1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
22 /* All Rights Reserved */
23
24 /*
25 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
26 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27 */
28
29 #include <sys/param.h>
30 #include <sys/t_lock.h>
31 #include <sys/types.h>
32 #include <sys/tuneable.h>
33 #include <sys/sysmacros.h>
34 #include <sys/systm.h>
35 #include <sys/cpuvar.h>
36 #include <sys/lgrp.h>
37 #include <sys/user.h>
38 #include <sys/proc.h>
39 #include <sys/callo.h>
40 #include <sys/kmem.h>
41 #include <sys/var.h>
42 #include <sys/cmn_err.h>
43 #include <sys/swap.h>
44 #include <sys/vmsystm.h>
45 #include <sys/class.h>
46 #include <sys/time.h>
47 #include <sys/debug.h>
48 #include <sys/vtrace.h>
49 #include <sys/spl.h>
50 #include <sys/atomic.h>
51 #include <sys/dumphdr.h>
52 #include <sys/archsystm.h>
53 #include <sys/fs/swapnode.h>
54 #include <sys/panic.h>
55 #include <sys/disp.h>
56 #include <sys/msacct.h>
57 #include <sys/mem_cage.h>
58
59 #include <vm/page.h>
60 #include <vm/anon.h>
61 #include <vm/rm.h>
62 #include <sys/cyclic.h>
63 #include <sys/cpupart.h>
64 #include <sys/rctl.h>
65 #include <sys/task.h>
66 #include <sys/sdt.h>
67 #include <sys/ddi_periodic.h>
68 #include <sys/random.h>
69 #include <sys/modctl.h>
70 #include <sys/zone.h>
71
72 /*
73 * for NTP support
74 */
75 #include <sys/timex.h>
76 #include <sys/inttypes.h>
77
78 #include <sys/sunddi.h>
79 #include <sys/clock_impl.h>
80
81 /*
82 * clock() is called straight from the clock cyclic; see clock_init().
83 *
84 * Functions:
85 * reprime clock
86 * maintain date
87 * jab the scheduler
88 */
89
90 extern kcondvar_t fsflush_cv;
91 extern sysinfo_t sysinfo;
92 extern vminfo_t vminfo;
93 extern int idleswtch; /* flag set while idle in pswtch() */
94 extern hrtime_t volatile devinfo_freeze;
95
96 /*
97 * high-precision avenrun values. These are needed to make the
98 * regular avenrun values accurate.
99 */
100 static uint64_t hp_avenrun[3];
101 int avenrun[3]; /* FSCALED average run queue lengths */
102 time_t time; /* time in seconds since 1970 - for compatibility only */
103
104 static struct loadavg_s loadavg;
105 /*
106 * Phase/frequency-lock loop (PLL/FLL) definitions
107 *
108 * The following variables are read and set by the ntp_adjtime() system
109 * call.
110 *
111 * time_state shows the state of the system clock, with values defined
112 * in the timex.h header file.
113 *
114 * time_status shows the status of the system clock, with bits defined
115 * in the timex.h header file.
116 *
117 * time_offset is used by the PLL/FLL to adjust the system time in small
118 * increments.
119 *
120 * time_constant determines the bandwidth or "stiffness" of the PLL.
121 *
122 * time_tolerance determines maximum frequency error or tolerance of the
123 * CPU clock oscillator and is a property of the architecture; however,
124 * in principle it could change as result of the presence of external
125 * discipline signals, for instance.
126 *
127 * time_precision is usually equal to the kernel tick variable; however,
128 * in cases where a precision clock counter or external clock is
129 * available, the resolution can be much less than this and depend on
130 * whether the external clock is working or not.
131 *
132 * time_maxerror is initialized by a ntp_adjtime() call and increased by
133 * the kernel once each second to reflect the maximum error bound
134 * growth.
135 *
136 * time_esterror is set and read by the ntp_adjtime() call, but
137 * otherwise not used by the kernel.
138 */
139 int32_t time_state = TIME_OK; /* clock state */
140 int32_t time_status = STA_UNSYNC; /* clock status bits */
141 int32_t time_offset = 0; /* time offset (us) */
142 int32_t time_constant = 0; /* pll time constant */
143 int32_t time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
144 int32_t time_precision = 1; /* clock precision (us) */
145 int32_t time_maxerror = MAXPHASE; /* maximum error (us) */
146 int32_t time_esterror = MAXPHASE; /* estimated error (us) */
147
148 /*
149 * The following variables establish the state of the PLL/FLL and the
150 * residual time and frequency offset of the local clock. The scale
151 * factors are defined in the timex.h header file.
152 *
153 * time_phase and time_freq are the phase increment and the frequency
154 * increment, respectively, of the kernel time variable.
155 *
156 * time_freq is set via ntp_adjtime() from a value stored in a file when
157 * the synchronization daemon is first started. Its value is retrieved
158 * via ntp_adjtime() and written to the file about once per hour by the
159 * daemon.
160 *
161 * time_adj is the adjustment added to the value of tick at each timer
162 * interrupt and is recomputed from time_phase and time_freq at each
163 * seconds rollover.
164 *
165 * time_reftime is the second's portion of the system time at the last
166 * call to ntp_adjtime(). It is used to adjust the time_freq variable
167 * and to increase the time_maxerror as the time since last update
168 * increases.
169 */
170 int32_t time_phase = 0; /* phase offset (scaled us) */
171 int32_t time_freq = 0; /* frequency offset (scaled ppm) */
172 int32_t time_adj = 0; /* tick adjust (scaled 1 / hz) */
173 int32_t time_reftime = 0; /* time at last adjustment (s) */
174
175 /*
176 * The scale factors of the following variables are defined in the
177 * timex.h header file.
178 *
179 * pps_time contains the time at each calibration interval, as read by
180 * microtime(). pps_count counts the seconds of the calibration
181 * interval, the duration of which is nominally pps_shift in powers of
182 * two.
183 *
184 * pps_offset is the time offset produced by the time median filter
185 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
186 * this filter.
187 *
188 * pps_freq is the frequency offset produced by the frequency median
189 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
190 * by this filter.
191 *
192 * pps_usec is latched from a high resolution counter or external clock
193 * at pps_time. Here we want the hardware counter contents only, not the
194 * contents plus the time_tv.usec as usual.
195 *
196 * pps_valid counts the number of seconds since the last PPS update. It
197 * is used as a watchdog timer to disable the PPS discipline should the
198 * PPS signal be lost.
199 *
200 * pps_glitch counts the number of seconds since the beginning of an
201 * offset burst more than tick/2 from current nominal offset. It is used
202 * mainly to suppress error bursts due to priority conflicts between the
203 * PPS interrupt and timer interrupt.
204 *
205 * pps_intcnt counts the calibration intervals for use in the interval-
206 * adaptation algorithm. It's just too complicated for words.
207 */
208 struct timeval pps_time; /* kernel time at last interval */
209 int32_t pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
210 int32_t pps_offset = 0; /* pps time offset (us) */
211 int32_t pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
212 int32_t pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
213 int32_t pps_freq = 0; /* frequency offset (scaled ppm) */
214 int32_t pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
215 int32_t pps_usec = 0; /* microsec counter at last interval */
216 int32_t pps_valid = PPS_VALID; /* pps signal watchdog counter */
217 int32_t pps_glitch = 0; /* pps signal glitch counter */
218 int32_t pps_count = 0; /* calibration interval counter (s) */
219 int32_t pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
220 int32_t pps_intcnt = 0; /* intervals at current duration */
221
222 /*
223 * PPS signal quality monitors
224 *
225 * pps_jitcnt counts the seconds that have been discarded because the
226 * jitter measured by the time median filter exceeds the limit MAXTIME
227 * (100 us).
228 *
229 * pps_calcnt counts the frequency calibration intervals, which are
230 * variable from 4 s to 256 s.
231 *
232 * pps_errcnt counts the calibration intervals which have been discarded
233 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
234 * calibration interval jitter exceeds two ticks.
235 *
236 * pps_stbcnt counts the calibration intervals that have been discarded
237 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
238 */
239 int32_t pps_jitcnt = 0; /* jitter limit exceeded */
240 int32_t pps_calcnt = 0; /* calibration intervals */
241 int32_t pps_errcnt = 0; /* calibration errors */
242 int32_t pps_stbcnt = 0; /* stability limit exceeded */
243
244 kcondvar_t lbolt_cv;
245
246 /*
247 * Hybrid lbolt implementation:
248 *
249 * The service historically provided by the lbolt and lbolt64 variables has
250 * been replaced by the ddi_get_lbolt() and ddi_get_lbolt64() routines, and the
251 * original symbols removed from the system. The once clock driven variables are
252 * now implemented in an event driven fashion, backed by gethrtime() coarsed to
253 * the appropriate clock resolution. The default event driven implementation is
254 * complemented by a cyclic driven one, active only during periods of intense
255 * activity around the DDI lbolt routines, when a lbolt specific cyclic is
256 * reprogramed to fire at a clock tick interval to serve consumers of lbolt who
257 * rely on the original low cost of consulting a memory position.
258 *
259 * The implementation uses the number of calls to these routines and the
260 * frequency of these to determine when to transition from event to cyclic
261 * driven and vice-versa. These values are kept on a per CPU basis for
262 * scalability reasons and to prevent CPUs from constantly invalidating a single
263 * cache line when modifying a global variable. The transition from event to
264 * cyclic mode happens once the thresholds are crossed, and activity on any CPU
265 * can cause such transition.
266 *
267 * The lbolt_hybrid function pointer is called by ddi_get_lbolt() and
268 * ddi_get_lbolt64(), and will point to lbolt_event_driven() or
269 * lbolt_cyclic_driven() according to the current mode. When the thresholds
270 * are exceeded, lbolt_event_driven() will reprogram the lbolt cyclic to
271 * fire at a nsec_per_tick interval and increment an internal variable at
272 * each firing. lbolt_hybrid will then point to lbolt_cyclic_driven(), which
273 * will simply return the value of such variable. lbolt_cyclic() will attempt
274 * to shut itself off at each threshold interval (sampling period for calls
275 * to the DDI lbolt routines), and return to the event driven mode, but will
276 * be prevented from doing so if lbolt_cyclic_driven() is being heavily used.
277 *
278 * lbolt_bootstrap is used during boot to serve lbolt consumers who don't wait
279 * for the cyclic subsystem to be intialized.
280 *
281 */
282 int64_t lbolt_bootstrap(void);
283 int64_t lbolt_event_driven(void);
284 int64_t lbolt_cyclic_driven(void);
285 int64_t (*lbolt_hybrid)(void) = lbolt_bootstrap;
286 uint_t lbolt_ev_to_cyclic(caddr_t, caddr_t);
287
288 /*
289 * lbolt's cyclic, installed by clock_init().
290 */
291 static void lbolt_cyclic(void);
292
293 /*
294 * Tunable to keep lbolt in cyclic driven mode. This will prevent the system
295 * from switching back to event driven, once it reaches cyclic mode.
296 */
297 static boolean_t lbolt_cyc_only = B_FALSE;
298
299 /*
300 * Cache aligned, per CPU structure with lbolt usage statistics.
301 */
302 static lbolt_cpu_t *lb_cpu;
303
304 /*
305 * Single, cache aligned, structure with all the information required by
306 * the lbolt implementation.
307 */
308 lbolt_info_t *lb_info;
309
310
311 int one_sec = 1; /* turned on once every second */
312 static int fsflushcnt; /* counter for t_fsflushr */
313 int dosynctodr = 1; /* patchable; enable/disable sync to TOD chip */
314 int tod_needsync = 0; /* need to sync tod chip with software time */
315 static int tod_broken = 0; /* clock chip doesn't work */
316 time_t boot_time = 0; /* Boot time in seconds since 1970 */
317 cyclic_id_t clock_cyclic; /* clock()'s cyclic_id */
318 cyclic_id_t deadman_cyclic; /* deadman()'s cyclic_id */
319
320 extern void clock_tick_schedule(int);
321
322 static int lgrp_ticks; /* counter to schedule lgrp load calcs */
323
324 /*
325 * for tod fault detection
326 */
327 #define TOD_REF_FREQ ((longlong_t)(NANOSEC))
328 #define TOD_STALL_THRESHOLD (TOD_REF_FREQ * 3 / 2)
329 #define TOD_JUMP_THRESHOLD (TOD_REF_FREQ / 2)
330 #define TOD_FILTER_N 4
331 #define TOD_FILTER_SETTLE (4 * TOD_FILTER_N)
332 static enum tod_fault_type tod_faulted = TOD_NOFAULT;
333
334 static int tod_status_flag = 0; /* used by tod_validate() */
335
336 static hrtime_t prev_set_tick = 0; /* gethrtime() prior to tod_set() */
337 static time_t prev_set_tod = 0; /* tv_sec value passed to tod_set() */
338
339 /* patchable via /etc/system */
340 int tod_validate_enable = 1;
341
342 /* Diagnose/Limit messages about delay(9F) called from interrupt context */
343 int delay_from_interrupt_diagnose = 0;
344 volatile uint32_t delay_from_interrupt_msg = 20;
345
346 /*
347 * On non-SPARC systems, TOD validation must be deferred until gethrtime
348 * returns non-zero values (after mach_clkinit's execution).
349 * On SPARC systems, it must be deferred until after hrtime_base
350 * and hres_last_tick are set (in the first invocation of hres_tick).
351 * Since in both cases the prerequisites occur before the invocation of
352 * tod_get() in clock(), the deferment is lifted there.
353 */
354 static boolean_t tod_validate_deferred = B_TRUE;
355
356 /*
357 * tod_fault_table[] must be aligned with
358 * enum tod_fault_type in systm.h
359 */
360 static char *tod_fault_table[] = {
361 "Reversed", /* TOD_REVERSED */
362 "Stalled", /* TOD_STALLED */
363 "Jumped", /* TOD_JUMPED */
364 "Changed in Clock Rate", /* TOD_RATECHANGED */
365 "Is Read-Only" /* TOD_RDONLY */
366 /*
367 * no strings needed for TOD_NOFAULT
368 */
369 };
370
371 /*
372 * test hook for tod broken detection in tod_validate
373 */
374 int tod_unit_test = 0;
375 time_t tod_test_injector;
376
377 #define CLOCK_ADJ_HIST_SIZE 4
378
379 static int adj_hist_entry;
380
381 int64_t clock_adj_hist[CLOCK_ADJ_HIST_SIZE];
382
383 static void calcloadavg(int, uint64_t *);
384 static int genloadavg(struct loadavg_s *);
385 static void loadavg_update();
386
387 void (*cmm_clock_callout)() = NULL;
388 void (*cpucaps_clock_callout)() = NULL;
389
390 extern clock_t clock_tick_proc_max;
391
392 static int64_t deadman_counter = 0;
393
394 static void
clock(void)395 clock(void)
396 {
397 kthread_t *t;
398 uint_t nrunnable;
399 uint_t w_io;
400 cpu_t *cp;
401 cpupart_t *cpupart;
402 extern void set_freemem();
403 void (*funcp)();
404 int32_t ltemp;
405 int64_t lltemp;
406 int s;
407 int do_lgrp_load;
408 int i;
409 clock_t now = LBOLT_NO_ACCOUNT; /* current tick */
410
411 if (panicstr)
412 return;
413
414 /*
415 * Make sure that 'freemem' do not drift too far from the truth
416 */
417 set_freemem();
418
419
420 /*
421 * Before the section which is repeated is executed, we do
422 * the time delta processing which occurs every clock tick
423 *
424 * There is additional processing which happens every time
425 * the nanosecond counter rolls over which is described
426 * below - see the section which begins with : if (one_sec)
427 *
428 * This section marks the beginning of the precision-kernel
429 * code fragment.
430 *
431 * First, compute the phase adjustment. If the low-order bits
432 * (time_phase) of the update overflow, bump the higher order
433 * bits (time_update).
434 */
435 time_phase += time_adj;
436 if (time_phase <= -FINEUSEC) {
437 ltemp = -time_phase / SCALE_PHASE;
438 time_phase += ltemp * SCALE_PHASE;
439 s = hr_clock_lock();
440 timedelta -= ltemp * (NANOSEC/MICROSEC);
441 hr_clock_unlock(s);
442 } else if (time_phase >= FINEUSEC) {
443 ltemp = time_phase / SCALE_PHASE;
444 time_phase -= ltemp * SCALE_PHASE;
445 s = hr_clock_lock();
446 timedelta += ltemp * (NANOSEC/MICROSEC);
447 hr_clock_unlock(s);
448 }
449
450 /*
451 * End of precision-kernel code fragment which is processed
452 * every timer interrupt.
453 *
454 * Continue with the interrupt processing as scheduled.
455 */
456 /*
457 * Count the number of runnable threads and the number waiting
458 * for some form of I/O to complete -- gets added to
459 * sysinfo.waiting. To know the state of the system, must add
460 * wait counts from all CPUs. Also add up the per-partition
461 * statistics.
462 */
463 w_io = 0;
464 nrunnable = 0;
465
466 /*
467 * keep track of when to update lgrp/part loads
468 */
469
470 do_lgrp_load = 0;
471 if (lgrp_ticks++ >= hz / 10) {
472 lgrp_ticks = 0;
473 do_lgrp_load = 1;
474 }
475
476 if (one_sec) {
477 loadavg_update();
478 deadman_counter++;
479 }
480
481 /*
482 * First count the threads waiting on kpreempt queues in each
483 * CPU partition.
484 */
485
486 cpupart = cp_list_head;
487 do {
488 uint_t cpupart_nrunnable = cpupart->cp_kp_queue.disp_nrunnable;
489
490 cpupart->cp_updates++;
491 nrunnable += cpupart_nrunnable;
492 cpupart->cp_nrunnable_cum += cpupart_nrunnable;
493 if (one_sec) {
494 cpupart->cp_nrunning = 0;
495 cpupart->cp_nrunnable = cpupart_nrunnable;
496 }
497 } while ((cpupart = cpupart->cp_next) != cp_list_head);
498
499
500 /* Now count the per-CPU statistics. */
501 cp = cpu_list;
502 do {
503 uint_t cpu_nrunnable = cp->cpu_disp->disp_nrunnable;
504
505 nrunnable += cpu_nrunnable;
506 cpupart = cp->cpu_part;
507 cpupart->cp_nrunnable_cum += cpu_nrunnable;
508 if (one_sec) {
509 cpupart->cp_nrunnable += cpu_nrunnable;
510 /*
511 * Update user, system, and idle cpu times.
512 */
513 cpupart->cp_nrunning++;
514 /*
515 * w_io is used to update sysinfo.waiting during
516 * one_second processing below. Only gather w_io
517 * information when we walk the list of cpus if we're
518 * going to perform one_second processing.
519 */
520 w_io += CPU_STATS(cp, sys.iowait);
521 }
522
523 if (one_sec && (cp->cpu_flags & CPU_EXISTS)) {
524 int i, load, change;
525 hrtime_t intracct, intrused;
526 const hrtime_t maxnsec = 1000000000;
527 const int precision = 100;
528
529 /*
530 * Estimate interrupt load on this cpu each second.
531 * Computes cpu_intrload as %utilization (0-99).
532 */
533
534 /* add up interrupt time from all micro states */
535 for (intracct = 0, i = 0; i < NCMSTATES; i++)
536 intracct += cp->cpu_intracct[i];
537 scalehrtime(&intracct);
538
539 /* compute nsec used in the past second */
540 intrused = intracct - cp->cpu_intrlast;
541 cp->cpu_intrlast = intracct;
542
543 /* limit the value for safety (and the first pass) */
544 if (intrused >= maxnsec)
545 intrused = maxnsec - 1;
546
547 /* calculate %time in interrupt */
548 load = (precision * intrused) / maxnsec;
549 ASSERT(load >= 0 && load < precision);
550 change = cp->cpu_intrload - load;
551
552 /* jump to new max, or decay the old max */
553 if (change < 0)
554 cp->cpu_intrload = load;
555 else if (change > 0)
556 cp->cpu_intrload -= (change + 3) / 4;
557
558 DTRACE_PROBE3(cpu_intrload,
559 cpu_t *, cp,
560 hrtime_t, intracct,
561 hrtime_t, intrused);
562 }
563
564 if (do_lgrp_load &&
565 (cp->cpu_flags & CPU_EXISTS)) {
566 /*
567 * When updating the lgroup's load average,
568 * account for the thread running on the CPU.
569 * If the CPU is the current one, then we need
570 * to account for the underlying thread which
571 * got the clock interrupt not the thread that is
572 * handling the interrupt and caculating the load
573 * average
574 */
575 t = cp->cpu_thread;
576 if (CPU == cp)
577 t = t->t_intr;
578
579 /*
580 * Account for the load average for this thread if
581 * it isn't the idle thread or it is on the interrupt
582 * stack and not the current CPU handling the clock
583 * interrupt
584 */
585 if ((t && t != cp->cpu_idle_thread) || (CPU != cp &&
586 CPU_ON_INTR(cp))) {
587 if (t->t_lpl == cp->cpu_lpl) {
588 /* local thread */
589 cpu_nrunnable++;
590 } else {
591 /*
592 * This is a remote thread, charge it
593 * against its home lgroup. Note that
594 * we notice that a thread is remote
595 * only if it's currently executing.
596 * This is a reasonable approximation,
597 * since queued remote threads are rare.
598 * Note also that if we didn't charge
599 * it to its home lgroup, remote
600 * execution would often make a system
601 * appear balanced even though it was
602 * not, and thread placement/migration
603 * would often not be done correctly.
604 */
605 lgrp_loadavg(t->t_lpl,
606 LGRP_LOADAVG_IN_THREAD_MAX, 0);
607 }
608 }
609 lgrp_loadavg(cp->cpu_lpl,
610 cpu_nrunnable * LGRP_LOADAVG_IN_THREAD_MAX, 1);
611 }
612 } while ((cp = cp->cpu_next) != cpu_list);
613
614 clock_tick_schedule(one_sec);
615
616 /*
617 * Check for a callout that needs be called from the clock
618 * thread to support the membership protocol in a clustered
619 * system. Copy the function pointer so that we can reset
620 * this to NULL if needed.
621 */
622 if ((funcp = cmm_clock_callout) != NULL)
623 (*funcp)();
624
625 if ((funcp = cpucaps_clock_callout) != NULL)
626 (*funcp)();
627
628 /*
629 * Wakeup the cageout thread waiters once per second.
630 */
631 if (one_sec)
632 kcage_tick();
633
634 if (one_sec) {
635
636 int drift, absdrift;
637 timestruc_t tod;
638 int s;
639
640 /*
641 * Beginning of precision-kernel code fragment executed
642 * every second.
643 *
644 * On rollover of the second the phase adjustment to be
645 * used for the next second is calculated. Also, the
646 * maximum error is increased by the tolerance. If the
647 * PPS frequency discipline code is present, the phase is
648 * increased to compensate for the CPU clock oscillator
649 * frequency error.
650 *
651 * On a 32-bit machine and given parameters in the timex.h
652 * header file, the maximum phase adjustment is +-512 ms
653 * and maximum frequency offset is (a tad less than)
654 * +-512 ppm. On a 64-bit machine, you shouldn't need to ask.
655 */
656 time_maxerror += time_tolerance / SCALE_USEC;
657
658 /*
659 * Leap second processing. If in leap-insert state at
660 * the end of the day, the system clock is set back one
661 * second; if in leap-delete state, the system clock is
662 * set ahead one second. The microtime() routine or
663 * external clock driver will insure that reported time
664 * is always monotonic. The ugly divides should be
665 * replaced.
666 */
667 switch (time_state) {
668
669 case TIME_OK:
670 if (time_status & STA_INS)
671 time_state = TIME_INS;
672 else if (time_status & STA_DEL)
673 time_state = TIME_DEL;
674 break;
675
676 case TIME_INS:
677 if (hrestime.tv_sec % 86400 == 0) {
678 s = hr_clock_lock();
679 hrestime.tv_sec--;
680 hr_clock_unlock(s);
681 time_state = TIME_OOP;
682 }
683 break;
684
685 case TIME_DEL:
686 if ((hrestime.tv_sec + 1) % 86400 == 0) {
687 s = hr_clock_lock();
688 hrestime.tv_sec++;
689 hr_clock_unlock(s);
690 time_state = TIME_WAIT;
691 }
692 break;
693
694 case TIME_OOP:
695 time_state = TIME_WAIT;
696 break;
697
698 case TIME_WAIT:
699 if (!(time_status & (STA_INS | STA_DEL)))
700 time_state = TIME_OK;
701 default:
702 break;
703 }
704
705 /*
706 * Compute the phase adjustment for the next second. In
707 * PLL mode, the offset is reduced by a fixed factor
708 * times the time constant. In FLL mode the offset is
709 * used directly. In either mode, the maximum phase
710 * adjustment for each second is clamped so as to spread
711 * the adjustment over not more than the number of
712 * seconds between updates.
713 */
714 if (time_offset == 0)
715 time_adj = 0;
716 else if (time_offset < 0) {
717 lltemp = -time_offset;
718 if (!(time_status & STA_FLL)) {
719 if ((1 << time_constant) >= SCALE_KG)
720 lltemp *= (1 << time_constant) /
721 SCALE_KG;
722 else
723 lltemp = (lltemp / SCALE_KG) >>
724 time_constant;
725 }
726 if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE)
727 lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE;
728 time_offset += lltemp;
729 time_adj = -(lltemp * SCALE_PHASE) / hz / SCALE_UPDATE;
730 } else {
731 lltemp = time_offset;
732 if (!(time_status & STA_FLL)) {
733 if ((1 << time_constant) >= SCALE_KG)
734 lltemp *= (1 << time_constant) /
735 SCALE_KG;
736 else
737 lltemp = (lltemp / SCALE_KG) >>
738 time_constant;
739 }
740 if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE)
741 lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE;
742 time_offset -= lltemp;
743 time_adj = (lltemp * SCALE_PHASE) / hz / SCALE_UPDATE;
744 }
745
746 /*
747 * Compute the frequency estimate and additional phase
748 * adjustment due to frequency error for the next
749 * second. When the PPS signal is engaged, gnaw on the
750 * watchdog counter and update the frequency computed by
751 * the pll and the PPS signal.
752 */
753 pps_valid++;
754 if (pps_valid == PPS_VALID) {
755 pps_jitter = MAXTIME;
756 pps_stabil = MAXFREQ;
757 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
758 STA_PPSWANDER | STA_PPSERROR);
759 }
760 lltemp = time_freq + pps_freq;
761
762 if (lltemp)
763 time_adj += (lltemp * SCALE_PHASE) / (SCALE_USEC * hz);
764
765 /*
766 * End of precision kernel-code fragment
767 *
768 * The section below should be modified if we are planning
769 * to use NTP for synchronization.
770 *
771 * Note: the clock synchronization code now assumes
772 * the following:
773 * - if dosynctodr is 1, then compute the drift between
774 * the tod chip and software time and adjust one or
775 * the other depending on the circumstances
776 *
777 * - if dosynctodr is 0, then the tod chip is independent
778 * of the software clock and should not be adjusted,
779 * but allowed to free run. this allows NTP to sync.
780 * hrestime without any interference from the tod chip.
781 */
782
783 tod_validate_deferred = B_FALSE;
784 mutex_enter(&tod_lock);
785 tod = tod_get();
786 drift = tod.tv_sec - hrestime.tv_sec;
787 absdrift = (drift >= 0) ? drift : -drift;
788 if (tod_needsync || absdrift > 1) {
789 int s;
790 if (absdrift > 2) {
791 if (!tod_broken && tod_faulted == TOD_NOFAULT) {
792 s = hr_clock_lock();
793 hrestime = tod;
794 membar_enter(); /* hrestime visible */
795 timedelta = 0;
796 timechanged++;
797 tod_needsync = 0;
798 hr_clock_unlock(s);
799 callout_hrestime();
800
801 }
802 } else {
803 if (tod_needsync || !dosynctodr) {
804 gethrestime(&tod);
805 tod_set(tod);
806 s = hr_clock_lock();
807 if (timedelta == 0)
808 tod_needsync = 0;
809 hr_clock_unlock(s);
810 } else {
811 /*
812 * If the drift is 2 seconds on the
813 * money, then the TOD is adjusting
814 * the clock; record that.
815 */
816 clock_adj_hist[adj_hist_entry++ %
817 CLOCK_ADJ_HIST_SIZE] = now;
818 s = hr_clock_lock();
819 timedelta = (int64_t)drift*NANOSEC;
820 hr_clock_unlock(s);
821 }
822 }
823 }
824 one_sec = 0;
825 time = gethrestime_sec(); /* for crusty old kmem readers */
826 mutex_exit(&tod_lock);
827
828 /*
829 * Some drivers still depend on this... XXX
830 */
831 cv_broadcast(&lbolt_cv);
832
833 vminfo.freemem += freemem;
834 {
835 pgcnt_t maxswap, resv, free;
836 pgcnt_t avail =
837 MAX((spgcnt_t)(availrmem - swapfs_minfree), 0);
838
839 maxswap = k_anoninfo.ani_mem_resv +
840 k_anoninfo.ani_max +avail;
841 /* Update ani_free */
842 set_anoninfo();
843 free = k_anoninfo.ani_free + avail;
844 resv = k_anoninfo.ani_phys_resv +
845 k_anoninfo.ani_mem_resv;
846
847 vminfo.swap_resv += resv;
848 /* number of reserved and allocated pages */
849 #ifdef DEBUG
850 if (maxswap < free)
851 cmn_err(CE_WARN, "clock: maxswap < free");
852 if (maxswap < resv)
853 cmn_err(CE_WARN, "clock: maxswap < resv");
854 #endif
855 vminfo.swap_alloc += maxswap - free;
856 vminfo.swap_avail += maxswap - resv;
857 vminfo.swap_free += free;
858 }
859 vminfo.updates++;
860 if (nrunnable) {
861 sysinfo.runque += nrunnable;
862 sysinfo.runocc++;
863 }
864 if (nswapped) {
865 sysinfo.swpque += nswapped;
866 sysinfo.swpocc++;
867 }
868 sysinfo.waiting += w_io;
869 sysinfo.updates++;
870
871 /*
872 * Wake up fsflush to write out DELWRI
873 * buffers, dirty pages and other cached
874 * administrative data, e.g. inodes.
875 */
876 if (--fsflushcnt <= 0) {
877 fsflushcnt = tune.t_fsflushr;
878 cv_signal(&fsflush_cv);
879 }
880
881 vmmeter();
882 calcloadavg(genloadavg(&loadavg), hp_avenrun);
883 for (i = 0; i < 3; i++)
884 /*
885 * At the moment avenrun[] can only hold 31
886 * bits of load average as it is a signed
887 * int in the API. We need to ensure that
888 * hp_avenrun[i] >> (16 - FSHIFT) will not be
889 * too large. If it is, we put the largest value
890 * that we can use into avenrun[i]. This is
891 * kludgey, but about all we can do until we
892 * avenrun[] is declared as an array of uint64[]
893 */
894 if (hp_avenrun[i] < ((uint64_t)1<<(31+16-FSHIFT)))
895 avenrun[i] = (int32_t)(hp_avenrun[i] >>
896 (16 - FSHIFT));
897 else
898 avenrun[i] = 0x7fffffff;
899
900 cpupart = cp_list_head;
901 do {
902 calcloadavg(genloadavg(&cpupart->cp_loadavg),
903 cpupart->cp_hp_avenrun);
904 } while ((cpupart = cpupart->cp_next) != cp_list_head);
905
906 /*
907 * Wake up the swapper thread if necessary.
908 */
909 if (runin ||
910 (runout && (avefree < desfree || wake_sched_sec))) {
911 t = &t0;
912 thread_lock(t);
913 if (t->t_state == TS_STOPPED) {
914 runin = runout = 0;
915 wake_sched_sec = 0;
916 t->t_whystop = 0;
917 t->t_whatstop = 0;
918 t->t_schedflag &= ~TS_ALLSTART;
919 THREAD_TRANSITION(t);
920 setfrontdq(t);
921 }
922 thread_unlock(t);
923 }
924 }
925
926 /*
927 * Wake up the swapper if any high priority swapped-out threads
928 * became runable during the last tick.
929 */
930 if (wake_sched) {
931 t = &t0;
932 thread_lock(t);
933 if (t->t_state == TS_STOPPED) {
934 runin = runout = 0;
935 wake_sched = 0;
936 t->t_whystop = 0;
937 t->t_whatstop = 0;
938 t->t_schedflag &= ~TS_ALLSTART;
939 THREAD_TRANSITION(t);
940 setfrontdq(t);
941 }
942 thread_unlock(t);
943 }
944 }
945
946 void
clock_init(void)947 clock_init(void)
948 {
949 cyc_handler_t clk_hdlr, lbolt_hdlr;
950 cyc_time_t clk_when, lbolt_when;
951 int i, sz;
952 intptr_t buf;
953
954 /*
955 * Setup handler and timer for the clock cyclic.
956 */
957 clk_hdlr.cyh_func = (cyc_func_t)clock;
958 clk_hdlr.cyh_level = CY_LOCK_LEVEL;
959 clk_hdlr.cyh_arg = NULL;
960
961 clk_when.cyt_when = 0;
962 clk_when.cyt_interval = nsec_per_tick;
963
964 /*
965 * The lbolt cyclic will be reprogramed to fire at a nsec_per_tick
966 * interval to satisfy performance needs of the DDI lbolt consumers.
967 * It is off by default.
968 */
969 lbolt_hdlr.cyh_func = (cyc_func_t)lbolt_cyclic;
970 lbolt_hdlr.cyh_level = CY_LOCK_LEVEL;
971 lbolt_hdlr.cyh_arg = NULL;
972
973 lbolt_when.cyt_interval = nsec_per_tick;
974
975 /*
976 * Allocate cache line aligned space for the per CPU lbolt data and
977 * lbolt info structures, and initialize them with their default
978 * values. Note that these structures are also cache line sized.
979 */
980 sz = sizeof (lbolt_info_t) + CPU_CACHE_COHERENCE_SIZE;
981 buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP);
982 lb_info = (lbolt_info_t *)P2ROUNDUP(buf, CPU_CACHE_COHERENCE_SIZE);
983
984 if (hz != HZ_DEFAULT)
985 lb_info->lbi_thresh_interval = LBOLT_THRESH_INTERVAL *
986 hz/HZ_DEFAULT;
987 else
988 lb_info->lbi_thresh_interval = LBOLT_THRESH_INTERVAL;
989
990 lb_info->lbi_thresh_calls = LBOLT_THRESH_CALLS;
991
992 sz = (sizeof (lbolt_cpu_t) * max_ncpus) + CPU_CACHE_COHERENCE_SIZE;
993 buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP);
994 lb_cpu = (lbolt_cpu_t *)P2ROUNDUP(buf, CPU_CACHE_COHERENCE_SIZE);
995
996 for (i = 0; i < max_ncpus; i++)
997 lb_cpu[i].lbc_counter = lb_info->lbi_thresh_calls;
998
999 /*
1000 * Install the softint used to switch between event and cyclic driven
1001 * lbolt. We use a soft interrupt to make sure the context of the
1002 * cyclic reprogram call is safe.
1003 */
1004 lbolt_softint_add();
1005
1006 /*
1007 * Since the hybrid lbolt implementation is based on a hardware counter
1008 * that is reset at every hardware reboot and that we'd like to have
1009 * the lbolt value starting at zero after both a hardware and a fast
1010 * reboot, we calculate the number of clock ticks the system's been up
1011 * and store it in the lbi_debug_time field of the lbolt info structure.
1012 * The value of this field will be subtracted from lbolt before
1013 * returning it.
1014 */
1015 lb_info->lbi_internal = lb_info->lbi_debug_time =
1016 (gethrtime()/nsec_per_tick);
1017
1018 /*
1019 * lbolt_hybrid points at lbolt_bootstrap until now. The LBOLT_* macros
1020 * and lbolt_debug_{enter,return} use this value as an indication that
1021 * the initializaion above hasn't been completed. Setting lbolt_hybrid
1022 * to either lbolt_{cyclic,event}_driven here signals those code paths
1023 * that the lbolt related structures can be used.
1024 */
1025 if (lbolt_cyc_only) {
1026 lbolt_when.cyt_when = 0;
1027 lbolt_hybrid = lbolt_cyclic_driven;
1028 } else {
1029 lbolt_when.cyt_when = CY_INFINITY;
1030 lbolt_hybrid = lbolt_event_driven;
1031 }
1032
1033 /*
1034 * Grab cpu_lock and install all three cyclics.
1035 */
1036 mutex_enter(&cpu_lock);
1037
1038 clock_cyclic = cyclic_add(&clk_hdlr, &clk_when);
1039 lb_info->id.lbi_cyclic_id = cyclic_add(&lbolt_hdlr, &lbolt_when);
1040
1041 mutex_exit(&cpu_lock);
1042 }
1043
1044 /*
1045 * Called before calcloadavg to get 10-sec moving loadavg together
1046 */
1047
1048 static int
genloadavg(struct loadavg_s * avgs)1049 genloadavg(struct loadavg_s *avgs)
1050 {
1051 int avg;
1052 int spos; /* starting position */
1053 int cpos; /* moving current position */
1054 int i;
1055 int slen;
1056 hrtime_t hr_avg;
1057
1058 /* 10-second snapshot, calculate first positon */
1059 if (avgs->lg_len == 0) {
1060 return (0);
1061 }
1062 slen = avgs->lg_len < S_MOVAVG_SZ ? avgs->lg_len : S_MOVAVG_SZ;
1063
1064 spos = (avgs->lg_cur - 1) >= 0 ? avgs->lg_cur - 1 :
1065 S_LOADAVG_SZ + (avgs->lg_cur - 1);
1066 for (i = hr_avg = 0; i < slen; i++) {
1067 cpos = (spos - i) >= 0 ? spos - i : S_LOADAVG_SZ + (spos - i);
1068 hr_avg += avgs->lg_loads[cpos];
1069 }
1070
1071 hr_avg = hr_avg / slen;
1072 avg = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
1073
1074 return (avg);
1075 }
1076
1077 /*
1078 * Run every second from clock () to update the loadavg count available to the
1079 * system and cpu-partitions.
1080 *
1081 * This works by sampling the previous usr, sys, wait time elapsed,
1082 * computing a delta, and adding that delta to the elapsed usr, sys,
1083 * wait increase.
1084 */
1085
1086 static void
loadavg_update()1087 loadavg_update()
1088 {
1089 cpu_t *cp;
1090 cpupart_t *cpupart;
1091 hrtime_t cpu_total;
1092 int prev;
1093
1094 cp = cpu_list;
1095 loadavg.lg_total = 0;
1096
1097 /*
1098 * first pass totals up per-cpu statistics for system and cpu
1099 * partitions
1100 */
1101
1102 do {
1103 struct loadavg_s *lavg;
1104
1105 lavg = &cp->cpu_loadavg;
1106
1107 cpu_total = cp->cpu_acct[CMS_USER] +
1108 cp->cpu_acct[CMS_SYSTEM] + cp->cpu_waitrq;
1109 /* compute delta against last total */
1110 scalehrtime(&cpu_total);
1111 prev = (lavg->lg_cur - 1) >= 0 ? lavg->lg_cur - 1 :
1112 S_LOADAVG_SZ + (lavg->lg_cur - 1);
1113 if (lavg->lg_loads[prev] <= 0) {
1114 lavg->lg_loads[lavg->lg_cur] = cpu_total;
1115 cpu_total = 0;
1116 } else {
1117 lavg->lg_loads[lavg->lg_cur] = cpu_total;
1118 cpu_total = cpu_total - lavg->lg_loads[prev];
1119 if (cpu_total < 0)
1120 cpu_total = 0;
1121 }
1122
1123 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
1124 lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ?
1125 lavg->lg_len + 1 : S_LOADAVG_SZ;
1126
1127 loadavg.lg_total += cpu_total;
1128 cp->cpu_part->cp_loadavg.lg_total += cpu_total;
1129
1130 } while ((cp = cp->cpu_next) != cpu_list);
1131
1132 loadavg.lg_loads[loadavg.lg_cur] = loadavg.lg_total;
1133 loadavg.lg_cur = (loadavg.lg_cur + 1) % S_LOADAVG_SZ;
1134 loadavg.lg_len = (loadavg.lg_len + 1) < S_LOADAVG_SZ ?
1135 loadavg.lg_len + 1 : S_LOADAVG_SZ;
1136 /*
1137 * Second pass updates counts
1138 */
1139 cpupart = cp_list_head;
1140
1141 do {
1142 struct loadavg_s *lavg;
1143
1144 lavg = &cpupart->cp_loadavg;
1145 lavg->lg_loads[lavg->lg_cur] = lavg->lg_total;
1146 lavg->lg_total = 0;
1147 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
1148 lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ?
1149 lavg->lg_len + 1 : S_LOADAVG_SZ;
1150
1151 } while ((cpupart = cpupart->cp_next) != cp_list_head);
1152
1153 /*
1154 * Third pass totals up per-zone statistics.
1155 */
1156 zone_loadavg_update();
1157 }
1158
1159 /*
1160 * clock_update() - local clock update
1161 *
1162 * This routine is called by ntp_adjtime() to update the local clock
1163 * phase and frequency. The implementation is of an
1164 * adaptive-parameter, hybrid phase/frequency-lock loop (PLL/FLL). The
1165 * routine computes new time and frequency offset estimates for each
1166 * call. The PPS signal itself determines the new time offset,
1167 * instead of the calling argument. Presumably, calls to
1168 * ntp_adjtime() occur only when the caller believes the local clock
1169 * is valid within some bound (+-128 ms with NTP). If the caller's
1170 * time is far different than the PPS time, an argument will ensue,
1171 * and it's not clear who will lose.
1172 *
1173 * For uncompensated quartz crystal oscillatores and nominal update
1174 * intervals less than 1024 s, operation should be in phase-lock mode
1175 * (STA_FLL = 0), where the loop is disciplined to phase. For update
1176 * intervals greater than this, operation should be in frequency-lock
1177 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1178 *
1179 * Note: mutex(&tod_lock) is in effect.
1180 */
1181 void
clock_update(int offset)1182 clock_update(int offset)
1183 {
1184 int ltemp, mtemp, s;
1185
1186 ASSERT(MUTEX_HELD(&tod_lock));
1187
1188 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1189 return;
1190 ltemp = offset;
1191 if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL))
1192 ltemp = pps_offset;
1193
1194 /*
1195 * Scale the phase adjustment and clamp to the operating range.
1196 */
1197 if (ltemp > MAXPHASE)
1198 time_offset = MAXPHASE * SCALE_UPDATE;
1199 else if (ltemp < -MAXPHASE)
1200 time_offset = -(MAXPHASE * SCALE_UPDATE);
1201 else
1202 time_offset = ltemp * SCALE_UPDATE;
1203
1204 /*
1205 * Select whether the frequency is to be controlled and in which
1206 * mode (PLL or FLL). Clamp to the operating range. Ugly
1207 * multiply/divide should be replaced someday.
1208 */
1209 if (time_status & STA_FREQHOLD || time_reftime == 0)
1210 time_reftime = hrestime.tv_sec;
1211
1212 mtemp = hrestime.tv_sec - time_reftime;
1213 time_reftime = hrestime.tv_sec;
1214
1215 if (time_status & STA_FLL) {
1216 if (mtemp >= MINSEC) {
1217 ltemp = ((time_offset / mtemp) * (SCALE_USEC /
1218 SCALE_UPDATE));
1219 if (ltemp)
1220 time_freq += ltemp / SCALE_KH;
1221 }
1222 } else {
1223 if (mtemp < MAXSEC) {
1224 ltemp *= mtemp;
1225 if (ltemp)
1226 time_freq += (int)(((int64_t)ltemp *
1227 SCALE_USEC) / SCALE_KF)
1228 / (1 << (time_constant * 2));
1229 }
1230 }
1231 if (time_freq > time_tolerance)
1232 time_freq = time_tolerance;
1233 else if (time_freq < -time_tolerance)
1234 time_freq = -time_tolerance;
1235
1236 s = hr_clock_lock();
1237 tod_needsync = 1;
1238 hr_clock_unlock(s);
1239 }
1240
1241 /*
1242 * ddi_hardpps() - discipline CPU clock oscillator to external PPS signal
1243 *
1244 * This routine is called at each PPS interrupt in order to discipline
1245 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1246 * and leaves it in a handy spot for the clock() routine. It
1247 * integrates successive PPS phase differences and calculates the
1248 * frequency offset. This is used in clock() to discipline the CPU
1249 * clock oscillator so that intrinsic frequency error is cancelled out.
1250 * The code requires the caller to capture the time and hardware counter
1251 * value at the on-time PPS signal transition.
1252 *
1253 * Note that, on some Unix systems, this routine runs at an interrupt
1254 * priority level higher than the timer interrupt routine clock().
1255 * Therefore, the variables used are distinct from the clock()
1256 * variables, except for certain exceptions: The PPS frequency pps_freq
1257 * and phase pps_offset variables are determined by this routine and
1258 * updated atomically. The time_tolerance variable can be considered a
1259 * constant, since it is infrequently changed, and then only when the
1260 * PPS signal is disabled. The watchdog counter pps_valid is updated
1261 * once per second by clock() and is atomically cleared in this
1262 * routine.
1263 *
1264 * tvp is the time of the last tick; usec is a microsecond count since the
1265 * last tick.
1266 *
1267 * Note: In Solaris systems, the tick value is actually given by
1268 * usec_per_tick. This is called from the serial driver cdintr(),
1269 * or equivalent, at a high PIL. Because the kernel keeps a
1270 * highresolution time, the following code can accept either
1271 * the traditional argument pair, or the current highres timestamp
1272 * in tvp and zero in usec.
1273 */
1274 void
ddi_hardpps(struct timeval * tvp,int usec)1275 ddi_hardpps(struct timeval *tvp, int usec)
1276 {
1277 int u_usec, v_usec, bigtick;
1278 time_t cal_sec;
1279 int cal_usec;
1280
1281 /*
1282 * An occasional glitch can be produced when the PPS interrupt
1283 * occurs in the clock() routine before the time variable is
1284 * updated. Here the offset is discarded when the difference
1285 * between it and the last one is greater than tick/2, but not
1286 * if the interval since the first discard exceeds 30 s.
1287 */
1288 time_status |= STA_PPSSIGNAL;
1289 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1290 pps_valid = 0;
1291 u_usec = -tvp->tv_usec;
1292 if (u_usec < -(MICROSEC/2))
1293 u_usec += MICROSEC;
1294 v_usec = pps_offset - u_usec;
1295 if (v_usec < 0)
1296 v_usec = -v_usec;
1297 if (v_usec > (usec_per_tick >> 1)) {
1298 if (pps_glitch > MAXGLITCH) {
1299 pps_glitch = 0;
1300 pps_tf[2] = u_usec;
1301 pps_tf[1] = u_usec;
1302 } else {
1303 pps_glitch++;
1304 u_usec = pps_offset;
1305 }
1306 } else
1307 pps_glitch = 0;
1308
1309 /*
1310 * A three-stage median filter is used to help deglitch the pps
1311 * time. The median sample becomes the time offset estimate; the
1312 * difference between the other two samples becomes the time
1313 * dispersion (jitter) estimate.
1314 */
1315 pps_tf[2] = pps_tf[1];
1316 pps_tf[1] = pps_tf[0];
1317 pps_tf[0] = u_usec;
1318 if (pps_tf[0] > pps_tf[1]) {
1319 if (pps_tf[1] > pps_tf[2]) {
1320 pps_offset = pps_tf[1]; /* 0 1 2 */
1321 v_usec = pps_tf[0] - pps_tf[2];
1322 } else if (pps_tf[2] > pps_tf[0]) {
1323 pps_offset = pps_tf[0]; /* 2 0 1 */
1324 v_usec = pps_tf[2] - pps_tf[1];
1325 } else {
1326 pps_offset = pps_tf[2]; /* 0 2 1 */
1327 v_usec = pps_tf[0] - pps_tf[1];
1328 }
1329 } else {
1330 if (pps_tf[1] < pps_tf[2]) {
1331 pps_offset = pps_tf[1]; /* 2 1 0 */
1332 v_usec = pps_tf[2] - pps_tf[0];
1333 } else if (pps_tf[2] < pps_tf[0]) {
1334 pps_offset = pps_tf[0]; /* 1 0 2 */
1335 v_usec = pps_tf[1] - pps_tf[2];
1336 } else {
1337 pps_offset = pps_tf[2]; /* 1 2 0 */
1338 v_usec = pps_tf[1] - pps_tf[0];
1339 }
1340 }
1341 if (v_usec > MAXTIME)
1342 pps_jitcnt++;
1343 v_usec = (v_usec << PPS_AVG) - pps_jitter;
1344 pps_jitter += v_usec / (1 << PPS_AVG);
1345 if (pps_jitter > (MAXTIME >> 1))
1346 time_status |= STA_PPSJITTER;
1347
1348 /*
1349 * During the calibration interval adjust the starting time when
1350 * the tick overflows. At the end of the interval compute the
1351 * duration of the interval and the difference of the hardware
1352 * counters at the beginning and end of the interval. This code
1353 * is deliciously complicated by the fact valid differences may
1354 * exceed the value of tick when using long calibration
1355 * intervals and small ticks. Note that the counter can be
1356 * greater than tick if caught at just the wrong instant, but
1357 * the values returned and used here are correct.
1358 */
1359 bigtick = (int)usec_per_tick * SCALE_USEC;
1360 pps_usec -= pps_freq;
1361 if (pps_usec >= bigtick)
1362 pps_usec -= bigtick;
1363 if (pps_usec < 0)
1364 pps_usec += bigtick;
1365 pps_time.tv_sec++;
1366 pps_count++;
1367 if (pps_count < (1 << pps_shift))
1368 return;
1369 pps_count = 0;
1370 pps_calcnt++;
1371 u_usec = usec * SCALE_USEC;
1372 v_usec = pps_usec - u_usec;
1373 if (v_usec >= bigtick >> 1)
1374 v_usec -= bigtick;
1375 if (v_usec < -(bigtick >> 1))
1376 v_usec += bigtick;
1377 if (v_usec < 0)
1378 v_usec = -(-v_usec >> pps_shift);
1379 else
1380 v_usec = v_usec >> pps_shift;
1381 pps_usec = u_usec;
1382 cal_sec = tvp->tv_sec;
1383 cal_usec = tvp->tv_usec;
1384 cal_sec -= pps_time.tv_sec;
1385 cal_usec -= pps_time.tv_usec;
1386 if (cal_usec < 0) {
1387 cal_usec += MICROSEC;
1388 cal_sec--;
1389 }
1390 pps_time = *tvp;
1391
1392 /*
1393 * Check for lost interrupts, noise, excessive jitter and
1394 * excessive frequency error. The number of timer ticks during
1395 * the interval may vary +-1 tick. Add to this a margin of one
1396 * tick for the PPS signal jitter and maximum frequency
1397 * deviation. If the limits are exceeded, the calibration
1398 * interval is reset to the minimum and we start over.
1399 */
1400 u_usec = (int)usec_per_tick << 1;
1401 if (!((cal_sec == -1 && cal_usec > (MICROSEC - u_usec)) ||
1402 (cal_sec == 0 && cal_usec < u_usec)) ||
1403 v_usec > time_tolerance || v_usec < -time_tolerance) {
1404 pps_errcnt++;
1405 pps_shift = PPS_SHIFT;
1406 pps_intcnt = 0;
1407 time_status |= STA_PPSERROR;
1408 return;
1409 }
1410
1411 /*
1412 * A three-stage median filter is used to help deglitch the pps
1413 * frequency. The median sample becomes the frequency offset
1414 * estimate; the difference between the other two samples
1415 * becomes the frequency dispersion (stability) estimate.
1416 */
1417 pps_ff[2] = pps_ff[1];
1418 pps_ff[1] = pps_ff[0];
1419 pps_ff[0] = v_usec;
1420 if (pps_ff[0] > pps_ff[1]) {
1421 if (pps_ff[1] > pps_ff[2]) {
1422 u_usec = pps_ff[1]; /* 0 1 2 */
1423 v_usec = pps_ff[0] - pps_ff[2];
1424 } else if (pps_ff[2] > pps_ff[0]) {
1425 u_usec = pps_ff[0]; /* 2 0 1 */
1426 v_usec = pps_ff[2] - pps_ff[1];
1427 } else {
1428 u_usec = pps_ff[2]; /* 0 2 1 */
1429 v_usec = pps_ff[0] - pps_ff[1];
1430 }
1431 } else {
1432 if (pps_ff[1] < pps_ff[2]) {
1433 u_usec = pps_ff[1]; /* 2 1 0 */
1434 v_usec = pps_ff[2] - pps_ff[0];
1435 } else if (pps_ff[2] < pps_ff[0]) {
1436 u_usec = pps_ff[0]; /* 1 0 2 */
1437 v_usec = pps_ff[1] - pps_ff[2];
1438 } else {
1439 u_usec = pps_ff[2]; /* 1 2 0 */
1440 v_usec = pps_ff[1] - pps_ff[0];
1441 }
1442 }
1443
1444 /*
1445 * Here the frequency dispersion (stability) is updated. If it
1446 * is less than one-fourth the maximum (MAXFREQ), the frequency
1447 * offset is updated as well, but clamped to the tolerance. It
1448 * will be processed later by the clock() routine.
1449 */
1450 v_usec = (v_usec >> 1) - pps_stabil;
1451 if (v_usec < 0)
1452 pps_stabil -= -v_usec >> PPS_AVG;
1453 else
1454 pps_stabil += v_usec >> PPS_AVG;
1455 if (pps_stabil > MAXFREQ >> 2) {
1456 pps_stbcnt++;
1457 time_status |= STA_PPSWANDER;
1458 return;
1459 }
1460 if (time_status & STA_PPSFREQ) {
1461 if (u_usec < 0) {
1462 pps_freq -= -u_usec >> PPS_AVG;
1463 if (pps_freq < -time_tolerance)
1464 pps_freq = -time_tolerance;
1465 u_usec = -u_usec;
1466 } else {
1467 pps_freq += u_usec >> PPS_AVG;
1468 if (pps_freq > time_tolerance)
1469 pps_freq = time_tolerance;
1470 }
1471 }
1472
1473 /*
1474 * Here the calibration interval is adjusted. If the maximum
1475 * time difference is greater than tick / 4, reduce the interval
1476 * by half. If this is not the case for four consecutive
1477 * intervals, double the interval.
1478 */
1479 if (u_usec << pps_shift > bigtick >> 2) {
1480 pps_intcnt = 0;
1481 if (pps_shift > PPS_SHIFT)
1482 pps_shift--;
1483 } else if (pps_intcnt >= 4) {
1484 pps_intcnt = 0;
1485 if (pps_shift < PPS_SHIFTMAX)
1486 pps_shift++;
1487 } else
1488 pps_intcnt++;
1489
1490 /*
1491 * If recovering from kmdb, then make sure the tod chip gets resynced.
1492 * If we took an early exit above, then we don't yet have a stable
1493 * calibration signal to lock onto, so don't mark the tod for sync
1494 * until we get all the way here.
1495 */
1496 {
1497 int s = hr_clock_lock();
1498
1499 tod_needsync = 1;
1500 hr_clock_unlock(s);
1501 }
1502 }
1503
1504 /*
1505 * Handle clock tick processing for a thread.
1506 * Check for timer action, enforce CPU rlimit, do profiling etc.
1507 */
1508 void
clock_tick(kthread_t * t,int pending)1509 clock_tick(kthread_t *t, int pending)
1510 {
1511 struct proc *pp;
1512 klwp_id_t lwp;
1513 struct as *as;
1514 clock_t ticks;
1515 int poke = 0; /* notify another CPU */
1516 int user_mode;
1517 size_t rss;
1518 int i, total_usec, usec;
1519 rctl_qty_t secs;
1520
1521 ASSERT(pending > 0);
1522
1523 /* Must be operating on a lwp/thread */
1524 if ((lwp = ttolwp(t)) == NULL) {
1525 panic("clock_tick: no lwp");
1526 /*NOTREACHED*/
1527 }
1528
1529 for (i = 0; i < pending; i++) {
1530 CL_TICK(t); /* Class specific tick processing */
1531 DTRACE_SCHED1(tick, kthread_t *, t);
1532 }
1533
1534 pp = ttoproc(t);
1535
1536 /* pp->p_lock makes sure that the thread does not exit */
1537 ASSERT(MUTEX_HELD(&pp->p_lock));
1538
1539 user_mode = (lwp->lwp_state == LWP_USER);
1540
1541 ticks = (pp->p_utime + pp->p_stime) % hz;
1542 /*
1543 * Update process times. Should use high res clock and state
1544 * changes instead of statistical sampling method. XXX
1545 */
1546 if (user_mode) {
1547 pp->p_utime += pending;
1548 } else {
1549 pp->p_stime += pending;
1550 }
1551
1552 pp->p_ttime += pending;
1553 as = pp->p_as;
1554
1555 /*
1556 * Update user profiling statistics. Get the pc from the
1557 * lwp when the AST happens.
1558 */
1559 if (pp->p_prof.pr_scale) {
1560 atomic_add_32(&lwp->lwp_oweupc, (int32_t)pending);
1561 if (user_mode) {
1562 poke = 1;
1563 aston(t);
1564 }
1565 }
1566
1567 /*
1568 * If CPU was in user state, process lwp-virtual time
1569 * interval timer. The value passed to itimerdecr() has to be
1570 * in microseconds and has to be less than one second. Hence
1571 * this loop.
1572 */
1573 total_usec = usec_per_tick * pending;
1574 while (total_usec > 0) {
1575 usec = MIN(total_usec, (MICROSEC - 1));
1576 if (user_mode &&
1577 timerisset(&lwp->lwp_timer[ITIMER_VIRTUAL].it_value) &&
1578 itimerdecr(&lwp->lwp_timer[ITIMER_VIRTUAL], usec) == 0) {
1579 poke = 1;
1580 sigtoproc(pp, t, SIGVTALRM);
1581 }
1582 total_usec -= usec;
1583 }
1584
1585 /*
1586 * If CPU was in user state, process lwp-profile
1587 * interval timer.
1588 */
1589 total_usec = usec_per_tick * pending;
1590 while (total_usec > 0) {
1591 usec = MIN(total_usec, (MICROSEC - 1));
1592 if (timerisset(&lwp->lwp_timer[ITIMER_PROF].it_value) &&
1593 itimerdecr(&lwp->lwp_timer[ITIMER_PROF], usec) == 0) {
1594 poke = 1;
1595 sigtoproc(pp, t, SIGPROF);
1596 }
1597 total_usec -= usec;
1598 }
1599
1600 /*
1601 * Enforce CPU resource controls:
1602 * (a) process.max-cpu-time resource control
1603 *
1604 * Perform the check only if we have accumulated more a second.
1605 */
1606 if ((ticks + pending) >= hz) {
1607 (void) rctl_test(rctlproc_legacy[RLIMIT_CPU], pp->p_rctls, pp,
1608 (pp->p_utime + pp->p_stime)/hz, RCA_UNSAFE_SIGINFO);
1609 }
1610
1611 /*
1612 * (b) task.max-cpu-time resource control
1613 *
1614 * If we have accumulated enough ticks, increment the task CPU
1615 * time usage and test for the resource limit. This minimizes the
1616 * number of calls to the rct_test(). The task CPU time mutex
1617 * is highly contentious as many processes can be sharing a task.
1618 */
1619 if (pp->p_ttime >= clock_tick_proc_max) {
1620 secs = task_cpu_time_incr(pp->p_task, pp->p_ttime);
1621 pp->p_ttime = 0;
1622 if (secs) {
1623 (void) rctl_test(rc_task_cpu_time, pp->p_task->tk_rctls,
1624 pp, secs, RCA_UNSAFE_SIGINFO);
1625 }
1626 }
1627
1628 /*
1629 * Update memory usage for the currently running process.
1630 */
1631 rss = rm_asrss(as);
1632 PTOU(pp)->u_mem += rss;
1633 if (rss > PTOU(pp)->u_mem_max)
1634 PTOU(pp)->u_mem_max = rss;
1635
1636 /*
1637 * Notify the CPU the thread is running on.
1638 */
1639 if (poke && t->t_cpu != CPU)
1640 poke_cpu(t->t_cpu->cpu_id);
1641 }
1642
1643 void
profil_tick(uintptr_t upc)1644 profil_tick(uintptr_t upc)
1645 {
1646 int ticks;
1647 proc_t *p = ttoproc(curthread);
1648 klwp_t *lwp = ttolwp(curthread);
1649 struct prof *pr = &p->p_prof;
1650
1651 do {
1652 ticks = lwp->lwp_oweupc;
1653 } while (atomic_cas_32(&lwp->lwp_oweupc, ticks, 0) != ticks);
1654
1655 mutex_enter(&p->p_pflock);
1656 if (pr->pr_scale >= 2 && upc >= pr->pr_off) {
1657 /*
1658 * Old-style profiling
1659 */
1660 uint16_t *slot = pr->pr_base;
1661 uint16_t old, new;
1662 if (pr->pr_scale != 2) {
1663 uintptr_t delta = upc - pr->pr_off;
1664 uintptr_t byteoff = ((delta >> 16) * pr->pr_scale) +
1665 (((delta & 0xffff) * pr->pr_scale) >> 16);
1666 if (byteoff >= (uintptr_t)pr->pr_size) {
1667 mutex_exit(&p->p_pflock);
1668 return;
1669 }
1670 slot += byteoff / sizeof (uint16_t);
1671 }
1672 if (fuword16(slot, &old) < 0 ||
1673 (new = old + ticks) > SHRT_MAX ||
1674 suword16(slot, new) < 0) {
1675 pr->pr_scale = 0;
1676 }
1677 } else if (pr->pr_scale == 1) {
1678 /*
1679 * PC Sampling
1680 */
1681 model_t model = lwp_getdatamodel(lwp);
1682 int result;
1683 #ifdef __lint
1684 model = model;
1685 #endif
1686 while (ticks-- > 0) {
1687 if (pr->pr_samples == pr->pr_size) {
1688 /* buffer full, turn off sampling */
1689 pr->pr_scale = 0;
1690 break;
1691 }
1692 switch (SIZEOF_PTR(model)) {
1693 case sizeof (uint32_t):
1694 result = suword32(pr->pr_base, (uint32_t)upc);
1695 break;
1696 #ifdef _LP64
1697 case sizeof (uint64_t):
1698 result = suword64(pr->pr_base, (uint64_t)upc);
1699 break;
1700 #endif
1701 default:
1702 cmn_err(CE_WARN, "profil_tick: unexpected "
1703 "data model");
1704 result = -1;
1705 break;
1706 }
1707 if (result != 0) {
1708 pr->pr_scale = 0;
1709 break;
1710 }
1711 pr->pr_base = (caddr_t)pr->pr_base + SIZEOF_PTR(model);
1712 pr->pr_samples++;
1713 }
1714 }
1715 mutex_exit(&p->p_pflock);
1716 }
1717
1718 static void
delay_wakeup(void * arg)1719 delay_wakeup(void *arg)
1720 {
1721 kthread_t *t = arg;
1722
1723 mutex_enter(&t->t_delay_lock);
1724 cv_signal(&t->t_delay_cv);
1725 mutex_exit(&t->t_delay_lock);
1726 }
1727
1728 /*
1729 * The delay(9F) man page indicates that it can only be called from user or
1730 * kernel context - detect and diagnose bad calls. The following macro will
1731 * produce a limited number of messages identifying bad callers. This is done
1732 * in a macro so that caller() is meaningful. When a bad caller is identified,
1733 * switching to 'drv_usecwait(TICK_TO_USEC(ticks));' may be appropriate.
1734 */
1735 #define DELAY_CONTEXT_CHECK() { \
1736 uint32_t m; \
1737 char *f; \
1738 ulong_t off; \
1739 \
1740 m = delay_from_interrupt_msg; \
1741 if (delay_from_interrupt_diagnose && servicing_interrupt() && \
1742 !panicstr && !devinfo_freeze && \
1743 atomic_cas_32(&delay_from_interrupt_msg, m ? m : 1, m-1)) { \
1744 f = modgetsymname((uintptr_t)caller(), &off); \
1745 cmn_err(CE_WARN, "delay(9F) called from " \
1746 "interrupt context: %s`%s", \
1747 mod_containing_pc(caller()), f ? f : "..."); \
1748 } \
1749 }
1750
1751 /*
1752 * delay_common: common delay code.
1753 */
1754 static void
delay_common(clock_t ticks)1755 delay_common(clock_t ticks)
1756 {
1757 kthread_t *t = curthread;
1758 clock_t deadline;
1759 clock_t timeleft;
1760 callout_id_t id;
1761
1762 /* If timeouts aren't running all we can do is spin. */
1763 if (panicstr || devinfo_freeze) {
1764 /* Convert delay(9F) call into drv_usecwait(9F) call. */
1765 if (ticks > 0)
1766 drv_usecwait(TICK_TO_USEC(ticks));
1767 return;
1768 }
1769
1770 deadline = ddi_get_lbolt() + ticks;
1771 while ((timeleft = deadline - ddi_get_lbolt()) > 0) {
1772 mutex_enter(&t->t_delay_lock);
1773 id = timeout_default(delay_wakeup, t, timeleft);
1774 cv_wait(&t->t_delay_cv, &t->t_delay_lock);
1775 mutex_exit(&t->t_delay_lock);
1776 (void) untimeout_default(id, 0);
1777 }
1778 }
1779
1780 /*
1781 * Delay specified number of clock ticks.
1782 */
1783 void
delay(clock_t ticks)1784 delay(clock_t ticks)
1785 {
1786 DELAY_CONTEXT_CHECK();
1787
1788 delay_common(ticks);
1789 }
1790
1791 /*
1792 * Delay a random number of clock ticks between 1 and ticks.
1793 */
1794 void
delay_random(clock_t ticks)1795 delay_random(clock_t ticks)
1796 {
1797 int r;
1798
1799 DELAY_CONTEXT_CHECK();
1800
1801 (void) random_get_pseudo_bytes((void *)&r, sizeof (r));
1802 if (ticks == 0)
1803 ticks = 1;
1804 ticks = (r % ticks) + 1;
1805 delay_common(ticks);
1806 }
1807
1808 /*
1809 * Like delay, but interruptible by a signal.
1810 */
1811 int
delay_sig(clock_t ticks)1812 delay_sig(clock_t ticks)
1813 {
1814 kthread_t *t = curthread;
1815 clock_t deadline;
1816 clock_t rc;
1817
1818 /* If timeouts aren't running all we can do is spin. */
1819 if (panicstr || devinfo_freeze) {
1820 if (ticks > 0)
1821 drv_usecwait(TICK_TO_USEC(ticks));
1822 return (0);
1823 }
1824
1825 deadline = ddi_get_lbolt() + ticks;
1826 mutex_enter(&t->t_delay_lock);
1827 do {
1828 rc = cv_timedwait_sig(&t->t_delay_cv,
1829 &t->t_delay_lock, deadline);
1830 /* loop until past deadline or signaled */
1831 } while (rc > 0);
1832 mutex_exit(&t->t_delay_lock);
1833 if (rc == 0)
1834 return (EINTR);
1835 return (0);
1836 }
1837
1838
1839 #define SECONDS_PER_DAY 86400
1840
1841 /*
1842 * Initialize the system time based on the TOD chip. approx is used as
1843 * an approximation of time (e.g. from the filesystem) in the event that
1844 * the TOD chip has been cleared or is unresponsive. An approx of -1
1845 * means the filesystem doesn't keep time.
1846 */
1847 void
clkset(time_t approx)1848 clkset(time_t approx)
1849 {
1850 timestruc_t ts;
1851 int spl;
1852 int set_clock = 0;
1853
1854 mutex_enter(&tod_lock);
1855 ts = tod_get();
1856
1857 if (ts.tv_sec > 365 * SECONDS_PER_DAY) {
1858 /*
1859 * If the TOD chip is reporting some time after 1971,
1860 * then it probably didn't lose power or become otherwise
1861 * cleared in the recent past; check to assure that
1862 * the time coming from the filesystem isn't in the future
1863 * according to the TOD chip.
1864 */
1865 if (approx != -1 && approx > ts.tv_sec) {
1866 cmn_err(CE_WARN, "Last shutdown is later "
1867 "than time on time-of-day chip; check date.");
1868 }
1869 } else {
1870 /*
1871 * If the TOD chip isn't giving correct time, set it to the
1872 * greater of i) approx and ii) 1987. That way if approx
1873 * is negative or is earlier than 1987, we set the clock
1874 * back to a time when Oliver North, ALF and Dire Straits
1875 * were all on the collective brain: 1987.
1876 */
1877 timestruc_t tmp;
1878 time_t diagnose_date = (1987 - 1970) * 365 * SECONDS_PER_DAY;
1879 ts.tv_sec = (approx > diagnose_date ? approx : diagnose_date);
1880 ts.tv_nsec = 0;
1881
1882 /*
1883 * Attempt to write the new time to the TOD chip. Set spl high
1884 * to avoid getting preempted between the tod_set and tod_get.
1885 */
1886 spl = splhi();
1887 tod_set(ts);
1888 tmp = tod_get();
1889 splx(spl);
1890
1891 if (tmp.tv_sec != ts.tv_sec && tmp.tv_sec != ts.tv_sec + 1) {
1892 tod_broken = 1;
1893 dosynctodr = 0;
1894 cmn_err(CE_WARN, "Time-of-day chip unresponsive.");
1895 } else {
1896 cmn_err(CE_WARN, "Time-of-day chip had "
1897 "incorrect date; check and reset.");
1898 }
1899 set_clock = 1;
1900 }
1901
1902 if (!boot_time) {
1903 boot_time = ts.tv_sec;
1904 set_clock = 1;
1905 }
1906
1907 if (set_clock)
1908 set_hrestime(&ts);
1909
1910 mutex_exit(&tod_lock);
1911 }
1912
1913 int timechanged; /* for testing if the system time has been reset */
1914
1915 void
set_hrestime(timestruc_t * ts)1916 set_hrestime(timestruc_t *ts)
1917 {
1918 int spl = hr_clock_lock();
1919 hrestime = *ts;
1920 membar_enter(); /* hrestime must be visible before timechanged++ */
1921 timedelta = 0;
1922 timechanged++;
1923 hr_clock_unlock(spl);
1924 callout_hrestime();
1925 }
1926
1927 static uint_t deadman_seconds;
1928 static uint32_t deadman_panics;
1929 static int deadman_enabled = 0;
1930 static int deadman_panic_timers = 1;
1931
1932 static void
deadman(void)1933 deadman(void)
1934 {
1935 if (panicstr) {
1936 /*
1937 * During panic, other CPUs besides the panic
1938 * master continue to handle cyclics and some other
1939 * interrupts. The code below is intended to be
1940 * single threaded, so any CPU other than the master
1941 * must keep out.
1942 */
1943 if (CPU->cpu_id != panic_cpu.cpu_id)
1944 return;
1945
1946 if (!deadman_panic_timers)
1947 return; /* allow all timers to be manually disabled */
1948
1949 /*
1950 * If we are generating a crash dump or syncing filesystems and
1951 * the corresponding timer is set, decrement it and re-enter
1952 * the panic code to abort it and advance to the next state.
1953 * The panic states and triggers are explained in panic.c.
1954 */
1955 if (panic_dump) {
1956 if (dump_timeleft && (--dump_timeleft == 0)) {
1957 panic("panic dump timeout");
1958 /*NOTREACHED*/
1959 }
1960 } else if (panic_sync) {
1961 if (sync_timeleft && (--sync_timeleft == 0)) {
1962 panic("panic sync timeout");
1963 /*NOTREACHED*/
1964 }
1965 }
1966
1967 return;
1968 }
1969
1970 if (deadman_counter != CPU->cpu_deadman_counter) {
1971 CPU->cpu_deadman_counter = deadman_counter;
1972 CPU->cpu_deadman_countdown = deadman_seconds;
1973 return;
1974 }
1975
1976 if (--CPU->cpu_deadman_countdown > 0)
1977 return;
1978
1979 /*
1980 * Regardless of whether or not we actually bring the system down,
1981 * bump the deadman_panics variable.
1982 *
1983 * N.B. deadman_panics is incremented once for each CPU that
1984 * passes through here. It's expected that all the CPUs will
1985 * detect this condition within one second of each other, so
1986 * when deadman_enabled is off, deadman_panics will
1987 * typically be a multiple of the total number of CPUs in
1988 * the system.
1989 */
1990 atomic_inc_32(&deadman_panics);
1991
1992 if (!deadman_enabled) {
1993 CPU->cpu_deadman_countdown = deadman_seconds;
1994 return;
1995 }
1996
1997 /*
1998 * If we're here, we want to bring the system down.
1999 */
2000 panic("deadman: timed out after %d seconds of clock "
2001 "inactivity", deadman_seconds);
2002 /*NOTREACHED*/
2003 }
2004
2005 /*ARGSUSED*/
2006 static void
deadman_online(void * arg,cpu_t * cpu,cyc_handler_t * hdlr,cyc_time_t * when)2007 deadman_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when)
2008 {
2009 cpu->cpu_deadman_counter = 0;
2010 cpu->cpu_deadman_countdown = deadman_seconds;
2011
2012 hdlr->cyh_func = (cyc_func_t)deadman;
2013 hdlr->cyh_level = CY_HIGH_LEVEL;
2014 hdlr->cyh_arg = NULL;
2015
2016 /*
2017 * Stagger the CPUs so that they don't all run deadman() at
2018 * the same time. Simplest reason to do this is to make it
2019 * more likely that only one CPU will panic in case of a
2020 * timeout. This is (strictly speaking) an aesthetic, not a
2021 * technical consideration.
2022 */
2023 when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU);
2024 when->cyt_interval = NANOSEC;
2025 }
2026
2027
2028 void
deadman_init(void)2029 deadman_init(void)
2030 {
2031 cyc_omni_handler_t hdlr;
2032
2033 if (deadman_seconds == 0)
2034 deadman_seconds = snoop_interval / MICROSEC;
2035
2036 if (snooping)
2037 deadman_enabled = 1;
2038
2039 hdlr.cyo_online = deadman_online;
2040 hdlr.cyo_offline = NULL;
2041 hdlr.cyo_arg = NULL;
2042
2043 mutex_enter(&cpu_lock);
2044 deadman_cyclic = cyclic_add_omni(&hdlr);
2045 mutex_exit(&cpu_lock);
2046 }
2047
2048 /*
2049 * tod_fault() is for updating tod validate mechanism state:
2050 * (1) TOD_NOFAULT: for resetting the state to 'normal'.
2051 * currently used for debugging only
2052 * (2) The following four cases detected by tod validate mechanism:
2053 * TOD_REVERSED: current tod value is less than previous value.
2054 * TOD_STALLED: current tod value hasn't advanced.
2055 * TOD_JUMPED: current tod value advanced too far from previous value.
2056 * TOD_RATECHANGED: the ratio between average tod delta and
2057 * average tick delta has changed.
2058 * (3) TOD_RDONLY: when the TOD clock is not writeable e.g. because it is
2059 * a virtual TOD provided by a hypervisor.
2060 */
2061 enum tod_fault_type
tod_fault(enum tod_fault_type ftype,int off)2062 tod_fault(enum tod_fault_type ftype, int off)
2063 {
2064 ASSERT(MUTEX_HELD(&tod_lock));
2065
2066 if (tod_faulted != ftype) {
2067 switch (ftype) {
2068 case TOD_NOFAULT:
2069 plat_tod_fault(TOD_NOFAULT);
2070 cmn_err(CE_NOTE, "Restarted tracking "
2071 "Time of Day clock.");
2072 tod_faulted = ftype;
2073 break;
2074 case TOD_REVERSED:
2075 case TOD_JUMPED:
2076 if (tod_faulted == TOD_NOFAULT) {
2077 plat_tod_fault(ftype);
2078 cmn_err(CE_WARN, "Time of Day clock error: "
2079 "reason [%s by 0x%x]. -- "
2080 " Stopped tracking Time Of Day clock.",
2081 tod_fault_table[ftype], off);
2082 tod_faulted = ftype;
2083 }
2084 break;
2085 case TOD_STALLED:
2086 case TOD_RATECHANGED:
2087 if (tod_faulted == TOD_NOFAULT) {
2088 plat_tod_fault(ftype);
2089 cmn_err(CE_WARN, "Time of Day clock error: "
2090 "reason [%s]. -- "
2091 " Stopped tracking Time Of Day clock.",
2092 tod_fault_table[ftype]);
2093 tod_faulted = ftype;
2094 }
2095 break;
2096 case TOD_RDONLY:
2097 if (tod_faulted == TOD_NOFAULT) {
2098 plat_tod_fault(ftype);
2099 cmn_err(CE_NOTE, "!Time of Day clock is "
2100 "Read-Only; set of Date/Time will not "
2101 "persist across reboot.");
2102 tod_faulted = ftype;
2103 }
2104 break;
2105 default:
2106 break;
2107 }
2108 }
2109 return (tod_faulted);
2110 }
2111
2112 /*
2113 * Two functions that allow tod_status_flag to be manipulated by functions
2114 * external to this file.
2115 */
2116
2117 void
tod_status_set(int tod_flag)2118 tod_status_set(int tod_flag)
2119 {
2120 tod_status_flag |= tod_flag;
2121 }
2122
2123 void
tod_status_clear(int tod_flag)2124 tod_status_clear(int tod_flag)
2125 {
2126 tod_status_flag &= ~tod_flag;
2127 }
2128
2129 /*
2130 * Record a timestamp and the value passed to tod_set(). The next call to
2131 * tod_validate() can use these values, prev_set_tick and prev_set_tod,
2132 * when checking the timestruc_t returned by tod_get(). Ordinarily,
2133 * tod_validate() will use prev_tick and prev_tod for this task but these
2134 * become obsolete, and will be re-assigned with the prev_set_* values,
2135 * in the case when the TOD is re-written.
2136 */
2137 void
tod_set_prev(timestruc_t ts)2138 tod_set_prev(timestruc_t ts)
2139 {
2140 if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) ||
2141 tod_validate_deferred) {
2142 return;
2143 }
2144 prev_set_tick = gethrtime();
2145 /*
2146 * A negative value will be set to zero in utc_to_tod() so we fake
2147 * a zero here in such a case. This would need to change if the
2148 * behavior of utc_to_tod() changes.
2149 */
2150 prev_set_tod = ts.tv_sec < 0 ? 0 : ts.tv_sec;
2151 }
2152
2153 /*
2154 * tod_validate() is used for checking values returned by tod_get().
2155 * Four error cases can be detected by this routine:
2156 * TOD_REVERSED: current tod value is less than previous.
2157 * TOD_STALLED: current tod value hasn't advanced.
2158 * TOD_JUMPED: current tod value advanced too far from previous value.
2159 * TOD_RATECHANGED: the ratio between average tod delta and
2160 * average tick delta has changed.
2161 */
2162 time_t
tod_validate(time_t tod)2163 tod_validate(time_t tod)
2164 {
2165 time_t diff_tod;
2166 hrtime_t diff_tick;
2167
2168 long dtick;
2169 int dtick_delta;
2170
2171 int off = 0;
2172 enum tod_fault_type tod_bad = TOD_NOFAULT;
2173
2174 static int firsttime = 1;
2175
2176 static time_t prev_tod = 0;
2177 static hrtime_t prev_tick = 0;
2178 static long dtick_avg = TOD_REF_FREQ;
2179
2180 int cpr_resume_done = 0;
2181 int dr_resume_done = 0;
2182
2183 hrtime_t tick = gethrtime();
2184
2185 ASSERT(MUTEX_HELD(&tod_lock));
2186
2187 /*
2188 * tod_validate_enable is patchable via /etc/system.
2189 * If TOD is already faulted, or if TOD validation is deferred,
2190 * there is nothing to do.
2191 */
2192 if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) ||
2193 tod_validate_deferred) {
2194 return (tod);
2195 }
2196
2197 /*
2198 * If this is the first time through, we just need to save the tod
2199 * we were called with and hrtime so we can use them next time to
2200 * validate tod_get().
2201 */
2202 if (firsttime) {
2203 firsttime = 0;
2204 prev_tod = tod;
2205 prev_tick = tick;
2206 return (tod);
2207 }
2208
2209 /*
2210 * Handle any flags that have been turned on by tod_status_set().
2211 * In the case where a tod_set() is done and then a subsequent
2212 * tod_get() fails (ie, both TOD_SET_DONE and TOD_GET_FAILED are
2213 * true), we treat the TOD_GET_FAILED with precedence by switching
2214 * off the flag, returning tod and leaving TOD_SET_DONE asserted
2215 * until such time as tod_get() completes successfully.
2216 */
2217 if (tod_status_flag & TOD_GET_FAILED) {
2218 /*
2219 * tod_get() has encountered an issue, possibly transitory,
2220 * when reading TOD. We'll just return the incoming tod
2221 * value (which is actually hrestime.tv_sec in this case)
2222 * and when we get a genuine tod, following a successful
2223 * tod_get(), we can validate using prev_tod and prev_tick.
2224 */
2225 tod_status_flag &= ~TOD_GET_FAILED;
2226 return (tod);
2227 } else if (tod_status_flag & TOD_SET_DONE) {
2228 /*
2229 * TOD has been modified. Just before the TOD was written,
2230 * tod_set_prev() saved tod and hrtime; we can now use
2231 * those values, prev_set_tod and prev_set_tick, to validate
2232 * the incoming tod that's just been read.
2233 */
2234 prev_tod = prev_set_tod;
2235 prev_tick = prev_set_tick;
2236 dtick_avg = TOD_REF_FREQ;
2237 tod_status_flag &= ~TOD_SET_DONE;
2238 /*
2239 * If a tod_set() preceded a cpr_suspend() without an
2240 * intervening tod_validate(), we need to ensure that a
2241 * TOD_JUMPED condition is ignored.
2242 * Note this isn't a concern in the case of DR as we've
2243 * just reassigned dtick_avg, above.
2244 */
2245 if (tod_status_flag & TOD_CPR_RESUME_DONE) {
2246 cpr_resume_done = 1;
2247 tod_status_flag &= ~TOD_CPR_RESUME_DONE;
2248 }
2249 } else if (tod_status_flag & TOD_CPR_RESUME_DONE) {
2250 /*
2251 * The system's coming back from a checkpoint resume.
2252 */
2253 cpr_resume_done = 1;
2254 tod_status_flag &= ~TOD_CPR_RESUME_DONE;
2255 /*
2256 * We need to handle the possibility of a CPR suspend
2257 * operation having been initiated whilst a DR event was
2258 * in-flight.
2259 */
2260 if (tod_status_flag & TOD_DR_RESUME_DONE) {
2261 dr_resume_done = 1;
2262 tod_status_flag &= ~TOD_DR_RESUME_DONE;
2263 }
2264 } else if (tod_status_flag & TOD_DR_RESUME_DONE) {
2265 /*
2266 * A Dynamic Reconfiguration event has taken place.
2267 */
2268 dr_resume_done = 1;
2269 tod_status_flag &= ~TOD_DR_RESUME_DONE;
2270 }
2271
2272 /* test hook */
2273 switch (tod_unit_test) {
2274 case 1: /* for testing jumping tod */
2275 tod += tod_test_injector;
2276 tod_unit_test = 0;
2277 break;
2278 case 2: /* for testing stuck tod bit */
2279 tod |= 1 << tod_test_injector;
2280 tod_unit_test = 0;
2281 break;
2282 case 3: /* for testing stalled tod */
2283 tod = prev_tod;
2284 tod_unit_test = 0;
2285 break;
2286 case 4: /* reset tod fault status */
2287 (void) tod_fault(TOD_NOFAULT, 0);
2288 tod_unit_test = 0;
2289 break;
2290 default:
2291 break;
2292 }
2293
2294 diff_tod = tod - prev_tod;
2295 diff_tick = tick - prev_tick;
2296
2297 ASSERT(diff_tick >= 0);
2298
2299 if (diff_tod < 0) {
2300 /* ERROR - tod reversed */
2301 tod_bad = TOD_REVERSED;
2302 off = (int)(prev_tod - tod);
2303 } else if (diff_tod == 0) {
2304 /* tod did not advance */
2305 if (diff_tick > TOD_STALL_THRESHOLD) {
2306 /* ERROR - tod stalled */
2307 tod_bad = TOD_STALLED;
2308 } else {
2309 /*
2310 * Make sure we don't update prev_tick
2311 * so that diff_tick is calculated since
2312 * the first diff_tod == 0
2313 */
2314 return (tod);
2315 }
2316 } else {
2317 /* calculate dtick */
2318 dtick = diff_tick / diff_tod;
2319
2320 /* update dtick averages */
2321 dtick_avg += ((dtick - dtick_avg) / TOD_FILTER_N);
2322
2323 /*
2324 * Calculate dtick_delta as
2325 * variation from reference freq in quartiles
2326 */
2327 dtick_delta = (dtick_avg - TOD_REF_FREQ) /
2328 (TOD_REF_FREQ >> 2);
2329
2330 /*
2331 * Even with a perfectly functioning TOD device,
2332 * when the number of elapsed seconds is low the
2333 * algorithm can calculate a rate that is beyond
2334 * tolerance, causing an error. The algorithm is
2335 * inaccurate when elapsed time is low (less than
2336 * 5 seconds).
2337 */
2338 if (diff_tod > 4) {
2339 if (dtick < TOD_JUMP_THRESHOLD) {
2340 /*
2341 * If we've just done a CPR resume, we detect
2342 * a jump in the TOD but, actually, what's
2343 * happened is that the TOD has been increasing
2344 * whilst the system was suspended and the tick
2345 * count hasn't kept up. We consider the first
2346 * occurrence of this after a resume as normal
2347 * and ignore it; otherwise, in a non-resume
2348 * case, we regard it as a TOD problem.
2349 */
2350 if (!cpr_resume_done) {
2351 /* ERROR - tod jumped */
2352 tod_bad = TOD_JUMPED;
2353 off = (int)diff_tod;
2354 }
2355 }
2356 if (dtick_delta) {
2357 /*
2358 * If we've just done a DR resume, dtick_avg
2359 * can go a bit askew so we reset it and carry
2360 * on; otherwise, the TOD is in error.
2361 */
2362 if (dr_resume_done) {
2363 dtick_avg = TOD_REF_FREQ;
2364 } else {
2365 /* ERROR - change in clock rate */
2366 tod_bad = TOD_RATECHANGED;
2367 }
2368 }
2369 }
2370 }
2371
2372 if (tod_bad != TOD_NOFAULT) {
2373 (void) tod_fault(tod_bad, off);
2374
2375 /*
2376 * Disable dosynctodr since we are going to fault
2377 * the TOD chip anyway here
2378 */
2379 dosynctodr = 0;
2380
2381 /*
2382 * Set tod to the correct value from hrestime
2383 */
2384 tod = hrestime.tv_sec;
2385 }
2386
2387 prev_tod = tod;
2388 prev_tick = tick;
2389 return (tod);
2390 }
2391
2392 static void
calcloadavg(int nrun,uint64_t * hp_ave)2393 calcloadavg(int nrun, uint64_t *hp_ave)
2394 {
2395 static int64_t f[3] = { 135, 27, 9 };
2396 uint_t i;
2397 int64_t q, r;
2398
2399 /*
2400 * Compute load average over the last 1, 5, and 15 minutes
2401 * (60, 300, and 900 seconds). The constants in f[3] are for
2402 * exponential decay:
2403 * (1 - exp(-1/60)) << 13 = 135,
2404 * (1 - exp(-1/300)) << 13 = 27,
2405 * (1 - exp(-1/900)) << 13 = 9.
2406 */
2407
2408 /*
2409 * a little hoop-jumping to avoid integer overflow
2410 */
2411 for (i = 0; i < 3; i++) {
2412 q = (hp_ave[i] >> 16) << 7;
2413 r = (hp_ave[i] & 0xffff) << 7;
2414 hp_ave[i] += ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
2415 }
2416 }
2417
2418 /*
2419 * lbolt_hybrid() is used by ddi_get_lbolt() and ddi_get_lbolt64() to
2420 * calculate the value of lbolt according to the current mode. In the event
2421 * driven mode (the default), lbolt is calculated by dividing the current hires
2422 * time by the number of nanoseconds per clock tick. In the cyclic driven mode
2423 * an internal variable is incremented at each firing of the lbolt cyclic
2424 * and returned by lbolt_cyclic_driven().
2425 *
2426 * The system will transition from event to cyclic driven mode when the number
2427 * of calls to lbolt_event_driven() exceeds the (per CPU) threshold within a
2428 * window of time. It does so by reprograming lbolt_cyclic from CY_INFINITY to
2429 * nsec_per_tick. The lbolt cyclic will remain ON while at least one CPU is
2430 * causing enough activity to cross the thresholds.
2431 */
2432 int64_t
lbolt_bootstrap(void)2433 lbolt_bootstrap(void)
2434 {
2435 return (0);
2436 }
2437
2438 /* ARGSUSED */
2439 uint_t
lbolt_ev_to_cyclic(caddr_t arg1,caddr_t arg2)2440 lbolt_ev_to_cyclic(caddr_t arg1, caddr_t arg2)
2441 {
2442 hrtime_t ts, exp;
2443 int ret;
2444
2445 ASSERT(lbolt_hybrid != lbolt_cyclic_driven);
2446
2447 kpreempt_disable();
2448
2449 ts = gethrtime();
2450 lb_info->lbi_internal = (ts/nsec_per_tick);
2451
2452 /*
2453 * Align the next expiration to a clock tick boundary.
2454 */
2455 exp = ts + nsec_per_tick - 1;
2456 exp = (exp/nsec_per_tick) * nsec_per_tick;
2457
2458 ret = cyclic_reprogram(lb_info->id.lbi_cyclic_id, exp);
2459 ASSERT(ret);
2460
2461 lbolt_hybrid = lbolt_cyclic_driven;
2462 lb_info->lbi_cyc_deactivate = B_FALSE;
2463 lb_info->lbi_cyc_deac_start = lb_info->lbi_internal;
2464
2465 kpreempt_enable();
2466
2467 ret = atomic_dec_32_nv(&lb_info->lbi_token);
2468 ASSERT(ret == 0);
2469
2470 return (1);
2471 }
2472
2473 int64_t
lbolt_event_driven(void)2474 lbolt_event_driven(void)
2475 {
2476 hrtime_t ts;
2477 int64_t lb;
2478 int ret, cpu = CPU->cpu_seqid;
2479
2480 ts = gethrtime();
2481 ASSERT(ts > 0);
2482
2483 ASSERT(nsec_per_tick > 0);
2484 lb = (ts/nsec_per_tick);
2485
2486 /*
2487 * Switch to cyclic mode if the number of calls to this routine
2488 * has reached the threshold within the interval.
2489 */
2490 if ((lb - lb_cpu[cpu].lbc_cnt_start) < lb_info->lbi_thresh_interval) {
2491
2492 if (--lb_cpu[cpu].lbc_counter == 0) {
2493 /*
2494 * Reached the threshold within the interval, reset
2495 * the usage statistics.
2496 */
2497 lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls;
2498 lb_cpu[cpu].lbc_cnt_start = lb;
2499
2500 /*
2501 * Make sure only one thread reprograms the
2502 * lbolt cyclic and changes the mode.
2503 */
2504 if (panicstr == NULL &&
2505 atomic_cas_32(&lb_info->lbi_token, 0, 1) == 0) {
2506
2507 if (lbolt_hybrid == lbolt_cyclic_driven) {
2508 ret = atomic_dec_32_nv(
2509 &lb_info->lbi_token);
2510 ASSERT(ret == 0);
2511 } else {
2512 lbolt_softint_post();
2513 }
2514 }
2515 }
2516 } else {
2517 /*
2518 * Exceeded the interval, reset the usage statistics.
2519 */
2520 lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls;
2521 lb_cpu[cpu].lbc_cnt_start = lb;
2522 }
2523
2524 ASSERT(lb >= lb_info->lbi_debug_time);
2525
2526 return (lb - lb_info->lbi_debug_time);
2527 }
2528
2529 int64_t
lbolt_cyclic_driven(void)2530 lbolt_cyclic_driven(void)
2531 {
2532 int64_t lb = lb_info->lbi_internal;
2533 int cpu;
2534
2535 /*
2536 * If a CPU has already prevented the lbolt cyclic from deactivating
2537 * itself, don't bother tracking the usage. Otherwise check if we're
2538 * within the interval and how the per CPU counter is doing.
2539 */
2540 if (lb_info->lbi_cyc_deactivate) {
2541 cpu = CPU->cpu_seqid;
2542 if ((lb - lb_cpu[cpu].lbc_cnt_start) <
2543 lb_info->lbi_thresh_interval) {
2544
2545 if (lb_cpu[cpu].lbc_counter == 0)
2546 /*
2547 * Reached the threshold within the interval,
2548 * prevent the lbolt cyclic from turning itself
2549 * off.
2550 */
2551 lb_info->lbi_cyc_deactivate = B_FALSE;
2552 else
2553 lb_cpu[cpu].lbc_counter--;
2554 } else {
2555 /*
2556 * Only reset the usage statistics when we have
2557 * exceeded the interval.
2558 */
2559 lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls;
2560 lb_cpu[cpu].lbc_cnt_start = lb;
2561 }
2562 }
2563
2564 ASSERT(lb >= lb_info->lbi_debug_time);
2565
2566 return (lb - lb_info->lbi_debug_time);
2567 }
2568
2569 /*
2570 * The lbolt_cyclic() routine will fire at a nsec_per_tick interval to satisfy
2571 * performance needs of ddi_get_lbolt() and ddi_get_lbolt64() consumers.
2572 * It is inactive by default, and will be activated when switching from event
2573 * to cyclic driven lbolt. The cyclic will turn itself off unless signaled
2574 * by lbolt_cyclic_driven().
2575 */
2576 static void
lbolt_cyclic(void)2577 lbolt_cyclic(void)
2578 {
2579 int ret;
2580
2581 lb_info->lbi_internal++;
2582
2583 if (!lbolt_cyc_only) {
2584
2585 if (lb_info->lbi_cyc_deactivate) {
2586 /*
2587 * Switching from cyclic to event driven mode.
2588 */
2589 if (panicstr == NULL &&
2590 atomic_cas_32(&lb_info->lbi_token, 0, 1) == 0) {
2591
2592 if (lbolt_hybrid == lbolt_event_driven) {
2593 ret = atomic_dec_32_nv(
2594 &lb_info->lbi_token);
2595 ASSERT(ret == 0);
2596 return;
2597 }
2598
2599 kpreempt_disable();
2600
2601 lbolt_hybrid = lbolt_event_driven;
2602 ret = cyclic_reprogram(
2603 lb_info->id.lbi_cyclic_id,
2604 CY_INFINITY);
2605 ASSERT(ret);
2606
2607 kpreempt_enable();
2608
2609 ret = atomic_dec_32_nv(&lb_info->lbi_token);
2610 ASSERT(ret == 0);
2611 }
2612 }
2613
2614 /*
2615 * The lbolt cyclic should not try to deactivate itself before
2616 * the sampling period has elapsed.
2617 */
2618 if (lb_info->lbi_internal - lb_info->lbi_cyc_deac_start >=
2619 lb_info->lbi_thresh_interval) {
2620 lb_info->lbi_cyc_deactivate = B_TRUE;
2621 lb_info->lbi_cyc_deac_start = lb_info->lbi_internal;
2622 }
2623 }
2624 }
2625
2626 /*
2627 * Since the lbolt service was historically cyclic driven, it must be 'stopped'
2628 * when the system drops into the kernel debugger. lbolt_debug_entry() is
2629 * called by the KDI system claim callbacks to record a hires timestamp at
2630 * debug enter time. lbolt_debug_return() is called by the sistem release
2631 * callbacks to account for the time spent in the debugger. The value is then
2632 * accumulated in the lb_info structure and used by lbolt_event_driven() and
2633 * lbolt_cyclic_driven(), as well as the mdb_get_lbolt() routine.
2634 */
2635 void
lbolt_debug_entry(void)2636 lbolt_debug_entry(void)
2637 {
2638 if (lbolt_hybrid != lbolt_bootstrap) {
2639 ASSERT(lb_info != NULL);
2640 lb_info->lbi_debug_ts = gethrtime();
2641 }
2642 }
2643
2644 /*
2645 * Calculate the time spent in the debugger and add it to the lbolt info
2646 * structure. We also update the internal lbolt value in case we were in
2647 * cyclic driven mode going in.
2648 */
2649 void
lbolt_debug_return(void)2650 lbolt_debug_return(void)
2651 {
2652 hrtime_t ts;
2653
2654 if (lbolt_hybrid != lbolt_bootstrap) {
2655 ASSERT(lb_info != NULL);
2656 ASSERT(nsec_per_tick > 0);
2657
2658 ts = gethrtime();
2659 lb_info->lbi_internal = (ts/nsec_per_tick);
2660 lb_info->lbi_debug_time +=
2661 ((ts - lb_info->lbi_debug_ts)/nsec_per_tick);
2662
2663 lb_info->lbi_debug_ts = 0;
2664 }
2665 }
2666