1 2 #pragma ident "%Z%%M% %I% %E% SMI" 3 4 /* 5 ** 2001 September 15 6 ** 7 ** The author disclaims copyright to this source code. In place of 8 ** a legal notice, here is a blessing: 9 ** 10 ** May you do good and not evil. 11 ** May you find forgiveness for yourself and forgive others. 12 ** May you share freely, never taking more than you give. 13 ** 14 ************************************************************************* 15 ** This file contains C code routines that are called by the SQLite parser 16 ** when syntax rules are reduced. The routines in this file handle the 17 ** following kinds of SQL syntax: 18 ** 19 ** CREATE TABLE 20 ** DROP TABLE 21 ** CREATE INDEX 22 ** DROP INDEX 23 ** creating ID lists 24 ** BEGIN TRANSACTION 25 ** COMMIT 26 ** ROLLBACK 27 ** PRAGMA 28 ** 29 ** $Id: build.c,v 1.176.2.2 2004/07/20 00:50:30 drh Exp $ 30 */ 31 #include "sqliteInt.h" 32 #include <ctype.h> 33 34 /* 35 ** This routine is called when a new SQL statement is beginning to 36 ** be parsed. Check to see if the schema for the database needs 37 ** to be read from the SQLITE_MASTER and SQLITE_TEMP_MASTER tables. 38 ** If it does, then read it. 39 */ 40 void sqliteBeginParse(Parse *pParse, int explainFlag){ 41 sqlite *db = pParse->db; 42 int i; 43 pParse->explain = explainFlag; 44 if((db->flags & SQLITE_Initialized)==0 && db->init.busy==0 ){ 45 int rc = sqliteInit(db, &pParse->zErrMsg); 46 if( rc!=SQLITE_OK ){ 47 pParse->rc = rc; 48 pParse->nErr++; 49 } 50 } 51 for(i=0; i<db->nDb; i++){ 52 DbClearProperty(db, i, DB_Locked); 53 if( !db->aDb[i].inTrans ){ 54 DbClearProperty(db, i, DB_Cookie); 55 } 56 } 57 pParse->nVar = 0; 58 } 59 60 /* 61 ** This routine is called after a single SQL statement has been 62 ** parsed and we want to execute the VDBE code to implement 63 ** that statement. Prior action routines should have already 64 ** constructed VDBE code to do the work of the SQL statement. 65 ** This routine just has to execute the VDBE code. 66 ** 67 ** Note that if an error occurred, it might be the case that 68 ** no VDBE code was generated. 69 */ 70 void sqliteExec(Parse *pParse){ 71 sqlite *db = pParse->db; 72 Vdbe *v = pParse->pVdbe; 73 74 if( v==0 && (v = sqliteGetVdbe(pParse))!=0 ){ 75 sqliteVdbeAddOp(v, OP_Halt, 0, 0); 76 } 77 if( sqlite_malloc_failed ) return; 78 if( v && pParse->nErr==0 ){ 79 FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0; 80 sqliteVdbeTrace(v, trace); 81 sqliteVdbeMakeReady(v, pParse->nVar, pParse->explain); 82 pParse->rc = pParse->nErr ? SQLITE_ERROR : SQLITE_DONE; 83 pParse->colNamesSet = 0; 84 }else if( pParse->rc==SQLITE_OK ){ 85 pParse->rc = SQLITE_ERROR; 86 } 87 pParse->nTab = 0; 88 pParse->nMem = 0; 89 pParse->nSet = 0; 90 pParse->nAgg = 0; 91 pParse->nVar = 0; 92 } 93 94 /* 95 ** Locate the in-memory structure that describes 96 ** a particular database table given the name 97 ** of that table and (optionally) the name of the database 98 ** containing the table. Return NULL if not found. 99 ** 100 ** If zDatabase is 0, all databases are searched for the 101 ** table and the first matching table is returned. (No checking 102 ** for duplicate table names is done.) The search order is 103 ** TEMP first, then MAIN, then any auxiliary databases added 104 ** using the ATTACH command. 105 ** 106 ** See also sqliteLocateTable(). 107 */ 108 Table *sqliteFindTable(sqlite *db, const char *zName, const char *zDatabase){ 109 Table *p = 0; 110 int i; 111 for(i=0; i<db->nDb; i++){ 112 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 113 if( zDatabase!=0 && sqliteStrICmp(zDatabase, db->aDb[j].zName) ) continue; 114 p = sqliteHashFind(&db->aDb[j].tblHash, zName, strlen(zName)+1); 115 if( p ) break; 116 } 117 return p; 118 } 119 120 /* 121 ** Locate the in-memory structure that describes 122 ** a particular database table given the name 123 ** of that table and (optionally) the name of the database 124 ** containing the table. Return NULL if not found. 125 ** Also leave an error message in pParse->zErrMsg. 126 ** 127 ** The difference between this routine and sqliteFindTable() 128 ** is that this routine leaves an error message in pParse->zErrMsg 129 ** where sqliteFindTable() does not. 130 */ 131 Table *sqliteLocateTable(Parse *pParse, const char *zName, const char *zDbase){ 132 Table *p; 133 134 p = sqliteFindTable(pParse->db, zName, zDbase); 135 if( p==0 ){ 136 if( zDbase ){ 137 sqliteErrorMsg(pParse, "no such table: %s.%s", zDbase, zName); 138 }else if( sqliteFindTable(pParse->db, zName, 0)!=0 ){ 139 sqliteErrorMsg(pParse, "table \"%s\" is not in database \"%s\"", 140 zName, zDbase); 141 }else{ 142 sqliteErrorMsg(pParse, "no such table: %s", zName); 143 } 144 } 145 return p; 146 } 147 148 /* 149 ** Locate the in-memory structure that describes 150 ** a particular index given the name of that index 151 ** and the name of the database that contains the index. 152 ** Return NULL if not found. 153 ** 154 ** If zDatabase is 0, all databases are searched for the 155 ** table and the first matching index is returned. (No checking 156 ** for duplicate index names is done.) The search order is 157 ** TEMP first, then MAIN, then any auxiliary databases added 158 ** using the ATTACH command. 159 */ 160 Index *sqliteFindIndex(sqlite *db, const char *zName, const char *zDb){ 161 Index *p = 0; 162 int i; 163 for(i=0; i<db->nDb; i++){ 164 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 165 if( zDb && sqliteStrICmp(zDb, db->aDb[j].zName) ) continue; 166 p = sqliteHashFind(&db->aDb[j].idxHash, zName, strlen(zName)+1); 167 if( p ) break; 168 } 169 return p; 170 } 171 172 /* 173 ** Remove the given index from the index hash table, and free 174 ** its memory structures. 175 ** 176 ** The index is removed from the database hash tables but 177 ** it is not unlinked from the Table that it indexes. 178 ** Unlinking from the Table must be done by the calling function. 179 */ 180 static void sqliteDeleteIndex(sqlite *db, Index *p){ 181 Index *pOld; 182 183 assert( db!=0 && p->zName!=0 ); 184 pOld = sqliteHashInsert(&db->aDb[p->iDb].idxHash, p->zName, 185 strlen(p->zName)+1, 0); 186 if( pOld!=0 && pOld!=p ){ 187 sqliteHashInsert(&db->aDb[p->iDb].idxHash, pOld->zName, 188 strlen(pOld->zName)+1, pOld); 189 } 190 sqliteFree(p); 191 } 192 193 /* 194 ** Unlink the given index from its table, then remove 195 ** the index from the index hash table and free its memory 196 ** structures. 197 */ 198 void sqliteUnlinkAndDeleteIndex(sqlite *db, Index *pIndex){ 199 if( pIndex->pTable->pIndex==pIndex ){ 200 pIndex->pTable->pIndex = pIndex->pNext; 201 }else{ 202 Index *p; 203 for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){} 204 if( p && p->pNext==pIndex ){ 205 p->pNext = pIndex->pNext; 206 } 207 } 208 sqliteDeleteIndex(db, pIndex); 209 } 210 211 /* 212 ** Erase all schema information from the in-memory hash tables of 213 ** database connection. This routine is called to reclaim memory 214 ** before the connection closes. It is also called during a rollback 215 ** if there were schema changes during the transaction. 216 ** 217 ** If iDb<=0 then reset the internal schema tables for all database 218 ** files. If iDb>=2 then reset the internal schema for only the 219 ** single file indicated. 220 */ 221 void sqliteResetInternalSchema(sqlite *db, int iDb){ 222 HashElem *pElem; 223 Hash temp1; 224 Hash temp2; 225 int i, j; 226 227 assert( iDb>=0 && iDb<db->nDb ); 228 db->flags &= ~SQLITE_Initialized; 229 for(i=iDb; i<db->nDb; i++){ 230 Db *pDb = &db->aDb[i]; 231 temp1 = pDb->tblHash; 232 temp2 = pDb->trigHash; 233 sqliteHashInit(&pDb->trigHash, SQLITE_HASH_STRING, 0); 234 sqliteHashClear(&pDb->aFKey); 235 sqliteHashClear(&pDb->idxHash); 236 for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){ 237 Trigger *pTrigger = sqliteHashData(pElem); 238 sqliteDeleteTrigger(pTrigger); 239 } 240 sqliteHashClear(&temp2); 241 sqliteHashInit(&pDb->tblHash, SQLITE_HASH_STRING, 0); 242 for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){ 243 Table *pTab = sqliteHashData(pElem); 244 sqliteDeleteTable(db, pTab); 245 } 246 sqliteHashClear(&temp1); 247 DbClearProperty(db, i, DB_SchemaLoaded); 248 if( iDb>0 ) return; 249 } 250 assert( iDb==0 ); 251 db->flags &= ~SQLITE_InternChanges; 252 253 /* If one or more of the auxiliary database files has been closed, 254 ** then remove then from the auxiliary database list. We take the 255 ** opportunity to do this here since we have just deleted all of the 256 ** schema hash tables and therefore do not have to make any changes 257 ** to any of those tables. 258 */ 259 for(i=0; i<db->nDb; i++){ 260 struct Db *pDb = &db->aDb[i]; 261 if( pDb->pBt==0 ){ 262 if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux); 263 pDb->pAux = 0; 264 } 265 } 266 for(i=j=2; i<db->nDb; i++){ 267 struct Db *pDb = &db->aDb[i]; 268 if( pDb->pBt==0 ){ 269 sqliteFree(pDb->zName); 270 pDb->zName = 0; 271 continue; 272 } 273 if( j<i ){ 274 db->aDb[j] = db->aDb[i]; 275 } 276 j++; 277 } 278 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); 279 db->nDb = j; 280 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 281 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 282 sqliteFree(db->aDb); 283 db->aDb = db->aDbStatic; 284 } 285 } 286 287 /* 288 ** This routine is called whenever a rollback occurs. If there were 289 ** schema changes during the transaction, then we have to reset the 290 ** internal hash tables and reload them from disk. 291 */ 292 void sqliteRollbackInternalChanges(sqlite *db){ 293 if( db->flags & SQLITE_InternChanges ){ 294 sqliteResetInternalSchema(db, 0); 295 } 296 } 297 298 /* 299 ** This routine is called when a commit occurs. 300 */ 301 void sqliteCommitInternalChanges(sqlite *db){ 302 db->aDb[0].schema_cookie = db->next_cookie; 303 db->flags &= ~SQLITE_InternChanges; 304 } 305 306 /* 307 ** Remove the memory data structures associated with the given 308 ** Table. No changes are made to disk by this routine. 309 ** 310 ** This routine just deletes the data structure. It does not unlink 311 ** the table data structure from the hash table. Nor does it remove 312 ** foreign keys from the sqlite.aFKey hash table. But it does destroy 313 ** memory structures of the indices and foreign keys associated with 314 ** the table. 315 ** 316 ** Indices associated with the table are unlinked from the "db" 317 ** data structure if db!=NULL. If db==NULL, indices attached to 318 ** the table are deleted, but it is assumed they have already been 319 ** unlinked. 320 */ 321 void sqliteDeleteTable(sqlite *db, Table *pTable){ 322 int i; 323 Index *pIndex, *pNext; 324 FKey *pFKey, *pNextFKey; 325 326 if( pTable==0 ) return; 327 328 /* Delete all indices associated with this table 329 */ 330 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 331 pNext = pIndex->pNext; 332 assert( pIndex->iDb==pTable->iDb || (pTable->iDb==0 && pIndex->iDb==1) ); 333 sqliteDeleteIndex(db, pIndex); 334 } 335 336 /* Delete all foreign keys associated with this table. The keys 337 ** should have already been unlinked from the db->aFKey hash table 338 */ 339 for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){ 340 pNextFKey = pFKey->pNextFrom; 341 assert( pTable->iDb<db->nDb ); 342 assert( sqliteHashFind(&db->aDb[pTable->iDb].aFKey, 343 pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey ); 344 sqliteFree(pFKey); 345 } 346 347 /* Delete the Table structure itself. 348 */ 349 for(i=0; i<pTable->nCol; i++){ 350 sqliteFree(pTable->aCol[i].zName); 351 sqliteFree(pTable->aCol[i].zDflt); 352 sqliteFree(pTable->aCol[i].zType); 353 } 354 sqliteFree(pTable->zName); 355 sqliteFree(pTable->aCol); 356 sqliteSelectDelete(pTable->pSelect); 357 sqliteFree(pTable); 358 } 359 360 /* 361 ** Unlink the given table from the hash tables and the delete the 362 ** table structure with all its indices and foreign keys. 363 */ 364 static void sqliteUnlinkAndDeleteTable(sqlite *db, Table *p){ 365 Table *pOld; 366 FKey *pF1, *pF2; 367 int i = p->iDb; 368 assert( db!=0 ); 369 pOld = sqliteHashInsert(&db->aDb[i].tblHash, p->zName, strlen(p->zName)+1, 0); 370 assert( pOld==0 || pOld==p ); 371 for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){ 372 int nTo = strlen(pF1->zTo) + 1; 373 pF2 = sqliteHashFind(&db->aDb[i].aFKey, pF1->zTo, nTo); 374 if( pF2==pF1 ){ 375 sqliteHashInsert(&db->aDb[i].aFKey, pF1->zTo, nTo, pF1->pNextTo); 376 }else{ 377 while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; } 378 if( pF2 ){ 379 pF2->pNextTo = pF1->pNextTo; 380 } 381 } 382 } 383 sqliteDeleteTable(db, p); 384 } 385 386 /* 387 ** Construct the name of a user table or index from a token. 388 ** 389 ** Space to hold the name is obtained from sqliteMalloc() and must 390 ** be freed by the calling function. 391 */ 392 char *sqliteTableNameFromToken(Token *pName){ 393 char *zName = sqliteStrNDup(pName->z, pName->n); 394 sqliteDequote(zName); 395 return zName; 396 } 397 398 /* 399 ** Generate code to open the appropriate master table. The table 400 ** opened will be SQLITE_MASTER for persistent tables and 401 ** SQLITE_TEMP_MASTER for temporary tables. The table is opened 402 ** on cursor 0. 403 */ 404 void sqliteOpenMasterTable(Vdbe *v, int isTemp){ 405 sqliteVdbeAddOp(v, OP_Integer, isTemp, 0); 406 sqliteVdbeAddOp(v, OP_OpenWrite, 0, 2); 407 } 408 409 /* 410 ** Begin constructing a new table representation in memory. This is 411 ** the first of several action routines that get called in response 412 ** to a CREATE TABLE statement. In particular, this routine is called 413 ** after seeing tokens "CREATE" and "TABLE" and the table name. The 414 ** pStart token is the CREATE and pName is the table name. The isTemp 415 ** flag is true if the table should be stored in the auxiliary database 416 ** file instead of in the main database file. This is normally the case 417 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 418 ** CREATE and TABLE. 419 ** 420 ** The new table record is initialized and put in pParse->pNewTable. 421 ** As more of the CREATE TABLE statement is parsed, additional action 422 ** routines will be called to add more information to this record. 423 ** At the end of the CREATE TABLE statement, the sqliteEndTable() routine 424 ** is called to complete the construction of the new table record. 425 */ 426 void sqliteStartTable( 427 Parse *pParse, /* Parser context */ 428 Token *pStart, /* The "CREATE" token */ 429 Token *pName, /* Name of table or view to create */ 430 int isTemp, /* True if this is a TEMP table */ 431 int isView /* True if this is a VIEW */ 432 ){ 433 Table *pTable; 434 Index *pIdx; 435 char *zName; 436 sqlite *db = pParse->db; 437 Vdbe *v; 438 int iDb; 439 440 pParse->sFirstToken = *pStart; 441 zName = sqliteTableNameFromToken(pName); 442 if( zName==0 ) return; 443 if( db->init.iDb==1 ) isTemp = 1; 444 #ifndef SQLITE_OMIT_AUTHORIZATION 445 assert( (isTemp & 1)==isTemp ); 446 { 447 int code; 448 char *zDb = isTemp ? "temp" : "main"; 449 if( sqliteAuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 450 sqliteFree(zName); 451 return; 452 } 453 if( isView ){ 454 if( isTemp ){ 455 code = SQLITE_CREATE_TEMP_VIEW; 456 }else{ 457 code = SQLITE_CREATE_VIEW; 458 } 459 }else{ 460 if( isTemp ){ 461 code = SQLITE_CREATE_TEMP_TABLE; 462 }else{ 463 code = SQLITE_CREATE_TABLE; 464 } 465 } 466 if( sqliteAuthCheck(pParse, code, zName, 0, zDb) ){ 467 sqliteFree(zName); 468 return; 469 } 470 } 471 #endif 472 473 474 /* Before trying to create a temporary table, make sure the Btree for 475 ** holding temporary tables is open. 476 */ 477 if( isTemp && db->aDb[1].pBt==0 && !pParse->explain ){ 478 int rc = sqliteBtreeFactory(db, 0, 0, MAX_PAGES, &db->aDb[1].pBt); 479 if( rc!=SQLITE_OK ){ 480 sqliteErrorMsg(pParse, "unable to open a temporary database " 481 "file for storing temporary tables"); 482 pParse->nErr++; 483 return; 484 } 485 if( db->flags & SQLITE_InTrans ){ 486 rc = sqliteBtreeBeginTrans(db->aDb[1].pBt); 487 if( rc!=SQLITE_OK ){ 488 sqliteErrorMsg(pParse, "unable to get a write lock on " 489 "the temporary database file"); 490 return; 491 } 492 } 493 } 494 495 /* Make sure the new table name does not collide with an existing 496 ** index or table name. Issue an error message if it does. 497 ** 498 ** If we are re-reading the sqlite_master table because of a schema 499 ** change and a new permanent table is found whose name collides with 500 ** an existing temporary table, that is not an error. 501 */ 502 pTable = sqliteFindTable(db, zName, 0); 503 iDb = isTemp ? 1 : db->init.iDb; 504 if( pTable!=0 && (pTable->iDb==iDb || !db->init.busy) ){ 505 sqliteErrorMsg(pParse, "table %T already exists", pName); 506 sqliteFree(zName); 507 return; 508 } 509 if( (pIdx = sqliteFindIndex(db, zName, 0))!=0 && 510 (pIdx->iDb==0 || !db->init.busy) ){ 511 sqliteErrorMsg(pParse, "there is already an index named %s", zName); 512 sqliteFree(zName); 513 return; 514 } 515 pTable = sqliteMalloc( sizeof(Table) ); 516 if( pTable==0 ){ 517 sqliteFree(zName); 518 return; 519 } 520 pTable->zName = zName; 521 pTable->nCol = 0; 522 pTable->aCol = 0; 523 pTable->iPKey = -1; 524 pTable->pIndex = 0; 525 pTable->iDb = iDb; 526 if( pParse->pNewTable ) sqliteDeleteTable(db, pParse->pNewTable); 527 pParse->pNewTable = pTable; 528 529 /* Begin generating the code that will insert the table record into 530 ** the SQLITE_MASTER table. Note in particular that we must go ahead 531 ** and allocate the record number for the table entry now. Before any 532 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 533 ** indices to be created and the table record must come before the 534 ** indices. Hence, the record number for the table must be allocated 535 ** now. 536 */ 537 if( !db->init.busy && (v = sqliteGetVdbe(pParse))!=0 ){ 538 sqliteBeginWriteOperation(pParse, 0, isTemp); 539 if( !isTemp ){ 540 sqliteVdbeAddOp(v, OP_Integer, db->file_format, 0); 541 sqliteVdbeAddOp(v, OP_SetCookie, 0, 1); 542 } 543 sqliteOpenMasterTable(v, isTemp); 544 sqliteVdbeAddOp(v, OP_NewRecno, 0, 0); 545 sqliteVdbeAddOp(v, OP_Dup, 0, 0); 546 sqliteVdbeAddOp(v, OP_String, 0, 0); 547 sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0); 548 } 549 } 550 551 /* 552 ** Add a new column to the table currently being constructed. 553 ** 554 ** The parser calls this routine once for each column declaration 555 ** in a CREATE TABLE statement. sqliteStartTable() gets called 556 ** first to get things going. Then this routine is called for each 557 ** column. 558 */ 559 void sqliteAddColumn(Parse *pParse, Token *pName){ 560 Table *p; 561 int i; 562 char *z = 0; 563 Column *pCol; 564 if( (p = pParse->pNewTable)==0 ) return; 565 sqliteSetNString(&z, pName->z, pName->n, 0); 566 if( z==0 ) return; 567 sqliteDequote(z); 568 for(i=0; i<p->nCol; i++){ 569 if( sqliteStrICmp(z, p->aCol[i].zName)==0 ){ 570 sqliteErrorMsg(pParse, "duplicate column name: %s", z); 571 sqliteFree(z); 572 return; 573 } 574 } 575 if( (p->nCol & 0x7)==0 ){ 576 Column *aNew; 577 aNew = sqliteRealloc( p->aCol, (p->nCol+8)*sizeof(p->aCol[0])); 578 if( aNew==0 ) return; 579 p->aCol = aNew; 580 } 581 pCol = &p->aCol[p->nCol]; 582 memset(pCol, 0, sizeof(p->aCol[0])); 583 pCol->zName = z; 584 pCol->sortOrder = SQLITE_SO_NUM; 585 p->nCol++; 586 } 587 588 /* 589 ** This routine is called by the parser while in the middle of 590 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 591 ** been seen on a column. This routine sets the notNull flag on 592 ** the column currently under construction. 593 */ 594 void sqliteAddNotNull(Parse *pParse, int onError){ 595 Table *p; 596 int i; 597 if( (p = pParse->pNewTable)==0 ) return; 598 i = p->nCol-1; 599 if( i>=0 ) p->aCol[i].notNull = onError; 600 } 601 602 /* 603 ** This routine is called by the parser while in the middle of 604 ** parsing a CREATE TABLE statement. The pFirst token is the first 605 ** token in the sequence of tokens that describe the type of the 606 ** column currently under construction. pLast is the last token 607 ** in the sequence. Use this information to construct a string 608 ** that contains the typename of the column and store that string 609 ** in zType. 610 */ 611 void sqliteAddColumnType(Parse *pParse, Token *pFirst, Token *pLast){ 612 Table *p; 613 int i, j; 614 int n; 615 char *z, **pz; 616 Column *pCol; 617 if( (p = pParse->pNewTable)==0 ) return; 618 i = p->nCol-1; 619 if( i<0 ) return; 620 pCol = &p->aCol[i]; 621 pz = &pCol->zType; 622 n = pLast->n + Addr(pLast->z) - Addr(pFirst->z); 623 sqliteSetNString(pz, pFirst->z, n, 0); 624 z = *pz; 625 if( z==0 ) return; 626 for(i=j=0; z[i]; i++){ 627 int c = z[i]; 628 if( isspace(c) ) continue; 629 z[j++] = c; 630 } 631 z[j] = 0; 632 if( pParse->db->file_format>=4 ){ 633 pCol->sortOrder = sqliteCollateType(z, n); 634 }else{ 635 pCol->sortOrder = SQLITE_SO_NUM; 636 } 637 } 638 639 /* 640 ** The given token is the default value for the last column added to 641 ** the table currently under construction. If "minusFlag" is true, it 642 ** means the value token was preceded by a minus sign. 643 ** 644 ** This routine is called by the parser while in the middle of 645 ** parsing a CREATE TABLE statement. 646 */ 647 void sqliteAddDefaultValue(Parse *pParse, Token *pVal, int minusFlag){ 648 Table *p; 649 int i; 650 char **pz; 651 if( (p = pParse->pNewTable)==0 ) return; 652 i = p->nCol-1; 653 if( i<0 ) return; 654 pz = &p->aCol[i].zDflt; 655 if( minusFlag ){ 656 sqliteSetNString(pz, "-", 1, pVal->z, pVal->n, 0); 657 }else{ 658 sqliteSetNString(pz, pVal->z, pVal->n, 0); 659 } 660 sqliteDequote(*pz); 661 } 662 663 /* 664 ** Designate the PRIMARY KEY for the table. pList is a list of names 665 ** of columns that form the primary key. If pList is NULL, then the 666 ** most recently added column of the table is the primary key. 667 ** 668 ** A table can have at most one primary key. If the table already has 669 ** a primary key (and this is the second primary key) then create an 670 ** error. 671 ** 672 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 673 ** then we will try to use that column as the row id. (Exception: 674 ** For backwards compatibility with older databases, do not do this 675 ** if the file format version number is less than 1.) Set the Table.iPKey 676 ** field of the table under construction to be the index of the 677 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 678 ** no INTEGER PRIMARY KEY. 679 ** 680 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 681 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 682 */ 683 void sqliteAddPrimaryKey(Parse *pParse, IdList *pList, int onError){ 684 Table *pTab = pParse->pNewTable; 685 char *zType = 0; 686 int iCol = -1, i; 687 if( pTab==0 ) goto primary_key_exit; 688 if( pTab->hasPrimKey ){ 689 sqliteErrorMsg(pParse, 690 "table \"%s\" has more than one primary key", pTab->zName); 691 goto primary_key_exit; 692 } 693 pTab->hasPrimKey = 1; 694 if( pList==0 ){ 695 iCol = pTab->nCol - 1; 696 pTab->aCol[iCol].isPrimKey = 1; 697 }else{ 698 for(i=0; i<pList->nId; i++){ 699 for(iCol=0; iCol<pTab->nCol; iCol++){ 700 if( sqliteStrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ) break; 701 } 702 if( iCol<pTab->nCol ) pTab->aCol[iCol].isPrimKey = 1; 703 } 704 if( pList->nId>1 ) iCol = -1; 705 } 706 if( iCol>=0 && iCol<pTab->nCol ){ 707 zType = pTab->aCol[iCol].zType; 708 } 709 if( pParse->db->file_format>=1 && 710 zType && sqliteStrICmp(zType, "INTEGER")==0 ){ 711 pTab->iPKey = iCol; 712 pTab->keyConf = onError; 713 }else{ 714 sqliteCreateIndex(pParse, 0, 0, pList, onError, 0, 0); 715 pList = 0; 716 } 717 718 primary_key_exit: 719 sqliteIdListDelete(pList); 720 return; 721 } 722 723 /* 724 ** Return the appropriate collating type given a type name. 725 ** 726 ** The collation type is text (SQLITE_SO_TEXT) if the type 727 ** name contains the character stream "text" or "blob" or 728 ** "clob". Any other type name is collated as numeric 729 ** (SQLITE_SO_NUM). 730 */ 731 int sqliteCollateType(const char *zType, int nType){ 732 int i; 733 for(i=0; i<nType-3; i++){ 734 int c = *(zType++) | 0x60; 735 if( (c=='b' || c=='c') && sqliteStrNICmp(zType, "lob", 3)==0 ){ 736 return SQLITE_SO_TEXT; 737 } 738 if( c=='c' && sqliteStrNICmp(zType, "har", 3)==0 ){ 739 return SQLITE_SO_TEXT; 740 } 741 if( c=='t' && sqliteStrNICmp(zType, "ext", 3)==0 ){ 742 return SQLITE_SO_TEXT; 743 } 744 } 745 return SQLITE_SO_NUM; 746 } 747 748 /* 749 ** This routine is called by the parser while in the middle of 750 ** parsing a CREATE TABLE statement. A "COLLATE" clause has 751 ** been seen on a column. This routine sets the Column.sortOrder on 752 ** the column currently under construction. 753 */ 754 void sqliteAddCollateType(Parse *pParse, int collType){ 755 Table *p; 756 int i; 757 if( (p = pParse->pNewTable)==0 ) return; 758 i = p->nCol-1; 759 if( i>=0 ) p->aCol[i].sortOrder = collType; 760 } 761 762 /* 763 ** Come up with a new random value for the schema cookie. Make sure 764 ** the new value is different from the old. 765 ** 766 ** The schema cookie is used to determine when the schema for the 767 ** database changes. After each schema change, the cookie value 768 ** changes. When a process first reads the schema it records the 769 ** cookie. Thereafter, whenever it goes to access the database, 770 ** it checks the cookie to make sure the schema has not changed 771 ** since it was last read. 772 ** 773 ** This plan is not completely bullet-proof. It is possible for 774 ** the schema to change multiple times and for the cookie to be 775 ** set back to prior value. But schema changes are infrequent 776 ** and the probability of hitting the same cookie value is only 777 ** 1 chance in 2^32. So we're safe enough. 778 */ 779 void sqliteChangeCookie(sqlite *db, Vdbe *v){ 780 if( db->next_cookie==db->aDb[0].schema_cookie ){ 781 unsigned char r; 782 sqliteRandomness(1, &r); 783 db->next_cookie = db->aDb[0].schema_cookie + r + 1; 784 db->flags |= SQLITE_InternChanges; 785 sqliteVdbeAddOp(v, OP_Integer, db->next_cookie, 0); 786 sqliteVdbeAddOp(v, OP_SetCookie, 0, 0); 787 } 788 } 789 790 /* 791 ** Measure the number of characters needed to output the given 792 ** identifier. The number returned includes any quotes used 793 ** but does not include the null terminator. 794 */ 795 static int identLength(const char *z){ 796 int n; 797 int needQuote = 0; 798 for(n=0; *z; n++, z++){ 799 if( *z=='\'' ){ n++; needQuote=1; } 800 } 801 return n + needQuote*2; 802 } 803 804 /* 805 ** Write an identifier onto the end of the given string. Add 806 ** quote characters as needed. 807 */ 808 static void identPut(char *z, int *pIdx, char *zIdent){ 809 int i, j, needQuote; 810 i = *pIdx; 811 for(j=0; zIdent[j]; j++){ 812 if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 813 } 814 needQuote = zIdent[j]!=0 || isdigit(zIdent[0]) 815 || sqliteKeywordCode(zIdent, j)!=TK_ID; 816 if( needQuote ) z[i++] = '\''; 817 for(j=0; zIdent[j]; j++){ 818 z[i++] = zIdent[j]; 819 if( zIdent[j]=='\'' ) z[i++] = '\''; 820 } 821 if( needQuote ) z[i++] = '\''; 822 z[i] = 0; 823 *pIdx = i; 824 } 825 826 /* 827 ** Generate a CREATE TABLE statement appropriate for the given 828 ** table. Memory to hold the text of the statement is obtained 829 ** from sqliteMalloc() and must be freed by the calling function. 830 */ 831 static char *createTableStmt(Table *p){ 832 int i, k, n; 833 char *zStmt; 834 char *zSep, *zSep2, *zEnd; 835 n = 0; 836 for(i=0; i<p->nCol; i++){ 837 n += identLength(p->aCol[i].zName); 838 } 839 n += identLength(p->zName); 840 if( n<40 ){ 841 zSep = ""; 842 zSep2 = ","; 843 zEnd = ")"; 844 }else{ 845 zSep = "\n "; 846 zSep2 = ",\n "; 847 zEnd = "\n)"; 848 } 849 n += 35 + 6*p->nCol; 850 zStmt = sqliteMallocRaw( n ); 851 if( zStmt==0 ) return 0; 852 strcpy(zStmt, p->iDb==1 ? "CREATE TEMP TABLE " : "CREATE TABLE "); 853 k = strlen(zStmt); 854 identPut(zStmt, &k, p->zName); 855 zStmt[k++] = '('; 856 for(i=0; i<p->nCol; i++){ 857 strcpy(&zStmt[k], zSep); 858 k += strlen(&zStmt[k]); 859 zSep = zSep2; 860 identPut(zStmt, &k, p->aCol[i].zName); 861 } 862 strcpy(&zStmt[k], zEnd); 863 return zStmt; 864 } 865 866 /* 867 ** This routine is called to report the final ")" that terminates 868 ** a CREATE TABLE statement. 869 ** 870 ** The table structure that other action routines have been building 871 ** is added to the internal hash tables, assuming no errors have 872 ** occurred. 873 ** 874 ** An entry for the table is made in the master table on disk, unless 875 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 876 ** it means we are reading the sqlite_master table because we just 877 ** connected to the database or because the sqlite_master table has 878 ** recently changes, so the entry for this table already exists in 879 ** the sqlite_master table. We do not want to create it again. 880 ** 881 ** If the pSelect argument is not NULL, it means that this routine 882 ** was called to create a table generated from a 883 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 884 ** the new table will match the result set of the SELECT. 885 */ 886 void sqliteEndTable(Parse *pParse, Token *pEnd, Select *pSelect){ 887 Table *p; 888 sqlite *db = pParse->db; 889 890 if( (pEnd==0 && pSelect==0) || pParse->nErr || sqlite_malloc_failed ) return; 891 p = pParse->pNewTable; 892 if( p==0 ) return; 893 894 /* If the table is generated from a SELECT, then construct the 895 ** list of columns and the text of the table. 896 */ 897 if( pSelect ){ 898 Table *pSelTab = sqliteResultSetOfSelect(pParse, 0, pSelect); 899 if( pSelTab==0 ) return; 900 assert( p->aCol==0 ); 901 p->nCol = pSelTab->nCol; 902 p->aCol = pSelTab->aCol; 903 pSelTab->nCol = 0; 904 pSelTab->aCol = 0; 905 sqliteDeleteTable(0, pSelTab); 906 } 907 908 /* If the db->init.busy is 1 it means we are reading the SQL off the 909 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 910 ** So do not write to the disk again. Extract the root page number 911 ** for the table from the db->init.newTnum field. (The page number 912 ** should have been put there by the sqliteOpenCb routine.) 913 */ 914 if( db->init.busy ){ 915 p->tnum = db->init.newTnum; 916 } 917 918 /* If not initializing, then create a record for the new table 919 ** in the SQLITE_MASTER table of the database. The record number 920 ** for the new table entry should already be on the stack. 921 ** 922 ** If this is a TEMPORARY table, write the entry into the auxiliary 923 ** file instead of into the main database file. 924 */ 925 if( !db->init.busy ){ 926 int n; 927 Vdbe *v; 928 929 v = sqliteGetVdbe(pParse); 930 if( v==0 ) return; 931 if( p->pSelect==0 ){ 932 /* A regular table */ 933 sqliteVdbeOp3(v, OP_CreateTable, 0, p->iDb, (char*)&p->tnum, P3_POINTER); 934 }else{ 935 /* A view */ 936 sqliteVdbeAddOp(v, OP_Integer, 0, 0); 937 } 938 p->tnum = 0; 939 sqliteVdbeAddOp(v, OP_Pull, 1, 0); 940 sqliteVdbeOp3(v, OP_String, 0, 0, p->pSelect==0?"table":"view", P3_STATIC); 941 sqliteVdbeOp3(v, OP_String, 0, 0, p->zName, 0); 942 sqliteVdbeOp3(v, OP_String, 0, 0, p->zName, 0); 943 sqliteVdbeAddOp(v, OP_Dup, 4, 0); 944 sqliteVdbeAddOp(v, OP_String, 0, 0); 945 if( pSelect ){ 946 char *z = createTableStmt(p); 947 n = z ? strlen(z) : 0; 948 sqliteVdbeChangeP3(v, -1, z, n); 949 sqliteFree(z); 950 }else{ 951 assert( pEnd!=0 ); 952 n = Addr(pEnd->z) - Addr(pParse->sFirstToken.z) + 1; 953 sqliteVdbeChangeP3(v, -1, pParse->sFirstToken.z, n); 954 } 955 sqliteVdbeAddOp(v, OP_MakeRecord, 5, 0); 956 sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0); 957 if( !p->iDb ){ 958 sqliteChangeCookie(db, v); 959 } 960 sqliteVdbeAddOp(v, OP_Close, 0, 0); 961 if( pSelect ){ 962 sqliteVdbeAddOp(v, OP_Integer, p->iDb, 0); 963 sqliteVdbeAddOp(v, OP_OpenWrite, 1, 0); 964 pParse->nTab = 2; 965 sqliteSelect(pParse, pSelect, SRT_Table, 1, 0, 0, 0); 966 } 967 sqliteEndWriteOperation(pParse); 968 } 969 970 /* Add the table to the in-memory representation of the database. 971 */ 972 if( pParse->explain==0 && pParse->nErr==0 ){ 973 Table *pOld; 974 FKey *pFKey; 975 pOld = sqliteHashInsert(&db->aDb[p->iDb].tblHash, 976 p->zName, strlen(p->zName)+1, p); 977 if( pOld ){ 978 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 979 return; 980 } 981 for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){ 982 int nTo = strlen(pFKey->zTo) + 1; 983 pFKey->pNextTo = sqliteHashFind(&db->aDb[p->iDb].aFKey, pFKey->zTo, nTo); 984 sqliteHashInsert(&db->aDb[p->iDb].aFKey, pFKey->zTo, nTo, pFKey); 985 } 986 pParse->pNewTable = 0; 987 db->nTable++; 988 db->flags |= SQLITE_InternChanges; 989 } 990 } 991 992 /* 993 ** The parser calls this routine in order to create a new VIEW 994 */ 995 void sqliteCreateView( 996 Parse *pParse, /* The parsing context */ 997 Token *pBegin, /* The CREATE token that begins the statement */ 998 Token *pName, /* The token that holds the name of the view */ 999 Select *pSelect, /* A SELECT statement that will become the new view */ 1000 int isTemp /* TRUE for a TEMPORARY view */ 1001 ){ 1002 Table *p; 1003 int n; 1004 const char *z; 1005 Token sEnd; 1006 DbFixer sFix; 1007 1008 sqliteStartTable(pParse, pBegin, pName, isTemp, 1); 1009 p = pParse->pNewTable; 1010 if( p==0 || pParse->nErr ){ 1011 sqliteSelectDelete(pSelect); 1012 return; 1013 } 1014 if( sqliteFixInit(&sFix, pParse, p->iDb, "view", pName) 1015 && sqliteFixSelect(&sFix, pSelect) 1016 ){ 1017 sqliteSelectDelete(pSelect); 1018 return; 1019 } 1020 1021 /* Make a copy of the entire SELECT statement that defines the view. 1022 ** This will force all the Expr.token.z values to be dynamically 1023 ** allocated rather than point to the input string - which means that 1024 ** they will persist after the current sqlite_exec() call returns. 1025 */ 1026 p->pSelect = sqliteSelectDup(pSelect); 1027 sqliteSelectDelete(pSelect); 1028 if( !pParse->db->init.busy ){ 1029 sqliteViewGetColumnNames(pParse, p); 1030 } 1031 1032 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 1033 ** the end. 1034 */ 1035 sEnd = pParse->sLastToken; 1036 if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){ 1037 sEnd.z += sEnd.n; 1038 } 1039 sEnd.n = 0; 1040 n = sEnd.z - pBegin->z; 1041 z = pBegin->z; 1042 while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; } 1043 sEnd.z = &z[n-1]; 1044 sEnd.n = 1; 1045 1046 /* Use sqliteEndTable() to add the view to the SQLITE_MASTER table */ 1047 sqliteEndTable(pParse, &sEnd, 0); 1048 return; 1049 } 1050 1051 /* 1052 ** The Table structure pTable is really a VIEW. Fill in the names of 1053 ** the columns of the view in the pTable structure. Return the number 1054 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 1055 */ 1056 int sqliteViewGetColumnNames(Parse *pParse, Table *pTable){ 1057 ExprList *pEList; 1058 Select *pSel; 1059 Table *pSelTab; 1060 int nErr = 0; 1061 1062 assert( pTable ); 1063 1064 /* A positive nCol means the columns names for this view are 1065 ** already known. 1066 */ 1067 if( pTable->nCol>0 ) return 0; 1068 1069 /* A negative nCol is a special marker meaning that we are currently 1070 ** trying to compute the column names. If we enter this routine with 1071 ** a negative nCol, it means two or more views form a loop, like this: 1072 ** 1073 ** CREATE VIEW one AS SELECT * FROM two; 1074 ** CREATE VIEW two AS SELECT * FROM one; 1075 ** 1076 ** Actually, this error is caught previously and so the following test 1077 ** should always fail. But we will leave it in place just to be safe. 1078 */ 1079 if( pTable->nCol<0 ){ 1080 sqliteErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 1081 return 1; 1082 } 1083 1084 /* If we get this far, it means we need to compute the table names. 1085 */ 1086 assert( pTable->pSelect ); /* If nCol==0, then pTable must be a VIEW */ 1087 pSel = pTable->pSelect; 1088 1089 /* Note that the call to sqliteResultSetOfSelect() will expand any 1090 ** "*" elements in this list. But we will need to restore the list 1091 ** back to its original configuration afterwards, so we save a copy of 1092 ** the original in pEList. 1093 */ 1094 pEList = pSel->pEList; 1095 pSel->pEList = sqliteExprListDup(pEList); 1096 if( pSel->pEList==0 ){ 1097 pSel->pEList = pEList; 1098 return 1; /* Malloc failed */ 1099 } 1100 pTable->nCol = -1; 1101 pSelTab = sqliteResultSetOfSelect(pParse, 0, pSel); 1102 if( pSelTab ){ 1103 assert( pTable->aCol==0 ); 1104 pTable->nCol = pSelTab->nCol; 1105 pTable->aCol = pSelTab->aCol; 1106 pSelTab->nCol = 0; 1107 pSelTab->aCol = 0; 1108 sqliteDeleteTable(0, pSelTab); 1109 DbSetProperty(pParse->db, pTable->iDb, DB_UnresetViews); 1110 }else{ 1111 pTable->nCol = 0; 1112 nErr++; 1113 } 1114 sqliteSelectUnbind(pSel); 1115 sqliteExprListDelete(pSel->pEList); 1116 pSel->pEList = pEList; 1117 return nErr; 1118 } 1119 1120 /* 1121 ** Clear the column names from the VIEW pTable. 1122 ** 1123 ** This routine is called whenever any other table or view is modified. 1124 ** The view passed into this routine might depend directly or indirectly 1125 ** on the modified or deleted table so we need to clear the old column 1126 ** names so that they will be recomputed. 1127 */ 1128 static void sqliteViewResetColumnNames(Table *pTable){ 1129 int i; 1130 Column *pCol; 1131 assert( pTable!=0 && pTable->pSelect!=0 ); 1132 for(i=0, pCol=pTable->aCol; i<pTable->nCol; i++, pCol++){ 1133 sqliteFree(pCol->zName); 1134 sqliteFree(pCol->zDflt); 1135 sqliteFree(pCol->zType); 1136 } 1137 sqliteFree(pTable->aCol); 1138 pTable->aCol = 0; 1139 pTable->nCol = 0; 1140 } 1141 1142 /* 1143 ** Clear the column names from every VIEW in database idx. 1144 */ 1145 static void sqliteViewResetAll(sqlite *db, int idx){ 1146 HashElem *i; 1147 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 1148 for(i=sqliteHashFirst(&db->aDb[idx].tblHash); i; i=sqliteHashNext(i)){ 1149 Table *pTab = sqliteHashData(i); 1150 if( pTab->pSelect ){ 1151 sqliteViewResetColumnNames(pTab); 1152 } 1153 } 1154 DbClearProperty(db, idx, DB_UnresetViews); 1155 } 1156 1157 /* 1158 ** Given a token, look up a table with that name. If not found, leave 1159 ** an error for the parser to find and return NULL. 1160 */ 1161 Table *sqliteTableFromToken(Parse *pParse, Token *pTok){ 1162 char *zName; 1163 Table *pTab; 1164 zName = sqliteTableNameFromToken(pTok); 1165 if( zName==0 ) return 0; 1166 pTab = sqliteFindTable(pParse->db, zName, 0); 1167 sqliteFree(zName); 1168 if( pTab==0 ){ 1169 sqliteErrorMsg(pParse, "no such table: %T", pTok); 1170 } 1171 return pTab; 1172 } 1173 1174 /* 1175 ** This routine is called to do the work of a DROP TABLE statement. 1176 ** pName is the name of the table to be dropped. 1177 */ 1178 void sqliteDropTable(Parse *pParse, Token *pName, int isView){ 1179 Table *pTable; 1180 Vdbe *v; 1181 int base; 1182 sqlite *db = pParse->db; 1183 int iDb; 1184 1185 if( pParse->nErr || sqlite_malloc_failed ) return; 1186 pTable = sqliteTableFromToken(pParse, pName); 1187 if( pTable==0 ) return; 1188 iDb = pTable->iDb; 1189 assert( iDb>=0 && iDb<db->nDb ); 1190 #ifndef SQLITE_OMIT_AUTHORIZATION 1191 { 1192 int code; 1193 const char *zTab = SCHEMA_TABLE(pTable->iDb); 1194 const char *zDb = db->aDb[pTable->iDb].zName; 1195 if( sqliteAuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 1196 return; 1197 } 1198 if( isView ){ 1199 if( iDb==1 ){ 1200 code = SQLITE_DROP_TEMP_VIEW; 1201 }else{ 1202 code = SQLITE_DROP_VIEW; 1203 } 1204 }else{ 1205 if( iDb==1 ){ 1206 code = SQLITE_DROP_TEMP_TABLE; 1207 }else{ 1208 code = SQLITE_DROP_TABLE; 1209 } 1210 } 1211 if( sqliteAuthCheck(pParse, code, pTable->zName, 0, zDb) ){ 1212 return; 1213 } 1214 if( sqliteAuthCheck(pParse, SQLITE_DELETE, pTable->zName, 0, zDb) ){ 1215 return; 1216 } 1217 } 1218 #endif 1219 if( pTable->readOnly ){ 1220 sqliteErrorMsg(pParse, "table %s may not be dropped", pTable->zName); 1221 pParse->nErr++; 1222 return; 1223 } 1224 if( isView && pTable->pSelect==0 ){ 1225 sqliteErrorMsg(pParse, "use DROP TABLE to delete table %s", pTable->zName); 1226 return; 1227 } 1228 if( !isView && pTable->pSelect ){ 1229 sqliteErrorMsg(pParse, "use DROP VIEW to delete view %s", pTable->zName); 1230 return; 1231 } 1232 1233 /* Generate code to remove the table from the master table 1234 ** on disk. 1235 */ 1236 v = sqliteGetVdbe(pParse); 1237 if( v ){ 1238 static VdbeOpList dropTable[] = { 1239 { OP_Rewind, 0, ADDR(8), 0}, 1240 { OP_String, 0, 0, 0}, /* 1 */ 1241 { OP_MemStore, 1, 1, 0}, 1242 { OP_MemLoad, 1, 0, 0}, /* 3 */ 1243 { OP_Column, 0, 2, 0}, 1244 { OP_Ne, 0, ADDR(7), 0}, 1245 { OP_Delete, 0, 0, 0}, 1246 { OP_Next, 0, ADDR(3), 0}, /* 7 */ 1247 }; 1248 Index *pIdx; 1249 Trigger *pTrigger; 1250 sqliteBeginWriteOperation(pParse, 0, pTable->iDb); 1251 1252 /* Drop all triggers associated with the table being dropped */ 1253 pTrigger = pTable->pTrigger; 1254 while( pTrigger ){ 1255 assert( pTrigger->iDb==pTable->iDb || pTrigger->iDb==1 ); 1256 sqliteDropTriggerPtr(pParse, pTrigger, 1); 1257 if( pParse->explain ){ 1258 pTrigger = pTrigger->pNext; 1259 }else{ 1260 pTrigger = pTable->pTrigger; 1261 } 1262 } 1263 1264 /* Drop all SQLITE_MASTER entries that refer to the table */ 1265 sqliteOpenMasterTable(v, pTable->iDb); 1266 base = sqliteVdbeAddOpList(v, ArraySize(dropTable), dropTable); 1267 sqliteVdbeChangeP3(v, base+1, pTable->zName, 0); 1268 1269 /* Drop all SQLITE_TEMP_MASTER entries that refer to the table */ 1270 if( pTable->iDb!=1 ){ 1271 sqliteOpenMasterTable(v, 1); 1272 base = sqliteVdbeAddOpList(v, ArraySize(dropTable), dropTable); 1273 sqliteVdbeChangeP3(v, base+1, pTable->zName, 0); 1274 } 1275 1276 if( pTable->iDb==0 ){ 1277 sqliteChangeCookie(db, v); 1278 } 1279 sqliteVdbeAddOp(v, OP_Close, 0, 0); 1280 if( !isView ){ 1281 sqliteVdbeAddOp(v, OP_Destroy, pTable->tnum, pTable->iDb); 1282 for(pIdx=pTable->pIndex; pIdx; pIdx=pIdx->pNext){ 1283 sqliteVdbeAddOp(v, OP_Destroy, pIdx->tnum, pIdx->iDb); 1284 } 1285 } 1286 sqliteEndWriteOperation(pParse); 1287 } 1288 1289 /* Delete the in-memory description of the table. 1290 ** 1291 ** Exception: if the SQL statement began with the EXPLAIN keyword, 1292 ** then no changes should be made. 1293 */ 1294 if( !pParse->explain ){ 1295 sqliteUnlinkAndDeleteTable(db, pTable); 1296 db->flags |= SQLITE_InternChanges; 1297 } 1298 sqliteViewResetAll(db, iDb); 1299 } 1300 1301 /* 1302 ** This routine constructs a P3 string suitable for an OP_MakeIdxKey 1303 ** opcode and adds that P3 string to the most recently inserted instruction 1304 ** in the virtual machine. The P3 string consists of a single character 1305 ** for each column in the index pIdx of table pTab. If the column uses 1306 ** a numeric sort order, then the P3 string character corresponding to 1307 ** that column is 'n'. If the column uses a text sort order, then the 1308 ** P3 string is 't'. See the OP_MakeIdxKey opcode documentation for 1309 ** additional information. See also the sqliteAddKeyType() routine. 1310 */ 1311 void sqliteAddIdxKeyType(Vdbe *v, Index *pIdx){ 1312 char *zType; 1313 Table *pTab; 1314 int i, n; 1315 assert( pIdx!=0 && pIdx->pTable!=0 ); 1316 pTab = pIdx->pTable; 1317 n = pIdx->nColumn; 1318 zType = sqliteMallocRaw( n+1 ); 1319 if( zType==0 ) return; 1320 for(i=0; i<n; i++){ 1321 int iCol = pIdx->aiColumn[i]; 1322 assert( iCol>=0 && iCol<pTab->nCol ); 1323 if( (pTab->aCol[iCol].sortOrder & SQLITE_SO_TYPEMASK)==SQLITE_SO_TEXT ){ 1324 zType[i] = 't'; 1325 }else{ 1326 zType[i] = 'n'; 1327 } 1328 } 1329 zType[n] = 0; 1330 sqliteVdbeChangeP3(v, -1, zType, n); 1331 sqliteFree(zType); 1332 } 1333 1334 /* 1335 ** This routine is called to create a new foreign key on the table 1336 ** currently under construction. pFromCol determines which columns 1337 ** in the current table point to the foreign key. If pFromCol==0 then 1338 ** connect the key to the last column inserted. pTo is the name of 1339 ** the table referred to. pToCol is a list of tables in the other 1340 ** pTo table that the foreign key points to. flags contains all 1341 ** information about the conflict resolution algorithms specified 1342 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 1343 ** 1344 ** An FKey structure is created and added to the table currently 1345 ** under construction in the pParse->pNewTable field. The new FKey 1346 ** is not linked into db->aFKey at this point - that does not happen 1347 ** until sqliteEndTable(). 1348 ** 1349 ** The foreign key is set for IMMEDIATE processing. A subsequent call 1350 ** to sqliteDeferForeignKey() might change this to DEFERRED. 1351 */ 1352 void sqliteCreateForeignKey( 1353 Parse *pParse, /* Parsing context */ 1354 IdList *pFromCol, /* Columns in this table that point to other table */ 1355 Token *pTo, /* Name of the other table */ 1356 IdList *pToCol, /* Columns in the other table */ 1357 int flags /* Conflict resolution algorithms. */ 1358 ){ 1359 Table *p = pParse->pNewTable; 1360 int nByte; 1361 int i; 1362 int nCol; 1363 char *z; 1364 FKey *pFKey = 0; 1365 1366 assert( pTo!=0 ); 1367 if( p==0 || pParse->nErr ) goto fk_end; 1368 if( pFromCol==0 ){ 1369 int iCol = p->nCol-1; 1370 if( iCol<0 ) goto fk_end; 1371 if( pToCol && pToCol->nId!=1 ){ 1372 sqliteErrorMsg(pParse, "foreign key on %s" 1373 " should reference only one column of table %T", 1374 p->aCol[iCol].zName, pTo); 1375 goto fk_end; 1376 } 1377 nCol = 1; 1378 }else if( pToCol && pToCol->nId!=pFromCol->nId ){ 1379 sqliteErrorMsg(pParse, 1380 "number of columns in foreign key does not match the number of " 1381 "columns in the referenced table"); 1382 goto fk_end; 1383 }else{ 1384 nCol = pFromCol->nId; 1385 } 1386 nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1; 1387 if( pToCol ){ 1388 for(i=0; i<pToCol->nId; i++){ 1389 nByte += strlen(pToCol->a[i].zName) + 1; 1390 } 1391 } 1392 pFKey = sqliteMalloc( nByte ); 1393 if( pFKey==0 ) goto fk_end; 1394 pFKey->pFrom = p; 1395 pFKey->pNextFrom = p->pFKey; 1396 z = (char*)&pFKey[1]; 1397 pFKey->aCol = (struct sColMap*)z; 1398 z += sizeof(struct sColMap)*nCol; 1399 pFKey->zTo = z; 1400 memcpy(z, pTo->z, pTo->n); 1401 z[pTo->n] = 0; 1402 z += pTo->n+1; 1403 pFKey->pNextTo = 0; 1404 pFKey->nCol = nCol; 1405 if( pFromCol==0 ){ 1406 pFKey->aCol[0].iFrom = p->nCol-1; 1407 }else{ 1408 for(i=0; i<nCol; i++){ 1409 int j; 1410 for(j=0; j<p->nCol; j++){ 1411 if( sqliteStrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 1412 pFKey->aCol[i].iFrom = j; 1413 break; 1414 } 1415 } 1416 if( j>=p->nCol ){ 1417 sqliteErrorMsg(pParse, 1418 "unknown column \"%s\" in foreign key definition", 1419 pFromCol->a[i].zName); 1420 goto fk_end; 1421 } 1422 } 1423 } 1424 if( pToCol ){ 1425 for(i=0; i<nCol; i++){ 1426 int n = strlen(pToCol->a[i].zName); 1427 pFKey->aCol[i].zCol = z; 1428 memcpy(z, pToCol->a[i].zName, n); 1429 z[n] = 0; 1430 z += n+1; 1431 } 1432 } 1433 pFKey->isDeferred = 0; 1434 pFKey->deleteConf = flags & 0xff; 1435 pFKey->updateConf = (flags >> 8 ) & 0xff; 1436 pFKey->insertConf = (flags >> 16 ) & 0xff; 1437 1438 /* Link the foreign key to the table as the last step. 1439 */ 1440 p->pFKey = pFKey; 1441 pFKey = 0; 1442 1443 fk_end: 1444 sqliteFree(pFKey); 1445 sqliteIdListDelete(pFromCol); 1446 sqliteIdListDelete(pToCol); 1447 } 1448 1449 /* 1450 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 1451 ** clause is seen as part of a foreign key definition. The isDeferred 1452 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 1453 ** The behavior of the most recently created foreign key is adjusted 1454 ** accordingly. 1455 */ 1456 void sqliteDeferForeignKey(Parse *pParse, int isDeferred){ 1457 Table *pTab; 1458 FKey *pFKey; 1459 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 1460 pFKey->isDeferred = isDeferred; 1461 } 1462 1463 /* 1464 ** Create a new index for an SQL table. pIndex is the name of the index 1465 ** and pTable is the name of the table that is to be indexed. Both will 1466 ** be NULL for a primary key or an index that is created to satisfy a 1467 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 1468 ** as the table to be indexed. pParse->pNewTable is a table that is 1469 ** currently being constructed by a CREATE TABLE statement. 1470 ** 1471 ** pList is a list of columns to be indexed. pList will be NULL if this 1472 ** is a primary key or unique-constraint on the most recent column added 1473 ** to the table currently under construction. 1474 */ 1475 void sqliteCreateIndex( 1476 Parse *pParse, /* All information about this parse */ 1477 Token *pName, /* Name of the index. May be NULL */ 1478 SrcList *pTable, /* Name of the table to index. Use pParse->pNewTable if 0 */ 1479 IdList *pList, /* A list of columns to be indexed */ 1480 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 1481 Token *pStart, /* The CREATE token that begins a CREATE TABLE statement */ 1482 Token *pEnd /* The ")" that closes the CREATE INDEX statement */ 1483 ){ 1484 Table *pTab; /* Table to be indexed */ 1485 Index *pIndex; /* The index to be created */ 1486 char *zName = 0; 1487 int i, j; 1488 Token nullId; /* Fake token for an empty ID list */ 1489 DbFixer sFix; /* For assigning database names to pTable */ 1490 int isTemp; /* True for a temporary index */ 1491 sqlite *db = pParse->db; 1492 1493 if( pParse->nErr || sqlite_malloc_failed ) goto exit_create_index; 1494 if( db->init.busy 1495 && sqliteFixInit(&sFix, pParse, db->init.iDb, "index", pName) 1496 && sqliteFixSrcList(&sFix, pTable) 1497 ){ 1498 goto exit_create_index; 1499 } 1500 1501 /* 1502 ** Find the table that is to be indexed. Return early if not found. 1503 */ 1504 if( pTable!=0 ){ 1505 assert( pName!=0 ); 1506 assert( pTable->nSrc==1 ); 1507 pTab = sqliteSrcListLookup(pParse, pTable); 1508 }else{ 1509 assert( pName==0 ); 1510 pTab = pParse->pNewTable; 1511 } 1512 if( pTab==0 || pParse->nErr ) goto exit_create_index; 1513 if( pTab->readOnly ){ 1514 sqliteErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 1515 goto exit_create_index; 1516 } 1517 if( pTab->iDb>=2 && db->init.busy==0 ){ 1518 sqliteErrorMsg(pParse, "table %s may not have indices added", pTab->zName); 1519 goto exit_create_index; 1520 } 1521 if( pTab->pSelect ){ 1522 sqliteErrorMsg(pParse, "views may not be indexed"); 1523 goto exit_create_index; 1524 } 1525 isTemp = pTab->iDb==1; 1526 1527 /* 1528 ** Find the name of the index. Make sure there is not already another 1529 ** index or table with the same name. 1530 ** 1531 ** Exception: If we are reading the names of permanent indices from the 1532 ** sqlite_master table (because some other process changed the schema) and 1533 ** one of the index names collides with the name of a temporary table or 1534 ** index, then we will continue to process this index. 1535 ** 1536 ** If pName==0 it means that we are 1537 ** dealing with a primary key or UNIQUE constraint. We have to invent our 1538 ** own name. 1539 */ 1540 if( pName && !db->init.busy ){ 1541 Index *pISameName; /* Another index with the same name */ 1542 Table *pTSameName; /* A table with same name as the index */ 1543 zName = sqliteTableNameFromToken(pName); 1544 if( zName==0 ) goto exit_create_index; 1545 if( (pISameName = sqliteFindIndex(db, zName, 0))!=0 ){ 1546 sqliteErrorMsg(pParse, "index %s already exists", zName); 1547 goto exit_create_index; 1548 } 1549 if( (pTSameName = sqliteFindTable(db, zName, 0))!=0 ){ 1550 sqliteErrorMsg(pParse, "there is already a table named %s", zName); 1551 goto exit_create_index; 1552 } 1553 }else if( pName==0 ){ 1554 char zBuf[30]; 1555 int n; 1556 Index *pLoop; 1557 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 1558 sprintf(zBuf,"%d)",n); 1559 zName = 0; 1560 sqliteSetString(&zName, "(", pTab->zName, " autoindex ", zBuf, (char*)0); 1561 if( zName==0 ) goto exit_create_index; 1562 }else{ 1563 zName = sqliteStrNDup(pName->z, pName->n); 1564 } 1565 1566 /* Check for authorization to create an index. 1567 */ 1568 #ifndef SQLITE_OMIT_AUTHORIZATION 1569 { 1570 const char *zDb = db->aDb[pTab->iDb].zName; 1571 1572 assert( pTab->iDb==db->init.iDb || isTemp ); 1573 if( sqliteAuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 1574 goto exit_create_index; 1575 } 1576 i = SQLITE_CREATE_INDEX; 1577 if( isTemp ) i = SQLITE_CREATE_TEMP_INDEX; 1578 if( sqliteAuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 1579 goto exit_create_index; 1580 } 1581 } 1582 #endif 1583 1584 /* If pList==0, it means this routine was called to make a primary 1585 ** key out of the last column added to the table under construction. 1586 ** So create a fake list to simulate this. 1587 */ 1588 if( pList==0 ){ 1589 nullId.z = pTab->aCol[pTab->nCol-1].zName; 1590 nullId.n = strlen(nullId.z); 1591 pList = sqliteIdListAppend(0, &nullId); 1592 if( pList==0 ) goto exit_create_index; 1593 } 1594 1595 /* 1596 ** Allocate the index structure. 1597 */ 1598 pIndex = sqliteMalloc( sizeof(Index) + strlen(zName) + 1 + 1599 sizeof(int)*pList->nId ); 1600 if( pIndex==0 ) goto exit_create_index; 1601 pIndex->aiColumn = (int*)&pIndex[1]; 1602 pIndex->zName = (char*)&pIndex->aiColumn[pList->nId]; 1603 strcpy(pIndex->zName, zName); 1604 pIndex->pTable = pTab; 1605 pIndex->nColumn = pList->nId; 1606 pIndex->onError = onError; 1607 pIndex->autoIndex = pName==0; 1608 pIndex->iDb = isTemp ? 1 : db->init.iDb; 1609 1610 /* Scan the names of the columns of the table to be indexed and 1611 ** load the column indices into the Index structure. Report an error 1612 ** if any column is not found. 1613 */ 1614 for(i=0; i<pList->nId; i++){ 1615 for(j=0; j<pTab->nCol; j++){ 1616 if( sqliteStrICmp(pList->a[i].zName, pTab->aCol[j].zName)==0 ) break; 1617 } 1618 if( j>=pTab->nCol ){ 1619 sqliteErrorMsg(pParse, "table %s has no column named %s", 1620 pTab->zName, pList->a[i].zName); 1621 sqliteFree(pIndex); 1622 goto exit_create_index; 1623 } 1624 pIndex->aiColumn[i] = j; 1625 } 1626 1627 /* Link the new Index structure to its table and to the other 1628 ** in-memory database structures. 1629 */ 1630 if( !pParse->explain ){ 1631 Index *p; 1632 p = sqliteHashInsert(&db->aDb[pIndex->iDb].idxHash, 1633 pIndex->zName, strlen(pIndex->zName)+1, pIndex); 1634 if( p ){ 1635 assert( p==pIndex ); /* Malloc must have failed */ 1636 sqliteFree(pIndex); 1637 goto exit_create_index; 1638 } 1639 db->flags |= SQLITE_InternChanges; 1640 } 1641 1642 /* When adding an index to the list of indices for a table, make 1643 ** sure all indices labeled OE_Replace come after all those labeled 1644 ** OE_Ignore. This is necessary for the correct operation of UPDATE 1645 ** and INSERT. 1646 */ 1647 if( onError!=OE_Replace || pTab->pIndex==0 1648 || pTab->pIndex->onError==OE_Replace){ 1649 pIndex->pNext = pTab->pIndex; 1650 pTab->pIndex = pIndex; 1651 }else{ 1652 Index *pOther = pTab->pIndex; 1653 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 1654 pOther = pOther->pNext; 1655 } 1656 pIndex->pNext = pOther->pNext; 1657 pOther->pNext = pIndex; 1658 } 1659 1660 /* If the db->init.busy is 1 it means we are reading the SQL off the 1661 ** "sqlite_master" table on the disk. So do not write to the disk 1662 ** again. Extract the table number from the db->init.newTnum field. 1663 */ 1664 if( db->init.busy && pTable!=0 ){ 1665 pIndex->tnum = db->init.newTnum; 1666 } 1667 1668 /* If the db->init.busy is 0 then create the index on disk. This 1669 ** involves writing the index into the master table and filling in the 1670 ** index with the current table contents. 1671 ** 1672 ** The db->init.busy is 0 when the user first enters a CREATE INDEX 1673 ** command. db->init.busy is 1 when a database is opened and 1674 ** CREATE INDEX statements are read out of the master table. In 1675 ** the latter case the index already exists on disk, which is why 1676 ** we don't want to recreate it. 1677 ** 1678 ** If pTable==0 it means this index is generated as a primary key 1679 ** or UNIQUE constraint of a CREATE TABLE statement. Since the table 1680 ** has just been created, it contains no data and the index initialization 1681 ** step can be skipped. 1682 */ 1683 else if( db->init.busy==0 ){ 1684 int n; 1685 Vdbe *v; 1686 int lbl1, lbl2; 1687 int i; 1688 int addr; 1689 1690 v = sqliteGetVdbe(pParse); 1691 if( v==0 ) goto exit_create_index; 1692 if( pTable!=0 ){ 1693 sqliteBeginWriteOperation(pParse, 0, isTemp); 1694 sqliteOpenMasterTable(v, isTemp); 1695 } 1696 sqliteVdbeAddOp(v, OP_NewRecno, 0, 0); 1697 sqliteVdbeOp3(v, OP_String, 0, 0, "index", P3_STATIC); 1698 sqliteVdbeOp3(v, OP_String, 0, 0, pIndex->zName, 0); 1699 sqliteVdbeOp3(v, OP_String, 0, 0, pTab->zName, 0); 1700 sqliteVdbeOp3(v, OP_CreateIndex, 0, isTemp,(char*)&pIndex->tnum,P3_POINTER); 1701 pIndex->tnum = 0; 1702 if( pTable ){ 1703 sqliteVdbeCode(v, 1704 OP_Dup, 0, 0, 1705 OP_Integer, isTemp, 0, 1706 OP_OpenWrite, 1, 0, 1707 0); 1708 } 1709 addr = sqliteVdbeAddOp(v, OP_String, 0, 0); 1710 if( pStart && pEnd ){ 1711 n = Addr(pEnd->z) - Addr(pStart->z) + 1; 1712 sqliteVdbeChangeP3(v, addr, pStart->z, n); 1713 } 1714 sqliteVdbeAddOp(v, OP_MakeRecord, 5, 0); 1715 sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0); 1716 if( pTable ){ 1717 sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0); 1718 sqliteVdbeOp3(v, OP_OpenRead, 2, pTab->tnum, pTab->zName, 0); 1719 lbl2 = sqliteVdbeMakeLabel(v); 1720 sqliteVdbeAddOp(v, OP_Rewind, 2, lbl2); 1721 lbl1 = sqliteVdbeAddOp(v, OP_Recno, 2, 0); 1722 for(i=0; i<pIndex->nColumn; i++){ 1723 int iCol = pIndex->aiColumn[i]; 1724 if( pTab->iPKey==iCol ){ 1725 sqliteVdbeAddOp(v, OP_Dup, i, 0); 1726 }else{ 1727 sqliteVdbeAddOp(v, OP_Column, 2, iCol); 1728 } 1729 } 1730 sqliteVdbeAddOp(v, OP_MakeIdxKey, pIndex->nColumn, 0); 1731 if( db->file_format>=4 ) sqliteAddIdxKeyType(v, pIndex); 1732 sqliteVdbeOp3(v, OP_IdxPut, 1, pIndex->onError!=OE_None, 1733 "indexed columns are not unique", P3_STATIC); 1734 sqliteVdbeAddOp(v, OP_Next, 2, lbl1); 1735 sqliteVdbeResolveLabel(v, lbl2); 1736 sqliteVdbeAddOp(v, OP_Close, 2, 0); 1737 sqliteVdbeAddOp(v, OP_Close, 1, 0); 1738 } 1739 if( pTable!=0 ){ 1740 if( !isTemp ){ 1741 sqliteChangeCookie(db, v); 1742 } 1743 sqliteVdbeAddOp(v, OP_Close, 0, 0); 1744 sqliteEndWriteOperation(pParse); 1745 } 1746 } 1747 1748 /* Clean up before exiting */ 1749 exit_create_index: 1750 sqliteIdListDelete(pList); 1751 sqliteSrcListDelete(pTable); 1752 sqliteFree(zName); 1753 return; 1754 } 1755 1756 /* 1757 ** This routine will drop an existing named index. This routine 1758 ** implements the DROP INDEX statement. 1759 */ 1760 void sqliteDropIndex(Parse *pParse, SrcList *pName){ 1761 Index *pIndex; 1762 Vdbe *v; 1763 sqlite *db = pParse->db; 1764 1765 if( pParse->nErr || sqlite_malloc_failed ) return; 1766 assert( pName->nSrc==1 ); 1767 pIndex = sqliteFindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 1768 if( pIndex==0 ){ 1769 sqliteErrorMsg(pParse, "no such index: %S", pName, 0); 1770 goto exit_drop_index; 1771 } 1772 if( pIndex->autoIndex ){ 1773 sqliteErrorMsg(pParse, "index associated with UNIQUE " 1774 "or PRIMARY KEY constraint cannot be dropped", 0); 1775 goto exit_drop_index; 1776 } 1777 if( pIndex->iDb>1 ){ 1778 sqliteErrorMsg(pParse, "cannot alter schema of attached " 1779 "databases", 0); 1780 goto exit_drop_index; 1781 } 1782 #ifndef SQLITE_OMIT_AUTHORIZATION 1783 { 1784 int code = SQLITE_DROP_INDEX; 1785 Table *pTab = pIndex->pTable; 1786 const char *zDb = db->aDb[pIndex->iDb].zName; 1787 const char *zTab = SCHEMA_TABLE(pIndex->iDb); 1788 if( sqliteAuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 1789 goto exit_drop_index; 1790 } 1791 if( pIndex->iDb ) code = SQLITE_DROP_TEMP_INDEX; 1792 if( sqliteAuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 1793 goto exit_drop_index; 1794 } 1795 } 1796 #endif 1797 1798 /* Generate code to remove the index and from the master table */ 1799 v = sqliteGetVdbe(pParse); 1800 if( v ){ 1801 static VdbeOpList dropIndex[] = { 1802 { OP_Rewind, 0, ADDR(9), 0}, 1803 { OP_String, 0, 0, 0}, /* 1 */ 1804 { OP_MemStore, 1, 1, 0}, 1805 { OP_MemLoad, 1, 0, 0}, /* 3 */ 1806 { OP_Column, 0, 1, 0}, 1807 { OP_Eq, 0, ADDR(8), 0}, 1808 { OP_Next, 0, ADDR(3), 0}, 1809 { OP_Goto, 0, ADDR(9), 0}, 1810 { OP_Delete, 0, 0, 0}, /* 8 */ 1811 }; 1812 int base; 1813 1814 sqliteBeginWriteOperation(pParse, 0, pIndex->iDb); 1815 sqliteOpenMasterTable(v, pIndex->iDb); 1816 base = sqliteVdbeAddOpList(v, ArraySize(dropIndex), dropIndex); 1817 sqliteVdbeChangeP3(v, base+1, pIndex->zName, 0); 1818 if( pIndex->iDb==0 ){ 1819 sqliteChangeCookie(db, v); 1820 } 1821 sqliteVdbeAddOp(v, OP_Close, 0, 0); 1822 sqliteVdbeAddOp(v, OP_Destroy, pIndex->tnum, pIndex->iDb); 1823 sqliteEndWriteOperation(pParse); 1824 } 1825 1826 /* Delete the in-memory description of this index. 1827 */ 1828 if( !pParse->explain ){ 1829 sqliteUnlinkAndDeleteIndex(db, pIndex); 1830 db->flags |= SQLITE_InternChanges; 1831 } 1832 1833 exit_drop_index: 1834 sqliteSrcListDelete(pName); 1835 } 1836 1837 /* 1838 ** Append a new element to the given IdList. Create a new IdList if 1839 ** need be. 1840 ** 1841 ** A new IdList is returned, or NULL if malloc() fails. 1842 */ 1843 IdList *sqliteIdListAppend(IdList *pList, Token *pToken){ 1844 if( pList==0 ){ 1845 pList = sqliteMalloc( sizeof(IdList) ); 1846 if( pList==0 ) return 0; 1847 pList->nAlloc = 0; 1848 } 1849 if( pList->nId>=pList->nAlloc ){ 1850 struct IdList_item *a; 1851 pList->nAlloc = pList->nAlloc*2 + 5; 1852 a = sqliteRealloc(pList->a, pList->nAlloc*sizeof(pList->a[0]) ); 1853 if( a==0 ){ 1854 sqliteIdListDelete(pList); 1855 return 0; 1856 } 1857 pList->a = a; 1858 } 1859 memset(&pList->a[pList->nId], 0, sizeof(pList->a[0])); 1860 if( pToken ){ 1861 char **pz = &pList->a[pList->nId].zName; 1862 sqliteSetNString(pz, pToken->z, pToken->n, 0); 1863 if( *pz==0 ){ 1864 sqliteIdListDelete(pList); 1865 return 0; 1866 }else{ 1867 sqliteDequote(*pz); 1868 } 1869 } 1870 pList->nId++; 1871 return pList; 1872 } 1873 1874 /* 1875 ** Append a new table name to the given SrcList. Create a new SrcList if 1876 ** need be. A new entry is created in the SrcList even if pToken is NULL. 1877 ** 1878 ** A new SrcList is returned, or NULL if malloc() fails. 1879 ** 1880 ** If pDatabase is not null, it means that the table has an optional 1881 ** database name prefix. Like this: "database.table". The pDatabase 1882 ** points to the table name and the pTable points to the database name. 1883 ** The SrcList.a[].zName field is filled with the table name which might 1884 ** come from pTable (if pDatabase is NULL) or from pDatabase. 1885 ** SrcList.a[].zDatabase is filled with the database name from pTable, 1886 ** or with NULL if no database is specified. 1887 ** 1888 ** In other words, if call like this: 1889 ** 1890 ** sqliteSrcListAppend(A,B,0); 1891 ** 1892 ** Then B is a table name and the database name is unspecified. If called 1893 ** like this: 1894 ** 1895 ** sqliteSrcListAppend(A,B,C); 1896 ** 1897 ** Then C is the table name and B is the database name. 1898 */ 1899 SrcList *sqliteSrcListAppend(SrcList *pList, Token *pTable, Token *pDatabase){ 1900 if( pList==0 ){ 1901 pList = sqliteMalloc( sizeof(SrcList) ); 1902 if( pList==0 ) return 0; 1903 pList->nAlloc = 1; 1904 } 1905 if( pList->nSrc>=pList->nAlloc ){ 1906 SrcList *pNew; 1907 pList->nAlloc *= 2; 1908 pNew = sqliteRealloc(pList, 1909 sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) ); 1910 if( pNew==0 ){ 1911 sqliteSrcListDelete(pList); 1912 return 0; 1913 } 1914 pList = pNew; 1915 } 1916 memset(&pList->a[pList->nSrc], 0, sizeof(pList->a[0])); 1917 if( pDatabase && pDatabase->z==0 ){ 1918 pDatabase = 0; 1919 } 1920 if( pDatabase && pTable ){ 1921 Token *pTemp = pDatabase; 1922 pDatabase = pTable; 1923 pTable = pTemp; 1924 } 1925 if( pTable ){ 1926 char **pz = &pList->a[pList->nSrc].zName; 1927 sqliteSetNString(pz, pTable->z, pTable->n, 0); 1928 if( *pz==0 ){ 1929 sqliteSrcListDelete(pList); 1930 return 0; 1931 }else{ 1932 sqliteDequote(*pz); 1933 } 1934 } 1935 if( pDatabase ){ 1936 char **pz = &pList->a[pList->nSrc].zDatabase; 1937 sqliteSetNString(pz, pDatabase->z, pDatabase->n, 0); 1938 if( *pz==0 ){ 1939 sqliteSrcListDelete(pList); 1940 return 0; 1941 }else{ 1942 sqliteDequote(*pz); 1943 } 1944 } 1945 pList->a[pList->nSrc].iCursor = -1; 1946 pList->nSrc++; 1947 return pList; 1948 } 1949 1950 /* 1951 ** Assign cursors to all tables in a SrcList 1952 */ 1953 void sqliteSrcListAssignCursors(Parse *pParse, SrcList *pList){ 1954 int i; 1955 for(i=0; i<pList->nSrc; i++){ 1956 if( pList->a[i].iCursor<0 ){ 1957 pList->a[i].iCursor = pParse->nTab++; 1958 } 1959 } 1960 } 1961 1962 /* 1963 ** Add an alias to the last identifier on the given identifier list. 1964 */ 1965 void sqliteSrcListAddAlias(SrcList *pList, Token *pToken){ 1966 if( pList && pList->nSrc>0 ){ 1967 int i = pList->nSrc - 1; 1968 sqliteSetNString(&pList->a[i].zAlias, pToken->z, pToken->n, 0); 1969 sqliteDequote(pList->a[i].zAlias); 1970 } 1971 } 1972 1973 /* 1974 ** Delete an IdList. 1975 */ 1976 void sqliteIdListDelete(IdList *pList){ 1977 int i; 1978 if( pList==0 ) return; 1979 for(i=0; i<pList->nId; i++){ 1980 sqliteFree(pList->a[i].zName); 1981 } 1982 sqliteFree(pList->a); 1983 sqliteFree(pList); 1984 } 1985 1986 /* 1987 ** Return the index in pList of the identifier named zId. Return -1 1988 ** if not found. 1989 */ 1990 int sqliteIdListIndex(IdList *pList, const char *zName){ 1991 int i; 1992 if( pList==0 ) return -1; 1993 for(i=0; i<pList->nId; i++){ 1994 if( sqliteStrICmp(pList->a[i].zName, zName)==0 ) return i; 1995 } 1996 return -1; 1997 } 1998 1999 /* 2000 ** Delete an entire SrcList including all its substructure. 2001 */ 2002 void sqliteSrcListDelete(SrcList *pList){ 2003 int i; 2004 if( pList==0 ) return; 2005 for(i=0; i<pList->nSrc; i++){ 2006 sqliteFree(pList->a[i].zDatabase); 2007 sqliteFree(pList->a[i].zName); 2008 sqliteFree(pList->a[i].zAlias); 2009 if( pList->a[i].pTab && pList->a[i].pTab->isTransient ){ 2010 sqliteDeleteTable(0, pList->a[i].pTab); 2011 } 2012 sqliteSelectDelete(pList->a[i].pSelect); 2013 sqliteExprDelete(pList->a[i].pOn); 2014 sqliteIdListDelete(pList->a[i].pUsing); 2015 } 2016 sqliteFree(pList); 2017 } 2018 2019 /* 2020 ** Begin a transaction 2021 */ 2022 void sqliteBeginTransaction(Parse *pParse, int onError){ 2023 sqlite *db; 2024 2025 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; 2026 if( pParse->nErr || sqlite_malloc_failed ) return; 2027 if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return; 2028 if( db->flags & SQLITE_InTrans ){ 2029 sqliteErrorMsg(pParse, "cannot start a transaction within a transaction"); 2030 return; 2031 } 2032 sqliteBeginWriteOperation(pParse, 0, 0); 2033 if( !pParse->explain ){ 2034 db->flags |= SQLITE_InTrans; 2035 db->onError = onError; 2036 } 2037 } 2038 2039 /* 2040 ** Commit a transaction 2041 */ 2042 void sqliteCommitTransaction(Parse *pParse){ 2043 sqlite *db; 2044 2045 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; 2046 if( pParse->nErr || sqlite_malloc_failed ) return; 2047 if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return; 2048 if( (db->flags & SQLITE_InTrans)==0 ){ 2049 sqliteErrorMsg(pParse, "cannot commit - no transaction is active"); 2050 return; 2051 } 2052 if( !pParse->explain ){ 2053 db->flags &= ~SQLITE_InTrans; 2054 } 2055 sqliteEndWriteOperation(pParse); 2056 if( !pParse->explain ){ 2057 db->onError = OE_Default; 2058 } 2059 } 2060 2061 /* 2062 ** Rollback a transaction 2063 */ 2064 void sqliteRollbackTransaction(Parse *pParse){ 2065 sqlite *db; 2066 Vdbe *v; 2067 2068 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; 2069 if( pParse->nErr || sqlite_malloc_failed ) return; 2070 if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return; 2071 if( (db->flags & SQLITE_InTrans)==0 ){ 2072 sqliteErrorMsg(pParse, "cannot rollback - no transaction is active"); 2073 return; 2074 } 2075 v = sqliteGetVdbe(pParse); 2076 if( v ){ 2077 sqliteVdbeAddOp(v, OP_Rollback, 0, 0); 2078 } 2079 if( !pParse->explain ){ 2080 db->flags &= ~SQLITE_InTrans; 2081 db->onError = OE_Default; 2082 } 2083 } 2084 2085 /* 2086 ** Generate VDBE code that will verify the schema cookie for all 2087 ** named database files. 2088 */ 2089 void sqliteCodeVerifySchema(Parse *pParse, int iDb){ 2090 sqlite *db = pParse->db; 2091 Vdbe *v = sqliteGetVdbe(pParse); 2092 assert( iDb>=0 && iDb<db->nDb ); 2093 assert( db->aDb[iDb].pBt!=0 ); 2094 if( iDb!=1 && !DbHasProperty(db, iDb, DB_Cookie) ){ 2095 sqliteVdbeAddOp(v, OP_VerifyCookie, iDb, db->aDb[iDb].schema_cookie); 2096 DbSetProperty(db, iDb, DB_Cookie); 2097 } 2098 } 2099 2100 /* 2101 ** Generate VDBE code that prepares for doing an operation that 2102 ** might change the database. 2103 ** 2104 ** This routine starts a new transaction if we are not already within 2105 ** a transaction. If we are already within a transaction, then a checkpoint 2106 ** is set if the setCheckpoint parameter is true. A checkpoint should 2107 ** be set for operations that might fail (due to a constraint) part of 2108 ** the way through and which will need to undo some writes without having to 2109 ** rollback the whole transaction. For operations where all constraints 2110 ** can be checked before any changes are made to the database, it is never 2111 ** necessary to undo a write and the checkpoint should not be set. 2112 ** 2113 ** Only database iDb and the temp database are made writable by this call. 2114 ** If iDb==0, then the main and temp databases are made writable. If 2115 ** iDb==1 then only the temp database is made writable. If iDb>1 then the 2116 ** specified auxiliary database and the temp database are made writable. 2117 */ 2118 void sqliteBeginWriteOperation(Parse *pParse, int setCheckpoint, int iDb){ 2119 Vdbe *v; 2120 sqlite *db = pParse->db; 2121 if( DbHasProperty(db, iDb, DB_Locked) ) return; 2122 v = sqliteGetVdbe(pParse); 2123 if( v==0 ) return; 2124 if( !db->aDb[iDb].inTrans ){ 2125 sqliteVdbeAddOp(v, OP_Transaction, iDb, 0); 2126 DbSetProperty(db, iDb, DB_Locked); 2127 sqliteCodeVerifySchema(pParse, iDb); 2128 if( iDb!=1 ){ 2129 sqliteBeginWriteOperation(pParse, setCheckpoint, 1); 2130 } 2131 }else if( setCheckpoint ){ 2132 sqliteVdbeAddOp(v, OP_Checkpoint, iDb, 0); 2133 DbSetProperty(db, iDb, DB_Locked); 2134 } 2135 } 2136 2137 /* 2138 ** Generate code that concludes an operation that may have changed 2139 ** the database. If a statement transaction was started, then emit 2140 ** an OP_Commit that will cause the changes to be committed to disk. 2141 ** 2142 ** Note that checkpoints are automatically committed at the end of 2143 ** a statement. Note also that there can be multiple calls to 2144 ** sqliteBeginWriteOperation() but there should only be a single 2145 ** call to sqliteEndWriteOperation() at the conclusion of the statement. 2146 */ 2147 void sqliteEndWriteOperation(Parse *pParse){ 2148 Vdbe *v; 2149 sqlite *db = pParse->db; 2150 if( pParse->trigStack ) return; /* if this is in a trigger */ 2151 v = sqliteGetVdbe(pParse); 2152 if( v==0 ) return; 2153 if( db->flags & SQLITE_InTrans ){ 2154 /* A BEGIN has executed. Do not commit until we see an explicit 2155 ** COMMIT statement. */ 2156 }else{ 2157 sqliteVdbeAddOp(v, OP_Commit, 0, 0); 2158 } 2159 } 2160