1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>.
26 */
27
28 /*
29 * Functions to convert between a list of vdevs and an nvlist representing the
30 * configuration. Each entry in the list can be one of:
31 *
32 * Device vdevs
33 * disk=(path=..., devid=...)
34 * file=(path=...)
35 *
36 * Group vdevs
37 * raidz[1|2]=(...)
38 * mirror=(...)
39 *
40 * Hot spares
41 *
42 * While the underlying implementation supports it, group vdevs cannot contain
43 * other group vdevs. All userland verification of devices is contained within
44 * this file. If successful, the nvlist returned can be passed directly to the
45 * kernel; we've done as much verification as possible in userland.
46 *
47 * Hot spares are a special case, and passed down as an array of disk vdevs, at
48 * the same level as the root of the vdev tree.
49 *
50 * The only function exported by this file is 'make_root_vdev'. The
51 * function performs several passes:
52 *
53 * 1. Construct the vdev specification. Performs syntax validation and
54 * makes sure each device is valid.
55 * 2. Check for devices in use. Using libdiskmgt, makes sure that no
56 * devices are also in use. Some can be overridden using the 'force'
57 * flag, others cannot.
58 * 3. Check for replication errors if the 'force' flag is not specified.
59 * validates that the replication level is consistent across the
60 * entire pool.
61 * 4. Call libzfs to label any whole disks with an EFI label.
62 */
63
64 #include <assert.h>
65 #include <devid.h>
66 #include <errno.h>
67 #include <fcntl.h>
68 #include <libdiskmgt.h>
69 #include <libintl.h>
70 #include <libnvpair.h>
71 #include <limits.h>
72 #include <stdio.h>
73 #include <string.h>
74 #include <unistd.h>
75 #include <sys/efi_partition.h>
76 #include <sys/stat.h>
77 #include <sys/vtoc.h>
78 #include <sys/mntent.h>
79
80 #include "zpool_util.h"
81
82 #define DISK_ROOT "/dev/dsk"
83 #define RDISK_ROOT "/dev/rdsk"
84 #define BACKUP_SLICE "s2"
85
86 /*
87 * For any given vdev specification, we can have multiple errors. The
88 * vdev_error() function keeps track of whether we have seen an error yet, and
89 * prints out a header if its the first error we've seen.
90 */
91 boolean_t error_seen;
92 boolean_t is_force;
93
94 /*PRINTFLIKE1*/
95 static void
vdev_error(const char * fmt,...)96 vdev_error(const char *fmt, ...)
97 {
98 va_list ap;
99
100 if (!error_seen) {
101 (void) fprintf(stderr, gettext("invalid vdev specification\n"));
102 if (!is_force)
103 (void) fprintf(stderr, gettext("use '-f' to override "
104 "the following errors:\n"));
105 else
106 (void) fprintf(stderr, gettext("the following errors "
107 "must be manually repaired:\n"));
108 error_seen = B_TRUE;
109 }
110
111 va_start(ap, fmt);
112 (void) vfprintf(stderr, fmt, ap);
113 va_end(ap);
114 }
115
116 static void
libdiskmgt_error(int error)117 libdiskmgt_error(int error)
118 {
119 /*
120 * ENXIO/ENODEV is a valid error message if the device doesn't live in
121 * /dev/dsk. Don't bother printing an error message in this case.
122 */
123 if (error == ENXIO || error == ENODEV)
124 return;
125
126 (void) fprintf(stderr, gettext("warning: device in use checking "
127 "failed: %s\n"), strerror(error));
128 }
129
130 /*
131 * Validate a device, passing the bulk of the work off to libdiskmgt.
132 */
133 static int
check_slice(const char * path,int force,boolean_t wholedisk,boolean_t isspare)134 check_slice(const char *path, int force, boolean_t wholedisk, boolean_t isspare)
135 {
136 char *msg;
137 int error = 0;
138 dm_who_type_t who;
139
140 if (force)
141 who = DM_WHO_ZPOOL_FORCE;
142 else if (isspare)
143 who = DM_WHO_ZPOOL_SPARE;
144 else
145 who = DM_WHO_ZPOOL;
146
147 if (dm_inuse((char *)path, &msg, who, &error) || error) {
148 if (error != 0) {
149 libdiskmgt_error(error);
150 return (0);
151 } else {
152 vdev_error("%s", msg);
153 free(msg);
154 return (-1);
155 }
156 }
157
158 /*
159 * If we're given a whole disk, ignore overlapping slices since we're
160 * about to label it anyway.
161 */
162 error = 0;
163 if (!wholedisk && !force &&
164 (dm_isoverlapping((char *)path, &msg, &error) || error)) {
165 if (error == 0) {
166 /* dm_isoverlapping returned -1 */
167 vdev_error(gettext("%s overlaps with %s\n"), path, msg);
168 free(msg);
169 return (-1);
170 } else if (error != ENODEV) {
171 /* libdiskmgt's devcache only handles physical drives */
172 libdiskmgt_error(error);
173 return (0);
174 }
175 }
176
177 return (0);
178 }
179
180
181 /*
182 * Validate a whole disk. Iterate over all slices on the disk and make sure
183 * that none is in use by calling check_slice().
184 */
185 static int
check_disk(const char * name,dm_descriptor_t disk,int force,int isspare)186 check_disk(const char *name, dm_descriptor_t disk, int force, int isspare)
187 {
188 dm_descriptor_t *drive, *media, *slice;
189 int err = 0;
190 int i;
191 int ret;
192
193 /*
194 * Get the drive associated with this disk. This should never fail,
195 * because we already have an alias handle open for the device.
196 */
197 if ((drive = dm_get_associated_descriptors(disk, DM_DRIVE,
198 &err)) == NULL || *drive == NULL) {
199 if (err)
200 libdiskmgt_error(err);
201 return (0);
202 }
203
204 if ((media = dm_get_associated_descriptors(*drive, DM_MEDIA,
205 &err)) == NULL) {
206 dm_free_descriptors(drive);
207 if (err)
208 libdiskmgt_error(err);
209 return (0);
210 }
211
212 dm_free_descriptors(drive);
213
214 /*
215 * It is possible that the user has specified a removable media drive,
216 * and the media is not present.
217 */
218 if (*media == NULL) {
219 dm_free_descriptors(media);
220 vdev_error(gettext("'%s' has no media in drive\n"), name);
221 return (-1);
222 }
223
224 if ((slice = dm_get_associated_descriptors(*media, DM_SLICE,
225 &err)) == NULL) {
226 dm_free_descriptors(media);
227 if (err)
228 libdiskmgt_error(err);
229 return (0);
230 }
231
232 dm_free_descriptors(media);
233
234 ret = 0;
235
236 /*
237 * Iterate over all slices and report any errors. We don't care about
238 * overlapping slices because we are using the whole disk.
239 */
240 for (i = 0; slice[i] != NULL; i++) {
241 char *name = dm_get_name(slice[i], &err);
242
243 if (check_slice(name, force, B_TRUE, isspare) != 0)
244 ret = -1;
245
246 dm_free_name(name);
247 }
248
249 dm_free_descriptors(slice);
250 return (ret);
251 }
252
253 /*
254 * Validate a device.
255 */
256 static int
check_device(const char * path,boolean_t force,boolean_t isspare)257 check_device(const char *path, boolean_t force, boolean_t isspare)
258 {
259 dm_descriptor_t desc;
260 int err;
261 char *dev;
262
263 /*
264 * For whole disks, libdiskmgt does not include the leading dev path.
265 */
266 dev = strrchr(path, '/');
267 assert(dev != NULL);
268 dev++;
269 if ((desc = dm_get_descriptor_by_name(DM_ALIAS, dev, &err)) != NULL) {
270 err = check_disk(path, desc, force, isspare);
271 dm_free_descriptor(desc);
272 return (err);
273 }
274
275 return (check_slice(path, force, B_FALSE, isspare));
276 }
277
278 /*
279 * Check that a file is valid. All we can do in this case is check that it's
280 * not in use by another pool, and not in use by swap.
281 */
282 static int
check_file(const char * file,boolean_t force,boolean_t isspare)283 check_file(const char *file, boolean_t force, boolean_t isspare)
284 {
285 char *name;
286 int fd;
287 int ret = 0;
288 int err;
289 pool_state_t state;
290 boolean_t inuse;
291
292 if (dm_inuse_swap(file, &err)) {
293 if (err)
294 libdiskmgt_error(err);
295 else
296 vdev_error(gettext("%s is currently used by swap. "
297 "Please see swap(1M).\n"), file);
298 return (-1);
299 }
300
301 if ((fd = open(file, O_RDONLY)) < 0)
302 return (0);
303
304 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
305 const char *desc;
306
307 switch (state) {
308 case POOL_STATE_ACTIVE:
309 desc = gettext("active");
310 break;
311
312 case POOL_STATE_EXPORTED:
313 desc = gettext("exported");
314 break;
315
316 case POOL_STATE_POTENTIALLY_ACTIVE:
317 desc = gettext("potentially active");
318 break;
319
320 default:
321 desc = gettext("unknown");
322 break;
323 }
324
325 /*
326 * Allow hot spares to be shared between pools.
327 */
328 if (state == POOL_STATE_SPARE && isspare)
329 return (0);
330
331 if (state == POOL_STATE_ACTIVE ||
332 state == POOL_STATE_SPARE || !force) {
333 switch (state) {
334 case POOL_STATE_SPARE:
335 vdev_error(gettext("%s is reserved as a hot "
336 "spare for pool %s\n"), file, name);
337 break;
338 default:
339 vdev_error(gettext("%s is part of %s pool "
340 "'%s'\n"), file, desc, name);
341 break;
342 }
343 ret = -1;
344 }
345
346 free(name);
347 }
348
349 (void) close(fd);
350 return (ret);
351 }
352
353
354 /*
355 * By "whole disk" we mean an entire physical disk (something we can
356 * label, toggle the write cache on, etc.) as opposed to the full
357 * capacity of a pseudo-device such as lofi or did. We act as if we
358 * are labeling the disk, which should be a pretty good test of whether
359 * it's a viable device or not. Returns B_TRUE if it is and B_FALSE if
360 * it isn't.
361 */
362 static boolean_t
is_whole_disk(const char * arg)363 is_whole_disk(const char *arg)
364 {
365 struct dk_gpt *label;
366 int fd;
367 char path[MAXPATHLEN];
368
369 (void) snprintf(path, sizeof (path), "%s%s%s",
370 RDISK_ROOT, strrchr(arg, '/'), BACKUP_SLICE);
371 if ((fd = open(path, O_RDWR | O_NDELAY)) < 0)
372 return (B_FALSE);
373 if (efi_alloc_and_init(fd, EFI_NUMPAR, &label) != 0) {
374 (void) close(fd);
375 return (B_FALSE);
376 }
377 efi_free(label);
378 (void) close(fd);
379 return (B_TRUE);
380 }
381
382 /*
383 * Create a leaf vdev. Determine if this is a file or a device. If it's a
384 * device, fill in the device id to make a complete nvlist. Valid forms for a
385 * leaf vdev are:
386 *
387 * /dev/dsk/xxx Complete disk path
388 * /xxx Full path to file
389 * xxx Shorthand for /dev/dsk/xxx
390 */
391 static nvlist_t *
make_leaf_vdev(const char * arg,uint64_t is_log)392 make_leaf_vdev(const char *arg, uint64_t is_log)
393 {
394 char path[MAXPATHLEN];
395 struct stat64 statbuf;
396 nvlist_t *vdev = NULL;
397 char *type = NULL;
398 boolean_t wholedisk = B_FALSE;
399
400 /*
401 * Determine what type of vdev this is, and put the full path into
402 * 'path'. We detect whether this is a device of file afterwards by
403 * checking the st_mode of the file.
404 */
405 if (arg[0] == '/') {
406 /*
407 * Complete device or file path. Exact type is determined by
408 * examining the file descriptor afterwards.
409 */
410 wholedisk = is_whole_disk(arg);
411 if (!wholedisk && (stat64(arg, &statbuf) != 0)) {
412 (void) fprintf(stderr,
413 gettext("cannot open '%s': %s\n"),
414 arg, strerror(errno));
415 return (NULL);
416 }
417
418 (void) strlcpy(path, arg, sizeof (path));
419 } else {
420 /*
421 * This may be a short path for a device, or it could be total
422 * gibberish. Check to see if it's a known device in
423 * /dev/dsk/. As part of this check, see if we've been given a
424 * an entire disk (minus the slice number).
425 */
426 (void) snprintf(path, sizeof (path), "%s/%s", DISK_ROOT,
427 arg);
428 wholedisk = is_whole_disk(path);
429 if (!wholedisk && (stat64(path, &statbuf) != 0)) {
430 /*
431 * If we got ENOENT, then the user gave us
432 * gibberish, so try to direct them with a
433 * reasonable error message. Otherwise,
434 * regurgitate strerror() since it's the best we
435 * can do.
436 */
437 if (errno == ENOENT) {
438 (void) fprintf(stderr,
439 gettext("cannot open '%s': no such "
440 "device in %s\n"), arg, DISK_ROOT);
441 (void) fprintf(stderr,
442 gettext("must be a full path or "
443 "shorthand device name\n"));
444 return (NULL);
445 } else {
446 (void) fprintf(stderr,
447 gettext("cannot open '%s': %s\n"),
448 path, strerror(errno));
449 return (NULL);
450 }
451 }
452 }
453
454 /*
455 * Determine whether this is a device or a file.
456 */
457 if (wholedisk || S_ISBLK(statbuf.st_mode)) {
458 type = VDEV_TYPE_DISK;
459 } else if (S_ISREG(statbuf.st_mode)) {
460 type = VDEV_TYPE_FILE;
461 } else {
462 (void) fprintf(stderr, gettext("cannot use '%s': must be a "
463 "block device or regular file\n"), path);
464 return (NULL);
465 }
466
467 /*
468 * Finally, we have the complete device or file, and we know that it is
469 * acceptable to use. Construct the nvlist to describe this vdev. All
470 * vdevs have a 'path' element, and devices also have a 'devid' element.
471 */
472 verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
473 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
474 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
475 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_IS_LOG, is_log) == 0);
476 if (strcmp(type, VDEV_TYPE_DISK) == 0)
477 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
478 (uint64_t)wholedisk) == 0);
479
480 /*
481 * For a whole disk, defer getting its devid until after labeling it.
482 */
483 if (S_ISBLK(statbuf.st_mode) && !wholedisk) {
484 /*
485 * Get the devid for the device.
486 */
487 int fd;
488 ddi_devid_t devid;
489 char *minor = NULL, *devid_str = NULL;
490
491 if ((fd = open(path, O_RDONLY)) < 0) {
492 (void) fprintf(stderr, gettext("cannot open '%s': "
493 "%s\n"), path, strerror(errno));
494 nvlist_free(vdev);
495 return (NULL);
496 }
497
498 if (devid_get(fd, &devid) == 0) {
499 if (devid_get_minor_name(fd, &minor) == 0 &&
500 (devid_str = devid_str_encode(devid, minor)) !=
501 NULL) {
502 verify(nvlist_add_string(vdev,
503 ZPOOL_CONFIG_DEVID, devid_str) == 0);
504 }
505 if (devid_str != NULL)
506 devid_str_free(devid_str);
507 if (minor != NULL)
508 devid_str_free(minor);
509 devid_free(devid);
510 }
511
512 (void) close(fd);
513 }
514
515 return (vdev);
516 }
517
518 /*
519 * Go through and verify the replication level of the pool is consistent.
520 * Performs the following checks:
521 *
522 * For the new spec, verifies that devices in mirrors and raidz are the
523 * same size.
524 *
525 * If the current configuration already has inconsistent replication
526 * levels, ignore any other potential problems in the new spec.
527 *
528 * Otherwise, make sure that the current spec (if there is one) and the new
529 * spec have consistent replication levels.
530 */
531 typedef struct replication_level {
532 char *zprl_type;
533 uint64_t zprl_children;
534 uint64_t zprl_parity;
535 } replication_level_t;
536
537 #define ZPOOL_FUZZ (16 * 1024 * 1024)
538
539 /*
540 * Given a list of toplevel vdevs, return the current replication level. If
541 * the config is inconsistent, then NULL is returned. If 'fatal' is set, then
542 * an error message will be displayed for each self-inconsistent vdev.
543 */
544 static replication_level_t *
get_replication(nvlist_t * nvroot,boolean_t fatal)545 get_replication(nvlist_t *nvroot, boolean_t fatal)
546 {
547 nvlist_t **top;
548 uint_t t, toplevels;
549 nvlist_t **child;
550 uint_t c, children;
551 nvlist_t *nv;
552 char *type;
553 replication_level_t lastrep = {0};
554 replication_level_t rep;
555 replication_level_t *ret;
556 boolean_t dontreport;
557
558 ret = safe_malloc(sizeof (replication_level_t));
559
560 verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
561 &top, &toplevels) == 0);
562
563 lastrep.zprl_type = NULL;
564 for (t = 0; t < toplevels; t++) {
565 uint64_t is_log = B_FALSE;
566
567 nv = top[t];
568
569 /*
570 * For separate logs we ignore the top level vdev replication
571 * constraints.
572 */
573 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log);
574 if (is_log)
575 continue;
576
577 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE,
578 &type) == 0);
579 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
580 &child, &children) != 0) {
581 /*
582 * This is a 'file' or 'disk' vdev.
583 */
584 rep.zprl_type = type;
585 rep.zprl_children = 1;
586 rep.zprl_parity = 0;
587 } else {
588 uint64_t vdev_size;
589
590 /*
591 * This is a mirror or RAID-Z vdev. Go through and make
592 * sure the contents are all the same (files vs. disks),
593 * keeping track of the number of elements in the
594 * process.
595 *
596 * We also check that the size of each vdev (if it can
597 * be determined) is the same.
598 */
599 rep.zprl_type = type;
600 rep.zprl_children = 0;
601
602 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
603 verify(nvlist_lookup_uint64(nv,
604 ZPOOL_CONFIG_NPARITY,
605 &rep.zprl_parity) == 0);
606 assert(rep.zprl_parity != 0);
607 } else {
608 rep.zprl_parity = 0;
609 }
610
611 /*
612 * The 'dontreport' variable indicates that we've
613 * already reported an error for this spec, so don't
614 * bother doing it again.
615 */
616 type = NULL;
617 dontreport = 0;
618 vdev_size = -1ULL;
619 for (c = 0; c < children; c++) {
620 nvlist_t *cnv = child[c];
621 char *path;
622 struct stat64 statbuf;
623 uint64_t size = -1ULL;
624 char *childtype;
625 int fd, err;
626
627 rep.zprl_children++;
628
629 verify(nvlist_lookup_string(cnv,
630 ZPOOL_CONFIG_TYPE, &childtype) == 0);
631
632 /*
633 * If this is a replacing or spare vdev, then
634 * get the real first child of the vdev.
635 */
636 if (strcmp(childtype,
637 VDEV_TYPE_REPLACING) == 0 ||
638 strcmp(childtype, VDEV_TYPE_SPARE) == 0) {
639 nvlist_t **rchild;
640 uint_t rchildren;
641
642 verify(nvlist_lookup_nvlist_array(cnv,
643 ZPOOL_CONFIG_CHILDREN, &rchild,
644 &rchildren) == 0);
645 assert(rchildren == 2);
646 cnv = rchild[0];
647
648 verify(nvlist_lookup_string(cnv,
649 ZPOOL_CONFIG_TYPE,
650 &childtype) == 0);
651 }
652
653 verify(nvlist_lookup_string(cnv,
654 ZPOOL_CONFIG_PATH, &path) == 0);
655
656 /*
657 * If we have a raidz/mirror that combines disks
658 * with files, report it as an error.
659 */
660 if (!dontreport && type != NULL &&
661 strcmp(type, childtype) != 0) {
662 if (ret != NULL)
663 free(ret);
664 ret = NULL;
665 if (fatal)
666 vdev_error(gettext(
667 "mismatched replication "
668 "level: %s contains both "
669 "files and devices\n"),
670 rep.zprl_type);
671 else
672 return (NULL);
673 dontreport = B_TRUE;
674 }
675
676 /*
677 * According to stat(2), the value of 'st_size'
678 * is undefined for block devices and character
679 * devices. But there is no effective way to
680 * determine the real size in userland.
681 *
682 * Instead, we'll take advantage of an
683 * implementation detail of spec_size(). If the
684 * device is currently open, then we (should)
685 * return a valid size.
686 *
687 * If we still don't get a valid size (indicated
688 * by a size of 0 or MAXOFFSET_T), then ignore
689 * this device altogether.
690 */
691 if ((fd = open(path, O_RDONLY)) >= 0) {
692 err = fstat64(fd, &statbuf);
693 (void) close(fd);
694 } else {
695 err = stat64(path, &statbuf);
696 }
697
698 if (err != 0 ||
699 statbuf.st_size == 0 ||
700 statbuf.st_size == MAXOFFSET_T)
701 continue;
702
703 size = statbuf.st_size;
704
705 /*
706 * Also make sure that devices and
707 * slices have a consistent size. If
708 * they differ by a significant amount
709 * (~16MB) then report an error.
710 */
711 if (!dontreport &&
712 (vdev_size != -1ULL &&
713 (labs(size - vdev_size) >
714 ZPOOL_FUZZ))) {
715 if (ret != NULL)
716 free(ret);
717 ret = NULL;
718 if (fatal)
719 vdev_error(gettext(
720 "%s contains devices of "
721 "different sizes\n"),
722 rep.zprl_type);
723 else
724 return (NULL);
725 dontreport = B_TRUE;
726 }
727
728 type = childtype;
729 vdev_size = size;
730 }
731 }
732
733 /*
734 * At this point, we have the replication of the last toplevel
735 * vdev in 'rep'. Compare it to 'lastrep' to see if its
736 * different.
737 */
738 if (lastrep.zprl_type != NULL) {
739 if (strcmp(lastrep.zprl_type, rep.zprl_type) != 0) {
740 if (ret != NULL)
741 free(ret);
742 ret = NULL;
743 if (fatal)
744 vdev_error(gettext(
745 "mismatched replication level: "
746 "both %s and %s vdevs are "
747 "present\n"),
748 lastrep.zprl_type, rep.zprl_type);
749 else
750 return (NULL);
751 } else if (lastrep.zprl_parity != rep.zprl_parity) {
752 if (ret)
753 free(ret);
754 ret = NULL;
755 if (fatal)
756 vdev_error(gettext(
757 "mismatched replication level: "
758 "both %llu and %llu device parity "
759 "%s vdevs are present\n"),
760 lastrep.zprl_parity,
761 rep.zprl_parity,
762 rep.zprl_type);
763 else
764 return (NULL);
765 } else if (lastrep.zprl_children != rep.zprl_children) {
766 if (ret)
767 free(ret);
768 ret = NULL;
769 if (fatal)
770 vdev_error(gettext(
771 "mismatched replication level: "
772 "both %llu-way and %llu-way %s "
773 "vdevs are present\n"),
774 lastrep.zprl_children,
775 rep.zprl_children,
776 rep.zprl_type);
777 else
778 return (NULL);
779 }
780 }
781 lastrep = rep;
782 }
783
784 if (ret != NULL)
785 *ret = rep;
786
787 return (ret);
788 }
789
790 /*
791 * Check the replication level of the vdev spec against the current pool. Calls
792 * get_replication() to make sure the new spec is self-consistent. If the pool
793 * has a consistent replication level, then we ignore any errors. Otherwise,
794 * report any difference between the two.
795 */
796 static int
check_replication(nvlist_t * config,nvlist_t * newroot)797 check_replication(nvlist_t *config, nvlist_t *newroot)
798 {
799 nvlist_t **child;
800 uint_t children;
801 replication_level_t *current = NULL, *new;
802 int ret;
803
804 /*
805 * If we have a current pool configuration, check to see if it's
806 * self-consistent. If not, simply return success.
807 */
808 if (config != NULL) {
809 nvlist_t *nvroot;
810
811 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
812 &nvroot) == 0);
813 if ((current = get_replication(nvroot, B_FALSE)) == NULL)
814 return (0);
815 }
816 /*
817 * for spares there may be no children, and therefore no
818 * replication level to check
819 */
820 if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN,
821 &child, &children) != 0) || (children == 0)) {
822 free(current);
823 return (0);
824 }
825
826 /*
827 * If all we have is logs then there's no replication level to check.
828 */
829 if (num_logs(newroot) == children) {
830 free(current);
831 return (0);
832 }
833
834 /*
835 * Get the replication level of the new vdev spec, reporting any
836 * inconsistencies found.
837 */
838 if ((new = get_replication(newroot, B_TRUE)) == NULL) {
839 free(current);
840 return (-1);
841 }
842
843 /*
844 * Check to see if the new vdev spec matches the replication level of
845 * the current pool.
846 */
847 ret = 0;
848 if (current != NULL) {
849 if (strcmp(current->zprl_type, new->zprl_type) != 0) {
850 vdev_error(gettext(
851 "mismatched replication level: pool uses %s "
852 "and new vdev is %s\n"),
853 current->zprl_type, new->zprl_type);
854 ret = -1;
855 } else if (current->zprl_parity != new->zprl_parity) {
856 vdev_error(gettext(
857 "mismatched replication level: pool uses %llu "
858 "device parity and new vdev uses %llu\n"),
859 current->zprl_parity, new->zprl_parity);
860 ret = -1;
861 } else if (current->zprl_children != new->zprl_children) {
862 vdev_error(gettext(
863 "mismatched replication level: pool uses %llu-way "
864 "%s and new vdev uses %llu-way %s\n"),
865 current->zprl_children, current->zprl_type,
866 new->zprl_children, new->zprl_type);
867 ret = -1;
868 }
869 }
870
871 free(new);
872 if (current != NULL)
873 free(current);
874
875 return (ret);
876 }
877
878 /*
879 * Go through and find any whole disks in the vdev specification, labelling them
880 * as appropriate. When constructing the vdev spec, we were unable to open this
881 * device in order to provide a devid. Now that we have labelled the disk and
882 * know that slice 0 is valid, we can construct the devid now.
883 *
884 * If the disk was already labeled with an EFI label, we will have gotten the
885 * devid already (because we were able to open the whole disk). Otherwise, we
886 * need to get the devid after we label the disk.
887 */
888 static int
make_disks(zpool_handle_t * zhp,nvlist_t * nv)889 make_disks(zpool_handle_t *zhp, nvlist_t *nv)
890 {
891 nvlist_t **child;
892 uint_t c, children;
893 char *type, *path, *diskname;
894 char buf[MAXPATHLEN];
895 uint64_t wholedisk;
896 int fd;
897 int ret;
898 ddi_devid_t devid;
899 char *minor = NULL, *devid_str = NULL;
900
901 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
902
903 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
904 &child, &children) != 0) {
905
906 if (strcmp(type, VDEV_TYPE_DISK) != 0)
907 return (0);
908
909 /*
910 * We have a disk device. Get the path to the device
911 * and see if it's a whole disk by appending the backup
912 * slice and stat()ing the device.
913 */
914 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
915 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
916 &wholedisk) != 0 || !wholedisk)
917 return (0);
918
919 diskname = strrchr(path, '/');
920 assert(diskname != NULL);
921 diskname++;
922 if (zpool_label_disk(g_zfs, zhp, diskname) == -1)
923 return (-1);
924
925 /*
926 * Fill in the devid, now that we've labeled the disk.
927 */
928 (void) snprintf(buf, sizeof (buf), "%ss0", path);
929 if ((fd = open(buf, O_RDONLY)) < 0) {
930 (void) fprintf(stderr,
931 gettext("cannot open '%s': %s\n"),
932 buf, strerror(errno));
933 return (-1);
934 }
935
936 if (devid_get(fd, &devid) == 0) {
937 if (devid_get_minor_name(fd, &minor) == 0 &&
938 (devid_str = devid_str_encode(devid, minor)) !=
939 NULL) {
940 verify(nvlist_add_string(nv,
941 ZPOOL_CONFIG_DEVID, devid_str) == 0);
942 }
943 if (devid_str != NULL)
944 devid_str_free(devid_str);
945 if (minor != NULL)
946 devid_str_free(minor);
947 devid_free(devid);
948 }
949
950 /*
951 * Update the path to refer to the 's0' slice. The presence of
952 * the 'whole_disk' field indicates to the CLI that we should
953 * chop off the slice number when displaying the device in
954 * future output.
955 */
956 verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, buf) == 0);
957
958 (void) close(fd);
959
960 return (0);
961 }
962
963 for (c = 0; c < children; c++)
964 if ((ret = make_disks(zhp, child[c])) != 0)
965 return (ret);
966
967 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
968 &child, &children) == 0)
969 for (c = 0; c < children; c++)
970 if ((ret = make_disks(zhp, child[c])) != 0)
971 return (ret);
972
973 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
974 &child, &children) == 0)
975 for (c = 0; c < children; c++)
976 if ((ret = make_disks(zhp, child[c])) != 0)
977 return (ret);
978
979 return (0);
980 }
981
982 /*
983 * Determine if the given path is a hot spare within the given configuration.
984 */
985 static boolean_t
is_spare(nvlist_t * config,const char * path)986 is_spare(nvlist_t *config, const char *path)
987 {
988 int fd;
989 pool_state_t state;
990 char *name = NULL;
991 nvlist_t *label;
992 uint64_t guid, spareguid;
993 nvlist_t *nvroot;
994 nvlist_t **spares;
995 uint_t i, nspares;
996 boolean_t inuse;
997
998 if ((fd = open(path, O_RDONLY)) < 0)
999 return (B_FALSE);
1000
1001 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
1002 !inuse ||
1003 state != POOL_STATE_SPARE ||
1004 zpool_read_label(fd, &label) != 0) {
1005 free(name);
1006 (void) close(fd);
1007 return (B_FALSE);
1008 }
1009 free(name);
1010 (void) close(fd);
1011
1012 verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
1013 nvlist_free(label);
1014
1015 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1016 &nvroot) == 0);
1017 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1018 &spares, &nspares) == 0) {
1019 for (i = 0; i < nspares; i++) {
1020 verify(nvlist_lookup_uint64(spares[i],
1021 ZPOOL_CONFIG_GUID, &spareguid) == 0);
1022 if (spareguid == guid)
1023 return (B_TRUE);
1024 }
1025 }
1026
1027 return (B_FALSE);
1028 }
1029
1030 /*
1031 * Go through and find any devices that are in use. We rely on libdiskmgt for
1032 * the majority of this task.
1033 */
1034 static boolean_t
is_device_in_use(nvlist_t * config,nvlist_t * nv,boolean_t force,boolean_t replacing,boolean_t isspare)1035 is_device_in_use(nvlist_t *config, nvlist_t *nv, boolean_t force,
1036 boolean_t replacing, boolean_t isspare)
1037 {
1038 nvlist_t **child;
1039 uint_t c, children;
1040 char *type, *path;
1041 int ret = 0;
1042 char buf[MAXPATHLEN];
1043 uint64_t wholedisk;
1044 boolean_t anyinuse = B_FALSE;
1045
1046 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1047
1048 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1049 &child, &children) != 0) {
1050
1051 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
1052
1053 /*
1054 * As a generic check, we look to see if this is a replace of a
1055 * hot spare within the same pool. If so, we allow it
1056 * regardless of what libdiskmgt or zpool_in_use() says.
1057 */
1058 if (replacing) {
1059 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
1060 &wholedisk) == 0 && wholedisk)
1061 (void) snprintf(buf, sizeof (buf), "%ss0",
1062 path);
1063 else
1064 (void) strlcpy(buf, path, sizeof (buf));
1065
1066 if (is_spare(config, buf))
1067 return (B_FALSE);
1068 }
1069
1070 if (strcmp(type, VDEV_TYPE_DISK) == 0)
1071 ret = check_device(path, force, isspare);
1072 else if (strcmp(type, VDEV_TYPE_FILE) == 0)
1073 ret = check_file(path, force, isspare);
1074
1075 return (ret != 0);
1076 }
1077
1078 for (c = 0; c < children; c++)
1079 if (is_device_in_use(config, child[c], force, replacing,
1080 B_FALSE))
1081 anyinuse = B_TRUE;
1082
1083 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1084 &child, &children) == 0)
1085 for (c = 0; c < children; c++)
1086 if (is_device_in_use(config, child[c], force, replacing,
1087 B_TRUE))
1088 anyinuse = B_TRUE;
1089
1090 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1091 &child, &children) == 0)
1092 for (c = 0; c < children; c++)
1093 if (is_device_in_use(config, child[c], force, replacing,
1094 B_FALSE))
1095 anyinuse = B_TRUE;
1096
1097 return (anyinuse);
1098 }
1099
1100 static const char *
is_grouping(const char * type,int * mindev,int * maxdev)1101 is_grouping(const char *type, int *mindev, int *maxdev)
1102 {
1103 if (strncmp(type, "raidz", 5) == 0) {
1104 const char *p = type + 5;
1105 char *end;
1106 long nparity;
1107
1108 if (*p == '\0') {
1109 nparity = 1;
1110 } else if (*p == '0') {
1111 return (NULL); /* no zero prefixes allowed */
1112 } else {
1113 errno = 0;
1114 nparity = strtol(p, &end, 10);
1115 if (errno != 0 || nparity < 1 || nparity >= 255 ||
1116 *end != '\0')
1117 return (NULL);
1118 }
1119
1120 if (mindev != NULL)
1121 *mindev = nparity + 1;
1122 if (maxdev != NULL)
1123 *maxdev = 255;
1124 return (VDEV_TYPE_RAIDZ);
1125 }
1126
1127 if (maxdev != NULL)
1128 *maxdev = INT_MAX;
1129
1130 if (strcmp(type, "mirror") == 0) {
1131 if (mindev != NULL)
1132 *mindev = 2;
1133 return (VDEV_TYPE_MIRROR);
1134 }
1135
1136 if (strcmp(type, "spare") == 0) {
1137 if (mindev != NULL)
1138 *mindev = 1;
1139 return (VDEV_TYPE_SPARE);
1140 }
1141
1142 if (strcmp(type, "log") == 0) {
1143 if (mindev != NULL)
1144 *mindev = 1;
1145 return (VDEV_TYPE_LOG);
1146 }
1147
1148 if (strcmp(type, "cache") == 0) {
1149 if (mindev != NULL)
1150 *mindev = 1;
1151 return (VDEV_TYPE_L2CACHE);
1152 }
1153
1154 return (NULL);
1155 }
1156
1157 /*
1158 * Construct a syntactically valid vdev specification,
1159 * and ensure that all devices and files exist and can be opened.
1160 * Note: we don't bother freeing anything in the error paths
1161 * because the program is just going to exit anyway.
1162 */
1163 nvlist_t *
construct_spec(int argc,char ** argv)1164 construct_spec(int argc, char **argv)
1165 {
1166 nvlist_t *nvroot, *nv, **top, **spares, **l2cache;
1167 int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache;
1168 const char *type;
1169 uint64_t is_log;
1170 boolean_t seen_logs;
1171
1172 top = NULL;
1173 toplevels = 0;
1174 spares = NULL;
1175 l2cache = NULL;
1176 nspares = 0;
1177 nlogs = 0;
1178 nl2cache = 0;
1179 is_log = B_FALSE;
1180 seen_logs = B_FALSE;
1181
1182 while (argc > 0) {
1183 nv = NULL;
1184
1185 /*
1186 * If it's a mirror or raidz, the subsequent arguments are
1187 * its leaves -- until we encounter the next mirror or raidz.
1188 */
1189 if ((type = is_grouping(argv[0], &mindev, &maxdev)) != NULL) {
1190 nvlist_t **child = NULL;
1191 int c, children = 0;
1192
1193 if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1194 if (spares != NULL) {
1195 (void) fprintf(stderr,
1196 gettext("invalid vdev "
1197 "specification: 'spare' can be "
1198 "specified only once\n"));
1199 return (NULL);
1200 }
1201 is_log = B_FALSE;
1202 }
1203
1204 if (strcmp(type, VDEV_TYPE_LOG) == 0) {
1205 if (seen_logs) {
1206 (void) fprintf(stderr,
1207 gettext("invalid vdev "
1208 "specification: 'log' can be "
1209 "specified only once\n"));
1210 return (NULL);
1211 }
1212 seen_logs = B_TRUE;
1213 is_log = B_TRUE;
1214 argc--;
1215 argv++;
1216 /*
1217 * A log is not a real grouping device.
1218 * We just set is_log and continue.
1219 */
1220 continue;
1221 }
1222
1223 if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1224 if (l2cache != NULL) {
1225 (void) fprintf(stderr,
1226 gettext("invalid vdev "
1227 "specification: 'cache' can be "
1228 "specified only once\n"));
1229 return (NULL);
1230 }
1231 is_log = B_FALSE;
1232 }
1233
1234 if (is_log) {
1235 if (strcmp(type, VDEV_TYPE_MIRROR) != 0) {
1236 (void) fprintf(stderr,
1237 gettext("invalid vdev "
1238 "specification: unsupported 'log' "
1239 "device: %s\n"), type);
1240 return (NULL);
1241 }
1242 nlogs++;
1243 }
1244
1245 for (c = 1; c < argc; c++) {
1246 if (is_grouping(argv[c], NULL, NULL) != NULL)
1247 break;
1248 children++;
1249 child = realloc(child,
1250 children * sizeof (nvlist_t *));
1251 if (child == NULL)
1252 zpool_no_memory();
1253 if ((nv = make_leaf_vdev(argv[c], B_FALSE))
1254 == NULL)
1255 return (NULL);
1256 child[children - 1] = nv;
1257 }
1258
1259 if (children < mindev) {
1260 (void) fprintf(stderr, gettext("invalid vdev "
1261 "specification: %s requires at least %d "
1262 "devices\n"), argv[0], mindev);
1263 return (NULL);
1264 }
1265
1266 if (children > maxdev) {
1267 (void) fprintf(stderr, gettext("invalid vdev "
1268 "specification: %s supports no more than "
1269 "%d devices\n"), argv[0], maxdev);
1270 return (NULL);
1271 }
1272
1273 argc -= c;
1274 argv += c;
1275
1276 if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1277 spares = child;
1278 nspares = children;
1279 continue;
1280 } else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1281 l2cache = child;
1282 nl2cache = children;
1283 continue;
1284 } else {
1285 verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
1286 0) == 0);
1287 verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
1288 type) == 0);
1289 verify(nvlist_add_uint64(nv,
1290 ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1291 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
1292 verify(nvlist_add_uint64(nv,
1293 ZPOOL_CONFIG_NPARITY,
1294 mindev - 1) == 0);
1295 }
1296 verify(nvlist_add_nvlist_array(nv,
1297 ZPOOL_CONFIG_CHILDREN, child,
1298 children) == 0);
1299
1300 for (c = 0; c < children; c++)
1301 nvlist_free(child[c]);
1302 free(child);
1303 }
1304 } else {
1305 /*
1306 * We have a device. Pass off to make_leaf_vdev() to
1307 * construct the appropriate nvlist describing the vdev.
1308 */
1309 if ((nv = make_leaf_vdev(argv[0], is_log)) == NULL)
1310 return (NULL);
1311 if (is_log)
1312 nlogs++;
1313 argc--;
1314 argv++;
1315 }
1316
1317 toplevels++;
1318 top = realloc(top, toplevels * sizeof (nvlist_t *));
1319 if (top == NULL)
1320 zpool_no_memory();
1321 top[toplevels - 1] = nv;
1322 }
1323
1324 if (toplevels == 0 && nspares == 0 && nl2cache == 0) {
1325 (void) fprintf(stderr, gettext("invalid vdev "
1326 "specification: at least one toplevel vdev must be "
1327 "specified\n"));
1328 return (NULL);
1329 }
1330
1331 if (seen_logs && nlogs == 0) {
1332 (void) fprintf(stderr, gettext("invalid vdev specification: "
1333 "log requires at least 1 device\n"));
1334 return (NULL);
1335 }
1336
1337 /*
1338 * Finally, create nvroot and add all top-level vdevs to it.
1339 */
1340 verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1341 verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1342 VDEV_TYPE_ROOT) == 0);
1343 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1344 top, toplevels) == 0);
1345 if (nspares != 0)
1346 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1347 spares, nspares) == 0);
1348 if (nl2cache != 0)
1349 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1350 l2cache, nl2cache) == 0);
1351
1352 for (t = 0; t < toplevels; t++)
1353 nvlist_free(top[t]);
1354 for (t = 0; t < nspares; t++)
1355 nvlist_free(spares[t]);
1356 for (t = 0; t < nl2cache; t++)
1357 nvlist_free(l2cache[t]);
1358 if (spares)
1359 free(spares);
1360 if (l2cache)
1361 free(l2cache);
1362 free(top);
1363
1364 return (nvroot);
1365 }
1366
1367 nvlist_t *
split_mirror_vdev(zpool_handle_t * zhp,char * newname,nvlist_t * props,splitflags_t flags,int argc,char ** argv)1368 split_mirror_vdev(zpool_handle_t *zhp, char *newname, nvlist_t *props,
1369 splitflags_t flags, int argc, char **argv)
1370 {
1371 nvlist_t *newroot = NULL, **child;
1372 uint_t c, children;
1373
1374 if (argc > 0) {
1375 if ((newroot = construct_spec(argc, argv)) == NULL) {
1376 (void) fprintf(stderr, gettext("Unable to build a "
1377 "pool from the specified devices\n"));
1378 return (NULL);
1379 }
1380
1381 if (!flags.dryrun && make_disks(zhp, newroot) != 0) {
1382 nvlist_free(newroot);
1383 return (NULL);
1384 }
1385
1386 /* avoid any tricks in the spec */
1387 verify(nvlist_lookup_nvlist_array(newroot,
1388 ZPOOL_CONFIG_CHILDREN, &child, &children) == 0);
1389 for (c = 0; c < children; c++) {
1390 char *path;
1391 const char *type;
1392 int min, max;
1393
1394 verify(nvlist_lookup_string(child[c],
1395 ZPOOL_CONFIG_PATH, &path) == 0);
1396 if ((type = is_grouping(path, &min, &max)) != NULL) {
1397 (void) fprintf(stderr, gettext("Cannot use "
1398 "'%s' as a device for splitting\n"), type);
1399 nvlist_free(newroot);
1400 return (NULL);
1401 }
1402 }
1403 }
1404
1405 if (zpool_vdev_split(zhp, newname, &newroot, props, flags) != 0) {
1406 nvlist_free(newroot);
1407 return (NULL);
1408 }
1409
1410 return (newroot);
1411 }
1412
1413 /*
1414 * Get and validate the contents of the given vdev specification. This ensures
1415 * that the nvlist returned is well-formed, that all the devices exist, and that
1416 * they are not currently in use by any other known consumer. The 'poolconfig'
1417 * parameter is the current configuration of the pool when adding devices
1418 * existing pool, and is used to perform additional checks, such as changing the
1419 * replication level of the pool. It can be 'NULL' to indicate that this is a
1420 * new pool. The 'force' flag controls whether devices should be forcefully
1421 * added, even if they appear in use.
1422 */
1423 nvlist_t *
make_root_vdev(zpool_handle_t * zhp,int force,int check_rep,boolean_t replacing,boolean_t dryrun,int argc,char ** argv)1424 make_root_vdev(zpool_handle_t *zhp, int force, int check_rep,
1425 boolean_t replacing, boolean_t dryrun, int argc, char **argv)
1426 {
1427 nvlist_t *newroot;
1428 nvlist_t *poolconfig = NULL;
1429 is_force = force;
1430
1431 /*
1432 * Construct the vdev specification. If this is successful, we know
1433 * that we have a valid specification, and that all devices can be
1434 * opened.
1435 */
1436 if ((newroot = construct_spec(argc, argv)) == NULL)
1437 return (NULL);
1438
1439 if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL))
1440 return (NULL);
1441
1442 /*
1443 * Validate each device to make sure that its not shared with another
1444 * subsystem. We do this even if 'force' is set, because there are some
1445 * uses (such as a dedicated dump device) that even '-f' cannot
1446 * override.
1447 */
1448 if (is_device_in_use(poolconfig, newroot, force, replacing, B_FALSE)) {
1449 nvlist_free(newroot);
1450 return (NULL);
1451 }
1452
1453 /*
1454 * Check the replication level of the given vdevs and report any errors
1455 * found. We include the existing pool spec, if any, as we need to
1456 * catch changes against the existing replication level.
1457 */
1458 if (check_rep && check_replication(poolconfig, newroot) != 0) {
1459 nvlist_free(newroot);
1460 return (NULL);
1461 }
1462
1463 /*
1464 * Run through the vdev specification and label any whole disks found.
1465 */
1466 if (!dryrun && make_disks(zhp, newroot) != 0) {
1467 nvlist_free(newroot);
1468 return (NULL);
1469 }
1470
1471 return (newroot);
1472 }
1473