF_1_INITFIRST)
1580 obj->z_initfirst = true;
1581 break;
1582
1583 default:
1584 if (arch_digest_dynamic(obj, dynp))
1585 break;
1586
1587 if (!early) {
1588 dbg("Ignoring d_tag %ld = %#lx",
1589 (long)dynp->d_tag, (long)dynp->d_tag);
1590 }
1591 break;
1592 }
1593 }
1594
1595 obj->traced = false;
1596
1597 if (plttype == DT_RELA) {
1598 obj->pltrela = (const Elf_Rela *)obj->pltrel;
1599 obj->pltrel = NULL;
1600 obj->pltrelasize = obj->pltrelsize;
1601 obj->pltrelsize = 0;
1602 }
1603
1604 /* Determine size of dynsym table (equal to nchains of sysv hash) */
1605 if (obj->valid_hash_sysv)
1606 obj->dynsymcount = obj->nchains;
1607 else if (obj->valid_hash_gnu) {
1608 obj->dynsymcount = 0;
1609 for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1610 if (obj->buckets_gnu[bkt] == 0)
1611 continue;
1612 hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1613 do
1614 obj->dynsymcount++;
1615 while ((*hashval++ & 1u) == 0);
1616 }
1617 obj->dynsymcount += obj->symndx_gnu;
1618 }
1619
1620 if (obj->linkmap.l_refname != NULL)
1621 obj->linkmap.l_refname = obj->strtab +
1622 (unsigned long)obj->linkmap.l_refname;
1623 }
1624
1625 static bool
obj_resolve_origin(Obj_Entry * obj)1626 obj_resolve_origin(Obj_Entry *obj)
1627 {
1628 if (obj->origin_path != NULL)
1629 return (true);
1630 obj->origin_path = xmalloc(PATH_MAX);
1631 return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1632 }
1633
1634 static bool
digest_dynamic2(Obj_Entry * obj,const Elf_Dyn * dyn_rpath,const Elf_Dyn * dyn_soname,const Elf_Dyn * dyn_runpath)1635 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1636 const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1637 {
1638 if (obj->z_origin && !obj_resolve_origin(obj))
1639 return (false);
1640
1641 if (dyn_runpath != NULL) {
1642 obj->runpath = (const char *)obj->strtab +
1643 dyn_runpath->d_un.d_val;
1644 obj->runpath = origin_subst(obj, obj->runpath);
1645 } else if (dyn_rpath != NULL) {
1646 obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1647 obj->rpath = origin_subst(obj, obj->rpath);
1648 }
1649 if (dyn_soname != NULL)
1650 object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1651 return (true);
1652 }
1653
1654 static bool
digest_dynamic(Obj_Entry * obj,int early)1655 digest_dynamic(Obj_Entry *obj, int early)
1656 {
1657 const Elf_Dyn *dyn_rpath;
1658 const Elf_Dyn *dyn_soname;
1659 const Elf_Dyn *dyn_runpath;
1660
1661 digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1662 return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1663 }
1664
1665 /*
1666 * Process a shared object's program header. This is used only for the
1667 * main program, when the kernel has already loaded the main program
1668 * into memory before calling the dynamic linker. It creates and
1669 * returns an Obj_Entry structure.
1670 */
1671 static Obj_Entry *
digest_phdr(const Elf_Phdr * phdr,int phnum,caddr_t entry,const char * path)1672 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1673 {
1674 Obj_Entry *obj;
1675 const Elf_Phdr *phlimit = phdr + phnum;
1676 const Elf_Phdr *ph;
1677 Elf_Addr note_start, note_end;
1678 int nsegs = 0;
1679
1680 obj = obj_new();
1681 for (ph = phdr; ph < phlimit; ph++) {
1682 if (ph->p_type != PT_PHDR)
1683 continue;
1684
1685 obj->phdr = phdr;
1686 obj->phsize = ph->p_memsz;
1687 obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1688 break;
1689 }
1690
1691 obj->stack_flags = PF_X | PF_R | PF_W;
1692
1693 for (ph = phdr; ph < phlimit; ph++) {
1694 switch (ph->p_type) {
1695 case PT_INTERP:
1696 obj->interp = (const char *)(ph->p_vaddr +
1697 obj->relocbase);
1698 break;
1699
1700 case PT_LOAD:
1701 if (nsegs == 0) { /* First load segment */
1702 obj->vaddrbase = rtld_trunc_page(ph->p_vaddr);
1703 obj->mapbase = obj->vaddrbase + obj->relocbase;
1704 } else { /* Last load segment */
1705 obj->mapsize = rtld_round_page(
1706 ph->p_vaddr + ph->p_memsz) -
1707 obj->vaddrbase;
1708 }
1709 nsegs++;
1710 break;
1711
1712 case PT_DYNAMIC:
1713 obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr +
1714 obj->relocbase);
1715 break;
1716
1717 case PT_TLS:
1718 obj->tlsindex = 1;
1719 obj->tlssize = ph->p_memsz;
1720 obj->tlsalign = ph->p_align;
1721 obj->tlsinitsize = ph->p_filesz;
1722 obj->tlsinit = (void *)(ph->p_vaddr + obj->relocbase);
1723 obj->tlspoffset = ph->p_offset;
1724 break;
1725
1726 case PT_GNU_STACK:
1727 obj->stack_flags = ph->p_flags;
1728 break;
1729
1730 case PT_NOTE:
1731 note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1732 note_end = note_start + ph->p_filesz;
1733 digest_notes(obj, note_start, note_end);
1734 break;
1735 }
1736 }
1737 if (nsegs < 1) {
1738 _rtld_error("%s: too few PT_LOAD segments", path);
1739 return (NULL);
1740 }
1741
1742 obj->entry = entry;
1743 return (obj);
1744 }
1745
1746 void
digest_notes(Obj_Entry * obj,Elf_Addr note_start,Elf_Addr note_end)1747 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1748 {
1749 const Elf_Note *note;
1750 const char *note_name;
1751 uintptr_t p;
1752
1753 for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1754 note = (const Elf_Note *)((const char *)(note + 1) +
1755 roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1756 roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1757 if (arch_digest_note(obj, note))
1758 continue;
1759
1760 if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1761 note->n_descsz != sizeof(int32_t))
1762 continue;
1763 if (note->n_type != NT_FREEBSD_ABI_TAG &&
1764 note->n_type != NT_FREEBSD_FEATURE_CTL &&
1765 note->n_type != NT_FREEBSD_NOINIT_TAG)
1766 continue;
1767 note_name = (const char *)(note + 1);
1768 if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1769 sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1770 continue;
1771 switch (note->n_type) {
1772 case NT_FREEBSD_ABI_TAG:
1773 /* FreeBSD osrel note */
1774 p = (uintptr_t)(note + 1);
1775 p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1776 obj->osrel = *(const int32_t *)(p);
1777 dbg("note osrel %d", obj->osrel);
1778 break;
1779 case NT_FREEBSD_FEATURE_CTL:
1780 /* FreeBSD ABI feature control note */
1781 p = (uintptr_t)(note + 1);
1782 p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1783 obj->fctl0 = *(const uint32_t *)(p);
1784 dbg("note fctl0 %#x", obj->fctl0);
1785 break;
1786 case NT_FREEBSD_NOINIT_TAG:
1787 /* FreeBSD 'crt does not call init' note */
1788 obj->crt_no_init = true;
1789 dbg("note crt_no_init");
1790 break;
1791 }
1792 }
1793 }
1794
1795 static Obj_Entry *
dlcheck(void * handle)1796 dlcheck(void *handle)
1797 {
1798 Obj_Entry *obj;
1799
1800 TAILQ_FOREACH(obj, &obj_list, next) {
1801 if (obj == (Obj_Entry *)handle)
1802 break;
1803 }
1804
1805 if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1806 _rtld_error("Invalid shared object handle %p", handle);
1807 return (NULL);
1808 }
1809 return (obj);
1810 }
1811
1812 /*
1813 * If the given object is already in the donelist, return true. Otherwise
1814 * add the object to the list and return false.
1815 */
1816 static bool
donelist_check(DoneList * dlp,const Obj_Entry * obj)1817 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1818 {
1819 unsigned int i;
1820
1821 for (i = 0; i < dlp->num_used; i++)
1822 if (dlp->objs[i] == obj)
1823 return (true);
1824 /*
1825 * Our donelist allocation should always be sufficient. But if
1826 * our threads locking isn't working properly, more shared objects
1827 * could have been loaded since we allocated the list. That should
1828 * never happen, but we'll handle it properly just in case it does.
1829 */
1830 if (dlp->num_used < dlp->num_alloc)
1831 dlp->objs[dlp->num_used++] = obj;
1832 return (false);
1833 }
1834
1835 /*
1836 * SysV hash function for symbol table lookup. It is a slightly optimized
1837 * version of the hash specified by the System V ABI.
1838 */
1839 Elf32_Word
elf_hash(const char * name)1840 elf_hash(const char *name)
1841 {
1842 const unsigned char *p = (const unsigned char *)name;
1843 Elf32_Word h = 0;
1844
1845 while (*p != '\0') {
1846 h = (h << 4) + *p++;
1847 h ^= (h >> 24) & 0xf0;
1848 }
1849 return (h & 0x0fffffff);
1850 }
1851
1852 /*
1853 * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1854 * unsigned in case it's implemented with a wider type.
1855 */
1856 static uint32_t
gnu_hash(const char * s)1857 gnu_hash(const char *s)
1858 {
1859 uint32_t h;
1860 unsigned char c;
1861
1862 h = 5381;
1863 for (c = *s; c != '\0'; c = *++s)
1864 h = h * 33 + c;
1865 return (h & 0xffffffff);
1866 }
1867
1868 /*
1869 * Find the library with the given name, and return its full pathname.
1870 * The returned string is dynamically allocated. Generates an error
1871 * message and returns NULL if the library cannot be found.
1872 *
1873 * If the second argument is non-NULL, then it refers to an already-
1874 * loaded shared object, whose library search path will be searched.
1875 *
1876 * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1877 * descriptor (which is close-on-exec) will be passed out via the third
1878 * argument.
1879 *
1880 * The search order is:
1881 * DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1882 * DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1883 * LD_LIBRARY_PATH
1884 * DT_RUNPATH in the referencing file
1885 * ldconfig hints (if -z nodefaultlib, filter out default library directories
1886 * from list)
1887 * /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1888 *
1889 * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1890 */
1891 static char *
find_library(const char * xname,const Obj_Entry * refobj,int * fdp)1892 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1893 {
1894 char *pathname, *refobj_path;
1895 const char *name;
1896 bool nodeflib, objgiven;
1897
1898 objgiven = refobj != NULL;
1899
1900 if (libmap_disable || !objgiven ||
1901 (name = lm_find(refobj->path, xname)) == NULL)
1902 name = xname;
1903
1904 if (strchr(name, '/') != NULL) { /* Hard coded pathname */
1905 if (name[0] != '/' && !trust) {
1906 _rtld_error(
1907 "Absolute pathname required for shared object \"%s\"",
1908 name);
1909 return (NULL);
1910 }
1911 return (origin_subst(__DECONST(Obj_Entry *, refobj),
1912 __DECONST(char *, name)));
1913 }
1914
1915 dbg(" Searching for \"%s\"", name);
1916 refobj_path = objgiven ? refobj->path : NULL;
1917
1918 /*
1919 * If refobj->rpath != NULL, then refobj->runpath is NULL. Fall
1920 * back to pre-conforming behaviour if user requested so with
1921 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1922 * nodeflib.
1923 */
1924 if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1925 pathname = search_library_path(name, ld_library_path,
1926 refobj_path, fdp);
1927 if (pathname != NULL)
1928 return (pathname);
1929 if (refobj != NULL) {
1930 pathname = search_library_path(name, refobj->rpath,
1931 refobj_path, fdp);
1932 if (pathname != NULL)
1933 return (pathname);
1934 }
1935 pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1936 if (pathname != NULL)
1937 return (pathname);
1938 pathname = search_library_path(name, gethints(false),
1939 refobj_path, fdp);
1940 if (pathname != NULL)
1941 return (pathname);
1942 pathname = search_library_path(name, ld_standard_library_path,
1943 refobj_path, fdp);
1944 if (pathname != NULL)
1945 return (pathname);
1946 } else {
1947 nodeflib = objgiven ? refobj->z_nodeflib : false;
1948 if (objgiven) {
1949 pathname = search_library_path(name, refobj->rpath,
1950 refobj->path, fdp);
1951 if (pathname != NULL)
1952 return (pathname);
1953 }
1954 if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1955 pathname = search_library_path(name, obj_main->rpath,
1956 refobj_path, fdp);
1957 if (pathname != NULL)
1958 return (pathname);
1959 }
1960 pathname = search_library_path(name, ld_library_path,
1961 refobj_path, fdp);
1962 if (pathname != NULL)
1963 return (pathname);
1964 if (objgiven) {
1965 pathname = search_library_path(name, refobj->runpath,
1966 refobj_path, fdp);
1967 if (pathname != NULL)
1968 return (pathname);
1969 }
1970 pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1971 if (pathname != NULL)
1972 return (pathname);
1973 pathname = search_library_path(name, gethints(nodeflib),
1974 refobj_path, fdp);
1975 if (pathname != NULL)
1976 return (pathname);
1977 if (objgiven && !nodeflib) {
1978 pathname = search_library_path(name,
1979 ld_standard_library_path, refobj_path, fdp);
1980 if (pathname != NULL)
1981 return (pathname);
1982 }
1983 }
1984
1985 if (objgiven && refobj->path != NULL) {
1986 _rtld_error(
1987 "Shared object \"%s\" not found, required by \"%s\"",
1988 name, basename(refobj->path));
1989 } else {
1990 _rtld_error("Shared object \"%s\" not found", name);
1991 }
1992 return (NULL);
1993 }
1994
1995 /*
1996 * Given a symbol number in a referencing object, find the corresponding
1997 * definition of the symbol. Returns a pointer to the symbol, or NULL if
1998 * no definition was found. Returns a pointer to the Obj_Entry of the
1999 * defining object via the reference parameter DEFOBJ_OUT.
2000 */
2001 const Elf_Sym *
find_symdef(unsigned long symnum,const Obj_Entry * refobj,const Obj_Entry ** defobj_out,int flags,SymCache * cache,RtldLockState * lockstate)2002 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
2003 const Obj_Entry **defobj_out, int flags, SymCache *cache,
2004 RtldLockState *lockstate)
2005 {
2006 const Elf_Sym *ref;
2007 const Elf_Sym *def;
2008 const Obj_Entry *defobj;
2009 const Ver_Entry *ve;
2010 SymLook req;
2011 const char *name;
2012 int res;
2013
2014 /*
2015 * If we have already found this symbol, get the information from
2016 * the cache.
2017 */
2018 if (symnum >= refobj->dynsymcount)
2019 return (NULL); /* Bad object */
2020 if (cache != NULL && cache[symnum].sym != NULL) {
2021 *defobj_out = cache[symnum].obj;
2022 return (cache[symnum].sym);
2023 }
2024
2025 ref = refobj->symtab + symnum;
2026 name = refobj->strtab + ref->st_name;
2027 def = NULL;
2028 defobj = NULL;
2029 ve = NULL;
2030
2031 /*
2032 * We don't have to do a full scale lookup if the symbol is local.
2033 * We know it will bind to the instance in this load module; to
2034 * which we already have a pointer (ie ref). By not doing a lookup,
2035 * we not only improve performance, but it also avoids unresolvable
2036 * symbols when local symbols are not in the hash table. This has
2037 * been seen with the ia64 toolchain.
2038 */
2039 if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
2040 if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
2041 _rtld_error("%s: Bogus symbol table entry %lu",
2042 refobj->path, symnum);
2043 }
2044 symlook_init(&req, name);
2045 req.flags = flags;
2046 ve = req.ventry = fetch_ventry(refobj, symnum);
2047 req.lockstate = lockstate;
2048 res = symlook_default(&req, refobj);
2049 if (res == 0) {
2050 def = req.sym_out;
2051 defobj = req.defobj_out;
2052 }
2053 } else {
2054 def = ref;
2055 defobj = refobj;
2056 }
2057
2058 /*
2059 * If we found no definition and the reference is weak, treat the
2060 * symbol as having the value zero.
2061 */
2062 if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
2063 def = &sym_zero;
2064 defobj = obj_main;
2065 }
2066
2067 if (def != NULL) {
2068 *defobj_out = defobj;
2069 /*
2070 * Record the information in the cache to avoid subsequent
2071 * lookups.
2072 */
2073 if (cache != NULL) {
2074 cache[symnum].sym = def;
2075 cache[symnum].obj = defobj;
2076 }
2077 } else {
2078 if (refobj != &obj_rtld)
2079 _rtld_error("%s: Undefined symbol \"%s%s%s\"",
2080 refobj->path, name, ve != NULL ? "@" : "",
2081 ve != NULL ? ve->name : "");
2082 }
2083 return (def);
2084 }
2085
2086 /* Convert between native byte order and forced little resp. big endian. */
2087 #define COND_SWAP(n) (is_le ? le32toh(n) : be32toh(n))
2088
2089 /*
2090 * Return the search path from the ldconfig hints file, reading it if
2091 * necessary. If nostdlib is true, then the default search paths are
2092 * not added to result.
2093 *
2094 * Returns NULL if there are problems with the hints file,
2095 * or if the search path there is empty.
2096 */
2097 static const char *
gethints(bool nostdlib)2098 gethints(bool nostdlib)
2099 {
2100 static char *filtered_path;
2101 static const char *hints;
2102 static struct elfhints_hdr hdr;
2103 struct fill_search_info_args sargs, hargs;
2104 struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
2105 struct dl_serpath *SLPpath, *hintpath;
2106 char *p;
2107 struct stat hint_stat;
2108 unsigned int SLPndx, hintndx, fndx, fcount;
2109 int fd;
2110 size_t flen;
2111 uint32_t dl;
2112 uint32_t magic; /* Magic number */
2113 uint32_t version; /* File version (1) */
2114 uint32_t strtab; /* Offset of string table in file */
2115 uint32_t dirlist; /* Offset of directory list in string table */
2116 uint32_t dirlistlen; /* strlen(dirlist) */
2117 bool is_le; /* Does the hints file use little endian */
2118 bool skip;
2119
2120 /* First call, read the hints file */
2121 if (hints == NULL) {
2122 /* Keep from trying again in case the hints file is bad. */
2123 hints = "";
2124
2125 if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) ==
2126 -1) {
2127 dbg("failed to open hints file \"%s\"",
2128 ld_elf_hints_path);
2129 return (NULL);
2130 }
2131
2132 /*
2133 * Check of hdr.dirlistlen value against type limit
2134 * intends to pacify static analyzers. Further
2135 * paranoia leads to checks that dirlist is fully
2136 * contained in the file range.
2137 */
2138 if (read(fd, &hdr, sizeof hdr) != sizeof hdr) {
2139 dbg("failed to read %lu bytes from hints file \"%s\"",
2140 (u_long)sizeof hdr, ld_elf_hints_path);
2141 cleanup1:
2142 close(fd);
2143 hdr.dirlistlen = 0;
2144 return (NULL);
2145 }
2146 dbg("host byte-order: %s-endian",
2147 le32toh(1) == 1 ? "little" : "big");
2148 dbg("hints file byte-order: %s-endian",
2149 hdr.magic == htole32(ELFHINTS_MAGIC) ? "little" : "big");
2150 is_le = /*htole32(1) == 1 || */ hdr.magic ==
2151 htole32(ELFHINTS_MAGIC);
2152 magic = COND_SWAP(hdr.magic);
2153 version = COND_SWAP(hdr.version);
2154 strtab = COND_SWAP(hdr.strtab);
2155 dirlist = COND_SWAP(hdr.dirlist);
2156 dirlistlen = COND_SWAP(hdr.dirlistlen);
2157 if (magic != ELFHINTS_MAGIC) {
2158 dbg("invalid magic number %#08x (expected: %#08x)",
2159 magic, ELFHINTS_MAGIC);
2160 goto cleanup1;
2161 }
2162 if (version != 1) {
2163 dbg("hints file version %d (expected: 1)", version);
2164 goto cleanup1;
2165 }
2166 if (dirlistlen > UINT_MAX / 2) {
2167 dbg("directory list is to long: %d > %d", dirlistlen,
2168 UINT_MAX / 2);
2169 goto cleanup1;
2170 }
2171 if (fstat(fd, &hint_stat) == -1) {
2172 dbg("failed to find length of hints file \"%s\"",
2173 ld_elf_hints_path);
2174 goto cleanup1;
2175 }
2176 dl = strtab;
2177 if (dl + dirlist < dl) {
2178 dbg("invalid string table position %d", dl);
2179 goto cleanup1;
2180 }
2181 dl += dirlist;
2182 if (dl + dirlistlen < dl) {
2183 dbg("invalid directory list offset %d", dirlist);
2184 goto cleanup1;
2185 }
2186 dl += dirlistlen;
2187 if (dl > hint_stat.st_size) {
2188 dbg("hints file \"%s\" is truncated (%d vs. %jd bytes)",
2189 ld_elf_hints_path, dl,
2190 (uintmax_t)hint_stat.st_size);
2191 goto cleanup1;
2192 }
2193 p = xmalloc(dirlistlen + 1);
2194 if (pread(fd, p, dirlistlen + 1, strtab + dirlist) !=
2195 (ssize_t)dirlistlen + 1 || p[dirlistlen] != '\0') {
2196 free(p);
2197 dbg(
2198 "failed to read %d bytes starting at %d from hints file \"%s\"",
2199 dirlistlen + 1, strtab + dirlist,
2200 ld_elf_hints_path);
2201 goto cleanup1;
2202 }
2203 hints = p;
2204 close(fd);
2205 }
2206
2207 /*
2208 * If caller agreed to receive list which includes the default
2209 * paths, we are done. Otherwise, if we still did not
2210 * calculated filtered result, do it now.
2211 */
2212 if (!nostdlib)
2213 return (hints[0] != '\0' ? hints : NULL);
2214 if (filtered_path != NULL)
2215 goto filt_ret;
2216
2217 /*
2218 * Obtain the list of all configured search paths, and the
2219 * list of the default paths.
2220 *
2221 * First estimate the size of the results.
2222 */
2223 smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2224 smeta.dls_cnt = 0;
2225 hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2226 hmeta.dls_cnt = 0;
2227
2228 sargs.request = RTLD_DI_SERINFOSIZE;
2229 sargs.serinfo = &smeta;
2230 hargs.request = RTLD_DI_SERINFOSIZE;
2231 hargs.serinfo = &hmeta;
2232
2233 path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2234 &sargs);
2235 path_enumerate(hints, fill_search_info, NULL, &hargs);
2236
2237 SLPinfo = xmalloc(smeta.dls_size);
2238 hintinfo = xmalloc(hmeta.dls_size);
2239
2240 /*
2241 * Next fetch both sets of paths.
2242 */
2243 sargs.request = RTLD_DI_SERINFO;
2244 sargs.serinfo = SLPinfo;
2245 sargs.serpath = &SLPinfo->dls_serpath[0];
2246 sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
2247
2248 hargs.request = RTLD_DI_SERINFO;
2249 hargs.serinfo = hintinfo;
2250 hargs.serpath = &hintinfo->dls_serpath[0];
2251 hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
2252
2253 path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2254 &sargs);
2255 path_enumerate(hints, fill_search_info, NULL, &hargs);
2256
2257 /*
2258 * Now calculate the difference between two sets, by excluding
2259 * standard paths from the full set.
2260 */
2261 fndx = 0;
2262 fcount = 0;
2263 filtered_path = xmalloc(dirlistlen + 1);
2264 hintpath = &hintinfo->dls_serpath[0];
2265 for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
2266 skip = false;
2267 SLPpath = &SLPinfo->dls_serpath[0];
2268 /*
2269 * Check each standard path against current.
2270 */
2271 for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
2272 /* matched, skip the path */
2273 if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
2274 skip = true;
2275 break;
2276 }
2277 }
2278 if (skip)
2279 continue;
2280 /*
2281 * Not matched against any standard path, add the path
2282 * to result. Separate consequtive paths with ':'.
2283 */
2284 if (fcount > 0) {
2285 filtered_path[fndx] = ':';
2286 fndx++;
2287 }
2288 fcount++;
2289 flen = strlen(hintpath->dls_name);
2290 strncpy((filtered_path + fndx), hintpath->dls_name, flen);
2291 fndx += flen;
2292 }
2293 filtered_path[fndx] = '\0';
2294
2295 free(SLPinfo);
2296 free(hintinfo);
2297
2298 filt_ret:
2299 return (filtered_path[0] != '\0' ? filtered_path : NULL);
2300 }
2301
2302 static void
init_dag(Obj_Entry * root)2303 init_dag(Obj_Entry *root)
2304 {
2305 const Needed_Entry *needed;
2306 const Objlist_Entry *elm;
2307 DoneList donelist;
2308
2309 if (root->dag_inited)
2310 return;
2311 donelist_init(&donelist);
2312
2313 /* Root object belongs to own DAG. */
2314 objlist_push_tail(&root->dldags, root);
2315 objlist_push_tail(&root->dagmembers, root);
2316 donelist_check(&donelist, root);
2317
2318 /*
2319 * Add dependencies of root object to DAG in breadth order
2320 * by exploiting the fact that each new object get added
2321 * to the tail of the dagmembers list.
2322 */
2323 STAILQ_FOREACH(elm, &root->dagmembers, link) {
2324 for (needed = elm->obj->needed; needed != NULL;
2325 needed = needed->next) {
2326 if (needed->obj == NULL ||
2327 donelist_check(&donelist, needed->obj))
2328 continue;
2329 objlist_push_tail(&needed->obj->dldags, root);
2330 objlist_push_tail(&root->dagmembers, needed->obj);
2331 }
2332 }
2333 root->dag_inited = true;
2334 }
2335
2336 static void
init_marker(Obj_Entry * marker)2337 init_marker(Obj_Entry *marker)
2338 {
2339 bzero(marker, sizeof(*marker));
2340 marker->marker = true;
2341 }
2342
2343 Obj_Entry *
globallist_curr(const Obj_Entry * obj)2344 globallist_curr(const Obj_Entry *obj)
2345 {
2346 for (;;) {
2347 if (obj == NULL)
2348 return (NULL);
2349 if (!obj->marker)
2350 return (__DECONST(Obj_Entry *, obj));
2351 obj = TAILQ_PREV(obj, obj_entry_q, next);
2352 }
2353 }
2354
2355 Obj_Entry *
globallist_next(const Obj_Entry * obj)2356 globallist_next(const Obj_Entry *obj)
2357 {
2358 for (;;) {
2359 obj = TAILQ_NEXT(obj, next);
2360 if (obj == NULL)
2361 return (NULL);
2362 if (!obj->marker)
2363 return (__DECONST(Obj_Entry *, obj));
2364 }
2365 }
2366
2367 /* Prevent the object from being unmapped while the bind lock is dropped. */
2368 static void
hold_object(Obj_Entry * obj)2369 hold_object(Obj_Entry *obj)
2370 {
2371 obj->holdcount++;
2372 }
2373
2374 static void
unhold_object(Obj_Entry * obj)2375 unhold_object(Obj_Entry *obj)
2376 {
2377 assert(obj->holdcount > 0);
2378 if (--obj->holdcount == 0 && obj->unholdfree)
2379 release_object(obj);
2380 }
2381
2382 static void
process_z(Obj_Entry * root)2383 process_z(Obj_Entry *root)
2384 {
2385 const Objlist_Entry *elm;
2386 Obj_Entry *obj;
2387
2388 /*
2389 * Walk over object DAG and process every dependent object
2390 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2391 * to grow their own DAG.
2392 *
2393 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2394 * symlook_global() to work.
2395 *
2396 * For DF_1_NODELETE, the DAG should have its reference upped.
2397 */
2398 STAILQ_FOREACH(elm, &root->dagmembers, link) {
2399 obj = elm->obj;
2400 if (obj == NULL)
2401 continue;
2402 if (obj->z_nodelete && !obj->ref_nodel) {
2403 dbg("obj %s -z nodelete", obj->path);
2404 init_dag(obj);
2405 ref_dag(obj);
2406 obj->ref_nodel = true;
2407 }
2408 if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2409 dbg("obj %s -z global", obj->path);
2410 objlist_push_tail(&list_global, obj);
2411 init_dag(obj);
2412 }
2413 }
2414 }
2415
2416 static void
parse_rtld_phdr(Obj_Entry * obj)2417 parse_rtld_phdr(Obj_Entry *obj)
2418 {
2419 const Elf_Phdr *ph;
2420 Elf_Addr note_start, note_end;
2421 bool first_seg;
2422
2423 first_seg = true;
2424 obj->stack_flags = PF_X | PF_R | PF_W;
2425 for (ph = obj->phdr;
2426 (const char *)ph < (const char *)obj->phdr + obj->phsize; ph++) {
2427 switch (ph->p_type) {
2428 case PT_LOAD:
2429 if (first_seg) {
2430 obj->vaddrbase = rtld_trunc_page(ph->p_vaddr);
2431 first_seg = false;
2432 }
2433 obj->mapsize = rtld_round_page(ph->p_vaddr +
2434 ph->p_memsz) - obj->vaddrbase;
2435 break;
2436 case PT_GNU_STACK:
2437 obj->stack_flags = ph->p_flags;
2438 break;
2439 case PT_NOTE:
2440 note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
2441 note_end = note_start + ph->p_filesz;
2442 digest_notes(obj, note_start, note_end);
2443 break;
2444 }
2445 }
2446 }
2447
2448 /*
2449 * Initialize the dynamic linker. The argument is the address at which
2450 * the dynamic linker has been mapped into memory. The primary task of
2451 * this function is to relocate the dynamic linker.
2452 */
2453 static void
init_rtld(caddr_t mapbase,Elf_Auxinfo ** aux_info)2454 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2455 {
2456 Obj_Entry objtmp; /* Temporary rtld object */
2457 const Elf_Ehdr *ehdr;
2458 const Elf_Dyn *dyn_rpath;
2459 const Elf_Dyn *dyn_soname;
2460 const Elf_Dyn *dyn_runpath;
2461
2462 /*
2463 * Conjure up an Obj_Entry structure for the dynamic linker.
2464 *
2465 * The "path" member can't be initialized yet because string constants
2466 * cannot yet be accessed. Below we will set it correctly.
2467 */
2468 memset(&objtmp, 0, sizeof(objtmp));
2469 objtmp.path = NULL;
2470 objtmp.rtld = true;
2471 objtmp.mapbase = mapbase;
2472 #ifdef PIC
2473 objtmp.relocbase = mapbase;
2474 #endif
2475
2476 objtmp.dynamic = rtld_dynamic(&objtmp);
2477 digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2478 assert(objtmp.needed == NULL);
2479 assert(!objtmp.textrel);
2480 /*
2481 * Temporarily put the dynamic linker entry into the object list, so
2482 * that symbols can be found.
2483 */
2484 relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2485
2486 ehdr = (Elf_Ehdr *)mapbase;
2487 objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2488 objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2489
2490 /* Initialize the object list. */
2491 TAILQ_INIT(&obj_list);
2492
2493 /* Now that non-local variables can be accesses, copy out obj_rtld. */
2494 memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2495
2496 /* The page size is required by the dynamic memory allocator. */
2497 init_pagesizes(aux_info);
2498
2499 if (aux_info[AT_OSRELDATE] != NULL)
2500 osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2501
2502 digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2503
2504 /* Replace the path with a dynamically allocated copy. */
2505 obj_rtld.path = xstrdup(ld_path_rtld);
2506
2507 parse_rtld_phdr(&obj_rtld);
2508 if (obj_enforce_relro(&obj_rtld) == -1)
2509 rtld_die();
2510
2511 r_debug.r_version = R_DEBUG_VERSION;
2512 r_debug.r_brk = r_debug_state;
2513 r_debug.r_state = RT_CONSISTENT;
2514 r_debug.r_ldbase = obj_rtld.relocbase;
2515 }
2516
2517 /*
2518 * Retrieve the array of supported page sizes. The kernel provides the page
2519 * sizes in increasing order.
2520 */
2521 static void
init_pagesizes(Elf_Auxinfo ** aux_info)2522 init_pagesizes(Elf_Auxinfo **aux_info)
2523 {
2524 static size_t psa[MAXPAGESIZES];
2525 int mib[2];
2526 size_t len, size;
2527
2528 if (aux_info[AT_PAGESIZES] != NULL &&
2529 aux_info[AT_PAGESIZESLEN] != NULL) {
2530 size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2531 pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2532 } else {
2533 len = 2;
2534 if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2535 size = sizeof(psa);
2536 else {
2537 /* As a fallback, retrieve the base page size. */
2538 size = sizeof(psa[0]);
2539 if (aux_info[AT_PAGESZ] != NULL) {
2540 psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2541 goto psa_filled;
2542 } else {
2543 mib[0] = CTL_HW;
2544 mib[1] = HW_PAGESIZE;
2545 len = 2;
2546 }
2547 }
2548 if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2549 _rtld_error("sysctl for hw.pagesize(s) failed");
2550 rtld_die();
2551 }
2552 psa_filled:
2553 pagesizes = psa;
2554 }
2555 npagesizes = size / sizeof(pagesizes[0]);
2556 /* Discard any invalid entries at the end of the array. */
2557 while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2558 npagesizes--;
2559
2560 page_size = pagesizes[0];
2561 }
2562
2563 /*
2564 * Add the init functions from a needed object list (and its recursive
2565 * needed objects) to "list". This is not used directly; it is a helper
2566 * function for initlist_add_objects(). The write lock must be held
2567 * when this function is called.
2568 */
2569 static void
initlist_add_neededs(Needed_Entry * needed,Objlist * list,Objlist * iflist)2570 initlist_add_neededs(Needed_Entry *needed, Objlist *list, Objlist *iflist)
2571 {
2572 /* Recursively process the successor needed objects. */
2573 if (needed->next != NULL)
2574 initlist_add_neededs(needed->next, list, iflist);
2575
2576 /* Process the current needed object. */
2577 if (needed->obj != NULL)
2578 initlist_add_objects(needed->obj, needed->obj, list, iflist);
2579 }
2580
2581 /*
2582 * Scan all of the DAGs rooted in the range of objects from "obj" to
2583 * "tail" and add their init functions to "list". This recurses over
2584 * the DAGs and ensure the proper init ordering such that each object's
2585 * needed libraries are initialized before the object itself. At the
2586 * same time, this function adds the objects to the global finalization
2587 * list "list_fini" in the opposite order. The write lock must be
2588 * held when this function is called.
2589 */
2590 static void
initlist_for_loaded_obj(Obj_Entry * obj,Obj_Entry * tail,Objlist * list)2591 initlist_for_loaded_obj(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2592 {
2593 Objlist iflist; /* initfirst objs and their needed */
2594 Objlist_Entry *tmp;
2595
2596 objlist_init(&iflist);
2597 initlist_add_objects(obj, tail, list, &iflist);
2598
2599 STAILQ_FOREACH(tmp, &iflist, link) {
2600 Obj_Entry *tobj = tmp->obj;
2601
2602 if ((tobj->fini != (Elf_Addr)NULL ||
2603 tobj->fini_array != (Elf_Addr)NULL) &&
2604 !tobj->on_fini_list) {
2605 objlist_push_tail(&list_fini, tobj);
2606 tobj->on_fini_list = true;
2607 }
2608 }
2609
2610 /*
2611 * This might result in the same object appearing more
2612 * than once on the init list. objlist_call_init()
2613 * uses obj->init_scanned to avoid dup calls.
2614 */
2615 STAILQ_REVERSE(&iflist, Struct_Objlist_Entry, link);
2616 STAILQ_FOREACH(tmp, &iflist, link)
2617 objlist_push_head(list, tmp->obj);
2618
2619 objlist_clear(&iflist);
2620 }
2621
2622 static void
initlist_add_objects(Obj_Entry * obj,Obj_Entry * tail,Objlist * list,Objlist * iflist)2623 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list,
2624 Objlist *iflist)
2625 {
2626 Obj_Entry *nobj;
2627
2628 if (obj->init_done)
2629 return;
2630
2631 if (obj->z_initfirst || list == NULL) {
2632 /*
2633 * Ignore obj->init_scanned. The object might indeed
2634 * already be on the init list, but due to being
2635 * needed by an initfirst object, we must put it at
2636 * the head of the init list. obj->init_done protects
2637 * against double-initialization.
2638 */
2639 if (obj->needed != NULL)
2640 initlist_add_neededs(obj->needed, NULL, iflist);
2641 if (obj->needed_filtees != NULL)
2642 initlist_add_neededs(obj->needed_filtees, NULL,
2643 iflist);
2644 if (obj->needed_aux_filtees != NULL)
2645 initlist_add_neededs(obj->needed_aux_filtees,
2646 NULL, iflist);
2647 objlist_push_tail(iflist, obj);
2648 } else {
2649 if (obj->init_scanned)
2650 return;
2651 obj->init_scanned = true;
2652
2653 /* Recursively process the successor objects. */
2654 nobj = globallist_next(obj);
2655 if (nobj != NULL && obj != tail)
2656 initlist_add_objects(nobj, tail, list, iflist);
2657
2658 /* Recursively process the needed objects. */
2659 if (obj->needed != NULL)
2660 initlist_add_neededs(obj->needed, list, iflist);
2661 if (obj->needed_filtees != NULL)
2662 initlist_add_neededs(obj->needed_filtees, list,
2663 iflist);
2664 if (obj->needed_aux_filtees != NULL)
2665 initlist_add_neededs(obj->needed_aux_filtees, list,
2666 iflist);
2667
2668 /* Add the object to the init list. */
2669 objlist_push_tail(list, obj);
2670
2671 /*
2672 * Add the object to the global fini list in the
2673 * reverse order.
2674 */
2675 if ((obj->fini != (Elf_Addr)NULL ||
2676 obj->fini_array != (Elf_Addr)NULL) &&
2677 !obj->on_fini_list) {
2678 objlist_push_head(&list_fini, obj);
2679 obj->on_fini_list = true;
2680 }
2681 }
2682 }
2683
2684 static void
free_needed_filtees(Needed_Entry * n,RtldLockState * lockstate)2685 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2686 {
2687 Needed_Entry *needed, *needed1;
2688
2689 for (needed = n; needed != NULL; needed = needed->next) {
2690 if (needed->obj != NULL) {
2691 dlclose_locked(needed->obj, lockstate);
2692 needed->obj = NULL;
2693 }
2694 }
2695 for (needed = n; needed != NULL; needed = needed1) {
2696 needed1 = needed->next;
2697 free(needed);
2698 }
2699 }
2700
2701 static void
unload_filtees(Obj_Entry * obj,RtldLockState * lockstate)2702 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2703 {
2704 free_needed_filtees(obj->needed_filtees, lockstate);
2705 obj->needed_filtees = NULL;
2706 free_needed_filtees(obj->needed_aux_filtees, lockstate);
2707 obj->needed_aux_filtees = NULL;
2708 obj->filtees_loaded = false;
2709 }
2710
2711 static void
load_filtee1(Obj_Entry * obj,Needed_Entry * needed,int flags,RtldLockState * lockstate)2712 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2713 RtldLockState *lockstate)
2714 {
2715 for (; needed != NULL; needed = needed->next) {
2716 needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2717 flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW :
2718 RTLD_LAZY) | RTLD_LOCAL, lockstate);
2719 }
2720 }
2721
2722 static void
load_filtees(Obj_Entry * obj,int flags,RtldLockState * lockstate)2723 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2724 {
2725 if (obj->filtees_loaded || obj->filtees_loading)
2726 return;
2727 lock_restart_for_upgrade(lockstate);
2728 obj->filtees_loading = true;
2729 load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2730 load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2731 obj->filtees_loaded = true;
2732 obj->filtees_loading = false;
2733 }
2734
2735 static int
process_needed(Obj_Entry * obj,Needed_Entry * needed,int flags)2736 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2737 {
2738 Obj_Entry *obj1;
2739
2740 for (; needed != NULL; needed = needed->next) {
2741 obj1 = needed->obj = load_object(obj->strtab + needed->name, -1,
2742 obj, flags & ~RTLD_LO_NOLOAD);
2743 if (obj1 == NULL && !ld_tracing &&
2744 (flags & RTLD_LO_FILTEES) == 0)
2745 return (-1);
2746 }
2747 return (0);
2748 }
2749
2750 /*
2751 * Given a shared object, traverse its list of needed objects, and load
2752 * each of them. Returns 0 on success. Generates an error message and
2753 * returns -1 on failure.
2754 */
2755 static int
load_needed_objects(Obj_Entry * first,int flags)2756 load_needed_objects(Obj_Entry *first, int flags)
2757 {
2758 Obj_Entry *obj;
2759
2760 for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2761 if (obj->marker)
2762 continue;
2763 if (process_needed(obj, obj->needed, flags) == -1)
2764 return (-1);
2765 }
2766 return (0);
2767 }
2768
2769 static int
load_preload_objects(const char * penv,bool isfd)2770 load_preload_objects(const char *penv, bool isfd)
2771 {
2772 Obj_Entry *obj;
2773 const char *name;
2774 size_t len;
2775 char savech, *p, *psave;
2776 int fd;
2777 static const char delim[] = " \t:;";
2778
2779 if (penv == NULL)
2780 return (0);
2781
2782 p = psave = xstrdup(penv);
2783 p += strspn(p, delim);
2784 while (*p != '\0') {
2785 len = strcspn(p, delim);
2786
2787 savech = p[len];
2788 p[len] = '\0';
2789 if (isfd) {
2790 name = NULL;
2791 fd = parse_integer(p);
2792 if (fd == -1) {
2793 free(psave);
2794 return (-1);
2795 }
2796 } else {
2797 name = p;
2798 fd = -1;
2799 }
2800
2801 obj = load_object(name, fd, NULL, 0);
2802 if (obj == NULL) {
2803 free(psave);
2804 return (-1); /* XXX - cleanup */
2805 }
2806 obj->z_interpose = true;
2807 p[len] = savech;
2808 p += len;
2809 p += strspn(p, delim);
2810 }
2811 LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2812
2813 free(psave);
2814 return (0);
2815 }
2816
2817 static const char *
printable_path(const char * path)2818 printable_path(const char *path)
2819 {
2820 return (path == NULL ? "<unknown>" : path);
2821 }
2822
2823 /*
2824 * Load a shared object into memory, if it is not already loaded. The
2825 * object may be specified by name or by user-supplied file descriptor
2826 * fd_u. In the later case, the fd_u descriptor is not closed, but its
2827 * duplicate is.
2828 *
2829 * Returns a pointer to the Obj_Entry for the object. Returns NULL
2830 * on failure.
2831 */
2832 static Obj_Entry *
load_object(const char * name,int fd_u,const Obj_Entry * refobj,int flags)2833 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2834 {
2835 Obj_Entry *obj;
2836 int fd;
2837 struct stat sb;
2838 char *path;
2839
2840 fd = -1;
2841 if (name != NULL) {
2842 TAILQ_FOREACH(obj, &obj_list, next) {
2843 if (obj->marker || obj->doomed)
2844 continue;
2845 if (object_match_name(obj, name))
2846 return (obj);
2847 }
2848
2849 path = find_library(name, refobj, &fd);
2850 if (path == NULL)
2851 return (NULL);
2852 } else
2853 path = NULL;
2854
2855 if (fd >= 0) {
2856 /*
2857 * search_library_pathfds() opens a fresh file descriptor for
2858 * the library, so there is no need to dup().
2859 */
2860 } else if (fd_u == -1) {
2861 /*
2862 * If we didn't find a match by pathname, or the name is not
2863 * supplied, open the file and check again by device and inode.
2864 * This avoids false mismatches caused by multiple links or ".."
2865 * in pathnames.
2866 *
2867 * To avoid a race, we open the file and use fstat() rather than
2868 * using stat().
2869 */
2870 if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2871 _rtld_error("Cannot open \"%s\"", path);
2872 free(path);
2873 return (NULL);
2874 }
2875 } else {
2876 fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2877 if (fd == -1) {
2878 _rtld_error("Cannot dup fd");
2879 free(path);
2880 return (NULL);
2881 }
2882 }
2883 if (fstat(fd, &sb) == -1) {
2884 _rtld_error("Cannot fstat \"%s\"", printable_path(path));
2885 close(fd);
2886 free(path);
2887 return (NULL);
2888 }
2889 TAILQ_FOREACH(obj, &obj_list, next) {
2890 if (obj->marker || obj->doomed)
2891 continue;
2892 if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2893 break;
2894 }
2895 if (obj != NULL) {
2896 if (name != NULL)
2897 object_add_name(obj, name);
2898 free(path);
2899 close(fd);
2900 return (obj);
2901 }
2902 if (flags & RTLD_LO_NOLOAD) {
2903 free(path);
2904 close(fd);
2905 return (NULL);
2906 }
2907
2908 /* First use of this object, so we must map it in */
2909 obj = do_load_object(fd, name, path, &sb, flags);
2910 if (obj == NULL)
2911 free(path);
2912 close(fd);
2913
2914 return (obj);
2915 }
2916
2917 static Obj_Entry *
do_load_object(int fd,const char * name,char * path,struct stat * sbp,int flags)2918 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2919 int flags)
2920 {
2921 Obj_Entry *obj;
2922 struct statfs fs;
2923
2924 /*
2925 * First, make sure that environment variables haven't been
2926 * used to circumvent the noexec flag on a filesystem.
2927 * We ignore fstatfs(2) failures, since fd might reference
2928 * not a file, e.g. shmfd.
2929 */
2930 if (dangerous_ld_env && fstatfs(fd, &fs) == 0 &&
2931 (fs.f_flags & MNT_NOEXEC) != 0) {
2932 _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2933 return (NULL);
2934 }
2935
2936 dbg("loading \"%s\"", printable_path(path));
2937 obj = map_object(fd, printable_path(path), sbp, false);
2938 if (obj == NULL)
2939 return (NULL);
2940
2941 /*
2942 * If DT_SONAME is present in the object, digest_dynamic2 already
2943 * added it to the object names.
2944 */
2945 if (name != NULL)
2946 object_add_name(obj, name);
2947 obj->path = path;
2948 if (!digest_dynamic(obj, 0))
2949 goto errp;
2950 dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2951 obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2952 if (obj->z_pie && (flags & RTLD_LO_TRACE) == 0) {
2953 dbg("refusing to load PIE executable \"%s\"", obj->path);
2954 _rtld_error("Cannot load PIE binary %s as DSO", obj->path);
2955 goto errp;
2956 }
2957 if (obj->z_noopen &&
2958 (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) == RTLD_LO_DLOPEN) {
2959 dbg("refusing to load non-loadable \"%s\"", obj->path);
2960 _rtld_error("Cannot dlopen non-loadable %s", obj->path);
2961 goto errp;
2962 }
2963
2964 obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2965 TAILQ_INSERT_TAIL(&obj_list, obj, next);
2966 obj_count++;
2967 obj_loads++;
2968 linkmap_add(obj); /* for GDB & dlinfo() */
2969 max_stack_flags |= obj->stack_flags;
2970
2971 dbg(" %p .. %p: %s", obj->mapbase, obj->mapbase + obj->mapsize - 1,
2972 obj->path);
2973 if (obj->textrel)
2974 dbg(" WARNING: %s has impure text", obj->path);
2975 LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2976 obj->path);
2977
2978 return (obj);
2979
2980 errp:
2981 munmap(obj->mapbase, obj->mapsize);
2982 obj_free(obj);
2983 return (NULL);
2984 }
2985
2986 static int
load_kpreload(const void * addr)2987 load_kpreload(const void *addr)
2988 {
2989 Obj_Entry *obj;
2990 const Elf_Ehdr *ehdr;
2991 const Elf_Phdr *phdr, *phlimit, *phdyn, *seg0, *segn;
2992 static const char kname[] = "[vdso]";
2993
2994 ehdr = addr;
2995 if (!check_elf_headers(ehdr, "kpreload"))
2996 return (-1);
2997 obj = obj_new();
2998 phdr = (const Elf_Phdr *)((const char *)addr + ehdr->e_phoff);
2999 obj->phdr = phdr;
3000 obj->phsize = ehdr->e_phnum * sizeof(*phdr);
3001 phlimit = phdr + ehdr->e_phnum;
3002 seg0 = segn = NULL;
3003
3004 for (; phdr < phlimit; phdr++) {
3005 switch (phdr->p_type) {
3006 case PT_DYNAMIC:
3007 phdyn = phdr;
3008 break;
3009 case PT_GNU_STACK:
3010 /* Absense of PT_GNU_STACK implies stack_flags == 0. */
3011 obj->stack_flags = phdr->p_flags;
3012 break;
3013 case PT_LOAD:
3014 if (seg0 == NULL || seg0->p_vaddr > phdr->p_vaddr)
3015 seg0 = phdr;
3016 if (segn == NULL ||
3017 segn->p_vaddr + segn->p_memsz <
3018 phdr->p_vaddr + phdr->p_memsz)
3019 segn = phdr;
3020 break;
3021 }
3022 }
3023
3024 obj->mapbase = __DECONST(caddr_t, addr);
3025 obj->mapsize = segn->p_vaddr + segn->p_memsz;
3026 obj->vaddrbase = 0;
3027 obj->relocbase = obj->mapbase;
3028
3029 object_add_name(obj, kname);
3030 obj->path = xstrdup(kname);
3031 obj->dynamic = (const Elf_Dyn *)(obj->relocbase + phdyn->p_vaddr);
3032
3033 if (!digest_dynamic(obj, 0)) {
3034 obj_free(obj);
3035 return (-1);
3036 }
3037
3038 /*
3039 * We assume that kernel-preloaded object does not need
3040 * relocation. It is currently written into read-only page,
3041 * handling relocations would mean we need to allocate at
3042 * least one additional page per AS.
3043 */
3044 dbg("%s mapbase %p phdrs %p PT_LOAD phdr %p vaddr %p dynamic %p",
3045 obj->path, obj->mapbase, obj->phdr, seg0,
3046 obj->relocbase + seg0->p_vaddr, obj->dynamic);
3047
3048 TAILQ_INSERT_TAIL(&obj_list, obj, next);
3049 obj_count++;
3050 obj_loads++;
3051 linkmap_add(obj); /* for GDB & dlinfo() */
3052 max_stack_flags |= obj->stack_flags;
3053
3054 LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
3055 obj->path);
3056 return (0);
3057 }
3058
3059 Obj_Entry *
obj_from_addr(const void * addr)3060 obj_from_addr(const void *addr)
3061 {
3062 Obj_Entry *obj;
3063
3064 TAILQ_FOREACH(obj, &obj_list, next) {
3065 if (obj->marker)
3066 continue;
3067 if (addr < (void *)obj->mapbase)
3068 continue;
3069 if (addr < (void *)(obj->mapbase + obj->mapsize))
3070 return obj;
3071 }
3072 return (NULL);
3073 }
3074
3075 static void
preinit_main(void)3076 preinit_main(void)
3077 {
3078 Elf_Addr *preinit_addr;
3079 int index;
3080
3081 preinit_addr = (Elf_Addr *)obj_main->preinit_array;
3082 if (preinit_addr == NULL)
3083 return;
3084
3085 for (index = 0; index < obj_main->preinit_array_num; index++) {
3086 if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
3087 dbg("calling preinit function for %s at %p",
3088 obj_main->path, (void *)preinit_addr[index]);
3089 LD_UTRACE(UTRACE_INIT_CALL, obj_main,
3090 (void *)preinit_addr[index], 0, 0, obj_main->path);
3091 call_init_pointer(obj_main, preinit_addr[index]);
3092 }
3093 }
3094 }
3095
3096 /*
3097 * Call the finalization functions for each of the objects in "list"
3098 * belonging to the DAG of "root" and referenced once. If NULL "root"
3099 * is specified, every finalization function will be called regardless
3100 * of the reference count and the list elements won't be freed. All of
3101 * the objects are expected to have non-NULL fini functions.
3102 */
3103 static void
objlist_call_fini(Objlist * list,Obj_Entry * root,RtldLockState * lockstate)3104 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
3105 {
3106 Objlist_Entry *elm;
3107 struct dlerror_save *saved_msg;
3108 Elf_Addr *fini_addr;
3109 int index;
3110
3111 assert(root == NULL || root->refcount == 1);
3112
3113 if (root != NULL)
3114 root->doomed = true;
3115
3116 /*
3117 * Preserve the current error message since a fini function might
3118 * call into the dynamic linker and overwrite it.
3119 */
3120 saved_msg = errmsg_save();
3121 do {
3122 STAILQ_FOREACH(elm, list, link) {
3123 if (root != NULL &&
3124 (elm->obj->refcount != 1 ||
3125 objlist_find(&root->dagmembers, elm->obj) ==
3126 NULL))
3127 continue;
3128 /* Remove object from fini list to prevent recursive
3129 * invocation. */
3130 STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3131 /* Ensure that new references cannot be acquired. */
3132 elm->obj->doomed = true;
3133
3134 hold_object(elm->obj);
3135 lock_release(rtld_bind_lock, lockstate);
3136 /*
3137 * It is legal to have both DT_FINI and DT_FINI_ARRAY
3138 * defined. When this happens, DT_FINI_ARRAY is
3139 * processed first.
3140 */
3141 fini_addr = (Elf_Addr *)elm->obj->fini_array;
3142 if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
3143 for (index = elm->obj->fini_array_num - 1;
3144 index >= 0; index--) {
3145 if (fini_addr[index] != 0 &&
3146 fini_addr[index] != 1) {
3147 dbg("calling fini function for %s at %p",
3148 elm->obj->path,
3149 (void *)fini_addr[index]);
3150 LD_UTRACE(UTRACE_FINI_CALL,
3151 elm->obj,
3152 (void *)fini_addr[index], 0,
3153 0, elm->obj->path);
3154 call_initfini_pointer(elm->obj,
3155 fini_addr[index]);
3156 }
3157 }
3158 }
3159 if (elm->obj->fini != (Elf_Addr)NULL) {
3160 dbg("calling fini function for %s at %p",
3161 elm->obj->path, (void *)elm->obj->fini);
3162 LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
3163 (void *)elm->obj->fini, 0, 0,
3164 elm->obj->path);
3165 call_initfini_pointer(elm->obj, elm->obj->fini);
3166 }
3167 wlock_acquire(rtld_bind_lock, lockstate);
3168 unhold_object(elm->obj);
3169 /* No need to free anything if process is going down. */
3170 if (root != NULL)
3171 free(elm);
3172 /*
3173 * We must restart the list traversal after every fini
3174 * call because a dlclose() call from the fini function
3175 * or from another thread might have modified the
3176 * reference counts.
3177 */
3178 break;
3179 }
3180 } while (elm != NULL);
3181 errmsg_restore(saved_msg);
3182 }
3183
3184 /*
3185 * Call the initialization functions for each of the objects in
3186 * "list". All of the objects are expected to have non-NULL init
3187 * functions.
3188 */
3189 static void
objlist_call_init(Objlist * list,RtldLockState * lockstate)3190 objlist_call_init(Objlist *list, RtldLockState *lockstate)
3191 {
3192 Objlist_Entry *elm;
3193 Obj_Entry *obj;
3194 struct dlerror_save *saved_msg;
3195 Elf_Addr *init_addr;
3196 void (*reg)(void (*)(void));
3197 int index;
3198
3199 /*
3200 * Clean init_scanned flag so that objects can be rechecked and
3201 * possibly initialized earlier if any of vectors called below
3202 * cause the change by using dlopen.
3203 */
3204 TAILQ_FOREACH(obj, &obj_list, next) {
3205 if (obj->marker)
3206 continue;
3207 obj->init_scanned = false;
3208 }
3209
3210 /*
3211 * Preserve the current error message since an init function might
3212 * call into the dynamic linker and overwrite it.
3213 */
3214 saved_msg = errmsg_save();
3215 STAILQ_FOREACH(elm, list, link) {
3216 if (elm->obj->init_done) /* Initialized early. */
3217 continue;
3218 /*
3219 * Race: other thread might try to use this object before
3220 * current one completes the initialization. Not much can be
3221 * done here without better locking.
3222 */
3223 elm->obj->init_done = true;
3224 hold_object(elm->obj);
3225 reg = NULL;
3226 if (elm->obj == obj_main && obj_main->crt_no_init) {
3227 reg = (void (*)(void (*)(void)))
3228 get_program_var_addr("__libc_atexit", lockstate);
3229 }
3230 lock_release(rtld_bind_lock, lockstate);
3231 if (reg != NULL) {
3232 reg(rtld_exit);
3233 rtld_exit_ptr = rtld_nop_exit;
3234 }
3235
3236 /*
3237 * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
3238 * When this happens, DT_INIT is processed first.
3239 */
3240 if (elm->obj->init != (Elf_Addr)NULL) {
3241 dbg("calling init function for %s at %p",
3242 elm->obj->path, (void *)elm->obj->init);
3243 LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
3244 (void *)elm->obj->init, 0, 0, elm->obj->path);
3245 call_init_pointer(elm->obj, elm->obj->init);
3246 }
3247 init_addr = (Elf_Addr *)elm->obj->init_array;
3248 if (init_addr != NULL) {
3249 for (index = 0; index < elm->obj->init_array_num;
3250 index++) {
3251 if (init_addr[index] != 0 &&
3252 init_addr[index] != 1) {
3253 dbg("calling init function for %s at %p",
3254 elm->obj->path,
3255 (void *)init_addr[index]);
3256 LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
3257 (void *)init_addr[index], 0, 0,
3258 elm->obj->path);
3259 call_init_pointer(elm->obj,
3260 init_addr[index]);
3261 }
3262 }
3263 }
3264 wlock_acquire(rtld_bind_lock, lockstate);
3265 unhold_object(elm->obj);
3266 }
3267 errmsg_restore(saved_msg);
3268 }
3269
3270 static void
objlist_clear(Objlist * list)3271 objlist_clear(Objlist *list)
3272 {
3273 Objlist_Entry *elm;
3274
3275 while (!STAILQ_EMPTY(list)) {
3276 elm = STAILQ_FIRST(list);
3277 STAILQ_REMOVE_HEAD(list, link);
3278 free(elm);
3279 }
3280 }
3281
3282 static Objlist_Entry *
objlist_find(Objlist * list,const Obj_Entry * obj)3283 objlist_find(Objlist *list, const Obj_Entry *obj)
3284 {
3285 Objlist_Entry *elm;
3286
3287 STAILQ_FOREACH(elm, list, link)
3288 if (elm->obj == obj)
3289 return elm;
3290 return (NULL);
3291 }
3292
3293 static void
objlist_init(Objlist * list)3294 objlist_init(Objlist *list)
3295 {
3296 STAILQ_INIT(list);
3297 }
3298
3299 static void
objlist_push_head(Objlist * list,Obj_Entry * obj)3300 objlist_push_head(Objlist *list, Obj_Entry *obj)
3301 {
3302 Objlist_Entry *elm;
3303
3304 elm = NEW(Objlist_Entry);
3305 elm->obj = obj;
3306 STAILQ_INSERT_HEAD(list, elm, link);
3307 }
3308
3309 static void
objlist_push_tail(Objlist * list,Obj_Entry * obj)3310 objlist_push_tail(Objlist *list, Obj_Entry *obj)
3311 {
3312 Objlist_Entry *elm;
3313
3314 elm = NEW(Objlist_Entry);
3315 elm->obj = obj;
3316 STAILQ_INSERT_TAIL(list, elm, link);
3317 }
3318
3319 static void
objlist_put_after(Objlist * list,Obj_Entry * listobj,Obj_Entry * obj)3320 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
3321 {
3322 Objlist_Entry *elm, *listelm;
3323
3324 STAILQ_FOREACH(listelm, list, link) {
3325 if (listelm->obj == listobj)
3326 break;
3327 }
3328 elm = NEW(Objlist_Entry);
3329 elm->obj = obj;
3330 if (listelm != NULL)
3331 STAILQ_INSERT_AFTER(list, listelm, elm, link);
3332 else
3333 STAILQ_INSERT_TAIL(list, elm, link);
3334 }
3335
3336 static void
objlist_remove(Objlist * list,Obj_Entry * obj)3337 objlist_remove(Objlist *list, Obj_Entry *obj)
3338 {
3339 Objlist_Entry *elm;
3340
3341 if ((elm = objlist_find(list, obj)) != NULL) {
3342 STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3343 free(elm);
3344 }
3345 }
3346
3347 /*
3348 * Relocate dag rooted in the specified object.
3349 * Returns 0 on success, or -1 on failure.
3350 */
3351
3352 static int
relocate_object_dag(Obj_Entry * root,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3353 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
3354 int flags, RtldLockState *lockstate)
3355 {
3356 Objlist_Entry *elm;
3357 int error;
3358
3359 error = 0;
3360 STAILQ_FOREACH(elm, &root->dagmembers, link) {
3361 error = relocate_object(elm->obj, bind_now, rtldobj, flags,
3362 lockstate);
3363 if (error == -1)
3364 break;
3365 }
3366 return (error);
3367 }
3368
3369 /*
3370 * Prepare for, or clean after, relocating an object marked with
3371 * DT_TEXTREL or DF_TEXTREL. Before relocating, all read-only
3372 * segments are remapped read-write. After relocations are done, the
3373 * segment's permissions are returned back to the modes specified in
3374 * the phdrs. If any relocation happened, or always for wired
3375 * program, COW is triggered.
3376 */
3377 static int
reloc_textrel_prot(Obj_Entry * obj,bool before)3378 reloc_textrel_prot(Obj_Entry *obj, bool before)
3379 {
3380 const Elf_Phdr *ph;
3381 void *base;
3382 size_t l, sz;
3383 int prot;
3384
3385 for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0; l--, ph++) {
3386 if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
3387 continue;
3388 base = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
3389 sz = rtld_round_page(ph->p_vaddr + ph->p_filesz) -
3390 rtld_trunc_page(ph->p_vaddr);
3391 prot = before ? (PROT_READ | PROT_WRITE) :
3392 convert_prot(ph->p_flags);
3393 if (mprotect(base, sz, prot) == -1) {
3394 _rtld_error("%s: Cannot write-%sable text segment: %s",
3395 obj->path, before ? "en" : "dis",
3396 rtld_strerror(errno));
3397 return (-1);
3398 }
3399 }
3400 return (0);
3401 }
3402
3403 /* Process RELR relative relocations. */
3404 static void
reloc_relr(Obj_Entry * obj)3405 reloc_relr(Obj_Entry *obj)
3406 {
3407 const Elf_Relr *relr, *relrlim;
3408 Elf_Addr *where;
3409
3410 relrlim = (const Elf_Relr *)((const char *)obj->relr + obj->relrsize);
3411 for (relr = obj->relr; relr < relrlim; relr++) {
3412 Elf_Relr entry = *relr;
3413
3414 if ((entry & 1) == 0) {
3415 where = (Elf_Addr *)(obj->relocbase + entry);
3416 *where++ += (Elf_Addr)obj->relocbase;
3417 } else {
3418 for (long i = 0; (entry >>= 1) != 0; i++)
3419 if ((entry & 1) != 0)
3420 where[i] += (Elf_Addr)obj->relocbase;
3421 where += CHAR_BIT * sizeof(Elf_Relr) - 1;
3422 }
3423 }
3424 }
3425
3426 /*
3427 * Relocate single object.
3428 * Returns 0 on success, or -1 on failure.
3429 */
3430 static int
relocate_object(Obj_Entry * obj,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3431 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj, int flags,
3432 RtldLockState *lockstate)
3433 {
3434 if (obj->relocated)
3435 return (0);
3436 obj->relocated = true;
3437 if (obj != rtldobj)
3438 dbg("relocating \"%s\"", obj->path);
3439
3440 if (obj->symtab == NULL || obj->strtab == NULL ||
3441 !(obj->valid_hash_sysv || obj->valid_hash_gnu))
3442 dbg("object %s has no run-time symbol table", obj->path);
3443
3444 /* There are relocations to the write-protected text segment. */
3445 if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
3446 return (-1);
3447
3448 /* Process the non-PLT non-IFUNC relocations. */
3449 if (reloc_non_plt(obj, rtldobj, flags, lockstate))
3450 return (-1);
3451 reloc_relr(obj);
3452
3453 /* Re-protected the text segment. */
3454 if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
3455 return (-1);
3456
3457 /* Set the special PLT or GOT entries. */
3458 init_pltgot(obj);
3459
3460 /* Process the PLT relocations. */
3461 if (reloc_plt(obj, flags, lockstate) == -1)
3462 return (-1);
3463 /* Relocate the jump slots if we are doing immediate binding. */
3464 if ((obj->bind_now || bind_now) &&
3465 reloc_jmpslots(obj, flags, lockstate) == -1)
3466 return (-1);
3467
3468 if (obj != rtldobj && !obj->mainprog && obj_enforce_relro(obj) == -1)
3469 return (-1);
3470
3471 /*
3472 * Set up the magic number and version in the Obj_Entry. These
3473 * were checked in the crt1.o from the original ElfKit, so we
3474 * set them for backward compatibility.
3475 */
3476 obj->magic = RTLD_MAGIC;
3477 obj->version = RTLD_VERSION;
3478
3479 return (0);
3480 }
3481
3482 /*
3483 * Relocate newly-loaded shared objects. The argument is a pointer to
3484 * the Obj_Entry for the first such object. All objects from the first
3485 * to the end of the list of objects are relocated. Returns 0 on success,
3486 * or -1 on failure.
3487 */
3488 static int
relocate_objects(Obj_Entry * first,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3489 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj, int flags,
3490 RtldLockState *lockstate)
3491 {
3492 Obj_Entry *obj;
3493 int error;
3494
3495 for (error = 0, obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3496 if (obj->marker)
3497 continue;
3498 error = relocate_object(obj, bind_now, rtldobj, flags,
3499 lockstate);
3500 if (error == -1)
3501 break;
3502 }
3503 return (error);
3504 }
3505
3506 /*
3507 * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3508 * referencing STT_GNU_IFUNC symbols is postponed till the other
3509 * relocations are done. The indirect functions specified as
3510 * ifunc are allowed to call other symbols, so we need to have
3511 * objects relocated before asking for resolution from indirects.
3512 *
3513 * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3514 * instead of the usual lazy handling of PLT slots. It is
3515 * consistent with how GNU does it.
3516 */
3517 static int
resolve_object_ifunc(Obj_Entry * obj,bool bind_now,int flags,RtldLockState * lockstate)3518 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3519 RtldLockState *lockstate)
3520 {
3521 if (obj->ifuncs_resolved)
3522 return (0);
3523 obj->ifuncs_resolved = true;
3524 if (!obj->irelative && !obj->irelative_nonplt &&
3525 !((obj->bind_now || bind_now) && obj->gnu_ifunc) &&
3526 !obj->non_plt_gnu_ifunc)
3527 return (0);
3528 if (obj_disable_relro(obj) == -1 ||
3529 (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3530 (obj->irelative_nonplt &&
3531 reloc_iresolve_nonplt(obj, lockstate) == -1) ||
3532 ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3533 reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3534 (obj->non_plt_gnu_ifunc &&
3535 reloc_non_plt(obj, &obj_rtld, flags | SYMLOOK_IFUNC,
3536 lockstate) == -1) ||
3537 obj_enforce_relro(obj) == -1)
3538 return (-1);
3539 return (0);
3540 }
3541
3542 static int
initlist_objects_ifunc(Objlist * list,bool bind_now,int flags,RtldLockState * lockstate)3543 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3544 RtldLockState *lockstate)
3545 {
3546 Objlist_Entry *elm;
3547 Obj_Entry *obj;
3548
3549 STAILQ_FOREACH(elm, list, link) {
3550 obj = elm->obj;
3551 if (obj->marker)
3552 continue;
3553 if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
3554 return (-1);
3555 }
3556 return (0);
3557 }
3558
3559 /*
3560 * Cleanup procedure. It will be called (by the atexit mechanism) just
3561 * before the process exits.
3562 */
3563 static void
rtld_exit(void)3564 rtld_exit(void)
3565 {
3566 RtldLockState lockstate;
3567
3568 wlock_acquire(rtld_bind_lock, &lockstate);
3569 dbg("rtld_exit()");
3570 objlist_call_fini(&list_fini, NULL, &lockstate);
3571 /* No need to remove the items from the list, since we are exiting. */
3572 if (!libmap_disable)
3573 lm_fini();
3574 lock_release(rtld_bind_lock, &lockstate);
3575 }
3576
3577 static void
rtld_nop_exit(void)3578 rtld_nop_exit(void)
3579 {
3580 }
3581
3582 /*
3583 * Iterate over a search path, translate each element, and invoke the
3584 * callback on the result.
3585 */
3586 static void *
path_enumerate(const char * path,path_enum_proc callback,const char * refobj_path,void * arg)3587 path_enumerate(const char *path, path_enum_proc callback,
3588 const char *refobj_path, void *arg)
3589 {
3590 const char *trans;
3591 if (path == NULL)
3592 return (NULL);
3593
3594 path += strspn(path, ":;");
3595 while (*path != '\0') {
3596 size_t len;
3597 char *res;
3598
3599 len = strcspn(path, ":;");
3600 trans = lm_findn(refobj_path, path, len);
3601 if (trans)
3602 res = callback(trans, strlen(trans), arg);
3603 else
3604 res = callback(path, len, arg);
3605
3606 if (res != NULL)
3607 return (res);
3608
3609 path += len;
3610 path += strspn(path, ":;");
3611 }
3612
3613 return (NULL);
3614 }
3615
3616 struct try_library_args {
3617 const char *name;
3618 size_t namelen;
3619 char *buffer;
3620 size_t buflen;
3621 int fd;
3622 };
3623
3624 static void *
try_library_path(const char * dir,size_t dirlen,void * param)3625 try_library_path(const char *dir, size_t dirlen, void *param)
3626 {
3627 struct try_library_args *arg;
3628 int fd;
3629
3630 arg = param;
3631 if (*dir == '/' || trust) {
3632 char *pathname;
3633
3634 if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3635 return (NULL);
3636
3637 pathname = arg->buffer;
3638 strncpy(pathname, dir, dirlen);
3639 pathname[dirlen] = '/';
3640 strcpy(pathname + dirlen + 1, arg->name);
3641
3642 dbg(" Trying \"%s\"", pathname);
3643 fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3644 if (fd >= 0) {
3645 dbg(" Opened \"%s\", fd %d", pathname, fd);
3646 pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3647 strcpy(pathname, arg->buffer);
3648 arg->fd = fd;
3649 return (pathname);
3650 } else {
3651 dbg(" Failed to open \"%s\": %s", pathname,
3652 rtld_strerror(errno));
3653 }
3654 }
3655 return (NULL);
3656 }
3657
3658 static char *
search_library_path(const char * name,const char * path,const char * refobj_path,int * fdp)3659 search_library_path(const char *name, const char *path, const char *refobj_path,
3660 int *fdp)
3661 {
3662 char *p;
3663 struct try_library_args arg;
3664
3665 if (path == NULL)
3666 return (NULL);
3667
3668 arg.name = name;
3669 arg.namelen = strlen(name);
3670 arg.buffer = xmalloc(PATH_MAX);
3671 arg.buflen = PATH_MAX;
3672 arg.fd = -1;
3673
3674 p = path_enumerate(path, try_library_path, refobj_path, &arg);
3675 *fdp = arg.fd;
3676
3677 free(arg.buffer);
3678
3679 return (p);
3680 }
3681
3682 /*
3683 * Finds the library with the given name using the directory descriptors
3684 * listed in the LD_LIBRARY_PATH_FDS environment variable.
3685 *
3686 * Returns a freshly-opened close-on-exec file descriptor for the library,
3687 * or -1 if the library cannot be found.
3688 */
3689 static char *
search_library_pathfds(const char * name,const char * path,int * fdp)3690 search_library_pathfds(const char *name, const char *path, int *fdp)
3691 {
3692 char *envcopy, *fdstr, *found, *last_token;
3693 size_t len;
3694 int dirfd, fd;
3695
3696 dbg("%s('%s', '%s', fdp)", __func__, name, path);
3697
3698 /* Don't load from user-specified libdirs into setuid binaries. */
3699 if (!trust)
3700 return (NULL);
3701
3702 /* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3703 if (path == NULL)
3704 return (NULL);
3705
3706 /* LD_LIBRARY_PATH_FDS only works with relative paths. */
3707 if (name[0] == '/') {
3708 dbg("Absolute path (%s) passed to %s", name, __func__);
3709 return (NULL);
3710 }
3711
3712 /*
3713 * Use strtok_r() to walk the FD:FD:FD list. This requires a local
3714 * copy of the path, as strtok_r rewrites separator tokens
3715 * with '\0'.
3716 */
3717 found = NULL;
3718 envcopy = xstrdup(path);
3719 for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3720 fdstr = strtok_r(NULL, ":", &last_token)) {
3721 dirfd = parse_integer(fdstr);
3722 if (dirfd < 0) {
3723 _rtld_error("failed to parse directory FD: '%s'",
3724 fdstr);
3725 break;
3726 }
3727 fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3728 if (fd >= 0) {
3729 *fdp = fd;
3730 len = strlen(fdstr) + strlen(name) + 3;
3731 found = xmalloc(len);
3732 if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) <
3733 0) {
3734 _rtld_error("error generating '%d/%s'", dirfd,
3735 name);
3736 rtld_die();
3737 }
3738 dbg("open('%s') => %d", found, fd);
3739 break;
3740 }
3741 }
3742 free(envcopy);
3743
3744 return (found);
3745 }
3746
3747 int
dlclose(void * handle)3748 dlclose(void *handle)
3749 {
3750 RtldLockState lockstate;
3751 int error;
3752
3753 wlock_acquire(rtld_bind_lock, &lockstate);
3754 error = dlclose_locked(handle, &lockstate);
3755 lock_release(rtld_bind_lock, &lockstate);
3756 return (error);
3757 }
3758
3759 static int
dlclose_locked(void * handle,RtldLockState * lockstate)3760 dlclose_locked(void *handle, RtldLockState *lockstate)
3761 {
3762 Obj_Entry *root;
3763
3764 root = dlcheck(handle);
3765 if (root == NULL)
3766 return (-1);
3767 LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3768 root->path);
3769
3770 /* Unreference the object and its dependencies. */
3771 root->dl_refcount--;
3772
3773 if (root->refcount == 1) {
3774 /*
3775 * The object will be no longer referenced, so we must unload
3776 * it. First, call the fini functions.
3777 */
3778 objlist_call_fini(&list_fini, root, lockstate);
3779
3780 unref_dag(root);
3781
3782 /* Finish cleaning up the newly-unreferenced objects. */
3783 GDB_STATE(RT_DELETE, &root->linkmap);
3784 unload_object(root, lockstate);
3785 GDB_STATE(RT_CONSISTENT, NULL);
3786 } else
3787 unref_dag(root);
3788
3789 LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3790 return (0);
3791 }
3792
3793 char *
dlerror(void)3794 dlerror(void)
3795 {
3796 if (*(lockinfo.dlerror_seen()) != 0)
3797 return (NULL);
3798 *lockinfo.dlerror_seen() = 1;
3799 return (lockinfo.dlerror_loc());
3800 }
3801
3802 /*
3803 * This function is deprecated and has no effect.
3804 */
3805 void
dllockinit(void * context,void * (* _lock_create)(void * context)__unused,void (* _rlock_acquire)(void * lock)__unused,void (* _wlock_acquire)(void * lock)__unused,void (* _lock_release)(void * lock)__unused,void (* _lock_destroy)(void * lock)__unused,void (* context_destroy)(void * context))3806 dllockinit(void *context, void *(*_lock_create)(void *context)__unused,
3807 void (*_rlock_acquire)(void *lock) __unused,
3808 void (*_wlock_acquire)(void *lock) __unused,
3809 void (*_lock_release)(void *lock) __unused,
3810 void (*_lock_destroy)(void *lock) __unused,
3811 void (*context_destroy)(void *context))
3812 {
3813 static void *cur_context;
3814 static void (*cur_context_destroy)(void *);
3815
3816 /* Just destroy the context from the previous call, if necessary. */
3817 if (cur_context_destroy != NULL)
3818 cur_context_destroy(cur_context);
3819 cur_context = context;
3820 cur_context_destroy = context_destroy;
3821 }
3822
3823 void *
dlopen(const char * name,int mode)3824 dlopen(const char *name, int mode)
3825 {
3826 return (rtld_dlopen(name, -1, mode));
3827 }
3828
3829 void *
fdlopen(int fd,int mode)3830 fdlopen(int fd, int mode)
3831 {
3832 return (rtld_dlopen(NULL, fd, mode));
3833 }
3834
3835 static void *
rtld_dlopen(const char * name,int fd,int mode)3836 rtld_dlopen(const char *name, int fd, int mode)
3837 {
3838 RtldLockState lockstate;
3839 int lo_flags;
3840
3841 LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3842 ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3843 if (ld_tracing != NULL) {
3844 rlock_acquire(rtld_bind_lock, &lockstate);
3845 if (sigsetjmp(lockstate.env, 0) != 0)
3846 lock_upgrade(rtld_bind_lock, &lockstate);
3847 environ = __DECONST(char **,
3848 *get_program_var_addr("environ", &lockstate));
3849 lock_release(rtld_bind_lock, &lockstate);
3850 }
3851 lo_flags = RTLD_LO_DLOPEN;
3852 if (mode & RTLD_NODELETE)
3853 lo_flags |= RTLD_LO_NODELETE;
3854 if (mode & RTLD_NOLOAD)
3855 lo_flags |= RTLD_LO_NOLOAD;
3856 if (mode & RTLD_DEEPBIND)
3857 lo_flags |= RTLD_LO_DEEPBIND;
3858 if (ld_tracing != NULL)
3859 lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
3860
3861 return (dlopen_object(name, fd, obj_main, lo_flags,
3862 mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3863 }
3864
3865 static void
dlopen_cleanup(Obj_Entry * obj,RtldLockState * lockstate)3866 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3867 {
3868 obj->dl_refcount--;
3869 unref_dag(obj);
3870 if (obj->refcount == 0)
3871 unload_object(obj, lockstate);
3872 }
3873
3874 static Obj_Entry *
dlopen_object(const char * name,int fd,Obj_Entry * refobj,int lo_flags,int mode,RtldLockState * lockstate)3875 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3876 int mode, RtldLockState *lockstate)
3877 {
3878 Obj_Entry *obj;
3879 Objlist initlist;
3880 RtldLockState mlockstate;
3881 int result;
3882
3883 dbg(
3884 "dlopen_object name \"%s\" fd %d refobj \"%s\" lo_flags %#x mode %#x",
3885 name != NULL ? name : "<null>", fd,
3886 refobj == NULL ? "<null>" : refobj->path, lo_flags, mode);
3887 objlist_init(&initlist);
3888
3889 if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3890 wlock_acquire(rtld_bind_lock, &mlockstate);
3891 lockstate = &mlockstate;
3892 }
3893 GDB_STATE(RT_ADD, NULL);
3894
3895 obj = NULL;
3896 if (name == NULL && fd == -1) {
3897 obj = obj_main;
3898 obj->refcount++;
3899 } else {
3900 obj = load_object(name, fd, refobj, lo_flags);
3901 }
3902
3903 if (obj != NULL) {
3904 obj->dl_refcount++;
3905 if ((mode & RTLD_GLOBAL) != 0 &&
3906 objlist_find(&list_global, obj) == NULL)
3907 objlist_push_tail(&list_global, obj);
3908
3909 if (!obj->init_done) {
3910 /* We loaded something new and have to init something.
3911 */
3912 if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
3913 obj->deepbind = true;
3914 result = 0;
3915 if ((lo_flags & (RTLD_LO_EARLY |
3916 RTLD_LO_IGNSTLS)) == 0 &&
3917 obj->static_tls && !allocate_tls_offset(obj)) {
3918 _rtld_error(
3919 "%s: No space available for static Thread Local Storage",
3920 obj->path);
3921 result = -1;
3922 }
3923 if (result != -1)
3924 result = load_needed_objects(obj,
3925 lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY |
3926 RTLD_LO_IGNSTLS | RTLD_LO_TRACE));
3927 init_dag(obj);
3928 ref_dag(obj);
3929 if (result != -1)
3930 result = rtld_verify_versions(&obj->dagmembers);
3931 if (result != -1 && ld_tracing)
3932 goto trace;
3933 if (result == -1 || relocate_object_dag(obj,
3934 (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3935 (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3936 lockstate) == -1) {
3937 dlopen_cleanup(obj, lockstate);
3938 obj = NULL;
3939 } else if ((lo_flags & RTLD_LO_EARLY) != 0) {
3940 /*
3941 * Do not call the init functions for early
3942 * loaded filtees. The image is still not
3943 * initialized enough for them to work.
3944 *
3945 * Our object is found by the global object list
3946 * and will be ordered among all init calls done
3947 * right before transferring control to main.
3948 */
3949 } else {
3950 /* Make list of init functions to call. */
3951 initlist_for_loaded_obj(obj, obj, &initlist);
3952 }
3953 /*
3954 * Process all no_delete or global objects here, given
3955 * them own DAGs to prevent their dependencies from
3956 * being unloaded. This has to be done after we have
3957 * loaded all of the dependencies, so that we do not
3958 * miss any.
3959 */
3960 if (obj != NULL)
3961 process_z(obj);
3962 } else {
3963 /*
3964 * Bump the reference counts for objects on this DAG. If
3965 * this is the first dlopen() call for the object that
3966 * was already loaded as a dependency, initialize the
3967 * dag starting at it.
3968 */
3969 init_dag(obj);
3970 ref_dag(obj);
3971
3972 if ((lo_flags & RTLD_LO_TRACE) != 0)
3973 goto trace;
3974 }
3975 if (obj != NULL &&
3976 ((lo_flags & RTLD_LO_NODELETE) != 0 || obj->z_nodelete) &&
3977 !obj->ref_nodel) {
3978 dbg("obj %s nodelete", obj->path);
3979 ref_dag(obj);
3980 obj->z_nodelete = obj->ref_nodel = true;
3981 }
3982 }
3983
3984 LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3985 name);
3986 GDB_STATE(RT_CONSISTENT, obj ? &obj->linkmap : NULL);
3987
3988 if ((lo_flags & RTLD_LO_EARLY) == 0) {
3989 map_stacks_exec(lockstate);
3990 if (obj != NULL)
3991 distribute_static_tls(&initlist);
3992 }
3993
3994 if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) ==
3995 RTLD_NOW, (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3996 lockstate) == -1) {
3997 objlist_clear(&initlist);
3998 dlopen_cleanup(obj, lockstate);
3999 if (lockstate == &mlockstate)
4000 lock_release(rtld_bind_lock, lockstate);
4001 return (NULL);
4002 }
4003
4004 if ((lo_flags & RTLD_LO_EARLY) == 0) {
4005 /* Call the init functions. */
4006 objlist_call_init(&initlist, lockstate);
4007 }
4008 objlist_clear(&initlist);
4009 if (lockstate == &mlockstate)
4010 lock_release(rtld_bind_lock, lockstate);
4011 return (obj);
4012 trace:
4013 trace_loaded_objects(obj, false);
4014 if (lockstate == &mlockstate)
4015 lock_release(rtld_bind_lock, lockstate);
4016 exit(0);
4017 }
4018
4019 static void *
do_dlsym(void * handle,const char * name,void * retaddr,const Ver_Entry * ve,int flags)4020 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
4021 int flags)
4022 {
4023 DoneList donelist;
4024 const Obj_Entry *obj, *defobj;
4025 const Elf_Sym *def;
4026 SymLook req;
4027 RtldLockState lockstate;
4028 tls_index ti;
4029 void *sym;
4030 int res;
4031
4032 def = NULL;
4033 defobj = NULL;
4034 symlook_init(&req, name);
4035 req.ventry = ve;
4036 req.flags = flags | SYMLOOK_IN_PLT;
4037 req.lockstate = &lockstate;
4038
4039 LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
4040 rlock_acquire(rtld_bind_lock, &lockstate);
4041 if (sigsetjmp(lockstate.env, 0) != 0)
4042 lock_upgrade(rtld_bind_lock, &lockstate);
4043 if (handle == NULL || handle == RTLD_NEXT || handle == RTLD_DEFAULT ||
4044 handle == RTLD_SELF) {
4045 if ((obj = obj_from_addr(retaddr)) == NULL) {
4046 _rtld_error("Cannot determine caller's shared object");
4047 lock_release(rtld_bind_lock, &lockstate);
4048 LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
4049 return (NULL);
4050 }
4051 if (handle == NULL) { /* Just the caller's shared object. */
4052 res = symlook_obj(&req, obj);
4053 if (res == 0) {
4054 def = req.sym_out;
4055 defobj = req.defobj_out;
4056 }
4057 } else if (handle == RTLD_NEXT || /* Objects after caller's */
4058 handle == RTLD_SELF) { /* ... caller included */
4059 if (handle == RTLD_NEXT)
4060 obj = globallist_next(obj);
4061 for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4062 if (obj->marker)
4063 continue;
4064 res = symlook_obj(&req, obj);
4065 if (res == 0) {
4066 if (def == NULL ||
4067 (ld_dynamic_weak &&
4068 ELF_ST_BIND(
4069 req.sym_out->st_info) !=
4070 STB_WEAK)) {
4071 def = req.sym_out;
4072 defobj = req.defobj_out;
4073 if (!ld_dynamic_weak ||
4074 ELF_ST_BIND(def->st_info) !=
4075 STB_WEAK)
4076 break;
4077 }
4078 }
4079 }
4080 /*
4081 * Search the dynamic linker itself, and possibly
4082 * resolve the symbol from there. This is how the
4083 * application links to dynamic linker services such as
4084 * dlopen. Note that we ignore ld_dynamic_weak == false
4085 * case, always overriding weak symbols by rtld
4086 * definitions.
4087 */
4088 if (def == NULL ||
4089 ELF_ST_BIND(def->st_info) == STB_WEAK) {
4090 res = symlook_obj(&req, &obj_rtld);
4091 if (res == 0) {
4092 def = req.sym_out;
4093 defobj = req.defobj_out;
4094 }
4095 }
4096 } else {
4097 assert(handle == RTLD_DEFAULT);
4098 res = symlook_default(&req, obj);
4099 if (res == 0) {
4100 defobj = req.defobj_out;
4101 def = req.sym_out;
4102 }
4103 }
4104 } else {
4105 if ((obj = dlcheck(handle)) == NULL) {
4106 lock_release(rtld_bind_lock, &lockstate);
4107 LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
4108 return (NULL);
4109 }
4110
4111 donelist_init(&donelist);
4112 if (obj->mainprog) {
4113 /* Handle obtained by dlopen(NULL, ...) implies global
4114 * scope. */
4115 res = symlook_global(&req, &donelist);
4116 if (res == 0) {
4117 def = req.sym_out;
4118 defobj = req.defobj_out;
4119 }
4120 /*
4121 * Search the dynamic linker itself, and possibly
4122 * resolve the symbol from there. This is how the
4123 * application links to dynamic linker services such as
4124 * dlopen.
4125 */
4126 if (def == NULL ||
4127 ELF_ST_BIND(def->st_info) == STB_WEAK) {
4128 res = symlook_obj(&req, &obj_rtld);
4129 if (res == 0) {
4130 def = req.sym_out;
4131 defobj = req.defobj_out;
4132 }
4133 }
4134 } else {
4135 /* Search the whole DAG rooted at the given object. */
4136 res = symlook_list(&req, &obj->dagmembers, &donelist);
4137 if (res == 0) {
4138 def = req.sym_out;
4139 defobj = req.defobj_out;
4140 }
4141 }
4142 }
4143
4144 if (def != NULL) {
4145 lock_release(rtld_bind_lock, &lockstate);
4146
4147 /*
4148 * The value required by the caller is derived from the value
4149 * of the symbol. this is simply the relocated value of the
4150 * symbol.
4151 */
4152 if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
4153 sym = make_function_pointer(def, defobj);
4154 else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
4155 sym = rtld_resolve_ifunc(defobj, def);
4156 else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
4157 ti.ti_module = defobj->tlsindex;
4158 ti.ti_offset = def->st_value - TLS_DTV_OFFSET;
4159 sym = __tls_get_addr(&ti);
4160 } else
4161 sym = defobj->relocbase + def->st_value;
4162 LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
4163 return (sym);
4164 }
4165
4166 _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
4167 ve != NULL ? ve->name : "");
4168 lock_release(rtld_bind_lock, &lockstate);
4169 LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
4170 return (NULL);
4171 }
4172
4173 void *
dlsym(void * handle,const char * name)4174 dlsym(void *handle, const char *name)
4175 {
4176 return (do_dlsym(handle, name, __builtin_return_address(0), NULL,
4177 SYMLOOK_DLSYM));
4178 }
4179
4180 dlfunc_t
dlfunc(void * handle,const char * name)4181 dlfunc(void *handle, const char *name)
4182 {
4183 union {
4184 void *d;
4185 dlfunc_t f;
4186 } rv;
4187
4188 rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
4189 SYMLOOK_DLSYM);
4190 return (rv.f);
4191 }
4192
4193 void *
dlvsym(void * handle,const char * name,const char * version)4194 dlvsym(void *handle, const char *name, const char *version)
4195 {
4196 Ver_Entry ventry;
4197
4198 ventry.name = version;
4199 ventry.file = NULL;
4200 ventry.hash = elf_hash(version);
4201 ventry.flags = 0;
4202 return (do_dlsym(handle, name, __builtin_return_address(0), &ventry,
4203 SYMLOOK_DLSYM));
4204 }
4205
4206 int
_rtld_addr_phdr(const void * addr,struct dl_phdr_info * phdr_info)4207 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
4208 {
4209 const Obj_Entry *obj;
4210 RtldLockState lockstate;
4211
4212 rlock_acquire(rtld_bind_lock, &lockstate);
4213 obj = obj_from_addr(addr);
4214 if (obj == NULL) {
4215 _rtld_error("No shared object contains address");
4216 lock_release(rtld_bind_lock, &lockstate);
4217 return (0);
4218 }
4219 rtld_fill_dl_phdr_info(obj, phdr_info);
4220 lock_release(rtld_bind_lock, &lockstate);
4221 return (1);
4222 }
4223
4224 int
dladdr(const void * addr,Dl_info * info)4225 dladdr(const void *addr, Dl_info *info)
4226 {
4227 const Obj_Entry *obj;
4228 const Elf_Sym *def;
4229 void *symbol_addr;
4230 unsigned long symoffset;
4231 RtldLockState lockstate;
4232
4233 rlock_acquire(rtld_bind_lock, &lockstate);
4234 obj = obj_from_addr(addr);
4235 if (obj == NULL) {
4236 _rtld_error("No shared object contains address");
4237 lock_release(rtld_bind_lock, &lockstate);
4238 return (0);
4239 }
4240 info->dli_fname = obj->path;
4241 info->dli_fbase = obj->mapbase;
4242 info->dli_saddr = (void *)0;
4243 info->dli_sname = NULL;
4244
4245 /*
4246 * Walk the symbol list looking for the symbol whose address is
4247 * closest to the address sent in.
4248 */
4249 for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
4250 def = obj->symtab + symoffset;
4251
4252 /*
4253 * For skip the symbol if st_shndx is either SHN_UNDEF or
4254 * SHN_COMMON.
4255 */
4256 if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
4257 continue;
4258
4259 /*
4260 * If the symbol is greater than the specified address, or if it
4261 * is further away from addr than the current nearest symbol,
4262 * then reject it.
4263 */
4264 symbol_addr = obj->relocbase + def->st_value;
4265 if (symbol_addr > addr || symbol_addr < info->dli_saddr)
4266 continue;
4267
4268 /* Update our idea of the nearest symbol. */
4269 info->dli_sname = obj->strtab + def->st_name;
4270 info->dli_saddr = symbol_addr;
4271
4272 /* Exact match? */
4273 if (info->dli_saddr == addr)
4274 break;
4275 }
4276 lock_release(rtld_bind_lock, &lockstate);
4277 return (1);
4278 }
4279
4280 int
dlinfo(void * handle,int request,void * p)4281 dlinfo(void *handle, int request, void *p)
4282 {
4283 const Obj_Entry *obj;
4284 RtldLockState lockstate;
4285 int error;
4286
4287 rlock_acquire(rtld_bind_lock, &lockstate);
4288
4289 if (handle == NULL || handle == RTLD_SELF) {
4290 void *retaddr;
4291
4292 retaddr = __builtin_return_address(0); /* __GNUC__ only */
4293 if ((obj = obj_from_addr(retaddr)) == NULL)
4294 _rtld_error("Cannot determine caller's shared object");
4295 } else
4296 obj = dlcheck(handle);
4297
4298 if (obj == NULL) {
4299 lock_release(rtld_bind_lock, &lockstate);
4300 return (-1);
4301 }
4302
4303 error = 0;
4304 switch (request) {
4305 case RTLD_DI_LINKMAP:
4306 *((struct link_map const **)p) = &obj->linkmap;
4307 break;
4308 case RTLD_DI_ORIGIN:
4309 error = rtld_dirname(obj->path, p);
4310 break;
4311
4312 case RTLD_DI_SERINFOSIZE:
4313 case RTLD_DI_SERINFO:
4314 error = do_search_info(obj, request, (struct dl_serinfo *)p);
4315 break;
4316
4317 default:
4318 _rtld_error("Invalid request %d passed to dlinfo()", request);
4319 error = -1;
4320 }
4321
4322 lock_release(rtld_bind_lock, &lockstate);
4323
4324 return (error);
4325 }
4326
4327 static void
rtld_fill_dl_phdr_info(const Obj_Entry * obj,struct dl_phdr_info * phdr_info)4328 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
4329 {
4330 phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
4331 phdr_info->dlpi_name = obj->path;
4332 phdr_info->dlpi_phdr = obj->phdr;
4333 phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
4334 phdr_info->dlpi_tls_modid = obj->tlsindex;
4335 phdr_info->dlpi_tls_data = (char *)tls_get_addr_slow(_tcb_get(),
4336 obj->tlsindex, 0, true);
4337 phdr_info->dlpi_adds = obj_loads;
4338 phdr_info->dlpi_subs = obj_loads - obj_count;
4339 }
4340
4341 /*
4342 * It's completely UB to actually use this, so extreme caution is advised. It's
4343 * probably not what you want.
4344 */
4345 int
_dl_iterate_phdr_locked(__dl_iterate_hdr_callback callback,void * param)4346 _dl_iterate_phdr_locked(__dl_iterate_hdr_callback callback, void *param)
4347 {
4348 struct dl_phdr_info phdr_info;
4349 Obj_Entry *obj;
4350 int error;
4351
4352 for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;
4353 obj = globallist_next(obj)) {
4354 rtld_fill_dl_phdr_info(obj, &phdr_info);
4355 error = callback(&phdr_info, sizeof(phdr_info), param);
4356 if (error != 0)
4357 return (error);
4358 }
4359
4360 rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
4361 return (callback(&phdr_info, sizeof(phdr_info), param));
4362 }
4363
4364 int
dl_iterate_phdr(__dl_iterate_hdr_callback callback,void * param)4365 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
4366 {
4367 struct dl_phdr_info phdr_info;
4368 Obj_Entry *obj, marker;
4369 RtldLockState bind_lockstate, phdr_lockstate;
4370 int error;
4371
4372 init_marker(&marker);
4373 error = 0;
4374
4375 wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
4376 wlock_acquire(rtld_bind_lock, &bind_lockstate);
4377 for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
4378 TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
4379 rtld_fill_dl_phdr_info(obj, &phdr_info);
4380 hold_object(obj);
4381 lock_release(rtld_bind_lock, &bind_lockstate);
4382
4383 error = callback(&phdr_info, sizeof phdr_info, param);
4384
4385 wlock_acquire(rtld_bind_lock, &bind_lockstate);
4386 unhold_object(obj);
4387 obj = globallist_next(&marker);
4388 TAILQ_REMOVE(&obj_list, &marker, next);
4389 if (error != 0) {
4390 lock_release(rtld_bind_lock, &bind_lockstate);
4391 lock_release(rtld_phdr_lock, &phdr_lockstate);
4392 return (error);
4393 }
4394 }
4395
4396 if (error == 0) {
4397 rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
4398 lock_release(rtld_bind_lock, &bind_lockstate);
4399 error = callback(&phdr_info, sizeof(phdr_info), param);
4400 }
4401 lock_release(rtld_phdr_lock, &phdr_lockstate);
4402 return (error);
4403 }
4404
4405 static void *
fill_search_info(const char * dir,size_t dirlen,void * param)4406 fill_search_info(const char *dir, size_t dirlen, void *param)
4407 {
4408 struct fill_search_info_args *arg;
4409
4410 arg = param;
4411
4412 if (arg->request == RTLD_DI_SERINFOSIZE) {
4413 arg->serinfo->dls_cnt++;
4414 arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen +
4415 1;
4416 } else {
4417 struct dl_serpath *s_entry;
4418
4419 s_entry = arg->serpath;
4420 s_entry->dls_name = arg->strspace;
4421 s_entry->dls_flags = arg->flags;
4422
4423 strncpy(arg->strspace, dir, dirlen);
4424 arg->strspace[dirlen] = '\0';
4425
4426 arg->strspace += dirlen + 1;
4427 arg->serpath++;
4428 }
4429
4430 return (NULL);
4431 }
4432
4433 static int
do_search_info(const Obj_Entry * obj,int request,struct dl_serinfo * info)4434 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
4435 {
4436 struct dl_serinfo _info;
4437 struct fill_search_info_args args;
4438
4439 args.request = RTLD_DI_SERINFOSIZE;
4440 args.serinfo = &_info;
4441
4442 _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
4443 _info.dls_cnt = 0;
4444
4445 path_enumerate(obj->rpath, fill_search_info, NULL, &args);
4446 path_enumerate(ld_library_path, fill_search_info, NULL, &args);
4447 path_enumerate(obj->runpath, fill_search_info, NULL, &args);
4448 path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL,
4449 &args);
4450 if (!obj->z_nodeflib)
4451 path_enumerate(ld_standard_library_path, fill_search_info, NULL,
4452 &args);
4453
4454 if (request == RTLD_DI_SERINFOSIZE) {
4455 info->dls_size = _info.dls_size;
4456 info->dls_cnt = _info.dls_cnt;
4457 return (0);
4458 }
4459
4460 if (info->dls_cnt != _info.dls_cnt ||
4461 info->dls_size != _info.dls_size) {
4462 _rtld_error(
4463 "Uninitialized Dl_serinfo struct passed to dlinfo()");
4464 return (-1);
4465 }
4466
4467 args.request = RTLD_DI_SERINFO;
4468 args.serinfo = info;
4469 args.serpath = &info->dls_serpath[0];
4470 args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
4471
4472 args.flags = LA_SER_RUNPATH;
4473 if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
4474 return (-1);
4475
4476 args.flags = LA_SER_LIBPATH;
4477 if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) !=
4478 NULL)
4479 return (-1);
4480
4481 args.flags = LA_SER_RUNPATH;
4482 if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
4483 return (-1);
4484
4485 args.flags = LA_SER_CONFIG;
4486 if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL,
4487 &args) != NULL)
4488 return (-1);
4489
4490 args.flags = LA_SER_DEFAULT;
4491 if (!obj->z_nodeflib &&
4492 path_enumerate(ld_standard_library_path, fill_search_info, NULL,
4493 &args) != NULL)
4494 return (-1);
4495 return (0);
4496 }
4497
4498 static int
rtld_dirname(const char * path,char * bname)4499 rtld_dirname(const char *path, char *bname)
4500 {
4501 const char *endp;
4502
4503 /* Empty or NULL string gets treated as "." */
4504 if (path == NULL || *path == '\0') {
4505 bname[0] = '.';
4506 bname[1] = '\0';
4507 return (0);
4508 }
4509
4510 /* Strip trailing slashes */
4511 endp = path + strlen(path) - 1;
4512 while (endp > path && *endp == '/')
4513 endp--;
4514
4515 /* Find the start of the dir */
4516 while (endp > path && *endp != '/')
4517 endp--;
4518
4519 /* Either the dir is "/" or there are no slashes */
4520 if (endp == path) {
4521 bname[0] = *endp == '/' ? '/' : '.';
4522 bname[1] = '\0';
4523 return (0);
4524 } else {
4525 do {
4526 endp--;
4527 } while (endp > path && *endp == '/');
4528 }
4529
4530 if (endp - path + 2 > PATH_MAX) {
4531 _rtld_error("Filename is too long: %s", path);
4532 return (-1);
4533 }
4534
4535 strncpy(bname, path, endp - path + 1);
4536 bname[endp - path + 1] = '\0';
4537 return (0);
4538 }
4539
4540 static int
rtld_dirname_abs(const char * path,char * base)4541 rtld_dirname_abs(const char *path, char *base)
4542 {
4543 char *last;
4544
4545 if (realpath(path, base) == NULL) {
4546 _rtld_error("realpath \"%s\" failed (%s)", path,
4547 rtld_strerror(errno));
4548 return (-1);
4549 }
4550 dbg("%s -> %s", path, base);
4551 last = strrchr(base, '/');
4552 if (last == NULL) {
4553 _rtld_error("non-abs result from realpath \"%s\"", path);
4554 return (-1);
4555 }
4556 if (last != base)
4557 *last = '\0';
4558 return (0);
4559 }
4560
4561 static void
linkmap_add(Obj_Entry * obj)4562 linkmap_add(Obj_Entry *obj)
4563 {
4564 struct link_map *l, *prev;
4565
4566 l = &obj->linkmap;
4567 l->l_name = obj->path;
4568 l->l_base = obj->mapbase;
4569 l->l_ld = obj->dynamic;
4570 l->l_addr = obj->relocbase;
4571
4572 if (r_debug.r_map == NULL) {
4573 r_debug.r_map = l;
4574 return;
4575 }
4576
4577 /*
4578 * Scan to the end of the list, but not past the entry for the
4579 * dynamic linker, which we want to keep at the very end.
4580 */
4581 for (prev = r_debug.r_map;
4582 prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4583 prev = prev->l_next)
4584 ;
4585
4586 /* Link in the new entry. */
4587 l->l_prev = prev;
4588 l->l_next = prev->l_next;
4589 if (l->l_next != NULL)
4590 l->l_next->l_prev = l;
4591 prev->l_next = l;
4592 }
4593
4594 static void
linkmap_delete(Obj_Entry * obj)4595 linkmap_delete(Obj_Entry *obj)
4596 {
4597 struct link_map *l;
4598
4599 l = &obj->linkmap;
4600 if (l->l_prev == NULL) {
4601 if ((r_debug.r_map = l->l_next) != NULL)
4602 l->l_next->l_prev = NULL;
4603 return;
4604 }
4605
4606 if ((l->l_prev->l_next = l->l_next) != NULL)
4607 l->l_next->l_prev = l->l_prev;
4608 }
4609
4610 /*
4611 * Function for the debugger to set a breakpoint on to gain control.
4612 *
4613 * The two parameters allow the debugger to easily find and determine
4614 * what the runtime loader is doing and to whom it is doing it.
4615 *
4616 * When the loadhook trap is hit (r_debug_state, set at program
4617 * initialization), the arguments can be found on the stack:
4618 *
4619 * +8 struct link_map *m
4620 * +4 struct r_debug *rd
4621 * +0 RetAddr
4622 */
4623 void
r_debug_state(struct r_debug * rd __unused,struct link_map * m __unused)4624 r_debug_state(struct r_debug *rd __unused, struct link_map *m __unused)
4625 {
4626 /*
4627 * The following is a hack to force the compiler to emit calls to
4628 * this function, even when optimizing. If the function is empty,
4629 * the compiler is not obliged to emit any code for calls to it,
4630 * even when marked __noinline. However, gdb depends on those
4631 * calls being made.
4632 */
4633 __compiler_membar();
4634 }
4635
4636 /*
4637 * A function called after init routines have completed. This can be used to
4638 * break before a program's entry routine is called, and can be used when
4639 * main is not available in the symbol table.
4640 */
4641 void
_r_debug_postinit(struct link_map * m __unused)4642 _r_debug_postinit(struct link_map *m __unused)
4643 {
4644 /* See r_debug_state(). */
4645 __compiler_membar();
4646 }
4647
4648 static void
release_object(Obj_Entry * obj)4649 release_object(Obj_Entry *obj)
4650 {
4651 if (obj->holdcount > 0) {
4652 obj->unholdfree = true;
4653 return;
4654 }
4655 munmap(obj->mapbase, obj->mapsize);
4656 linkmap_delete(obj);
4657 obj_free(obj);
4658 }
4659
4660 /*
4661 * Get address of the pointer variable in the main program.
4662 * Prefer non-weak symbol over the weak one.
4663 */
4664 static const void **
get_program_var_addr(const char * name,RtldLockState * lockstate)4665 get_program_var_addr(const char *name, RtldLockState *lockstate)
4666 {
4667 SymLook req;
4668 DoneList donelist;
4669
4670 symlook_init(&req, name);
4671 req.lockstate = lockstate;
4672 donelist_init(&donelist);
4673 if (symlook_global(&req, &donelist) != 0)
4674 return (NULL);
4675 if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4676 return ((const void **)make_function_pointer(req.sym_out,
4677 req.defobj_out));
4678 else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4679 return ((const void **)rtld_resolve_ifunc(req.defobj_out,
4680 req.sym_out));
4681 else
4682 return ((const void **)(req.defobj_out->relocbase +
4683 req.sym_out->st_value));
4684 }
4685
4686 /*
4687 * Set a pointer variable in the main program to the given value. This
4688 * is used to set key variables such as "environ" before any of the
4689 * init functions are called.
4690 */
4691 static void
set_program_var(const char * name,const void * value)4692 set_program_var(const char *name, const void *value)
4693 {
4694 const void **addr;
4695
4696 if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4697 dbg("\"%s\": *%p <-- %p", name, addr, value);
4698 *addr = value;
4699 }
4700 }
4701
4702 /*
4703 * Search the global objects, including dependencies and main object,
4704 * for the given symbol.
4705 */
4706 static int
symlook_global(SymLook * req,DoneList * donelist)4707 symlook_global(SymLook *req, DoneList *donelist)
4708 {
4709 SymLook req1;
4710 const Objlist_Entry *elm;
4711 int res;
4712
4713 symlook_init_from_req(&req1, req);
4714
4715 /* Search all objects loaded at program start up. */
4716 if (req->defobj_out == NULL || (ld_dynamic_weak &&
4717 ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK)) {
4718 res = symlook_list(&req1, &list_main, donelist);
4719 if (res == 0 && (!ld_dynamic_weak || req->defobj_out == NULL ||
4720 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4721 req->sym_out = req1.sym_out;
4722 req->defobj_out = req1.defobj_out;
4723 assert(req->defobj_out != NULL);
4724 }
4725 }
4726
4727 /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4728 STAILQ_FOREACH(elm, &list_global, link) {
4729 if (req->defobj_out != NULL && (!ld_dynamic_weak ||
4730 ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4731 break;
4732 res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4733 if (res == 0 && (req->defobj_out == NULL ||
4734 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4735 req->sym_out = req1.sym_out;
4736 req->defobj_out = req1.defobj_out;
4737 assert(req->defobj_out != NULL);
4738 }
4739 }
4740
4741 return (req->sym_out != NULL ? 0 : ESRCH);
4742 }
4743
4744 /*
4745 * Given a symbol name in a referencing object, find the corresponding
4746 * definition of the symbol. Returns a pointer to the symbol, or NULL if
4747 * no definition was found. Returns a pointer to the Obj_Entry of the
4748 * defining object via the reference parameter DEFOBJ_OUT.
4749 */
4750 static int
symlook_default(SymLook * req,const Obj_Entry * refobj)4751 symlook_default(SymLook *req, const Obj_Entry *refobj)
4752 {
4753 DoneList donelist;
4754 const Objlist_Entry *elm;
4755 SymLook req1;
4756 int res;
4757
4758 donelist_init(&donelist);
4759 symlook_init_from_req(&req1, req);
4760
4761 /*
4762 * Look first in the referencing object if linked symbolically,
4763 * and similarly handle protected symbols.
4764 */
4765 res = symlook_obj(&req1, refobj);
4766 if (res == 0 && (refobj->symbolic ||
4767 ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED ||
4768 refobj->deepbind)) {
4769 req->sym_out = req1.sym_out;
4770 req->defobj_out = req1.defobj_out;
4771 assert(req->defobj_out != NULL);
4772 }
4773 if (refobj->symbolic || req->defobj_out != NULL || refobj->deepbind)
4774 donelist_check(&donelist, refobj);
4775
4776 if (!refobj->deepbind)
4777 symlook_global(req, &donelist);
4778
4779 /* Search all dlopened DAGs containing the referencing object. */
4780 STAILQ_FOREACH(elm, &refobj->dldags, link) {
4781 if (req->sym_out != NULL && (!ld_dynamic_weak ||
4782 ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4783 break;
4784 res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4785 if (res == 0 && (req->sym_out == NULL ||
4786 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4787 req->sym_out = req1.sym_out;
4788 req->defobj_out = req1.defobj_out;
4789 assert(req->defobj_out != NULL);
4790 }
4791 }
4792
4793 if (refobj->deepbind)
4794 symlook_global(req, &donelist);
4795
4796 /*
4797 * Search the dynamic linker itself, and possibly resolve the
4798 * symbol from there. This is how the application links to
4799 * dynamic linker services such as dlopen.
4800 */
4801 if (req->sym_out == NULL ||
4802 ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4803 res = symlook_obj(&req1, &obj_rtld);
4804 if (res == 0) {
4805 req->sym_out = req1.sym_out;
4806 req->defobj_out = req1.defobj_out;
4807 assert(req->defobj_out != NULL);
4808 }
4809 }
4810
4811 return (req->sym_out != NULL ? 0 : ESRCH);
4812 }
4813
4814 static int
symlook_list(SymLook * req,const Objlist * objlist,DoneList * dlp)4815 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4816 {
4817 const Elf_Sym *def;
4818 const Obj_Entry *defobj;
4819 const Objlist_Entry *elm;
4820 SymLook req1;
4821 int res;
4822
4823 def = NULL;
4824 defobj = NULL;
4825 STAILQ_FOREACH(elm, objlist, link) {
4826 if (donelist_check(dlp, elm->obj))
4827 continue;
4828 symlook_init_from_req(&req1, req);
4829 if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4830 if (def == NULL || (ld_dynamic_weak &&
4831 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4832 def = req1.sym_out;
4833 defobj = req1.defobj_out;
4834 if (!ld_dynamic_weak ||
4835 ELF_ST_BIND(def->st_info) != STB_WEAK)
4836 break;
4837 }
4838 }
4839 }
4840 if (def != NULL) {
4841 req->sym_out = def;
4842 req->defobj_out = defobj;
4843 return (0);
4844 }
4845 return (ESRCH);
4846 }
4847
4848 /*
4849 * Search the chain of DAGS cointed to by the given Needed_Entry
4850 * for a symbol of the given name. Each DAG is scanned completely
4851 * before advancing to the next one. Returns a pointer to the symbol,
4852 * or NULL if no definition was found.
4853 */
4854 static int
symlook_needed(SymLook * req,const Needed_Entry * needed,DoneList * dlp)4855 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4856 {
4857 const Elf_Sym *def;
4858 const Needed_Entry *n;
4859 const Obj_Entry *defobj;
4860 SymLook req1;
4861 int res;
4862
4863 def = NULL;
4864 defobj = NULL;
4865 symlook_init_from_req(&req1, req);
4866 for (n = needed; n != NULL; n = n->next) {
4867 if (n->obj == NULL || (res = symlook_list(&req1,
4868 &n->obj->dagmembers, dlp)) != 0)
4869 continue;
4870 if (def == NULL || (ld_dynamic_weak &&
4871 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4872 def = req1.sym_out;
4873 defobj = req1.defobj_out;
4874 if (!ld_dynamic_weak ||
4875 ELF_ST_BIND(def->st_info) != STB_WEAK)
4876 break;
4877 }
4878 }
4879 if (def != NULL) {
4880 req->sym_out = def;
4881 req->defobj_out = defobj;
4882 return (0);
4883 }
4884 return (ESRCH);
4885 }
4886
4887 static int
symlook_obj_load_filtees(SymLook * req,SymLook * req1,const Obj_Entry * obj,Needed_Entry * needed)4888 symlook_obj_load_filtees(SymLook *req, SymLook *req1, const Obj_Entry *obj,
4889 Needed_Entry *needed)
4890 {
4891 DoneList donelist;
4892 int flags;
4893
4894 flags = (req->flags & SYMLOOK_EARLY) != 0 ? RTLD_LO_EARLY : 0;
4895 load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4896 donelist_init(&donelist);
4897 symlook_init_from_req(req1, req);
4898 return (symlook_needed(req1, needed, &donelist));
4899 }
4900
4901 /*
4902 * Search the symbol table of a single shared object for a symbol of
4903 * the given name and version, if requested. Returns a pointer to the
4904 * symbol, or NULL if no definition was found. If the object is
4905 * filter, return filtered symbol from filtee.
4906 *
4907 * The symbol's hash value is passed in for efficiency reasons; that
4908 * eliminates many recomputations of the hash value.
4909 */
4910 int
symlook_obj(SymLook * req,const Obj_Entry * obj)4911 symlook_obj(SymLook *req, const Obj_Entry *obj)
4912 {
4913 SymLook req1;
4914 int res, mres;
4915
4916 /*
4917 * If there is at least one valid hash at this point, we prefer to
4918 * use the faster GNU version if available.
4919 */
4920 if (obj->valid_hash_gnu)
4921 mres = symlook_obj1_gnu(req, obj);
4922 else if (obj->valid_hash_sysv)
4923 mres = symlook_obj1_sysv(req, obj);
4924 else
4925 return (EINVAL);
4926
4927 if (mres == 0) {
4928 if (obj->needed_filtees != NULL) {
4929 res = symlook_obj_load_filtees(req, &req1, obj,
4930 obj->needed_filtees);
4931 if (res == 0) {
4932 req->sym_out = req1.sym_out;
4933 req->defobj_out = req1.defobj_out;
4934 }
4935 return (res);
4936 }
4937 if (obj->needed_aux_filtees != NULL) {
4938 res = symlook_obj_load_filtees(req, &req1, obj,
4939 obj->needed_aux_filtees);
4940 if (res == 0) {
4941 req->sym_out = req1.sym_out;
4942 req->defobj_out = req1.defobj_out;
4943 return (res);
4944 }
4945 }
4946 }
4947 return (mres);
4948 }
4949
4950 /* Symbol match routine common to both hash functions */
4951 static bool
matched_symbol(SymLook * req,const Obj_Entry * obj,Sym_Match_Result * result,const unsigned long symnum)4952 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4953 const unsigned long symnum)
4954 {
4955 Elf_Versym verndx;
4956 const Elf_Sym *symp;
4957 const char *strp;
4958
4959 symp = obj->symtab + symnum;
4960 strp = obj->strtab + symp->st_name;
4961
4962 switch (ELF_ST_TYPE(symp->st_info)) {
4963 case STT_FUNC:
4964 case STT_NOTYPE:
4965 case STT_OBJECT:
4966 case STT_COMMON:
4967 case STT_GNU_IFUNC:
4968 if (symp->st_value == 0)
4969 return (false);
4970 /* fallthrough */
4971 case STT_TLS:
4972 if (symp->st_shndx != SHN_UNDEF)
4973 break;
4974 else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4975 (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4976 break;
4977 /* fallthrough */
4978 default:
4979 return (false);
4980 }
4981 if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4982 return (false);
4983
4984 if (req->ventry == NULL) {
4985 if (obj->versyms != NULL) {
4986 verndx = VER_NDX(obj->versyms[symnum]);
4987 if (verndx > obj->vernum) {
4988 _rtld_error(
4989 "%s: symbol %s references wrong version %d",
4990 obj->path, obj->strtab + symnum, verndx);
4991 return (false);
4992 }
4993 /*
4994 * If we are not called from dlsym (i.e. this
4995 * is a normal relocation from unversioned
4996 * binary), accept the symbol immediately if
4997 * it happens to have first version after this
4998 * shared object became versioned. Otherwise,
4999 * if symbol is versioned and not hidden,
5000 * remember it. If it is the only symbol with
5001 * this name exported by the shared object, it
5002 * will be returned as a match by the calling
5003 * function. If symbol is global (verndx < 2)
5004 * accept it unconditionally.
5005 */
5006 if ((req->flags & SYMLOOK_DLSYM) == 0 &&
5007 verndx == VER_NDX_GIVEN) {
5008 result->sym_out = symp;
5009 return (true);
5010 } else if (verndx >= VER_NDX_GIVEN) {
5011 if ((obj->versyms[symnum] & VER_NDX_HIDDEN) ==
5012 0) {
5013 if (result->vsymp == NULL)
5014 result->vsymp = symp;
5015 result->vcount++;
5016 }
5017 return (false);
5018 }
5019 }
5020 result->sym_out = symp;
5021 return (true);
5022 }
5023 if (obj->versyms == NULL) {
5024 if (object_match_name(obj, req->ventry->name)) {
5025 _rtld_error(
5026 "%s: object %s should provide version %s for symbol %s",
5027 obj_rtld.path, obj->path, req->ventry->name,
5028 obj->strtab + symnum);
5029 return (false);
5030 }
5031 } else {
5032 verndx = VER_NDX(obj->versyms[symnum]);
5033 if (verndx > obj->vernum) {
5034 _rtld_error("%s: symbol %s references wrong version %d",
5035 obj->path, obj->strtab + symnum, verndx);
5036 return (false);
5037 }
5038 if (obj->vertab[verndx].hash != req->ventry->hash ||
5039 strcmp(obj->vertab[verndx].name, req->ventry->name)) {
5040 /*
5041 * Version does not match. Look if this is a
5042 * global symbol and if it is not hidden. If
5043 * global symbol (verndx < 2) is available,
5044 * use it. Do not return symbol if we are
5045 * called by dlvsym, because dlvsym looks for
5046 * a specific version and default one is not
5047 * what dlvsym wants.
5048 */
5049 if ((req->flags & SYMLOOK_DLSYM) ||
5050 (verndx >= VER_NDX_GIVEN) ||
5051 (obj->versyms[symnum] & VER_NDX_HIDDEN))
5052 return (false);
5053 }
5054 }
5055 result->sym_out = symp;
5056 return (true);
5057 }
5058
5059 /*
5060 * Search for symbol using SysV hash function.
5061 * obj->buckets is known not to be NULL at this point; the test for this was
5062 * performed with the obj->valid_hash_sysv assignment.
5063 */
5064 static int
symlook_obj1_sysv(SymLook * req,const Obj_Entry * obj)5065 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
5066 {
5067 unsigned long symnum;
5068 Sym_Match_Result matchres;
5069
5070 matchres.sym_out = NULL;
5071 matchres.vsymp = NULL;
5072 matchres.vcount = 0;
5073
5074 for (symnum = obj->buckets[req->hash % obj->nbuckets];
5075 symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
5076 if (symnum >= obj->nchains)
5077 return (ESRCH); /* Bad object */
5078
5079 if (matched_symbol(req, obj, &matchres, symnum)) {
5080 req->sym_out = matchres.sym_out;
5081 req->defobj_out = obj;
5082 return (0);
5083 }
5084 }
5085 if (matchres.vcount == 1) {
5086 req->sym_out = matchres.vsymp;
5087 req->defobj_out = obj;
5088 return (0);
5089 }
5090 return (ESRCH);
5091 }
5092
5093 /* Search for symbol using GNU hash function */
5094 static int
symlook_obj1_gnu(SymLook * req,const Obj_Entry * obj)5095 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
5096 {
5097 Elf_Addr bloom_word;
5098 const Elf32_Word *hashval;
5099 Elf32_Word bucket;
5100 Sym_Match_Result matchres;
5101 unsigned int h1, h2;
5102 unsigned long symnum;
5103
5104 matchres.sym_out = NULL;
5105 matchres.vsymp = NULL;
5106 matchres.vcount = 0;
5107
5108 /* Pick right bitmask word from Bloom filter array */
5109 bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
5110 obj->maskwords_bm_gnu];
5111
5112 /* Calculate modulus word size of gnu hash and its derivative */
5113 h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
5114 h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
5115
5116 /* Filter out the "definitely not in set" queries */
5117 if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
5118 return (ESRCH);
5119
5120 /* Locate hash chain and corresponding value element*/
5121 bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
5122 if (bucket == 0)
5123 return (ESRCH);
5124 hashval = &obj->chain_zero_gnu[bucket];
5125 do {
5126 if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
5127 symnum = hashval - obj->chain_zero_gnu;
5128 if (matched_symbol(req, obj, &matchres, symnum)) {
5129 req->sym_out = matchres.sym_out;
5130 req->defobj_out = obj;
5131 return (0);
5132 }
5133 }
5134 } while ((*hashval++ & 1) == 0);
5135 if (matchres.vcount == 1) {
5136 req->sym_out = matchres.vsymp;
5137 req->defobj_out = obj;
5138 return (0);
5139 }
5140 return (ESRCH);
5141 }
5142
5143 static void
trace_calc_fmts(const char ** main_local,const char ** fmt1,const char ** fmt2)5144 trace_calc_fmts(const char **main_local, const char **fmt1, const char **fmt2)
5145 {
5146 *main_local = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_PROGNAME);
5147 if (*main_local == NULL)
5148 *main_local = "";
5149
5150 *fmt1 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT1);
5151 if (*fmt1 == NULL)
5152 *fmt1 = "\t%o => %p (%x)\n";
5153
5154 *fmt2 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2);
5155 if (*fmt2 == NULL)
5156 *fmt2 = "\t%o (%x)\n";
5157 }
5158
5159 static void
trace_print_obj(Obj_Entry * obj,const char * name,const char * path,const char * main_local,const char * fmt1,const char * fmt2)5160 trace_print_obj(Obj_Entry *obj, const char *name, const char *path,
5161 const char *main_local, const char *fmt1, const char *fmt2)
5162 {
5163 const char *fmt;
5164 int c;
5165
5166 if (fmt1 == NULL)
5167 fmt = fmt2;
5168 else
5169 /* XXX bogus */
5170 fmt = strncmp(name, "lib", 3) == 0 ? fmt1 : fmt2;
5171
5172 while ((c = *fmt++) != '\0') {
5173 switch (c) {
5174 default:
5175 rtld_putchar(c);
5176 continue;
5177 case '\\':
5178 switch (c = *fmt) {
5179 case '\0':
5180 continue;
5181 case 'n':
5182 rtld_putchar('\n');
5183 break;
5184 case 't':
5185 rtld_putchar('\t');
5186 break;
5187 }
5188 break;
5189 case '%':
5190 switch (c = *fmt) {
5191 case '\0':
5192 continue;
5193 case '%':
5194 default:
5195 rtld_putchar(c);
5196 break;
5197 case 'A':
5198 rtld_putstr(main_local);
5199 break;
5200 case 'a':
5201 rtld_putstr(obj_main->path);
5202 break;
5203 case 'o':
5204 rtld_putstr(name);
5205 break;
5206 case 'p':
5207 rtld_putstr(path);
5208 break;
5209 case 'x':
5210 rtld_printf("%p",
5211 obj != NULL ? obj->mapbase : NULL);
5212 break;
5213 }
5214 break;
5215 }
5216 ++fmt;
5217 }
5218 }
5219
5220 static void
trace_loaded_objects(Obj_Entry * obj,bool show_preload)5221 trace_loaded_objects(Obj_Entry *obj, bool show_preload)
5222 {
5223 const char *fmt1, *fmt2, *main_local;
5224 const char *name, *path;
5225 bool first_spurious, list_containers;
5226
5227 trace_calc_fmts(&main_local, &fmt1, &fmt2);
5228 list_containers = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_ALL) != NULL;
5229
5230 for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5231 Needed_Entry *needed;
5232
5233 if (obj->marker)
5234 continue;
5235 if (list_containers && obj->needed != NULL)
5236 rtld_printf("%s:\n", obj->path);
5237 for (needed = obj->needed; needed; needed = needed->next) {
5238 if (needed->obj != NULL) {
5239 if (needed->obj->traced && !list_containers)
5240 continue;
5241 needed->obj->traced = true;
5242 path = needed->obj->path;
5243 } else
5244 path = "not found";
5245
5246 name = obj->strtab + needed->name;
5247 trace_print_obj(needed->obj, name, path, main_local,
5248 fmt1, fmt2);
5249 }
5250 }
5251
5252 if (show_preload) {
5253 if (ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2) == NULL)
5254 fmt2 = "\t%p (%x)\n";
5255 first_spurious = true;
5256
5257 TAILQ_FOREACH(obj, &obj_list, next) {
5258 if (obj->marker || obj == obj_main || obj->traced)
5259 continue;
5260
5261 if (list_containers && first_spurious) {
5262 rtld_printf("[preloaded]\n");
5263 first_spurious = false;
5264 }
5265
5266 Name_Entry *fname = STAILQ_FIRST(&obj->names);
5267 name = fname == NULL ? "<unknown>" : fname->name;
5268 trace_print_obj(obj, name, obj->path, main_local, NULL,
5269 fmt2);
5270 }
5271 }
5272 }
5273
5274 /*
5275 * Unload a dlopened object and its dependencies from memory and from
5276 * our data structures. It is assumed that the DAG rooted in the
5277 * object has already been unreferenced, and that the object has a
5278 * reference count of 0.
5279 */
5280 static void
unload_object(Obj_Entry * root,RtldLockState * lockstate)5281 unload_object(Obj_Entry *root, RtldLockState *lockstate)
5282 {
5283 Obj_Entry marker, *obj, *next;
5284
5285 assert(root->refcount == 0);
5286
5287 /*
5288 * Pass over the DAG removing unreferenced objects from
5289 * appropriate lists.
5290 */
5291 unlink_object(root);
5292
5293 /* Unmap all objects that are no longer referenced. */
5294 for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
5295 next = TAILQ_NEXT(obj, next);
5296 if (obj->marker || obj->refcount != 0)
5297 continue;
5298 LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize,
5299 0, obj->path);
5300 dbg("unloading \"%s\"", obj->path);
5301 /*
5302 * Unlink the object now to prevent new references from
5303 * being acquired while the bind lock is dropped in
5304 * recursive dlclose() invocations.
5305 */
5306 TAILQ_REMOVE(&obj_list, obj, next);
5307 obj_count--;
5308
5309 if (obj->filtees_loaded) {
5310 if (next != NULL) {
5311 init_marker(&marker);
5312 TAILQ_INSERT_BEFORE(next, &marker, next);
5313 unload_filtees(obj, lockstate);
5314 next = TAILQ_NEXT(&marker, next);
5315 TAILQ_REMOVE(&obj_list, &marker, next);
5316 } else
5317 unload_filtees(obj, lockstate);
5318 }
5319 release_object(obj);
5320 }
5321 }
5322
5323 static void
unlink_object(Obj_Entry * root)5324 unlink_object(Obj_Entry *root)
5325 {
5326 Objlist_Entry *elm;
5327
5328 if (root->refcount == 0) {
5329 /* Remove the object from the RTLD_GLOBAL list. */
5330 objlist_remove(&list_global, root);
5331
5332 /* Remove the object from all objects' DAG lists. */
5333 STAILQ_FOREACH(elm, &root->dagmembers, link) {
5334 objlist_remove(&elm->obj->dldags, root);
5335 if (elm->obj != root)
5336 unlink_object(elm->obj);
5337 }
5338 }
5339 }
5340
5341 static void
ref_dag(Obj_Entry * root)5342 ref_dag(Obj_Entry *root)
5343 {
5344 Objlist_Entry *elm;
5345
5346 assert(root->dag_inited);
5347 STAILQ_FOREACH(elm, &root->dagmembers, link)
5348 elm->obj->refcount++;
5349 }
5350
5351 static void
unref_dag(Obj_Entry * root)5352 unref_dag(Obj_Entry *root)
5353 {
5354 Objlist_Entry *elm;
5355
5356 assert(root->dag_inited);
5357 STAILQ_FOREACH(elm, &root->dagmembers, link)
5358 elm->obj->refcount--;
5359 }
5360
5361 /*
5362 * Common code for MD __tls_get_addr().
5363 */
5364 static void *
tls_get_addr_slow(struct tcb * tcb,int index,size_t offset,bool locked)5365 tls_get_addr_slow(struct tcb *tcb, int index, size_t offset, bool locked)
5366 {
5367 struct dtv *newdtv, *dtv;
5368 RtldLockState lockstate;
5369 int to_copy;
5370
5371 dtv = tcb->tcb_dtv;
5372 /* Check dtv generation in case new modules have arrived */
5373 if (dtv->dtv_gen != tls_dtv_generation) {
5374 if (!locked)
5375 wlock_acquire(rtld_bind_lock, &lockstate);
5376 newdtv = xcalloc(1, sizeof(struct dtv) + tls_max_index *
5377 sizeof(struct dtv_slot));
5378 to_copy = dtv->dtv_size;
5379 if (to_copy > tls_max_index)
5380 to_copy = tls_max_index;
5381 memcpy(newdtv->dtv_slots, dtv->dtv_slots, to_copy *
5382 sizeof(struct dtv_slot));
5383 newdtv->dtv_gen = tls_dtv_generation;
5384 newdtv->dtv_size = tls_max_index;
5385 free(dtv);
5386 if (!locked)
5387 lock_release(rtld_bind_lock, &lockstate);
5388 dtv = tcb->tcb_dtv = newdtv;
5389 }
5390
5391 /* Dynamically allocate module TLS if necessary */
5392 if (dtv->dtv_slots[index - 1].dtvs_tls == 0) {
5393 /* Signal safe, wlock will block out signals. */
5394 if (!locked)
5395 wlock_acquire(rtld_bind_lock, &lockstate);
5396 if (!dtv->dtv_slots[index - 1].dtvs_tls)
5397 dtv->dtv_slots[index - 1].dtvs_tls =
5398 allocate_module_tls(tcb, index);
5399 if (!locked)
5400 lock_release(rtld_bind_lock, &lockstate);
5401 }
5402 return (dtv->dtv_slots[index - 1].dtvs_tls + offset);
5403 }
5404
5405 void *
tls_get_addr_common(struct tcb * tcb,int index,size_t offset)5406 tls_get_addr_common(struct tcb *tcb, int index, size_t offset)
5407 {
5408 struct dtv *dtv;
5409
5410 dtv = tcb->tcb_dtv;
5411 /* Check dtv generation in case new modules have arrived */
5412 if (__predict_true(dtv->dtv_gen == tls_dtv_generation &&
5413 dtv->dtv_slots[index - 1].dtvs_tls != 0))
5414 return (dtv->dtv_slots[index - 1].dtvs_tls + offset);
5415 return (tls_get_addr_slow(tcb, index, offset, false));
5416 }
5417
5418 static struct tcb *
tcb_from_tcb_list_entry(struct tcb_list_entry * tcbelm)5419 tcb_from_tcb_list_entry(struct tcb_list_entry *tcbelm)
5420 {
5421 #ifdef TLS_VARIANT_I
5422 return ((struct tcb *)((char *)tcbelm - tcb_list_entry_offset));
5423 #else
5424 return ((struct tcb *)((char *)tcbelm + tcb_list_entry_offset));
5425 #endif
5426 }
5427
5428 static struct tcb_list_entry *
tcb_list_entry_from_tcb(struct tcb * tcb)5429 tcb_list_entry_from_tcb(struct tcb *tcb)
5430 {
5431 #ifdef TLS_VARIANT_I
5432 return ((struct tcb_list_entry *)((char *)tcb + tcb_list_entry_offset));
5433 #else
5434 return ((struct tcb_list_entry *)((char *)tcb - tcb_list_entry_offset));
5435 #endif
5436 }
5437
5438 static void
tcb_list_insert(struct tcb * tcb)5439 tcb_list_insert(struct tcb *tcb)
5440 {
5441 struct tcb_list_entry *tcbelm;
5442
5443 tcbelm = tcb_list_entry_from_tcb(tcb);
5444 TAILQ_INSERT_TAIL(&tcb_list, tcbelm, next);
5445 }
5446
5447 static void
tcb_list_remove(struct tcb * tcb)5448 tcb_list_remove(struct tcb *tcb)
5449 {
5450 struct tcb_list_entry *tcbelm;
5451
5452 tcbelm = tcb_list_entry_from_tcb(tcb);
5453 TAILQ_REMOVE(&tcb_list, tcbelm, next);
5454 }
5455
5456 #ifdef TLS_VARIANT_I
5457
5458 /*
5459 * Return pointer to allocated TLS block
5460 */
5461 static void *
get_tls_block_ptr(void * tcb,size_t tcbsize)5462 get_tls_block_ptr(void *tcb, size_t tcbsize)
5463 {
5464 size_t extra_size, post_size, pre_size, tls_block_size;
5465 size_t tls_init_align;
5466
5467 tls_init_align = MAX(obj_main->tlsalign, 1);
5468
5469 /* Compute fragments sizes. */
5470 extra_size = tcbsize - TLS_TCB_SIZE;
5471 post_size = calculate_tls_post_size(tls_init_align);
5472 tls_block_size = tcbsize + post_size;
5473 pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5474
5475 return ((char *)tcb - pre_size - extra_size);
5476 }
5477
5478 /*
5479 * Allocate Static TLS using the Variant I method.
5480 *
5481 * For details on the layout, see lib/libc/gen/tls.c.
5482 *
5483 * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
5484 * it is based on tls_last_offset, and TLS offsets here are really TCB
5485 * offsets, whereas libc's tls_static_space is just the executable's static
5486 * TLS segment.
5487 *
5488 * NB: This differs from NetBSD's ld.elf_so, where TLS offsets are relative to
5489 * the end of the TCB.
5490 */
5491 void *
allocate_tls(Obj_Entry * objs,void * oldtcb,size_t tcbsize,size_t tcbalign)5492 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
5493 {
5494 Obj_Entry *obj;
5495 char *tls_block;
5496 struct dtv *dtv;
5497 struct tcb *tcb;
5498 char *addr;
5499 size_t i;
5500 size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
5501 size_t tls_init_align, tls_init_offset;
5502
5503 if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
5504 return (oldtcb);
5505
5506 assert(tcbsize >= TLS_TCB_SIZE);
5507 maxalign = MAX(tcbalign, tls_static_max_align);
5508 tls_init_align = MAX(obj_main->tlsalign, 1);
5509
5510 /* Compute fragments sizes. */
5511 extra_size = tcbsize - TLS_TCB_SIZE;
5512 post_size = calculate_tls_post_size(tls_init_align);
5513 tls_block_size = tcbsize + post_size;
5514 pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5515 tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE -
5516 post_size;
5517
5518 /* Allocate whole TLS block */
5519 tls_block = xmalloc_aligned(tls_block_size, maxalign, 0);
5520 tcb = (struct tcb *)(tls_block + pre_size + extra_size);
5521
5522 if (oldtcb != NULL) {
5523 memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
5524 tls_static_space);
5525 free(get_tls_block_ptr(oldtcb, tcbsize));
5526
5527 /* Adjust the DTV. */
5528 dtv = tcb->tcb_dtv;
5529 for (i = 0; i < dtv->dtv_size; i++) {
5530 if ((uintptr_t)dtv->dtv_slots[i].dtvs_tls >=
5531 (uintptr_t)oldtcb &&
5532 (uintptr_t)dtv->dtv_slots[i].dtvs_tls <
5533 (uintptr_t)oldtcb + tls_static_space) {
5534 dtv->dtv_slots[i].dtvs_tls = (char *)tcb +
5535 (dtv->dtv_slots[i].dtvs_tls -
5536 (char *)oldtcb);
5537 }
5538 }
5539 } else {
5540 dtv = xcalloc(1, sizeof(struct dtv) + tls_max_index *
5541 sizeof(struct dtv_slot));
5542 tcb->tcb_dtv = dtv;
5543 dtv->dtv_gen = tls_dtv_generation;
5544 dtv->dtv_size = tls_max_index;
5545
5546 for (obj = globallist_curr(objs); obj != NULL;
5547 obj = globallist_next(obj)) {
5548 if (obj->tlsoffset == 0)
5549 continue;
5550 tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
5551 addr = (char *)tcb + obj->tlsoffset;
5552 if (tls_init_offset > 0)
5553 memset(addr, 0, tls_init_offset);
5554 if (obj->tlsinitsize > 0) {
5555 memcpy(addr + tls_init_offset, obj->tlsinit,
5556 obj->tlsinitsize);
5557 }
5558 if (obj->tlssize > obj->tlsinitsize) {
5559 memset(addr + tls_init_offset +
5560 obj->tlsinitsize,
5561 0,
5562 obj->tlssize - obj->tlsinitsize -
5563 tls_init_offset);
5564 }
5565 dtv->dtv_slots[obj->tlsindex - 1].dtvs_tls = addr;
5566 }
5567 }
5568
5569 tcb_list_insert(tcb);
5570 return (tcb);
5571 }
5572
5573 void
free_tls(void * tcb,size_t tcbsize,size_t tcbalign __unused)5574 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
5575 {
5576 struct dtv *dtv;
5577 uintptr_t tlsstart, tlsend;
5578 size_t post_size;
5579 size_t i, tls_init_align __unused;
5580
5581 tcb_list_remove(tcb);
5582
5583 assert(tcbsize >= TLS_TCB_SIZE);
5584 tls_init_align = MAX(obj_main->tlsalign, 1);
5585
5586 /* Compute fragments sizes. */
5587 post_size = calculate_tls_post_size(tls_init_align);
5588
5589 tlsstart = (uintptr_t)tcb + TLS_TCB_SIZE + post_size;
5590 tlsend = (uintptr_t)tcb + tls_static_space;
5591
5592 dtv = ((struct tcb *)tcb)->tcb_dtv;
5593 for (i = 0; i < dtv->dtv_size; i++) {
5594 if (dtv->dtv_slots[i].dtvs_tls != NULL &&
5595 ((uintptr_t)dtv->dtv_slots[i].dtvs_tls < tlsstart ||
5596 (uintptr_t)dtv->dtv_slots[i].dtvs_tls >= tlsend)) {
5597 free(dtv->dtv_slots[i].dtvs_tls);
5598 }
5599 }
5600 free(dtv);
5601 free(get_tls_block_ptr(tcb, tcbsize));
5602 }
5603
5604 #endif /* TLS_VARIANT_I */
5605
5606 #ifdef TLS_VARIANT_II
5607
5608 /*
5609 * Allocate Static TLS using the Variant II method.
5610 */
5611 void *
allocate_tls(Obj_Entry * objs,void * oldtcb,size_t tcbsize,size_t tcbalign)5612 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
5613 {
5614 Obj_Entry *obj;
5615 size_t size, ralign;
5616 char *tls_block;
5617 struct dtv *dtv, *olddtv;
5618 struct tcb *tcb;
5619 char *addr;
5620 size_t i;
5621
5622 ralign = tcbalign;
5623 if (tls_static_max_align > ralign)
5624 ralign = tls_static_max_align;
5625 size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
5626
5627 assert(tcbsize >= 2 * sizeof(uintptr_t));
5628 tls_block = xmalloc_aligned(size, ralign, 0 /* XXX */);
5629 dtv = xcalloc(1, sizeof(struct dtv) + tls_max_index *
5630 sizeof(struct dtv_slot));
5631
5632 tcb = (struct tcb *)(tls_block + roundup(tls_static_space, ralign));
5633 tcb->tcb_self = tcb;
5634 tcb->tcb_dtv = dtv;
5635
5636 dtv->dtv_gen = tls_dtv_generation;
5637 dtv->dtv_size = tls_max_index;
5638
5639 if (oldtcb != NULL) {
5640 /*
5641 * Copy the static TLS block over whole.
5642 */
5643 memcpy((char *)tcb - tls_static_space,
5644 (const char *)oldtcb - tls_static_space,
5645 tls_static_space);
5646
5647 /*
5648 * If any dynamic TLS blocks have been created tls_get_addr(),
5649 * move them over.
5650 */
5651 olddtv = ((struct tcb *)oldtcb)->tcb_dtv;
5652 for (i = 0; i < olddtv->dtv_size; i++) {
5653 if ((uintptr_t)olddtv->dtv_slots[i].dtvs_tls <
5654 (uintptr_t)oldtcb - size ||
5655 (uintptr_t)olddtv->dtv_slots[i].dtvs_tls >
5656 (uintptr_t)oldtcb) {
5657 dtv->dtv_slots[i].dtvs_tls =
5658 olddtv->dtv_slots[i].dtvs_tls;
5659 olddtv->dtv_slots[i].dtvs_tls = NULL;
5660 }
5661 }
5662
5663 /*
5664 * We assume that this block was the one we created with
5665 * allocate_initial_tls().
5666 */
5667 free_tls(oldtcb, 2 * sizeof(uintptr_t), sizeof(uintptr_t));
5668 } else {
5669 for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5670 if (obj->marker || obj->tlsoffset == 0)
5671 continue;
5672 addr = (char *)tcb - obj->tlsoffset;
5673 memset(addr + obj->tlsinitsize, 0, obj->tlssize -
5674 obj->tlsinitsize);
5675 if (obj->tlsinit) {
5676 memcpy(addr, obj->tlsinit, obj->tlsinitsize);
5677 obj->static_tls_copied = true;
5678 }
5679 dtv->dtv_slots[obj->tlsindex - 1].dtvs_tls = addr;
5680 }
5681 }
5682
5683 tcb_list_insert(tcb);
5684 return (tcb);
5685 }
5686
5687 void
free_tls(void * tcb,size_t tcbsize __unused,size_t tcbalign)5688 free_tls(void *tcb, size_t tcbsize __unused, size_t tcbalign)
5689 {
5690 struct dtv *dtv;
5691 size_t size, ralign;
5692 size_t i;
5693 uintptr_t tlsstart, tlsend;
5694
5695 tcb_list_remove(tcb);
5696
5697 /*
5698 * Figure out the size of the initial TLS block so that we can
5699 * find stuff which ___tls_get_addr() allocated dynamically.
5700 */
5701 ralign = tcbalign;
5702 if (tls_static_max_align > ralign)
5703 ralign = tls_static_max_align;
5704 size = roundup(tls_static_space, ralign);
5705
5706 dtv = ((struct tcb *)tcb)->tcb_dtv;
5707 tlsend = (uintptr_t)tcb;
5708 tlsstart = tlsend - size;
5709 for (i = 0; i < dtv->dtv_size; i++) {
5710 if (dtv->dtv_slots[i].dtvs_tls != NULL &&
5711 ((uintptr_t)dtv->dtv_slots[i].dtvs_tls < tlsstart ||
5712 (uintptr_t)dtv->dtv_slots[i].dtvs_tls > tlsend)) {
5713 free(dtv->dtv_slots[i].dtvs_tls);
5714 }
5715 }
5716
5717 free((void *)tlsstart);
5718 free(dtv);
5719 }
5720
5721 #endif /* TLS_VARIANT_II */
5722
5723 /*
5724 * Allocate TLS block for module with given index.
5725 */
5726 void *
allocate_module_tls(struct tcb * tcb,int index)5727 allocate_module_tls(struct tcb *tcb, int index)
5728 {
5729 Obj_Entry *obj;
5730 char *p;
5731
5732 TAILQ_FOREACH(obj, &obj_list, next) {
5733 if (obj->marker)
5734 continue;
5735 if (obj->tlsindex == index)
5736 break;
5737 }
5738 if (obj == NULL) {
5739 _rtld_error("Can't find module with TLS index %d", index);
5740 rtld_die();
5741 }
5742
5743 if (obj->tls_static) {
5744 #ifdef TLS_VARIANT_I
5745 p = (char *)tcb + obj->tlsoffset;
5746 #else
5747 p = (char *)tcb - obj->tlsoffset;
5748 #endif
5749 return (p);
5750 }
5751
5752 obj->tls_dynamic = true;
5753
5754 p = xmalloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
5755 memcpy(p, obj->tlsinit, obj->tlsinitsize);
5756 memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5757 return (p);
5758 }
5759
5760 static bool
allocate_tls_offset_common(size_t * offp,size_t tlssize,size_t tlsalign,size_t tlspoffset __unused)5761 allocate_tls_offset_common(size_t *offp, size_t tlssize, size_t tlsalign,
5762 size_t tlspoffset __unused)
5763 {
5764 size_t off;
5765
5766 if (tls_last_offset == 0)
5767 off = calculate_first_tls_offset(tlssize, tlsalign,
5768 tlspoffset);
5769 else
5770 off = calculate_tls_offset(tls_last_offset, tls_last_size,
5771 tlssize, tlsalign, tlspoffset);
5772
5773 *offp = off;
5774 #ifdef TLS_VARIANT_I
5775 off += tlssize;
5776 #endif
5777
5778 /*
5779 * If we have already fixed the size of the static TLS block, we
5780 * must stay within that size. When allocating the static TLS, we
5781 * leave a small amount of space spare to be used for dynamically
5782 * loading modules which use static TLS.
5783 */
5784 if (tls_static_space != 0) {
5785 if (off > tls_static_space)
5786 return (false);
5787 } else if (tlsalign > tls_static_max_align) {
5788 tls_static_max_align = tlsalign;
5789 }
5790
5791 tls_last_offset = off;
5792 tls_last_size = tlssize;
5793
5794 return (true);
5795 }
5796
5797 bool
allocate_tls_offset(Obj_Entry * obj)5798 allocate_tls_offset(Obj_Entry *obj)
5799 {
5800 if (obj->tls_dynamic)
5801 return (false);
5802
5803 if (obj->tls_static)
5804 return (true);
5805
5806 if (obj->tlssize == 0) {
5807 obj->tls_static = true;
5808 return (true);
5809 }
5810
5811 if (!allocate_tls_offset_common(&obj->tlsoffset, obj->tlssize,
5812 obj->tlsalign, obj->tlspoffset))
5813 return (false);
5814
5815 obj->tls_static = true;
5816
5817 return (true);
5818 }
5819
5820 void
free_tls_offset(Obj_Entry * obj)5821 free_tls_offset(Obj_Entry *obj)
5822 {
5823 /*
5824 * If we were the last thing to allocate out of the static TLS
5825 * block, we give our space back to the 'allocator'. This is a
5826 * simplistic workaround to allow libGL.so.1 to be loaded and
5827 * unloaded multiple times.
5828 */
5829 size_t off = obj->tlsoffset;
5830
5831 #ifdef TLS_VARIANT_I
5832 off += obj->tlssize;
5833 #endif
5834 if (off == tls_last_offset) {
5835 tls_last_offset -= obj->tlssize;
5836 tls_last_size = 0;
5837 }
5838 }
5839
5840 void *
_rtld_allocate_tls(void * oldtcb,size_t tcbsize,size_t tcbalign)5841 _rtld_allocate_tls(void *oldtcb, size_t tcbsize, size_t tcbalign)
5842 {
5843 void *ret;
5844 RtldLockState lockstate;
5845
5846 wlock_acquire(rtld_bind_lock, &lockstate);
5847 ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtcb,
5848 tcbsize, tcbalign);
5849 lock_release(rtld_bind_lock, &lockstate);
5850 return (ret);
5851 }
5852
5853 void
_rtld_free_tls(void * tcb,size_t tcbsize,size_t tcbalign)5854 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5855 {
5856 RtldLockState lockstate;
5857
5858 wlock_acquire(rtld_bind_lock, &lockstate);
5859 free_tls(tcb, tcbsize, tcbalign);
5860 lock_release(rtld_bind_lock, &lockstate);
5861 }
5862
5863 static void
object_add_name(Obj_Entry * obj,const char * name)5864 object_add_name(Obj_Entry *obj, const char *name)
5865 {
5866 Name_Entry *entry;
5867 size_t len;
5868
5869 len = strlen(name);
5870 entry = malloc(sizeof(Name_Entry) + len);
5871
5872 if (entry != NULL) {
5873 strcpy(entry->name, name);
5874 STAILQ_INSERT_TAIL(&obj->names, entry, link);
5875 }
5876 }
5877
5878 static int
object_match_name(const Obj_Entry * obj,const char * name)5879 object_match_name(const Obj_Entry *obj, const char *name)
5880 {
5881 Name_Entry *entry;
5882
5883 STAILQ_FOREACH(entry, &obj->names, link) {
5884 if (strcmp(name, entry->name) == 0)
5885 return (1);
5886 }
5887 return (0);
5888 }
5889
5890 static Obj_Entry *
locate_dependency(const Obj_Entry * obj,const char * name)5891 locate_dependency(const Obj_Entry *obj, const char *name)
5892 {
5893 const Objlist_Entry *entry;
5894 const Needed_Entry *needed;
5895
5896 STAILQ_FOREACH(entry, &list_main, link) {
5897 if (object_match_name(entry->obj, name))
5898 return (entry->obj);
5899 }
5900
5901 for (needed = obj->needed; needed != NULL; needed = needed->next) {
5902 if (strcmp(obj->strtab + needed->name, name) == 0 ||
5903 (needed->obj != NULL && object_match_name(needed->obj,
5904 name))) {
5905 /*
5906 * If there is DT_NEEDED for the name we are looking
5907 * for, we are all set. Note that object might not be
5908 * found if dependency was not loaded yet, so the
5909 * function can return NULL here. This is expected and
5910 * handled properly by the caller.
5911 */
5912 return (needed->obj);
5913 }
5914 }
5915 _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5916 obj->path, name);
5917 rtld_die();
5918 }
5919
5920 static int
check_object_provided_version(Obj_Entry * refobj,const Obj_Entry * depobj,const Elf_Vernaux * vna)5921 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5922 const Elf_Vernaux *vna)
5923 {
5924 const Elf_Verdef *vd;
5925 const char *vername;
5926
5927 vername = refobj->strtab + vna->vna_name;
5928 vd = depobj->verdef;
5929 if (vd == NULL) {
5930 _rtld_error("%s: version %s required by %s not defined",
5931 depobj->path, vername, refobj->path);
5932 return (-1);
5933 }
5934 for (;;) {
5935 if (vd->vd_version != VER_DEF_CURRENT) {
5936 _rtld_error(
5937 "%s: Unsupported version %d of Elf_Verdef entry",
5938 depobj->path, vd->vd_version);
5939 return (-1);
5940 }
5941 if (vna->vna_hash == vd->vd_hash) {
5942 const Elf_Verdaux *aux =
5943 (const Elf_Verdaux *)((const char *)vd +
5944 vd->vd_aux);
5945 if (strcmp(vername, depobj->strtab + aux->vda_name) ==
5946 0)
5947 return (0);
5948 }
5949 if (vd->vd_next == 0)
5950 break;
5951 vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5952 }
5953 if (vna->vna_flags & VER_FLG_WEAK)
5954 return (0);
5955 _rtld_error("%s: version %s required by %s not found", depobj->path,
5956 vername, refobj->path);
5957 return (-1);
5958 }
5959
5960 static int
rtld_verify_object_versions(Obj_Entry * obj)5961 rtld_verify_object_versions(Obj_Entry *obj)
5962 {
5963 const Elf_Verneed *vn;
5964 const Elf_Verdef *vd;
5965 const Elf_Verdaux *vda;
5966 const Elf_Vernaux *vna;
5967 const Obj_Entry *depobj;
5968 int maxvernum, vernum;
5969
5970 if (obj->ver_checked)
5971 return (0);
5972 obj->ver_checked = true;
5973
5974 maxvernum = 0;
5975 /*
5976 * Walk over defined and required version records and figure out
5977 * max index used by any of them. Do very basic sanity checking
5978 * while there.
5979 */
5980 vn = obj->verneed;
5981 while (vn != NULL) {
5982 if (vn->vn_version != VER_NEED_CURRENT) {
5983 _rtld_error(
5984 "%s: Unsupported version %d of Elf_Verneed entry",
5985 obj->path, vn->vn_version);
5986 return (-1);
5987 }
5988 vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5989 for (;;) {
5990 vernum = VER_NEED_IDX(vna->vna_other);
5991 if (vernum > maxvernum)
5992 maxvernum = vernum;
5993 if (vna->vna_next == 0)
5994 break;
5995 vna = (const Elf_Vernaux *)((const char *)vna +
5996 vna->vna_next);
5997 }
5998 if (vn->vn_next == 0)
5999 break;
6000 vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
6001 }
6002
6003 vd = obj->verdef;
6004 while (vd != NULL) {
6005 if (vd->vd_version != VER_DEF_CURRENT) {
6006 _rtld_error(
6007 "%s: Unsupported version %d of Elf_Verdef entry",
6008 obj->path, vd->vd_version);
6009 return (-1);
6010 }
6011 vernum = VER_DEF_IDX(vd->vd_ndx);
6012 if (vernum > maxvernum)
6013 maxvernum = vernum;
6014 if (vd->vd_next == 0)
6015 break;
6016 vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
6017 }
6018
6019 if (maxvernum == 0)
6020 return (0);
6021
6022 /*
6023 * Store version information in array indexable by version index.
6024 * Verify that object version requirements are satisfied along the
6025 * way.
6026 */
6027 obj->vernum = maxvernum + 1;
6028 obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
6029
6030 vd = obj->verdef;
6031 while (vd != NULL) {
6032 if ((vd->vd_flags & VER_FLG_BASE) == 0) {
6033 vernum = VER_DEF_IDX(vd->vd_ndx);
6034 assert(vernum <= maxvernum);
6035 vda = (const Elf_Verdaux *)((const char *)vd +
6036 vd->vd_aux);
6037 obj->vertab[vernum].hash = vd->vd_hash;
6038 obj->vertab[vernum].name = obj->strtab + vda->vda_name;
6039 obj->vertab[vernum].file = NULL;
6040 obj->vertab[vernum].flags = 0;
6041 }
6042 if (vd->vd_next == 0)
6043 break;
6044 vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
6045 }
6046
6047 vn = obj->verneed;
6048 while (vn != NULL) {
6049 depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
6050 if (depobj == NULL)
6051 return (-1);
6052 vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
6053 for (;;) {
6054 if (check_object_provided_version(obj, depobj, vna))
6055 return (-1);
6056 vernum = VER_NEED_IDX(vna->vna_other);
6057 assert(vernum <= maxvernum);
6058 obj->vertab[vernum].hash = vna->vna_hash;
6059 obj->vertab[vernum].name = obj->strtab + vna->vna_name;
6060 obj->vertab[vernum].file = obj->strtab + vn->vn_file;
6061 obj->vertab[vernum].flags = (vna->vna_other &
6062 VER_NEED_HIDDEN) != 0 ? VER_INFO_HIDDEN : 0;
6063 if (vna->vna_next == 0)
6064 break;
6065 vna = (const Elf_Vernaux *)((const char *)vna +
6066 vna->vna_next);
6067 }
6068 if (vn->vn_next == 0)
6069 break;
6070 vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
6071 }
6072 return (0);
6073 }
6074
6075 static int
rtld_verify_versions(const Objlist * objlist)6076 rtld_verify_versions(const Objlist *objlist)
6077 {
6078 Objlist_Entry *entry;
6079 int rc;
6080
6081 rc = 0;
6082 STAILQ_FOREACH(entry, objlist, link) {
6083 /*
6084 * Skip dummy objects or objects that have their version
6085 * requirements already checked.
6086 */
6087 if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
6088 continue;
6089 if (rtld_verify_object_versions(entry->obj) == -1) {
6090 rc = -1;
6091 if (ld_tracing == NULL)
6092 break;
6093 }
6094 }
6095 if (rc == 0 || ld_tracing != NULL)
6096 rc = rtld_verify_object_versions(&obj_rtld);
6097 return (rc);
6098 }
6099
6100 const Ver_Entry *
fetch_ventry(const Obj_Entry * obj,unsigned long symnum)6101 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
6102 {
6103 Elf_Versym vernum;
6104
6105 if (obj->vertab) {
6106 vernum = VER_NDX(obj->versyms[symnum]);
6107 if (vernum >= obj->vernum) {
6108 _rtld_error("%s: symbol %s has wrong verneed value %d",
6109 obj->path, obj->strtab + symnum, vernum);
6110 } else if (obj->vertab[vernum].hash != 0) {
6111 return (&obj->vertab[vernum]);
6112 }
6113 }
6114 return (NULL);
6115 }
6116
6117 int
_rtld_get_stack_prot(void)6118 _rtld_get_stack_prot(void)
6119 {
6120 return (stack_prot);
6121 }
6122
6123 int
_rtld_is_dlopened(void * arg)6124 _rtld_is_dlopened(void *arg)
6125 {
6126 Obj_Entry *obj;
6127 RtldLockState lockstate;
6128 int res;
6129
6130 rlock_acquire(rtld_bind_lock, &lockstate);
6131 obj = dlcheck(arg);
6132 if (obj == NULL)
6133 obj = obj_from_addr(arg);
6134 if (obj == NULL) {
6135 _rtld_error("No shared object contains address");
6136 lock_release(rtld_bind_lock, &lockstate);
6137 return (-1);
6138 }
6139 res = obj->dlopened ? 1 : 0;
6140 lock_release(rtld_bind_lock, &lockstate);
6141 return (res);
6142 }
6143
6144 static int
obj_remap_relro(Obj_Entry * obj,int prot)6145 obj_remap_relro(Obj_Entry *obj, int prot)
6146 {
6147 const Elf_Phdr *ph;
6148 caddr_t relro_page;
6149 size_t relro_size;
6150
6151 for (ph = obj->phdr; (const char *)ph < (const char *)obj->phdr +
6152 obj->phsize; ph++) {
6153 if (ph->p_type != PT_GNU_RELRO)
6154 continue;
6155 relro_page = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
6156 relro_size = rtld_round_page(ph->p_vaddr + ph->p_memsz) -
6157 rtld_trunc_page(ph->p_vaddr);
6158 if (mprotect(relro_page, relro_size, prot) == -1) {
6159 _rtld_error(
6160 "%s: Cannot set relro protection to %#x: %s",
6161 obj->path, prot, rtld_strerror(errno));
6162 return (-1);
6163 }
6164 break;
6165 }
6166 return (0);
6167 }
6168
6169 static int
obj_disable_relro(Obj_Entry * obj)6170 obj_disable_relro(Obj_Entry *obj)
6171 {
6172 return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
6173 }
6174
6175 static int
obj_enforce_relro(Obj_Entry * obj)6176 obj_enforce_relro(Obj_Entry *obj)
6177 {
6178 return (obj_remap_relro(obj, PROT_READ));
6179 }
6180
6181 static void
map_stacks_exec(RtldLockState * lockstate)6182 map_stacks_exec(RtldLockState *lockstate)
6183 {
6184 void (*thr_map_stacks_exec)(void);
6185
6186 if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
6187 return;
6188 thr_map_stacks_exec = (void (*)(void))(
6189 uintptr_t)get_program_var_addr("__pthread_map_stacks_exec",
6190 lockstate);
6191 if (thr_map_stacks_exec != NULL) {
6192 stack_prot |= PROT_EXEC;
6193 thr_map_stacks_exec();
6194 }
6195 }
6196
6197 static void
distribute_static_tls(Objlist * list)6198 distribute_static_tls(Objlist *list)
6199 {
6200 struct tcb_list_entry *tcbelm;
6201 Objlist_Entry *objelm;
6202 struct tcb *tcb;
6203 Obj_Entry *obj;
6204 char *tlsbase;
6205
6206 STAILQ_FOREACH(objelm, list, link) {
6207 obj = objelm->obj;
6208 if (obj->marker || !obj->tls_static || obj->static_tls_copied)
6209 continue;
6210 TAILQ_FOREACH(tcbelm, &tcb_list, next) {
6211 tcb = tcb_from_tcb_list_entry(tcbelm);
6212 #ifdef TLS_VARIANT_I
6213 tlsbase = (char *)tcb + obj->tlsoffset;
6214 #else
6215 tlsbase = (char *)tcb - obj->tlsoffset;
6216 #endif
6217 memcpy(tlsbase, obj->tlsinit, obj->tlsinitsize);
6218 memset(tlsbase + obj->tlsinitsize, 0,
6219 obj->tlssize - obj->tlsinitsize);
6220 }
6221 obj->static_tls_copied = true;
6222 }
6223 }
6224
6225 void
symlook_init(SymLook * dst,const char * name)6226 symlook_init(SymLook *dst, const char *name)
6227 {
6228 bzero(dst, sizeof(*dst));
6229 dst->name = name;
6230 dst->hash = elf_hash(name);
6231 dst->hash_gnu = gnu_hash(name);
6232 }
6233
6234 static void
symlook_init_from_req(SymLook * dst,const SymLook * src)6235 symlook_init_from_req(SymLook *dst, const SymLook *src)
6236 {
6237 dst->name = src->name;
6238 dst->hash = src->hash;
6239 dst->hash_gnu = src->hash_gnu;
6240 dst->ventry = src->ventry;
6241 dst->flags = src->flags;
6242 dst->defobj_out = NULL;
6243 dst->sym_out = NULL;
6244 dst->lockstate = src->lockstate;
6245 }
6246
6247 static int
open_binary_fd(const char * argv0,bool search_in_path,const char ** binpath_res)6248 open_binary_fd(const char *argv0, bool search_in_path, const char **binpath_res)
6249 {
6250 char *binpath, *pathenv, *pe, *res1;
6251 const char *res;
6252 int fd;
6253
6254 binpath = NULL;
6255 res = NULL;
6256 if (search_in_path && strchr(argv0, '/') == NULL) {
6257 binpath = xmalloc(PATH_MAX);
6258 pathenv = getenv("PATH");
6259 if (pathenv == NULL) {
6260 _rtld_error("-p and no PATH environment variable");
6261 rtld_die();
6262 }
6263 pathenv = strdup(pathenv);
6264 if (pathenv == NULL) {
6265 _rtld_error("Cannot allocate memory");
6266 rtld_die();
6267 }
6268 fd = -1;
6269 errno = ENOENT;
6270 while ((pe = strsep(&pathenv, ":")) != NULL) {
6271 if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
6272 continue;
6273 if (binpath[0] != '\0' &&
6274 strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
6275 continue;
6276 if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
6277 continue;
6278 fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
6279 if (fd != -1 || errno != ENOENT) {
6280 res = binpath;
6281 break;
6282 }
6283 }
6284 free(pathenv);
6285 } else {
6286 fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
6287 res = argv0;
6288 }
6289
6290 if (fd == -1) {
6291 _rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
6292 rtld_die();
6293 }
6294 if (res != NULL && res[0] != '/') {
6295 res1 = xmalloc(PATH_MAX);
6296 if (realpath(res, res1) != NULL) {
6297 if (res != argv0)
6298 free(__DECONST(char *, res));
6299 res = res1;
6300 } else {
6301 free(res1);
6302 }
6303 }
6304 *binpath_res = res;
6305 return (fd);
6306 }
6307
6308 /*
6309 * Parse a set of command-line arguments.
6310 */
6311 static int
parse_args(char * argv[],int argc,bool * use_pathp,int * fdp,const char ** argv0,bool * dir_ignore)6312 parse_args(char *argv[], int argc, bool *use_pathp, int *fdp,
6313 const char **argv0, bool *dir_ignore)
6314 {
6315 const char *arg;
6316 char machine[64];
6317 size_t sz;
6318 int arglen, fd, i, j, mib[2];
6319 char opt;
6320 bool seen_b, seen_f;
6321
6322 dbg("Parsing command-line arguments");
6323 *use_pathp = false;
6324 *fdp = -1;
6325 *dir_ignore = false;
6326 seen_b = seen_f = false;
6327
6328 for (i = 1; i < argc; i++) {
6329 arg = argv[i];
6330 dbg("argv[%d]: '%s'", i, arg);
6331
6332 /*
6333 * rtld arguments end with an explicit "--" or with the first
6334 * non-prefixed argument.
6335 */
6336 if (strcmp(arg, "--") == 0) {
6337 i++;
6338 break;
6339 }
6340 if (arg[0] != '-')
6341 break;
6342
6343 /*
6344 * All other arguments are single-character options that can
6345 * be combined, so we need to search through `arg` for them.
6346 */
6347 arglen = strlen(arg);
6348 for (j = 1; j < arglen; j++) {
6349 opt = arg[j];
6350 if (opt == 'h') {
6351 print_usage(argv[0]);
6352 _exit(0);
6353 } else if (opt == 'b') {
6354 if (seen_f) {
6355 _rtld_error("Both -b and -f specified");
6356 rtld_die();
6357 }
6358 if (j != arglen - 1) {
6359 _rtld_error("Invalid options: %s", arg);
6360 rtld_die();
6361 }
6362 i++;
6363 *argv0 = argv[i];
6364 seen_b = true;
6365 break;
6366 } else if (opt == 'd') {
6367 *dir_ignore = true;
6368 } else if (opt == 'f') {
6369 if (seen_b) {
6370 _rtld_error("Both -b and -f specified");
6371 rtld_die();
6372 }
6373
6374 /*
6375 * -f XX can be used to specify a
6376 * descriptor for the binary named at
6377 * the command line (i.e., the later
6378 * argument will specify the process
6379 * name but the descriptor is what
6380 * will actually be executed).
6381 *
6382 * -f must be the last option in the
6383 * group, e.g., -abcf <fd>.
6384 */
6385 if (j != arglen - 1) {
6386 _rtld_error("Invalid options: %s", arg);
6387 rtld_die();
6388 }
6389 i++;
6390 fd = parse_integer(argv[i]);
6391 if (fd == -1) {
6392 _rtld_error(
6393 "Invalid file descriptor: '%s'",
6394 argv[i]);
6395 rtld_die();
6396 }
6397 *fdp = fd;
6398 seen_f = true;
6399 break;
6400 } else if (opt == 'o') {
6401 struct ld_env_var_desc *l;
6402 char *n, *v;
6403 u_int ll;
6404
6405 if (j != arglen - 1) {
6406 _rtld_error("Invalid options: %s", arg);
6407 rtld_die();
6408 }
6409 i++;
6410 n = argv[i];
6411 v = strchr(n, '=');
6412 if (v == NULL) {
6413 _rtld_error("No '=' in -o parameter");
6414 rtld_die();
6415 }
6416 for (ll = 0; ll < nitems(ld_env_vars); ll++) {
6417 l = &ld_env_vars[ll];
6418 if (v - n == (ptrdiff_t)strlen(l->n) &&
6419 strncmp(n, l->n, v - n) == 0) {
6420 l->val = v + 1;
6421 break;
6422 }
6423 }
6424 if (ll == nitems(ld_env_vars)) {
6425 _rtld_error("Unknown LD_ option %s", n);
6426 rtld_die();
6427 }
6428 } else if (opt == 'p') {
6429 *use_pathp = true;
6430 } else if (opt == 'u') {
6431 u_int ll;
6432
6433 for (ll = 0; ll < nitems(ld_env_vars); ll++)
6434 ld_env_vars[ll].val = NULL;
6435 } else if (opt == 'v') {
6436 machine[0] = '\0';
6437 mib[0] = CTL_HW;
6438 mib[1] = HW_MACHINE;
6439 sz = sizeof(machine);
6440 sysctl(mib, nitems(mib), machine, &sz, NULL, 0);
6441 ld_elf_hints_path = ld_get_env_var(
6442 LD_ELF_HINTS_PATH);
6443 set_ld_elf_hints_path();
6444 rtld_printf(
6445 "FreeBSD ld-elf.so.1 %s\n"
6446 "FreeBSD_version %d\n"
6447 "Default lib path %s\n"
6448 "Hints lib path %s\n"
6449 "Env prefix %s\n"
6450 "Default hint file %s\n"
6451 "Hint file %s\n"
6452 "libmap file %s\n"
6453 "Optional static TLS size %zd bytes\n",
6454 machine, __FreeBSD_version,
6455 ld_standard_library_path, gethints(false),
6456 ld_env_prefix, ld_elf_hints_default,
6457 ld_elf_hints_path, ld_path_libmap_conf,
6458 ld_static_tls_extra);
6459 _exit(0);
6460 } else {
6461 _rtld_error("Invalid argument: '%s'", arg);
6462 print_usage(argv[0]);
6463 rtld_die();
6464 }
6465 }
6466 }
6467
6468 if (!seen_b)
6469 *argv0 = argv[i];
6470 return (i);
6471 }
6472
6473 /*
6474 * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
6475 */
6476 static int
parse_integer(const char * str)6477 parse_integer(const char *str)
6478 {
6479 static const int RADIX = 10; /* XXXJA: possibly support hex? */
6480 const char *orig;
6481 int n;
6482 char c;
6483
6484 orig = str;
6485 n = 0;
6486 for (c = *str; c != '\0'; c = *++str) {
6487 if (c < '0' || c > '9')
6488 return (-1);
6489
6490 n *= RADIX;
6491 n += c - '0';
6492 }
6493
6494 /* Make sure we actually parsed something. */
6495 if (str == orig)
6496 return (-1);
6497 return (n);
6498 }
6499
6500 static void
print_usage(const char * argv0)6501 print_usage(const char *argv0)
6502 {
6503 rtld_printf(
6504 "Usage: %s [-h] [-b <exe>] [-d] [-f <FD>] [-p] [--] <binary> [<args>]\n"
6505 "\n"
6506 "Options:\n"
6507 " -h Display this help message\n"
6508 " -b <exe> Execute <exe> instead of <binary>, arg0 is <binary>\n"
6509 " -d Ignore lack of exec permissions for the binary\n"
6510 " -f <FD> Execute <FD> instead of searching for <binary>\n"
6511 " -o <OPT>=<VAL> Set LD_<OPT> to <VAL>, without polluting env\n"
6512 " -p Search in PATH for named binary\n"
6513 " -u Ignore LD_ environment variables\n"
6514 " -v Display identification information\n"
6515 " -- End of RTLD options\n"
6516 " <binary> Name of process to execute\n"
6517 " <args> Arguments to the executed process\n",
6518 argv0);
6519 }
6520
6521 #define AUXFMT(at, xfmt) [at] = { .name = #at, .fmt = xfmt }
6522 static const struct auxfmt {
6523 const char *name;
6524 const char *fmt;
6525 } auxfmts[] = {
6526 AUXFMT(AT_NULL, NULL),
6527 AUXFMT(AT_IGNORE, NULL),
6528 AUXFMT(AT_EXECFD, "%ld"),
6529 AUXFMT(AT_PHDR, "%p"),
6530 AUXFMT(AT_PHENT, "%lu"),
6531 AUXFMT(AT_PHNUM, "%lu"),
6532 AUXFMT(AT_PAGESZ, "%lu"),
6533 AUXFMT(AT_BASE, "%#lx"),
6534 AUXFMT(AT_FLAGS, "%#lx"),
6535 AUXFMT(AT_ENTRY, "%p"),
6536 AUXFMT(AT_NOTELF, NULL),
6537 AUXFMT(AT_UID, "%ld"),
6538 AUXFMT(AT_EUID, "%ld"),
6539 AUXFMT(AT_GID, "%ld"),
6540 AUXFMT(AT_EGID, "%ld"),
6541 AUXFMT(AT_EXECPATH, "%s"),
6542 AUXFMT(AT_CANARY, "%p"),
6543 AUXFMT(AT_CANARYLEN, "%lu"),
6544 AUXFMT(AT_OSRELDATE, "%lu"),
6545 AUXFMT(AT_NCPUS, "%lu"),
6546 AUXFMT(AT_PAGESIZES, "%p"),
6547 AUXFMT(AT_PAGESIZESLEN, "%lu"),
6548 AUXFMT(AT_TIMEKEEP, "%p"),
6549 AUXFMT(AT_STACKPROT, "%#lx"),
6550 AUXFMT(AT_EHDRFLAGS, "%#lx"),
6551 AUXFMT(AT_HWCAP, "%#lx"),
6552 AUXFMT(AT_HWCAP2, "%#lx"),
6553 AUXFMT(AT_BSDFLAGS, "%#lx"),
6554 AUXFMT(AT_ARGC, "%lu"),
6555 AUXFMT(AT_ARGV, "%p"),
6556 AUXFMT(AT_ENVC, "%p"),
6557 AUXFMT(AT_ENVV, "%p"),
6558 AUXFMT(AT_PS_STRINGS, "%p"),
6559 AUXFMT(AT_FXRNG, "%p"),
6560 AUXFMT(AT_KPRELOAD, "%p"),
6561 AUXFMT(AT_USRSTACKBASE, "%#lx"),
6562 AUXFMT(AT_USRSTACKLIM, "%#lx"),
6563 /* AT_CHERI_STATS */
6564 AUXFMT(AT_HWCAP3, "%#lx"),
6565 AUXFMT(AT_HWCAP4, "%#lx"),
6566
6567 };
6568
6569 static bool
is_ptr_fmt(const char * fmt)6570 is_ptr_fmt(const char *fmt)
6571 {
6572 char last;
6573
6574 last = fmt[strlen(fmt) - 1];
6575 return (last == 'p' || last == 's');
6576 }
6577
6578 static void
dump_auxv(Elf_Auxinfo ** aux_info)6579 dump_auxv(Elf_Auxinfo **aux_info)
6580 {
6581 Elf_Auxinfo *auxp;
6582 const struct auxfmt *fmt;
6583 int i;
6584
6585 for (i = 0; i < AT_COUNT; i++) {
6586 auxp = aux_info[i];
6587 if (auxp == NULL)
6588 continue;
6589 fmt = &auxfmts[i];
6590 if (fmt->fmt == NULL)
6591 continue;
6592 rtld_fdprintf(STDOUT_FILENO, "%s:\t", fmt->name);
6593 if (is_ptr_fmt(fmt->fmt)) {
6594 rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6595 auxp->a_un.a_ptr);
6596 } else {
6597 rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6598 auxp->a_un.a_val);
6599 }
6600 rtld_fdprintf(STDOUT_FILENO, "\n");
6601 }
6602 }
6603
6604 const char *
rtld_get_var(const char * name)6605 rtld_get_var(const char *name)
6606 {
6607 const struct ld_env_var_desc *lvd;
6608 u_int i;
6609
6610 for (i = 0; i < nitems(ld_env_vars); i++) {
6611 lvd = &ld_env_vars[i];
6612 if (strcmp(lvd->n, name) == 0)
6613 return (lvd->val);
6614 }
6615 return (NULL);
6616 }
6617
6618 int
rtld_set_var(const char * name,const char * val)6619 rtld_set_var(const char *name, const char *val)
6620 {
6621 struct ld_env_var_desc *lvd;
6622 u_int i;
6623
6624 for (i = 0; i < nitems(ld_env_vars); i++) {
6625 lvd = &ld_env_vars[i];
6626 if (strcmp(lvd->n, name) != 0)
6627 continue;
6628 if (!lvd->can_update || (lvd->unsecure && !trust))
6629 return (EPERM);
6630 if (lvd->owned)
6631 free(__DECONST(char *, lvd->val));
6632 if (val != NULL)
6633 lvd->val = xstrdup(val);
6634 else
6635 lvd->val = NULL;
6636 lvd->owned = true;
6637 if (lvd->debug)
6638 debug = lvd->val != NULL && *lvd->val != '\0';
6639 return (0);
6640 }
6641 return (ENOENT);
6642 }
6643
6644 /*
6645 * Overrides for libc_pic-provided functions.
6646 */
6647
6648 int
__getosreldate(void)6649 __getosreldate(void)
6650 {
6651 size_t len;
6652 int oid[2];
6653 int error, osrel;
6654
6655 if (osreldate != 0)
6656 return (osreldate);
6657
6658 oid[0] = CTL_KERN;
6659 oid[1] = KERN_OSRELDATE;
6660 osrel = 0;
6661 len = sizeof(osrel);
6662 error = sysctl(oid, 2, &osrel, &len, NULL, 0);
6663 if (error == 0 && osrel > 0 && len == sizeof(osrel))
6664 osreldate = osrel;
6665 return (osreldate);
6666 }
6667 const char *
rtld_strerror(int errnum)6668 rtld_strerror(int errnum)
6669 {
6670 if (errnum < 0 || errnum >= sys_nerr)
6671 return ("Unknown error");
6672 return (sys_errlist[errnum]);
6673 }
6674
6675 char *
getenv(const char * name)6676 getenv(const char *name)
6677 {
6678 return (__DECONST(char *, rtld_get_env_val(environ, name,
6679 strlen(name))));
6680 }
6681
6682 /* malloc */
6683 void *
malloc(size_t nbytes)6684 malloc(size_t nbytes)
6685 {
6686 return (__crt_malloc(nbytes));
6687 }
6688
6689 void *
calloc(size_t num,size_t size)6690 calloc(size_t num, size_t size)
6691 {
6692 return (__crt_calloc(num, size));
6693 }
6694
6695 void
free(void * cp)6696 free(void *cp)
6697 {
6698 __crt_free(cp);
6699 }
6700
6701 void *
realloc(void * cp,size_t nbytes)6702 realloc(void *cp, size_t nbytes)
6703 {
6704 return (__crt_realloc(cp, nbytes));
6705 }
6706
6707 extern int _rtld_version__FreeBSD_version __exported;
6708 int _rtld_version__FreeBSD_version = __FreeBSD_version;
6709
6710 extern char _rtld_version_laddr_offset __exported;
6711 char _rtld_version_laddr_offset;
6712
6713 extern char _rtld_version_dlpi_tls_data __exported;
6714 char _rtld_version_dlpi_tls_data;
6715