xref: /illumos-gate/usr/src/uts/common/io/pciex/pcie.c (revision 9151f8f1317aea334cb8686b8543b1666a2824bd)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2019 Joyent, Inc.
25  * Copyright 2024 Oxide Computer Company
26  */
27 
28 /*
29  * PCIe Initialization
30  * -------------------
31  *
32  * The PCIe subsystem is split about and initializes itself in a couple of
33  * different places. This is due to the platform-specific nature of initializing
34  * resources and the nature of the SPARC PROM and how that influenced the
35  * subsystem. Note that traditional PCI (mostly seen these days in Virtual
36  * Machines) follows most of the same basic path outlined here, but skips a
37  * large chunk of PCIe-specific initialization.
38  *
39  * First, there is an initial device discovery phase that is taken care of by
40  * the platform. This is where we discover the set of devices that are present
41  * at system power on. These devices may or may not be hot-pluggable. In
42  * particular, this happens in a platform-specific way right now. In general, we
43  * expect most discovery to be driven by scanning each bus, device, and
44  * function, and seeing what actually exists and responds to configuration space
45  * reads. This is driven via pci_boot.c on x86. This may be seeded by something
46  * like device tree, a PROM, supplemented with ACPI, or by knowledge that the
47  * underlying platform has.
48  *
49  * As a part of this discovery process, the full set of resources that exist in
50  * the system for PCIe are:
51  *
52  *   o PCI buses
53  *   o Prefetchable Memory
54  *   o Non-prefetchable memory
55  *   o I/O ports
56  *
57  * This process is driven by a platform's PCI platform Resource Discovery (PRD)
58  * module. The PRD definitions can be found in <sys/plat/pci_prd.h> and are used
59  * to discover these resources, which will be converted into the initial set of
60  * the standard properties in the system: 'regs', 'available', 'ranges', etc.
61  * Currently it is up to platform-specific code (which should ideally be
62  * consolidated at some point) to set up all these properties.
63  *
64  * As a part of the discovery process, the platform code will create a device
65  * node (dev_info_t) for each discovered function and will create a PCIe nexus
66  * for each overall root complex that exists in the system. Most root complexes
67  * will have multiple root ports, each of which is the foundation of an
68  * independent PCIe bus due to the point-to-point nature of PCIe. When a root
69  * complex is found, a nexus driver such as npe (Nexus for PCIe Express) is
70  * attached. In the case of a non-PCIe-capable system this is where the older
71  * pci nexus driver would be used instead.
72  *
73  * To track data about a given device on a bus, a 'pcie_bus_t' structure is
74  * created for and assigned to every PCIe-based dev_info_t. This can be used to
75  * find the root port and get basic information about the device, its faults,
76  * and related information. This contains pointers to the corresponding root
77  * port as well.
78  *
79  * A root complex has its pcie_bus_t initialized as part of the device discovery
80  * process. That is, because we're trying to bootstrap the actual tree and most
81  * platforms don't have a representation for this that's explicitly
82  * discoverable, this is created manually. See callers of pcie_rc_init_bus().
83  *
84  * For other devices, bridges, and switches, the process is split into two.
85  * There is an initial pcie_bus_t that is created which will exist before we go
86  * through the actual driver attachment process. For example, on x86 this is
87  * done as part of the device and function discovery. The second pass of
88  * initialization is done only after the nexus driver actually is attached and
89  * it goes through and finishes processing all of its children.
90  *
91  * Child Initialization
92  * --------------------
93  *
94  * Generally speaking, the platform will first enumerate all PCIe devices that
95  * are in the sytem before it actually creates a device tree. This is part of
96  * the bus/device/function scanning that is performed and from that dev_info_t
97  * nodes are created for each discovered device and are inserted into the
98  * broader device tree. Later in boot, the actual device tree is walked and the
99  * nodes go through the standard dev_info_t initialization process (DS_PROTO,
100  * DS_LINKED, DS_BOUND, etc.).
101  *
102  * PCIe-specific initialization can roughly be broken into the following pieces:
103  *
104  *   1. Platform initial discovery and resource assignment
105  *   2. The pcie_bus_t initialization
106  *   3. Nexus driver child initialization
107  *   4. Fabric initialization
108  *   5. Device driver-specific initialization
109  *
110  * The first part of this (1) and (2) are discussed in the previous section.
111  * Part (1) in particular is a combination of the PRD (platform resource
112  * discovery) and general device initialization. After this, because we have a
113  * device tree, most of the standard nexus initialization happens.
114  *
115  * (5) is somewhat simple, so let's get into it before we discuss (3) and (4).
116  * This is the last thing that is called and that happens after all of the
117  * others are done. This is the logic that occurs in a driver's attach(9E) entry
118  * point. This is always device-specific and generally speaking should not be
119  * manipulating standard PCIe registers directly on their own. For example, the
120  * MSI/MSI-X, AER, Serial Number, etc. capabilities will be automatically dealt
121  * with by the framework in (3) and (4) below. In many cases, particularly
122  * things that are part of (4), adjusting them in the individual driver is not
123  * safe.
124  *
125  * Finally, let's talk about (3) and (4) as these are related. The NDI provides
126  * for a standard hook for a nexus to initialize its children. In our platforms,
127  * there are basically two possible PCIe nexus drivers: there is the generic
128  * pcieb -- PCIe bridge -- driver which is used for standard root ports,
129  * switches, etc. Then there is the platform-specific primary nexus driver,
130  * which is being slowly consolidated into a single one where it makes sense. An
131  * example of this is npe.
132  *
133  * Each of these has a child initialization function which is called from their
134  * DDI_CTLOPS_INITCHILD operation on the bus_ctl function pointer. This goes
135  * through and initializes a large number of different pieces of PCIe-based
136  * settings through the common pcie_initchild() function. This takes care of
137  * things like:
138  *
139  *   o Advanced Error Reporting
140  *   o Alternative Routing
141  *   o Capturing information around link speed, width, serial numbers, etc.
142  *   o Setting common properties around aborts
143  *
144  * There are a few caveats with this that need to be kept in mind:
145  *
146  *   o A dev_info_t indicates a specific function. This means that a
147  *     multi-function device will not all be initialized at the same time and
148  *     there is no guarantee that all children will be initialized before one of
149  *     them is attached.
150  *   o A child is only initialized if we have found a driver that matches an
151  *     alias in the dev_info_t's compatible array property.  While a lot of
152  *     multi-function devices are often multiple instances of the same thing
153  *     (e.g. a multi-port NIC with a function / NIC), this is not always the
154  *     case and one cannot make any assumptions here.
155  *
156  * This in turn leads to the next form of initialization that takes place in the
157  * case of (4). This is where we take care of things that need to be consistent
158  * across either entire devices or more generally across an entire root port and
159  * all of its children. There are a few different examples of this:
160  *
161  *   o Setting the maximum packet size
162  *   o Determining the tag width
163  *
164  * Note that features which are only based on function 0, such as ASPM (Active
165  * State Power Management), hardware autonomous width disable, etc. ultimately
166  * do not go through this path today. There are some implications here in that
167  * today several of these things are captured on functions which may not have
168  * any control here. This is an area of needed improvement.
169  *
170  * The settings in (4) are initialized in a common way, via
171  * pcie_fabric_setup(). This is called into from two different parts of
172  * the stack:
173  *
174  *   1. When we attach a root port, which is driven by pcieb.
175  *   2. When we have a hotplug event that adds a device.
176  *
177  * In general here we are going to use the term 'fabric' to refer to everything
178  * that is downstream of a root port. This corresponds to what the PCIe
179  * specification calls a 'hierarchy domain'. Strictly speaking, this is fine
180  * until peer-to-peer requests begin to happen that cause you to need to forward
181  * things across root ports. At that point the scope of the fabric increases and
182  * these settings become more complicated. We currently optimize for the much
183  * more common case, which is that each root port is effectively independent
184  * from a PCIe transaction routing perspective.
185  *
186  * Put differently, we use the term 'fabric' to refer to a set of PCIe devices
187  * that can route transactions to one another, which is generally constrained to
188  * everything under a root port and that root ports are independent. If this
189  * constraint changes, then all one needs to do is replace the discussion of the
190  * root port below with the broader root complex and system.
191  *
192  * A challenge with these settings is that once they're set and devices are
193  * actively making requests, we cannot really change them without resetting the
194  * links and cancelling all outstanding transactions via device resets. Because
195  * this is not something that we want to do, we instead look at how and when we
196  * set this to constrain what's going on.
197  *
198  * Because of this we basically say that if a given fabric has more than one
199  * hot-plug capable device that's encountered, then we have to use safe defaults
200  * (which we can allow an operator to tune eventually via pcieadm). If we have a
201  * mix of non-hotpluggable slots with downstream endpoints present and
202  * hot-pluggable slots, then we're in this case. If we don't have hot-pluggable
203  * slots, then we can have an arbitrarily complex setup. Let's look at a few of
204  * these visually:
205  *
206  * In the following diagrams, RP stands for Root Port, EP stands for Endpoint.
207  * If something is hot-pluggable, then we label it with (HP).
208  *
209  *   (1) RP --> EP
210  *   (2) RP --> Switch --> EP
211  *                    +--> EP
212  *                    +--> EP
213  *
214  *   (3) RP --> Switch --> EP
215  *                    +--> EP
216  *                    +--> Switch --> EP
217  *                               +--> EP
218  *                    +--> EP
219  *
220  *
221  *   (4) RP (HP) --> EP
222  *   (5) RP (HP) --> Switch --> EP
223  *                         +--> EP
224  *                         +--> EP
225  *
226  *   (6) RP --> Switch (HP) --> EP
227  *   (7) RP (HP) --> Switch (HP) --> EP
228  *
229  * If we look at all of these, these are all cases where it's safe for us to set
230  * things based on all devices. (1), (2), and (3) are straightforward because
231  * they have no hot-pluggable elements. This means that nothing should come/go
232  * on the system and we can set up fabric-wide properties as part of the root
233  * port.
234  *
235  * Case (4) is the most standard one that we encounter for hot-plug. Here you
236  * have a root port directly connected to an endpoint. The most common example
237  * would be an NVMe device plugged into a root port. Case (5) is interesting to
238  * highlight. While there is a switch and multiple endpoints there, they are
239  * showing up as a unit. This ends up being a weirder variant of (4), but it is
240  * safe for us to set advanced properties because we can figure out what the
241  * total set should be.
242  *
243  * Now, the more interesting bits here are (6) and (7). The reason that (6)
244  * works is that ultimately there is only a single down-stream port here that is
245  * hot-pluggable and all non-hotpluggable ports do not have a device present,
246  * which suggests that they will never have a device present. (7) also could be
247  * made to work by making the observation that if there's truly only one
248  * endpoint in a fabric, it doesn't matter how many switches there are that are
249  * hot-pluggable. This would only hold if we can assume for some reason that no
250  * other endpoints could be added.
251  *
252  * In turn, let's look at several cases that we believe aren't safe:
253  *
254  *   (8) RP --> Switch --> EP
255  *                    +--> EP
256  *               (HP) +--> EP
257  *
258  *   (9) RP --> Switch (HP) +--> EP
259  *                     (HP) +--> EP
260  *
261  *   (10) RP (HP) --> Switch (HP) +--> EP
262  *                           (HP) +--> EP
263  *
264  * All of these are situations where it's much more explicitly unsafe. Let's
265  * take (8). The problem here is that the devices on the non-hotpluggable
266  * downstream switches are always there and we should assume all device drivers
267  * will be active and performing I/O when the hot-pluggable slot changes. If the
268  * hot-pluggable slot has a lower max payload size, then we're mostly out of
269  * luck. The case of (9) is very similar to (8), just that we have more hot-plug
270  * capable slots.
271  *
272  * Finally (10) is a case of multiple instances of hotplug. (9) and (10) are the
273  * more general case of (6) and (7). While we can try to detect (6) and (7) more
274  * generally or try to make it safe, we're going to start with a simpler form of
275  * detection for this, which roughly follows the following rules:
276  *
277  *   o If there are no hot-pluggable slots in an entire fabric, then we can set
278  *     all fabric properties based on device capabilities.
279  *   o If we encounter a hot-pluggable slot, we can only set fabric properties
280  *     based on device capabilities if:
281  *
282  *       1. The hotpluggable slot is a root port.
283  *       2. There are no other hotpluggable devices downstream of it.
284  *
285  * Otherwise, if neither of the above is true, then we must use the basic PCIe
286  * defaults for various fabric-wide properties (discussed below). Even in these
287  * more complicated cases, device-specific properties such as the configuration
288  * of AERs, ASPM, etc. are still handled in the general pcie_init_bus() and
289  * related discussed earlier here.
290  *
291  * Because the only fabrics that we'll change are those that correspond to root
292  * ports, we will only call into the actual fabric feature setup when one of
293  * those changes. This has the side effect of simplifying locking. When we make
294  * changes here we need to be able to hold the entire device tree under the root
295  * port (including the root port and its parent). This is much harder to do
296  * safely when starting in the middle of the tree.
297  *
298  * Handling of Specific Properties
299  * -------------------------------
300  *
301  * This section goes into the rationale behind how we initialize and program
302  * various parts of the PCIe stack.
303  *
304  * 5-, 8-, 10- AND 14-BIT TAGS
305  *
306  * Tags are part of PCIe transactions and when combined with a device identifier
307  * are used to uniquely identify a transaction. In PCIe parlance, a Requester
308  * (someone who initiates a PCIe request) sets a unique tag in the request and
309  * the Completer (someone who processes and responds to a PCIe request) echoes
310  * the tag back. This means that a requester generally is responsible for
311  * ensuring that they don't reuse a tag between transactions.
312  *
313  * Thus the number of tags that a device has relates to the number of
314  * outstanding transactions that it can have, which are usually tied to the
315  * number of outstanding DMA transfers. The size of these transactions is also
316  * then scoped by the handling of the Maximum Packet Payload.
317  *
318  * In PCIe 1.0, devices default to a 5-bit tag. There was also an option to
319  * support an 8-bit tag. The 8-bit extended tag did not distinguish between a
320  * Requester or Completer. There was a bit to indicate device support of 8-bit
321  * tags in the Device Capabilities Register of the PCIe Capability and a
322  * separate bit to enable it in the Device Control Register of the PCIe
323  * Capability.
324  *
325  * In PCIe 4.0, support for a 10-bit tag was added. The specification broke
326  * apart the support bit into multiple pieces. In particular, in the Device
327  * Capabilities 2 register of the PCIe Capability there is a separate bit to
328  * indicate whether the device supports 10-bit completions and 10-bit requests.
329  * All PCIe 4.0 compliant devices are required to support 10-bit tags if they
330  * operate at 16.0 GT/s speed (a PCIe Gen 4 compliant device does not have to
331  * operate at Gen 4 speeds).
332  *
333  * This allows a device to support 10-bit completions but not 10-bit requests.
334  * A device that supports 10-bit requests is required to support 10-bit
335  * completions. There is no ability to enable or disable 10-bit completion
336  * support in the Device Capabilities 2 register. There is only a bit to enable
337  * 10-bit requests. This distinction makes our life easier as this means that as
338  * long as the entire fabric supports 10-bit completions, it doesn't matter if
339  * not all devices support 10-bit requests and we can enable them as required.
340  * More on this in a bit.
341  *
342  * In PCIe 6.0, another set of bits was added for 14-bit tags. These follow the
343  * same pattern as the 10-bit tags. The biggest difference is that the
344  * capabilities and control for these are found in the Device Capabilities 3
345  * and Device Control 3 register of the Device 3 Extended Capability. Similar to
346  * what we see with 10-bit tags, requesters are required to support the
347  * completer capability. The only control bit is for whether or not they enable
348  * a 14-bit requester.
349  *
350  * PCIe switches which sit between root ports and endpoints and show up to
351  * software as a set of bridges. Bridges generally don't have to know about tags
352  * as they are usually neither requesters or completers (unless directly talking
353  * to the bridge instance). That is they are generally required to forward
354  * packets without modifying them. This works until we deal with switch error
355  * handling. At that point, the switch may try to interpret the transaction and
356  * if it doesn't understand the tagging scheme in use, return the transaction to
357  * with the wrong tag and also an incorrectly diagnosed error (usually a
358  * malformed TLP).
359  *
360  * With all this, we construct a somewhat simple policy of how and when we
361  * enable extended tags:
362  *
363  *    o If we have a complex hotplug-capable fabric (based on the discussion
364  *      earlier in fabric-specific settings), then we cannot enable any of the
365  *      8-bit, 10-bit, and 14-bit tagging features. This is due to the issues
366  *      with intermediate PCIe switches and related.
367  *
368  *    o If every device supports 8-bit capable tags, then we will go through and
369  *      enable those everywhere.
370  *
371  *    o If every device supports 10-bit capable completions, then we will enable
372  *      10-bit requester on every device that supports it.
373  *
374  *    o If every device supports 14-bit capable completions, then we will enable
375  *      14-bit requesters on every device that supports it.
376  *
377  * This is the simpler end of the policy and one that is relatively easy to
378  * implement. While we could attempt to relax the constraint that every device
379  * in the fabric implement these features by making assumptions about peer-to-
380  * peer requests (that is devices at the same layer in the tree won't talk to
381  * one another), that is a lot of complexity. For now, we leave such an
382  * implementation to those who need it in the future.
383  *
384  * MAX PAYLOAD SIZE
385  *
386  * When performing transactions on the PCIe bus, a given transaction has a
387  * maximum allowed size. This size is called the MPS or 'Maximum Payload Size'.
388  * A given device reports its maximum supported size in the Device Capabilities
389  * register of the PCIe Capability. It is then set in the Device Control
390  * register.
391  *
392  * One of the challenges with this value is that different functions of a device
393  * have independent values, but strictly speaking are required to actually have
394  * the same value programmed in all of them lest device behavior goes awry. When
395  * a device has the ARI (alternative routing ID) capability enabled, then only
396  * function 0 controls the actual payload size.
397  *
398  * The settings for this need to be consistent throughout the fabric. A
399  * Transmitter is not allowed to create a TLP that exceeds its maximum packet
400  * size and a Receiver is not allowed to receive a packet that exceeds its
401  * maximum packet size. In all of these cases, this would result in something
402  * like a malformed TLP error.
403  *
404  * Effectively, this means that everything on a given fabric must have the same
405  * value programmed in its Device Control register for this value. While in the
406  * case of tags, switches generally weren't completers or requesters, here every
407  * device along the path is subject to this. This makes the actual value that we
408  * set throughout the fabric even more important and the constraints of hotplug
409  * even worse to deal with.
410  *
411  * Because a hotplug device can be inserted with any packet size, if we hit
412  * anything other than the simple hotplug cases discussed in the fabric-specific
413  * settings section, then we must use the smallest size of 128 byte payloads.
414  * This is because a device could be plugged in that supports something smaller
415  * than we had otherwise set. If there are other active devices, those could not
416  * be changed without quiescing the entire fabric. As such our algorithm is as
417  * follows:
418  *
419  *     1. Scan the entire fabric, keeping track of the smallest seen MPS in the
420  *        Device Capabilities Register.
421  *     2. If we have a complex fabric, program each Device Control register with
422  *        a 128 byte maximum payload size, otherwise, program it with the
423  *        discovered value.
424  *
425  *
426  * MAX READ REQUEST SIZE
427  *
428  * The maximum read request size (mrrs) is a much more confusing thing when
429  * compared to the maximum payload size counterpart. The maximum payload size
430  * (MPS) above is what restricts the actual size of a TLP. The mrrs value
431  * is used to control part of the behavior of Memory Read Request, which is not
432  * strictly speaking subject to the MPS. A PCIe device is allowed to respond to
433  * a Memory Read Request with less bytes than were actually requested in a
434  * single completion. In general, the default size that a root complex and its
435  * root port will reply to are based around the length of a cache line.
436  *
437  * What this ultimately controls is the number of requests that the Requester
438  * has to make and trades off bandwidth, bus sharing, and related here. For
439  * example, if the maximum read request size is 4 KiB, then the requester would
440  * only issue a single read request asking for 4 KiB. It would still receive
441  * these as multiple packets in units of the MPS. If however, the maximum read
442  * request was only say 512 B, then it would need to make 8 separate requests,
443  * potentially increasing latency. On the other hand, if systems are relying on
444  * total requests for QoS, then it's important to set it to something that's
445  * closer to the actual MPS.
446  *
447  * Traditionally, the OS has not been the most straightforward about this. It's
448  * important to remember that setting this up is also somewhat in the realm of
449  * system firmware. Due to the PCI Firmware specification, the firmware may have
450  * set up a value for not just the MRRS but also the MPS. As such, our logic
451  * basically left the MRRS alone and used whatever the device had there as long
452  * as we weren't shrinking the device's MPS. If we were, then we'd set it to the
453  * MPS. If the device was a root port, then it was just left at a system wide
454  * and PCIe default of 512 bytes.
455  *
456  * If we survey firmware (which isn't easy due to its nature), we have seen most
457  * cases where the firmware just doesn't do anything and leaves it to the
458  * device's default, which is basically just the PCIe default, unless it has a
459  * specific knowledge of something like say wanting to do something for an NVMe
460  * device. The same is generally true of other systems, leaving it at its
461  * default unless otherwise set by a device driver.
462  *
463  * Because this value doesn't really have the same constraints as other fabric
464  * properties, this becomes much simpler and we instead opt to set it as part of
465  * the device node initialization. In addition, there are no real rules about
466  * different functions having different values here as it doesn't really impact
467  * the TLP processing the same way that the MPS does.
468  *
469  * While we should add a fuller way of setting this and allowing operator
470  * override of the MRRS based on things like device class, etc. that is driven
471  * by pcieadm, that is left to the future. For now we opt to that all devices
472  * are kept at their default (512 bytes or whatever firmware left behind) and we
473  * ensure that root ports always have the mrrs set to 512.
474  */
475 
476 #include <sys/sysmacros.h>
477 #include <sys/types.h>
478 #include <sys/kmem.h>
479 #include <sys/modctl.h>
480 #include <sys/ddi.h>
481 #include <sys/sunddi.h>
482 #include <sys/sunndi.h>
483 #include <sys/fm/protocol.h>
484 #include <sys/fm/util.h>
485 #include <sys/promif.h>
486 #include <sys/disp.h>
487 #include <sys/stat.h>
488 #include <sys/file.h>
489 #include <sys/pci_cap.h>
490 #include <sys/pci_impl.h>
491 #include <sys/pcie_impl.h>
492 #include <sys/hotplug/pci/pcie_hp.h>
493 #include <sys/hotplug/pci/pciehpc.h>
494 #include <sys/hotplug/pci/pcishpc.h>
495 #include <sys/hotplug/pci/pcicfg.h>
496 #include <sys/pci_cfgacc.h>
497 #include <sys/sysevent.h>
498 #include <sys/sysevent/eventdefs.h>
499 #include <sys/sysevent/pcie.h>
500 
501 /* Local functions prototypes */
502 static void pcie_init_pfd(dev_info_t *);
503 static void pcie_fini_pfd(dev_info_t *);
504 
505 #ifdef DEBUG
506 uint_t pcie_debug_flags = 0;
507 static void pcie_print_bus(pcie_bus_t *bus_p);
508 void pcie_dbg(char *fmt, ...);
509 #endif /* DEBUG */
510 
511 /* Variable to control default PCI-Express config settings */
512 ushort_t pcie_command_default =
513     PCI_COMM_SERR_ENABLE |
514     PCI_COMM_WAIT_CYC_ENAB |
515     PCI_COMM_PARITY_DETECT |
516     PCI_COMM_ME |
517     PCI_COMM_MAE |
518     PCI_COMM_IO;
519 
520 /* xxx_fw are bits that are controlled by FW and should not be modified */
521 ushort_t pcie_command_default_fw =
522     PCI_COMM_SPEC_CYC |
523     PCI_COMM_MEMWR_INVAL |
524     PCI_COMM_PALETTE_SNOOP |
525     PCI_COMM_WAIT_CYC_ENAB |
526     0xF800; /* Reserved Bits */
527 
528 ushort_t pcie_bdg_command_default_fw =
529     PCI_BCNF_BCNTRL_ISA_ENABLE |
530     PCI_BCNF_BCNTRL_VGA_ENABLE |
531     0xF000; /* Reserved Bits */
532 
533 /* PCI-Express Base error defaults */
534 ushort_t pcie_base_err_default =
535     PCIE_DEVCTL_CE_REPORTING_EN |
536     PCIE_DEVCTL_NFE_REPORTING_EN |
537     PCIE_DEVCTL_FE_REPORTING_EN |
538     PCIE_DEVCTL_UR_REPORTING_EN;
539 
540 /*
541  * This contains default values and masks that are used to manipulate the device
542  * control register and ensure that it is in a normal state. The mask controls
543  * things that are managed by pcie_fabric_setup(), firmware, or other sources
544  * and therefore should be preserved unless we're explicitly trying to change
545  * it.
546  */
547 uint16_t pcie_devctl_default = PCIE_DEVCTL_RO_EN | PCIE_DEVCTL_MAX_READ_REQ_512;
548 uint16_t pcie_devctl_default_mask = PCIE_DEVCTL_MAX_READ_REQ_MASK |
549     PCIE_DEVCTL_MAX_PAYLOAD_MASK | PCIE_DEVCTL_EXT_TAG_FIELD_EN;
550 
551 /* PCI-Express AER Root Control Register */
552 #define	PCIE_ROOT_SYS_ERR	(PCIE_ROOTCTL_SYS_ERR_ON_CE_EN | \
553 				PCIE_ROOTCTL_SYS_ERR_ON_NFE_EN | \
554 				PCIE_ROOTCTL_SYS_ERR_ON_FE_EN)
555 
556 ushort_t pcie_root_ctrl_default =
557     PCIE_ROOTCTL_SYS_ERR_ON_CE_EN |
558     PCIE_ROOTCTL_SYS_ERR_ON_NFE_EN |
559     PCIE_ROOTCTL_SYS_ERR_ON_FE_EN;
560 
561 /* PCI-Express Root Error Command Register */
562 ushort_t pcie_root_error_cmd_default =
563     PCIE_AER_RE_CMD_CE_REP_EN |
564     PCIE_AER_RE_CMD_NFE_REP_EN |
565     PCIE_AER_RE_CMD_FE_REP_EN;
566 
567 /* ECRC settings in the PCIe AER Control Register */
568 uint32_t pcie_ecrc_value =
569     PCIE_AER_CTL_ECRC_GEN_ENA |
570     PCIE_AER_CTL_ECRC_CHECK_ENA;
571 
572 /*
573  * If a particular platform wants to disable certain errors such as UR/MA,
574  * instead of using #defines have the platform's PCIe Root Complex driver set
575  * these masks using the pcie_get_XXX_mask and pcie_set_XXX_mask functions.  For
576  * x86 the closest thing to a PCIe root complex driver is NPE.	For SPARC the
577  * closest PCIe root complex driver is PX.
578  *
579  * pcie_serr_disable_flag : disable SERR only (in RCR and command reg) x86
580  * systems may want to disable SERR in general.  For root ports, enabling SERR
581  * causes NMIs which are not handled and results in a watchdog timeout error.
582  */
583 uint32_t pcie_aer_uce_mask = 0;		/* AER UE Mask */
584 uint32_t pcie_aer_ce_mask = 0;		/* AER CE Mask */
585 uint32_t pcie_aer_suce_mask = 0;	/* AER Secondary UE Mask */
586 uint32_t pcie_serr_disable_flag = 0;	/* Disable SERR */
587 
588 /* Default severities needed for eversholt.  Error handling doesn't care */
589 uint32_t pcie_aer_uce_severity = PCIE_AER_UCE_MTLP | PCIE_AER_UCE_RO | \
590     PCIE_AER_UCE_FCP | PCIE_AER_UCE_SD | PCIE_AER_UCE_DLP | \
591     PCIE_AER_UCE_TRAINING;
592 uint32_t pcie_aer_suce_severity = PCIE_AER_SUCE_SERR_ASSERT | \
593     PCIE_AER_SUCE_UC_ADDR_ERR | PCIE_AER_SUCE_UC_ATTR_ERR | \
594     PCIE_AER_SUCE_USC_MSG_DATA_ERR;
595 
596 int pcie_disable_ari = 0;
597 
598 /*
599  * On some platforms, such as the AMD B450 chipset, we've seen an odd
600  * relationship between enabling link bandwidth notifications and AERs about
601  * ECRC errors. This provides a mechanism to disable it.
602  */
603 int pcie_disable_lbw = 0;
604 
605 /*
606  * Amount of time to wait for an in-progress retraining. The default is to try
607  * 500 times in 10ms chunks, thus a total of 5s.
608  */
609 uint32_t pcie_link_retrain_count = 500;
610 uint32_t pcie_link_retrain_delay_ms = 10;
611 
612 taskq_t *pcie_link_tq;
613 kmutex_t pcie_link_tq_mutex;
614 
615 static int pcie_link_bw_intr(dev_info_t *);
616 static void pcie_capture_speeds(dev_info_t *);
617 
618 dev_info_t *pcie_get_rc_dip(dev_info_t *dip);
619 
620 /*
621  * modload support
622  */
623 
624 static struct modlmisc modlmisc	= {
625 	&mod_miscops,	/* Type	of module */
626 	"PCI Express Framework Module"
627 };
628 
629 static struct modlinkage modlinkage = {
630 	MODREV_1,
631 	(void	*)&modlmisc,
632 	NULL
633 };
634 
635 /*
636  * Global Variables needed for a non-atomic version of ddi_fm_ereport_post.
637  * Currently used to send the pci.fabric ereports whose payload depends on the
638  * type of PCI device it is being sent for.
639  */
640 char		*pcie_nv_buf;
641 nv_alloc_t	*pcie_nvap;
642 nvlist_t	*pcie_nvl;
643 
644 int
_init(void)645 _init(void)
646 {
647 	int rval;
648 
649 	pcie_nv_buf = kmem_alloc(ERPT_DATA_SZ, KM_SLEEP);
650 	pcie_nvap = fm_nva_xcreate(pcie_nv_buf, ERPT_DATA_SZ);
651 	pcie_nvl = fm_nvlist_create(pcie_nvap);
652 	mutex_init(&pcie_link_tq_mutex, NULL, MUTEX_DRIVER, NULL);
653 
654 	if ((rval = mod_install(&modlinkage)) != 0) {
655 		mutex_destroy(&pcie_link_tq_mutex);
656 		fm_nvlist_destroy(pcie_nvl, FM_NVA_RETAIN);
657 		fm_nva_xdestroy(pcie_nvap);
658 		kmem_free(pcie_nv_buf, ERPT_DATA_SZ);
659 	}
660 	return (rval);
661 }
662 
663 int
_fini()664 _fini()
665 {
666 	int		rval;
667 
668 	if ((rval = mod_remove(&modlinkage)) == 0) {
669 		if (pcie_link_tq != NULL) {
670 			taskq_destroy(pcie_link_tq);
671 		}
672 		mutex_destroy(&pcie_link_tq_mutex);
673 		fm_nvlist_destroy(pcie_nvl, FM_NVA_RETAIN);
674 		fm_nva_xdestroy(pcie_nvap);
675 		kmem_free(pcie_nv_buf, ERPT_DATA_SZ);
676 	}
677 	return (rval);
678 }
679 
680 int
_info(struct modinfo * modinfop)681 _info(struct modinfo *modinfop)
682 {
683 	return (mod_info(&modlinkage, modinfop));
684 }
685 
686 /* ARGSUSED */
687 int
pcie_init(dev_info_t * dip,caddr_t arg)688 pcie_init(dev_info_t *dip, caddr_t arg)
689 {
690 	int	ret = DDI_SUCCESS;
691 
692 	/*
693 	 * Our _init function is too early to create a taskq. Create the pcie
694 	 * link management taskq here now instead.
695 	 */
696 	mutex_enter(&pcie_link_tq_mutex);
697 	if (pcie_link_tq == NULL) {
698 		pcie_link_tq = taskq_create("pcie_link", 1, minclsyspri, 0, 0,
699 		    0);
700 	}
701 	mutex_exit(&pcie_link_tq_mutex);
702 
703 
704 	/*
705 	 * Create a "devctl" minor node to support DEVCTL_DEVICE_*
706 	 * and DEVCTL_BUS_* ioctls to this bus.
707 	 */
708 	if ((ret = ddi_create_minor_node(dip, "devctl", S_IFCHR,
709 	    PCI_MINOR_NUM(ddi_get_instance(dip), PCI_DEVCTL_MINOR),
710 	    DDI_NT_NEXUS, 0)) != DDI_SUCCESS) {
711 		PCIE_DBG("Failed to create devctl minor node for %s%d\n",
712 		    ddi_driver_name(dip), ddi_get_instance(dip));
713 
714 		return (ret);
715 	}
716 
717 	if ((ret = pcie_hp_init(dip, arg)) != DDI_SUCCESS) {
718 		/*
719 		 * On some x86 platforms, we observed unexpected hotplug
720 		 * initialization failures in recent years. The known cause
721 		 * is a hardware issue: while the problem PCI bridges have
722 		 * the Hotplug Capable registers set, the machine actually
723 		 * does not implement the expected ACPI object.
724 		 *
725 		 * We don't want to stop PCI driver attach and system boot
726 		 * just because of this hotplug initialization failure.
727 		 * Continue with a debug message printed.
728 		 */
729 		PCIE_DBG("%s%d: Failed setting hotplug framework\n",
730 		    ddi_driver_name(dip), ddi_get_instance(dip));
731 
732 #if defined(__sparc)
733 		ddi_remove_minor_node(dip, "devctl");
734 
735 		return (ret);
736 #endif /* defined(__sparc) */
737 	}
738 
739 	return (DDI_SUCCESS);
740 }
741 
742 /* ARGSUSED */
743 int
pcie_uninit(dev_info_t * dip)744 pcie_uninit(dev_info_t *dip)
745 {
746 	int	ret = DDI_SUCCESS;
747 
748 	if (pcie_ari_is_enabled(dip) == PCIE_ARI_FORW_ENABLED)
749 		(void) pcie_ari_disable(dip);
750 
751 	if ((ret = pcie_hp_uninit(dip)) != DDI_SUCCESS) {
752 		PCIE_DBG("Failed to uninitialize hotplug for %s%d\n",
753 		    ddi_driver_name(dip), ddi_get_instance(dip));
754 
755 		return (ret);
756 	}
757 
758 	if (pcie_link_bw_supported(dip)) {
759 		(void) pcie_link_bw_disable(dip);
760 	}
761 
762 	ddi_remove_minor_node(dip, "devctl");
763 
764 	return (ret);
765 }
766 
767 /*
768  * PCIe module interface for enabling hotplug interrupt.
769  *
770  * It should be called after pcie_init() is done and bus driver's
771  * interrupt handlers have being attached.
772  */
773 int
pcie_hpintr_enable(dev_info_t * dip)774 pcie_hpintr_enable(dev_info_t *dip)
775 {
776 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
777 	pcie_hp_ctrl_t	*ctrl_p = PCIE_GET_HP_CTRL(dip);
778 
779 	if (PCIE_IS_PCIE_HOTPLUG_ENABLED(bus_p)) {
780 		(void) (ctrl_p->hc_ops.enable_hpc_intr)(ctrl_p);
781 	} else if (PCIE_IS_PCI_HOTPLUG_ENABLED(bus_p)) {
782 		(void) pcishpc_enable_irqs(ctrl_p);
783 	}
784 	return (DDI_SUCCESS);
785 }
786 
787 /*
788  * PCIe module interface for disabling hotplug interrupt.
789  *
790  * It should be called before pcie_uninit() is called and bus driver's
791  * interrupt handlers is dettached.
792  */
793 int
pcie_hpintr_disable(dev_info_t * dip)794 pcie_hpintr_disable(dev_info_t *dip)
795 {
796 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
797 	pcie_hp_ctrl_t	*ctrl_p = PCIE_GET_HP_CTRL(dip);
798 
799 	if (PCIE_IS_PCIE_HOTPLUG_ENABLED(bus_p)) {
800 		(void) (ctrl_p->hc_ops.disable_hpc_intr)(ctrl_p);
801 	} else if (PCIE_IS_PCI_HOTPLUG_ENABLED(bus_p)) {
802 		(void) pcishpc_disable_irqs(ctrl_p);
803 	}
804 	return (DDI_SUCCESS);
805 }
806 
807 /* ARGSUSED */
808 int
pcie_intr(dev_info_t * dip)809 pcie_intr(dev_info_t *dip)
810 {
811 	int hp, lbw;
812 
813 	hp = pcie_hp_intr(dip);
814 	lbw = pcie_link_bw_intr(dip);
815 
816 	if (hp == DDI_INTR_CLAIMED || lbw == DDI_INTR_CLAIMED) {
817 		return (DDI_INTR_CLAIMED);
818 	}
819 
820 	return (DDI_INTR_UNCLAIMED);
821 }
822 
823 /* ARGSUSED */
824 int
pcie_open(dev_info_t * dip,dev_t * devp,int flags,int otyp,cred_t * credp)825 pcie_open(dev_info_t *dip, dev_t *devp, int flags, int otyp, cred_t *credp)
826 {
827 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
828 
829 	/*
830 	 * Make sure the open is for the right file type.
831 	 */
832 	if (otyp != OTYP_CHR)
833 		return (EINVAL);
834 
835 	/*
836 	 * Handle the open by tracking the device state.
837 	 */
838 	if ((bus_p->bus_soft_state == PCI_SOFT_STATE_OPEN_EXCL) ||
839 	    ((flags & FEXCL) &&
840 	    (bus_p->bus_soft_state != PCI_SOFT_STATE_CLOSED))) {
841 		return (EBUSY);
842 	}
843 
844 	if (flags & FEXCL)
845 		bus_p->bus_soft_state = PCI_SOFT_STATE_OPEN_EXCL;
846 	else
847 		bus_p->bus_soft_state = PCI_SOFT_STATE_OPEN;
848 
849 	return (0);
850 }
851 
852 /* ARGSUSED */
853 int
pcie_close(dev_info_t * dip,dev_t dev,int flags,int otyp,cred_t * credp)854 pcie_close(dev_info_t *dip, dev_t dev, int flags, int otyp, cred_t *credp)
855 {
856 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
857 
858 	if (otyp != OTYP_CHR)
859 		return (EINVAL);
860 
861 	bus_p->bus_soft_state = PCI_SOFT_STATE_CLOSED;
862 
863 	return (0);
864 }
865 
866 /* ARGSUSED */
867 int
pcie_ioctl(dev_info_t * dip,dev_t dev,int cmd,intptr_t arg,int mode,cred_t * credp,int * rvalp)868 pcie_ioctl(dev_info_t *dip, dev_t dev, int cmd, intptr_t arg, int mode,
869     cred_t *credp, int *rvalp)
870 {
871 	struct devctl_iocdata	*dcp;
872 	uint_t			bus_state;
873 	int			rv = DDI_SUCCESS;
874 
875 	/*
876 	 * We can use the generic implementation for devctl ioctl
877 	 */
878 	switch (cmd) {
879 	case DEVCTL_DEVICE_GETSTATE:
880 	case DEVCTL_DEVICE_ONLINE:
881 	case DEVCTL_DEVICE_OFFLINE:
882 	case DEVCTL_BUS_GETSTATE:
883 		return (ndi_devctl_ioctl(dip, cmd, arg, mode, 0));
884 	default:
885 		break;
886 	}
887 
888 	/*
889 	 * read devctl ioctl data
890 	 */
891 	if (ndi_dc_allochdl((void *)arg, &dcp) != NDI_SUCCESS)
892 		return (EFAULT);
893 
894 	switch (cmd) {
895 	case DEVCTL_BUS_QUIESCE:
896 		if (ndi_get_bus_state(dip, &bus_state) == NDI_SUCCESS)
897 			if (bus_state == BUS_QUIESCED)
898 				break;
899 		(void) ndi_set_bus_state(dip, BUS_QUIESCED);
900 		break;
901 	case DEVCTL_BUS_UNQUIESCE:
902 		if (ndi_get_bus_state(dip, &bus_state) == NDI_SUCCESS)
903 			if (bus_state == BUS_ACTIVE)
904 				break;
905 		(void) ndi_set_bus_state(dip, BUS_ACTIVE);
906 		break;
907 	case DEVCTL_BUS_RESET:
908 	case DEVCTL_BUS_RESETALL:
909 	case DEVCTL_DEVICE_RESET:
910 		rv = ENOTSUP;
911 		break;
912 	default:
913 		rv = ENOTTY;
914 	}
915 
916 	ndi_dc_freehdl(dcp);
917 	return (rv);
918 }
919 
920 /* ARGSUSED */
921 int
pcie_prop_op(dev_t dev,dev_info_t * dip,ddi_prop_op_t prop_op,int flags,char * name,caddr_t valuep,int * lengthp)922 pcie_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
923     int flags, char *name, caddr_t valuep, int *lengthp)
924 {
925 	if (dev == DDI_DEV_T_ANY)
926 		goto skip;
927 
928 	if (PCIE_IS_HOTPLUG_CAPABLE(dip) &&
929 	    strcmp(name, "pci-occupant") == 0) {
930 		int	pci_dev = PCI_MINOR_NUM_TO_PCI_DEVNUM(getminor(dev));
931 
932 		pcie_hp_create_occupant_props(dip, dev, pci_dev);
933 	}
934 
935 skip:
936 	return (ddi_prop_op(dev, dip, prop_op, flags, name, valuep, lengthp));
937 }
938 
939 int
pcie_init_cfghdl(dev_info_t * cdip)940 pcie_init_cfghdl(dev_info_t *cdip)
941 {
942 	pcie_bus_t		*bus_p;
943 	ddi_acc_handle_t	eh = NULL;
944 
945 	bus_p = PCIE_DIP2BUS(cdip);
946 	if (bus_p == NULL)
947 		return (DDI_FAILURE);
948 
949 	/* Create an config access special to error handling */
950 	if (pci_config_setup(cdip, &eh) != DDI_SUCCESS) {
951 		cmn_err(CE_WARN, "Cannot setup config access"
952 		    " for BDF 0x%x\n", bus_p->bus_bdf);
953 		return (DDI_FAILURE);
954 	}
955 
956 	bus_p->bus_cfg_hdl = eh;
957 	return (DDI_SUCCESS);
958 }
959 
960 void
pcie_fini_cfghdl(dev_info_t * cdip)961 pcie_fini_cfghdl(dev_info_t *cdip)
962 {
963 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(cdip);
964 
965 	pci_config_teardown(&bus_p->bus_cfg_hdl);
966 }
967 
968 void
pcie_determine_serial(dev_info_t * dip)969 pcie_determine_serial(dev_info_t *dip)
970 {
971 	pcie_bus_t		*bus_p = PCIE_DIP2BUS(dip);
972 	ddi_acc_handle_t	h;
973 	uint16_t		cap;
974 	uchar_t			serial[8];
975 	uint32_t		low, high;
976 
977 	if (!PCIE_IS_PCIE(bus_p))
978 		return;
979 
980 	h = bus_p->bus_cfg_hdl;
981 
982 	if ((PCI_CAP_LOCATE(h, PCI_CAP_XCFG_SPC(PCIE_EXT_CAP_ID_SER), &cap)) ==
983 	    DDI_FAILURE)
984 		return;
985 
986 	high = PCI_XCAP_GET32(h, 0, cap, PCIE_SER_SID_UPPER_DW);
987 	low = PCI_XCAP_GET32(h, 0, cap, PCIE_SER_SID_LOWER_DW);
988 
989 	/*
990 	 * Here, we're trying to figure out if we had an invalid PCIe read. From
991 	 * looking at the contents of the value, it can be hard to tell the
992 	 * difference between a value that has all 1s correctly versus if we had
993 	 * an error. In this case, we only assume it's invalid if both register
994 	 * reads are invalid. We also only use 32-bit reads as we're not sure if
995 	 * all devices will support these as 64-bit reads, while we know that
996 	 * they'll support these as 32-bit reads.
997 	 */
998 	if (high == PCI_EINVAL32 && low == PCI_EINVAL32)
999 		return;
1000 
1001 	serial[0] = low & 0xff;
1002 	serial[1] = (low >> 8) & 0xff;
1003 	serial[2] = (low >> 16) & 0xff;
1004 	serial[3] = (low >> 24) & 0xff;
1005 	serial[4] = high & 0xff;
1006 	serial[5] = (high >> 8) & 0xff;
1007 	serial[6] = (high >> 16) & 0xff;
1008 	serial[7] = (high >> 24) & 0xff;
1009 
1010 	(void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, dip, "pcie-serial",
1011 	    serial, sizeof (serial));
1012 }
1013 
1014 static void
pcie_determine_aspm(dev_info_t * dip)1015 pcie_determine_aspm(dev_info_t *dip)
1016 {
1017 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
1018 	uint32_t	linkcap;
1019 	uint16_t	linkctl;
1020 
1021 	if (!PCIE_IS_PCIE(bus_p))
1022 		return;
1023 
1024 	linkcap = PCIE_CAP_GET(32, bus_p, PCIE_LINKCAP);
1025 	linkctl = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL);
1026 
1027 	switch (linkcap & PCIE_LINKCAP_ASPM_SUP_MASK) {
1028 	case PCIE_LINKCAP_ASPM_SUP_L0S:
1029 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1030 		    "pcie-aspm-support", "l0s");
1031 		break;
1032 	case PCIE_LINKCAP_ASPM_SUP_L1:
1033 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1034 		    "pcie-aspm-support", "l1");
1035 		break;
1036 	case PCIE_LINKCAP_ASPM_SUP_L0S_L1:
1037 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1038 		    "pcie-aspm-support", "l0s,l1");
1039 		break;
1040 	default:
1041 		return;
1042 	}
1043 
1044 	switch (linkctl & PCIE_LINKCTL_ASPM_CTL_MASK) {
1045 	case PCIE_LINKCTL_ASPM_CTL_DIS:
1046 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1047 		    "pcie-aspm-state", "disabled");
1048 		break;
1049 	case PCIE_LINKCTL_ASPM_CTL_L0S:
1050 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1051 		    "pcie-aspm-state", "l0s");
1052 		break;
1053 	case PCIE_LINKCTL_ASPM_CTL_L1:
1054 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1055 		    "pcie-aspm-state", "l1");
1056 		break;
1057 	case PCIE_LINKCTL_ASPM_CTL_L0S_L1:
1058 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1059 		    "pcie-aspm-state", "l0s,l1");
1060 		break;
1061 	}
1062 }
1063 
1064 /*
1065  * PCI-Express child device initialization. Note, this only will be called on a
1066  * device or function if we actually attach a device driver to it.
1067  *
1068  * This function enables generic pci-express interrupts and error handling.
1069  * Note, tagging, the max packet size, and related are all set up before this
1070  * point and is performed in pcie_fabric_setup().
1071  *
1072  * @param pdip		root dip (root nexus's dip)
1073  * @param cdip		child's dip (device's dip)
1074  * @return		DDI_SUCCESS or DDI_FAILURE
1075  */
1076 /* ARGSUSED */
1077 int
pcie_initchild(dev_info_t * cdip)1078 pcie_initchild(dev_info_t *cdip)
1079 {
1080 	uint16_t		tmp16, reg16;
1081 	pcie_bus_t		*bus_p;
1082 
1083 	bus_p = PCIE_DIP2BUS(cdip);
1084 	if (bus_p == NULL) {
1085 		PCIE_DBG("%s: BUS not found.\n",
1086 		    ddi_driver_name(cdip));
1087 
1088 		return (DDI_FAILURE);
1089 	}
1090 
1091 	if (pcie_init_cfghdl(cdip) != DDI_SUCCESS)
1092 		return (DDI_FAILURE);
1093 
1094 	/* Clear the device's status register */
1095 	reg16 = PCIE_GET(16, bus_p, PCI_CONF_STAT);
1096 	PCIE_PUT(16, bus_p, PCI_CONF_STAT, reg16);
1097 
1098 	/* Setup the device's command register */
1099 	reg16 = PCIE_GET(16, bus_p, PCI_CONF_COMM);
1100 	tmp16 = (reg16 & pcie_command_default_fw) | pcie_command_default;
1101 
1102 	if (pcie_serr_disable_flag && PCIE_IS_PCIE(bus_p))
1103 		tmp16 &= ~PCI_COMM_SERR_ENABLE;
1104 
1105 	PCIE_PUT(16, bus_p, PCI_CONF_COMM, tmp16);
1106 	PCIE_DBG_CFG(cdip, bus_p, "COMMAND", 16, PCI_CONF_COMM, reg16);
1107 
1108 	/*
1109 	 * If the device has a bus control register then program it
1110 	 * based on the settings in the command register.
1111 	 */
1112 	if (PCIE_IS_BDG(bus_p)) {
1113 		/* Clear the device's secondary status register */
1114 		reg16 = PCIE_GET(16, bus_p, PCI_BCNF_SEC_STATUS);
1115 		PCIE_PUT(16, bus_p, PCI_BCNF_SEC_STATUS, reg16);
1116 
1117 		/* Setup the device's secondary command register */
1118 		reg16 = PCIE_GET(16, bus_p, PCI_BCNF_BCNTRL);
1119 		tmp16 = (reg16 & pcie_bdg_command_default_fw);
1120 
1121 		tmp16 |= PCI_BCNF_BCNTRL_SERR_ENABLE;
1122 		/*
1123 		 * Workaround for this Nvidia bridge. Don't enable the SERR
1124 		 * enable bit in the bridge control register as it could lead to
1125 		 * bogus NMIs.
1126 		 */
1127 		if (bus_p->bus_dev_ven_id == 0x037010DE)
1128 			tmp16 &= ~PCI_BCNF_BCNTRL_SERR_ENABLE;
1129 
1130 		if (pcie_command_default & PCI_COMM_PARITY_DETECT)
1131 			tmp16 |= PCI_BCNF_BCNTRL_PARITY_ENABLE;
1132 
1133 		/*
1134 		 * Enable Master Abort Mode only if URs have not been masked.
1135 		 * For PCI and PCIe-PCI bridges, enabling this bit causes a
1136 		 * Master Aborts/UR to be forwarded as a UR/TA or SERR.  If this
1137 		 * bit is masked, posted requests are dropped and non-posted
1138 		 * requests are returned with -1.
1139 		 */
1140 		if (pcie_aer_uce_mask & PCIE_AER_UCE_UR)
1141 			tmp16 &= ~PCI_BCNF_BCNTRL_MAST_AB_MODE;
1142 		else
1143 			tmp16 |= PCI_BCNF_BCNTRL_MAST_AB_MODE;
1144 		PCIE_PUT(16, bus_p, PCI_BCNF_BCNTRL, tmp16);
1145 		PCIE_DBG_CFG(cdip, bus_p, "SEC CMD", 16, PCI_BCNF_BCNTRL,
1146 		    reg16);
1147 	}
1148 
1149 	if (PCIE_IS_PCIE(bus_p)) {
1150 		/*
1151 		 * Get the device control register into an initial state that
1152 		 * makes sense. The maximum payload, tagging, and related will
1153 		 * be dealt with in pcie_fabric_setup().
1154 		 */
1155 		reg16 = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL);
1156 		tmp16 = (reg16 & pcie_devctl_default_mask) |
1157 		    (pcie_devctl_default & ~pcie_devctl_default_mask);
1158 		PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL, tmp16);
1159 		PCIE_DBG_CAP(cdip, bus_p, "DEVCTL", 16, PCIE_DEVCTL, reg16);
1160 
1161 		/* Enable PCIe errors */
1162 		pcie_enable_errors(cdip);
1163 
1164 		pcie_determine_serial(cdip);
1165 
1166 		pcie_determine_aspm(cdip);
1167 
1168 		pcie_capture_speeds(cdip);
1169 	}
1170 
1171 	bus_p->bus_ari = B_FALSE;
1172 	if ((pcie_ari_is_enabled(ddi_get_parent(cdip))
1173 	    == PCIE_ARI_FORW_ENABLED) && (pcie_ari_device(cdip)
1174 	    == PCIE_ARI_DEVICE)) {
1175 		bus_p->bus_ari = B_TRUE;
1176 	}
1177 
1178 	return (DDI_SUCCESS);
1179 }
1180 
1181 static void
pcie_init_pfd(dev_info_t * dip)1182 pcie_init_pfd(dev_info_t *dip)
1183 {
1184 	pf_data_t	*pfd_p = PCIE_ZALLOC(pf_data_t);
1185 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
1186 
1187 	PCIE_DIP2PFD(dip) = pfd_p;
1188 
1189 	pfd_p->pe_bus_p = bus_p;
1190 	pfd_p->pe_severity_flags = 0;
1191 	pfd_p->pe_severity_mask = 0;
1192 	pfd_p->pe_orig_severity_flags = 0;
1193 	pfd_p->pe_lock = B_FALSE;
1194 	pfd_p->pe_valid = B_FALSE;
1195 
1196 	/* Allocate the root fault struct for both RC and RP */
1197 	if (PCIE_IS_ROOT(bus_p)) {
1198 		PCIE_ROOT_FAULT(pfd_p) = PCIE_ZALLOC(pf_root_fault_t);
1199 		PCIE_ROOT_FAULT(pfd_p)->scan_bdf = PCIE_INVALID_BDF;
1200 		PCIE_ROOT_EH_SRC(pfd_p) = PCIE_ZALLOC(pf_root_eh_src_t);
1201 	}
1202 
1203 	PCI_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pci_err_regs_t);
1204 	PFD_AFFECTED_DEV(pfd_p) = PCIE_ZALLOC(pf_affected_dev_t);
1205 	PFD_AFFECTED_DEV(pfd_p)->pe_affected_bdf = PCIE_INVALID_BDF;
1206 
1207 	if (PCIE_IS_BDG(bus_p))
1208 		PCI_BDG_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pci_bdg_err_regs_t);
1209 
1210 	if (PCIE_IS_PCIE(bus_p)) {
1211 		PCIE_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_err_regs_t);
1212 
1213 		if (PCIE_IS_RP(bus_p))
1214 			PCIE_RP_REG(pfd_p) =
1215 			    PCIE_ZALLOC(pf_pcie_rp_err_regs_t);
1216 
1217 		PCIE_ADV_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_adv_err_regs_t);
1218 		PCIE_ADV_REG(pfd_p)->pcie_ue_tgt_bdf = PCIE_INVALID_BDF;
1219 
1220 		if (PCIE_IS_RP(bus_p)) {
1221 			PCIE_ADV_RP_REG(pfd_p) =
1222 			    PCIE_ZALLOC(pf_pcie_adv_rp_err_regs_t);
1223 			PCIE_ADV_RP_REG(pfd_p)->pcie_rp_ce_src_id =
1224 			    PCIE_INVALID_BDF;
1225 			PCIE_ADV_RP_REG(pfd_p)->pcie_rp_ue_src_id =
1226 			    PCIE_INVALID_BDF;
1227 		} else if (PCIE_IS_PCIE_BDG(bus_p)) {
1228 			PCIE_ADV_BDG_REG(pfd_p) =
1229 			    PCIE_ZALLOC(pf_pcie_adv_bdg_err_regs_t);
1230 			PCIE_ADV_BDG_REG(pfd_p)->pcie_sue_tgt_bdf =
1231 			    PCIE_INVALID_BDF;
1232 		}
1233 
1234 		if (PCIE_IS_PCIE_BDG(bus_p) && PCIE_IS_PCIX(bus_p)) {
1235 			PCIX_BDG_ERR_REG(pfd_p) =
1236 			    PCIE_ZALLOC(pf_pcix_bdg_err_regs_t);
1237 
1238 			if (PCIX_ECC_VERSION_CHECK(bus_p)) {
1239 				PCIX_BDG_ECC_REG(pfd_p, 0) =
1240 				    PCIE_ZALLOC(pf_pcix_ecc_regs_t);
1241 				PCIX_BDG_ECC_REG(pfd_p, 1) =
1242 				    PCIE_ZALLOC(pf_pcix_ecc_regs_t);
1243 			}
1244 		}
1245 
1246 		PCIE_SLOT_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_slot_regs_t);
1247 		PCIE_SLOT_REG(pfd_p)->pcie_slot_regs_valid = B_FALSE;
1248 		PCIE_SLOT_REG(pfd_p)->pcie_slot_cap = 0;
1249 		PCIE_SLOT_REG(pfd_p)->pcie_slot_control = 0;
1250 		PCIE_SLOT_REG(pfd_p)->pcie_slot_status = 0;
1251 
1252 	} else if (PCIE_IS_PCIX(bus_p)) {
1253 		if (PCIE_IS_BDG(bus_p)) {
1254 			PCIX_BDG_ERR_REG(pfd_p) =
1255 			    PCIE_ZALLOC(pf_pcix_bdg_err_regs_t);
1256 
1257 			if (PCIX_ECC_VERSION_CHECK(bus_p)) {
1258 				PCIX_BDG_ECC_REG(pfd_p, 0) =
1259 				    PCIE_ZALLOC(pf_pcix_ecc_regs_t);
1260 				PCIX_BDG_ECC_REG(pfd_p, 1) =
1261 				    PCIE_ZALLOC(pf_pcix_ecc_regs_t);
1262 			}
1263 		} else {
1264 			PCIX_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pcix_err_regs_t);
1265 
1266 			if (PCIX_ECC_VERSION_CHECK(bus_p))
1267 				PCIX_ECC_REG(pfd_p) =
1268 				    PCIE_ZALLOC(pf_pcix_ecc_regs_t);
1269 		}
1270 	}
1271 }
1272 
1273 static void
pcie_fini_pfd(dev_info_t * dip)1274 pcie_fini_pfd(dev_info_t *dip)
1275 {
1276 	pf_data_t	*pfd_p = PCIE_DIP2PFD(dip);
1277 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
1278 
1279 	if (PCIE_IS_PCIE(bus_p)) {
1280 		if (PCIE_IS_PCIE_BDG(bus_p) && PCIE_IS_PCIX(bus_p)) {
1281 			if (PCIX_ECC_VERSION_CHECK(bus_p)) {
1282 				kmem_free(PCIX_BDG_ECC_REG(pfd_p, 0),
1283 				    sizeof (pf_pcix_ecc_regs_t));
1284 				kmem_free(PCIX_BDG_ECC_REG(pfd_p, 1),
1285 				    sizeof (pf_pcix_ecc_regs_t));
1286 			}
1287 
1288 			kmem_free(PCIX_BDG_ERR_REG(pfd_p),
1289 			    sizeof (pf_pcix_bdg_err_regs_t));
1290 		}
1291 
1292 		if (PCIE_IS_RP(bus_p))
1293 			kmem_free(PCIE_ADV_RP_REG(pfd_p),
1294 			    sizeof (pf_pcie_adv_rp_err_regs_t));
1295 		else if (PCIE_IS_PCIE_BDG(bus_p))
1296 			kmem_free(PCIE_ADV_BDG_REG(pfd_p),
1297 			    sizeof (pf_pcie_adv_bdg_err_regs_t));
1298 
1299 		kmem_free(PCIE_ADV_REG(pfd_p),
1300 		    sizeof (pf_pcie_adv_err_regs_t));
1301 
1302 		if (PCIE_IS_RP(bus_p))
1303 			kmem_free(PCIE_RP_REG(pfd_p),
1304 			    sizeof (pf_pcie_rp_err_regs_t));
1305 
1306 		kmem_free(PCIE_ERR_REG(pfd_p), sizeof (pf_pcie_err_regs_t));
1307 	} else if (PCIE_IS_PCIX(bus_p)) {
1308 		if (PCIE_IS_BDG(bus_p)) {
1309 			if (PCIX_ECC_VERSION_CHECK(bus_p)) {
1310 				kmem_free(PCIX_BDG_ECC_REG(pfd_p, 0),
1311 				    sizeof (pf_pcix_ecc_regs_t));
1312 				kmem_free(PCIX_BDG_ECC_REG(pfd_p, 1),
1313 				    sizeof (pf_pcix_ecc_regs_t));
1314 			}
1315 
1316 			kmem_free(PCIX_BDG_ERR_REG(pfd_p),
1317 			    sizeof (pf_pcix_bdg_err_regs_t));
1318 		} else {
1319 			if (PCIX_ECC_VERSION_CHECK(bus_p))
1320 				kmem_free(PCIX_ECC_REG(pfd_p),
1321 				    sizeof (pf_pcix_ecc_regs_t));
1322 
1323 			kmem_free(PCIX_ERR_REG(pfd_p),
1324 			    sizeof (pf_pcix_err_regs_t));
1325 		}
1326 	}
1327 
1328 	if (PCIE_IS_BDG(bus_p))
1329 		kmem_free(PCI_BDG_ERR_REG(pfd_p),
1330 		    sizeof (pf_pci_bdg_err_regs_t));
1331 
1332 	kmem_free(PFD_AFFECTED_DEV(pfd_p), sizeof (pf_affected_dev_t));
1333 	kmem_free(PCI_ERR_REG(pfd_p), sizeof (pf_pci_err_regs_t));
1334 
1335 	if (PCIE_IS_ROOT(bus_p)) {
1336 		kmem_free(PCIE_ROOT_FAULT(pfd_p), sizeof (pf_root_fault_t));
1337 		kmem_free(PCIE_ROOT_EH_SRC(pfd_p), sizeof (pf_root_eh_src_t));
1338 	}
1339 
1340 	kmem_free(PCIE_DIP2PFD(dip), sizeof (pf_data_t));
1341 
1342 	PCIE_DIP2PFD(dip) = NULL;
1343 }
1344 
1345 
1346 /*
1347  * Special functions to allocate pf_data_t's for PCIe root complexes.
1348  * Note: Root Complex not Root Port
1349  */
1350 void
pcie_rc_init_pfd(dev_info_t * dip,pf_data_t * pfd_p)1351 pcie_rc_init_pfd(dev_info_t *dip, pf_data_t *pfd_p)
1352 {
1353 	pfd_p->pe_bus_p = PCIE_DIP2DOWNBUS(dip);
1354 	pfd_p->pe_severity_flags = 0;
1355 	pfd_p->pe_severity_mask = 0;
1356 	pfd_p->pe_orig_severity_flags = 0;
1357 	pfd_p->pe_lock = B_FALSE;
1358 	pfd_p->pe_valid = B_FALSE;
1359 
1360 	PCIE_ROOT_FAULT(pfd_p) = PCIE_ZALLOC(pf_root_fault_t);
1361 	PCIE_ROOT_FAULT(pfd_p)->scan_bdf = PCIE_INVALID_BDF;
1362 	PCIE_ROOT_EH_SRC(pfd_p) = PCIE_ZALLOC(pf_root_eh_src_t);
1363 	PCI_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pci_err_regs_t);
1364 	PFD_AFFECTED_DEV(pfd_p) = PCIE_ZALLOC(pf_affected_dev_t);
1365 	PFD_AFFECTED_DEV(pfd_p)->pe_affected_bdf = PCIE_INVALID_BDF;
1366 	PCI_BDG_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pci_bdg_err_regs_t);
1367 	PCIE_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_err_regs_t);
1368 	PCIE_RP_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_rp_err_regs_t);
1369 	PCIE_ADV_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_adv_err_regs_t);
1370 	PCIE_ADV_RP_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_adv_rp_err_regs_t);
1371 	PCIE_ADV_RP_REG(pfd_p)->pcie_rp_ce_src_id = PCIE_INVALID_BDF;
1372 	PCIE_ADV_RP_REG(pfd_p)->pcie_rp_ue_src_id = PCIE_INVALID_BDF;
1373 
1374 	PCIE_ADV_REG(pfd_p)->pcie_ue_sev = pcie_aer_uce_severity;
1375 }
1376 
1377 void
pcie_rc_fini_pfd(pf_data_t * pfd_p)1378 pcie_rc_fini_pfd(pf_data_t *pfd_p)
1379 {
1380 	kmem_free(PCIE_ADV_RP_REG(pfd_p), sizeof (pf_pcie_adv_rp_err_regs_t));
1381 	kmem_free(PCIE_ADV_REG(pfd_p), sizeof (pf_pcie_adv_err_regs_t));
1382 	kmem_free(PCIE_RP_REG(pfd_p), sizeof (pf_pcie_rp_err_regs_t));
1383 	kmem_free(PCIE_ERR_REG(pfd_p), sizeof (pf_pcie_err_regs_t));
1384 	kmem_free(PCI_BDG_ERR_REG(pfd_p), sizeof (pf_pci_bdg_err_regs_t));
1385 	kmem_free(PFD_AFFECTED_DEV(pfd_p), sizeof (pf_affected_dev_t));
1386 	kmem_free(PCI_ERR_REG(pfd_p), sizeof (pf_pci_err_regs_t));
1387 	kmem_free(PCIE_ROOT_FAULT(pfd_p), sizeof (pf_root_fault_t));
1388 	kmem_free(PCIE_ROOT_EH_SRC(pfd_p), sizeof (pf_root_eh_src_t));
1389 }
1390 
1391 /*
1392  * init pcie_bus_t for root complex
1393  *
1394  * Only a few of the fields in bus_t is valid for root complex.
1395  * The fields that are bracketed are initialized in this routine:
1396  *
1397  * dev_info_t *		<bus_dip>
1398  * dev_info_t *		bus_rp_dip
1399  * ddi_acc_handle_t	bus_cfg_hdl
1400  * uint_t		<bus_fm_flags>
1401  * pcie_req_id_t	bus_bdf
1402  * pcie_req_id_t	bus_rp_bdf
1403  * uint32_t		bus_dev_ven_id
1404  * uint8_t		bus_rev_id
1405  * uint8_t		<bus_hdr_type>
1406  * uint16_t		<bus_dev_type>
1407  * uint8_t		bus_bdg_secbus
1408  * uint16_t		bus_pcie_off
1409  * uint16_t		<bus_aer_off>
1410  * uint16_t		bus_pcix_off
1411  * uint16_t		bus_ecc_ver
1412  * pci_bus_range_t	bus_bus_range
1413  * ppb_ranges_t	*	bus_addr_ranges
1414  * int			bus_addr_entries
1415  * pci_regspec_t *	bus_assigned_addr
1416  * int			bus_assigned_entries
1417  * pf_data_t *		bus_pfd
1418  * pcie_domain_t *	<bus_dom>
1419  * int			bus_mps
1420  * uint64_t		bus_cfgacc_base
1421  * void	*		bus_plat_private
1422  */
1423 void
pcie_rc_init_bus(dev_info_t * dip)1424 pcie_rc_init_bus(dev_info_t *dip)
1425 {
1426 	pcie_bus_t *bus_p;
1427 
1428 	bus_p = (pcie_bus_t *)kmem_zalloc(sizeof (pcie_bus_t), KM_SLEEP);
1429 	bus_p->bus_dip = dip;
1430 	bus_p->bus_dev_type = PCIE_PCIECAP_DEV_TYPE_RC_PSEUDO;
1431 	bus_p->bus_hdr_type = PCI_HEADER_ONE;
1432 
1433 	/* Fake that there are AER logs */
1434 	bus_p->bus_aer_off = (uint16_t)-1;
1435 
1436 	/* Needed only for handle lookup */
1437 	atomic_or_uint(&bus_p->bus_fm_flags, PF_FM_READY);
1438 
1439 	ndi_set_bus_private(dip, B_FALSE, DEVI_PORT_TYPE_PCI, bus_p);
1440 
1441 	PCIE_BUS2DOM(bus_p) = PCIE_ZALLOC(pcie_domain_t);
1442 }
1443 
1444 void
pcie_rc_fini_bus(dev_info_t * dip)1445 pcie_rc_fini_bus(dev_info_t *dip)
1446 {
1447 	pcie_bus_t *bus_p = PCIE_DIP2DOWNBUS(dip);
1448 	ndi_set_bus_private(dip, B_FALSE, 0, NULL);
1449 	kmem_free(PCIE_BUS2DOM(bus_p), sizeof (pcie_domain_t));
1450 	kmem_free(bus_p, sizeof (pcie_bus_t));
1451 }
1452 
1453 static int
pcie_width_to_int(pcie_link_width_t width)1454 pcie_width_to_int(pcie_link_width_t width)
1455 {
1456 	switch (width) {
1457 	case PCIE_LINK_WIDTH_X1:
1458 		return (1);
1459 	case PCIE_LINK_WIDTH_X2:
1460 		return (2);
1461 	case PCIE_LINK_WIDTH_X4:
1462 		return (4);
1463 	case PCIE_LINK_WIDTH_X8:
1464 		return (8);
1465 	case PCIE_LINK_WIDTH_X12:
1466 		return (12);
1467 	case PCIE_LINK_WIDTH_X16:
1468 		return (16);
1469 	case PCIE_LINK_WIDTH_X32:
1470 		return (32);
1471 	default:
1472 		return (0);
1473 	}
1474 }
1475 
1476 /*
1477  * Return the speed in Transfers / second. This is a signed quantity to match
1478  * the ndi/ddi property interfaces.
1479  */
1480 static int64_t
pcie_speed_to_int(pcie_link_speed_t speed)1481 pcie_speed_to_int(pcie_link_speed_t speed)
1482 {
1483 	switch (speed) {
1484 	case PCIE_LINK_SPEED_2_5:
1485 		return (2500000000LL);
1486 	case PCIE_LINK_SPEED_5:
1487 		return (5000000000LL);
1488 	case PCIE_LINK_SPEED_8:
1489 		return (8000000000LL);
1490 	case PCIE_LINK_SPEED_16:
1491 		return (16000000000LL);
1492 	case PCIE_LINK_SPEED_32:
1493 		return (32000000000LL);
1494 	case PCIE_LINK_SPEED_64:
1495 		return (64000000000LL);
1496 	default:
1497 		return (0);
1498 	}
1499 }
1500 
1501 /*
1502  * Translate the recorded speed information into devinfo properties.
1503  */
1504 static void
pcie_speeds_to_devinfo(dev_info_t * dip,pcie_bus_t * bus_p)1505 pcie_speeds_to_devinfo(dev_info_t *dip, pcie_bus_t *bus_p)
1506 {
1507 	if (bus_p->bus_max_width != PCIE_LINK_WIDTH_UNKNOWN) {
1508 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, dip,
1509 		    "pcie-link-maximum-width",
1510 		    pcie_width_to_int(bus_p->bus_max_width));
1511 	}
1512 
1513 	if (bus_p->bus_cur_width != PCIE_LINK_WIDTH_UNKNOWN) {
1514 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, dip,
1515 		    "pcie-link-current-width",
1516 		    pcie_width_to_int(bus_p->bus_cur_width));
1517 	}
1518 
1519 	if (bus_p->bus_cur_speed != PCIE_LINK_SPEED_UNKNOWN) {
1520 		(void) ndi_prop_update_int64(DDI_DEV_T_NONE, dip,
1521 		    "pcie-link-current-speed",
1522 		    pcie_speed_to_int(bus_p->bus_cur_speed));
1523 	}
1524 
1525 	if (bus_p->bus_max_speed != PCIE_LINK_SPEED_UNKNOWN) {
1526 		(void) ndi_prop_update_int64(DDI_DEV_T_NONE, dip,
1527 		    "pcie-link-maximum-speed",
1528 		    pcie_speed_to_int(bus_p->bus_max_speed));
1529 	}
1530 
1531 	if (bus_p->bus_target_speed != PCIE_LINK_SPEED_UNKNOWN) {
1532 		(void) ndi_prop_update_int64(DDI_DEV_T_NONE, dip,
1533 		    "pcie-link-target-speed",
1534 		    pcie_speed_to_int(bus_p->bus_target_speed));
1535 	}
1536 
1537 	if ((bus_p->bus_speed_flags & PCIE_LINK_F_ADMIN_TARGET) != 0) {
1538 		(void) ndi_prop_create_boolean(DDI_DEV_T_NONE, dip,
1539 		    "pcie-link-admin-target-speed");
1540 	}
1541 
1542 	if (bus_p->bus_sup_speed != PCIE_LINK_SPEED_UNKNOWN) {
1543 		int64_t speeds[PCIE_NSPEEDS];
1544 		uint_t nspeeds = 0;
1545 
1546 		if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_2_5) {
1547 			speeds[nspeeds++] =
1548 			    pcie_speed_to_int(PCIE_LINK_SPEED_2_5);
1549 		}
1550 
1551 		if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_5) {
1552 			speeds[nspeeds++] =
1553 			    pcie_speed_to_int(PCIE_LINK_SPEED_5);
1554 		}
1555 
1556 		if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_8) {
1557 			speeds[nspeeds++] =
1558 			    pcie_speed_to_int(PCIE_LINK_SPEED_8);
1559 		}
1560 
1561 		if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_16) {
1562 			speeds[nspeeds++] =
1563 			    pcie_speed_to_int(PCIE_LINK_SPEED_16);
1564 		}
1565 
1566 		if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_32) {
1567 			speeds[nspeeds++] =
1568 			    pcie_speed_to_int(PCIE_LINK_SPEED_32);
1569 		}
1570 
1571 		if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_64) {
1572 			speeds[nspeeds++] =
1573 			    pcie_speed_to_int(PCIE_LINK_SPEED_64);
1574 		}
1575 
1576 		(void) ndi_prop_update_int64_array(DDI_DEV_T_NONE, dip,
1577 		    "pcie-link-supported-speeds", speeds, nspeeds);
1578 	}
1579 }
1580 
1581 /*
1582  * We need to capture the supported, maximum, and current device speed and
1583  * width. The way that this has been done has changed over time.
1584  *
1585  * Prior to PCIe Gen 3, there were only current and supported speed fields.
1586  * These were found in the link status and link capabilities registers of the
1587  * PCI express capability. With the change to PCIe Gen 3, the information in the
1588  * link capabilities changed to the maximum value. The supported speeds vector
1589  * was moved to the link capabilities 2 register.
1590  *
1591  * Now, a device may not implement some of these registers. To determine whether
1592  * or not it's here, we have to do the following. First, we need to check the
1593  * revision of the PCI express capability. The link capabilities 2 register did
1594  * not exist prior to version 2 of this capability. If a modern device does not
1595  * implement it, it is supposed to return zero for the register.
1596  */
1597 static void
pcie_capture_speeds(dev_info_t * dip)1598 pcie_capture_speeds(dev_info_t *dip)
1599 {
1600 	uint16_t	vers, status;
1601 	uint32_t	cap, cap2, ctl2;
1602 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
1603 	dev_info_t	*rcdip;
1604 
1605 	if (!PCIE_IS_PCIE(bus_p))
1606 		return;
1607 
1608 	rcdip = pcie_get_rc_dip(dip);
1609 	if (bus_p->bus_cfg_hdl == NULL) {
1610 		vers = pci_cfgacc_get16(rcdip, bus_p->bus_bdf,
1611 		    bus_p->bus_pcie_off + PCIE_PCIECAP);
1612 	} else {
1613 		vers = PCIE_CAP_GET(16, bus_p, PCIE_PCIECAP);
1614 	}
1615 	if (vers == PCI_EINVAL16)
1616 		return;
1617 	vers &= PCIE_PCIECAP_VER_MASK;
1618 
1619 	/*
1620 	 * Verify the capability's version.
1621 	 */
1622 	switch (vers) {
1623 	case PCIE_PCIECAP_VER_1_0:
1624 		cap2 = 0;
1625 		ctl2 = 0;
1626 		break;
1627 	case PCIE_PCIECAP_VER_2_0:
1628 		if (bus_p->bus_cfg_hdl == NULL) {
1629 			cap2 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
1630 			    bus_p->bus_pcie_off + PCIE_LINKCAP2);
1631 			ctl2 = pci_cfgacc_get16(rcdip, bus_p->bus_bdf,
1632 			    bus_p->bus_pcie_off + PCIE_LINKCTL2);
1633 		} else {
1634 			cap2 = PCIE_CAP_GET(32, bus_p, PCIE_LINKCAP2);
1635 			ctl2 = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL2);
1636 		}
1637 		if (cap2 == PCI_EINVAL32)
1638 			cap2 = 0;
1639 		if (ctl2 == PCI_EINVAL16)
1640 			ctl2 = 0;
1641 		break;
1642 	default:
1643 		/* Don't try and handle an unknown version */
1644 		return;
1645 	}
1646 
1647 	if (bus_p->bus_cfg_hdl == NULL) {
1648 		status = pci_cfgacc_get16(rcdip, bus_p->bus_bdf,
1649 		    bus_p->bus_pcie_off + PCIE_LINKSTS);
1650 		cap = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
1651 		    bus_p->bus_pcie_off + PCIE_LINKCAP);
1652 	} else {
1653 		status = PCIE_CAP_GET(16, bus_p, PCIE_LINKSTS);
1654 		cap = PCIE_CAP_GET(32, bus_p, PCIE_LINKCAP);
1655 	}
1656 	if (status == PCI_EINVAL16 || cap == PCI_EINVAL32)
1657 		return;
1658 
1659 	mutex_enter(&bus_p->bus_speed_mutex);
1660 
1661 	switch (status & PCIE_LINKSTS_SPEED_MASK) {
1662 	case PCIE_LINKSTS_SPEED_2_5:
1663 		bus_p->bus_cur_speed = PCIE_LINK_SPEED_2_5;
1664 		break;
1665 	case PCIE_LINKSTS_SPEED_5:
1666 		bus_p->bus_cur_speed = PCIE_LINK_SPEED_5;
1667 		break;
1668 	case PCIE_LINKSTS_SPEED_8:
1669 		bus_p->bus_cur_speed = PCIE_LINK_SPEED_8;
1670 		break;
1671 	case PCIE_LINKSTS_SPEED_16:
1672 		bus_p->bus_cur_speed = PCIE_LINK_SPEED_16;
1673 		break;
1674 	case PCIE_LINKSTS_SPEED_32:
1675 		bus_p->bus_cur_speed = PCIE_LINK_SPEED_32;
1676 		break;
1677 	case PCIE_LINKSTS_SPEED_64:
1678 		bus_p->bus_cur_speed = PCIE_LINK_SPEED_64;
1679 		break;
1680 	default:
1681 		bus_p->bus_cur_speed = PCIE_LINK_SPEED_UNKNOWN;
1682 		break;
1683 	}
1684 
1685 	switch (status & PCIE_LINKSTS_NEG_WIDTH_MASK) {
1686 	case PCIE_LINKSTS_NEG_WIDTH_X1:
1687 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X1;
1688 		break;
1689 	case PCIE_LINKSTS_NEG_WIDTH_X2:
1690 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X2;
1691 		break;
1692 	case PCIE_LINKSTS_NEG_WIDTH_X4:
1693 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X4;
1694 		break;
1695 	case PCIE_LINKSTS_NEG_WIDTH_X8:
1696 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X8;
1697 		break;
1698 	case PCIE_LINKSTS_NEG_WIDTH_X12:
1699 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X12;
1700 		break;
1701 	case PCIE_LINKSTS_NEG_WIDTH_X16:
1702 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X16;
1703 		break;
1704 	case PCIE_LINKSTS_NEG_WIDTH_X32:
1705 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X32;
1706 		break;
1707 	default:
1708 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_UNKNOWN;
1709 		break;
1710 	}
1711 
1712 	switch (cap & PCIE_LINKCAP_MAX_WIDTH_MASK) {
1713 	case PCIE_LINKCAP_MAX_WIDTH_X1:
1714 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X1;
1715 		break;
1716 	case PCIE_LINKCAP_MAX_WIDTH_X2:
1717 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X2;
1718 		break;
1719 	case PCIE_LINKCAP_MAX_WIDTH_X4:
1720 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X4;
1721 		break;
1722 	case PCIE_LINKCAP_MAX_WIDTH_X8:
1723 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X8;
1724 		break;
1725 	case PCIE_LINKCAP_MAX_WIDTH_X12:
1726 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X12;
1727 		break;
1728 	case PCIE_LINKCAP_MAX_WIDTH_X16:
1729 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X16;
1730 		break;
1731 	case PCIE_LINKCAP_MAX_WIDTH_X32:
1732 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X32;
1733 		break;
1734 	default:
1735 		bus_p->bus_max_width = PCIE_LINK_WIDTH_UNKNOWN;
1736 		break;
1737 	}
1738 
1739 	/*
1740 	 * If we have the Link Capabilities 2, then we can get the supported
1741 	 * speeds from it and treat the bits in Link Capabilities 1 as the
1742 	 * maximum. If we don't, then we need to follow the Implementation Note
1743 	 * in the standard under Link Capabilities 2. Effectively, this means
1744 	 * that if the value of 10b is set in Link Capabilities register, that
1745 	 * it supports both 2.5 and 5 GT/s speeds.
1746 	 */
1747 	if (cap2 != 0) {
1748 		if (cap2 & PCIE_LINKCAP2_SPEED_2_5)
1749 			bus_p->bus_sup_speed |= PCIE_LINK_SPEED_2_5;
1750 		if (cap2 & PCIE_LINKCAP2_SPEED_5)
1751 			bus_p->bus_sup_speed |= PCIE_LINK_SPEED_5;
1752 		if (cap2 & PCIE_LINKCAP2_SPEED_8)
1753 			bus_p->bus_sup_speed |= PCIE_LINK_SPEED_8;
1754 		if (cap2 & PCIE_LINKCAP2_SPEED_16)
1755 			bus_p->bus_sup_speed |= PCIE_LINK_SPEED_16;
1756 		if (cap2 & PCIE_LINKCAP2_SPEED_32)
1757 			bus_p->bus_sup_speed |= PCIE_LINK_SPEED_32;
1758 		if (cap2 & PCIE_LINKCAP2_SPEED_64)
1759 			bus_p->bus_sup_speed |= PCIE_LINK_SPEED_64;
1760 
1761 		switch (cap & PCIE_LINKCAP_MAX_SPEED_MASK) {
1762 		case PCIE_LINKCAP_MAX_SPEED_2_5:
1763 			bus_p->bus_max_speed = PCIE_LINK_SPEED_2_5;
1764 			break;
1765 		case PCIE_LINKCAP_MAX_SPEED_5:
1766 			bus_p->bus_max_speed = PCIE_LINK_SPEED_5;
1767 			break;
1768 		case PCIE_LINKCAP_MAX_SPEED_8:
1769 			bus_p->bus_max_speed = PCIE_LINK_SPEED_8;
1770 			break;
1771 		case PCIE_LINKCAP_MAX_SPEED_16:
1772 			bus_p->bus_max_speed = PCIE_LINK_SPEED_16;
1773 			break;
1774 		case PCIE_LINKCAP_MAX_SPEED_32:
1775 			bus_p->bus_max_speed = PCIE_LINK_SPEED_32;
1776 			break;
1777 		case PCIE_LINKCAP_MAX_SPEED_64:
1778 			bus_p->bus_max_speed = PCIE_LINK_SPEED_64;
1779 			break;
1780 		default:
1781 			bus_p->bus_max_speed = PCIE_LINK_SPEED_UNKNOWN;
1782 			break;
1783 		}
1784 	} else {
1785 		if (cap & PCIE_LINKCAP_MAX_SPEED_5) {
1786 			bus_p->bus_max_speed = PCIE_LINK_SPEED_5;
1787 			bus_p->bus_sup_speed = PCIE_LINK_SPEED_2_5 |
1788 			    PCIE_LINK_SPEED_5;
1789 		} else if (cap & PCIE_LINKCAP_MAX_SPEED_2_5) {
1790 			bus_p->bus_max_speed = PCIE_LINK_SPEED_2_5;
1791 			bus_p->bus_sup_speed = PCIE_LINK_SPEED_2_5;
1792 		}
1793 	}
1794 
1795 	switch (ctl2 & PCIE_LINKCTL2_TARGET_SPEED_MASK) {
1796 	case PCIE_LINKCTL2_TARGET_SPEED_2_5:
1797 		bus_p->bus_target_speed = PCIE_LINK_SPEED_2_5;
1798 		break;
1799 	case PCIE_LINKCTL2_TARGET_SPEED_5:
1800 		bus_p->bus_target_speed = PCIE_LINK_SPEED_5;
1801 		break;
1802 	case PCIE_LINKCTL2_TARGET_SPEED_8:
1803 		bus_p->bus_target_speed = PCIE_LINK_SPEED_8;
1804 		break;
1805 	case PCIE_LINKCTL2_TARGET_SPEED_16:
1806 		bus_p->bus_target_speed = PCIE_LINK_SPEED_16;
1807 		break;
1808 	case PCIE_LINKCTL2_TARGET_SPEED_32:
1809 		bus_p->bus_target_speed = PCIE_LINK_SPEED_32;
1810 		break;
1811 	case PCIE_LINKCTL2_TARGET_SPEED_64:
1812 		bus_p->bus_target_speed = PCIE_LINK_SPEED_64;
1813 		break;
1814 	default:
1815 		bus_p->bus_target_speed = PCIE_LINK_SPEED_UNKNOWN;
1816 		break;
1817 	}
1818 
1819 	pcie_speeds_to_devinfo(dip, bus_p);
1820 	mutex_exit(&bus_p->bus_speed_mutex);
1821 }
1822 
1823 /*
1824  * partially init pcie_bus_t for device (dip,bdf) for accessing pci
1825  * config space
1826  *
1827  * This routine is invoked during boot, either after creating a devinfo node
1828  * (x86 case) or during px driver attach (sparc case); it is also invoked
1829  * in hotplug context after a devinfo node is created.
1830  *
1831  * The fields that are bracketed are initialized if flag PCIE_BUS_INITIAL
1832  * is set:
1833  *
1834  * dev_info_t *		<bus_dip>
1835  * dev_info_t *		<bus_rp_dip>
1836  * ddi_acc_handle_t	bus_cfg_hdl
1837  * uint_t		bus_fm_flags
1838  * pcie_req_id_t	<bus_bdf>
1839  * pcie_req_id_t	<bus_rp_bdf>
1840  * uint32_t		<bus_dev_ven_id>
1841  * uint8_t		<bus_rev_id>
1842  * uint8_t		<bus_hdr_type>
1843  * uint16_t		<bus_dev_type>
1844  * uint8_t		<bus_bdg_secbus
1845  * uint16_t		<bus_pcie_off>
1846  * uint16_t		<bus_aer_off>
1847  * uint16_t		<bus_pcix_off>
1848  * uint16_t		<bus_ecc_ver>
1849  * pci_bus_range_t	bus_bus_range
1850  * ppb_ranges_t	*	bus_addr_ranges
1851  * int			bus_addr_entries
1852  * pci_regspec_t *	bus_assigned_addr
1853  * int			bus_assigned_entries
1854  * pf_data_t *		bus_pfd
1855  * pcie_domain_t *	bus_dom
1856  * int			bus_mps
1857  * uint64_t		bus_cfgacc_base
1858  * void	*		bus_plat_private
1859  *
1860  * The fields that are bracketed are initialized if flag PCIE_BUS_FINAL
1861  * is set:
1862  *
1863  * dev_info_t *		bus_dip
1864  * dev_info_t *		bus_rp_dip
1865  * ddi_acc_handle_t	bus_cfg_hdl
1866  * uint_t		bus_fm_flags
1867  * pcie_req_id_t	bus_bdf
1868  * pcie_req_id_t	bus_rp_bdf
1869  * uint32_t		bus_dev_ven_id
1870  * uint8_t		bus_rev_id
1871  * uint8_t		bus_hdr_type
1872  * uint16_t		bus_dev_type
1873  * uint8_t		<bus_bdg_secbus>
1874  * uint16_t		bus_pcie_off
1875  * uint16_t		bus_aer_off
1876  * uint16_t		bus_pcix_off
1877  * uint16_t		bus_ecc_ver
1878  * pci_bus_range_t	<bus_bus_range>
1879  * ppb_ranges_t	*	<bus_addr_ranges>
1880  * int			<bus_addr_entries>
1881  * pci_regspec_t *	<bus_assigned_addr>
1882  * int			<bus_assigned_entries>
1883  * pf_data_t *		<bus_pfd>
1884  * pcie_domain_t *	bus_dom
1885  * int			bus_mps
1886  * uint64_t		bus_cfgacc_base
1887  * void	*		<bus_plat_private>
1888  */
1889 
1890 pcie_bus_t *
pcie_init_bus(dev_info_t * dip,pcie_req_id_t bdf,uint8_t flags)1891 pcie_init_bus(dev_info_t *dip, pcie_req_id_t bdf, uint8_t flags)
1892 {
1893 	uint16_t	status, base, baseptr, num_cap;
1894 	uint32_t	capid;
1895 	int		range_size;
1896 	pcie_bus_t	*bus_p = NULL;
1897 	dev_info_t	*rcdip;
1898 	dev_info_t	*pdip;
1899 	const char	*errstr = NULL;
1900 
1901 	if (!(flags & PCIE_BUS_INITIAL))
1902 		goto initial_done;
1903 
1904 	bus_p = kmem_zalloc(sizeof (pcie_bus_t), KM_SLEEP);
1905 
1906 	bus_p->bus_dip = dip;
1907 	bus_p->bus_bdf = bdf;
1908 
1909 	rcdip = pcie_get_rc_dip(dip);
1910 	ASSERT(rcdip != NULL);
1911 
1912 	/* Save the Vendor ID, Device ID and revision ID */
1913 	bus_p->bus_dev_ven_id = pci_cfgacc_get32(rcdip, bdf, PCI_CONF_VENID);
1914 	bus_p->bus_rev_id = pci_cfgacc_get8(rcdip, bdf, PCI_CONF_REVID);
1915 	/* Save the Header Type */
1916 	bus_p->bus_hdr_type = pci_cfgacc_get8(rcdip, bdf, PCI_CONF_HEADER);
1917 	bus_p->bus_hdr_type &= PCI_HEADER_TYPE_M;
1918 
1919 	/*
1920 	 * Figure out the device type and all the relavant capability offsets
1921 	 */
1922 	/* set default value */
1923 	bus_p->bus_dev_type = PCIE_PCIECAP_DEV_TYPE_PCI_PSEUDO;
1924 
1925 	status = pci_cfgacc_get16(rcdip, bdf, PCI_CONF_STAT);
1926 	if (status == PCI_CAP_EINVAL16 || !(status & PCI_STAT_CAP))
1927 		goto caps_done; /* capability not supported */
1928 
1929 	/* Relevant conventional capabilities first */
1930 
1931 	/* Conventional caps: PCI_CAP_ID_PCI_E, PCI_CAP_ID_PCIX */
1932 	num_cap = 2;
1933 
1934 	switch (bus_p->bus_hdr_type) {
1935 	case PCI_HEADER_ZERO:
1936 		baseptr = PCI_CONF_CAP_PTR;
1937 		break;
1938 	case PCI_HEADER_PPB:
1939 		baseptr = PCI_BCNF_CAP_PTR;
1940 		break;
1941 	case PCI_HEADER_CARDBUS:
1942 		baseptr = PCI_CBUS_CAP_PTR;
1943 		break;
1944 	default:
1945 		cmn_err(CE_WARN, "%s: unexpected pci header type:%x",
1946 		    __func__, bus_p->bus_hdr_type);
1947 		goto caps_done;
1948 	}
1949 
1950 	base = baseptr;
1951 	for (base = pci_cfgacc_get8(rcdip, bdf, base); base && num_cap;
1952 	    base = pci_cfgacc_get8(rcdip, bdf, base + PCI_CAP_NEXT_PTR)) {
1953 		capid = pci_cfgacc_get8(rcdip, bdf, base);
1954 		uint16_t pcap;
1955 
1956 		switch (capid) {
1957 		case PCI_CAP_ID_PCI_E:
1958 			bus_p->bus_pcie_off = base;
1959 			pcap = pci_cfgacc_get16(rcdip, bdf, base +
1960 			    PCIE_PCIECAP);
1961 			bus_p->bus_dev_type = pcap & PCIE_PCIECAP_DEV_TYPE_MASK;
1962 			bus_p->bus_pcie_vers = pcap & PCIE_PCIECAP_VER_MASK;
1963 
1964 			/* Check and save PCIe hotplug capability information */
1965 			if ((PCIE_IS_RP(bus_p) || PCIE_IS_SWD(bus_p)) &&
1966 			    (pci_cfgacc_get16(rcdip, bdf, base + PCIE_PCIECAP)
1967 			    & PCIE_PCIECAP_SLOT_IMPL) &&
1968 			    (pci_cfgacc_get32(rcdip, bdf, base + PCIE_SLOTCAP)
1969 			    & PCIE_SLOTCAP_HP_CAPABLE))
1970 				bus_p->bus_hp_sup_modes |= PCIE_NATIVE_HP_MODE;
1971 
1972 			num_cap--;
1973 			break;
1974 		case PCI_CAP_ID_PCIX:
1975 			bus_p->bus_pcix_off = base;
1976 			if (PCIE_IS_BDG(bus_p))
1977 				bus_p->bus_ecc_ver =
1978 				    pci_cfgacc_get16(rcdip, bdf, base +
1979 				    PCI_PCIX_SEC_STATUS) & PCI_PCIX_VER_MASK;
1980 			else
1981 				bus_p->bus_ecc_ver =
1982 				    pci_cfgacc_get16(rcdip, bdf, base +
1983 				    PCI_PCIX_COMMAND) & PCI_PCIX_VER_MASK;
1984 			num_cap--;
1985 			break;
1986 		default:
1987 			break;
1988 		}
1989 	}
1990 
1991 	/* Check and save PCI hotplug (SHPC) capability information */
1992 	if (PCIE_IS_BDG(bus_p)) {
1993 		base = baseptr;
1994 		for (base = pci_cfgacc_get8(rcdip, bdf, base);
1995 		    base; base = pci_cfgacc_get8(rcdip, bdf,
1996 		    base + PCI_CAP_NEXT_PTR)) {
1997 			capid = pci_cfgacc_get8(rcdip, bdf, base);
1998 			if (capid == PCI_CAP_ID_PCI_HOTPLUG) {
1999 				bus_p->bus_pci_hp_off = base;
2000 				bus_p->bus_hp_sup_modes |= PCIE_PCI_HP_MODE;
2001 				break;
2002 			}
2003 		}
2004 	}
2005 
2006 	/* Then, relevant extended capabilities */
2007 
2008 	if (!PCIE_IS_PCIE(bus_p))
2009 		goto caps_done;
2010 
2011 	/* Extended caps: PCIE_EXT_CAP_ID_AER */
2012 	for (base = PCIE_EXT_CAP; base; base = (capid >>
2013 	    PCIE_EXT_CAP_NEXT_PTR_SHIFT) & PCIE_EXT_CAP_NEXT_PTR_MASK) {
2014 		capid = pci_cfgacc_get32(rcdip, bdf, base);
2015 		if (capid == PCI_CAP_EINVAL32)
2016 			break;
2017 		switch ((capid >> PCIE_EXT_CAP_ID_SHIFT) &
2018 		    PCIE_EXT_CAP_ID_MASK) {
2019 		case PCIE_EXT_CAP_ID_AER:
2020 			bus_p->bus_aer_off = base;
2021 			break;
2022 		case PCIE_EXT_CAP_ID_DEV3:
2023 			bus_p->bus_dev3_off = base;
2024 			break;
2025 		}
2026 	}
2027 
2028 caps_done:
2029 	/* save RP dip and RP bdf */
2030 	if (PCIE_IS_RP(bus_p)) {
2031 		bus_p->bus_rp_dip = dip;
2032 		bus_p->bus_rp_bdf = bus_p->bus_bdf;
2033 
2034 		bus_p->bus_fab = PCIE_ZALLOC(pcie_fabric_data_t);
2035 	} else {
2036 		for (pdip = ddi_get_parent(dip); pdip;
2037 		    pdip = ddi_get_parent(pdip)) {
2038 			pcie_bus_t *parent_bus_p = PCIE_DIP2BUS(pdip);
2039 
2040 			/*
2041 			 * If RP dip and RP bdf in parent's bus_t have
2042 			 * been initialized, simply use these instead of
2043 			 * continuing up to the RC.
2044 			 */
2045 			if (parent_bus_p->bus_rp_dip != NULL) {
2046 				bus_p->bus_rp_dip = parent_bus_p->bus_rp_dip;
2047 				bus_p->bus_rp_bdf = parent_bus_p->bus_rp_bdf;
2048 				break;
2049 			}
2050 
2051 			/*
2052 			 * When debugging be aware that some NVIDIA x86
2053 			 * architectures have 2 nodes for each RP, One at Bus
2054 			 * 0x0 and one at Bus 0x80.  The requester is from Bus
2055 			 * 0x80
2056 			 */
2057 			if (PCIE_IS_ROOT(parent_bus_p)) {
2058 				bus_p->bus_rp_dip = pdip;
2059 				bus_p->bus_rp_bdf = parent_bus_p->bus_bdf;
2060 				break;
2061 			}
2062 		}
2063 	}
2064 
2065 	bus_p->bus_soft_state = PCI_SOFT_STATE_CLOSED;
2066 	(void) atomic_swap_uint(&bus_p->bus_fm_flags, 0);
2067 
2068 	ndi_set_bus_private(dip, B_TRUE, DEVI_PORT_TYPE_PCI, (void *)bus_p);
2069 
2070 	if (PCIE_IS_HOTPLUG_CAPABLE(dip))
2071 		(void) ndi_prop_create_boolean(DDI_DEV_T_NONE, dip,
2072 		    "hotplug-capable");
2073 
2074 initial_done:
2075 	if (!(flags & PCIE_BUS_FINAL))
2076 		goto final_done;
2077 
2078 	/* already initialized? */
2079 	bus_p = PCIE_DIP2BUS(dip);
2080 
2081 	/* Save the Range information if device is a switch/bridge */
2082 	if (PCIE_IS_BDG(bus_p)) {
2083 		/* get "bus_range" property */
2084 		range_size = sizeof (pci_bus_range_t);
2085 		if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2086 		    "bus-range", (caddr_t)&bus_p->bus_bus_range, &range_size)
2087 		    != DDI_PROP_SUCCESS) {
2088 			errstr = "Cannot find \"bus-range\" property";
2089 			cmn_err(CE_WARN,
2090 			    "PCIE init err info failed BDF 0x%x:%s\n",
2091 			    bus_p->bus_bdf, errstr);
2092 		}
2093 
2094 		/* get secondary bus number */
2095 		rcdip = pcie_get_rc_dip(dip);
2096 		ASSERT(rcdip != NULL);
2097 
2098 		bus_p->bus_bdg_secbus = pci_cfgacc_get8(rcdip,
2099 		    bus_p->bus_bdf, PCI_BCNF_SECBUS);
2100 
2101 		/* Get "ranges" property */
2102 		if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2103 		    "ranges", (caddr_t)&bus_p->bus_addr_ranges,
2104 		    &bus_p->bus_addr_entries) != DDI_PROP_SUCCESS)
2105 			bus_p->bus_addr_entries = 0;
2106 		bus_p->bus_addr_entries /= sizeof (ppb_ranges_t);
2107 	}
2108 
2109 	/* save "assigned-addresses" property array, ignore failues */
2110 	if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2111 	    "assigned-addresses", (caddr_t)&bus_p->bus_assigned_addr,
2112 	    &bus_p->bus_assigned_entries) == DDI_PROP_SUCCESS)
2113 		bus_p->bus_assigned_entries /= sizeof (pci_regspec_t);
2114 	else
2115 		bus_p->bus_assigned_entries = 0;
2116 
2117 	pcie_init_pfd(dip);
2118 
2119 	pcie_init_plat(dip);
2120 
2121 	pcie_capture_speeds(dip);
2122 
2123 final_done:
2124 
2125 	PCIE_DBG("Add %s(dip 0x%p, bdf 0x%x, secbus 0x%x)\n",
2126 	    ddi_driver_name(dip), (void *)dip, bus_p->bus_bdf,
2127 	    bus_p->bus_bdg_secbus);
2128 #ifdef DEBUG
2129 	if (bus_p != NULL) {
2130 		pcie_print_bus(bus_p);
2131 	}
2132 #endif
2133 
2134 	return (bus_p);
2135 }
2136 
2137 /*
2138  * Invoked before destroying devinfo node, mostly during hotplug
2139  * operation to free pcie_bus_t data structure
2140  */
2141 /* ARGSUSED */
2142 void
pcie_fini_bus(dev_info_t * dip,uint8_t flags)2143 pcie_fini_bus(dev_info_t *dip, uint8_t flags)
2144 {
2145 	pcie_bus_t *bus_p = PCIE_DIP2UPBUS(dip);
2146 	ASSERT(bus_p);
2147 
2148 	if (flags & PCIE_BUS_INITIAL) {
2149 		pcie_fini_plat(dip);
2150 		pcie_fini_pfd(dip);
2151 
2152 		if (PCIE_IS_RP(bus_p)) {
2153 			kmem_free(bus_p->bus_fab, sizeof (pcie_fabric_data_t));
2154 			bus_p->bus_fab = NULL;
2155 		}
2156 
2157 		kmem_free(bus_p->bus_assigned_addr,
2158 		    (sizeof (pci_regspec_t) * bus_p->bus_assigned_entries));
2159 		kmem_free(bus_p->bus_addr_ranges,
2160 		    (sizeof (ppb_ranges_t) * bus_p->bus_addr_entries));
2161 		/* zero out the fields that have been destroyed */
2162 		bus_p->bus_assigned_addr = NULL;
2163 		bus_p->bus_addr_ranges = NULL;
2164 		bus_p->bus_assigned_entries = 0;
2165 		bus_p->bus_addr_entries = 0;
2166 	}
2167 
2168 	if (flags & PCIE_BUS_FINAL) {
2169 		if (PCIE_IS_HOTPLUG_CAPABLE(dip)) {
2170 			(void) ndi_prop_remove(DDI_DEV_T_NONE, dip,
2171 			    "hotplug-capable");
2172 		}
2173 
2174 		ndi_set_bus_private(dip, B_TRUE, 0, NULL);
2175 		kmem_free(bus_p, sizeof (pcie_bus_t));
2176 	}
2177 }
2178 
2179 int
pcie_postattach_child(dev_info_t * cdip)2180 pcie_postattach_child(dev_info_t *cdip)
2181 {
2182 	pcie_bus_t *bus_p = PCIE_DIP2BUS(cdip);
2183 
2184 	if (!bus_p)
2185 		return (DDI_FAILURE);
2186 
2187 	return (pcie_enable_ce(cdip));
2188 }
2189 
2190 /*
2191  * PCI-Express child device de-initialization.
2192  * This function disables generic pci-express interrupts and error
2193  * handling.
2194  */
2195 void
pcie_uninitchild(dev_info_t * cdip)2196 pcie_uninitchild(dev_info_t *cdip)
2197 {
2198 	pcie_disable_errors(cdip);
2199 	pcie_fini_cfghdl(cdip);
2200 	pcie_fini_dom(cdip);
2201 }
2202 
2203 /*
2204  * find the root complex dip
2205  */
2206 dev_info_t *
pcie_get_rc_dip(dev_info_t * dip)2207 pcie_get_rc_dip(dev_info_t *dip)
2208 {
2209 	dev_info_t *rcdip;
2210 	pcie_bus_t *rc_bus_p;
2211 
2212 	for (rcdip = ddi_get_parent(dip); rcdip;
2213 	    rcdip = ddi_get_parent(rcdip)) {
2214 		rc_bus_p = PCIE_DIP2BUS(rcdip);
2215 		if (rc_bus_p && PCIE_IS_RC(rc_bus_p))
2216 			break;
2217 	}
2218 
2219 	return (rcdip);
2220 }
2221 
2222 boolean_t
pcie_is_pci_device(dev_info_t * dip)2223 pcie_is_pci_device(dev_info_t *dip)
2224 {
2225 	dev_info_t	*pdip;
2226 	char		*device_type;
2227 
2228 	pdip = ddi_get_parent(dip);
2229 	if (pdip == NULL)
2230 		return (B_FALSE);
2231 
2232 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS,
2233 	    "device_type", &device_type) != DDI_PROP_SUCCESS)
2234 		return (B_FALSE);
2235 
2236 	if (strcmp(device_type, "pciex") != 0 &&
2237 	    strcmp(device_type, "pci") != 0) {
2238 		ddi_prop_free(device_type);
2239 		return (B_FALSE);
2240 	}
2241 
2242 	ddi_prop_free(device_type);
2243 	return (B_TRUE);
2244 }
2245 
2246 typedef struct {
2247 	boolean_t	init;
2248 	uint8_t		flags;
2249 } pcie_bus_arg_t;
2250 
2251 /*ARGSUSED*/
2252 static int
pcie_fab_do_init_fini(dev_info_t * dip,void * arg)2253 pcie_fab_do_init_fini(dev_info_t *dip, void *arg)
2254 {
2255 	pcie_req_id_t	bdf;
2256 	pcie_bus_arg_t	*bus_arg = (pcie_bus_arg_t *)arg;
2257 
2258 	if (!pcie_is_pci_device(dip))
2259 		goto out;
2260 
2261 	if (bus_arg->init) {
2262 		if (pcie_get_bdf_from_dip(dip, &bdf) != DDI_SUCCESS)
2263 			goto out;
2264 
2265 		(void) pcie_init_bus(dip, bdf, bus_arg->flags);
2266 	} else {
2267 		(void) pcie_fini_bus(dip, bus_arg->flags);
2268 	}
2269 
2270 	return (DDI_WALK_CONTINUE);
2271 
2272 out:
2273 	return (DDI_WALK_PRUNECHILD);
2274 }
2275 
2276 void
pcie_fab_init_bus(dev_info_t * rcdip,uint8_t flags)2277 pcie_fab_init_bus(dev_info_t *rcdip, uint8_t flags)
2278 {
2279 	dev_info_t	*dip = ddi_get_child(rcdip);
2280 	pcie_bus_arg_t	arg;
2281 
2282 	arg.init = B_TRUE;
2283 	arg.flags = flags;
2284 
2285 	ndi_devi_enter(rcdip);
2286 	ddi_walk_devs(dip, pcie_fab_do_init_fini, &arg);
2287 	ndi_devi_exit(rcdip);
2288 }
2289 
2290 void
pcie_fab_fini_bus(dev_info_t * rcdip,uint8_t flags)2291 pcie_fab_fini_bus(dev_info_t *rcdip, uint8_t flags)
2292 {
2293 	dev_info_t	*dip = ddi_get_child(rcdip);
2294 	pcie_bus_arg_t	arg;
2295 
2296 	arg.init = B_FALSE;
2297 	arg.flags = flags;
2298 
2299 	ndi_devi_enter(rcdip);
2300 	ddi_walk_devs(dip, pcie_fab_do_init_fini, &arg);
2301 	ndi_devi_exit(rcdip);
2302 }
2303 
2304 void
pcie_enable_errors(dev_info_t * dip)2305 pcie_enable_errors(dev_info_t *dip)
2306 {
2307 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
2308 	uint16_t	reg16, tmp16;
2309 	uint32_t	reg32, tmp32;
2310 
2311 	ASSERT(bus_p);
2312 
2313 	/*
2314 	 * Clear any pending errors
2315 	 */
2316 	pcie_clear_errors(dip);
2317 
2318 	if (!PCIE_IS_PCIE(bus_p))
2319 		return;
2320 
2321 	/*
2322 	 * Enable Baseline Error Handling but leave CE reporting off (poweron
2323 	 * default).
2324 	 */
2325 	if ((reg16 = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL)) !=
2326 	    PCI_CAP_EINVAL16) {
2327 		tmp16 = (reg16 & pcie_devctl_default_mask) |
2328 		    (pcie_devctl_default & ~pcie_devctl_default_mask) |
2329 		    (pcie_base_err_default & ~PCIE_DEVCTL_CE_REPORTING_EN);
2330 
2331 		PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL, tmp16);
2332 		PCIE_DBG_CAP(dip, bus_p, "DEVCTL", 16, PCIE_DEVCTL, reg16);
2333 	}
2334 
2335 	/* Enable Root Port Baseline Error Receiving */
2336 	if (PCIE_IS_ROOT(bus_p) &&
2337 	    (reg16 = PCIE_CAP_GET(16, bus_p, PCIE_ROOTCTL)) !=
2338 	    PCI_CAP_EINVAL16) {
2339 
2340 		tmp16 = pcie_serr_disable_flag ?
2341 		    (pcie_root_ctrl_default & ~PCIE_ROOT_SYS_ERR) :
2342 		    pcie_root_ctrl_default;
2343 		PCIE_CAP_PUT(16, bus_p, PCIE_ROOTCTL, tmp16);
2344 		PCIE_DBG_CAP(dip, bus_p, "ROOT DEVCTL", 16, PCIE_ROOTCTL,
2345 		    reg16);
2346 	}
2347 
2348 	/*
2349 	 * Enable PCI-Express Advanced Error Handling if Exists
2350 	 */
2351 	if (!PCIE_HAS_AER(bus_p))
2352 		return;
2353 
2354 	/* Set Uncorrectable Severity */
2355 	if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_UCE_SERV)) !=
2356 	    PCI_CAP_EINVAL32) {
2357 		tmp32 = pcie_aer_uce_severity;
2358 
2359 		PCIE_AER_PUT(32, bus_p, PCIE_AER_UCE_SERV, tmp32);
2360 		PCIE_DBG_AER(dip, bus_p, "AER UCE SEV", 32, PCIE_AER_UCE_SERV,
2361 		    reg32);
2362 	}
2363 
2364 	/* Enable Uncorrectable errors */
2365 	if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_UCE_MASK)) !=
2366 	    PCI_CAP_EINVAL32) {
2367 		tmp32 = pcie_aer_uce_mask;
2368 
2369 		PCIE_AER_PUT(32, bus_p, PCIE_AER_UCE_MASK, tmp32);
2370 		PCIE_DBG_AER(dip, bus_p, "AER UCE MASK", 32, PCIE_AER_UCE_MASK,
2371 		    reg32);
2372 	}
2373 
2374 	/* Enable ECRC generation and checking */
2375 	if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_CTL)) !=
2376 	    PCI_CAP_EINVAL32) {
2377 		tmp32 = reg32 | pcie_ecrc_value;
2378 		PCIE_AER_PUT(32, bus_p, PCIE_AER_CTL, tmp32);
2379 		PCIE_DBG_AER(dip, bus_p, "AER CTL", 32, PCIE_AER_CTL, reg32);
2380 	}
2381 
2382 	/* Enable Secondary Uncorrectable errors if this is a bridge */
2383 	if (!PCIE_IS_PCIE_BDG(bus_p))
2384 		goto root;
2385 
2386 	/* Set Uncorrectable Severity */
2387 	if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_SUCE_SERV)) !=
2388 	    PCI_CAP_EINVAL32) {
2389 		tmp32 = pcie_aer_suce_severity;
2390 
2391 		PCIE_AER_PUT(32, bus_p, PCIE_AER_SUCE_SERV, tmp32);
2392 		PCIE_DBG_AER(dip, bus_p, "AER SUCE SEV", 32, PCIE_AER_SUCE_SERV,
2393 		    reg32);
2394 	}
2395 
2396 	if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_SUCE_MASK)) !=
2397 	    PCI_CAP_EINVAL32) {
2398 		PCIE_AER_PUT(32, bus_p, PCIE_AER_SUCE_MASK, pcie_aer_suce_mask);
2399 		PCIE_DBG_AER(dip, bus_p, "AER SUCE MASK", 32,
2400 		    PCIE_AER_SUCE_MASK, reg32);
2401 	}
2402 
2403 root:
2404 	/*
2405 	 * Enable Root Control this is a Root device
2406 	 */
2407 	if (!PCIE_IS_ROOT(bus_p))
2408 		return;
2409 
2410 	if ((reg16 = PCIE_AER_GET(16, bus_p, PCIE_AER_RE_CMD)) !=
2411 	    PCI_CAP_EINVAL16) {
2412 		PCIE_AER_PUT(16, bus_p, PCIE_AER_RE_CMD,
2413 		    pcie_root_error_cmd_default);
2414 		PCIE_DBG_AER(dip, bus_p, "AER Root Err Cmd", 16,
2415 		    PCIE_AER_RE_CMD, reg16);
2416 	}
2417 }
2418 
2419 /*
2420  * This function is used for enabling CE reporting and setting the AER CE mask.
2421  * When called from outside the pcie module it should always be preceded by
2422  * a call to pcie_enable_errors.
2423  */
2424 int
pcie_enable_ce(dev_info_t * dip)2425 pcie_enable_ce(dev_info_t *dip)
2426 {
2427 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
2428 	uint16_t	device_sts, device_ctl;
2429 	uint32_t	tmp_pcie_aer_ce_mask;
2430 
2431 	if (!PCIE_IS_PCIE(bus_p))
2432 		return (DDI_SUCCESS);
2433 
2434 	/*
2435 	 * The "pcie_ce_mask" property is used to control both the CE reporting
2436 	 * enable field in the device control register and the AER CE mask. We
2437 	 * leave CE reporting disabled if pcie_ce_mask is set to -1.
2438 	 */
2439 
2440 	tmp_pcie_aer_ce_mask = (uint32_t)ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2441 	    DDI_PROP_DONTPASS, "pcie_ce_mask", pcie_aer_ce_mask);
2442 
2443 	if (tmp_pcie_aer_ce_mask == (uint32_t)-1) {
2444 		/*
2445 		 * Nothing to do since CE reporting has already been disabled.
2446 		 */
2447 		return (DDI_SUCCESS);
2448 	}
2449 
2450 	if (PCIE_HAS_AER(bus_p)) {
2451 		/* Enable AER CE */
2452 		PCIE_AER_PUT(32, bus_p, PCIE_AER_CE_MASK, tmp_pcie_aer_ce_mask);
2453 		PCIE_DBG_AER(dip, bus_p, "AER CE MASK", 32, PCIE_AER_CE_MASK,
2454 		    0);
2455 
2456 		/* Clear any pending AER CE errors */
2457 		PCIE_AER_PUT(32, bus_p, PCIE_AER_CE_STS, -1);
2458 	}
2459 
2460 	/* clear any pending CE errors */
2461 	if ((device_sts = PCIE_CAP_GET(16, bus_p, PCIE_DEVSTS)) !=
2462 	    PCI_CAP_EINVAL16)
2463 		PCIE_CAP_PUT(16, bus_p, PCIE_DEVSTS,
2464 		    device_sts & (~PCIE_DEVSTS_CE_DETECTED));
2465 
2466 	/* Enable CE reporting */
2467 	device_ctl = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL);
2468 	PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL,
2469 	    (device_ctl & (~PCIE_DEVCTL_ERR_MASK)) | pcie_base_err_default);
2470 	PCIE_DBG_CAP(dip, bus_p, "DEVCTL", 16, PCIE_DEVCTL, device_ctl);
2471 
2472 	return (DDI_SUCCESS);
2473 }
2474 
2475 /* ARGSUSED */
2476 void
pcie_disable_errors(dev_info_t * dip)2477 pcie_disable_errors(dev_info_t *dip)
2478 {
2479 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
2480 	uint16_t	device_ctl;
2481 	uint32_t	aer_reg;
2482 
2483 	if (!PCIE_IS_PCIE(bus_p))
2484 		return;
2485 
2486 	/*
2487 	 * Disable PCI-Express Baseline Error Handling
2488 	 */
2489 	device_ctl = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL);
2490 	device_ctl &= ~PCIE_DEVCTL_ERR_MASK;
2491 	PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL, device_ctl);
2492 
2493 	/*
2494 	 * Disable PCI-Express Advanced Error Handling if Exists
2495 	 */
2496 	if (!PCIE_HAS_AER(bus_p))
2497 		goto root;
2498 
2499 	/* Disable Uncorrectable errors */
2500 	PCIE_AER_PUT(32, bus_p, PCIE_AER_UCE_MASK, PCIE_AER_UCE_BITS);
2501 
2502 	/* Disable Correctable errors */
2503 	PCIE_AER_PUT(32, bus_p, PCIE_AER_CE_MASK, PCIE_AER_CE_BITS);
2504 
2505 	/* Disable ECRC generation and checking */
2506 	if ((aer_reg = PCIE_AER_GET(32, bus_p, PCIE_AER_CTL)) !=
2507 	    PCI_CAP_EINVAL32) {
2508 		aer_reg &= ~(PCIE_AER_CTL_ECRC_GEN_ENA |
2509 		    PCIE_AER_CTL_ECRC_CHECK_ENA);
2510 
2511 		PCIE_AER_PUT(32, bus_p, PCIE_AER_CTL, aer_reg);
2512 	}
2513 	/*
2514 	 * Disable Secondary Uncorrectable errors if this is a bridge
2515 	 */
2516 	if (!PCIE_IS_PCIE_BDG(bus_p))
2517 		goto root;
2518 
2519 	PCIE_AER_PUT(32, bus_p, PCIE_AER_SUCE_MASK, PCIE_AER_SUCE_BITS);
2520 
2521 root:
2522 	/*
2523 	 * disable Root Control this is a Root device
2524 	 */
2525 	if (!PCIE_IS_ROOT(bus_p))
2526 		return;
2527 
2528 	if (!pcie_serr_disable_flag) {
2529 		device_ctl = PCIE_CAP_GET(16, bus_p, PCIE_ROOTCTL);
2530 		device_ctl &= ~PCIE_ROOT_SYS_ERR;
2531 		PCIE_CAP_PUT(16, bus_p, PCIE_ROOTCTL, device_ctl);
2532 	}
2533 
2534 	if (!PCIE_HAS_AER(bus_p))
2535 		return;
2536 
2537 	if ((device_ctl = PCIE_CAP_GET(16, bus_p, PCIE_AER_RE_CMD)) !=
2538 	    PCI_CAP_EINVAL16) {
2539 		device_ctl &= ~pcie_root_error_cmd_default;
2540 		PCIE_CAP_PUT(16, bus_p, PCIE_AER_RE_CMD, device_ctl);
2541 	}
2542 }
2543 
2544 /*
2545  * Extract bdf from "reg" property.
2546  */
2547 int
pcie_get_bdf_from_dip(dev_info_t * dip,pcie_req_id_t * bdf)2548 pcie_get_bdf_from_dip(dev_info_t *dip, pcie_req_id_t *bdf)
2549 {
2550 	pci_regspec_t	*regspec;
2551 	int		reglen;
2552 
2553 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2554 	    "reg", (int **)&regspec, (uint_t *)&reglen) != DDI_SUCCESS)
2555 		return (DDI_FAILURE);
2556 
2557 	if (reglen < (sizeof (pci_regspec_t) / sizeof (int))) {
2558 		ddi_prop_free(regspec);
2559 		return (DDI_FAILURE);
2560 	}
2561 
2562 	/* Get phys_hi from first element.  All have same bdf. */
2563 	*bdf = (regspec->pci_phys_hi & (PCI_REG_BDFR_M ^ PCI_REG_REG_M)) >> 8;
2564 
2565 	ddi_prop_free(regspec);
2566 	return (DDI_SUCCESS);
2567 }
2568 
2569 dev_info_t *
pcie_get_my_childs_dip(dev_info_t * dip,dev_info_t * rdip)2570 pcie_get_my_childs_dip(dev_info_t *dip, dev_info_t *rdip)
2571 {
2572 	dev_info_t *cdip = rdip;
2573 
2574 	for (; ddi_get_parent(cdip) != dip; cdip = ddi_get_parent(cdip))
2575 		;
2576 
2577 	return (cdip);
2578 }
2579 
2580 uint32_t
pcie_get_bdf_for_dma_xfer(dev_info_t * dip,dev_info_t * rdip)2581 pcie_get_bdf_for_dma_xfer(dev_info_t *dip, dev_info_t *rdip)
2582 {
2583 	dev_info_t *cdip;
2584 
2585 	/*
2586 	 * As part of the probing, the PCI fcode interpreter may setup a DMA
2587 	 * request if a given card has a fcode on it using dip and rdip of the
2588 	 * hotplug connector i.e, dip and rdip of px/pcieb driver. In this
2589 	 * case, return a invalid value for the bdf since we cannot get to the
2590 	 * bdf value of the actual device which will be initiating this DMA.
2591 	 */
2592 	if (rdip == dip)
2593 		return (PCIE_INVALID_BDF);
2594 
2595 	cdip = pcie_get_my_childs_dip(dip, rdip);
2596 
2597 	/*
2598 	 * For a given rdip, return the bdf value of dip's (px or pcieb)
2599 	 * immediate child or secondary bus-id if dip is a PCIe2PCI bridge.
2600 	 *
2601 	 * XXX - For now, return a invalid bdf value for all PCI and PCI-X
2602 	 * devices since this needs more work.
2603 	 */
2604 	return (PCI_GET_PCIE2PCI_SECBUS(cdip) ?
2605 	    PCIE_INVALID_BDF : PCI_GET_BDF(cdip));
2606 }
2607 
2608 uint32_t
pcie_get_aer_uce_mask()2609 pcie_get_aer_uce_mask()
2610 {
2611 	return (pcie_aer_uce_mask);
2612 }
2613 uint32_t
pcie_get_aer_ce_mask()2614 pcie_get_aer_ce_mask()
2615 {
2616 	return (pcie_aer_ce_mask);
2617 }
2618 uint32_t
pcie_get_aer_suce_mask()2619 pcie_get_aer_suce_mask()
2620 {
2621 	return (pcie_aer_suce_mask);
2622 }
2623 uint32_t
pcie_get_serr_mask()2624 pcie_get_serr_mask()
2625 {
2626 	return (pcie_serr_disable_flag);
2627 }
2628 
2629 void
pcie_set_aer_uce_mask(uint32_t mask)2630 pcie_set_aer_uce_mask(uint32_t mask)
2631 {
2632 	pcie_aer_uce_mask = mask;
2633 	if (mask & PCIE_AER_UCE_UR)
2634 		pcie_base_err_default &= ~PCIE_DEVCTL_UR_REPORTING_EN;
2635 	else
2636 		pcie_base_err_default |= PCIE_DEVCTL_UR_REPORTING_EN;
2637 
2638 	if (mask & PCIE_AER_UCE_ECRC)
2639 		pcie_ecrc_value = 0;
2640 }
2641 
2642 void
pcie_set_aer_ce_mask(uint32_t mask)2643 pcie_set_aer_ce_mask(uint32_t mask)
2644 {
2645 	pcie_aer_ce_mask = mask;
2646 }
2647 void
pcie_set_aer_suce_mask(uint32_t mask)2648 pcie_set_aer_suce_mask(uint32_t mask)
2649 {
2650 	pcie_aer_suce_mask = mask;
2651 }
2652 void
pcie_set_serr_mask(uint32_t mask)2653 pcie_set_serr_mask(uint32_t mask)
2654 {
2655 	pcie_serr_disable_flag = mask;
2656 }
2657 
2658 /*
2659  * Is the rdip a child of dip.	Used for checking certain CTLOPS from bubbling
2660  * up erronously.  Ex.	ISA ctlops to a PCI-PCI Bridge.
2661  */
2662 boolean_t
pcie_is_child(dev_info_t * dip,dev_info_t * rdip)2663 pcie_is_child(dev_info_t *dip, dev_info_t *rdip)
2664 {
2665 	dev_info_t	*cdip = ddi_get_child(dip);
2666 	for (; cdip; cdip = ddi_get_next_sibling(cdip))
2667 		if (cdip == rdip)
2668 			break;
2669 	return (cdip != NULL);
2670 }
2671 
2672 boolean_t
pcie_is_link_disabled(dev_info_t * dip)2673 pcie_is_link_disabled(dev_info_t *dip)
2674 {
2675 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
2676 
2677 	if (PCIE_IS_PCIE(bus_p)) {
2678 		if (PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL) &
2679 		    PCIE_LINKCTL_LINK_DISABLE)
2680 			return (B_TRUE);
2681 	}
2682 	return (B_FALSE);
2683 }
2684 
2685 /*
2686  * Determines if there are any root ports attached to a root complex.
2687  *
2688  * dip - dip of root complex
2689  *
2690  * Returns - DDI_SUCCESS if there is at least one root port otherwise
2691  *	     DDI_FAILURE.
2692  */
2693 int
pcie_root_port(dev_info_t * dip)2694 pcie_root_port(dev_info_t *dip)
2695 {
2696 	int port_type;
2697 	uint16_t cap_ptr;
2698 	ddi_acc_handle_t config_handle;
2699 	dev_info_t *cdip = ddi_get_child(dip);
2700 
2701 	/*
2702 	 * Determine if any of the children of the passed in dip
2703 	 * are root ports.
2704 	 */
2705 	for (; cdip; cdip = ddi_get_next_sibling(cdip)) {
2706 
2707 		if (pci_config_setup(cdip, &config_handle) != DDI_SUCCESS)
2708 			continue;
2709 
2710 		if ((PCI_CAP_LOCATE(config_handle, PCI_CAP_ID_PCI_E,
2711 		    &cap_ptr)) == DDI_FAILURE) {
2712 			pci_config_teardown(&config_handle);
2713 			continue;
2714 		}
2715 
2716 		port_type = PCI_CAP_GET16(config_handle, 0, cap_ptr,
2717 		    PCIE_PCIECAP) & PCIE_PCIECAP_DEV_TYPE_MASK;
2718 
2719 		pci_config_teardown(&config_handle);
2720 
2721 		if (port_type == PCIE_PCIECAP_DEV_TYPE_ROOT)
2722 			return (DDI_SUCCESS);
2723 	}
2724 
2725 	/* No root ports were found */
2726 
2727 	return (DDI_FAILURE);
2728 }
2729 
2730 /*
2731  * Function that determines if a device a PCIe device.
2732  *
2733  * dip - dip of device.
2734  *
2735  * returns - DDI_SUCCESS if device is a PCIe device, otherwise DDI_FAILURE.
2736  */
2737 int
pcie_dev(dev_info_t * dip)2738 pcie_dev(dev_info_t *dip)
2739 {
2740 	/* get parent device's device_type property */
2741 	char *device_type;
2742 	int rc = DDI_FAILURE;
2743 	dev_info_t *pdip = ddi_get_parent(dip);
2744 
2745 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, pdip,
2746 	    DDI_PROP_DONTPASS, "device_type", &device_type)
2747 	    != DDI_PROP_SUCCESS) {
2748 		return (DDI_FAILURE);
2749 	}
2750 
2751 	if (strcmp(device_type, "pciex") == 0)
2752 		rc = DDI_SUCCESS;
2753 	else
2754 		rc = DDI_FAILURE;
2755 
2756 	ddi_prop_free(device_type);
2757 	return (rc);
2758 }
2759 
2760 void
pcie_set_rber_fatal(dev_info_t * dip,boolean_t val)2761 pcie_set_rber_fatal(dev_info_t *dip, boolean_t val)
2762 {
2763 	pcie_bus_t *bus_p = PCIE_DIP2UPBUS(dip);
2764 	bus_p->bus_pfd->pe_rber_fatal = val;
2765 }
2766 
2767 /*
2768  * Return parent Root Port's pe_rber_fatal value.
2769  */
2770 boolean_t
pcie_get_rber_fatal(dev_info_t * dip)2771 pcie_get_rber_fatal(dev_info_t *dip)
2772 {
2773 	pcie_bus_t *bus_p = PCIE_DIP2UPBUS(dip);
2774 	pcie_bus_t *rp_bus_p = PCIE_DIP2UPBUS(bus_p->bus_rp_dip);
2775 	return (rp_bus_p->bus_pfd->pe_rber_fatal);
2776 }
2777 
2778 int
pcie_ari_supported(dev_info_t * dip)2779 pcie_ari_supported(dev_info_t *dip)
2780 {
2781 	uint32_t devcap2;
2782 	uint16_t pciecap;
2783 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
2784 	uint8_t dev_type;
2785 
2786 	PCIE_DBG("pcie_ari_supported: dip=%p\n", dip);
2787 
2788 	if (bus_p == NULL)
2789 		return (PCIE_ARI_FORW_NOT_SUPPORTED);
2790 
2791 	dev_type = bus_p->bus_dev_type;
2792 
2793 	if ((dev_type != PCIE_PCIECAP_DEV_TYPE_DOWN) &&
2794 	    (dev_type != PCIE_PCIECAP_DEV_TYPE_ROOT))
2795 		return (PCIE_ARI_FORW_NOT_SUPPORTED);
2796 
2797 	if (pcie_disable_ari) {
2798 		PCIE_DBG("pcie_ari_supported: dip=%p: ARI Disabled\n", dip);
2799 		return (PCIE_ARI_FORW_NOT_SUPPORTED);
2800 	}
2801 
2802 	pciecap = PCIE_CAP_GET(16, bus_p, PCIE_PCIECAP);
2803 
2804 	if ((pciecap & PCIE_PCIECAP_VER_MASK) < PCIE_PCIECAP_VER_2_0) {
2805 		PCIE_DBG("pcie_ari_supported: dip=%p: Not 2.0\n", dip);
2806 		return (PCIE_ARI_FORW_NOT_SUPPORTED);
2807 	}
2808 
2809 	devcap2 = PCIE_CAP_GET(32, bus_p, PCIE_DEVCAP2);
2810 
2811 	PCIE_DBG("pcie_ari_supported: dip=%p: DevCap2=0x%x\n",
2812 	    dip, devcap2);
2813 
2814 	if (devcap2 & PCIE_DEVCAP2_ARI_FORWARD) {
2815 		PCIE_DBG("pcie_ari_supported: "
2816 		    "dip=%p: ARI Forwarding is supported\n", dip);
2817 		return (PCIE_ARI_FORW_SUPPORTED);
2818 	}
2819 	return (PCIE_ARI_FORW_NOT_SUPPORTED);
2820 }
2821 
2822 int
pcie_ari_enable(dev_info_t * dip)2823 pcie_ari_enable(dev_info_t *dip)
2824 {
2825 	uint16_t devctl2;
2826 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
2827 
2828 	PCIE_DBG("pcie_ari_enable: dip=%p\n", dip);
2829 
2830 	if (pcie_ari_supported(dip) == PCIE_ARI_FORW_NOT_SUPPORTED)
2831 		return (DDI_FAILURE);
2832 
2833 	devctl2 = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL2);
2834 	devctl2 |= PCIE_DEVCTL2_ARI_FORWARD_EN;
2835 	PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL2, devctl2);
2836 
2837 	PCIE_DBG("pcie_ari_enable: dip=%p: writing 0x%x to DevCtl2\n",
2838 	    dip, devctl2);
2839 
2840 	return (DDI_SUCCESS);
2841 }
2842 
2843 int
pcie_ari_disable(dev_info_t * dip)2844 pcie_ari_disable(dev_info_t *dip)
2845 {
2846 	uint16_t devctl2;
2847 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
2848 
2849 	PCIE_DBG("pcie_ari_disable: dip=%p\n", dip);
2850 
2851 	if (pcie_ari_supported(dip) == PCIE_ARI_FORW_NOT_SUPPORTED)
2852 		return (DDI_FAILURE);
2853 
2854 	devctl2 = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL2);
2855 	devctl2 &= ~PCIE_DEVCTL2_ARI_FORWARD_EN;
2856 	PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL2, devctl2);
2857 
2858 	PCIE_DBG("pcie_ari_disable: dip=%p: writing 0x%x to DevCtl2\n",
2859 	    dip, devctl2);
2860 
2861 	return (DDI_SUCCESS);
2862 }
2863 
2864 int
pcie_ari_is_enabled(dev_info_t * dip)2865 pcie_ari_is_enabled(dev_info_t *dip)
2866 {
2867 	uint16_t devctl2;
2868 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
2869 
2870 	PCIE_DBG("pcie_ari_is_enabled: dip=%p\n", dip);
2871 
2872 	if (pcie_ari_supported(dip) == PCIE_ARI_FORW_NOT_SUPPORTED)
2873 		return (PCIE_ARI_FORW_DISABLED);
2874 
2875 	devctl2 = PCIE_CAP_GET(32, bus_p, PCIE_DEVCTL2);
2876 
2877 	PCIE_DBG("pcie_ari_is_enabled: dip=%p: DevCtl2=0x%x\n",
2878 	    dip, devctl2);
2879 
2880 	if (devctl2 & PCIE_DEVCTL2_ARI_FORWARD_EN) {
2881 		PCIE_DBG("pcie_ari_is_enabled: "
2882 		    "dip=%p: ARI Forwarding is enabled\n", dip);
2883 		return (PCIE_ARI_FORW_ENABLED);
2884 	}
2885 
2886 	return (PCIE_ARI_FORW_DISABLED);
2887 }
2888 
2889 int
pcie_ari_device(dev_info_t * dip)2890 pcie_ari_device(dev_info_t *dip)
2891 {
2892 	ddi_acc_handle_t handle;
2893 	uint16_t cap_ptr;
2894 
2895 	PCIE_DBG("pcie_ari_device: dip=%p\n", dip);
2896 
2897 	/*
2898 	 * XXX - This function may be called before the bus_p structure
2899 	 * has been populated.  This code can be changed to remove
2900 	 * pci_config_setup()/pci_config_teardown() when the RFE
2901 	 * to populate the bus_p structures early in boot is putback.
2902 	 */
2903 
2904 	/* First make sure it is a PCIe device */
2905 
2906 	if (pci_config_setup(dip, &handle) != DDI_SUCCESS)
2907 		return (PCIE_NOT_ARI_DEVICE);
2908 
2909 	if ((PCI_CAP_LOCATE(handle, PCI_CAP_ID_PCI_E, &cap_ptr))
2910 	    != DDI_SUCCESS) {
2911 		pci_config_teardown(&handle);
2912 		return (PCIE_NOT_ARI_DEVICE);
2913 	}
2914 
2915 	/* Locate the ARI Capability */
2916 
2917 	if ((PCI_CAP_LOCATE(handle, PCI_CAP_XCFG_SPC(PCIE_EXT_CAP_ID_ARI),
2918 	    &cap_ptr)) == DDI_FAILURE) {
2919 		pci_config_teardown(&handle);
2920 		return (PCIE_NOT_ARI_DEVICE);
2921 	}
2922 
2923 	/* ARI Capability was found so it must be a ARI device */
2924 	PCIE_DBG("pcie_ari_device: ARI Device dip=%p\n", dip);
2925 
2926 	pci_config_teardown(&handle);
2927 	return (PCIE_ARI_DEVICE);
2928 }
2929 
2930 int
pcie_ari_get_next_function(dev_info_t * dip,int * func)2931 pcie_ari_get_next_function(dev_info_t *dip, int *func)
2932 {
2933 	uint32_t val;
2934 	uint16_t cap_ptr, next_function;
2935 	ddi_acc_handle_t handle;
2936 
2937 	/*
2938 	 * XXX - This function may be called before the bus_p structure
2939 	 * has been populated.  This code can be changed to remove
2940 	 * pci_config_setup()/pci_config_teardown() when the RFE
2941 	 * to populate the bus_p structures early in boot is putback.
2942 	 */
2943 
2944 	if (pci_config_setup(dip, &handle) != DDI_SUCCESS)
2945 		return (DDI_FAILURE);
2946 
2947 	if ((PCI_CAP_LOCATE(handle,
2948 	    PCI_CAP_XCFG_SPC(PCIE_EXT_CAP_ID_ARI), &cap_ptr)) == DDI_FAILURE) {
2949 		pci_config_teardown(&handle);
2950 		return (DDI_FAILURE);
2951 	}
2952 
2953 	val = PCI_CAP_GET32(handle, 0, cap_ptr, PCIE_ARI_CAP);
2954 
2955 	next_function = (val >> PCIE_ARI_CAP_NEXT_FUNC_SHIFT) &
2956 	    PCIE_ARI_CAP_NEXT_FUNC_MASK;
2957 
2958 	pci_config_teardown(&handle);
2959 
2960 	*func = next_function;
2961 
2962 	return (DDI_SUCCESS);
2963 }
2964 
2965 dev_info_t *
pcie_func_to_dip(dev_info_t * dip,pcie_req_id_t function)2966 pcie_func_to_dip(dev_info_t *dip, pcie_req_id_t function)
2967 {
2968 	pcie_req_id_t child_bdf;
2969 	dev_info_t *cdip;
2970 
2971 	for (cdip = ddi_get_child(dip); cdip;
2972 	    cdip = ddi_get_next_sibling(cdip)) {
2973 
2974 		if (pcie_get_bdf_from_dip(cdip, &child_bdf) == DDI_FAILURE)
2975 			return (NULL);
2976 
2977 		if ((child_bdf & PCIE_REQ_ID_ARI_FUNC_MASK) == function)
2978 			return (cdip);
2979 	}
2980 	return (NULL);
2981 }
2982 
2983 #ifdef	DEBUG
2984 
2985 static void
pcie_print_bus(pcie_bus_t * bus_p)2986 pcie_print_bus(pcie_bus_t *bus_p)
2987 {
2988 	pcie_dbg("\tbus_dip = 0x%p\n", bus_p->bus_dip);
2989 	pcie_dbg("\tbus_fm_flags = 0x%x\n", bus_p->bus_fm_flags);
2990 
2991 	pcie_dbg("\tbus_bdf = 0x%x\n", bus_p->bus_bdf);
2992 	pcie_dbg("\tbus_dev_ven_id = 0x%x\n", bus_p->bus_dev_ven_id);
2993 	pcie_dbg("\tbus_rev_id = 0x%x\n", bus_p->bus_rev_id);
2994 	pcie_dbg("\tbus_hdr_type = 0x%x\n", bus_p->bus_hdr_type);
2995 	pcie_dbg("\tbus_dev_type = 0x%x\n", bus_p->bus_dev_type);
2996 	pcie_dbg("\tbus_bdg_secbus = 0x%x\n", bus_p->bus_bdg_secbus);
2997 	pcie_dbg("\tbus_pcie_off = 0x%x\n", bus_p->bus_pcie_off);
2998 	pcie_dbg("\tbus_aer_off = 0x%x\n", bus_p->bus_aer_off);
2999 	pcie_dbg("\tbus_pcix_off = 0x%x\n", bus_p->bus_pcix_off);
3000 	pcie_dbg("\tbus_ecc_ver = 0x%x\n", bus_p->bus_ecc_ver);
3001 }
3002 
3003 /*
3004  * For debugging purposes set pcie_dbg_print != 0 to see printf messages
3005  * during interrupt.
3006  *
3007  * When a proper solution is in place this code will disappear.
3008  * Potential solutions are:
3009  * o circular buffers
3010  * o taskq to print at lower pil
3011  */
3012 int pcie_dbg_print = 0;
3013 void
pcie_dbg(char * fmt,...)3014 pcie_dbg(char *fmt, ...)
3015 {
3016 	va_list ap;
3017 
3018 	if (!pcie_debug_flags) {
3019 		return;
3020 	}
3021 	va_start(ap, fmt);
3022 	if (servicing_interrupt()) {
3023 		if (pcie_dbg_print) {
3024 			prom_vprintf(fmt, ap);
3025 		}
3026 	} else {
3027 		prom_vprintf(fmt, ap);
3028 	}
3029 	va_end(ap);
3030 }
3031 #endif	/* DEBUG */
3032 
3033 boolean_t
pcie_link_bw_supported(dev_info_t * dip)3034 pcie_link_bw_supported(dev_info_t *dip)
3035 {
3036 	uint32_t linkcap;
3037 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3038 
3039 	if (!PCIE_IS_PCIE(bus_p)) {
3040 		return (B_FALSE);
3041 	}
3042 
3043 	if (!PCIE_IS_RP(bus_p) && !PCIE_IS_SWD(bus_p)) {
3044 		return (B_FALSE);
3045 	}
3046 
3047 	linkcap = PCIE_CAP_GET(32, bus_p, PCIE_LINKCAP);
3048 	return ((linkcap & PCIE_LINKCAP_LINK_BW_NOTIFY_CAP) != 0);
3049 }
3050 
3051 int
pcie_link_bw_enable(dev_info_t * dip)3052 pcie_link_bw_enable(dev_info_t *dip)
3053 {
3054 	uint16_t linkctl;
3055 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3056 
3057 	if (pcie_disable_lbw != 0) {
3058 		return (DDI_FAILURE);
3059 	}
3060 
3061 	if (!pcie_link_bw_supported(dip)) {
3062 		return (DDI_FAILURE);
3063 	}
3064 
3065 	mutex_init(&bus_p->bus_lbw_mutex, NULL, MUTEX_DRIVER, NULL);
3066 	cv_init(&bus_p->bus_lbw_cv, NULL, CV_DRIVER, NULL);
3067 	linkctl = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL);
3068 	linkctl |= PCIE_LINKCTL_LINK_BW_INTR_EN;
3069 	linkctl |= PCIE_LINKCTL_LINK_AUTO_BW_INTR_EN;
3070 	PCIE_CAP_PUT(16, bus_p, PCIE_LINKCTL, linkctl);
3071 
3072 	bus_p->bus_lbw_pbuf = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
3073 	bus_p->bus_lbw_cbuf = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
3074 	bus_p->bus_lbw_state |= PCIE_LBW_S_ENABLED;
3075 
3076 	return (DDI_SUCCESS);
3077 }
3078 
3079 int
pcie_link_bw_disable(dev_info_t * dip)3080 pcie_link_bw_disable(dev_info_t *dip)
3081 {
3082 	uint16_t linkctl;
3083 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3084 
3085 	if ((bus_p->bus_lbw_state & PCIE_LBW_S_ENABLED) == 0) {
3086 		return (DDI_FAILURE);
3087 	}
3088 
3089 	mutex_enter(&bus_p->bus_lbw_mutex);
3090 	while ((bus_p->bus_lbw_state &
3091 	    (PCIE_LBW_S_DISPATCHED | PCIE_LBW_S_RUNNING)) != 0) {
3092 		cv_wait(&bus_p->bus_lbw_cv, &bus_p->bus_lbw_mutex);
3093 	}
3094 	mutex_exit(&bus_p->bus_lbw_mutex);
3095 
3096 	linkctl = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL);
3097 	linkctl &= ~PCIE_LINKCTL_LINK_BW_INTR_EN;
3098 	linkctl &= ~PCIE_LINKCTL_LINK_AUTO_BW_INTR_EN;
3099 	PCIE_CAP_PUT(16, bus_p, PCIE_LINKCTL, linkctl);
3100 
3101 	bus_p->bus_lbw_state &= ~PCIE_LBW_S_ENABLED;
3102 	kmem_free(bus_p->bus_lbw_pbuf, MAXPATHLEN);
3103 	kmem_free(bus_p->bus_lbw_cbuf, MAXPATHLEN);
3104 	bus_p->bus_lbw_pbuf = NULL;
3105 	bus_p->bus_lbw_cbuf = NULL;
3106 
3107 	mutex_destroy(&bus_p->bus_lbw_mutex);
3108 	cv_destroy(&bus_p->bus_lbw_cv);
3109 
3110 	return (DDI_SUCCESS);
3111 }
3112 
3113 void
pcie_link_bw_taskq(void * arg)3114 pcie_link_bw_taskq(void *arg)
3115 {
3116 	dev_info_t *dip = arg;
3117 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3118 	dev_info_t *cdip;
3119 	boolean_t again;
3120 	sysevent_t *se;
3121 	sysevent_value_t se_val;
3122 	sysevent_id_t eid;
3123 	sysevent_attr_list_t *ev_attr_list;
3124 
3125 top:
3126 	ndi_devi_enter(dip);
3127 	se = NULL;
3128 	ev_attr_list = NULL;
3129 	mutex_enter(&bus_p->bus_lbw_mutex);
3130 	bus_p->bus_lbw_state &= ~PCIE_LBW_S_DISPATCHED;
3131 	bus_p->bus_lbw_state |= PCIE_LBW_S_RUNNING;
3132 	mutex_exit(&bus_p->bus_lbw_mutex);
3133 
3134 	/*
3135 	 * Update our own speeds as we've likely changed something.
3136 	 */
3137 	pcie_capture_speeds(dip);
3138 
3139 	/*
3140 	 * Walk our children. We only care about updating this on function 0
3141 	 * because the PCIe specification requires that these all be the same
3142 	 * otherwise.
3143 	 */
3144 	for (cdip = ddi_get_child(dip); cdip != NULL;
3145 	    cdip = ddi_get_next_sibling(cdip)) {
3146 		pcie_bus_t *cbus_p = PCIE_DIP2BUS(cdip);
3147 
3148 		if (cbus_p == NULL) {
3149 			continue;
3150 		}
3151 
3152 		if ((cbus_p->bus_bdf & PCIE_REQ_ID_FUNC_MASK) != 0) {
3153 			continue;
3154 		}
3155 
3156 		/*
3157 		 * It's possible that this can fire while a child is otherwise
3158 		 * only partially constructed. Therefore, if we don't have the
3159 		 * config handle, don't bother updating the child.
3160 		 */
3161 		if (cbus_p->bus_cfg_hdl == NULL) {
3162 			continue;
3163 		}
3164 
3165 		pcie_capture_speeds(cdip);
3166 		break;
3167 	}
3168 
3169 	se = sysevent_alloc(EC_PCIE, ESC_PCIE_LINK_STATE,
3170 	    ILLUMOS_KERN_PUB "pcie", SE_SLEEP);
3171 
3172 	(void) ddi_pathname(dip, bus_p->bus_lbw_pbuf);
3173 	se_val.value_type = SE_DATA_TYPE_STRING;
3174 	se_val.value.sv_string = bus_p->bus_lbw_pbuf;
3175 	if (sysevent_add_attr(&ev_attr_list, PCIE_EV_DETECTOR_PATH, &se_val,
3176 	    SE_SLEEP) != 0) {
3177 		ndi_devi_exit(dip);
3178 		goto err;
3179 	}
3180 
3181 	if (cdip != NULL) {
3182 		(void) ddi_pathname(cdip, bus_p->bus_lbw_cbuf);
3183 
3184 		se_val.value_type = SE_DATA_TYPE_STRING;
3185 		se_val.value.sv_string = bus_p->bus_lbw_cbuf;
3186 
3187 		/*
3188 		 * If this fails, that's OK. We'd rather get the event off and
3189 		 * there's a chance that there may not be anything there for us.
3190 		 */
3191 		(void) sysevent_add_attr(&ev_attr_list, PCIE_EV_CHILD_PATH,
3192 		    &se_val, SE_SLEEP);
3193 	}
3194 
3195 	ndi_devi_exit(dip);
3196 
3197 	/*
3198 	 * Before we generate and send down a sysevent, we need to tell the
3199 	 * system that parts of the devinfo cache need to be invalidated. While
3200 	 * the function below takes several args, it ignores them all. Because
3201 	 * this is a global invalidation, we don't bother trying to do much more
3202 	 * than requesting a global invalidation, lest we accidentally kick off
3203 	 * several in a row.
3204 	 */
3205 	ddi_prop_cache_invalidate(DDI_DEV_T_NONE, NULL, NULL, 0);
3206 
3207 	if (sysevent_attach_attributes(se, ev_attr_list) != 0) {
3208 		goto err;
3209 	}
3210 	ev_attr_list = NULL;
3211 
3212 	if (log_sysevent(se, SE_SLEEP, &eid) != 0) {
3213 		goto err;
3214 	}
3215 
3216 err:
3217 	sysevent_free_attr(ev_attr_list);
3218 	sysevent_free(se);
3219 
3220 	mutex_enter(&bus_p->bus_lbw_mutex);
3221 	bus_p->bus_lbw_state &= ~PCIE_LBW_S_RUNNING;
3222 	cv_broadcast(&bus_p->bus_lbw_cv);
3223 	again = (bus_p->bus_lbw_state & PCIE_LBW_S_DISPATCHED) != 0;
3224 	mutex_exit(&bus_p->bus_lbw_mutex);
3225 
3226 	if (again) {
3227 		goto top;
3228 	}
3229 }
3230 
3231 int
pcie_link_bw_intr(dev_info_t * dip)3232 pcie_link_bw_intr(dev_info_t *dip)
3233 {
3234 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3235 	uint16_t linksts;
3236 	uint16_t flags = PCIE_LINKSTS_LINK_BW_MGMT | PCIE_LINKSTS_AUTO_BW;
3237 	hrtime_t now;
3238 
3239 	if ((bus_p->bus_lbw_state & PCIE_LBW_S_ENABLED) == 0) {
3240 		return (DDI_INTR_UNCLAIMED);
3241 	}
3242 
3243 	linksts = PCIE_CAP_GET(16, bus_p, PCIE_LINKSTS);
3244 	if ((linksts & flags) == 0) {
3245 		return (DDI_INTR_UNCLAIMED);
3246 	}
3247 
3248 	now = gethrtime();
3249 
3250 	/*
3251 	 * Check if we've already dispatched this event. If we have already
3252 	 * dispatched it, then there's nothing else to do, we coalesce multiple
3253 	 * events.
3254 	 */
3255 	mutex_enter(&bus_p->bus_lbw_mutex);
3256 	bus_p->bus_lbw_nevents++;
3257 	bus_p->bus_lbw_last_ts = now;
3258 	if ((bus_p->bus_lbw_state & PCIE_LBW_S_DISPATCHED) == 0) {
3259 		if ((bus_p->bus_lbw_state & PCIE_LBW_S_RUNNING) == 0) {
3260 			taskq_dispatch_ent(pcie_link_tq, pcie_link_bw_taskq,
3261 			    dip, 0, &bus_p->bus_lbw_ent);
3262 		}
3263 
3264 		bus_p->bus_lbw_state |= PCIE_LBW_S_DISPATCHED;
3265 	}
3266 	mutex_exit(&bus_p->bus_lbw_mutex);
3267 
3268 	PCIE_CAP_PUT(16, bus_p, PCIE_LINKSTS, flags);
3269 	return (DDI_INTR_CLAIMED);
3270 }
3271 
3272 int
pcie_link_set_target(dev_info_t * dip,pcie_link_speed_t speed)3273 pcie_link_set_target(dev_info_t *dip, pcie_link_speed_t speed)
3274 {
3275 	uint16_t ctl2, rval;
3276 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3277 
3278 	if (!PCIE_IS_PCIE(bus_p)) {
3279 		return (ENOTSUP);
3280 	}
3281 
3282 	if (!PCIE_IS_RP(bus_p) && !PCIE_IS_SWD(bus_p)) {
3283 		return (ENOTSUP);
3284 	}
3285 
3286 	if (bus_p->bus_pcie_vers < 2) {
3287 		return (ENOTSUP);
3288 	}
3289 
3290 	switch (speed) {
3291 	case PCIE_LINK_SPEED_2_5:
3292 		rval = PCIE_LINKCTL2_TARGET_SPEED_2_5;
3293 		break;
3294 	case PCIE_LINK_SPEED_5:
3295 		rval = PCIE_LINKCTL2_TARGET_SPEED_5;
3296 		break;
3297 	case PCIE_LINK_SPEED_8:
3298 		rval = PCIE_LINKCTL2_TARGET_SPEED_8;
3299 		break;
3300 	case PCIE_LINK_SPEED_16:
3301 		rval = PCIE_LINKCTL2_TARGET_SPEED_16;
3302 		break;
3303 	case PCIE_LINK_SPEED_32:
3304 		rval = PCIE_LINKCTL2_TARGET_SPEED_32;
3305 		break;
3306 	case PCIE_LINK_SPEED_64:
3307 		rval = PCIE_LINKCTL2_TARGET_SPEED_64;
3308 		break;
3309 	default:
3310 		return (EINVAL);
3311 	}
3312 
3313 	mutex_enter(&bus_p->bus_speed_mutex);
3314 	if ((bus_p->bus_sup_speed & speed) == 0) {
3315 		mutex_exit(&bus_p->bus_speed_mutex);
3316 		return (ENOTSUP);
3317 	}
3318 
3319 	bus_p->bus_target_speed = speed;
3320 	bus_p->bus_speed_flags |= PCIE_LINK_F_ADMIN_TARGET;
3321 
3322 	ctl2 = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL2);
3323 	ctl2 &= ~PCIE_LINKCTL2_TARGET_SPEED_MASK;
3324 	ctl2 |= rval;
3325 	PCIE_CAP_PUT(16, bus_p, PCIE_LINKCTL2, ctl2);
3326 	mutex_exit(&bus_p->bus_speed_mutex);
3327 
3328 	/*
3329 	 * Make sure our updates have been reflected in devinfo.
3330 	 */
3331 	pcie_capture_speeds(dip);
3332 
3333 	return (0);
3334 }
3335 
3336 int
pcie_link_retrain(dev_info_t * dip)3337 pcie_link_retrain(dev_info_t *dip)
3338 {
3339 	uint16_t ctl;
3340 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3341 
3342 	if (!PCIE_IS_PCIE(bus_p)) {
3343 		return (ENOTSUP);
3344 	}
3345 
3346 	if (!PCIE_IS_RP(bus_p) && !PCIE_IS_SWD(bus_p)) {
3347 		return (ENOTSUP);
3348 	}
3349 
3350 	/*
3351 	 * The PCIe specification suggests that we make sure that the link isn't
3352 	 * in training before issuing this command in case there was a state
3353 	 * machine transition prior to when we got here. We wait and then go
3354 	 * ahead and issue the command anyways.
3355 	 */
3356 	for (uint32_t i = 0; i < pcie_link_retrain_count; i++) {
3357 		uint16_t sts;
3358 
3359 		sts = PCIE_CAP_GET(16, bus_p, PCIE_LINKSTS);
3360 		if ((sts & PCIE_LINKSTS_LINK_TRAINING) == 0)
3361 			break;
3362 		delay(drv_usectohz(pcie_link_retrain_delay_ms * 1000));
3363 	}
3364 
3365 	ctl = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL);
3366 	ctl |= PCIE_LINKCTL_RETRAIN_LINK;
3367 	PCIE_CAP_PUT(16, bus_p, PCIE_LINKCTL, ctl);
3368 
3369 	/*
3370 	 * Wait again to see if it clears before returning to the user.
3371 	 */
3372 	for (uint32_t i = 0; i < pcie_link_retrain_count; i++) {
3373 		uint16_t sts;
3374 
3375 		sts = PCIE_CAP_GET(16, bus_p, PCIE_LINKSTS);
3376 		if ((sts & PCIE_LINKSTS_LINK_TRAINING) == 0)
3377 			break;
3378 		delay(drv_usectohz(pcie_link_retrain_delay_ms * 1000));
3379 	}
3380 
3381 	return (0);
3382 }
3383 
3384 /*
3385  * Here we're going through and grabbing information about a given PCIe device.
3386  * Our situation is a little bit complicated at this point. This gets invoked
3387  * both during early initialization and during hotplug events. We cannot rely on
3388  * the device node having been fully set up, that is, while the pcie_bus_t
3389  * normally contains a ddi_acc_handle_t for configuration space, that may not be
3390  * valid yet as this can occur before child initialization or we may be dealing
3391  * with a function that will never have a handle.
3392  *
3393  * However, we should always have a fully furnished pcie_bus_t, which means that
3394  * we can get its bdf and use that to access the devices configuration space.
3395  */
3396 static int
pcie_fabric_feature_scan(dev_info_t * dip,void * arg)3397 pcie_fabric_feature_scan(dev_info_t *dip, void *arg)
3398 {
3399 	pcie_bus_t *bus_p;
3400 	uint32_t devcap;
3401 	uint16_t mps;
3402 	dev_info_t *rcdip;
3403 	pcie_fabric_data_t *fab = arg;
3404 
3405 	/*
3406 	 * Skip over non-PCIe devices. If we encounter something here, we don't
3407 	 * bother going through any of its children because we don't have reason
3408 	 * to believe that a PCIe device that this will impact will exist below
3409 	 * this. While it is possible that there's a PCIe fabric downstream an
3410 	 * intermediate old PCI/PCI-X bus, at that point, we'll still trigger
3411 	 * our complex fabric detection and use the minimums.
3412 	 *
3413 	 * The reason this doesn't trigger an immediate flagging as a complex
3414 	 * case like the one below is because we could be scanning a device that
3415 	 * is a nexus driver and has children already (albeit that would be
3416 	 * somewhat surprising as we don't anticipate being called at this
3417 	 * point).
3418 	 */
3419 	if (pcie_dev(dip) != DDI_SUCCESS) {
3420 		return (DDI_WALK_PRUNECHILD);
3421 	}
3422 
3423 	/*
3424 	 * If we fail to find a pcie_bus_t for some reason, that's somewhat
3425 	 * surprising. We log this fact and set the complex flag and indicate it
3426 	 * was because of this case. This immediately transitions us to a
3427 	 * "complex" case which means use the minimal, safe, settings.
3428 	 */
3429 	bus_p = PCIE_DIP2BUS(dip);
3430 	if (bus_p == NULL) {
3431 		dev_err(dip, CE_WARN, "failed to find associated pcie_bus_t "
3432 		    "during fabric scan");
3433 		fab->pfd_flags |= PCIE_FABRIC_F_COMPLEX;
3434 		return (DDI_WALK_TERMINATE);
3435 	}
3436 
3437 	/*
3438 	 * In a similar case, there is hardware out there which is a PCIe
3439 	 * device, but does not advertise a PCIe capability. An example of this
3440 	 * is the IDT Tsi382A which can hide its PCIe capability. If this is
3441 	 * the case, we immediately terminate scanning and flag this as a
3442 	 * 'complex' case which causes us to use guaranteed safe settings.
3443 	 */
3444 	if (bus_p->bus_pcie_off == 0) {
3445 		dev_err(dip, CE_WARN, "encountered PCIe device without PCIe "
3446 		    "capability");
3447 		fab->pfd_flags |= PCIE_FABRIC_F_COMPLEX;
3448 		return (DDI_WALK_TERMINATE);
3449 	}
3450 
3451 	rcdip = pcie_get_rc_dip(dip);
3452 
3453 	/*
3454 	 * First, start by determining what the device's tagging and max packet
3455 	 * size is. All PCIe devices will always have the 8-bit tag information
3456 	 * as this has existed since PCIe 1.0. 10-bit tagging requires a V2
3457 	 * PCIe capability. 14-bit requires the DEV3 cap. If we are missing a
3458 	 * version or capability, then we always treat that as lacking the bits
3459 	 * in the fabric.
3460 	 */
3461 	ASSERT3U(bus_p->bus_pcie_off, !=, 0);
3462 	devcap = pci_cfgacc_get32(rcdip, bus_p->bus_bdf, bus_p->bus_pcie_off +
3463 	    PCIE_DEVCAP);
3464 	mps = devcap & PCIE_DEVCAP_MAX_PAYLOAD_MASK;
3465 	if (mps < fab->pfd_mps_found) {
3466 		fab->pfd_mps_found = mps;
3467 	}
3468 
3469 	if ((devcap & PCIE_DEVCAP_EXT_TAG_8BIT) == 0) {
3470 		fab->pfd_tag_found &= ~PCIE_TAG_8B;
3471 	}
3472 
3473 	if (bus_p->bus_pcie_vers == PCIE_PCIECAP_VER_2_0) {
3474 		uint32_t devcap2 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
3475 		    bus_p->bus_pcie_off + PCIE_DEVCAP2);
3476 		if ((devcap2 & PCIE_DEVCAP2_10B_TAG_COMP_SUP) == 0) {
3477 			fab->pfd_tag_found &= ~PCIE_TAG_10B_COMP;
3478 		}
3479 	} else {
3480 		fab->pfd_tag_found &= ~PCIE_TAG_10B_COMP;
3481 	}
3482 
3483 	if (bus_p->bus_dev3_off != 0) {
3484 		uint32_t devcap3 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
3485 		    bus_p->bus_dev3_off + PCIE_DEVCAP3);
3486 		if ((devcap3 & PCIE_DEVCAP3_14B_TAG_COMP_SUP) == 0) {
3487 			fab->pfd_tag_found &= ~PCIE_TAG_14B_COMP;
3488 		}
3489 	} else {
3490 		fab->pfd_tag_found &= ~PCIE_TAG_14B_COMP;
3491 	}
3492 
3493 	/*
3494 	 * Now that we have captured device information, we must go and ask
3495 	 * questions of the topology here. The big theory statement enumerates
3496 	 * several types of cases. The big question we need to answer is have we
3497 	 * encountered a hotpluggable bridge that means we need to mark this as
3498 	 * complex.
3499 	 *
3500 	 * The big theory statement notes several different kinds of hotplug
3501 	 * topologies that exist that we can theoretically support. Right now we
3502 	 * opt to keep our lives simple and focus solely on (4) and (5). These
3503 	 * can both be summarized by a single, fairly straightforward rule:
3504 	 *
3505 	 * The only allowed hotpluggable entity is a root port.
3506 	 *
3507 	 * The reason that this can work and detect cases like (6), (7), and our
3508 	 * other invalid ones is that the hotplug code will scan and find all
3509 	 * children before we are called into here.
3510 	 */
3511 	if (bus_p->bus_hp_sup_modes != 0) {
3512 		/*
3513 		 * We opt to terminate in this case because there's no value in
3514 		 * scanning the rest of the tree at this point.
3515 		 */
3516 		if (!PCIE_IS_RP(bus_p)) {
3517 			fab->pfd_flags |= PCIE_FABRIC_F_COMPLEX;
3518 			return (DDI_WALK_TERMINATE);
3519 		}
3520 
3521 		fab->pfd_flags |= PCIE_FABRIC_F_RP_HP;
3522 	}
3523 
3524 	/*
3525 	 * As our walk starts at a root port, we need to make sure that we don't
3526 	 * pick up any of its siblings and their children as those would be
3527 	 * different PCIe fabric domains for us to scan. In many hardware
3528 	 * platforms multiple root ports are all at the same level in the tree.
3529 	 */
3530 	if (bus_p->bus_rp_dip == dip) {
3531 		return (DDI_WALK_PRUNESIB);
3532 	}
3533 
3534 	return (DDI_WALK_CONTINUE);
3535 }
3536 
3537 static int
pcie_fabric_feature_set(dev_info_t * dip,void * arg)3538 pcie_fabric_feature_set(dev_info_t *dip, void *arg)
3539 {
3540 	pcie_bus_t *bus_p;
3541 	dev_info_t *rcdip;
3542 	pcie_fabric_data_t *fab = arg;
3543 	uint32_t devcap, devctl;
3544 
3545 	if (pcie_dev(dip) != DDI_SUCCESS) {
3546 		return (DDI_WALK_PRUNECHILD);
3547 	}
3548 
3549 	/*
3550 	 * The missing bus_t sent us into the complex case previously. We still
3551 	 * need to make sure all devices have values we expect here and thus
3552 	 * don't terminate like the above. The same is true for the case where
3553 	 * there is no PCIe capability.
3554 	 */
3555 	bus_p = PCIE_DIP2BUS(dip);
3556 	if (bus_p == NULL || bus_p->bus_pcie_off == 0) {
3557 		return (DDI_WALK_CONTINUE);
3558 	}
3559 	rcdip = pcie_get_rc_dip(dip);
3560 
3561 	devcap = pci_cfgacc_get32(rcdip, bus_p->bus_bdf, bus_p->bus_pcie_off +
3562 	    PCIE_DEVCAP);
3563 	devctl = pci_cfgacc_get16(rcdip, bus_p->bus_bdf, bus_p->bus_pcie_off +
3564 	    PCIE_DEVCTL);
3565 
3566 	if ((devcap & PCIE_DEVCAP_EXT_TAG_8BIT) != 0 &&
3567 	    (fab->pfd_tag_act & PCIE_TAG_8B) != 0) {
3568 		devctl |= PCIE_DEVCTL_EXT_TAG_FIELD_EN;
3569 	}
3570 
3571 	devctl &= ~PCIE_DEVCTL_MAX_PAYLOAD_MASK;
3572 	ASSERT0(fab->pfd_mps_act & ~PCIE_DEVCAP_MAX_PAYLOAD_MASK);
3573 	devctl |= fab->pfd_mps_act << PCIE_DEVCTL_MAX_PAYLOAD_SHIFT;
3574 
3575 	pci_cfgacc_put16(rcdip, bus_p->bus_bdf, bus_p->bus_pcie_off +
3576 	    PCIE_DEVCTL, devctl);
3577 
3578 	if (bus_p->bus_pcie_vers == PCIE_PCIECAP_VER_2_0 &&
3579 	    (fab->pfd_tag_act & PCIE_TAG_10B_COMP) != 0) {
3580 		uint32_t devcap2 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
3581 		    bus_p->bus_pcie_off + PCIE_DEVCAP2);
3582 
3583 		if ((devcap2 & PCIE_DEVCAP2_10B_TAG_REQ_SUP) == 0) {
3584 			uint16_t devctl2 = pci_cfgacc_get16(rcdip,
3585 			    bus_p->bus_bdf, bus_p->bus_pcie_off + PCIE_DEVCTL2);
3586 			devctl2 |= PCIE_DEVCTL2_10B_TAG_REQ_EN;
3587 			pci_cfgacc_put16(rcdip, bus_p->bus_bdf,
3588 			    bus_p->bus_pcie_off + PCIE_DEVCTL2, devctl2);
3589 		}
3590 	}
3591 
3592 	if (bus_p->bus_dev3_off != 0 &&
3593 	    (fab->pfd_tag_act & PCIE_TAG_14B_COMP) != 0) {
3594 		uint32_t devcap3 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
3595 		    bus_p->bus_dev3_off + PCIE_DEVCAP3);
3596 
3597 		if ((devcap3 & PCIE_DEVCAP3_14B_TAG_REQ_SUP) == 0) {
3598 			uint16_t devctl3 = pci_cfgacc_get16(rcdip,
3599 			    bus_p->bus_bdf, bus_p->bus_dev3_off + PCIE_DEVCTL3);
3600 			devctl3 |= PCIE_DEVCTL3_14B_TAG_REQ_EN;
3601 			pci_cfgacc_put16(rcdip, bus_p->bus_bdf,
3602 			    bus_p->bus_pcie_off + PCIE_DEVCTL2, devctl3);
3603 		}
3604 	}
3605 
3606 	/*
3607 	 * As our walk starts at a root port, we need to make sure that we don't
3608 	 * pick up any of its siblings and their children as those would be
3609 	 * different PCIe fabric domains for us to scan. In many hardware
3610 	 * platforms multiple root ports are all at the same level in the tree.
3611 	 */
3612 	if (bus_p->bus_rp_dip == dip) {
3613 		return (DDI_WALK_PRUNESIB);
3614 	}
3615 
3616 	return (DDI_WALK_CONTINUE);
3617 }
3618 
3619 /*
3620  * This is used to scan and determine the total set of PCIe fabric settings that
3621  * we should have in the system for everything downstream of this specified root
3622  * port. Note, it is only really safe to call this while working from the
3623  * perspective of a root port as we will be walking down the entire device tree.
3624  *
3625  * However, our callers, particularly hoptlug, don't have all the information
3626  * we'd like. In particular, we need to check that:
3627  *
3628  *   o This is actually a PCIe device.
3629  *   o That this is a root port (see the big theory statement to understand this
3630  *     constraint).
3631  */
3632 void
pcie_fabric_setup(dev_info_t * dip)3633 pcie_fabric_setup(dev_info_t *dip)
3634 {
3635 	pcie_bus_t *bus_p;
3636 	pcie_fabric_data_t *fab;
3637 	dev_info_t *pdip;
3638 
3639 	bus_p = PCIE_DIP2BUS(dip);
3640 	if (bus_p == NULL || !PCIE_IS_RP(bus_p)) {
3641 		return;
3642 	}
3643 
3644 	VERIFY3P(bus_p->bus_fab, !=, NULL);
3645 	fab = bus_p->bus_fab;
3646 
3647 	/*
3648 	 * For us to call ddi_walk_devs(), our parent needs to be held.
3649 	 * ddi_walk_devs() will take care of grabbing our dip as part of its
3650 	 * walk before we iterate over our children.
3651 	 *
3652 	 * A reasonable question to ask here is why is it safe to ask for our
3653 	 * parent? In this case, because we have entered here through some
3654 	 * thread that's operating on us whether as part of attach or a hotplug
3655 	 * event, our dip somewhat by definition has to be valid. If we were
3656 	 * looking at our dip's children and then asking them for a parent, then
3657 	 * that would be a race condition.
3658 	 */
3659 	pdip = ddi_get_parent(dip);
3660 	VERIFY3P(pdip, !=, NULL);
3661 	ndi_devi_enter(pdip);
3662 	fab->pfd_flags |= PCIE_FABRIC_F_SCANNING;
3663 
3664 	/*
3665 	 * Reinitialize the tracking structure to basically set the maximum
3666 	 * caps. These will be chipped away during the scan.
3667 	 */
3668 	fab->pfd_mps_found = PCIE_DEVCAP_MAX_PAYLOAD_4096;
3669 	fab->pfd_tag_found = PCIE_TAG_ALL;
3670 	fab->pfd_flags &= ~PCIE_FABRIC_F_COMPLEX;
3671 
3672 	ddi_walk_devs(dip, pcie_fabric_feature_scan, fab);
3673 
3674 	if ((fab->pfd_flags & PCIE_FABRIC_F_COMPLEX) != 0) {
3675 		fab->pfd_tag_act = PCIE_TAG_5B;
3676 		fab->pfd_mps_act = PCIE_DEVCAP_MAX_PAYLOAD_128;
3677 	} else {
3678 		fab->pfd_tag_act = fab->pfd_tag_found;
3679 		fab->pfd_mps_act = fab->pfd_mps_found;
3680 	}
3681 
3682 	ddi_walk_devs(dip, pcie_fabric_feature_set, fab);
3683 
3684 	fab->pfd_flags &= ~PCIE_FABRIC_F_SCANNING;
3685 	ndi_devi_exit(pdip);
3686 }
3687