1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1988 AT&T
24 * All Rights Reserved
25 *
26 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
27 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
28 */
29
30 /*
31 * Programmatic interface to the run_time linker.
32 */
33
34 #include <sys/debug.h>
35 #include <stdio.h>
36 #include <string.h>
37 #include <dlfcn.h>
38 #include <synch.h>
39 #include <limits.h>
40 #include <debug.h>
41 #include <conv.h>
42 #include "_rtld.h"
43 #include "_audit.h"
44 #include "_elf.h"
45 #include "_inline_gen.h"
46 #include "msg.h"
47
48 /*
49 * Determine who called us - given a pc determine in which object it resides.
50 *
51 * For dlopen() the link map of the caller must be passed to load_so() so that
52 * the appropriate search rules (4.x or 5.0) are used to locate any
53 * dependencies. Also, if we've been called from a 4.x module it may be
54 * necessary to fix the specified pathname so that it conforms with the 5.0 elf
55 * rules.
56 *
57 * For dlsym() the link map of the caller is used to determine RTLD_NEXT
58 * requests, together with requests based off of a dlopen(0).
59 * For dladdr() this routines provides a generic means of scanning all loaded
60 * segments.
61 */
62 Rt_map *
_caller(caddr_t cpc,int flags)63 _caller(caddr_t cpc, int flags)
64 {
65 Lm_list *lml;
66 Aliste idx1;
67
68 for (APLIST_TRAVERSE(dynlm_list, idx1, lml)) {
69 Aliste idx2;
70 Lm_cntl *lmc;
71
72 for (ALIST_TRAVERSE(lml->lm_lists, idx2, lmc)) {
73 Rt_map *lmp;
74
75 for (lmp = lmc->lc_head; lmp;
76 lmp = NEXT_RT_MAP(lmp)) {
77
78 if (find_segment(cpc, lmp))
79 return (lmp);
80 }
81 }
82 }
83
84 /*
85 * No mapping can be determined. If asked for a default, assume this
86 * is from the executable.
87 */
88 if (flags & CL_EXECDEF)
89 return ((Rt_map *)lml_main.lm_head);
90
91 return (0);
92 }
93
94 #pragma weak _dlerror = dlerror
95
96 /*
97 * External entry for dlerror(3dl). Returns a pointer to the string describing
98 * the last occurring error. The last occurring error is cleared.
99 */
100 char *
dlerror()101 dlerror()
102 {
103 char *error;
104 Rt_map *clmp;
105 int entry;
106
107 entry = enter(0);
108
109 clmp = _caller(caller(), CL_EXECDEF);
110
111 DBG_CALL(Dbg_dl_dlerror(clmp, lasterr));
112
113 error = lasterr;
114 lasterr = NULL;
115
116 if (entry)
117 leave(LIST(clmp), 0);
118 return (error);
119 }
120
121 /*
122 * Add a dependency as a group descriptor to a group handle. Returns 0 on
123 * failure. On success, returns the group descriptor, and if alep is non-NULL
124 * the *alep is set to ALE_EXISTS if the dependency already exists, or to
125 * ALE_CREATE if the dependency is newly created.
126 */
127 Grp_desc *
hdl_add(Grp_hdl * ghp,Rt_map * lmp,uint_t dflags,int * alep)128 hdl_add(Grp_hdl *ghp, Rt_map *lmp, uint_t dflags, int *alep)
129 {
130 Grp_desc *gdp;
131 Aliste idx;
132 int ale = ALE_CREATE;
133 uint_t oflags;
134
135 /*
136 * Make sure this dependency hasn't already been recorded.
137 */
138 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) {
139 if (gdp->gd_depend == lmp) {
140 ale = ALE_EXISTS;
141 break;
142 }
143 }
144
145 if (ale == ALE_CREATE) {
146 Grp_desc gd;
147
148 /*
149 * Create a new handle descriptor.
150 */
151 gd.gd_depend = lmp;
152 gd.gd_flags = 0;
153
154 /*
155 * Indicate this object is a part of this handles group.
156 */
157 if (aplist_append(&GROUPS(lmp), ghp, AL_CNT_GROUPS) == NULL)
158 return (NULL);
159
160 /*
161 * Append the new dependency to this handle.
162 */
163 if ((gdp = alist_append(&ghp->gh_depends, &gd,
164 sizeof (Grp_desc), AL_CNT_DEPENDS)) == NULL)
165 return (NULL);
166 }
167
168 oflags = gdp->gd_flags;
169 gdp->gd_flags |= dflags;
170
171 if (DBG_ENABLED) {
172 if (ale == ALE_CREATE) {
173 DBG_CALL(Dbg_file_hdl_action(ghp, lmp, DBG_DEP_ADD,
174 gdp->gd_flags));
175 } else if (gdp->gd_flags != oflags) {
176 DBG_CALL(Dbg_file_hdl_action(ghp, lmp, DBG_DEP_UPDATE,
177 gdp->gd_flags));
178 }
179 }
180
181 if (alep)
182 *alep = ale;
183 return (gdp);
184 }
185
186 /*
187 * Create a handle.
188 *
189 * rlmp - represents the reference link-map for which the handle is being
190 * created.
191 * clmp - represents the caller who is requesting the handle.
192 * hflags - provide group handle flags (GPH_*) that affect the use of the
193 * handle, such as dlopen(0), or use or use of RTLD_FIRST.
194 * rdflags - provide group dependency flags for the reference link-map rlmp,
195 * such as whether the dependency can be used for dlsym(), can be
196 * relocated against, or whether this objects dependencies should
197 * be processed.
198 * cdflags - provide group dependency flags for the caller.
199 */
200 Grp_hdl *
hdl_create(Lm_list * lml,Rt_map * rlmp,Rt_map * clmp,uint_t hflags,uint_t rdflags,uint_t cdflags)201 hdl_create(Lm_list *lml, Rt_map *rlmp, Rt_map *clmp, uint_t hflags,
202 uint_t rdflags, uint_t cdflags)
203 {
204 Grp_hdl *ghp = NULL, *aghp;
205 APlist **alpp;
206 Aliste idx;
207
208 /*
209 * For dlopen(0) the handle is maintained as part of the link-map list,
210 * otherwise the handle is associated with the reference link-map.
211 */
212 if (hflags & GPH_ZERO)
213 alpp = &(lml->lm_handle);
214 else
215 alpp = &(HANDLES(rlmp));
216
217 /*
218 * Objects can contain multiple handles depending on the handle flags
219 * supplied. Most RTLD flags pertain to the object itself and the
220 * bindings that it can achieve. Multiple handles for these flags
221 * don't make sense. But if the flag determines how the handle might
222 * be used, then multiple handles may exist. Presently this only makes
223 * sense for RTLD_FIRST. Determine if an appropriate handle already
224 * exists.
225 */
226 for (APLIST_TRAVERSE(*alpp, idx, aghp)) {
227 if ((aghp->gh_flags & GPH_FIRST) == (hflags & GPH_FIRST)) {
228 ghp = aghp;
229 break;
230 }
231 }
232
233 if (ghp == NULL) {
234 uint_t ndx;
235
236 /*
237 * If this is the first request for this handle, allocate and
238 * initialize a new handle.
239 */
240 DBG_CALL(Dbg_file_hdl_title(DBG_HDL_CREATE));
241
242 if ((ghp = malloc(sizeof (Grp_hdl))) == NULL)
243 return (NULL);
244
245 /*
246 * Associate the handle with the link-map list or the reference
247 * link-map as appropriate.
248 */
249 if (aplist_append(alpp, ghp, AL_CNT_GROUPS) == NULL) {
250 free(ghp);
251 return (NULL);
252 }
253
254 /*
255 * Record the existence of this handle for future verification.
256 */
257 /* LINTED */
258 ndx = (uintptr_t)ghp % HDLIST_SZ;
259
260 if (aplist_append(&hdl_alp[ndx], ghp, AL_CNT_HANDLES) == NULL) {
261 (void) aplist_delete_value(*alpp, ghp);
262 free(ghp);
263 return (NULL);
264 }
265
266 ghp->gh_depends = NULL;
267 ghp->gh_refcnt = 1;
268 ghp->gh_flags = hflags;
269
270 /*
271 * A dlopen(0) handle is identified by the GPH_ZERO flag, the
272 * head of the link-map list is defined as the owner. There is
273 * no need to maintain a list of dependencies, for when this
274 * handle is used (for dlsym()) a dynamic search through the
275 * entire link-map list provides for searching all objects with
276 * GLOBAL visibility.
277 */
278 if (hflags & GPH_ZERO) {
279 ghp->gh_ownlmp = lml->lm_head;
280 ghp->gh_ownlml = lml;
281 } else {
282 ghp->gh_ownlmp = rlmp;
283 ghp->gh_ownlml = LIST(rlmp);
284
285 if (hdl_add(ghp, rlmp, rdflags, NULL) == NULL)
286 return (NULL);
287
288 /*
289 * If this new handle is a private handle, there's no
290 * need to track the caller, so we're done.
291 */
292 if (hflags & GPH_PRIVATE)
293 return (ghp);
294
295 /*
296 * If this new handle is public, and isn't a special
297 * handle representing ld.so.1, indicate that a local
298 * group now exists. This state allows singleton
299 * searches to be optimized.
300 */
301 if ((hflags & GPH_LDSO) == 0)
302 LIST(rlmp)->lm_flags |= LML_FLG_GROUPSEXIST;
303 }
304 } else {
305 /*
306 * If a handle already exists, bump its reference count.
307 *
308 * If the previous reference count was 0, then this is a handle
309 * that an earlier call to dlclose() was unable to remove. Such
310 * handles are put on the orphan list. As this handle is back
311 * in use, it must be removed from the orphan list.
312 *
313 * Note, handles associated with a link-map list itself (i.e.
314 * dlopen(0)) can have a reference count of 0. However, these
315 * handles are never deleted, and therefore are never moved to
316 * the orphan list.
317 */
318 if ((ghp->gh_refcnt++ == 0) &&
319 ((ghp->gh_flags & GPH_ZERO) == 0)) {
320 uint_t ndx;
321
322 /* LINTED */
323 ndx = (uintptr_t)ghp % HDLIST_SZ;
324
325 (void) aplist_delete_value(hdl_alp[HDLIST_ORP], ghp);
326 (void) aplist_append(&hdl_alp[ndx], ghp,
327 AL_CNT_HANDLES);
328
329 if (DBG_ENABLED) {
330 Aliste idx;
331 Grp_desc *gdp;
332
333 DBG_CALL(Dbg_file_hdl_title(DBG_HDL_REINST));
334 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp))
335 DBG_CALL(Dbg_file_hdl_action(ghp,
336 gdp->gd_depend, DBG_DEP_REINST, 0));
337 }
338 }
339
340 /*
341 * If we've been asked to create a private handle, there's no
342 * need to track the caller.
343 */
344 if (hflags & GPH_PRIVATE) {
345 /*
346 * Negate the reference count increment.
347 */
348 ghp->gh_refcnt--;
349 return (ghp);
350 } else {
351 /*
352 * If a private handle already exists, promote this
353 * handle to public by initializing both the reference
354 * count and the handle flags.
355 */
356 if (ghp->gh_flags & GPH_PRIVATE) {
357 ghp->gh_refcnt = 1;
358 ghp->gh_flags &= ~GPH_PRIVATE;
359 ghp->gh_flags |= hflags;
360 }
361 }
362 }
363
364 /*
365 * Keep track of the parent (caller). As this object can be referenced
366 * by different parents, this processing is carried out every time a
367 * handle is requested.
368 */
369 if (clmp && (hdl_add(ghp, clmp, cdflags, NULL) == NULL))
370 return (NULL);
371
372 return (ghp);
373 }
374
375 /*
376 * Initialize a handle that has been created for an object that is already
377 * loaded. The handle is initialized with the present dependencies of that
378 * object. Once this initialization has occurred, any new objects that might
379 * be loaded as dependencies (lazy-loading) are added to the handle as each new
380 * object is loaded.
381 */
382 int
hdl_initialize(Grp_hdl * ghp,Rt_map * nlmp,int mode,int promote)383 hdl_initialize(Grp_hdl *ghp, Rt_map *nlmp, int mode, int promote)
384 {
385 Aliste idx;
386 Grp_desc *gdp;
387
388 /*
389 * If the handle has already been initialized, and the initial object's
390 * mode hasn't been promoted, there's no need to recompute the modes of
391 * any dependencies. If the object we've added has just been opened,
392 * the objects dependencies will not yet have been processed. These
393 * dependencies will be added on later calls to load_one(). Otherwise,
394 * this object already exists, so add all of its dependencies to the
395 * handle were operating on.
396 */
397 if (((ghp->gh_flags & GPH_INITIAL) && (promote == 0)) ||
398 ((FLAGS(nlmp) & FLG_RT_ANALYZED) == 0)) {
399 ghp->gh_flags |= GPH_INITIAL;
400 return (1);
401 }
402
403 DBG_CALL(Dbg_file_hdl_title(DBG_HDL_ADD));
404 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) {
405 Rt_map *lmp = gdp->gd_depend;
406 Aliste idx1;
407 Bnd_desc *bdp;
408
409 /*
410 * If this dependency doesn't indicate that its dependencies
411 * should be added to a handle, ignore it. This case identifies
412 * a parent of a dlopen(RTLD_PARENT) request.
413 */
414 if ((gdp->gd_flags & GPD_ADDEPS) == 0)
415 continue;
416
417 for (APLIST_TRAVERSE(DEPENDS(lmp), idx1, bdp)) {
418 Rt_map *dlmp = bdp->b_depend;
419
420 if ((bdp->b_flags & BND_NEEDED) == 0)
421 continue;
422
423 if (hdl_add(ghp, dlmp,
424 (GPD_DLSYM | GPD_RELOC | GPD_ADDEPS), NULL) == NULL)
425 return (0);
426
427 (void) update_mode(dlmp, MODE(dlmp), mode);
428 }
429 }
430 ghp->gh_flags |= GPH_INITIAL;
431 return (1);
432 }
433
434 /*
435 * Sanity check a program-provided handle.
436 */
437 static int
hdl_validate(Grp_hdl * ghp)438 hdl_validate(Grp_hdl *ghp)
439 {
440 Aliste idx;
441 Grp_hdl *lghp;
442 uint_t ndx;
443
444 /* LINTED */
445 ndx = (uintptr_t)ghp % HDLIST_SZ;
446
447 for (APLIST_TRAVERSE(hdl_alp[ndx], idx, lghp)) {
448 if ((lghp == ghp) && (ghp->gh_refcnt != 0))
449 return (1);
450 }
451 return (0);
452 }
453
454 /*
455 * Core dlclose activity.
456 */
457 int
dlclose_core(Grp_hdl * ghp,Rt_map * clmp,Lm_list * lml)458 dlclose_core(Grp_hdl *ghp, Rt_map *clmp, Lm_list *lml)
459 {
460 int error;
461 Rt_map *lmp;
462
463 /*
464 * If we're already at atexit() there's no point processing further,
465 * all objects have already been tsorted for fini processing.
466 */
467 if (rtld_flags & RT_FL_ATEXIT)
468 return (0);
469
470 /*
471 * Diagnose what we're up to.
472 */
473 if (ghp->gh_flags & GPH_ZERO) {
474 DBG_CALL(Dbg_dl_dlclose(clmp, MSG_ORIG(MSG_STR_ZERO),
475 DBG_DLCLOSE_IGNORE));
476 } else {
477 DBG_CALL(Dbg_dl_dlclose(clmp, NAME(ghp->gh_ownlmp),
478 DBG_DLCLOSE_NULL));
479 }
480
481 /*
482 * Decrement reference count of this object.
483 */
484 if (--(ghp->gh_refcnt))
485 return (0);
486
487 /*
488 * If this handle is special (dlopen(0)), then leave it around - it
489 * has little overhead.
490 */
491 if (ghp->gh_flags & GPH_ZERO)
492 return (0);
493
494 /*
495 * If this handle is associated with an object that is not on the base
496 * link-map control list, or it has not yet been relocated, then this
497 * handle must have originated from an auditors interaction, or some
498 * permutation of RTLD_CONFGEN use (crle(1), moe(1), etc.). User code
499 * can only execute and bind to relocated objects on the base link-map
500 * control list. Outside of RTLD_CONFGEN use, a non-relocated object,
501 * or an object on a non-base link-map control list, is in the process
502 * of being loaded, and therefore we do not attempt to remove the
503 * handle.
504 */
505 if (((lmp = ghp->gh_ownlmp) != NULL) &&
506 ((MODE(lmp) & RTLD_CONFGEN) == 0) &&
507 ((CNTL(lmp) != ALIST_OFF_DATA) ||
508 ((FLAGS(lmp) & FLG_RT_RELOCED) == 0)))
509 return (0);
510
511 /*
512 * This handle is no longer being referenced, remove it. If this handle
513 * is part of an alternative link-map list, determine if the whole list
514 * can be removed also.
515 */
516 error = remove_hdl(ghp, clmp, NULL);
517
518 if ((lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) == 0)
519 remove_lml(lml);
520
521 return (error);
522 }
523
524 /*
525 * Internal dlclose activity. Called from user level or directly for internal
526 * error cleanup.
527 */
528 int
dlclose_intn(Grp_hdl * ghp,Rt_map * clmp)529 dlclose_intn(Grp_hdl *ghp, Rt_map *clmp)
530 {
531 Rt_map *nlmp = NULL;
532 Lm_list *olml = NULL;
533 int error;
534
535 /*
536 * Although we're deleting object(s) it's quite possible that additional
537 * objects get loaded from running the .fini section(s) of the objects
538 * being deleted. These objects will have been added to the same
539 * link-map list as those objects being deleted. Remember this list
540 * for later investigation.
541 */
542 olml = ghp->gh_ownlml;
543
544 error = dlclose_core(ghp, clmp, olml);
545
546 /*
547 * Determine whether the original link-map list still exists. In the
548 * case of a dlclose of an alternative (dlmopen) link-map the whole
549 * list may have been removed.
550 */
551 if (olml) {
552 Aliste idx;
553 Lm_list *lml;
554
555 for (APLIST_TRAVERSE(dynlm_list, idx, lml)) {
556 if (olml == lml) {
557 nlmp = olml->lm_head;
558 break;
559 }
560 }
561 }
562 load_completion(nlmp);
563 return (error);
564 }
565
566 /*
567 * Argument checking for dlclose. Only called via external entry.
568 */
569 static int
dlclose_check(void * handle,Rt_map * clmp)570 dlclose_check(void *handle, Rt_map *clmp)
571 {
572 Grp_hdl *ghp = (Grp_hdl *)handle;
573
574 if (hdl_validate(ghp) == 0) {
575 Conv_inv_buf_t inv_buf;
576
577 (void) conv_invalid_val(&inv_buf, EC_NATPTR(ghp), 0);
578 DBG_CALL(Dbg_dl_dlclose(clmp, inv_buf.buf, DBG_DLCLOSE_NULL));
579
580 eprintf(LIST(clmp), ERR_FATAL, MSG_INTL(MSG_ARG_INVHNDL),
581 EC_NATPTR(handle));
582 return (1);
583 }
584 return (dlclose_intn(ghp, clmp));
585 }
586
587 #pragma weak _dlclose = dlclose
588
589 /*
590 * External entry for dlclose(3dl). Returns 0 for success, non-zero otherwise.
591 */
592 int
dlclose(void * handle)593 dlclose(void *handle)
594 {
595 int error, entry;
596 Rt_map *clmp;
597
598 entry = enter(0);
599
600 clmp = _caller(caller(), CL_EXECDEF);
601
602 error = dlclose_check(handle, clmp);
603
604 if (entry)
605 leave(LIST(clmp), 0);
606 return (error);
607 }
608
609 static uint_t lmid = 0;
610
611 /*
612 * The addition of new link-map lists is assumed to be in small quantities.
613 * Here, we assign a unique link-map id for diagnostic use. Simply update the
614 * running link-map count until we max out.
615 */
616 int
newlmid(Lm_list * lml)617 newlmid(Lm_list *lml)
618 {
619 char buffer[MSG_LMID_ALT_SIZE + 12];
620
621 if (lmid == UINT_MAX) {
622 lml->lm_lmid = UINT_MAX;
623 (void) strncpy(buffer, MSG_ORIG(MSG_LMID_MAXED),
624 MSG_LMID_ALT_SIZE + 12);
625 } else {
626 lml->lm_lmid = lmid++;
627 (void) snprintf(buffer, MSG_LMID_ALT_SIZE + 12,
628 MSG_ORIG(MSG_LMID_FMT), MSG_ORIG(MSG_LMID_ALT),
629 lml->lm_lmid);
630 }
631 if ((lml->lm_lmidstr = strdup(buffer)) == NULL)
632 return (0);
633
634 return (1);
635 }
636
637 /*
638 * Core dlopen activity.
639 */
640 static Grp_hdl *
dlmopen_core(Lm_list * lml,Lm_list * olml,const char * path,int mode,Rt_map * clmp,uint_t flags,uint_t orig,int * in_nfavl)641 dlmopen_core(Lm_list *lml, Lm_list *olml, const char *path, int mode,
642 Rt_map *clmp, uint_t flags, uint_t orig, int *in_nfavl)
643 {
644 Alist *palp = NULL;
645 Rt_map *nlmp;
646 Grp_hdl *ghp;
647 Aliste olmco, nlmco;
648
649 DBG_CALL(Dbg_dl_dlopen(clmp,
650 (path ? path : MSG_ORIG(MSG_STR_ZERO)), in_nfavl, mode));
651
652 /*
653 * Having diagnosed the originally defined modes, assign any defaults
654 * or corrections.
655 */
656 if (((mode & (RTLD_GROUP | RTLD_WORLD)) == 0) &&
657 ((mode & RTLD_NOLOAD) == 0))
658 mode |= (RTLD_GROUP | RTLD_WORLD);
659 if ((mode & RTLD_NOW) && (rtld_flags2 & RT_FL2_BINDLAZY)) {
660 mode &= ~RTLD_NOW;
661 mode |= RTLD_LAZY;
662 }
663
664 /*
665 * If the path specified is null then we're operating on global
666 * objects. Associate a dummy handle with the link-map list.
667 */
668 if (path == NULL) {
669 Grp_hdl *ghp;
670 uint_t hflags, rdflags, cdflags;
671 int promote = 0;
672
673 /*
674 * Establish any flags for the handle (Grp_hdl).
675 *
676 * - This is a dummy, public, handle (0) that provides for a
677 * dynamic search of all global objects within the process.
678 * - Use of the RTLD_FIRST mode indicates that only the first
679 * dependency on the handle (the referenced object) can be
680 * used to satisfy dlsym() requests.
681 */
682 hflags = (GPH_PUBLIC | GPH_ZERO);
683 if (mode & RTLD_FIRST)
684 hflags |= GPH_FIRST;
685
686 /*
687 * Establish the flags for the referenced dependency descriptor
688 * (Grp_desc).
689 *
690 * - The referenced object is available for dlsym().
691 * - The referenced object is available to relocate against.
692 * - The referenced object should have it's dependencies
693 * added to this handle.
694 */
695 rdflags = (GPD_DLSYM | GPD_RELOC | GPD_ADDEPS);
696
697 /*
698 * Establish the flags for this callers dependency descriptor
699 * (Grp_desc).
700 *
701 * - The explicit creation of a handle creates a descriptor
702 * for the referenced object and the parent (caller).
703 * - Use of the RTLD_PARENT flag indicates that the parent
704 * can be relocated against.
705 */
706 cdflags = GPD_PARENT;
707 if (mode & RTLD_PARENT)
708 cdflags |= GPD_RELOC;
709
710 if ((ghp = hdl_create(lml, 0, clmp, hflags, rdflags,
711 cdflags)) == NULL)
712 return (NULL);
713
714 /*
715 * Traverse the main link-map control list, updating the mode
716 * of any objects as necessary. Call the relocation engine if
717 * this mode promotes the existing state of any relocations.
718 * crle()'s first pass loads all objects necessary for building
719 * a configuration file, however none of them are relocated.
720 * crle()'s second pass relocates objects in preparation for
721 * dldump()'ing using dlopen(0, RTLD_NOW).
722 */
723 if ((mode & (RTLD_NOW | RTLD_CONFGEN)) == RTLD_CONFGEN)
724 return (ghp);
725
726 for (nlmp = lml->lm_head; nlmp; nlmp = NEXT_RT_MAP(nlmp)) {
727 if (((MODE(nlmp) & RTLD_GLOBAL) == 0) ||
728 (FLAGS(nlmp) & FLG_RT_DELETE))
729 continue;
730
731 if (update_mode(nlmp, MODE(nlmp), mode))
732 promote = 1;
733 }
734 if (promote)
735 (void) relocate_lmc(lml, ALIST_OFF_DATA, clmp,
736 lml->lm_head, in_nfavl);
737
738 return (ghp);
739 }
740
741 /*
742 * Fix the pathname. If this object expands to multiple paths (ie.
743 * $ISALIST or $HWCAP have been used), then make sure the user has also
744 * furnished the RTLD_FIRST flag. As yet, we don't support opening
745 * more than one object at a time, so enforcing the RTLD_FIRST flag
746 * provides flexibility should we be able to support dlopening more
747 * than one object in the future.
748 */
749 if (LM_FIX_NAME(clmp)(path, clmp, &palp, AL_CNT_NEEDED, orig) == 0)
750 return (NULL);
751
752 if ((palp->al_arritems > 1) && ((mode & RTLD_FIRST) == 0)) {
753 remove_alist(&palp, 1);
754 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_5));
755 return (NULL);
756 }
757
758 /*
759 * Establish a link-map control list for this request, and load the
760 * associated object.
761 */
762 if ((nlmco = create_cntl(lml, 1)) == 0) {
763 remove_alist(&palp, 1);
764 return (NULL);
765 }
766 olmco = nlmco;
767
768 nlmp = load_one(lml, nlmco, palp, clmp, mode, (flags | FLG_RT_PUBHDL),
769 &ghp, in_nfavl);
770
771 /*
772 * Remove any expanded pathname infrastructure, and if the dependency
773 * couldn't be loaded, cleanup.
774 */
775 remove_alist(&palp, 1);
776 if (nlmp == NULL) {
777 remove_cntl(lml, olmco);
778 return (NULL);
779 }
780
781 /*
782 * If loading an auditor was requested, and the auditor already existed,
783 * then the link-map returned will be to the original auditor. The new
784 * link-map list that was initially created, and the associated link-map
785 * control list are no longer needed. As the auditor is already loaded,
786 * we're probably done, but fall through in case additional relocations
787 * would be triggered by the mode of the caller.
788 */
789 if ((flags & FLG_RT_AUDIT) && (LIST(nlmp) != lml)) {
790 remove_cntl(lml, olmco);
791 lml = LIST(nlmp);
792 olmco = 0;
793 nlmco = ALIST_OFF_DATA;
794 }
795
796 /*
797 * Finish processing the objects associated with this request.
798 */
799 if (((nlmp = analyze_lmc(lml, nlmco, nlmp, clmp, in_nfavl)) == NULL) ||
800 (relocate_lmc(lml, nlmco, clmp, nlmp, in_nfavl) == 0)) {
801 ghp = NULL;
802 nlmp = NULL;
803 }
804
805 /*
806 * If the dlopen has failed, clean up any objects that might have been
807 * loaded successfully on this new link-map control list.
808 */
809 if (olmco && (nlmp == NULL))
810 remove_lmc(lml, clmp, olmco, path);
811
812 /*
813 * Finally, remove any temporary link-map control list. Note, if this
814 * operation successfully established a new link-map list, then a base
815 * link-map control list will have been created, which must remain.
816 */
817 if (olmco && ((nlmp == NULL) || (olml != (Lm_list *)LM_ID_NEWLM)))
818 remove_cntl(lml, olmco);
819
820 return (ghp);
821 }
822
823 /*
824 * dlopen() and dlsym() operations are the means by which a process can
825 * test for the existence of required dependencies. If the necessary
826 * dependencies don't exist, then associated functionality can't be used.
827 * However, the lack of dependencies can be fixed, and the dlopen() and
828 * dlsym() requests can be repeated. As we use a "not-found" AVL tree to
829 * cache any failed full path loads, secondary dlopen() and dlsym() requests
830 * will fail, even if the dependencies have been installed.
831 *
832 * dlopen() and dlsym() retry any failures by removing the "not-found" AVL
833 * tree. Should any dependencies be found, their names are added to the
834 * FullPath AVL tree. This routine removes any new "not-found" AVL tree,
835 * so that the dlopen() or dlsym() can replace the original "not-found" tree.
836 */
837 inline static void
nfavl_remove(avl_tree_t * avlt)838 nfavl_remove(avl_tree_t *avlt)
839 {
840 PathNode *pnp;
841 void *cookie = NULL;
842
843 if (avlt) {
844 while ((pnp = avl_destroy_nodes(avlt, &cookie)) != NULL)
845 free(pnp);
846
847 avl_destroy(avlt);
848 free(avlt);
849 }
850 }
851
852 /*
853 * Internal dlopen() activity. Called from user level or directly for internal
854 * opens that require a handle.
855 */
856 Grp_hdl *
dlmopen_intn(Lm_list * lml,const char * path,int mode,Rt_map * clmp,uint_t flags,uint_t orig)857 dlmopen_intn(Lm_list *lml, const char *path, int mode, Rt_map *clmp,
858 uint_t flags, uint_t orig)
859 {
860 Lm_list *olml = lml;
861 Rt_map *dlmp = NULL;
862 Grp_hdl *ghp;
863 int in_nfavl = 0;
864
865 /*
866 * Check for magic link-map list values:
867 *
868 * LM_ID_BASE: Operate on the PRIMARY (executables) link map
869 * LM_ID_LDSO: Operation on ld.so.1's link map
870 * LM_ID_NEWLM: Create a new link-map.
871 */
872 if (lml == (Lm_list *)LM_ID_NEWLM) {
873 if ((lml = calloc(1, sizeof (Lm_list))) == NULL)
874 return (NULL);
875
876 /*
877 * Establish the new link-map flags from the callers and those
878 * explicitly provided.
879 */
880 lml->lm_tflags = LIST(clmp)->lm_tflags;
881 if (flags & FLG_RT_AUDIT) {
882 /*
883 * Unset any auditing flags - an auditor shouldn't be
884 * audited. Insure all audit dependencies are loaded.
885 */
886 lml->lm_tflags &= ~LML_TFLG_AUD_MASK;
887 lml->lm_tflags |= (LML_TFLG_NOLAZYLD |
888 LML_TFLG_LOADFLTR | LML_TFLG_NOAUDIT);
889 }
890
891 if (aplist_append(&dynlm_list, lml, AL_CNT_DYNLIST) == NULL) {
892 free(lml);
893 return (NULL);
894 }
895 if (newlmid(lml) == 0) {
896 (void) aplist_delete_value(dynlm_list, lml);
897 free(lml);
898 return (NULL);
899 }
900 } else if ((uintptr_t)lml < LM_ID_NUM) {
901 if ((uintptr_t)lml == LM_ID_BASE)
902 lml = &lml_main;
903 else if ((uintptr_t)lml == LM_ID_LDSO)
904 lml = &lml_rtld;
905 }
906
907 /*
908 * Open the required object on the associated link-map list.
909 */
910 ghp = dlmopen_core(lml, olml, path, mode, clmp, flags, orig, &in_nfavl);
911
912 /*
913 * If the object could not be found it is possible that the "not-found"
914 * AVL tree had indicated that the file does not exist. In case the
915 * file system has changed since this "not-found" recording was made,
916 * retry the dlopen() with a clean "not-found" AVL tree.
917 */
918 if ((ghp == NULL) && in_nfavl) {
919 avl_tree_t *oavlt = nfavl;
920
921 nfavl = NULL;
922 ghp = dlmopen_core(lml, olml, path, mode, clmp, flags, orig,
923 NULL);
924
925 /*
926 * If the file is found, then its full path name will have been
927 * registered in the FullPath AVL tree. Remove any new
928 * "not-found" AVL information, and restore the former AVL tree.
929 */
930 nfavl_remove(nfavl);
931 nfavl = oavlt;
932 }
933
934 /*
935 * Establish the new link-map from which .init processing will begin.
936 * Ignore .init firing when constructing a configuration file (crle(1)).
937 */
938 if (ghp && ((mode & RTLD_CONFGEN) == 0))
939 dlmp = ghp->gh_ownlmp;
940
941 /*
942 * If loading an auditor was requested, and the auditor already existed,
943 * then the link-map returned will be to the original auditor. Remove
944 * the link-map control list that was created for this request.
945 */
946 if (dlmp && (flags & FLG_RT_AUDIT) && (LIST(dlmp) != lml)) {
947 remove_lml(lml);
948 lml = LIST(dlmp);
949 }
950
951 /*
952 * If this load failed, remove any alternative link-map list.
953 */
954 if ((ghp == NULL) &&
955 ((lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) == 0)) {
956 remove_lml(lml);
957 lml = NULL;
958 }
959
960 /*
961 * Finish this load request. If objects were loaded, .init processing
962 * is computed. Finally, the debuggers are informed of the link-map
963 * lists being stable.
964 */
965 load_completion(dlmp);
966
967 return (ghp);
968 }
969
970 /*
971 * Argument checking for dlopen. Only called via external entry.
972 */
973 static Grp_hdl *
dlmopen_check(Lm_list * lml,const char * path,int mode,Rt_map * clmp)974 dlmopen_check(Lm_list *lml, const char *path, int mode, Rt_map *clmp)
975 {
976 /*
977 * Verify that a valid pathname has been supplied.
978 */
979 if (path && (*path == '\0')) {
980 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLPATH));
981 return (0);
982 }
983
984 /*
985 * Historically we've always verified the mode is either RTLD_NOW or
986 * RTLD_LAZY. RTLD_NOLOAD is valid by itself. Use of LM_ID_NEWLM
987 * requires a specific pathname, and use of RTLD_PARENT is meaningless.
988 */
989 if ((mode & (RTLD_NOW | RTLD_LAZY | RTLD_NOLOAD)) == 0) {
990 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_1));
991 return (0);
992 }
993 if ((mode & (RTLD_NOW | RTLD_LAZY)) == (RTLD_NOW | RTLD_LAZY)) {
994 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_2));
995 return (0);
996 }
997 if ((lml == (Lm_list *)LM_ID_NEWLM) && (path == NULL)) {
998 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_3));
999 return (0);
1000 }
1001 if ((lml == (Lm_list *)LM_ID_NEWLM) && (mode & RTLD_PARENT)) {
1002 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_4));
1003 return (0);
1004 }
1005
1006 return (dlmopen_intn(lml, path, mode, clmp, 0, 0));
1007 }
1008
1009 #pragma weak _dlopen = dlopen
1010
1011 /*
1012 * External entry for dlopen(3dl). On success, returns a pointer (handle) to
1013 * the structure containing information about the newly added object, ie. can
1014 * be used by dlsym(). On failure, returns a null pointer.
1015 */
1016 void *
dlopen(const char * path,int mode)1017 dlopen(const char *path, int mode)
1018 {
1019 int entry;
1020 Rt_map *clmp;
1021 Grp_hdl *ghp;
1022 Lm_list *lml;
1023
1024 entry = enter(0);
1025
1026 clmp = _caller(caller(), CL_EXECDEF);
1027 lml = LIST(clmp);
1028
1029 ghp = dlmopen_check(lml, path, mode, clmp);
1030
1031 if (entry)
1032 leave(lml, 0);
1033 return ((void *)ghp);
1034 }
1035
1036 #pragma weak _dlmopen = dlmopen
1037
1038 /*
1039 * External entry for dlmopen(3dl).
1040 */
1041 void *
dlmopen(Lmid_t lmid,const char * path,int mode)1042 dlmopen(Lmid_t lmid, const char *path, int mode)
1043 {
1044 int entry;
1045 Rt_map *clmp;
1046 Grp_hdl *ghp;
1047
1048 entry = enter(0);
1049
1050 clmp = _caller(caller(), CL_EXECDEF);
1051
1052 ghp = dlmopen_check((Lm_list *)lmid, path, mode, clmp);
1053
1054 if (entry)
1055 leave(LIST(clmp), 0);
1056 return ((void *)ghp);
1057 }
1058
1059 /*
1060 * Handle processing for dlsym.
1061 */
1062 int
dlsym_handle(Grp_hdl * ghp,Slookup * slp,Sresult * srp,uint_t * binfo,int * in_nfavl)1063 dlsym_handle(Grp_hdl *ghp, Slookup *slp, Sresult *srp, uint_t *binfo,
1064 int *in_nfavl)
1065 {
1066 Rt_map *nlmp, * lmp = ghp->gh_ownlmp;
1067 Rt_map *clmp = slp->sl_cmap;
1068 const char *name = slp->sl_name;
1069 Slookup sl = *slp;
1070
1071 sl.sl_flags = (LKUP_FIRST | LKUP_DLSYM | LKUP_SPEC);
1072
1073 /*
1074 * Continue processing a dlsym request. Lookup the required symbol in
1075 * each link-map specified by the handle.
1076 *
1077 * To leverage off of lazy loading, dlsym() requests can result in two
1078 * passes. The first descends the link-maps of any objects already in
1079 * the address space. If the symbol isn't located, and lazy
1080 * dependencies still exist, then a second pass is made to load these
1081 * dependencies if applicable. This model means that in the case where
1082 * a symbol exists in more than one object, the one located may not be
1083 * constant - this is the standard issue with lazy loading. In addition,
1084 * attempting to locate a symbol that doesn't exist will result in the
1085 * loading of all lazy dependencies on the given handle, which can
1086 * defeat some of the advantages of lazy loading (look out JVM).
1087 */
1088 if (ghp->gh_flags & GPH_ZERO) {
1089 Lm_list *lml;
1090 uint_t lazy = 0;
1091
1092 /*
1093 * If this symbol lookup is triggered from a dlopen(0) handle,
1094 * traverse the present link-map list looking for promiscuous
1095 * entries.
1096 */
1097 for (nlmp = lmp; nlmp; nlmp = NEXT_RT_MAP(nlmp)) {
1098 /*
1099 * If this handle indicates we're only to look in the
1100 * first object check whether we're done.
1101 */
1102 if ((nlmp != lmp) && (ghp->gh_flags & GPH_FIRST))
1103 return (0);
1104
1105 if (!(MODE(nlmp) & RTLD_GLOBAL))
1106 continue;
1107 if ((FLAGS(nlmp) & FLG_RT_DELETE) &&
1108 ((FLAGS(clmp) & FLG_RT_DELETE) == 0))
1109 continue;
1110
1111 sl.sl_imap = nlmp;
1112 if (LM_LOOKUP_SYM(clmp)(&sl, srp, binfo, in_nfavl))
1113 return (1);
1114
1115 /*
1116 * Keep track of any global pending lazy loads.
1117 */
1118 lazy += LAZY(nlmp);
1119 }
1120
1121 /*
1122 * If we're unable to locate the symbol and this link-map list
1123 * still has pending lazy dependencies, start loading them in an
1124 * attempt to exhaust the search. Note that as we're already
1125 * traversing a dynamic linked list of link-maps there's no
1126 * need for elf_lazy_find_sym() to descend the link-maps itself.
1127 */
1128 lml = LIST(lmp);
1129 if (lazy) {
1130 DBG_CALL(Dbg_syms_lazy_rescan(lml, name));
1131
1132 sl.sl_flags |= LKUP_NODESCENT;
1133
1134 for (nlmp = lmp; nlmp; nlmp = NEXT_RT_MAP(nlmp)) {
1135
1136 if (!(MODE(nlmp) & RTLD_GLOBAL) || !LAZY(nlmp))
1137 continue;
1138 if ((FLAGS(nlmp) & FLG_RT_DELETE) &&
1139 ((FLAGS(clmp) & FLG_RT_DELETE) == 0))
1140 continue;
1141
1142 sl.sl_imap = nlmp;
1143 if (elf_lazy_find_sym(&sl, srp, binfo,
1144 in_nfavl))
1145 return (1);
1146 }
1147 }
1148 } else {
1149 /*
1150 * Traverse the dlopen() handle searching all presently loaded
1151 * link-maps.
1152 */
1153 Grp_desc *gdp;
1154 Aliste idx;
1155 uint_t lazy = 0;
1156
1157 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) {
1158 nlmp = gdp->gd_depend;
1159
1160 if ((gdp->gd_flags & GPD_DLSYM) == 0)
1161 continue;
1162
1163 sl.sl_imap = nlmp;
1164 if (LM_LOOKUP_SYM(clmp)(&sl, srp, binfo, in_nfavl))
1165 return (1);
1166
1167 if (ghp->gh_flags & GPH_FIRST)
1168 return (0);
1169
1170 /*
1171 * Keep track of any pending lazy loads associated
1172 * with this handle.
1173 */
1174 lazy += LAZY(nlmp);
1175 }
1176
1177 /*
1178 * If we're unable to locate the symbol and this handle still
1179 * has pending lazy dependencies, start loading the lazy
1180 * dependencies, in an attempt to exhaust the search.
1181 */
1182 if (lazy) {
1183 DBG_CALL(Dbg_syms_lazy_rescan(LIST(lmp), name));
1184
1185 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) {
1186 nlmp = gdp->gd_depend;
1187
1188 if (((gdp->gd_flags & GPD_DLSYM) == 0) ||
1189 (LAZY(nlmp) == 0))
1190 continue;
1191
1192 sl.sl_imap = nlmp;
1193 if (elf_lazy_find_sym(&sl, srp, binfo,
1194 in_nfavl))
1195 return (1);
1196 }
1197 }
1198 }
1199 return (0);
1200 }
1201
1202 /*
1203 * Determine whether a symbol resides in a caller. This may be a reference,
1204 * which is associated with a specific dependency.
1205 */
1206 inline static Sym *
sym_lookup_in_caller(Rt_map * clmp,Slookup * slp,Sresult * srp,uint_t * binfo)1207 sym_lookup_in_caller(Rt_map *clmp, Slookup *slp, Sresult *srp, uint_t *binfo)
1208 {
1209 if (THIS_IS_ELF(clmp) && SYMINTP(clmp)(slp, srp, binfo, NULL)) {
1210 Sym *sym = srp->sr_sym;
1211
1212 slp->sl_rsymndx = (((ulong_t)sym -
1213 (ulong_t)SYMTAB(clmp)) / SYMENT(clmp));
1214 slp->sl_rsym = sym;
1215 return (sym);
1216 }
1217 return (NULL);
1218 }
1219
1220 /*
1221 * Core dlsym activity. Selects symbol lookup method from handle.
1222 */
1223 static void *
dlsym_core(void * handle,const char * name,Rt_map * clmp,Rt_map ** dlmp,int * in_nfavl)1224 dlsym_core(void *handle, const char *name, Rt_map *clmp, Rt_map **dlmp,
1225 int *in_nfavl)
1226 {
1227 Sym *sym;
1228 int ret = 0;
1229 Syminfo *sip;
1230 Slookup sl;
1231 Sresult sr;
1232 uint_t binfo;
1233
1234 /*
1235 * Initialize the symbol lookup data structure.
1236 *
1237 * Standard relocations are evaluated using the symbol index of the
1238 * associated relocation symbol. This index provides for loading
1239 * any lazy dependency and establishing a direct binding if necessary.
1240 * If a dlsym() operation originates from an object that contains a
1241 * symbol table entry for the same name, then we need to establish the
1242 * symbol index so that any dependency requirements can be triggered.
1243 *
1244 * Therefore, the first symbol lookup that is carried out is for the
1245 * symbol name within the calling object. If this symbol exists, the
1246 * symbols index is computed, added to the Slookup data, and thus used
1247 * to seed the real symbol lookup.
1248 */
1249 SLOOKUP_INIT(sl, name, clmp, clmp, ld_entry_cnt, elf_hash(name),
1250 0, 0, 0, LKUP_SYMNDX);
1251 SRESULT_INIT(sr, name);
1252 sym = sym_lookup_in_caller(clmp, &sl, &sr, &binfo);
1253
1254 SRESULT_INIT(sr, name);
1255
1256 if (sym && (ELF_ST_VISIBILITY(sym->st_other) == STV_SINGLETON)) {
1257 Rt_map *hlmp = LIST(clmp)->lm_head;
1258
1259 /*
1260 * If a symbol reference is known, and that reference indicates
1261 * that the symbol is a singleton, then the search for the
1262 * symbol must follow the default search path.
1263 */
1264 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, 0,
1265 DBG_DLSYM_SINGLETON));
1266
1267 sl.sl_imap = hlmp;
1268 if (handle == RTLD_PROBE)
1269 sl.sl_flags = LKUP_NOFALLBACK;
1270 else
1271 sl.sl_flags = LKUP_SPEC;
1272 ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl);
1273
1274 } else if (handle == RTLD_NEXT) {
1275 Rt_map *nlmp;
1276
1277 /*
1278 * If this handle is RTLD_NEXT determine whether a lazy load
1279 * from the caller might provide the next object. This mimics
1280 * the lazy loading initialization normally carried out by
1281 * lookup_sym(), however here, we must do this up-front, as
1282 * lookup_sym() will be used to inspect the next object.
1283 */
1284 if ((sl.sl_rsymndx) && ((sip = SYMINFO(clmp)) != NULL)) {
1285 /* LINTED */
1286 sip = (Syminfo *)((char *)sip +
1287 (sl.sl_rsymndx * SYMINENT(clmp)));
1288
1289 if ((sip->si_flags & SYMINFO_FLG_DIRECT) &&
1290 (sip->si_boundto < SYMINFO_BT_LOWRESERVE))
1291 (void) elf_lazy_load(clmp, &sl,
1292 sip->si_boundto, name, 0, NULL, in_nfavl);
1293
1294 /*
1295 * Clear the symbol index, so as not to confuse
1296 * lookup_sym() of the next object.
1297 */
1298 sl.sl_rsymndx = 0;
1299 sl.sl_rsym = NULL;
1300 }
1301
1302 /*
1303 * If the handle is RTLD_NEXT, start searching in the next link
1304 * map from the callers. Determine permissions from the
1305 * present link map. Indicate to lookup_sym() that we're on an
1306 * RTLD_NEXT request so that it will use the callers link map to
1307 * start any possible lazy dependency loading.
1308 */
1309 sl.sl_imap = nlmp = NEXT_RT_MAP(clmp);
1310
1311 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl,
1312 (nlmp ? NAME(nlmp) : MSG_INTL(MSG_STR_NULL)),
1313 DBG_DLSYM_NEXT));
1314
1315 if (nlmp == NULL)
1316 return (0);
1317
1318 sl.sl_flags = LKUP_NEXT;
1319 ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl);
1320
1321 } else if (handle == RTLD_SELF) {
1322 /*
1323 * If the handle is RTLD_SELF start searching from the caller.
1324 */
1325 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, NAME(clmp),
1326 DBG_DLSYM_SELF));
1327
1328 sl.sl_imap = clmp;
1329 sl.sl_flags = (LKUP_SPEC | LKUP_SELF);
1330 ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl);
1331
1332 } else if (handle == RTLD_DEFAULT) {
1333 Rt_map *hlmp = LIST(clmp)->lm_head;
1334
1335 /*
1336 * If the handle is RTLD_DEFAULT mimic the standard symbol
1337 * lookup as would be triggered by a relocation.
1338 */
1339 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, 0,
1340 DBG_DLSYM_DEFAULT));
1341
1342 sl.sl_imap = hlmp;
1343 sl.sl_flags = LKUP_SPEC;
1344 ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl);
1345
1346 } else if (handle == RTLD_PROBE) {
1347 Rt_map *hlmp = LIST(clmp)->lm_head;
1348
1349 /*
1350 * If the handle is RTLD_PROBE, mimic the standard symbol
1351 * lookup as would be triggered by a relocation, however do
1352 * not fall back to a lazy loading rescan if the symbol can't be
1353 * found within the currently loaded objects. Note, a lazy
1354 * loaded dependency required by the caller might still get
1355 * loaded to satisfy this request, but no exhaustive lazy load
1356 * rescan is carried out.
1357 */
1358 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, 0,
1359 DBG_DLSYM_PROBE));
1360
1361 sl.sl_imap = hlmp;
1362 sl.sl_flags = LKUP_NOFALLBACK;
1363 ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl);
1364
1365 } else {
1366 Grp_hdl *ghp = (Grp_hdl *)handle;
1367
1368 /*
1369 * Look in the shared object specified by the handle and in all
1370 * of its dependencies.
1371 */
1372 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl,
1373 NAME(ghp->gh_ownlmp), DBG_DLSYM_DEF));
1374
1375 ret = LM_DLSYM(clmp)(ghp, &sl, &sr, &binfo, in_nfavl);
1376 }
1377
1378 if (ret && ((sym = sr.sr_sym) != NULL)) {
1379 Lm_list *lml = LIST(clmp);
1380 Addr addr = sym->st_value;
1381
1382 *dlmp = sr.sr_dmap;
1383 if (!(FLAGS(*dlmp) & FLG_RT_FIXED))
1384 addr += ADDR(*dlmp);
1385
1386 /*
1387 * Indicate that the defining object is now used.
1388 */
1389 if (*dlmp != clmp)
1390 FLAGS1(*dlmp) |= FL1_RT_USED;
1391
1392 DBG_CALL(Dbg_bind_global(clmp, 0, 0, (Xword)-1, PLT_T_NONE,
1393 *dlmp, addr, sym->st_value, sr.sr_name, binfo));
1394
1395 if ((lml->lm_tflags | AFLAGS(clmp) | AFLAGS(*dlmp)) &
1396 LML_TFLG_AUD_SYMBIND) {
1397 uint_t sb_flags = LA_SYMB_DLSYM;
1398 /* LINTED */
1399 uint_t symndx = (uint_t)(((Xword)sym -
1400 (Xword)SYMTAB(*dlmp)) / SYMENT(*dlmp));
1401 addr = audit_symbind(clmp, *dlmp, sym, symndx, addr,
1402 &sb_flags);
1403 }
1404 return ((void *)addr);
1405 }
1406
1407 return (NULL);
1408 }
1409
1410 /*
1411 * Internal dlsym activity. Called from user level or directly for internal
1412 * symbol lookup.
1413 */
1414 void *
dlsym_intn(void * handle,const char * name,Rt_map * clmp,Rt_map ** dlmp)1415 dlsym_intn(void *handle, const char *name, Rt_map *clmp, Rt_map **dlmp)
1416 {
1417 Rt_map *llmp = NULL;
1418 void *error;
1419 Aliste idx;
1420 Grp_desc *gdp;
1421 int in_nfavl = 0;
1422
1423 /*
1424 * While looking for symbols it's quite possible that additional objects
1425 * get loaded from lazy loading. These objects will have been added to
1426 * the same link-map list as those objects on the handle. Remember this
1427 * list for later investigation.
1428 */
1429 if ((handle == RTLD_NEXT) || (handle == RTLD_DEFAULT) ||
1430 (handle == RTLD_SELF) || (handle == RTLD_PROBE))
1431 llmp = LIST(clmp)->lm_tail;
1432 else {
1433 Grp_hdl *ghp = (Grp_hdl *)handle;
1434
1435 if (ghp->gh_ownlmp)
1436 llmp = LIST(ghp->gh_ownlmp)->lm_tail;
1437 else {
1438 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) {
1439 if ((llmp =
1440 LIST(gdp->gd_depend)->lm_tail) != NULL)
1441 break;
1442 }
1443 }
1444 }
1445
1446 error = dlsym_core(handle, name, clmp, dlmp, &in_nfavl);
1447
1448 /*
1449 * If the symbol could not be found it is possible that the "not-found"
1450 * AVL tree had indicated that a required file does not exist. In case
1451 * the file system has changed since this "not-found" recording was
1452 * made, retry the dlsym() with a clean "not-found" AVL tree.
1453 */
1454 if ((error == NULL) && in_nfavl) {
1455 avl_tree_t *oavlt = nfavl;
1456
1457 nfavl = NULL;
1458 error = dlsym_core(handle, name, clmp, dlmp, NULL);
1459
1460 /*
1461 * If the symbol is found, then any file that was loaded will
1462 * have had its full path name registered in the FullPath AVL
1463 * tree. Remove any new "not-found" AVL information, and
1464 * restore the former AVL tree.
1465 */
1466 nfavl_remove(nfavl);
1467 nfavl = oavlt;
1468 }
1469
1470 if (error == NULL) {
1471 /*
1472 * Cache the error message, as Java tends to fall through this
1473 * code many times.
1474 */
1475 if (nosym_str == NULL)
1476 nosym_str = MSG_INTL(MSG_GEN_NOSYM);
1477 eprintf(LIST(clmp), ERR_FATAL, nosym_str, name);
1478 }
1479
1480 load_completion(llmp);
1481 return (error);
1482 }
1483
1484 /*
1485 * Argument checking for dlsym. Only called via external entry.
1486 */
1487 static void *
dlsym_check(void * handle,const char * name,Rt_map * clmp,Rt_map ** dlmp)1488 dlsym_check(void *handle, const char *name, Rt_map *clmp, Rt_map **dlmp)
1489 {
1490 /*
1491 * Verify the arguments.
1492 */
1493 if (name == NULL) {
1494 eprintf(LIST(clmp), ERR_FATAL, MSG_INTL(MSG_ARG_ILLSYM));
1495 return (NULL);
1496 }
1497 if ((handle != RTLD_NEXT) && (handle != RTLD_DEFAULT) &&
1498 (handle != RTLD_SELF) && (handle != RTLD_PROBE) &&
1499 (hdl_validate((Grp_hdl *)handle) == 0)) {
1500 eprintf(LIST(clmp), ERR_FATAL, MSG_INTL(MSG_ARG_INVHNDL),
1501 EC_NATPTR(handle));
1502 return (NULL);
1503 }
1504 return (dlsym_intn(handle, name, clmp, dlmp));
1505 }
1506
1507
1508 #pragma weak _dlsym = dlsym
1509
1510 /*
1511 * External entry for dlsym(). On success, returns the address of the specified
1512 * symbol. On error returns a null.
1513 */
1514 void *
dlsym(void * handle,const char * name)1515 dlsym(void *handle, const char *name)
1516 {
1517 int entry;
1518 Rt_map *clmp, *dlmp = NULL;
1519 void *addr;
1520
1521 entry = enter(0);
1522
1523 clmp = _caller(caller(), CL_EXECDEF);
1524
1525 addr = dlsym_check(handle, name, clmp, &dlmp);
1526
1527 if (entry) {
1528 if (dlmp)
1529 is_dep_init(dlmp, clmp);
1530 leave(LIST(clmp), 0);
1531 }
1532 return (addr);
1533 }
1534
1535 /*
1536 * Core dladdr activity.
1537 */
1538 static void
dladdr_core(Rt_map * almp,void * addr,Dl_info_t * dlip,void ** info,int flags)1539 dladdr_core(Rt_map *almp, void *addr, Dl_info_t *dlip, void **info, int flags)
1540 {
1541 /*
1542 * Set up generic information and any defaults.
1543 */
1544 dlip->dli_fname = PATHNAME(almp);
1545
1546 dlip->dli_fbase = (void *)ADDR(almp);
1547 dlip->dli_sname = NULL;
1548 dlip->dli_saddr = NULL;
1549
1550 /*
1551 * Determine the nearest symbol to this address.
1552 */
1553 LM_DLADDR(almp)((ulong_t)addr, almp, dlip, info, flags);
1554 }
1555
1556 #pragma weak _dladdr = dladdr
1557
1558 /*
1559 * External entry for dladdr(3dl) and dladdr1(3dl). Returns an information
1560 * structure that reflects the symbol closest to the address specified.
1561 */
1562 int
dladdr(void * addr,Dl_info_t * dlip)1563 dladdr(void *addr, Dl_info_t *dlip)
1564 {
1565 int entry, ret;
1566 Rt_map *clmp, *almp;
1567 Lm_list *clml;
1568
1569 entry = enter(0);
1570
1571 clmp = _caller(caller(), CL_EXECDEF);
1572 clml = LIST(clmp);
1573
1574 DBG_CALL(Dbg_dl_dladdr(clmp, addr));
1575
1576 /*
1577 * Use our calling technique to determine what object is associated
1578 * with the supplied address. If a caller can't be determined,
1579 * indicate the failure.
1580 */
1581 if ((almp = _caller(addr, CL_NONE)) == NULL) {
1582 eprintf(clml, ERR_FATAL, MSG_INTL(MSG_ARG_INVADDR),
1583 EC_NATPTR(addr));
1584 ret = 0;
1585 } else {
1586 dladdr_core(almp, addr, dlip, 0, 0);
1587 ret = 1;
1588 }
1589
1590 if (entry)
1591 leave(clml, 0);
1592 return (ret);
1593 }
1594
1595 #pragma weak _dladdr1 = dladdr1
1596
1597 int
dladdr1(void * addr,Dl_info_t * dlip,void ** info,int flags)1598 dladdr1(void *addr, Dl_info_t *dlip, void **info, int flags)
1599 {
1600 int entry, ret = 1;
1601 Rt_map *clmp, *almp;
1602 Lm_list *clml;
1603
1604 entry = enter(0);
1605
1606 clmp = _caller(caller(), CL_EXECDEF);
1607 clml = LIST(clmp);
1608
1609 DBG_CALL(Dbg_dl_dladdr(clmp, addr));
1610
1611 /*
1612 * Validate any flags.
1613 */
1614 if (flags) {
1615 int request;
1616
1617 if (((request = (flags & RTLD_DL_MASK)) != RTLD_DL_SYMENT) &&
1618 (request != RTLD_DL_LINKMAP)) {
1619 eprintf(clml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLFLAGS),
1620 flags);
1621 ret = 0;
1622
1623 } else if (info == NULL) {
1624 eprintf(clml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLINFO),
1625 flags);
1626 ret = 0;
1627 }
1628 }
1629
1630 /*
1631 * Use our calling technique to determine what object is associated
1632 * with the supplied address. If a caller can't be determined,
1633 * indicate the failure.
1634 */
1635 if (ret) {
1636 if ((almp = _caller(addr, CL_NONE)) == NULL) {
1637 eprintf(clml, ERR_FATAL, MSG_INTL(MSG_ARG_INVADDR),
1638 EC_NATPTR(addr));
1639 ret = 0;
1640 } else
1641 dladdr_core(almp, addr, dlip, info, flags);
1642 }
1643
1644 if (entry)
1645 leave(clml, 0);
1646 return (ret);
1647 }
1648
1649 /*
1650 * Core dldump activity.
1651 */
1652 static int
dldump_core(Rt_map * clmp,Rt_map * lmp,const char * ipath,const char * opath,int flags)1653 dldump_core(Rt_map *clmp, Rt_map *lmp, const char *ipath, const char *opath,
1654 int flags)
1655 {
1656 Lm_list *lml = LIST(clmp);
1657 Addr addr = 0;
1658
1659 /*
1660 * Verify any arguments first.
1661 */
1662 if ((opath == NULL) || (opath[0] == '\0') ||
1663 ((lmp == NULL) && (ipath[0] == '\0'))) {
1664 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLPATH));
1665 return (1);
1666 }
1667
1668 /*
1669 * If an input file is specified make sure its one of our dependencies
1670 * on the main link-map list. Note, this has really all evolved for
1671 * crle(), which uses libcrle.so on an alternative link-map to trigger
1672 * dumping objects from the main link-map list. If we ever want to
1673 * dump objects from alternative link-maps, this model is going to
1674 * have to be revisited.
1675 */
1676 if (lmp == NULL) {
1677 if ((lmp = is_so_loaded(&lml_main, ipath, NULL)) == NULL) {
1678 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_NOFILE),
1679 ipath);
1680 return (1);
1681 }
1682 if (FLAGS(lmp) & FLG_RT_ALTER) {
1683 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_ALTER), ipath);
1684 return (1);
1685 }
1686 if (FLAGS(lmp) & FLG_RT_NODUMP) {
1687 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_NODUMP),
1688 ipath);
1689 return (1);
1690 }
1691 }
1692
1693 /*
1694 * If the object being dump'ed isn't fixed identify its mapping.
1695 */
1696 if (!(FLAGS(lmp) & FLG_RT_FIXED))
1697 addr = ADDR(lmp);
1698
1699 /*
1700 * As rt_dldump() will effectively lazy load the necessary support
1701 * libraries, make sure ld.so.1 is initialized for plt relocations.
1702 */
1703 if (elf_rtld_load() == 0)
1704 return (0);
1705
1706 /*
1707 * Dump the required image.
1708 */
1709 return (rt_dldump(lmp, opath, flags, addr));
1710 }
1711
1712 #pragma weak _dldump = dldump
1713
1714 /*
1715 * External entry for dldump(3c). Returns 0 on success, non-zero otherwise.
1716 */
1717 int
dldump(const char * ipath,const char * opath,int flags)1718 dldump(const char *ipath, const char *opath, int flags)
1719 {
1720 int error, entry;
1721 Rt_map *clmp, *lmp;
1722
1723 entry = enter(0);
1724
1725 clmp = _caller(caller(), CL_EXECDEF);
1726
1727 if (ipath) {
1728 lmp = NULL;
1729 } else {
1730 lmp = lml_main.lm_head;
1731 ipath = NAME(lmp);
1732 }
1733
1734 DBG_CALL(Dbg_dl_dldump(clmp, ipath, opath, flags));
1735
1736 error = dldump_core(clmp, lmp, ipath, opath, flags);
1737
1738 if (entry)
1739 leave(LIST(clmp), 0);
1740 return (error);
1741 }
1742
1743 /*
1744 * get_linkmap_id() translates Lm_list * pointers to the Link_map id as used by
1745 * the rtld_db and dlmopen() interfaces. It checks to see if the Link_map is
1746 * one of the primary ones and if so returns it's special token:
1747 * LM_ID_BASE
1748 * LM_ID_LDSO
1749 *
1750 * If it's not one of the primary link_map id's it will instead returns a
1751 * pointer to the Lm_list structure which uniquely identifies the Link_map.
1752 */
1753 Lmid_t
get_linkmap_id(Lm_list * lml)1754 get_linkmap_id(Lm_list *lml)
1755 {
1756 if (lml->lm_flags & LML_FLG_BASELM)
1757 return (LM_ID_BASE);
1758 if (lml->lm_flags & LML_FLG_RTLDLM)
1759 return (LM_ID_LDSO);
1760
1761 return ((Lmid_t)lml);
1762 }
1763
1764 /*
1765 * Set a new deferred dependency name.
1766 */
1767 static int
set_def_need(Lm_list * lml,Dyninfo * dyip,const char * name)1768 set_def_need(Lm_list *lml, Dyninfo *dyip, const char *name)
1769 {
1770 /*
1771 * If this dependency has already been established, then this dlinfo()
1772 * call is too late.
1773 */
1774 if (dyip->di_info) {
1775 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_DEF_DEPLOADED),
1776 dyip->di_name);
1777 return (-1);
1778 }
1779
1780 /*
1781 * Assign the new dependency name.
1782 */
1783 DBG_CALL(Dbg_file_deferred(lml, dyip->di_name, name));
1784 dyip->di_flags |= FLG_DI_DEF_DONE;
1785 dyip->di_name = name;
1786 return (0);
1787 }
1788
1789 /*
1790 * Extract information for a dlopen() handle.
1791 */
1792 static int
dlinfo_core(void * handle,int request,void * p,Rt_map * clmp)1793 dlinfo_core(void *handle, int request, void *p, Rt_map *clmp)
1794 {
1795 Conv_inv_buf_t inv_buf;
1796 char *handlename;
1797 Lm_list *lml = LIST(clmp);
1798 Rt_map *lmp = NULL;
1799
1800 /*
1801 * Determine whether a handle is provided. A handle isn't needed for
1802 * all operations, but it is validated here for the initial diagnostic.
1803 */
1804 if (handle == RTLD_SELF) {
1805 lmp = clmp;
1806 } else {
1807 Grp_hdl *ghp = (Grp_hdl *)handle;
1808
1809 if (hdl_validate(ghp))
1810 lmp = ghp->gh_ownlmp;
1811 }
1812 if (lmp) {
1813 handlename = NAME(lmp);
1814 } else {
1815 (void) conv_invalid_val(&inv_buf, EC_NATPTR(handle), 0);
1816 handlename = inv_buf.buf;
1817 }
1818
1819 DBG_CALL(Dbg_dl_dlinfo(clmp, handlename, request, p));
1820
1821 /*
1822 * Validate the request and return buffer.
1823 */
1824 if ((request > RTLD_DI_MAX) || (p == NULL)) {
1825 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLVAL));
1826 return (-1);
1827 }
1828
1829 /*
1830 * Return configuration cache name and address.
1831 */
1832 if (request == RTLD_DI_CONFIGADDR) {
1833 Dl_info_t *dlip = (Dl_info_t *)p;
1834
1835 if ((config->c_name == NULL) || (config->c_bgn == 0) ||
1836 (config->c_end == 0)) {
1837 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_NOCONFIG));
1838 return (-1);
1839 }
1840 dlip->dli_fname = config->c_name;
1841 dlip->dli_fbase = (void *)config->c_bgn;
1842 return (0);
1843 }
1844
1845 /*
1846 * Return profiled object name (used by ldprof audit library).
1847 */
1848 if (request == RTLD_DI_PROFILENAME) {
1849 if (profile_name == NULL) {
1850 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_NOPROFNAME));
1851 return (-1);
1852 }
1853
1854 *(const char **)p = profile_name;
1855 return (0);
1856 }
1857 if (request == RTLD_DI_PROFILEOUT) {
1858 /*
1859 * If a profile destination directory hasn't been specified
1860 * provide a default.
1861 */
1862 if (profile_out == NULL)
1863 profile_out = MSG_ORIG(MSG_PTH_VARTMP);
1864
1865 *(const char **)p = profile_out;
1866 return (0);
1867 }
1868
1869 /*
1870 * Obtain or establish a termination signal.
1871 */
1872 if (request == RTLD_DI_GETSIGNAL) {
1873 *(int *)p = killsig;
1874 return (0);
1875 }
1876
1877 if (request == RTLD_DI_SETSIGNAL) {
1878 sigset_t set;
1879 int sig = *(int *)p;
1880
1881 /*
1882 * Determine whether the signal is in range.
1883 */
1884 (void) sigfillset(&set);
1885 if (sigismember(&set, sig) != 1) {
1886 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_INVSIG), sig);
1887 return (-1);
1888 }
1889
1890 killsig = sig;
1891 return (0);
1892 }
1893
1894 /*
1895 * For any other request a link-map is required. Verify the handle.
1896 */
1897 if (lmp == NULL) {
1898 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_INVHNDL),
1899 EC_NATPTR(handle));
1900 return (-1);
1901 }
1902
1903 /*
1904 * Obtain the process arguments, environment and auxv. Note, as the
1905 * environment can be modified by the user (putenv(3c)), reinitialize
1906 * the environment pointer on each request.
1907 */
1908 if (request == RTLD_DI_ARGSINFO) {
1909 Dl_argsinfo_t *aip = (Dl_argsinfo_t *)p;
1910 Lm_list *lml = LIST(lmp);
1911
1912 *aip = argsinfo;
1913 if (lml->lm_flags & LML_FLG_ENVIRON)
1914 aip->dla_envp = *(lml->lm_environ);
1915
1916 return (0);
1917 }
1918
1919 /*
1920 * Return Lmid_t of the Link-Map list that the specified object is
1921 * loaded on.
1922 */
1923 if (request == RTLD_DI_LMID) {
1924 *(Lmid_t *)p = get_linkmap_id(LIST(lmp));
1925 return (0);
1926 }
1927
1928 /*
1929 * Return a pointer to the Link-Map structure associated with the
1930 * specified object.
1931 */
1932 if (request == RTLD_DI_LINKMAP) {
1933 *(Link_map **)p = (Link_map *)lmp;
1934 return (0);
1935 }
1936
1937 /*
1938 * Return search path information, or the size of the buffer required
1939 * to store the information.
1940 */
1941 if ((request == RTLD_DI_SERINFO) || (request == RTLD_DI_SERINFOSIZE)) {
1942 Spath_desc sd = { search_rules, NULL, 0 };
1943 Pdesc *pdp;
1944 Dl_serinfo_t *info;
1945 Dl_serpath_t *path;
1946 char *strs;
1947 size_t size = sizeof (Dl_serinfo_t);
1948 uint_t cnt = 0;
1949
1950 info = (Dl_serinfo_t *)p;
1951 path = &info->dls_serpath[0];
1952 strs = (char *)&info->dls_serpath[info->dls_cnt];
1953
1954 /*
1955 * Traverse search path entries for this object.
1956 */
1957 while ((pdp = get_next_dir(&sd, lmp, 0)) != NULL) {
1958 size_t _size;
1959
1960 if (pdp->pd_pname == NULL)
1961 continue;
1962
1963 /*
1964 * If configuration information exists, it's possible
1965 * this path has been identified as non-existent, if so
1966 * ignore it.
1967 */
1968 if (pdp->pd_info) {
1969 Rtc_obj *dobj = (Rtc_obj *)pdp->pd_info;
1970 if (dobj->co_flags & RTC_OBJ_NOEXIST)
1971 continue;
1972 }
1973
1974 /*
1975 * Keep track of search path count and total info size.
1976 */
1977 if (cnt++)
1978 size += sizeof (Dl_serpath_t);
1979 _size = pdp->pd_plen + 1;
1980 size += _size;
1981
1982 if (request == RTLD_DI_SERINFOSIZE)
1983 continue;
1984
1985 /*
1986 * If we're filling in search path information, confirm
1987 * there's sufficient space.
1988 */
1989 if (size > info->dls_size) {
1990 eprintf(lml, ERR_FATAL,
1991 MSG_INTL(MSG_ARG_SERSIZE),
1992 EC_OFF(info->dls_size));
1993 return (-1);
1994 }
1995 if (cnt > info->dls_cnt) {
1996 eprintf(lml, ERR_FATAL,
1997 MSG_INTL(MSG_ARG_SERCNT), info->dls_cnt);
1998 return (-1);
1999 }
2000
2001 /*
2002 * Append the path to the information buffer.
2003 */
2004 (void) strcpy(strs, pdp->pd_pname);
2005 path->dls_name = strs;
2006 path->dls_flags = (pdp->pd_flags & LA_SER_MASK);
2007
2008 strs = strs + _size;
2009 path++;
2010 }
2011
2012 /*
2013 * If we're here to size the search buffer fill it in.
2014 */
2015 if (request == RTLD_DI_SERINFOSIZE) {
2016 info->dls_size = size;
2017 info->dls_cnt = cnt;
2018 }
2019
2020 return (0);
2021 }
2022
2023 /*
2024 * Return the origin of the object associated with this link-map.
2025 * Basically return the dirname(1) of the objects fullpath.
2026 */
2027 if (request == RTLD_DI_ORIGIN) {
2028 char *str = (char *)p;
2029
2030 (void) strncpy(str, ORIGNAME(lmp), DIRSZ(lmp));
2031 str += DIRSZ(lmp);
2032 *str = '\0';
2033
2034 return (0);
2035 }
2036
2037 /*
2038 * Return the number of object mappings, or the mapping information for
2039 * this object.
2040 */
2041 if (request == RTLD_DI_MMAPCNT) {
2042 uint_t *cnt = (uint_t *)p;
2043
2044 *cnt = MMAPCNT(lmp);
2045 return (0);
2046 }
2047 if (request == RTLD_DI_MMAPS) {
2048 Dl_mapinfo_t *mip = (Dl_mapinfo_t *)p;
2049
2050 if (mip->dlm_acnt && mip->dlm_maps) {
2051 uint_t cnt = 0;
2052
2053 while ((cnt < mip->dlm_acnt) && (cnt < MMAPCNT(lmp))) {
2054 mip->dlm_maps[cnt] = MMAPS(lmp)[cnt];
2055 cnt++;
2056 }
2057 mip->dlm_rcnt = cnt;
2058 }
2059 return (0);
2060 }
2061
2062 /*
2063 * Assign a new dependency name to a deferred dependency.
2064 */
2065 if ((request == RTLD_DI_DEFERRED) ||
2066 (request == RTLD_DI_DEFERRED_SYM)) {
2067 Dl_definfo_t *dfip = (Dl_definfo_t *)p;
2068 Dyninfo *dyip;
2069 const char *dname, *rname;
2070
2071 /*
2072 * Verify the names.
2073 */
2074 if ((dfip->dld_refname == NULL) ||
2075 (dfip->dld_depname == NULL)) {
2076 eprintf(LIST(clmp), ERR_FATAL,
2077 MSG_INTL(MSG_ARG_ILLNAME));
2078 return (-1);
2079 }
2080
2081 dname = dfip->dld_depname;
2082 rname = dfip->dld_refname;
2083
2084 /*
2085 * A deferred dependency can be determined by referencing a
2086 * symbol family member that is associated to the dependency,
2087 * or by looking for the dependency by its name.
2088 */
2089 if (request == RTLD_DI_DEFERRED_SYM) {
2090 Slookup sl;
2091 Sresult sr;
2092 uint_t binfo;
2093 Syminfo *sip;
2094
2095 /*
2096 * Lookup the symbol in the associated object.
2097 */
2098 SLOOKUP_INIT(sl, rname, lmp, lmp, ld_entry_cnt,
2099 elf_hash(rname), 0, 0, 0, LKUP_SYMNDX);
2100 SRESULT_INIT(sr, rname);
2101 if (sym_lookup_in_caller(clmp, &sl, &sr,
2102 &binfo) == NULL) {
2103 eprintf(LIST(clmp), ERR_FATAL,
2104 MSG_INTL(MSG_DEF_NOSYMFOUND), rname);
2105 return (-1);
2106 }
2107
2108 /*
2109 * Use the symbols index to reference the Syminfo entry
2110 * and thus find the associated dependency.
2111 */
2112 if (sl.sl_rsymndx && ((sip = SYMINFO(clmp)) != NULL)) {
2113 /* LINTED */
2114 sip = (Syminfo *)((char *)sip +
2115 (sl.sl_rsymndx * SYMINENT(lmp)));
2116
2117 if ((sip->si_flags & SYMINFO_FLG_DEFERRED) &&
2118 (sip->si_boundto < SYMINFO_BT_LOWRESERVE) &&
2119 ((dyip = DYNINFO(lmp)) != NULL)) {
2120 dyip += sip->si_boundto;
2121
2122 if (!(dyip->di_flags & FLG_DI_IGNORE))
2123 return (set_def_need(lml,
2124 dyip, dname));
2125 }
2126 }
2127
2128 /*
2129 * No deferred symbol found.
2130 */
2131 eprintf(LIST(clmp), ERR_FATAL,
2132 MSG_INTL(MSG_DEF_NOSYMFOUND), rname);
2133 return (-1);
2134
2135 } else {
2136 Dyn *dyn;
2137
2138 /*
2139 * Using the target objects dependency information, find
2140 * the associated deferred dependency.
2141 */
2142 for (dyn = DYN(lmp), dyip = DYNINFO(lmp);
2143 !(dyip->di_flags & FLG_DI_IGNORE); dyn++, dyip++) {
2144 const char *oname;
2145
2146 if ((dyip->di_flags & FLG_DI_DEFERRED) == 0)
2147 continue;
2148
2149 if (strcmp(rname, dyip->di_name) == 0)
2150 return (set_def_need(lml, dyip, dname));
2151
2152 /*
2153 * If this dependency name has been changed by
2154 * a previous dlinfo(), check the original
2155 * dynamic entry string. The user might be
2156 * attempting to re-change an entry using the
2157 * original name as the reference.
2158 */
2159 if ((dyip->di_flags & FLG_DI_DEF_DONE) == 0)
2160 continue;
2161
2162 oname = STRTAB(lmp) + dyn->d_un.d_val;
2163 if (strcmp(rname, oname) == 0)
2164 return (set_def_need(lml, dyip, dname));
2165 }
2166
2167 /*
2168 * No deferred dependency found.
2169 */
2170 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_DEF_NODEPFOUND),
2171 rname);
2172 return (-1);
2173 }
2174 }
2175 return (0);
2176 }
2177
2178 #pragma weak _dlinfo = dlinfo
2179
2180 /*
2181 * External entry for dlinfo(3dl).
2182 */
2183 int
dlinfo(void * handle,int request,void * p)2184 dlinfo(void *handle, int request, void *p)
2185 {
2186 int error, entry;
2187 Rt_map *clmp;
2188
2189 entry = enter(0);
2190
2191 clmp = _caller(caller(), CL_EXECDEF);
2192
2193 error = dlinfo_core(handle, request, p, clmp);
2194
2195 if (entry)
2196 leave(LIST(clmp), 0);
2197 return (error);
2198 }
2199
2200 /*
2201 * GNU defined function to iterate through the program headers for all
2202 * currently loaded dynamic objects. The caller supplies a callback function
2203 * which is called for each object.
2204 *
2205 * entry:
2206 * callback - Callback function to call. The arguments to the callback
2207 * function are:
2208 * info - Address of dl_phdr_info structure
2209 * size - sizeof (struct dl_phdr_info)
2210 * data - Caller supplied value.
2211 * data - Value supplied by caller, which is passed to callback without
2212 * examination.
2213 *
2214 * exit:
2215 * callback is called for each dynamic ELF object in the process address
2216 * space, halting when a non-zero value is returned, or when the last
2217 * object has been processed. The return value from the last call
2218 * to callback is returned.
2219 *
2220 * note:
2221 * The Linux implementation has added additional fields to the
2222 * dl_phdr_info structure over time. The callback function is
2223 * supposed to use the size field to determine which fields are
2224 * present, and to avoid attempts to access non-existent fields.
2225 * We have added those fields that are compatible with Solaris, and
2226 * which are used by GNU C++ (g++) runtime exception handling support.
2227 *
2228 * note:
2229 * We issue a callback for every ELF object mapped into the process
2230 * address space at the time this routine is entered. These callbacks
2231 * are arbitrary functions that can do anything, including possibly
2232 * causing new objects to be mapped into the process, or unmapped.
2233 * This complicates matters:
2234 *
2235 * - Adding new objects can cause the alists to be reallocated
2236 * or for contents to move. This can happen explicitly via
2237 * dlopen(), or implicitly via lazy loading. One might consider
2238 * simply banning dlopen from a callback, but lazy loading must
2239 * be allowed, in which case there's no reason to ban dlopen().
2240 *
2241 * - Removing objects can leave us holding references to freed
2242 * memory that must not be accessed, and can cause the list
2243 * items to move in a way that would cause us to miss reporting
2244 * one, or double report others.
2245 *
2246 * - We cannot allocate memory to build a separate data structure,
2247 * because the interface to dl_iterate_phdr() does not have a
2248 * way to communicate allocation errors back to the caller.
2249 * Even if we could, it would be difficult to do so efficiently.
2250 *
2251 * - It is possible for dl_iterate_phdr() to be called recursively
2252 * from a callback, and there is no way for us to detect or manage
2253 * this effectively, particularly as the user might use longjmp()
2254 * to skip past us on return. Hence, we must be reentrant
2255 * (stateless), further precluding the option of building a
2256 * separate data structure.
2257 *
2258 * Despite these constraints, we are able to traverse the link-map
2259 * lists safely:
2260 *
2261 * - Once interposer (preload) objects have been processed at
2262 * startup, we know that new objects are always placed at the
2263 * end of the list. Hence, if we are reading a list when that
2264 * happens, the new object will not alter the part of the list
2265 * that we've already processed.
2266 *
2267 * - The alist _TRAVERSE macros recalculate the address of the
2268 * current item from scratch on each iteration, rather than
2269 * incrementing a pointer. Hence, alist additions that occur
2270 * in mid-traverse will not cause confusion.
2271 *
2272 * There is one limitation: We cannot continue operation if an object
2273 * is removed from the process from within a callback. We detect when
2274 * this happens and return immediately with a -1 return value.
2275 *
2276 * note:
2277 * As currently implemented, if a callback causes an object to be loaded,
2278 * that object may or may not be reported by the current invocation of
2279 * dl_iterate_phdr(), based on whether or not we have already processed
2280 * the link-map list that receives it. If we want to prevent this, it
2281 * can be done efficiently by associating the current value of cnt_map
2282 * with each new Rt_map entered into the system. Then this function can
2283 * use that to detect and skip new objects that enter the system in
2284 * mid-iteration. However, the Linux documentation is ambiguous on whether
2285 * this is necessary, and it does not appear to matter in practice.
2286 * We have therefore chosen not to do so at this time.
2287 */
2288 int
dl_iterate_phdr(int (* callback)(struct dl_phdr_info *,size_t,void *),void * data)2289 dl_iterate_phdr(int (*callback)(struct dl_phdr_info *, size_t, void *),
2290 void *data)
2291 {
2292 struct dl_phdr_info info;
2293 u_longlong_t l_cnt_map = cnt_map;
2294 u_longlong_t l_cnt_unmap = cnt_unmap;
2295 Lm_list *lml, *clml;
2296 Lm_cntl *lmc;
2297 Rt_map *lmp, *clmp;
2298 Aliste idx1, idx2;
2299 Ehdr *ehdr;
2300 int ret = 0;
2301 int entry;
2302
2303 entry = enter(0);
2304 clmp = _caller(caller(), CL_EXECDEF);
2305 clml = LIST(clmp);
2306
2307 DBG_CALL(Dbg_dl_iphdr_enter(clmp, cnt_map, cnt_unmap));
2308
2309 /* Issue a callback for each ELF object in the process */
2310 for (APLIST_TRAVERSE(dynlm_list, idx1, lml)) {
2311 for (ALIST_TRAVERSE(lml->lm_lists, idx2, lmc)) {
2312 for (lmp = lmc->lc_head; lmp; lmp = NEXT_RT_MAP(lmp)) {
2313 #if defined(_sparc) && !defined(_LP64)
2314 /*
2315 * On 32-bit sparc, the possibility exists that
2316 * this object is not ELF.
2317 */
2318 if (THIS_IS_NOT_ELF(lmp))
2319 continue;
2320 #endif
2321 /* Prepare the object information structure */
2322 ehdr = (Ehdr *) ADDR(lmp);
2323 info.dlpi_addr = (ehdr->e_type == ET_EXEC) ?
2324 0 : ADDR(lmp);
2325 info.dlpi_name = lmp->rt_pathname;
2326 info.dlpi_phdr = (Phdr *)
2327 (ADDR(lmp) + ehdr->e_phoff);
2328 info.dlpi_phnum = ehdr->e_phnum;
2329 info.dlpi_adds = cnt_map;
2330 info.dlpi_subs = cnt_unmap;
2331
2332 /* Issue the callback */
2333 DBG_CALL(Dbg_dl_iphdr_callback(clml, &info));
2334 leave(clml, thr_flg_reenter);
2335 ret = (* callback)(&info, sizeof (info), data);
2336 (void) enter(thr_flg_reenter);
2337
2338 /* Return immediately on non-zero result */
2339 if (ret != 0)
2340 goto done;
2341
2342 /* Adapt to object mapping changes */
2343 if ((cnt_map == l_cnt_map) &&
2344 (cnt_unmap == l_cnt_unmap))
2345 continue;
2346
2347 DBG_CALL(Dbg_dl_iphdr_mapchange(clml, cnt_map,
2348 cnt_unmap));
2349
2350 /* Stop if an object was unmapped */
2351 if (cnt_unmap == l_cnt_unmap) {
2352 l_cnt_map = cnt_map;
2353 continue;
2354 }
2355
2356 ret = -1;
2357 DBG_CALL(Dbg_dl_iphdr_unmap_ret(clml));
2358 goto done;
2359 }
2360 }
2361 }
2362
2363 done:
2364 if (entry)
2365 leave(LIST(clmp), 0);
2366 return (ret);
2367 }
2368