1 /*
2 * SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2018, The Linux Foundation
4 */
5
6 #include <linux/clk.h>
7 #include <linux/clk-provider.h>
8 #include <linux/iopoll.h>
9
10 #include "dsi_phy.h"
11 #include "dsi.xml.h"
12 #include "dsi_phy_7nm.xml.h"
13
14 /*
15 * DSI PLL 7nm - clock diagram (eg: DSI0): TODO: updated CPHY diagram
16 *
17 * dsi0_pll_out_div_clk dsi0_pll_bit_clk
18 * | |
19 * | |
20 * +---------+ | +----------+ | +----+
21 * dsi0vco_clk ---| out_div |--o--| divl_3_0 |--o--| /8 |-- dsi0_phy_pll_out_byteclk
22 * +---------+ | +----------+ | +----+
23 * | |
24 * | | dsi0_pll_by_2_bit_clk
25 * | | |
26 * | | +----+ | |\ dsi0_pclk_mux
27 * | |--| /2 |--o--| \ |
28 * | | +----+ | \ | +---------+
29 * | --------------| |--o--| div_7_4 |-- dsi0_phy_pll_out_dsiclk
30 * |------------------------------| / +---------+
31 * | +-----+ | /
32 * -----------| /4? |--o----------|/
33 * +-----+ | |
34 * | |dsiclk_sel
35 * |
36 * dsi0_pll_post_out_div_clk
37 */
38
39 #define VCO_REF_CLK_RATE 19200000
40 #define FRAC_BITS 18
41
42 /* Hardware is pre V4.1 */
43 #define DSI_PHY_7NM_QUIRK_PRE_V4_1 BIT(0)
44 /* Hardware is V4.1 */
45 #define DSI_PHY_7NM_QUIRK_V4_1 BIT(1)
46 /* Hardware is V4.2 */
47 #define DSI_PHY_7NM_QUIRK_V4_2 BIT(2)
48 /* Hardware is V4.3 */
49 #define DSI_PHY_7NM_QUIRK_V4_3 BIT(3)
50 /* Hardware is V5.2 */
51 #define DSI_PHY_7NM_QUIRK_V5_2 BIT(4)
52
53 struct dsi_pll_config {
54 bool enable_ssc;
55 bool ssc_center;
56 u32 ssc_freq;
57 u32 ssc_offset;
58 u32 ssc_adj_per;
59
60 /* out */
61 u32 decimal_div_start;
62 u32 frac_div_start;
63 u32 pll_clock_inverters;
64 u32 ssc_stepsize;
65 u32 ssc_div_per;
66 };
67
68 struct pll_7nm_cached_state {
69 unsigned long vco_rate;
70 u8 bit_clk_div;
71 u8 pix_clk_div;
72 u8 pll_out_div;
73 u8 pll_mux;
74 };
75
76 struct dsi_pll_7nm {
77 struct clk_hw clk_hw;
78
79 struct msm_dsi_phy *phy;
80
81 u64 vco_current_rate;
82
83 /* protects REG_DSI_7nm_PHY_CMN_CLK_CFG0 register */
84 spinlock_t postdiv_lock;
85
86 /* protects REG_DSI_7nm_PHY_CMN_CLK_CFG1 register */
87 spinlock_t pclk_mux_lock;
88
89 struct pll_7nm_cached_state cached_state;
90
91 struct dsi_pll_7nm *slave;
92 };
93
94 #define to_pll_7nm(x) container_of(x, struct dsi_pll_7nm, clk_hw)
95
96 /*
97 * Global list of private DSI PLL struct pointers. We need this for bonded DSI
98 * mode, where the master PLL's clk_ops needs access the slave's private data
99 */
100 static struct dsi_pll_7nm *pll_7nm_list[DSI_MAX];
101
dsi_pll_setup_config(struct dsi_pll_config * config)102 static void dsi_pll_setup_config(struct dsi_pll_config *config)
103 {
104 config->ssc_freq = 31500;
105 config->ssc_offset = 4800;
106 config->ssc_adj_per = 2;
107
108 /* TODO: ssc enable */
109 config->enable_ssc = false;
110 config->ssc_center = 0;
111 }
112
dsi_pll_calc_dec_frac(struct dsi_pll_7nm * pll,struct dsi_pll_config * config)113 static void dsi_pll_calc_dec_frac(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
114 {
115 u64 fref = VCO_REF_CLK_RATE;
116 u64 pll_freq;
117 u64 divider;
118 u64 dec, dec_multiple;
119 u32 frac;
120 u64 multiplier;
121
122 pll_freq = pll->vco_current_rate;
123
124 divider = fref * 2;
125
126 multiplier = 1 << FRAC_BITS;
127 dec_multiple = div_u64(pll_freq * multiplier, divider);
128 dec = div_u64_rem(dec_multiple, multiplier, &frac);
129
130 if (pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_PRE_V4_1)
131 config->pll_clock_inverters = 0x28;
132 else if ((pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2)) {
133 if (pll_freq <= 1300000000ULL)
134 config->pll_clock_inverters = 0xa0;
135 else if (pll_freq <= 2500000000ULL)
136 config->pll_clock_inverters = 0x20;
137 else if (pll_freq <= 4000000000ULL)
138 config->pll_clock_inverters = 0x00;
139 else
140 config->pll_clock_inverters = 0x40;
141 } else if (pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1) {
142 if (pll_freq <= 1000000000ULL)
143 config->pll_clock_inverters = 0xa0;
144 else if (pll_freq <= 2500000000ULL)
145 config->pll_clock_inverters = 0x20;
146 else if (pll_freq <= 3020000000ULL)
147 config->pll_clock_inverters = 0x00;
148 else
149 config->pll_clock_inverters = 0x40;
150 } else {
151 /* 4.2, 4.3 */
152 if (pll_freq <= 1000000000ULL)
153 config->pll_clock_inverters = 0xa0;
154 else if (pll_freq <= 2500000000ULL)
155 config->pll_clock_inverters = 0x20;
156 else if (pll_freq <= 3500000000ULL)
157 config->pll_clock_inverters = 0x00;
158 else
159 config->pll_clock_inverters = 0x40;
160 }
161
162 config->decimal_div_start = dec;
163 config->frac_div_start = frac;
164 }
165
166 #define SSC_CENTER BIT(0)
167 #define SSC_EN BIT(1)
168
dsi_pll_calc_ssc(struct dsi_pll_7nm * pll,struct dsi_pll_config * config)169 static void dsi_pll_calc_ssc(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
170 {
171 u32 ssc_per;
172 u32 ssc_mod;
173 u64 ssc_step_size;
174 u64 frac;
175
176 if (!config->enable_ssc) {
177 DBG("SSC not enabled\n");
178 return;
179 }
180
181 ssc_per = DIV_ROUND_CLOSEST(VCO_REF_CLK_RATE, config->ssc_freq) / 2 - 1;
182 ssc_mod = (ssc_per + 1) % (config->ssc_adj_per + 1);
183 ssc_per -= ssc_mod;
184
185 frac = config->frac_div_start;
186 ssc_step_size = config->decimal_div_start;
187 ssc_step_size *= (1 << FRAC_BITS);
188 ssc_step_size += frac;
189 ssc_step_size *= config->ssc_offset;
190 ssc_step_size *= (config->ssc_adj_per + 1);
191 ssc_step_size = div_u64(ssc_step_size, (ssc_per + 1));
192 ssc_step_size = DIV_ROUND_CLOSEST_ULL(ssc_step_size, 1000000);
193
194 config->ssc_div_per = ssc_per;
195 config->ssc_stepsize = ssc_step_size;
196
197 pr_debug("SCC: Dec:%d, frac:%llu, frac_bits:%d\n",
198 config->decimal_div_start, frac, FRAC_BITS);
199 pr_debug("SSC: div_per:0x%X, stepsize:0x%X, adjper:0x%X\n",
200 ssc_per, (u32)ssc_step_size, config->ssc_adj_per);
201 }
202
dsi_pll_ssc_commit(struct dsi_pll_7nm * pll,struct dsi_pll_config * config)203 static void dsi_pll_ssc_commit(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
204 {
205 void __iomem *base = pll->phy->pll_base;
206
207 if (config->enable_ssc) {
208 pr_debug("SSC is enabled\n");
209
210 writel(config->ssc_stepsize & 0xff,
211 base + REG_DSI_7nm_PHY_PLL_SSC_STEPSIZE_LOW_1);
212 writel(config->ssc_stepsize >> 8,
213 base + REG_DSI_7nm_PHY_PLL_SSC_STEPSIZE_HIGH_1);
214 writel(config->ssc_div_per & 0xff,
215 base + REG_DSI_7nm_PHY_PLL_SSC_DIV_PER_LOW_1);
216 writel(config->ssc_div_per >> 8,
217 base + REG_DSI_7nm_PHY_PLL_SSC_DIV_PER_HIGH_1);
218 writel(config->ssc_adj_per & 0xff,
219 base + REG_DSI_7nm_PHY_PLL_SSC_ADJPER_LOW_1);
220 writel(config->ssc_adj_per >> 8,
221 base + REG_DSI_7nm_PHY_PLL_SSC_ADJPER_HIGH_1);
222 writel(SSC_EN | (config->ssc_center ? SSC_CENTER : 0),
223 base + REG_DSI_7nm_PHY_PLL_SSC_CONTROL);
224 }
225 }
226
dsi_pll_config_hzindep_reg(struct dsi_pll_7nm * pll)227 static void dsi_pll_config_hzindep_reg(struct dsi_pll_7nm *pll)
228 {
229 void __iomem *base = pll->phy->pll_base;
230 u8 analog_controls_five_1 = 0x01, vco_config_1 = 0x00;
231
232 if (!(pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_PRE_V4_1))
233 if (pll->vco_current_rate >= 3100000000ULL)
234 analog_controls_five_1 = 0x03;
235
236 if (pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1) {
237 if (pll->vco_current_rate < 1520000000ULL)
238 vco_config_1 = 0x08;
239 else if (pll->vco_current_rate < 2990000000ULL)
240 vco_config_1 = 0x01;
241 }
242
243 if ((pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_2) ||
244 (pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_3)) {
245 if (pll->vco_current_rate < 1520000000ULL)
246 vco_config_1 = 0x08;
247 else if (pll->vco_current_rate >= 2990000000ULL)
248 vco_config_1 = 0x01;
249 }
250
251 if ((pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2)) {
252 if (pll->vco_current_rate < 1557000000ULL)
253 vco_config_1 = 0x08;
254 else
255 vco_config_1 = 0x01;
256 }
257
258 writel(analog_controls_five_1, base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_FIVE_1);
259 writel(vco_config_1, base + REG_DSI_7nm_PHY_PLL_VCO_CONFIG_1);
260 writel(0x01, base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_FIVE);
261 writel(0x03, base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_TWO);
262 writel(0x00, base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_THREE);
263 writel(0x00, base + REG_DSI_7nm_PHY_PLL_DSM_DIVIDER);
264 writel(0x4e, base + REG_DSI_7nm_PHY_PLL_FEEDBACK_DIVIDER);
265 writel(0x40, base + REG_DSI_7nm_PHY_PLL_CALIBRATION_SETTINGS);
266 writel(0xba, base + REG_DSI_7nm_PHY_PLL_BAND_SEL_CAL_SETTINGS_THREE);
267 writel(0x0c, base + REG_DSI_7nm_PHY_PLL_FREQ_DETECT_SETTINGS_ONE);
268 writel(0x00, base + REG_DSI_7nm_PHY_PLL_OUTDIV);
269 writel(0x00, base + REG_DSI_7nm_PHY_PLL_CORE_OVERRIDE);
270 writel(0x08, base + REG_DSI_7nm_PHY_PLL_PLL_DIGITAL_TIMERS_TWO);
271 writel(0x0a, base + REG_DSI_7nm_PHY_PLL_PLL_PROP_GAIN_RATE_1);
272 writel(0xc0, base + REG_DSI_7nm_PHY_PLL_PLL_BAND_SEL_RATE_1);
273 writel(0x84, base + REG_DSI_7nm_PHY_PLL_PLL_INT_GAIN_IFILT_BAND_1);
274 writel(0x82, base + REG_DSI_7nm_PHY_PLL_PLL_INT_GAIN_IFILT_BAND_1);
275 writel(0x4c, base + REG_DSI_7nm_PHY_PLL_PLL_FL_INT_GAIN_PFILT_BAND_1);
276 writel(0x80, base + REG_DSI_7nm_PHY_PLL_PLL_LOCK_OVERRIDE);
277 writel(0x29, base + REG_DSI_7nm_PHY_PLL_PFILT);
278 writel(0x2f, base + REG_DSI_7nm_PHY_PLL_PFILT);
279 writel(0x2a, base + REG_DSI_7nm_PHY_PLL_IFILT);
280 writel(!(pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_PRE_V4_1) ? 0x3f : 0x22,
281 base + REG_DSI_7nm_PHY_PLL_IFILT);
282
283 if (!(pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_PRE_V4_1)) {
284 writel(0x22, base + REG_DSI_7nm_PHY_PLL_PERF_OPTIMIZE);
285 if (pll->slave)
286 writel(0x22, pll->slave->phy->pll_base + REG_DSI_7nm_PHY_PLL_PERF_OPTIMIZE);
287 }
288 }
289
dsi_pll_commit(struct dsi_pll_7nm * pll,struct dsi_pll_config * config)290 static void dsi_pll_commit(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
291 {
292 void __iomem *base = pll->phy->pll_base;
293
294 writel(0x12, base + REG_DSI_7nm_PHY_PLL_CORE_INPUT_OVERRIDE);
295 writel(config->decimal_div_start,
296 base + REG_DSI_7nm_PHY_PLL_DECIMAL_DIV_START_1);
297 writel(config->frac_div_start & 0xff,
298 base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_LOW_1);
299 writel((config->frac_div_start & 0xff00) >> 8,
300 base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_MID_1);
301 writel((config->frac_div_start & 0x30000) >> 16,
302 base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_HIGH_1);
303 writel(0x40, base + REG_DSI_7nm_PHY_PLL_PLL_LOCKDET_RATE_1);
304 writel(0x06, base + REG_DSI_7nm_PHY_PLL_PLL_LOCK_DELAY);
305 writel(pll->phy->cphy_mode ? 0x00 : 0x10,
306 base + REG_DSI_7nm_PHY_PLL_CMODE_1);
307 writel(config->pll_clock_inverters,
308 base + REG_DSI_7nm_PHY_PLL_CLOCK_INVERTERS);
309 }
310
dsi_pll_7nm_vco_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)311 static int dsi_pll_7nm_vco_set_rate(struct clk_hw *hw, unsigned long rate,
312 unsigned long parent_rate)
313 {
314 struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
315 struct dsi_pll_config config;
316
317 DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_7nm->phy->id, rate,
318 parent_rate);
319
320 pll_7nm->vco_current_rate = rate;
321
322 dsi_pll_setup_config(&config);
323
324 dsi_pll_calc_dec_frac(pll_7nm, &config);
325
326 dsi_pll_calc_ssc(pll_7nm, &config);
327
328 dsi_pll_commit(pll_7nm, &config);
329
330 dsi_pll_config_hzindep_reg(pll_7nm);
331
332 dsi_pll_ssc_commit(pll_7nm, &config);
333
334 /* flush, ensure all register writes are done*/
335 wmb();
336
337 return 0;
338 }
339
dsi_pll_7nm_lock_status(struct dsi_pll_7nm * pll)340 static int dsi_pll_7nm_lock_status(struct dsi_pll_7nm *pll)
341 {
342 int rc;
343 u32 status = 0;
344 u32 const delay_us = 100;
345 u32 const timeout_us = 5000;
346
347 rc = readl_poll_timeout_atomic(pll->phy->pll_base +
348 REG_DSI_7nm_PHY_PLL_COMMON_STATUS_ONE,
349 status,
350 ((status & BIT(0)) > 0),
351 delay_us,
352 timeout_us);
353 if (rc)
354 pr_err("DSI PLL(%d) lock failed, status=0x%08x\n",
355 pll->phy->id, status);
356
357 return rc;
358 }
359
dsi_pll_disable_pll_bias(struct dsi_pll_7nm * pll)360 static void dsi_pll_disable_pll_bias(struct dsi_pll_7nm *pll)
361 {
362 u32 data = readl(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0);
363
364 writel(0, pll->phy->pll_base + REG_DSI_7nm_PHY_PLL_SYSTEM_MUXES);
365 writel(data & ~BIT(5), pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0);
366 ndelay(250);
367 }
368
dsi_pll_enable_pll_bias(struct dsi_pll_7nm * pll)369 static void dsi_pll_enable_pll_bias(struct dsi_pll_7nm *pll)
370 {
371 u32 data = readl(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0);
372
373 writel(data | BIT(5), pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0);
374 writel(0xc0, pll->phy->pll_base + REG_DSI_7nm_PHY_PLL_SYSTEM_MUXES);
375 ndelay(250);
376 }
377
dsi_pll_cmn_clk_cfg0_write(struct dsi_pll_7nm * pll,u32 val)378 static void dsi_pll_cmn_clk_cfg0_write(struct dsi_pll_7nm *pll, u32 val)
379 {
380 unsigned long flags;
381
382 spin_lock_irqsave(&pll->postdiv_lock, flags);
383 writel(val, pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG0);
384 spin_unlock_irqrestore(&pll->postdiv_lock, flags);
385 }
386
dsi_pll_cmn_clk_cfg1_update(struct dsi_pll_7nm * pll,u32 mask,u32 val)387 static void dsi_pll_cmn_clk_cfg1_update(struct dsi_pll_7nm *pll, u32 mask,
388 u32 val)
389 {
390 unsigned long flags;
391 u32 data;
392
393 spin_lock_irqsave(&pll->pclk_mux_lock, flags);
394 data = readl(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
395 data &= ~mask;
396 data |= val & mask;
397
398 writel(data, pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
399 spin_unlock_irqrestore(&pll->pclk_mux_lock, flags);
400 }
401
dsi_pll_disable_global_clk(struct dsi_pll_7nm * pll)402 static void dsi_pll_disable_global_clk(struct dsi_pll_7nm *pll)
403 {
404 dsi_pll_cmn_clk_cfg1_update(pll, DSI_7nm_PHY_CMN_CLK_CFG1_CLK_EN, 0);
405 }
406
dsi_pll_enable_global_clk(struct dsi_pll_7nm * pll)407 static void dsi_pll_enable_global_clk(struct dsi_pll_7nm *pll)
408 {
409 u32 cfg_1 = DSI_7nm_PHY_CMN_CLK_CFG1_CLK_EN | DSI_7nm_PHY_CMN_CLK_CFG1_CLK_EN_SEL;
410
411 writel(0x04, pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_3);
412 dsi_pll_cmn_clk_cfg1_update(pll, cfg_1, cfg_1);
413 }
414
dsi_pll_phy_dig_reset(struct dsi_pll_7nm * pll)415 static void dsi_pll_phy_dig_reset(struct dsi_pll_7nm *pll)
416 {
417 /*
418 * Reset the PHY digital domain. This would be needed when
419 * coming out of a CX or analog rail power collapse while
420 * ensuring that the pads maintain LP00 or LP11 state
421 */
422 writel(BIT(0), pll->phy->base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE4);
423 wmb(); /* Ensure that the reset is deasserted */
424 writel(0, pll->phy->base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE4);
425 wmb(); /* Ensure that the reset is deasserted */
426 }
427
dsi_pll_7nm_vco_prepare(struct clk_hw * hw)428 static int dsi_pll_7nm_vco_prepare(struct clk_hw *hw)
429 {
430 struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
431 int rc;
432
433 dsi_pll_enable_pll_bias(pll_7nm);
434 if (pll_7nm->slave)
435 dsi_pll_enable_pll_bias(pll_7nm->slave);
436
437 /* Start PLL */
438 writel(BIT(0), pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL);
439
440 /*
441 * ensure all PLL configurations are written prior to checking
442 * for PLL lock.
443 */
444 wmb();
445
446 /* Check for PLL lock */
447 rc = dsi_pll_7nm_lock_status(pll_7nm);
448 if (rc) {
449 pr_err("PLL(%d) lock failed\n", pll_7nm->phy->id);
450 goto error;
451 }
452
453 pll_7nm->phy->pll_on = true;
454
455 /*
456 * assert power on reset for PHY digital in case the PLL is
457 * enabled after CX of analog domain power collapse. This needs
458 * to be done before enabling the global clk.
459 */
460 dsi_pll_phy_dig_reset(pll_7nm);
461 if (pll_7nm->slave)
462 dsi_pll_phy_dig_reset(pll_7nm->slave);
463
464 dsi_pll_enable_global_clk(pll_7nm);
465 if (pll_7nm->slave)
466 dsi_pll_enable_global_clk(pll_7nm->slave);
467
468 error:
469 return rc;
470 }
471
dsi_pll_disable_sub(struct dsi_pll_7nm * pll)472 static void dsi_pll_disable_sub(struct dsi_pll_7nm *pll)
473 {
474 writel(0, pll->phy->base + REG_DSI_7nm_PHY_CMN_RBUF_CTRL);
475 dsi_pll_disable_pll_bias(pll);
476 }
477
dsi_pll_7nm_vco_unprepare(struct clk_hw * hw)478 static void dsi_pll_7nm_vco_unprepare(struct clk_hw *hw)
479 {
480 struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
481
482 /*
483 * To avoid any stray glitches while abruptly powering down the PLL
484 * make sure to gate the clock using the clock enable bit before
485 * powering down the PLL
486 */
487 dsi_pll_disable_global_clk(pll_7nm);
488 writel(0, pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL);
489 dsi_pll_disable_sub(pll_7nm);
490 if (pll_7nm->slave) {
491 dsi_pll_disable_global_clk(pll_7nm->slave);
492 dsi_pll_disable_sub(pll_7nm->slave);
493 }
494 /* flush, ensure all register writes are done */
495 wmb();
496 pll_7nm->phy->pll_on = false;
497 }
498
dsi_pll_7nm_vco_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)499 static unsigned long dsi_pll_7nm_vco_recalc_rate(struct clk_hw *hw,
500 unsigned long parent_rate)
501 {
502 struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
503 void __iomem *base = pll_7nm->phy->pll_base;
504 u64 ref_clk = VCO_REF_CLK_RATE;
505 u64 vco_rate = 0x0;
506 u64 multiplier;
507 u32 frac;
508 u32 dec;
509 u64 pll_freq, tmp64;
510
511 dec = readl(base + REG_DSI_7nm_PHY_PLL_DECIMAL_DIV_START_1);
512 dec &= 0xff;
513
514 frac = readl(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_LOW_1);
515 frac |= ((readl(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_MID_1) &
516 0xff) << 8);
517 frac |= ((readl(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_HIGH_1) &
518 0x3) << 16);
519
520 /*
521 * TODO:
522 * 1. Assumes prescaler is disabled
523 */
524 multiplier = 1 << FRAC_BITS;
525 pll_freq = dec * (ref_clk * 2);
526 tmp64 = (ref_clk * 2 * frac);
527 pll_freq += div_u64(tmp64, multiplier);
528
529 vco_rate = pll_freq;
530 pll_7nm->vco_current_rate = vco_rate;
531
532 DBG("DSI PLL%d returning vco rate = %lu, dec = %x, frac = %x",
533 pll_7nm->phy->id, (unsigned long)vco_rate, dec, frac);
534
535 return (unsigned long)vco_rate;
536 }
537
dsi_pll_7nm_clk_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)538 static long dsi_pll_7nm_clk_round_rate(struct clk_hw *hw,
539 unsigned long rate, unsigned long *parent_rate)
540 {
541 struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
542
543 if (rate < pll_7nm->phy->cfg->min_pll_rate)
544 return pll_7nm->phy->cfg->min_pll_rate;
545 else if (rate > pll_7nm->phy->cfg->max_pll_rate)
546 return pll_7nm->phy->cfg->max_pll_rate;
547 else
548 return rate;
549 }
550
551 static const struct clk_ops clk_ops_dsi_pll_7nm_vco = {
552 .round_rate = dsi_pll_7nm_clk_round_rate,
553 .set_rate = dsi_pll_7nm_vco_set_rate,
554 .recalc_rate = dsi_pll_7nm_vco_recalc_rate,
555 .prepare = dsi_pll_7nm_vco_prepare,
556 .unprepare = dsi_pll_7nm_vco_unprepare,
557 };
558
559 /*
560 * PLL Callbacks
561 */
562
dsi_7nm_pll_save_state(struct msm_dsi_phy * phy)563 static void dsi_7nm_pll_save_state(struct msm_dsi_phy *phy)
564 {
565 struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw);
566 struct pll_7nm_cached_state *cached = &pll_7nm->cached_state;
567 void __iomem *phy_base = pll_7nm->phy->base;
568 u32 cmn_clk_cfg0, cmn_clk_cfg1;
569
570 cached->pll_out_div = readl(pll_7nm->phy->pll_base +
571 REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE);
572 cached->pll_out_div &= 0x3;
573
574 cmn_clk_cfg0 = readl(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG0);
575 cached->bit_clk_div = cmn_clk_cfg0 & 0xf;
576 cached->pix_clk_div = (cmn_clk_cfg0 & 0xf0) >> 4;
577
578 cmn_clk_cfg1 = readl(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
579 cached->pll_mux = cmn_clk_cfg1 & 0x3;
580
581 DBG("DSI PLL%d outdiv %x bit_clk_div %x pix_clk_div %x pll_mux %x",
582 pll_7nm->phy->id, cached->pll_out_div, cached->bit_clk_div,
583 cached->pix_clk_div, cached->pll_mux);
584 }
585
dsi_7nm_pll_restore_state(struct msm_dsi_phy * phy)586 static int dsi_7nm_pll_restore_state(struct msm_dsi_phy *phy)
587 {
588 struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw);
589 struct pll_7nm_cached_state *cached = &pll_7nm->cached_state;
590 u32 val;
591 int ret;
592
593 val = readl(pll_7nm->phy->pll_base + REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE);
594 val &= ~0x3;
595 val |= cached->pll_out_div;
596 writel(val, pll_7nm->phy->pll_base + REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE);
597
598 dsi_pll_cmn_clk_cfg0_write(pll_7nm,
599 DSI_7nm_PHY_CMN_CLK_CFG0_DIV_CTRL_3_0(cached->bit_clk_div) |
600 DSI_7nm_PHY_CMN_CLK_CFG0_DIV_CTRL_7_4(cached->pix_clk_div));
601 dsi_pll_cmn_clk_cfg1_update(pll_7nm, 0x3, cached->pll_mux);
602
603 ret = dsi_pll_7nm_vco_set_rate(phy->vco_hw,
604 pll_7nm->vco_current_rate,
605 VCO_REF_CLK_RATE);
606 if (ret) {
607 DRM_DEV_ERROR(&pll_7nm->phy->pdev->dev,
608 "restore vco rate failed. ret=%d\n", ret);
609 return ret;
610 }
611
612 DBG("DSI PLL%d", pll_7nm->phy->id);
613
614 return 0;
615 }
616
dsi_7nm_set_usecase(struct msm_dsi_phy * phy)617 static int dsi_7nm_set_usecase(struct msm_dsi_phy *phy)
618 {
619 struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw);
620 u32 data = 0x0; /* internal PLL */
621
622 DBG("DSI PLL%d", pll_7nm->phy->id);
623
624 switch (phy->usecase) {
625 case MSM_DSI_PHY_STANDALONE:
626 break;
627 case MSM_DSI_PHY_MASTER:
628 pll_7nm->slave = pll_7nm_list[(pll_7nm->phy->id + 1) % DSI_MAX];
629 break;
630 case MSM_DSI_PHY_SLAVE:
631 data = 0x1; /* external PLL */
632 break;
633 default:
634 return -EINVAL;
635 }
636
637 /* set PLL src */
638 dsi_pll_cmn_clk_cfg1_update(pll_7nm, DSI_7nm_PHY_CMN_CLK_CFG1_BITCLK_SEL__MASK,
639 DSI_7nm_PHY_CMN_CLK_CFG1_BITCLK_SEL(data));
640
641 return 0;
642 }
643
644 /*
645 * The post dividers and mux clocks are created using the standard divider and
646 * mux API. Unlike the 14nm PHY, the slave PLL doesn't need its dividers/mux
647 * state to follow the master PLL's divider/mux state. Therefore, we don't
648 * require special clock ops that also configure the slave PLL registers
649 */
pll_7nm_register(struct dsi_pll_7nm * pll_7nm,struct clk_hw ** provided_clocks)650 static int pll_7nm_register(struct dsi_pll_7nm *pll_7nm, struct clk_hw **provided_clocks)
651 {
652 char clk_name[32];
653 struct clk_init_data vco_init = {
654 .parent_data = &(const struct clk_parent_data) {
655 .fw_name = "ref",
656 },
657 .num_parents = 1,
658 .name = clk_name,
659 .flags = CLK_IGNORE_UNUSED,
660 .ops = &clk_ops_dsi_pll_7nm_vco,
661 };
662 struct device *dev = &pll_7nm->phy->pdev->dev;
663 struct clk_hw *hw, *pll_out_div, *pll_bit, *pll_by_2_bit;
664 struct clk_hw *pll_post_out_div, *phy_pll_out_dsi_parent;
665 int ret;
666
667 DBG("DSI%d", pll_7nm->phy->id);
668
669 snprintf(clk_name, sizeof(clk_name), "dsi%dvco_clk", pll_7nm->phy->id);
670 pll_7nm->clk_hw.init = &vco_init;
671
672 ret = devm_clk_hw_register(dev, &pll_7nm->clk_hw);
673 if (ret)
674 return ret;
675
676 snprintf(clk_name, sizeof(clk_name), "dsi%d_pll_out_div_clk", pll_7nm->phy->id);
677
678 pll_out_div = devm_clk_hw_register_divider_parent_hw(dev, clk_name,
679 &pll_7nm->clk_hw, CLK_SET_RATE_PARENT,
680 pll_7nm->phy->pll_base +
681 REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE,
682 0, 2, CLK_DIVIDER_POWER_OF_TWO, NULL);
683 if (IS_ERR(pll_out_div)) {
684 ret = PTR_ERR(pll_out_div);
685 goto fail;
686 }
687
688 snprintf(clk_name, sizeof(clk_name), "dsi%d_pll_bit_clk", pll_7nm->phy->id);
689
690 /* BIT CLK: DIV_CTRL_3_0 */
691 pll_bit = devm_clk_hw_register_divider_parent_hw(dev, clk_name,
692 pll_out_div, CLK_SET_RATE_PARENT,
693 pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG0,
694 0, 4, CLK_DIVIDER_ONE_BASED, &pll_7nm->postdiv_lock);
695 if (IS_ERR(pll_bit)) {
696 ret = PTR_ERR(pll_bit);
697 goto fail;
698 }
699
700 snprintf(clk_name, sizeof(clk_name), "dsi%d_phy_pll_out_byteclk", pll_7nm->phy->id);
701
702 /* DSI Byte clock = VCO_CLK / OUT_DIV / BIT_DIV / 8 */
703 hw = devm_clk_hw_register_fixed_factor_parent_hw(dev, clk_name,
704 pll_bit, CLK_SET_RATE_PARENT, 1,
705 pll_7nm->phy->cphy_mode ? 7 : 8);
706 if (IS_ERR(hw)) {
707 ret = PTR_ERR(hw);
708 goto fail;
709 }
710
711 provided_clocks[DSI_BYTE_PLL_CLK] = hw;
712
713 snprintf(clk_name, sizeof(clk_name), "dsi%d_pll_by_2_bit_clk", pll_7nm->phy->id);
714
715 pll_by_2_bit = devm_clk_hw_register_fixed_factor_parent_hw(dev,
716 clk_name, pll_bit, 0, 1, 2);
717 if (IS_ERR(pll_by_2_bit)) {
718 ret = PTR_ERR(pll_by_2_bit);
719 goto fail;
720 }
721
722 snprintf(clk_name, sizeof(clk_name), "dsi%d_pll_post_out_div_clk", pll_7nm->phy->id);
723
724 if (pll_7nm->phy->cphy_mode)
725 pll_post_out_div = devm_clk_hw_register_fixed_factor_parent_hw(
726 dev, clk_name, pll_out_div, 0, 2, 7);
727 else
728 pll_post_out_div = devm_clk_hw_register_fixed_factor_parent_hw(
729 dev, clk_name, pll_out_div, 0, 1, 4);
730 if (IS_ERR(pll_post_out_div)) {
731 ret = PTR_ERR(pll_post_out_div);
732 goto fail;
733 }
734
735 /* in CPHY mode, pclk_mux will always have post_out_div as parent
736 * don't register a pclk_mux clock and just use post_out_div instead
737 */
738 if (pll_7nm->phy->cphy_mode) {
739 u32 data;
740
741 data = readl(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
742 writel(data | 3, pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
743
744 phy_pll_out_dsi_parent = pll_post_out_div;
745 } else {
746 snprintf(clk_name, sizeof(clk_name), "dsi%d_pclk_mux", pll_7nm->phy->id);
747
748 hw = devm_clk_hw_register_mux_parent_hws(dev, clk_name,
749 ((const struct clk_hw *[]){
750 pll_bit,
751 pll_by_2_bit,
752 }), 2, 0, pll_7nm->phy->base +
753 REG_DSI_7nm_PHY_CMN_CLK_CFG1,
754 0, 1, 0, &pll_7nm->pclk_mux_lock);
755 if (IS_ERR(hw)) {
756 ret = PTR_ERR(hw);
757 goto fail;
758 }
759
760 phy_pll_out_dsi_parent = hw;
761 }
762
763 snprintf(clk_name, sizeof(clk_name), "dsi%d_phy_pll_out_dsiclk", pll_7nm->phy->id);
764
765 /* PIX CLK DIV : DIV_CTRL_7_4*/
766 hw = devm_clk_hw_register_divider_parent_hw(dev, clk_name,
767 phy_pll_out_dsi_parent, 0,
768 pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG0,
769 4, 4, CLK_DIVIDER_ONE_BASED, &pll_7nm->postdiv_lock);
770 if (IS_ERR(hw)) {
771 ret = PTR_ERR(hw);
772 goto fail;
773 }
774
775 provided_clocks[DSI_PIXEL_PLL_CLK] = hw;
776
777 return 0;
778
779 fail:
780
781 return ret;
782 }
783
dsi_pll_7nm_init(struct msm_dsi_phy * phy)784 static int dsi_pll_7nm_init(struct msm_dsi_phy *phy)
785 {
786 struct platform_device *pdev = phy->pdev;
787 struct dsi_pll_7nm *pll_7nm;
788 int ret;
789
790 pll_7nm = devm_kzalloc(&pdev->dev, sizeof(*pll_7nm), GFP_KERNEL);
791 if (!pll_7nm)
792 return -ENOMEM;
793
794 DBG("DSI PLL%d", phy->id);
795
796 pll_7nm_list[phy->id] = pll_7nm;
797
798 spin_lock_init(&pll_7nm->postdiv_lock);
799 spin_lock_init(&pll_7nm->pclk_mux_lock);
800
801 pll_7nm->phy = phy;
802
803 ret = pll_7nm_register(pll_7nm, phy->provided_clocks->hws);
804 if (ret) {
805 DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
806 return ret;
807 }
808
809 phy->vco_hw = &pll_7nm->clk_hw;
810
811 /* TODO: Remove this when we have proper display handover support */
812 msm_dsi_phy_pll_save_state(phy);
813
814 return 0;
815 }
816
dsi_phy_hw_v4_0_is_pll_on(struct msm_dsi_phy * phy)817 static int dsi_phy_hw_v4_0_is_pll_on(struct msm_dsi_phy *phy)
818 {
819 void __iomem *base = phy->base;
820 u32 data = 0;
821
822 data = readl(base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL);
823 mb(); /* make sure read happened */
824
825 return (data & BIT(0));
826 }
827
dsi_phy_hw_v4_0_config_lpcdrx(struct msm_dsi_phy * phy,bool enable)828 static void dsi_phy_hw_v4_0_config_lpcdrx(struct msm_dsi_phy *phy, bool enable)
829 {
830 void __iomem *lane_base = phy->lane_base;
831 int phy_lane_0 = 0; /* TODO: Support all lane swap configs */
832
833 /*
834 * LPRX and CDRX need to enabled only for physical data lane
835 * corresponding to the logical data lane 0
836 */
837 if (enable)
838 writel(0x3, lane_base + REG_DSI_7nm_PHY_LN_LPRX_CTRL(phy_lane_0));
839 else
840 writel(0, lane_base + REG_DSI_7nm_PHY_LN_LPRX_CTRL(phy_lane_0));
841 }
842
dsi_phy_hw_v4_0_lane_settings(struct msm_dsi_phy * phy)843 static void dsi_phy_hw_v4_0_lane_settings(struct msm_dsi_phy *phy)
844 {
845 int i;
846 const u8 tx_dctrl_0[] = { 0x00, 0x00, 0x00, 0x04, 0x01 };
847 const u8 tx_dctrl_1[] = { 0x40, 0x40, 0x40, 0x46, 0x41 };
848 const u8 *tx_dctrl = tx_dctrl_0;
849 void __iomem *lane_base = phy->lane_base;
850
851 if (!(phy->cfg->quirks & DSI_PHY_7NM_QUIRK_PRE_V4_1))
852 tx_dctrl = tx_dctrl_1;
853
854 /* Strength ctrl settings */
855 for (i = 0; i < 5; i++) {
856 /*
857 * Disable LPRX and CDRX for all lanes. And later on, it will
858 * be only enabled for the physical data lane corresponding
859 * to the logical data lane 0
860 */
861 writel(0, lane_base + REG_DSI_7nm_PHY_LN_LPRX_CTRL(i));
862 writel(0x0, lane_base + REG_DSI_7nm_PHY_LN_PIN_SWAP(i));
863 }
864
865 dsi_phy_hw_v4_0_config_lpcdrx(phy, true);
866
867 /* other settings */
868 for (i = 0; i < 5; i++) {
869 writel(0x0, lane_base + REG_DSI_7nm_PHY_LN_CFG0(i));
870 writel(0x0, lane_base + REG_DSI_7nm_PHY_LN_CFG1(i));
871 writel(i == 4 ? 0x8a : 0xa, lane_base + REG_DSI_7nm_PHY_LN_CFG2(i));
872 writel(tx_dctrl[i], lane_base + REG_DSI_7nm_PHY_LN_TX_DCTRL(i));
873 }
874 }
875
dsi_7nm_phy_enable(struct msm_dsi_phy * phy,struct msm_dsi_phy_clk_request * clk_req)876 static int dsi_7nm_phy_enable(struct msm_dsi_phy *phy,
877 struct msm_dsi_phy_clk_request *clk_req)
878 {
879 int ret;
880 u32 status;
881 u32 const delay_us = 5;
882 u32 const timeout_us = 1000;
883 struct msm_dsi_dphy_timing *timing = &phy->timing;
884 void __iomem *base = phy->base;
885 bool less_than_1500_mhz;
886 u32 vreg_ctrl_0, vreg_ctrl_1, lane_ctrl0;
887 u32 glbl_pemph_ctrl_0;
888 u32 glbl_str_swi_cal_sel_ctrl, glbl_hstx_str_ctrl_0;
889 u32 glbl_rescode_top_ctrl, glbl_rescode_bot_ctrl;
890 u32 data;
891
892 DBG("");
893
894 if (phy->cphy_mode)
895 ret = msm_dsi_cphy_timing_calc_v4(timing, clk_req);
896 else
897 ret = msm_dsi_dphy_timing_calc_v4(timing, clk_req);
898 if (ret) {
899 DRM_DEV_ERROR(&phy->pdev->dev,
900 "%s: PHY timing calculation failed\n", __func__);
901 return -EINVAL;
902 }
903
904 if (dsi_phy_hw_v4_0_is_pll_on(phy))
905 pr_warn("PLL turned on before configuring PHY\n");
906
907 /* Request for REFGEN READY */
908 if ((phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_3) ||
909 (phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2)) {
910 writel(0x1, phy->base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE10);
911 udelay(500);
912 }
913
914 /* wait for REFGEN READY */
915 ret = readl_poll_timeout_atomic(base + REG_DSI_7nm_PHY_CMN_PHY_STATUS,
916 status, (status & BIT(0)),
917 delay_us, timeout_us);
918 if (ret) {
919 pr_err("Ref gen not ready. Aborting\n");
920 return -EINVAL;
921 }
922
923 /* TODO: CPHY enable path (this is for DPHY only) */
924
925 /* Alter PHY configurations if data rate less than 1.5GHZ*/
926 less_than_1500_mhz = (clk_req->bitclk_rate <= 1500000000);
927
928 glbl_str_swi_cal_sel_ctrl = 0x00;
929 if (phy->cphy_mode) {
930 vreg_ctrl_0 = 0x51;
931 vreg_ctrl_1 = 0x55;
932 glbl_hstx_str_ctrl_0 = 0x00;
933 glbl_pemph_ctrl_0 = 0x11;
934 lane_ctrl0 = 0x17;
935 } else {
936 vreg_ctrl_0 = less_than_1500_mhz ? 0x53 : 0x52;
937 vreg_ctrl_1 = 0x5c;
938 glbl_hstx_str_ctrl_0 = 0x88;
939 glbl_pemph_ctrl_0 = 0x00;
940 lane_ctrl0 = 0x1f;
941 }
942
943 if ((phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2)) {
944 if (phy->cphy_mode) {
945 vreg_ctrl_0 = 0x45;
946 vreg_ctrl_1 = 0x41;
947 glbl_rescode_top_ctrl = 0x00;
948 glbl_rescode_bot_ctrl = 0x00;
949 } else {
950 vreg_ctrl_0 = 0x44;
951 vreg_ctrl_1 = 0x19;
952 glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3c : 0x03;
953 glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x38 : 0x3c;
954 }
955 } else if ((phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_3)) {
956 if (phy->cphy_mode) {
957 glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3d : 0x01;
958 glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x38 : 0x3b;
959 } else {
960 glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3d : 0x01;
961 glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x38 : 0x39;
962 }
963 } else if (phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_2) {
964 if (phy->cphy_mode) {
965 glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3d : 0x01;
966 glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x38 : 0x3b;
967 } else {
968 glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3c : 0x00;
969 glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x38 : 0x39;
970 }
971 } else if (phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1) {
972 if (phy->cphy_mode) {
973 glbl_hstx_str_ctrl_0 = 0x88;
974 glbl_rescode_top_ctrl = 0x00;
975 glbl_rescode_bot_ctrl = 0x3c;
976 } else {
977 glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3d : 0x00;
978 glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x39 : 0x3c;
979 }
980 } else {
981 if (phy->cphy_mode) {
982 glbl_str_swi_cal_sel_ctrl = 0x03;
983 glbl_hstx_str_ctrl_0 = 0x66;
984 } else {
985 vreg_ctrl_0 = less_than_1500_mhz ? 0x5B : 0x59;
986 glbl_str_swi_cal_sel_ctrl = less_than_1500_mhz ? 0x03 : 0x00;
987 glbl_hstx_str_ctrl_0 = less_than_1500_mhz ? 0x66 : 0x88;
988 }
989 glbl_rescode_top_ctrl = 0x03;
990 glbl_rescode_bot_ctrl = 0x3c;
991 }
992
993 /* de-assert digital and pll power down */
994 data = BIT(6) | BIT(5);
995 writel(data, base + REG_DSI_7nm_PHY_CMN_CTRL_0);
996
997 /* Assert PLL core reset */
998 writel(0x00, base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL);
999
1000 /* turn off resync FIFO */
1001 writel(0x00, base + REG_DSI_7nm_PHY_CMN_RBUF_CTRL);
1002
1003 /* program CMN_CTRL_4 for minor_ver 2 chipsets*/
1004 if ((phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2) ||
1005 (readl(base + REG_DSI_7nm_PHY_CMN_REVISION_ID0) & (0xf0)) == 0x20)
1006 writel(0x04, base + REG_DSI_7nm_PHY_CMN_CTRL_4);
1007
1008 /* Configure PHY lane swap (TODO: we need to calculate this) */
1009 writel(0x21, base + REG_DSI_7nm_PHY_CMN_LANE_CFG0);
1010 writel(0x84, base + REG_DSI_7nm_PHY_CMN_LANE_CFG1);
1011
1012 if (phy->cphy_mode)
1013 writel(BIT(6), base + REG_DSI_7nm_PHY_CMN_GLBL_CTRL);
1014
1015 /* Enable LDO */
1016 writel(vreg_ctrl_0, base + REG_DSI_7nm_PHY_CMN_VREG_CTRL_0);
1017 writel(vreg_ctrl_1, base + REG_DSI_7nm_PHY_CMN_VREG_CTRL_1);
1018
1019 writel(0x00, base + REG_DSI_7nm_PHY_CMN_CTRL_3);
1020 writel(glbl_str_swi_cal_sel_ctrl,
1021 base + REG_DSI_7nm_PHY_CMN_GLBL_STR_SWI_CAL_SEL_CTRL);
1022 writel(glbl_hstx_str_ctrl_0,
1023 base + REG_DSI_7nm_PHY_CMN_GLBL_HSTX_STR_CTRL_0);
1024 writel(glbl_pemph_ctrl_0,
1025 base + REG_DSI_7nm_PHY_CMN_GLBL_PEMPH_CTRL_0);
1026 if (phy->cphy_mode)
1027 writel(0x01, base + REG_DSI_7nm_PHY_CMN_GLBL_PEMPH_CTRL_1);
1028 writel(glbl_rescode_top_ctrl,
1029 base + REG_DSI_7nm_PHY_CMN_GLBL_RESCODE_OFFSET_TOP_CTRL);
1030 writel(glbl_rescode_bot_ctrl,
1031 base + REG_DSI_7nm_PHY_CMN_GLBL_RESCODE_OFFSET_BOT_CTRL);
1032 writel(0x55, base + REG_DSI_7nm_PHY_CMN_GLBL_LPTX_STR_CTRL);
1033
1034 /* Remove power down from all blocks */
1035 writel(0x7f, base + REG_DSI_7nm_PHY_CMN_CTRL_0);
1036
1037 writel(lane_ctrl0, base + REG_DSI_7nm_PHY_CMN_LANE_CTRL0);
1038
1039 /* Select full-rate mode */
1040 if (!phy->cphy_mode)
1041 writel(0x40, base + REG_DSI_7nm_PHY_CMN_CTRL_2);
1042
1043 ret = dsi_7nm_set_usecase(phy);
1044 if (ret) {
1045 DRM_DEV_ERROR(&phy->pdev->dev, "%s: set pll usecase failed, %d\n",
1046 __func__, ret);
1047 return ret;
1048 }
1049
1050 /* DSI PHY timings */
1051 if (phy->cphy_mode) {
1052 writel(0x00, base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_0);
1053 writel(timing->hs_exit, base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_4);
1054 writel(timing->shared_timings.clk_pre,
1055 base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_5);
1056 writel(timing->clk_prepare, base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_6);
1057 writel(timing->shared_timings.clk_post,
1058 base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_7);
1059 writel(timing->hs_rqst, base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_8);
1060 writel(0x02, base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_9);
1061 writel(0x04, base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_10);
1062 writel(0x00, base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_11);
1063 } else {
1064 writel(0x00, base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_0);
1065 writel(timing->clk_zero, base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_1);
1066 writel(timing->clk_prepare, base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_2);
1067 writel(timing->clk_trail, base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_3);
1068 writel(timing->hs_exit, base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_4);
1069 writel(timing->hs_zero, base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_5);
1070 writel(timing->hs_prepare, base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_6);
1071 writel(timing->hs_trail, base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_7);
1072 writel(timing->hs_rqst, base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_8);
1073 writel(0x02, base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_9);
1074 writel(0x04, base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_10);
1075 writel(0x00, base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_11);
1076 writel(timing->shared_timings.clk_pre,
1077 base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_12);
1078 writel(timing->shared_timings.clk_post,
1079 base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_13);
1080 }
1081
1082 /* DSI lane settings */
1083 dsi_phy_hw_v4_0_lane_settings(phy);
1084
1085 DBG("DSI%d PHY enabled", phy->id);
1086
1087 return 0;
1088 }
1089
dsi_7nm_set_continuous_clock(struct msm_dsi_phy * phy,bool enable)1090 static bool dsi_7nm_set_continuous_clock(struct msm_dsi_phy *phy, bool enable)
1091 {
1092 void __iomem *base = phy->base;
1093 u32 data;
1094
1095 data = readl(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL1);
1096 if (enable)
1097 data |= BIT(5) | BIT(6);
1098 else
1099 data &= ~(BIT(5) | BIT(6));
1100 writel(data, base + REG_DSI_7nm_PHY_CMN_LANE_CTRL1);
1101
1102 return enable;
1103 }
1104
dsi_7nm_phy_disable(struct msm_dsi_phy * phy)1105 static void dsi_7nm_phy_disable(struct msm_dsi_phy *phy)
1106 {
1107 void __iomem *base = phy->base;
1108 u32 data;
1109
1110 DBG("");
1111
1112 if (dsi_phy_hw_v4_0_is_pll_on(phy))
1113 pr_warn("Turning OFF PHY while PLL is on\n");
1114
1115 dsi_phy_hw_v4_0_config_lpcdrx(phy, false);
1116
1117 /* Turn off REFGEN Vote */
1118 if ((phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_3) ||
1119 (phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2)) {
1120 writel(0x0, base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE10);
1121 wmb();
1122 /* Delay to ensure HW removes vote before PHY shut down */
1123 udelay(2);
1124 }
1125
1126 data = readl(base + REG_DSI_7nm_PHY_CMN_CTRL_0);
1127
1128 /* disable all lanes */
1129 data &= ~0x1F;
1130 writel(data, base + REG_DSI_7nm_PHY_CMN_CTRL_0);
1131 writel(0, base + REG_DSI_7nm_PHY_CMN_LANE_CTRL0);
1132
1133 /* Turn off all PHY blocks */
1134 writel(0x00, base + REG_DSI_7nm_PHY_CMN_CTRL_0);
1135 /* make sure phy is turned off */
1136 wmb();
1137
1138 DBG("DSI%d PHY disabled", phy->id);
1139 }
1140
1141 static const struct regulator_bulk_data dsi_phy_7nm_36mA_regulators[] = {
1142 { .supply = "vdds", .init_load_uA = 36000 },
1143 };
1144
1145 static const struct regulator_bulk_data dsi_phy_7nm_37750uA_regulators[] = {
1146 { .supply = "vdds", .init_load_uA = 37550 },
1147 };
1148
1149 static const struct regulator_bulk_data dsi_phy_7nm_98000uA_regulators[] = {
1150 { .supply = "vdds", .init_load_uA = 98000 },
1151 };
1152
1153 static const struct regulator_bulk_data dsi_phy_7nm_97800uA_regulators[] = {
1154 { .supply = "vdds", .init_load_uA = 97800 },
1155 };
1156
1157 static const struct regulator_bulk_data dsi_phy_7nm_98400uA_regulators[] = {
1158 { .supply = "vdds", .init_load_uA = 98400 },
1159 };
1160
1161 const struct msm_dsi_phy_cfg dsi_phy_7nm_cfgs = {
1162 .has_phy_lane = true,
1163 .regulator_data = dsi_phy_7nm_36mA_regulators,
1164 .num_regulators = ARRAY_SIZE(dsi_phy_7nm_36mA_regulators),
1165 .ops = {
1166 .enable = dsi_7nm_phy_enable,
1167 .disable = dsi_7nm_phy_disable,
1168 .pll_init = dsi_pll_7nm_init,
1169 .save_pll_state = dsi_7nm_pll_save_state,
1170 .restore_pll_state = dsi_7nm_pll_restore_state,
1171 .set_continuous_clock = dsi_7nm_set_continuous_clock,
1172 },
1173 .min_pll_rate = 600000000UL,
1174 #ifdef CONFIG_64BIT
1175 .max_pll_rate = 5000000000UL,
1176 #else
1177 .max_pll_rate = ULONG_MAX,
1178 #endif
1179 .io_start = { 0xae94400, 0xae96400 },
1180 .num_dsi_phy = 2,
1181 .quirks = DSI_PHY_7NM_QUIRK_V4_1,
1182 };
1183
1184 const struct msm_dsi_phy_cfg dsi_phy_7nm_6375_cfgs = {
1185 .has_phy_lane = true,
1186 .ops = {
1187 .enable = dsi_7nm_phy_enable,
1188 .disable = dsi_7nm_phy_disable,
1189 .pll_init = dsi_pll_7nm_init,
1190 .save_pll_state = dsi_7nm_pll_save_state,
1191 .restore_pll_state = dsi_7nm_pll_restore_state,
1192 },
1193 .min_pll_rate = 600000000UL,
1194 #ifdef CONFIG_64BIT
1195 .max_pll_rate = 5000000000ULL,
1196 #else
1197 .max_pll_rate = ULONG_MAX,
1198 #endif
1199 .io_start = { 0x5e94400 },
1200 .num_dsi_phy = 1,
1201 .quirks = DSI_PHY_7NM_QUIRK_V4_1,
1202 };
1203
1204 const struct msm_dsi_phy_cfg dsi_phy_7nm_8150_cfgs = {
1205 .has_phy_lane = true,
1206 .regulator_data = dsi_phy_7nm_36mA_regulators,
1207 .num_regulators = ARRAY_SIZE(dsi_phy_7nm_36mA_regulators),
1208 .ops = {
1209 .enable = dsi_7nm_phy_enable,
1210 .disable = dsi_7nm_phy_disable,
1211 .pll_init = dsi_pll_7nm_init,
1212 .save_pll_state = dsi_7nm_pll_save_state,
1213 .restore_pll_state = dsi_7nm_pll_restore_state,
1214 .set_continuous_clock = dsi_7nm_set_continuous_clock,
1215 },
1216 .min_pll_rate = 1000000000UL,
1217 .max_pll_rate = 3500000000UL,
1218 .io_start = { 0xae94400, 0xae96400 },
1219 .num_dsi_phy = 2,
1220 .quirks = DSI_PHY_7NM_QUIRK_PRE_V4_1,
1221 };
1222
1223 const struct msm_dsi_phy_cfg dsi_phy_7nm_7280_cfgs = {
1224 .has_phy_lane = true,
1225 .regulator_data = dsi_phy_7nm_37750uA_regulators,
1226 .num_regulators = ARRAY_SIZE(dsi_phy_7nm_37750uA_regulators),
1227 .ops = {
1228 .enable = dsi_7nm_phy_enable,
1229 .disable = dsi_7nm_phy_disable,
1230 .pll_init = dsi_pll_7nm_init,
1231 .save_pll_state = dsi_7nm_pll_save_state,
1232 .restore_pll_state = dsi_7nm_pll_restore_state,
1233 },
1234 .min_pll_rate = 600000000UL,
1235 #ifdef CONFIG_64BIT
1236 .max_pll_rate = 5000000000ULL,
1237 #else
1238 .max_pll_rate = ULONG_MAX,
1239 #endif
1240 .io_start = { 0xae94400 },
1241 .num_dsi_phy = 1,
1242 .quirks = DSI_PHY_7NM_QUIRK_V4_1,
1243 };
1244
1245 const struct msm_dsi_phy_cfg dsi_phy_5nm_8350_cfgs = {
1246 .has_phy_lane = true,
1247 .regulator_data = dsi_phy_7nm_37750uA_regulators,
1248 .num_regulators = ARRAY_SIZE(dsi_phy_7nm_37750uA_regulators),
1249 .ops = {
1250 .enable = dsi_7nm_phy_enable,
1251 .disable = dsi_7nm_phy_disable,
1252 .pll_init = dsi_pll_7nm_init,
1253 .save_pll_state = dsi_7nm_pll_save_state,
1254 .restore_pll_state = dsi_7nm_pll_restore_state,
1255 .set_continuous_clock = dsi_7nm_set_continuous_clock,
1256 },
1257 .min_pll_rate = 600000000UL,
1258 #ifdef CONFIG_64BIT
1259 .max_pll_rate = 5000000000UL,
1260 #else
1261 .max_pll_rate = ULONG_MAX,
1262 #endif
1263 .io_start = { 0xae94400, 0xae96400 },
1264 .num_dsi_phy = 2,
1265 .quirks = DSI_PHY_7NM_QUIRK_V4_2,
1266 };
1267
1268 const struct msm_dsi_phy_cfg dsi_phy_5nm_8450_cfgs = {
1269 .has_phy_lane = true,
1270 .regulator_data = dsi_phy_7nm_97800uA_regulators,
1271 .num_regulators = ARRAY_SIZE(dsi_phy_7nm_97800uA_regulators),
1272 .ops = {
1273 .enable = dsi_7nm_phy_enable,
1274 .disable = dsi_7nm_phy_disable,
1275 .pll_init = dsi_pll_7nm_init,
1276 .save_pll_state = dsi_7nm_pll_save_state,
1277 .restore_pll_state = dsi_7nm_pll_restore_state,
1278 .set_continuous_clock = dsi_7nm_set_continuous_clock,
1279 },
1280 .min_pll_rate = 600000000UL,
1281 #ifdef CONFIG_64BIT
1282 .max_pll_rate = 5000000000UL,
1283 #else
1284 .max_pll_rate = ULONG_MAX,
1285 #endif
1286 .io_start = { 0xae94400, 0xae96400 },
1287 .num_dsi_phy = 2,
1288 .quirks = DSI_PHY_7NM_QUIRK_V4_3,
1289 };
1290
1291 const struct msm_dsi_phy_cfg dsi_phy_4nm_8550_cfgs = {
1292 .has_phy_lane = true,
1293 .regulator_data = dsi_phy_7nm_98400uA_regulators,
1294 .num_regulators = ARRAY_SIZE(dsi_phy_7nm_98400uA_regulators),
1295 .ops = {
1296 .enable = dsi_7nm_phy_enable,
1297 .disable = dsi_7nm_phy_disable,
1298 .pll_init = dsi_pll_7nm_init,
1299 .save_pll_state = dsi_7nm_pll_save_state,
1300 .restore_pll_state = dsi_7nm_pll_restore_state,
1301 .set_continuous_clock = dsi_7nm_set_continuous_clock,
1302 },
1303 .min_pll_rate = 600000000UL,
1304 #ifdef CONFIG_64BIT
1305 .max_pll_rate = 5000000000UL,
1306 #else
1307 .max_pll_rate = ULONG_MAX,
1308 #endif
1309 .io_start = { 0xae95000, 0xae97000 },
1310 .num_dsi_phy = 2,
1311 .quirks = DSI_PHY_7NM_QUIRK_V5_2,
1312 };
1313
1314 const struct msm_dsi_phy_cfg dsi_phy_4nm_8650_cfgs = {
1315 .has_phy_lane = true,
1316 .regulator_data = dsi_phy_7nm_98000uA_regulators,
1317 .num_regulators = ARRAY_SIZE(dsi_phy_7nm_98000uA_regulators),
1318 .ops = {
1319 .enable = dsi_7nm_phy_enable,
1320 .disable = dsi_7nm_phy_disable,
1321 .pll_init = dsi_pll_7nm_init,
1322 .save_pll_state = dsi_7nm_pll_save_state,
1323 .restore_pll_state = dsi_7nm_pll_restore_state,
1324 .set_continuous_clock = dsi_7nm_set_continuous_clock,
1325 },
1326 .min_pll_rate = 600000000UL,
1327 #ifdef CONFIG_64BIT
1328 .max_pll_rate = 5000000000UL,
1329 #else
1330 .max_pll_rate = ULONG_MAX,
1331 #endif
1332 .io_start = { 0xae95000, 0xae97000 },
1333 .num_dsi_phy = 2,
1334 .quirks = DSI_PHY_7NM_QUIRK_V5_2,
1335 };
1336