xref: /freebsd/sys/contrib/openzfs/module/zfs/arc.c (revision 718519f4efc71096422fc71dab90b2a3369871ff)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2018, Joyent, Inc.
24  * Copyright (c) 2011, 2020, Delphix. All rights reserved.
25  * Copyright (c) 2014, Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2017, Nexenta Systems, Inc.  All rights reserved.
27  * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
28  * Copyright (c) 2020, George Amanakis. All rights reserved.
29  * Copyright (c) 2019, 2023, Klara Inc.
30  * Copyright (c) 2019, Allan Jude
31  * Copyright (c) 2020, The FreeBSD Foundation [1]
32  * Copyright (c) 2021, 2024 by George Melikov. All rights reserved.
33  *
34  * [1] Portions of this software were developed by Allan Jude
35  *     under sponsorship from the FreeBSD Foundation.
36  */
37 
38 /*
39  * DVA-based Adjustable Replacement Cache
40  *
41  * While much of the theory of operation used here is
42  * based on the self-tuning, low overhead replacement cache
43  * presented by Megiddo and Modha at FAST 2003, there are some
44  * significant differences:
45  *
46  * 1. The Megiddo and Modha model assumes any page is evictable.
47  * Pages in its cache cannot be "locked" into memory.  This makes
48  * the eviction algorithm simple: evict the last page in the list.
49  * This also make the performance characteristics easy to reason
50  * about.  Our cache is not so simple.  At any given moment, some
51  * subset of the blocks in the cache are un-evictable because we
52  * have handed out a reference to them.  Blocks are only evictable
53  * when there are no external references active.  This makes
54  * eviction far more problematic:  we choose to evict the evictable
55  * blocks that are the "lowest" in the list.
56  *
57  * There are times when it is not possible to evict the requested
58  * space.  In these circumstances we are unable to adjust the cache
59  * size.  To prevent the cache growing unbounded at these times we
60  * implement a "cache throttle" that slows the flow of new data
61  * into the cache until we can make space available.
62  *
63  * 2. The Megiddo and Modha model assumes a fixed cache size.
64  * Pages are evicted when the cache is full and there is a cache
65  * miss.  Our model has a variable sized cache.  It grows with
66  * high use, but also tries to react to memory pressure from the
67  * operating system: decreasing its size when system memory is
68  * tight.
69  *
70  * 3. The Megiddo and Modha model assumes a fixed page size. All
71  * elements of the cache are therefore exactly the same size.  So
72  * when adjusting the cache size following a cache miss, its simply
73  * a matter of choosing a single page to evict.  In our model, we
74  * have variable sized cache blocks (ranging from 512 bytes to
75  * 128K bytes).  We therefore choose a set of blocks to evict to make
76  * space for a cache miss that approximates as closely as possible
77  * the space used by the new block.
78  *
79  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
80  * by N. Megiddo & D. Modha, FAST 2003
81  */
82 
83 /*
84  * The locking model:
85  *
86  * A new reference to a cache buffer can be obtained in two
87  * ways: 1) via a hash table lookup using the DVA as a key,
88  * or 2) via one of the ARC lists.  The arc_read() interface
89  * uses method 1, while the internal ARC algorithms for
90  * adjusting the cache use method 2.  We therefore provide two
91  * types of locks: 1) the hash table lock array, and 2) the
92  * ARC list locks.
93  *
94  * Buffers do not have their own mutexes, rather they rely on the
95  * hash table mutexes for the bulk of their protection (i.e. most
96  * fields in the arc_buf_hdr_t are protected by these mutexes).
97  *
98  * buf_hash_find() returns the appropriate mutex (held) when it
99  * locates the requested buffer in the hash table.  It returns
100  * NULL for the mutex if the buffer was not in the table.
101  *
102  * buf_hash_remove() expects the appropriate hash mutex to be
103  * already held before it is invoked.
104  *
105  * Each ARC state also has a mutex which is used to protect the
106  * buffer list associated with the state.  When attempting to
107  * obtain a hash table lock while holding an ARC list lock you
108  * must use: mutex_tryenter() to avoid deadlock.  Also note that
109  * the active state mutex must be held before the ghost state mutex.
110  *
111  * It as also possible to register a callback which is run when the
112  * metadata limit is reached and no buffers can be safely evicted.  In
113  * this case the arc user should drop a reference on some arc buffers so
114  * they can be reclaimed.  For example, when using the ZPL each dentry
115  * holds a references on a znode.  These dentries must be pruned before
116  * the arc buffer holding the znode can be safely evicted.
117  *
118  * Note that the majority of the performance stats are manipulated
119  * with atomic operations.
120  *
121  * The L2ARC uses the l2ad_mtx on each vdev for the following:
122  *
123  *	- L2ARC buflist creation
124  *	- L2ARC buflist eviction
125  *	- L2ARC write completion, which walks L2ARC buflists
126  *	- ARC header destruction, as it removes from L2ARC buflists
127  *	- ARC header release, as it removes from L2ARC buflists
128  */
129 
130 /*
131  * ARC operation:
132  *
133  * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
134  * This structure can point either to a block that is still in the cache or to
135  * one that is only accessible in an L2 ARC device, or it can provide
136  * information about a block that was recently evicted. If a block is
137  * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
138  * information to retrieve it from the L2ARC device. This information is
139  * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
140  * that is in this state cannot access the data directly.
141  *
142  * Blocks that are actively being referenced or have not been evicted
143  * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
144  * the arc_buf_hdr_t that will point to the data block in memory. A block can
145  * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
146  * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
147  * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
148  *
149  * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
150  * ability to store the physical data (b_pabd) associated with the DVA of the
151  * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
152  * it will match its on-disk compression characteristics. This behavior can be
153  * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
154  * compressed ARC functionality is disabled, the b_pabd will point to an
155  * uncompressed version of the on-disk data.
156  *
157  * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
158  * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
159  * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
160  * consumer. The ARC will provide references to this data and will keep it
161  * cached until it is no longer in use. The ARC caches only the L1ARC's physical
162  * data block and will evict any arc_buf_t that is no longer referenced. The
163  * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
164  * "overhead_size" kstat.
165  *
166  * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
167  * compressed form. The typical case is that consumers will want uncompressed
168  * data, and when that happens a new data buffer is allocated where the data is
169  * decompressed for them to use. Currently the only consumer who wants
170  * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
171  * exists on disk. When this happens, the arc_buf_t's data buffer is shared
172  * with the arc_buf_hdr_t.
173  *
174  * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
175  * first one is owned by a compressed send consumer (and therefore references
176  * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
177  * used by any other consumer (and has its own uncompressed copy of the data
178  * buffer).
179  *
180  *   arc_buf_hdr_t
181  *   +-----------+
182  *   | fields    |
183  *   | common to |
184  *   | L1- and   |
185  *   | L2ARC     |
186  *   +-----------+
187  *   | l2arc_buf_hdr_t
188  *   |           |
189  *   +-----------+
190  *   | l1arc_buf_hdr_t
191  *   |           |              arc_buf_t
192  *   | b_buf     +------------>+-----------+      arc_buf_t
193  *   | b_pabd    +-+           |b_next     +---->+-----------+
194  *   +-----------+ |           |-----------|     |b_next     +-->NULL
195  *                 |           |b_comp = T |     +-----------+
196  *                 |           |b_data     +-+   |b_comp = F |
197  *                 |           +-----------+ |   |b_data     +-+
198  *                 +->+------+               |   +-----------+ |
199  *        compressed  |      |               |                 |
200  *           data     |      |<--------------+                 | uncompressed
201  *                    +------+          compressed,            |     data
202  *                                        shared               +-->+------+
203  *                                         data                    |      |
204  *                                                                 |      |
205  *                                                                 +------+
206  *
207  * When a consumer reads a block, the ARC must first look to see if the
208  * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
209  * arc_buf_t and either copies uncompressed data into a new data buffer from an
210  * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
211  * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
212  * hdr is compressed and the desired compression characteristics of the
213  * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
214  * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
215  * the last buffer in the hdr's b_buf list, however a shared compressed buf can
216  * be anywhere in the hdr's list.
217  *
218  * The diagram below shows an example of an uncompressed ARC hdr that is
219  * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
220  * the last element in the buf list):
221  *
222  *                arc_buf_hdr_t
223  *                +-----------+
224  *                |           |
225  *                |           |
226  *                |           |
227  *                +-----------+
228  * l2arc_buf_hdr_t|           |
229  *                |           |
230  *                +-----------+
231  * l1arc_buf_hdr_t|           |
232  *                |           |                 arc_buf_t    (shared)
233  *                |    b_buf  +------------>+---------+      arc_buf_t
234  *                |           |             |b_next   +---->+---------+
235  *                |  b_pabd   +-+           |---------|     |b_next   +-->NULL
236  *                +-----------+ |           |         |     +---------+
237  *                              |           |b_data   +-+   |         |
238  *                              |           +---------+ |   |b_data   +-+
239  *                              +->+------+             |   +---------+ |
240  *                                 |      |             |               |
241  *                   uncompressed  |      |             |               |
242  *                        data     +------+             |               |
243  *                                    ^                 +->+------+     |
244  *                                    |       uncompressed |      |     |
245  *                                    |           data     |      |     |
246  *                                    |                    +------+     |
247  *                                    +---------------------------------+
248  *
249  * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
250  * since the physical block is about to be rewritten. The new data contents
251  * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
252  * it may compress the data before writing it to disk. The ARC will be called
253  * with the transformed data and will memcpy the transformed on-disk block into
254  * a newly allocated b_pabd. Writes are always done into buffers which have
255  * either been loaned (and hence are new and don't have other readers) or
256  * buffers which have been released (and hence have their own hdr, if there
257  * were originally other readers of the buf's original hdr). This ensures that
258  * the ARC only needs to update a single buf and its hdr after a write occurs.
259  *
260  * When the L2ARC is in use, it will also take advantage of the b_pabd. The
261  * L2ARC will always write the contents of b_pabd to the L2ARC. This means
262  * that when compressed ARC is enabled that the L2ARC blocks are identical
263  * to the on-disk block in the main data pool. This provides a significant
264  * advantage since the ARC can leverage the bp's checksum when reading from the
265  * L2ARC to determine if the contents are valid. However, if the compressed
266  * ARC is disabled, then the L2ARC's block must be transformed to look
267  * like the physical block in the main data pool before comparing the
268  * checksum and determining its validity.
269  *
270  * The L1ARC has a slightly different system for storing encrypted data.
271  * Raw (encrypted + possibly compressed) data has a few subtle differences from
272  * data that is just compressed. The biggest difference is that it is not
273  * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded.
274  * The other difference is that encryption cannot be treated as a suggestion.
275  * If a caller would prefer compressed data, but they actually wind up with
276  * uncompressed data the worst thing that could happen is there might be a
277  * performance hit. If the caller requests encrypted data, however, we must be
278  * sure they actually get it or else secret information could be leaked. Raw
279  * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
280  * may have both an encrypted version and a decrypted version of its data at
281  * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
282  * copied out of this header. To avoid complications with b_pabd, raw buffers
283  * cannot be shared.
284  */
285 
286 #include <sys/spa.h>
287 #include <sys/zio.h>
288 #include <sys/spa_impl.h>
289 #include <sys/zio_compress.h>
290 #include <sys/zio_checksum.h>
291 #include <sys/zfs_context.h>
292 #include <sys/arc.h>
293 #include <sys/zfs_refcount.h>
294 #include <sys/vdev.h>
295 #include <sys/vdev_impl.h>
296 #include <sys/dsl_pool.h>
297 #include <sys/multilist.h>
298 #include <sys/abd.h>
299 #include <sys/zil.h>
300 #include <sys/fm/fs/zfs.h>
301 #include <sys/callb.h>
302 #include <sys/kstat.h>
303 #include <sys/zthr.h>
304 #include <zfs_fletcher.h>
305 #include <sys/arc_impl.h>
306 #include <sys/trace_zfs.h>
307 #include <sys/aggsum.h>
308 #include <sys/wmsum.h>
309 #include <cityhash.h>
310 #include <sys/vdev_trim.h>
311 #include <sys/zfs_racct.h>
312 #include <sys/zstd/zstd.h>
313 
314 #ifndef _KERNEL
315 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
316 boolean_t arc_watch = B_FALSE;
317 #endif
318 
319 /*
320  * This thread's job is to keep enough free memory in the system, by
321  * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves
322  * arc_available_memory().
323  */
324 static zthr_t *arc_reap_zthr;
325 
326 /*
327  * This thread's job is to keep arc_size under arc_c, by calling
328  * arc_evict(), which improves arc_is_overflowing().
329  */
330 static zthr_t *arc_evict_zthr;
331 static arc_buf_hdr_t **arc_state_evict_markers;
332 static int arc_state_evict_marker_count;
333 
334 static kmutex_t arc_evict_lock;
335 static boolean_t arc_evict_needed = B_FALSE;
336 static clock_t arc_last_uncached_flush;
337 
338 /*
339  * Count of bytes evicted since boot.
340  */
341 static uint64_t arc_evict_count;
342 
343 /*
344  * List of arc_evict_waiter_t's, representing threads waiting for the
345  * arc_evict_count to reach specific values.
346  */
347 static list_t arc_evict_waiters;
348 
349 /*
350  * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of
351  * the requested amount of data to be evicted.  For example, by default for
352  * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation.
353  * Since this is above 100%, it ensures that progress is made towards getting
354  * arc_size under arc_c.  Since this is finite, it ensures that allocations
355  * can still happen, even during the potentially long time that arc_size is
356  * more than arc_c.
357  */
358 static uint_t zfs_arc_eviction_pct = 200;
359 
360 /*
361  * The number of headers to evict in arc_evict_state_impl() before
362  * dropping the sublist lock and evicting from another sublist. A lower
363  * value means we're more likely to evict the "correct" header (i.e. the
364  * oldest header in the arc state), but comes with higher overhead
365  * (i.e. more invocations of arc_evict_state_impl()).
366  */
367 static uint_t zfs_arc_evict_batch_limit = 10;
368 
369 /* number of seconds before growing cache again */
370 uint_t arc_grow_retry = 5;
371 
372 /*
373  * Minimum time between calls to arc_kmem_reap_soon().
374  */
375 static const int arc_kmem_cache_reap_retry_ms = 1000;
376 
377 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
378 static int zfs_arc_overflow_shift = 8;
379 
380 /* log2(fraction of arc to reclaim) */
381 uint_t arc_shrink_shift = 7;
382 
383 /* percent of pagecache to reclaim arc to */
384 #ifdef _KERNEL
385 uint_t zfs_arc_pc_percent = 0;
386 #endif
387 
388 /*
389  * log2(fraction of ARC which must be free to allow growing).
390  * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
391  * when reading a new block into the ARC, we will evict an equal-sized block
392  * from the ARC.
393  *
394  * This must be less than arc_shrink_shift, so that when we shrink the ARC,
395  * we will still not allow it to grow.
396  */
397 uint_t		arc_no_grow_shift = 5;
398 
399 
400 /*
401  * minimum lifespan of a prefetch block in clock ticks
402  * (initialized in arc_init())
403  */
404 static uint_t		arc_min_prefetch_ms;
405 static uint_t		arc_min_prescient_prefetch_ms;
406 
407 /*
408  * If this percent of memory is free, don't throttle.
409  */
410 uint_t arc_lotsfree_percent = 10;
411 
412 /*
413  * The arc has filled available memory and has now warmed up.
414  */
415 boolean_t arc_warm;
416 
417 /*
418  * These tunables are for performance analysis.
419  */
420 uint64_t zfs_arc_max = 0;
421 uint64_t zfs_arc_min = 0;
422 static uint64_t zfs_arc_dnode_limit = 0;
423 static uint_t zfs_arc_dnode_reduce_percent = 10;
424 static uint_t zfs_arc_grow_retry = 0;
425 static uint_t zfs_arc_shrink_shift = 0;
426 uint_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
427 
428 /*
429  * ARC dirty data constraints for arc_tempreserve_space() throttle:
430  * * total dirty data limit
431  * * anon block dirty limit
432  * * each pool's anon allowance
433  */
434 static const unsigned long zfs_arc_dirty_limit_percent = 50;
435 static const unsigned long zfs_arc_anon_limit_percent = 25;
436 static const unsigned long zfs_arc_pool_dirty_percent = 20;
437 
438 /*
439  * Enable or disable compressed arc buffers.
440  */
441 int zfs_compressed_arc_enabled = B_TRUE;
442 
443 /*
444  * Balance between metadata and data on ghost hits.  Values above 100
445  * increase metadata caching by proportionally reducing effect of ghost
446  * data hits on target data/metadata rate.
447  */
448 static uint_t zfs_arc_meta_balance = 500;
449 
450 /*
451  * Percentage that can be consumed by dnodes of ARC meta buffers.
452  */
453 static uint_t zfs_arc_dnode_limit_percent = 10;
454 
455 /*
456  * These tunables are Linux-specific
457  */
458 static uint64_t zfs_arc_sys_free = 0;
459 static uint_t zfs_arc_min_prefetch_ms = 0;
460 static uint_t zfs_arc_min_prescient_prefetch_ms = 0;
461 static uint_t zfs_arc_lotsfree_percent = 10;
462 
463 /*
464  * Number of arc_prune threads
465  */
466 static int zfs_arc_prune_task_threads = 1;
467 
468 /* The 7 states: */
469 arc_state_t ARC_anon;
470 arc_state_t ARC_mru;
471 arc_state_t ARC_mru_ghost;
472 arc_state_t ARC_mfu;
473 arc_state_t ARC_mfu_ghost;
474 arc_state_t ARC_l2c_only;
475 arc_state_t ARC_uncached;
476 
477 arc_stats_t arc_stats = {
478 	{ "hits",			KSTAT_DATA_UINT64 },
479 	{ "iohits",			KSTAT_DATA_UINT64 },
480 	{ "misses",			KSTAT_DATA_UINT64 },
481 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
482 	{ "demand_data_iohits",		KSTAT_DATA_UINT64 },
483 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
484 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
485 	{ "demand_metadata_iohits",	KSTAT_DATA_UINT64 },
486 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
487 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
488 	{ "prefetch_data_iohits",	KSTAT_DATA_UINT64 },
489 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
490 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
491 	{ "prefetch_metadata_iohits",	KSTAT_DATA_UINT64 },
492 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
493 	{ "mru_hits",			KSTAT_DATA_UINT64 },
494 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
495 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
496 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
497 	{ "uncached_hits",		KSTAT_DATA_UINT64 },
498 	{ "deleted",			KSTAT_DATA_UINT64 },
499 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
500 	{ "access_skip",		KSTAT_DATA_UINT64 },
501 	{ "evict_skip",			KSTAT_DATA_UINT64 },
502 	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
503 	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
504 	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
505 	{ "evict_l2_eligible_mfu",	KSTAT_DATA_UINT64 },
506 	{ "evict_l2_eligible_mru",	KSTAT_DATA_UINT64 },
507 	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
508 	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
509 	{ "hash_elements",		KSTAT_DATA_UINT64 },
510 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
511 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
512 	{ "hash_chains",		KSTAT_DATA_UINT64 },
513 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
514 	{ "meta",			KSTAT_DATA_UINT64 },
515 	{ "pd",				KSTAT_DATA_UINT64 },
516 	{ "pm",				KSTAT_DATA_UINT64 },
517 	{ "c",				KSTAT_DATA_UINT64 },
518 	{ "c_min",			KSTAT_DATA_UINT64 },
519 	{ "c_max",			KSTAT_DATA_UINT64 },
520 	{ "size",			KSTAT_DATA_UINT64 },
521 	{ "compressed_size",		KSTAT_DATA_UINT64 },
522 	{ "uncompressed_size",		KSTAT_DATA_UINT64 },
523 	{ "overhead_size",		KSTAT_DATA_UINT64 },
524 	{ "hdr_size",			KSTAT_DATA_UINT64 },
525 	{ "data_size",			KSTAT_DATA_UINT64 },
526 	{ "metadata_size",		KSTAT_DATA_UINT64 },
527 	{ "dbuf_size",			KSTAT_DATA_UINT64 },
528 	{ "dnode_size",			KSTAT_DATA_UINT64 },
529 	{ "bonus_size",			KSTAT_DATA_UINT64 },
530 #if defined(COMPAT_FREEBSD11)
531 	{ "other_size",			KSTAT_DATA_UINT64 },
532 #endif
533 	{ "anon_size",			KSTAT_DATA_UINT64 },
534 	{ "anon_data",			KSTAT_DATA_UINT64 },
535 	{ "anon_metadata",		KSTAT_DATA_UINT64 },
536 	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
537 	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
538 	{ "mru_size",			KSTAT_DATA_UINT64 },
539 	{ "mru_data",			KSTAT_DATA_UINT64 },
540 	{ "mru_metadata",		KSTAT_DATA_UINT64 },
541 	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
542 	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
543 	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
544 	{ "mru_ghost_data",		KSTAT_DATA_UINT64 },
545 	{ "mru_ghost_metadata",		KSTAT_DATA_UINT64 },
546 	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
547 	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
548 	{ "mfu_size",			KSTAT_DATA_UINT64 },
549 	{ "mfu_data",			KSTAT_DATA_UINT64 },
550 	{ "mfu_metadata",		KSTAT_DATA_UINT64 },
551 	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
552 	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
553 	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
554 	{ "mfu_ghost_data",		KSTAT_DATA_UINT64 },
555 	{ "mfu_ghost_metadata",		KSTAT_DATA_UINT64 },
556 	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
557 	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
558 	{ "uncached_size",		KSTAT_DATA_UINT64 },
559 	{ "uncached_data",		KSTAT_DATA_UINT64 },
560 	{ "uncached_metadata",		KSTAT_DATA_UINT64 },
561 	{ "uncached_evictable_data",	KSTAT_DATA_UINT64 },
562 	{ "uncached_evictable_metadata", KSTAT_DATA_UINT64 },
563 	{ "l2_hits",			KSTAT_DATA_UINT64 },
564 	{ "l2_misses",			KSTAT_DATA_UINT64 },
565 	{ "l2_prefetch_asize",		KSTAT_DATA_UINT64 },
566 	{ "l2_mru_asize",		KSTAT_DATA_UINT64 },
567 	{ "l2_mfu_asize",		KSTAT_DATA_UINT64 },
568 	{ "l2_bufc_data_asize",		KSTAT_DATA_UINT64 },
569 	{ "l2_bufc_metadata_asize",	KSTAT_DATA_UINT64 },
570 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
571 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
572 	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
573 	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
574 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
575 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
576 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
577 	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
578 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
579 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
580 	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
581 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
582 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
583 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
584 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
585 	{ "l2_size",			KSTAT_DATA_UINT64 },
586 	{ "l2_asize",			KSTAT_DATA_UINT64 },
587 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
588 	{ "l2_log_blk_writes",		KSTAT_DATA_UINT64 },
589 	{ "l2_log_blk_avg_asize",	KSTAT_DATA_UINT64 },
590 	{ "l2_log_blk_asize",		KSTAT_DATA_UINT64 },
591 	{ "l2_log_blk_count",		KSTAT_DATA_UINT64 },
592 	{ "l2_data_to_meta_ratio",	KSTAT_DATA_UINT64 },
593 	{ "l2_rebuild_success",		KSTAT_DATA_UINT64 },
594 	{ "l2_rebuild_unsupported",	KSTAT_DATA_UINT64 },
595 	{ "l2_rebuild_io_errors",	KSTAT_DATA_UINT64 },
596 	{ "l2_rebuild_dh_errors",	KSTAT_DATA_UINT64 },
597 	{ "l2_rebuild_cksum_lb_errors",	KSTAT_DATA_UINT64 },
598 	{ "l2_rebuild_lowmem",		KSTAT_DATA_UINT64 },
599 	{ "l2_rebuild_size",		KSTAT_DATA_UINT64 },
600 	{ "l2_rebuild_asize",		KSTAT_DATA_UINT64 },
601 	{ "l2_rebuild_bufs",		KSTAT_DATA_UINT64 },
602 	{ "l2_rebuild_bufs_precached",	KSTAT_DATA_UINT64 },
603 	{ "l2_rebuild_log_blks",	KSTAT_DATA_UINT64 },
604 	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
605 	{ "memory_direct_count",	KSTAT_DATA_UINT64 },
606 	{ "memory_indirect_count",	KSTAT_DATA_UINT64 },
607 	{ "memory_all_bytes",		KSTAT_DATA_UINT64 },
608 	{ "memory_free_bytes",		KSTAT_DATA_UINT64 },
609 	{ "memory_available_bytes",	KSTAT_DATA_INT64 },
610 	{ "arc_no_grow",		KSTAT_DATA_UINT64 },
611 	{ "arc_tempreserve",		KSTAT_DATA_UINT64 },
612 	{ "arc_loaned_bytes",		KSTAT_DATA_UINT64 },
613 	{ "arc_prune",			KSTAT_DATA_UINT64 },
614 	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
615 	{ "arc_dnode_limit",		KSTAT_DATA_UINT64 },
616 	{ "async_upgrade_sync",		KSTAT_DATA_UINT64 },
617 	{ "predictive_prefetch", KSTAT_DATA_UINT64 },
618 	{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
619 	{ "demand_iohit_predictive_prefetch", KSTAT_DATA_UINT64 },
620 	{ "prescient_prefetch", KSTAT_DATA_UINT64 },
621 	{ "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
622 	{ "demand_iohit_prescient_prefetch", KSTAT_DATA_UINT64 },
623 	{ "arc_need_free",		KSTAT_DATA_UINT64 },
624 	{ "arc_sys_free",		KSTAT_DATA_UINT64 },
625 	{ "arc_raw_size",		KSTAT_DATA_UINT64 },
626 	{ "cached_only_in_progress",	KSTAT_DATA_UINT64 },
627 	{ "abd_chunk_waste_size",	KSTAT_DATA_UINT64 },
628 };
629 
630 arc_sums_t arc_sums;
631 
632 #define	ARCSTAT_MAX(stat, val) {					\
633 	uint64_t m;							\
634 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
635 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
636 		continue;						\
637 }
638 
639 /*
640  * We define a macro to allow ARC hits/misses to be easily broken down by
641  * two separate conditions, giving a total of four different subtypes for
642  * each of hits and misses (so eight statistics total).
643  */
644 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
645 	if (cond1) {							\
646 		if (cond2) {						\
647 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
648 		} else {						\
649 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
650 		}							\
651 	} else {							\
652 		if (cond2) {						\
653 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
654 		} else {						\
655 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
656 		}							\
657 	}
658 
659 /*
660  * This macro allows us to use kstats as floating averages. Each time we
661  * update this kstat, we first factor it and the update value by
662  * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall
663  * average. This macro assumes that integer loads and stores are atomic, but
664  * is not safe for multiple writers updating the kstat in parallel (only the
665  * last writer's update will remain).
666  */
667 #define	ARCSTAT_F_AVG_FACTOR	3
668 #define	ARCSTAT_F_AVG(stat, value) \
669 	do { \
670 		uint64_t x = ARCSTAT(stat); \
671 		x = x - x / ARCSTAT_F_AVG_FACTOR + \
672 		    (value) / ARCSTAT_F_AVG_FACTOR; \
673 		ARCSTAT(stat) = x; \
674 	} while (0)
675 
676 static kstat_t			*arc_ksp;
677 
678 /*
679  * There are several ARC variables that are critical to export as kstats --
680  * but we don't want to have to grovel around in the kstat whenever we wish to
681  * manipulate them.  For these variables, we therefore define them to be in
682  * terms of the statistic variable.  This assures that we are not introducing
683  * the possibility of inconsistency by having shadow copies of the variables,
684  * while still allowing the code to be readable.
685  */
686 #define	arc_tempreserve	ARCSTAT(arcstat_tempreserve)
687 #define	arc_loaned_bytes	ARCSTAT(arcstat_loaned_bytes)
688 #define	arc_dnode_limit	ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */
689 #define	arc_need_free	ARCSTAT(arcstat_need_free) /* waiting to be evicted */
690 
691 hrtime_t arc_growtime;
692 list_t arc_prune_list;
693 kmutex_t arc_prune_mtx;
694 taskq_t *arc_prune_taskq;
695 
696 #define	GHOST_STATE(state)	\
697 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
698 	(state) == arc_l2c_only)
699 
700 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
701 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
702 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
703 #define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
704 #define	HDR_PRESCIENT_PREFETCH(hdr)	\
705 	((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
706 #define	HDR_COMPRESSION_ENABLED(hdr)	\
707 	((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
708 
709 #define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
710 #define	HDR_UNCACHED(hdr)	((hdr)->b_flags & ARC_FLAG_UNCACHED)
711 #define	HDR_L2_READING(hdr)	\
712 	(((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
713 	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
714 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
715 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
716 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
717 #define	HDR_PROTECTED(hdr)	((hdr)->b_flags & ARC_FLAG_PROTECTED)
718 #define	HDR_NOAUTH(hdr)		((hdr)->b_flags & ARC_FLAG_NOAUTH)
719 #define	HDR_SHARED_DATA(hdr)	((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
720 
721 #define	HDR_ISTYPE_METADATA(hdr)	\
722 	((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
723 #define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
724 
725 #define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
726 #define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
727 #define	HDR_HAS_RABD(hdr)	\
728 	(HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) &&	\
729 	(hdr)->b_crypt_hdr.b_rabd != NULL)
730 #define	HDR_ENCRYPTED(hdr)	\
731 	(HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
732 #define	HDR_AUTHENTICATED(hdr)	\
733 	(HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
734 
735 /* For storing compression mode in b_flags */
736 #define	HDR_COMPRESS_OFFSET	(highbit64(ARC_FLAG_COMPRESS_0) - 1)
737 
738 #define	HDR_GET_COMPRESS(hdr)	((enum zio_compress)BF32_GET((hdr)->b_flags, \
739 	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
740 #define	HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
741 	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
742 
743 #define	ARC_BUF_LAST(buf)	((buf)->b_next == NULL)
744 #define	ARC_BUF_SHARED(buf)	((buf)->b_flags & ARC_BUF_FLAG_SHARED)
745 #define	ARC_BUF_COMPRESSED(buf)	((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
746 #define	ARC_BUF_ENCRYPTED(buf)	((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
747 
748 /*
749  * Other sizes
750  */
751 
752 #define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
753 #define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
754 
755 /*
756  * Hash table routines
757  */
758 
759 #define	BUF_LOCKS 2048
760 typedef struct buf_hash_table {
761 	uint64_t ht_mask;
762 	arc_buf_hdr_t **ht_table;
763 	kmutex_t ht_locks[BUF_LOCKS] ____cacheline_aligned;
764 } buf_hash_table_t;
765 
766 static buf_hash_table_t buf_hash_table;
767 
768 #define	BUF_HASH_INDEX(spa, dva, birth) \
769 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
770 #define	BUF_HASH_LOCK(idx)	(&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
771 #define	HDR_LOCK(hdr) \
772 	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
773 
774 uint64_t zfs_crc64_table[256];
775 
776 /*
777  * Level 2 ARC
778  */
779 
780 #define	L2ARC_WRITE_SIZE	(32 * 1024 * 1024)	/* initial write max */
781 #define	L2ARC_HEADROOM		8			/* num of writes */
782 
783 /*
784  * If we discover during ARC scan any buffers to be compressed, we boost
785  * our headroom for the next scanning cycle by this percentage multiple.
786  */
787 #define	L2ARC_HEADROOM_BOOST	200
788 #define	L2ARC_FEED_SECS		1		/* caching interval secs */
789 #define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
790 
791 /*
792  * We can feed L2ARC from two states of ARC buffers, mru and mfu,
793  * and each of the state has two types: data and metadata.
794  */
795 #define	L2ARC_FEED_TYPES	4
796 
797 /* L2ARC Performance Tunables */
798 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* def max write size */
799 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra warmup write */
800 uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* # of dev writes */
801 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
802 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
803 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval msecs */
804 int l2arc_noprefetch = B_TRUE;			/* don't cache prefetch bufs */
805 int l2arc_feed_again = B_TRUE;			/* turbo warmup */
806 int l2arc_norw = B_FALSE;			/* no reads during writes */
807 static uint_t l2arc_meta_percent = 33;	/* limit on headers size */
808 
809 /*
810  * L2ARC Internals
811  */
812 static list_t L2ARC_dev_list;			/* device list */
813 static list_t *l2arc_dev_list;			/* device list pointer */
814 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
815 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
816 static list_t L2ARC_free_on_write;		/* free after write buf list */
817 static list_t *l2arc_free_on_write;		/* free after write list ptr */
818 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
819 static uint64_t l2arc_ndev;			/* number of devices */
820 
821 typedef struct l2arc_read_callback {
822 	arc_buf_hdr_t		*l2rcb_hdr;		/* read header */
823 	blkptr_t		l2rcb_bp;		/* original blkptr */
824 	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
825 	int			l2rcb_flags;		/* original flags */
826 	abd_t			*l2rcb_abd;		/* temporary buffer */
827 } l2arc_read_callback_t;
828 
829 typedef struct l2arc_data_free {
830 	/* protected by l2arc_free_on_write_mtx */
831 	abd_t		*l2df_abd;
832 	size_t		l2df_size;
833 	arc_buf_contents_t l2df_type;
834 	list_node_t	l2df_list_node;
835 } l2arc_data_free_t;
836 
837 typedef enum arc_fill_flags {
838 	ARC_FILL_LOCKED		= 1 << 0, /* hdr lock is held */
839 	ARC_FILL_COMPRESSED	= 1 << 1, /* fill with compressed data */
840 	ARC_FILL_ENCRYPTED	= 1 << 2, /* fill with encrypted data */
841 	ARC_FILL_NOAUTH		= 1 << 3, /* don't attempt to authenticate */
842 	ARC_FILL_IN_PLACE	= 1 << 4  /* fill in place (special case) */
843 } arc_fill_flags_t;
844 
845 typedef enum arc_ovf_level {
846 	ARC_OVF_NONE,			/* ARC within target size. */
847 	ARC_OVF_SOME,			/* ARC is slightly overflowed. */
848 	ARC_OVF_SEVERE			/* ARC is severely overflowed. */
849 } arc_ovf_level_t;
850 
851 static kmutex_t l2arc_feed_thr_lock;
852 static kcondvar_t l2arc_feed_thr_cv;
853 static uint8_t l2arc_thread_exit;
854 
855 static kmutex_t l2arc_rebuild_thr_lock;
856 static kcondvar_t l2arc_rebuild_thr_cv;
857 
858 enum arc_hdr_alloc_flags {
859 	ARC_HDR_ALLOC_RDATA = 0x1,
860 	ARC_HDR_USE_RESERVE = 0x4,
861 	ARC_HDR_ALLOC_LINEAR = 0x8,
862 };
863 
864 
865 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, const void *, int);
866 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, const void *);
867 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, const void *, int);
868 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, const void *);
869 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, const void *);
870 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size,
871     const void *tag);
872 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t);
873 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int);
874 static void arc_hdr_destroy(arc_buf_hdr_t *);
875 static void arc_access(arc_buf_hdr_t *, arc_flags_t, boolean_t);
876 static void arc_buf_watch(arc_buf_t *);
877 static void arc_change_state(arc_state_t *, arc_buf_hdr_t *);
878 
879 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
880 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
881 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
882 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
883 
884 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
885 static void l2arc_read_done(zio_t *);
886 static void l2arc_do_free_on_write(void);
887 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
888     boolean_t state_only);
889 
890 static void arc_prune_async(uint64_t adjust);
891 
892 #define	l2arc_hdr_arcstats_increment(hdr) \
893 	l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE)
894 #define	l2arc_hdr_arcstats_decrement(hdr) \
895 	l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE)
896 #define	l2arc_hdr_arcstats_increment_state(hdr) \
897 	l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE)
898 #define	l2arc_hdr_arcstats_decrement_state(hdr) \
899 	l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE)
900 
901 /*
902  * l2arc_exclude_special : A zfs module parameter that controls whether buffers
903  * 		present on special vdevs are eligibile for caching in L2ARC. If
904  * 		set to 1, exclude dbufs on special vdevs from being cached to
905  * 		L2ARC.
906  */
907 int l2arc_exclude_special = 0;
908 
909 /*
910  * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU
911  * 		metadata and data are cached from ARC into L2ARC.
912  */
913 static int l2arc_mfuonly = 0;
914 
915 /*
916  * L2ARC TRIM
917  * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of
918  * 		the current write size (l2arc_write_max) we should TRIM if we
919  * 		have filled the device. It is defined as a percentage of the
920  * 		write size. If set to 100 we trim twice the space required to
921  * 		accommodate upcoming writes. A minimum of 64MB will be trimmed.
922  * 		It also enables TRIM of the whole L2ARC device upon creation or
923  * 		addition to an existing pool or if the header of the device is
924  * 		invalid upon importing a pool or onlining a cache device. The
925  * 		default is 0, which disables TRIM on L2ARC altogether as it can
926  * 		put significant stress on the underlying storage devices. This
927  * 		will vary depending of how well the specific device handles
928  * 		these commands.
929  */
930 static uint64_t l2arc_trim_ahead = 0;
931 
932 /*
933  * Performance tuning of L2ARC persistence:
934  *
935  * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding
936  * 		an L2ARC device (either at pool import or later) will attempt
937  * 		to rebuild L2ARC buffer contents.
938  * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls
939  * 		whether log blocks are written to the L2ARC device. If the L2ARC
940  * 		device is less than 1GB, the amount of data l2arc_evict()
941  * 		evicts is significant compared to the amount of restored L2ARC
942  * 		data. In this case do not write log blocks in L2ARC in order
943  * 		not to waste space.
944  */
945 static int l2arc_rebuild_enabled = B_TRUE;
946 static uint64_t l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024;
947 
948 /* L2ARC persistence rebuild control routines. */
949 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen);
950 static __attribute__((noreturn)) void l2arc_dev_rebuild_thread(void *arg);
951 static int l2arc_rebuild(l2arc_dev_t *dev);
952 
953 /* L2ARC persistence read I/O routines. */
954 static int l2arc_dev_hdr_read(l2arc_dev_t *dev);
955 static int l2arc_log_blk_read(l2arc_dev_t *dev,
956     const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp,
957     l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
958     zio_t *this_io, zio_t **next_io);
959 static zio_t *l2arc_log_blk_fetch(vdev_t *vd,
960     const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb);
961 static void l2arc_log_blk_fetch_abort(zio_t *zio);
962 
963 /* L2ARC persistence block restoration routines. */
964 static void l2arc_log_blk_restore(l2arc_dev_t *dev,
965     const l2arc_log_blk_phys_t *lb, uint64_t lb_asize);
966 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le,
967     l2arc_dev_t *dev);
968 
969 /* L2ARC persistence write I/O routines. */
970 static uint64_t l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio,
971     l2arc_write_callback_t *cb);
972 
973 /* L2ARC persistence auxiliary routines. */
974 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev,
975     const l2arc_log_blkptr_t *lbp);
976 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev,
977     const arc_buf_hdr_t *ab);
978 boolean_t l2arc_range_check_overlap(uint64_t bottom,
979     uint64_t top, uint64_t check);
980 static void l2arc_blk_fetch_done(zio_t *zio);
981 static inline uint64_t
982     l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev);
983 
984 /*
985  * We use Cityhash for this. It's fast, and has good hash properties without
986  * requiring any large static buffers.
987  */
988 static uint64_t
buf_hash(uint64_t spa,const dva_t * dva,uint64_t birth)989 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
990 {
991 	return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
992 }
993 
994 #define	HDR_EMPTY(hdr)						\
995 	((hdr)->b_dva.dva_word[0] == 0 &&			\
996 	(hdr)->b_dva.dva_word[1] == 0)
997 
998 #define	HDR_EMPTY_OR_LOCKED(hdr)				\
999 	(HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr)))
1000 
1001 #define	HDR_EQUAL(spa, dva, birth, hdr)				\
1002 	((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1003 	((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1004 	((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1005 
1006 static void
buf_discard_identity(arc_buf_hdr_t * hdr)1007 buf_discard_identity(arc_buf_hdr_t *hdr)
1008 {
1009 	hdr->b_dva.dva_word[0] = 0;
1010 	hdr->b_dva.dva_word[1] = 0;
1011 	hdr->b_birth = 0;
1012 }
1013 
1014 static arc_buf_hdr_t *
buf_hash_find(uint64_t spa,const blkptr_t * bp,kmutex_t ** lockp)1015 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1016 {
1017 	const dva_t *dva = BP_IDENTITY(bp);
1018 	uint64_t birth = BP_GET_BIRTH(bp);
1019 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1020 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1021 	arc_buf_hdr_t *hdr;
1022 
1023 	mutex_enter(hash_lock);
1024 	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1025 	    hdr = hdr->b_hash_next) {
1026 		if (HDR_EQUAL(spa, dva, birth, hdr)) {
1027 			*lockp = hash_lock;
1028 			return (hdr);
1029 		}
1030 	}
1031 	mutex_exit(hash_lock);
1032 	*lockp = NULL;
1033 	return (NULL);
1034 }
1035 
1036 /*
1037  * Insert an entry into the hash table.  If there is already an element
1038  * equal to elem in the hash table, then the already existing element
1039  * will be returned and the new element will not be inserted.
1040  * Otherwise returns NULL.
1041  * If lockp == NULL, the caller is assumed to already hold the hash lock.
1042  */
1043 static arc_buf_hdr_t *
buf_hash_insert(arc_buf_hdr_t * hdr,kmutex_t ** lockp)1044 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1045 {
1046 	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1047 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1048 	arc_buf_hdr_t *fhdr;
1049 	uint32_t i;
1050 
1051 	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1052 	ASSERT(hdr->b_birth != 0);
1053 	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1054 
1055 	if (lockp != NULL) {
1056 		*lockp = hash_lock;
1057 		mutex_enter(hash_lock);
1058 	} else {
1059 		ASSERT(MUTEX_HELD(hash_lock));
1060 	}
1061 
1062 	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1063 	    fhdr = fhdr->b_hash_next, i++) {
1064 		if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1065 			return (fhdr);
1066 	}
1067 
1068 	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1069 	buf_hash_table.ht_table[idx] = hdr;
1070 	arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1071 
1072 	/* collect some hash table performance data */
1073 	if (i > 0) {
1074 		ARCSTAT_BUMP(arcstat_hash_collisions);
1075 		if (i == 1)
1076 			ARCSTAT_BUMP(arcstat_hash_chains);
1077 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1078 	}
1079 	ARCSTAT_BUMP(arcstat_hash_elements);
1080 
1081 	return (NULL);
1082 }
1083 
1084 static void
buf_hash_remove(arc_buf_hdr_t * hdr)1085 buf_hash_remove(arc_buf_hdr_t *hdr)
1086 {
1087 	arc_buf_hdr_t *fhdr, **hdrp;
1088 	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1089 
1090 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1091 	ASSERT(HDR_IN_HASH_TABLE(hdr));
1092 
1093 	hdrp = &buf_hash_table.ht_table[idx];
1094 	while ((fhdr = *hdrp) != hdr) {
1095 		ASSERT3P(fhdr, !=, NULL);
1096 		hdrp = &fhdr->b_hash_next;
1097 	}
1098 	*hdrp = hdr->b_hash_next;
1099 	hdr->b_hash_next = NULL;
1100 	arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1101 
1102 	/* collect some hash table performance data */
1103 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1104 	if (buf_hash_table.ht_table[idx] &&
1105 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1106 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1107 }
1108 
1109 /*
1110  * Global data structures and functions for the buf kmem cache.
1111  */
1112 
1113 static kmem_cache_t *hdr_full_cache;
1114 static kmem_cache_t *hdr_l2only_cache;
1115 static kmem_cache_t *buf_cache;
1116 
1117 static void
buf_fini(void)1118 buf_fini(void)
1119 {
1120 #if defined(_KERNEL)
1121 	/*
1122 	 * Large allocations which do not require contiguous pages
1123 	 * should be using vmem_free() in the linux kernel\
1124 	 */
1125 	vmem_free(buf_hash_table.ht_table,
1126 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1127 #else
1128 	kmem_free(buf_hash_table.ht_table,
1129 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1130 #endif
1131 	for (int i = 0; i < BUF_LOCKS; i++)
1132 		mutex_destroy(BUF_HASH_LOCK(i));
1133 	kmem_cache_destroy(hdr_full_cache);
1134 	kmem_cache_destroy(hdr_l2only_cache);
1135 	kmem_cache_destroy(buf_cache);
1136 }
1137 
1138 /*
1139  * Constructor callback - called when the cache is empty
1140  * and a new buf is requested.
1141  */
1142 static int
hdr_full_cons(void * vbuf,void * unused,int kmflag)1143 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1144 {
1145 	(void) unused, (void) kmflag;
1146 	arc_buf_hdr_t *hdr = vbuf;
1147 
1148 	memset(hdr, 0, HDR_FULL_SIZE);
1149 	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
1150 	zfs_refcount_create(&hdr->b_l1hdr.b_refcnt);
1151 #ifdef ZFS_DEBUG
1152 	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1153 #endif
1154 	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1155 	list_link_init(&hdr->b_l2hdr.b_l2node);
1156 	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1157 
1158 	return (0);
1159 }
1160 
1161 static int
hdr_l2only_cons(void * vbuf,void * unused,int kmflag)1162 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1163 {
1164 	(void) unused, (void) kmflag;
1165 	arc_buf_hdr_t *hdr = vbuf;
1166 
1167 	memset(hdr, 0, HDR_L2ONLY_SIZE);
1168 	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1169 
1170 	return (0);
1171 }
1172 
1173 static int
buf_cons(void * vbuf,void * unused,int kmflag)1174 buf_cons(void *vbuf, void *unused, int kmflag)
1175 {
1176 	(void) unused, (void) kmflag;
1177 	arc_buf_t *buf = vbuf;
1178 
1179 	memset(buf, 0, sizeof (arc_buf_t));
1180 	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1181 
1182 	return (0);
1183 }
1184 
1185 /*
1186  * Destructor callback - called when a cached buf is
1187  * no longer required.
1188  */
1189 static void
hdr_full_dest(void * vbuf,void * unused)1190 hdr_full_dest(void *vbuf, void *unused)
1191 {
1192 	(void) unused;
1193 	arc_buf_hdr_t *hdr = vbuf;
1194 
1195 	ASSERT(HDR_EMPTY(hdr));
1196 	zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1197 #ifdef ZFS_DEBUG
1198 	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1199 #endif
1200 	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1201 	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1202 }
1203 
1204 static void
hdr_l2only_dest(void * vbuf,void * unused)1205 hdr_l2only_dest(void *vbuf, void *unused)
1206 {
1207 	(void) unused;
1208 	arc_buf_hdr_t *hdr = vbuf;
1209 
1210 	ASSERT(HDR_EMPTY(hdr));
1211 	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1212 }
1213 
1214 static void
buf_dest(void * vbuf,void * unused)1215 buf_dest(void *vbuf, void *unused)
1216 {
1217 	(void) unused;
1218 	(void) vbuf;
1219 
1220 	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1221 }
1222 
1223 static void
buf_init(void)1224 buf_init(void)
1225 {
1226 	uint64_t *ct = NULL;
1227 	uint64_t hsize = 1ULL << 12;
1228 	int i, j;
1229 
1230 	/*
1231 	 * The hash table is big enough to fill all of physical memory
1232 	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1233 	 * By default, the table will take up
1234 	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1235 	 */
1236 	while (hsize * zfs_arc_average_blocksize < arc_all_memory())
1237 		hsize <<= 1;
1238 retry:
1239 	buf_hash_table.ht_mask = hsize - 1;
1240 #if defined(_KERNEL)
1241 	/*
1242 	 * Large allocations which do not require contiguous pages
1243 	 * should be using vmem_alloc() in the linux kernel
1244 	 */
1245 	buf_hash_table.ht_table =
1246 	    vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1247 #else
1248 	buf_hash_table.ht_table =
1249 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1250 #endif
1251 	if (buf_hash_table.ht_table == NULL) {
1252 		ASSERT(hsize > (1ULL << 8));
1253 		hsize >>= 1;
1254 		goto retry;
1255 	}
1256 
1257 	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1258 	    0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, KMC_RECLAIMABLE);
1259 	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1260 	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL,
1261 	    NULL, NULL, 0);
1262 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1263 	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1264 
1265 	for (i = 0; i < 256; i++)
1266 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1267 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1268 
1269 	for (i = 0; i < BUF_LOCKS; i++)
1270 		mutex_init(BUF_HASH_LOCK(i), NULL, MUTEX_DEFAULT, NULL);
1271 }
1272 
1273 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
1274 
1275 /*
1276  * This is the size that the buf occupies in memory. If the buf is compressed,
1277  * it will correspond to the compressed size. You should use this method of
1278  * getting the buf size unless you explicitly need the logical size.
1279  */
1280 uint64_t
arc_buf_size(arc_buf_t * buf)1281 arc_buf_size(arc_buf_t *buf)
1282 {
1283 	return (ARC_BUF_COMPRESSED(buf) ?
1284 	    HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1285 }
1286 
1287 uint64_t
arc_buf_lsize(arc_buf_t * buf)1288 arc_buf_lsize(arc_buf_t *buf)
1289 {
1290 	return (HDR_GET_LSIZE(buf->b_hdr));
1291 }
1292 
1293 /*
1294  * This function will return B_TRUE if the buffer is encrypted in memory.
1295  * This buffer can be decrypted by calling arc_untransform().
1296  */
1297 boolean_t
arc_is_encrypted(arc_buf_t * buf)1298 arc_is_encrypted(arc_buf_t *buf)
1299 {
1300 	return (ARC_BUF_ENCRYPTED(buf) != 0);
1301 }
1302 
1303 /*
1304  * Returns B_TRUE if the buffer represents data that has not had its MAC
1305  * verified yet.
1306  */
1307 boolean_t
arc_is_unauthenticated(arc_buf_t * buf)1308 arc_is_unauthenticated(arc_buf_t *buf)
1309 {
1310 	return (HDR_NOAUTH(buf->b_hdr) != 0);
1311 }
1312 
1313 void
arc_get_raw_params(arc_buf_t * buf,boolean_t * byteorder,uint8_t * salt,uint8_t * iv,uint8_t * mac)1314 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt,
1315     uint8_t *iv, uint8_t *mac)
1316 {
1317 	arc_buf_hdr_t *hdr = buf->b_hdr;
1318 
1319 	ASSERT(HDR_PROTECTED(hdr));
1320 
1321 	memcpy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
1322 	memcpy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
1323 	memcpy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
1324 	*byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
1325 	    ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
1326 }
1327 
1328 /*
1329  * Indicates how this buffer is compressed in memory. If it is not compressed
1330  * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1331  * arc_untransform() as long as it is also unencrypted.
1332  */
1333 enum zio_compress
arc_get_compression(arc_buf_t * buf)1334 arc_get_compression(arc_buf_t *buf)
1335 {
1336 	return (ARC_BUF_COMPRESSED(buf) ?
1337 	    HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1338 }
1339 
1340 /*
1341  * Return the compression algorithm used to store this data in the ARC. If ARC
1342  * compression is enabled or this is an encrypted block, this will be the same
1343  * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1344  */
1345 static inline enum zio_compress
arc_hdr_get_compress(arc_buf_hdr_t * hdr)1346 arc_hdr_get_compress(arc_buf_hdr_t *hdr)
1347 {
1348 	return (HDR_COMPRESSION_ENABLED(hdr) ?
1349 	    HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF);
1350 }
1351 
1352 uint8_t
arc_get_complevel(arc_buf_t * buf)1353 arc_get_complevel(arc_buf_t *buf)
1354 {
1355 	return (buf->b_hdr->b_complevel);
1356 }
1357 
1358 static inline boolean_t
arc_buf_is_shared(arc_buf_t * buf)1359 arc_buf_is_shared(arc_buf_t *buf)
1360 {
1361 	boolean_t shared = (buf->b_data != NULL &&
1362 	    buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1363 	    abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1364 	    buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1365 	IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1366 	EQUIV(shared, ARC_BUF_SHARED(buf));
1367 	IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1368 
1369 	/*
1370 	 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1371 	 * already being shared" requirement prevents us from doing that.
1372 	 */
1373 
1374 	return (shared);
1375 }
1376 
1377 /*
1378  * Free the checksum associated with this header. If there is no checksum, this
1379  * is a no-op.
1380  */
1381 static inline void
arc_cksum_free(arc_buf_hdr_t * hdr)1382 arc_cksum_free(arc_buf_hdr_t *hdr)
1383 {
1384 #ifdef ZFS_DEBUG
1385 	ASSERT(HDR_HAS_L1HDR(hdr));
1386 
1387 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1388 	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1389 		kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1390 		hdr->b_l1hdr.b_freeze_cksum = NULL;
1391 	}
1392 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1393 #endif
1394 }
1395 
1396 /*
1397  * Return true iff at least one of the bufs on hdr is not compressed.
1398  * Encrypted buffers count as compressed.
1399  */
1400 static boolean_t
arc_hdr_has_uncompressed_buf(arc_buf_hdr_t * hdr)1401 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1402 {
1403 	ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr));
1404 
1405 	for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1406 		if (!ARC_BUF_COMPRESSED(b)) {
1407 			return (B_TRUE);
1408 		}
1409 	}
1410 	return (B_FALSE);
1411 }
1412 
1413 
1414 /*
1415  * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1416  * matches the checksum that is stored in the hdr. If there is no checksum,
1417  * or if the buf is compressed, this is a no-op.
1418  */
1419 static void
arc_cksum_verify(arc_buf_t * buf)1420 arc_cksum_verify(arc_buf_t *buf)
1421 {
1422 #ifdef ZFS_DEBUG
1423 	arc_buf_hdr_t *hdr = buf->b_hdr;
1424 	zio_cksum_t zc;
1425 
1426 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1427 		return;
1428 
1429 	if (ARC_BUF_COMPRESSED(buf))
1430 		return;
1431 
1432 	ASSERT(HDR_HAS_L1HDR(hdr));
1433 
1434 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1435 
1436 	if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1437 		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1438 		return;
1439 	}
1440 
1441 	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1442 	if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1443 		panic("buffer modified while frozen!");
1444 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1445 #endif
1446 }
1447 
1448 /*
1449  * This function makes the assumption that data stored in the L2ARC
1450  * will be transformed exactly as it is in the main pool. Because of
1451  * this we can verify the checksum against the reading process's bp.
1452  */
1453 static boolean_t
arc_cksum_is_equal(arc_buf_hdr_t * hdr,zio_t * zio)1454 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1455 {
1456 	ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1457 	VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1458 
1459 	/*
1460 	 * Block pointers always store the checksum for the logical data.
1461 	 * If the block pointer has the gang bit set, then the checksum
1462 	 * it represents is for the reconstituted data and not for an
1463 	 * individual gang member. The zio pipeline, however, must be able to
1464 	 * determine the checksum of each of the gang constituents so it
1465 	 * treats the checksum comparison differently than what we need
1466 	 * for l2arc blocks. This prevents us from using the
1467 	 * zio_checksum_error() interface directly. Instead we must call the
1468 	 * zio_checksum_error_impl() so that we can ensure the checksum is
1469 	 * generated using the correct checksum algorithm and accounts for the
1470 	 * logical I/O size and not just a gang fragment.
1471 	 */
1472 	return (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1473 	    BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1474 	    zio->io_offset, NULL) == 0);
1475 }
1476 
1477 /*
1478  * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1479  * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1480  * isn't modified later on. If buf is compressed or there is already a checksum
1481  * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1482  */
1483 static void
arc_cksum_compute(arc_buf_t * buf)1484 arc_cksum_compute(arc_buf_t *buf)
1485 {
1486 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1487 		return;
1488 
1489 #ifdef ZFS_DEBUG
1490 	arc_buf_hdr_t *hdr = buf->b_hdr;
1491 	ASSERT(HDR_HAS_L1HDR(hdr));
1492 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1493 	if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) {
1494 		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1495 		return;
1496 	}
1497 
1498 	ASSERT(!ARC_BUF_ENCRYPTED(buf));
1499 	ASSERT(!ARC_BUF_COMPRESSED(buf));
1500 	hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1501 	    KM_SLEEP);
1502 	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1503 	    hdr->b_l1hdr.b_freeze_cksum);
1504 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1505 #endif
1506 	arc_buf_watch(buf);
1507 }
1508 
1509 #ifndef _KERNEL
1510 void
arc_buf_sigsegv(int sig,siginfo_t * si,void * unused)1511 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1512 {
1513 	(void) sig, (void) unused;
1514 	panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr);
1515 }
1516 #endif
1517 
1518 static void
arc_buf_unwatch(arc_buf_t * buf)1519 arc_buf_unwatch(arc_buf_t *buf)
1520 {
1521 #ifndef _KERNEL
1522 	if (arc_watch) {
1523 		ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1524 		    PROT_READ | PROT_WRITE));
1525 	}
1526 #else
1527 	(void) buf;
1528 #endif
1529 }
1530 
1531 static void
arc_buf_watch(arc_buf_t * buf)1532 arc_buf_watch(arc_buf_t *buf)
1533 {
1534 #ifndef _KERNEL
1535 	if (arc_watch)
1536 		ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1537 		    PROT_READ));
1538 #else
1539 	(void) buf;
1540 #endif
1541 }
1542 
1543 static arc_buf_contents_t
arc_buf_type(arc_buf_hdr_t * hdr)1544 arc_buf_type(arc_buf_hdr_t *hdr)
1545 {
1546 	arc_buf_contents_t type;
1547 	if (HDR_ISTYPE_METADATA(hdr)) {
1548 		type = ARC_BUFC_METADATA;
1549 	} else {
1550 		type = ARC_BUFC_DATA;
1551 	}
1552 	VERIFY3U(hdr->b_type, ==, type);
1553 	return (type);
1554 }
1555 
1556 boolean_t
arc_is_metadata(arc_buf_t * buf)1557 arc_is_metadata(arc_buf_t *buf)
1558 {
1559 	return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1560 }
1561 
1562 static uint32_t
arc_bufc_to_flags(arc_buf_contents_t type)1563 arc_bufc_to_flags(arc_buf_contents_t type)
1564 {
1565 	switch (type) {
1566 	case ARC_BUFC_DATA:
1567 		/* metadata field is 0 if buffer contains normal data */
1568 		return (0);
1569 	case ARC_BUFC_METADATA:
1570 		return (ARC_FLAG_BUFC_METADATA);
1571 	default:
1572 		break;
1573 	}
1574 	panic("undefined ARC buffer type!");
1575 	return ((uint32_t)-1);
1576 }
1577 
1578 void
arc_buf_thaw(arc_buf_t * buf)1579 arc_buf_thaw(arc_buf_t *buf)
1580 {
1581 	arc_buf_hdr_t *hdr = buf->b_hdr;
1582 
1583 	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1584 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1585 
1586 	arc_cksum_verify(buf);
1587 
1588 	/*
1589 	 * Compressed buffers do not manipulate the b_freeze_cksum.
1590 	 */
1591 	if (ARC_BUF_COMPRESSED(buf))
1592 		return;
1593 
1594 	ASSERT(HDR_HAS_L1HDR(hdr));
1595 	arc_cksum_free(hdr);
1596 	arc_buf_unwatch(buf);
1597 }
1598 
1599 void
arc_buf_freeze(arc_buf_t * buf)1600 arc_buf_freeze(arc_buf_t *buf)
1601 {
1602 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1603 		return;
1604 
1605 	if (ARC_BUF_COMPRESSED(buf))
1606 		return;
1607 
1608 	ASSERT(HDR_HAS_L1HDR(buf->b_hdr));
1609 	arc_cksum_compute(buf);
1610 }
1611 
1612 /*
1613  * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1614  * the following functions should be used to ensure that the flags are
1615  * updated in a thread-safe way. When manipulating the flags either
1616  * the hash_lock must be held or the hdr must be undiscoverable. This
1617  * ensures that we're not racing with any other threads when updating
1618  * the flags.
1619  */
1620 static inline void
arc_hdr_set_flags(arc_buf_hdr_t * hdr,arc_flags_t flags)1621 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1622 {
1623 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1624 	hdr->b_flags |= flags;
1625 }
1626 
1627 static inline void
arc_hdr_clear_flags(arc_buf_hdr_t * hdr,arc_flags_t flags)1628 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1629 {
1630 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1631 	hdr->b_flags &= ~flags;
1632 }
1633 
1634 /*
1635  * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1636  * done in a special way since we have to clear and set bits
1637  * at the same time. Consumers that wish to set the compression bits
1638  * must use this function to ensure that the flags are updated in
1639  * thread-safe manner.
1640  */
1641 static void
arc_hdr_set_compress(arc_buf_hdr_t * hdr,enum zio_compress cmp)1642 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1643 {
1644 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1645 
1646 	/*
1647 	 * Holes and embedded blocks will always have a psize = 0 so
1648 	 * we ignore the compression of the blkptr and set the
1649 	 * want to uncompress them. Mark them as uncompressed.
1650 	 */
1651 	if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1652 		arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1653 		ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1654 	} else {
1655 		arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1656 		ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1657 	}
1658 
1659 	HDR_SET_COMPRESS(hdr, cmp);
1660 	ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1661 }
1662 
1663 /*
1664  * Looks for another buf on the same hdr which has the data decompressed, copies
1665  * from it, and returns true. If no such buf exists, returns false.
1666  */
1667 static boolean_t
arc_buf_try_copy_decompressed_data(arc_buf_t * buf)1668 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1669 {
1670 	arc_buf_hdr_t *hdr = buf->b_hdr;
1671 	boolean_t copied = B_FALSE;
1672 
1673 	ASSERT(HDR_HAS_L1HDR(hdr));
1674 	ASSERT3P(buf->b_data, !=, NULL);
1675 	ASSERT(!ARC_BUF_COMPRESSED(buf));
1676 
1677 	for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1678 	    from = from->b_next) {
1679 		/* can't use our own data buffer */
1680 		if (from == buf) {
1681 			continue;
1682 		}
1683 
1684 		if (!ARC_BUF_COMPRESSED(from)) {
1685 			memcpy(buf->b_data, from->b_data, arc_buf_size(buf));
1686 			copied = B_TRUE;
1687 			break;
1688 		}
1689 	}
1690 
1691 #ifdef ZFS_DEBUG
1692 	/*
1693 	 * There were no decompressed bufs, so there should not be a
1694 	 * checksum on the hdr either.
1695 	 */
1696 	if (zfs_flags & ZFS_DEBUG_MODIFY)
1697 		EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1698 #endif
1699 
1700 	return (copied);
1701 }
1702 
1703 /*
1704  * Allocates an ARC buf header that's in an evicted & L2-cached state.
1705  * This is used during l2arc reconstruction to make empty ARC buffers
1706  * which circumvent the regular disk->arc->l2arc path and instead come
1707  * into being in the reverse order, i.e. l2arc->arc.
1708  */
1709 static arc_buf_hdr_t *
arc_buf_alloc_l2only(size_t size,arc_buf_contents_t type,l2arc_dev_t * dev,dva_t dva,uint64_t daddr,int32_t psize,uint64_t birth,enum zio_compress compress,uint8_t complevel,boolean_t protected,boolean_t prefetch,arc_state_type_t arcs_state)1710 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev,
1711     dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth,
1712     enum zio_compress compress, uint8_t complevel, boolean_t protected,
1713     boolean_t prefetch, arc_state_type_t arcs_state)
1714 {
1715 	arc_buf_hdr_t	*hdr;
1716 
1717 	ASSERT(size != 0);
1718 	hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP);
1719 	hdr->b_birth = birth;
1720 	hdr->b_type = type;
1721 	hdr->b_flags = 0;
1722 	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR);
1723 	HDR_SET_LSIZE(hdr, size);
1724 	HDR_SET_PSIZE(hdr, psize);
1725 	arc_hdr_set_compress(hdr, compress);
1726 	hdr->b_complevel = complevel;
1727 	if (protected)
1728 		arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
1729 	if (prefetch)
1730 		arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
1731 	hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa);
1732 
1733 	hdr->b_dva = dva;
1734 
1735 	hdr->b_l2hdr.b_dev = dev;
1736 	hdr->b_l2hdr.b_daddr = daddr;
1737 	hdr->b_l2hdr.b_arcs_state = arcs_state;
1738 
1739 	return (hdr);
1740 }
1741 
1742 /*
1743  * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1744  */
1745 static uint64_t
arc_hdr_size(arc_buf_hdr_t * hdr)1746 arc_hdr_size(arc_buf_hdr_t *hdr)
1747 {
1748 	uint64_t size;
1749 
1750 	if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
1751 	    HDR_GET_PSIZE(hdr) > 0) {
1752 		size = HDR_GET_PSIZE(hdr);
1753 	} else {
1754 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1755 		size = HDR_GET_LSIZE(hdr);
1756 	}
1757 	return (size);
1758 }
1759 
1760 static int
arc_hdr_authenticate(arc_buf_hdr_t * hdr,spa_t * spa,uint64_t dsobj)1761 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
1762 {
1763 	int ret;
1764 	uint64_t csize;
1765 	uint64_t lsize = HDR_GET_LSIZE(hdr);
1766 	uint64_t psize = HDR_GET_PSIZE(hdr);
1767 	abd_t *abd = hdr->b_l1hdr.b_pabd;
1768 	boolean_t free_abd = B_FALSE;
1769 
1770 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1771 	ASSERT(HDR_AUTHENTICATED(hdr));
1772 	ASSERT3P(abd, !=, NULL);
1773 
1774 	/*
1775 	 * The MAC is calculated on the compressed data that is stored on disk.
1776 	 * However, if compressed arc is disabled we will only have the
1777 	 * decompressed data available to us now. Compress it into a temporary
1778 	 * abd so we can verify the MAC. The performance overhead of this will
1779 	 * be relatively low, since most objects in an encrypted objset will
1780 	 * be encrypted (instead of authenticated) anyway.
1781 	 */
1782 	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1783 	    !HDR_COMPRESSION_ENABLED(hdr)) {
1784 		abd = NULL;
1785 		csize = zio_compress_data(HDR_GET_COMPRESS(hdr),
1786 		    hdr->b_l1hdr.b_pabd, &abd, lsize, MIN(lsize, psize),
1787 		    hdr->b_complevel);
1788 		if (csize >= lsize || csize > psize) {
1789 			ret = SET_ERROR(EIO);
1790 			return (ret);
1791 		}
1792 		ASSERT3P(abd, !=, NULL);
1793 		abd_zero_off(abd, csize, psize - csize);
1794 		free_abd = B_TRUE;
1795 	}
1796 
1797 	/*
1798 	 * Authentication is best effort. We authenticate whenever the key is
1799 	 * available. If we succeed we clear ARC_FLAG_NOAUTH.
1800 	 */
1801 	if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) {
1802 		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1803 		ASSERT3U(lsize, ==, psize);
1804 		ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd,
1805 		    psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1806 	} else {
1807 		ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize,
1808 		    hdr->b_crypt_hdr.b_mac);
1809 	}
1810 
1811 	if (ret == 0)
1812 		arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH);
1813 	else if (ret == ENOENT)
1814 		ret = 0;
1815 
1816 	if (free_abd)
1817 		abd_free(abd);
1818 
1819 	return (ret);
1820 }
1821 
1822 /*
1823  * This function will take a header that only has raw encrypted data in
1824  * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1825  * b_l1hdr.b_pabd. If designated in the header flags, this function will
1826  * also decompress the data.
1827  */
1828 static int
arc_hdr_decrypt(arc_buf_hdr_t * hdr,spa_t * spa,const zbookmark_phys_t * zb)1829 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb)
1830 {
1831 	int ret;
1832 	abd_t *cabd = NULL;
1833 	boolean_t no_crypt = B_FALSE;
1834 	boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1835 
1836 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1837 	ASSERT(HDR_ENCRYPTED(hdr));
1838 
1839 	arc_hdr_alloc_abd(hdr, 0);
1840 
1841 	ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot,
1842 	    B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv,
1843 	    hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd,
1844 	    hdr->b_crypt_hdr.b_rabd, &no_crypt);
1845 	if (ret != 0)
1846 		goto error;
1847 
1848 	if (no_crypt) {
1849 		abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd,
1850 		    HDR_GET_PSIZE(hdr));
1851 	}
1852 
1853 	/*
1854 	 * If this header has disabled arc compression but the b_pabd is
1855 	 * compressed after decrypting it, we need to decompress the newly
1856 	 * decrypted data.
1857 	 */
1858 	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1859 	    !HDR_COMPRESSION_ENABLED(hdr)) {
1860 		/*
1861 		 * We want to make sure that we are correctly honoring the
1862 		 * zfs_abd_scatter_enabled setting, so we allocate an abd here
1863 		 * and then loan a buffer from it, rather than allocating a
1864 		 * linear buffer and wrapping it in an abd later.
1865 		 */
1866 		cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 0);
1867 
1868 		ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1869 		    hdr->b_l1hdr.b_pabd, cabd, HDR_GET_PSIZE(hdr),
1870 		    HDR_GET_LSIZE(hdr), &hdr->b_complevel);
1871 		if (ret != 0) {
1872 			goto error;
1873 		}
1874 
1875 		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
1876 		    arc_hdr_size(hdr), hdr);
1877 		hdr->b_l1hdr.b_pabd = cabd;
1878 	}
1879 
1880 	return (0);
1881 
1882 error:
1883 	arc_hdr_free_abd(hdr, B_FALSE);
1884 	if (cabd != NULL)
1885 		arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr);
1886 
1887 	return (ret);
1888 }
1889 
1890 /*
1891  * This function is called during arc_buf_fill() to prepare the header's
1892  * abd plaintext pointer for use. This involves authenticated protected
1893  * data and decrypting encrypted data into the plaintext abd.
1894  */
1895 static int
arc_fill_hdr_crypt(arc_buf_hdr_t * hdr,kmutex_t * hash_lock,spa_t * spa,const zbookmark_phys_t * zb,boolean_t noauth)1896 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa,
1897     const zbookmark_phys_t *zb, boolean_t noauth)
1898 {
1899 	int ret;
1900 
1901 	ASSERT(HDR_PROTECTED(hdr));
1902 
1903 	if (hash_lock != NULL)
1904 		mutex_enter(hash_lock);
1905 
1906 	if (HDR_NOAUTH(hdr) && !noauth) {
1907 		/*
1908 		 * The caller requested authenticated data but our data has
1909 		 * not been authenticated yet. Verify the MAC now if we can.
1910 		 */
1911 		ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset);
1912 		if (ret != 0)
1913 			goto error;
1914 	} else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) {
1915 		/*
1916 		 * If we only have the encrypted version of the data, but the
1917 		 * unencrypted version was requested we take this opportunity
1918 		 * to store the decrypted version in the header for future use.
1919 		 */
1920 		ret = arc_hdr_decrypt(hdr, spa, zb);
1921 		if (ret != 0)
1922 			goto error;
1923 	}
1924 
1925 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1926 
1927 	if (hash_lock != NULL)
1928 		mutex_exit(hash_lock);
1929 
1930 	return (0);
1931 
1932 error:
1933 	if (hash_lock != NULL)
1934 		mutex_exit(hash_lock);
1935 
1936 	return (ret);
1937 }
1938 
1939 /*
1940  * This function is used by the dbuf code to decrypt bonus buffers in place.
1941  * The dbuf code itself doesn't have any locking for decrypting a shared dnode
1942  * block, so we use the hash lock here to protect against concurrent calls to
1943  * arc_buf_fill().
1944  */
1945 static void
arc_buf_untransform_in_place(arc_buf_t * buf)1946 arc_buf_untransform_in_place(arc_buf_t *buf)
1947 {
1948 	arc_buf_hdr_t *hdr = buf->b_hdr;
1949 
1950 	ASSERT(HDR_ENCRYPTED(hdr));
1951 	ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
1952 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1953 	ASSERT3PF(hdr->b_l1hdr.b_pabd, !=, NULL, "hdr %px buf %px", hdr, buf);
1954 
1955 	zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data,
1956 	    arc_buf_size(buf));
1957 	buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
1958 	buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1959 }
1960 
1961 /*
1962  * Given a buf that has a data buffer attached to it, this function will
1963  * efficiently fill the buf with data of the specified compression setting from
1964  * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1965  * are already sharing a data buf, no copy is performed.
1966  *
1967  * If the buf is marked as compressed but uncompressed data was requested, this
1968  * will allocate a new data buffer for the buf, remove that flag, and fill the
1969  * buf with uncompressed data. You can't request a compressed buf on a hdr with
1970  * uncompressed data, and (since we haven't added support for it yet) if you
1971  * want compressed data your buf must already be marked as compressed and have
1972  * the correct-sized data buffer.
1973  */
1974 static int
arc_buf_fill(arc_buf_t * buf,spa_t * spa,const zbookmark_phys_t * zb,arc_fill_flags_t flags)1975 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
1976     arc_fill_flags_t flags)
1977 {
1978 	int error = 0;
1979 	arc_buf_hdr_t *hdr = buf->b_hdr;
1980 	boolean_t hdr_compressed =
1981 	    (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
1982 	boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0;
1983 	boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0;
1984 	dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
1985 	kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr);
1986 
1987 	ASSERT3P(buf->b_data, !=, NULL);
1988 	IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf));
1989 	IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
1990 	IMPLY(encrypted, HDR_ENCRYPTED(hdr));
1991 	IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf));
1992 	IMPLY(encrypted, ARC_BUF_COMPRESSED(buf));
1993 	IMPLY(encrypted, !arc_buf_is_shared(buf));
1994 
1995 	/*
1996 	 * If the caller wanted encrypted data we just need to copy it from
1997 	 * b_rabd and potentially byteswap it. We won't be able to do any
1998 	 * further transforms on it.
1999 	 */
2000 	if (encrypted) {
2001 		ASSERT(HDR_HAS_RABD(hdr));
2002 		abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd,
2003 		    HDR_GET_PSIZE(hdr));
2004 		goto byteswap;
2005 	}
2006 
2007 	/*
2008 	 * Adjust encrypted and authenticated headers to accommodate
2009 	 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are
2010 	 * allowed to fail decryption due to keys not being loaded
2011 	 * without being marked as an IO error.
2012 	 */
2013 	if (HDR_PROTECTED(hdr)) {
2014 		error = arc_fill_hdr_crypt(hdr, hash_lock, spa,
2015 		    zb, !!(flags & ARC_FILL_NOAUTH));
2016 		if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) {
2017 			return (error);
2018 		} else if (error != 0) {
2019 			if (hash_lock != NULL)
2020 				mutex_enter(hash_lock);
2021 			arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2022 			if (hash_lock != NULL)
2023 				mutex_exit(hash_lock);
2024 			return (error);
2025 		}
2026 	}
2027 
2028 	/*
2029 	 * There is a special case here for dnode blocks which are
2030 	 * decrypting their bonus buffers. These blocks may request to
2031 	 * be decrypted in-place. This is necessary because there may
2032 	 * be many dnodes pointing into this buffer and there is
2033 	 * currently no method to synchronize replacing the backing
2034 	 * b_data buffer and updating all of the pointers. Here we use
2035 	 * the hash lock to ensure there are no races. If the need
2036 	 * arises for other types to be decrypted in-place, they must
2037 	 * add handling here as well.
2038 	 */
2039 	if ((flags & ARC_FILL_IN_PLACE) != 0) {
2040 		ASSERT(!hdr_compressed);
2041 		ASSERT(!compressed);
2042 		ASSERT(!encrypted);
2043 
2044 		if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) {
2045 			ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
2046 
2047 			if (hash_lock != NULL)
2048 				mutex_enter(hash_lock);
2049 			arc_buf_untransform_in_place(buf);
2050 			if (hash_lock != NULL)
2051 				mutex_exit(hash_lock);
2052 
2053 			/* Compute the hdr's checksum if necessary */
2054 			arc_cksum_compute(buf);
2055 		}
2056 
2057 		return (0);
2058 	}
2059 
2060 	if (hdr_compressed == compressed) {
2061 		if (ARC_BUF_SHARED(buf)) {
2062 			ASSERT(arc_buf_is_shared(buf));
2063 		} else {
2064 			abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
2065 			    arc_buf_size(buf));
2066 		}
2067 	} else {
2068 		ASSERT(hdr_compressed);
2069 		ASSERT(!compressed);
2070 
2071 		/*
2072 		 * If the buf is sharing its data with the hdr, unlink it and
2073 		 * allocate a new data buffer for the buf.
2074 		 */
2075 		if (ARC_BUF_SHARED(buf)) {
2076 			ASSERTF(ARC_BUF_COMPRESSED(buf),
2077 			"buf %p was uncompressed", buf);
2078 
2079 			/* We need to give the buf its own b_data */
2080 			buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2081 			buf->b_data =
2082 			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2083 			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2084 
2085 			/* Previously overhead was 0; just add new overhead */
2086 			ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2087 		} else if (ARC_BUF_COMPRESSED(buf)) {
2088 			ASSERT(!arc_buf_is_shared(buf));
2089 
2090 			/* We need to reallocate the buf's b_data */
2091 			arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
2092 			    buf);
2093 			buf->b_data =
2094 			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2095 
2096 			/* We increased the size of b_data; update overhead */
2097 			ARCSTAT_INCR(arcstat_overhead_size,
2098 			    HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2099 		}
2100 
2101 		/*
2102 		 * Regardless of the buf's previous compression settings, it
2103 		 * should not be compressed at the end of this function.
2104 		 */
2105 		buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2106 
2107 		/*
2108 		 * Try copying the data from another buf which already has a
2109 		 * decompressed version. If that's not possible, it's time to
2110 		 * bite the bullet and decompress the data from the hdr.
2111 		 */
2112 		if (arc_buf_try_copy_decompressed_data(buf)) {
2113 			/* Skip byteswapping and checksumming (already done) */
2114 			return (0);
2115 		} else {
2116 			abd_t dabd;
2117 			abd_get_from_buf_struct(&dabd, buf->b_data,
2118 			    HDR_GET_LSIZE(hdr));
2119 			error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2120 			    hdr->b_l1hdr.b_pabd, &dabd,
2121 			    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr),
2122 			    &hdr->b_complevel);
2123 			abd_free(&dabd);
2124 
2125 			/*
2126 			 * Absent hardware errors or software bugs, this should
2127 			 * be impossible, but log it anyway so we can debug it.
2128 			 */
2129 			if (error != 0) {
2130 				zfs_dbgmsg(
2131 				    "hdr %px, compress %d, psize %d, lsize %d",
2132 				    hdr, arc_hdr_get_compress(hdr),
2133 				    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2134 				if (hash_lock != NULL)
2135 					mutex_enter(hash_lock);
2136 				arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2137 				if (hash_lock != NULL)
2138 					mutex_exit(hash_lock);
2139 				return (SET_ERROR(EIO));
2140 			}
2141 		}
2142 	}
2143 
2144 byteswap:
2145 	/* Byteswap the buf's data if necessary */
2146 	if (bswap != DMU_BSWAP_NUMFUNCS) {
2147 		ASSERT(!HDR_SHARED_DATA(hdr));
2148 		ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2149 		dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2150 	}
2151 
2152 	/* Compute the hdr's checksum if necessary */
2153 	arc_cksum_compute(buf);
2154 
2155 	return (0);
2156 }
2157 
2158 /*
2159  * If this function is being called to decrypt an encrypted buffer or verify an
2160  * authenticated one, the key must be loaded and a mapping must be made
2161  * available in the keystore via spa_keystore_create_mapping() or one of its
2162  * callers.
2163  */
2164 int
arc_untransform(arc_buf_t * buf,spa_t * spa,const zbookmark_phys_t * zb,boolean_t in_place)2165 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2166     boolean_t in_place)
2167 {
2168 	int ret;
2169 	arc_fill_flags_t flags = 0;
2170 
2171 	if (in_place)
2172 		flags |= ARC_FILL_IN_PLACE;
2173 
2174 	ret = arc_buf_fill(buf, spa, zb, flags);
2175 	if (ret == ECKSUM) {
2176 		/*
2177 		 * Convert authentication and decryption errors to EIO
2178 		 * (and generate an ereport) before leaving the ARC.
2179 		 */
2180 		ret = SET_ERROR(EIO);
2181 		spa_log_error(spa, zb, buf->b_hdr->b_birth);
2182 		(void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
2183 		    spa, NULL, zb, NULL, 0);
2184 	}
2185 
2186 	return (ret);
2187 }
2188 
2189 /*
2190  * Increment the amount of evictable space in the arc_state_t's refcount.
2191  * We account for the space used by the hdr and the arc buf individually
2192  * so that we can add and remove them from the refcount individually.
2193  */
2194 static void
arc_evictable_space_increment(arc_buf_hdr_t * hdr,arc_state_t * state)2195 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2196 {
2197 	arc_buf_contents_t type = arc_buf_type(hdr);
2198 
2199 	ASSERT(HDR_HAS_L1HDR(hdr));
2200 
2201 	if (GHOST_STATE(state)) {
2202 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2203 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2204 		ASSERT(!HDR_HAS_RABD(hdr));
2205 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2206 		    HDR_GET_LSIZE(hdr), hdr);
2207 		return;
2208 	}
2209 
2210 	if (hdr->b_l1hdr.b_pabd != NULL) {
2211 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2212 		    arc_hdr_size(hdr), hdr);
2213 	}
2214 	if (HDR_HAS_RABD(hdr)) {
2215 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2216 		    HDR_GET_PSIZE(hdr), hdr);
2217 	}
2218 
2219 	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2220 	    buf = buf->b_next) {
2221 		if (ARC_BUF_SHARED(buf))
2222 			continue;
2223 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2224 		    arc_buf_size(buf), buf);
2225 	}
2226 }
2227 
2228 /*
2229  * Decrement the amount of evictable space in the arc_state_t's refcount.
2230  * We account for the space used by the hdr and the arc buf individually
2231  * so that we can add and remove them from the refcount individually.
2232  */
2233 static void
arc_evictable_space_decrement(arc_buf_hdr_t * hdr,arc_state_t * state)2234 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2235 {
2236 	arc_buf_contents_t type = arc_buf_type(hdr);
2237 
2238 	ASSERT(HDR_HAS_L1HDR(hdr));
2239 
2240 	if (GHOST_STATE(state)) {
2241 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2242 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2243 		ASSERT(!HDR_HAS_RABD(hdr));
2244 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2245 		    HDR_GET_LSIZE(hdr), hdr);
2246 		return;
2247 	}
2248 
2249 	if (hdr->b_l1hdr.b_pabd != NULL) {
2250 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2251 		    arc_hdr_size(hdr), hdr);
2252 	}
2253 	if (HDR_HAS_RABD(hdr)) {
2254 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2255 		    HDR_GET_PSIZE(hdr), hdr);
2256 	}
2257 
2258 	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2259 	    buf = buf->b_next) {
2260 		if (ARC_BUF_SHARED(buf))
2261 			continue;
2262 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2263 		    arc_buf_size(buf), buf);
2264 	}
2265 }
2266 
2267 /*
2268  * Add a reference to this hdr indicating that someone is actively
2269  * referencing that memory. When the refcount transitions from 0 to 1,
2270  * we remove it from the respective arc_state_t list to indicate that
2271  * it is not evictable.
2272  */
2273 static void
add_reference(arc_buf_hdr_t * hdr,const void * tag)2274 add_reference(arc_buf_hdr_t *hdr, const void *tag)
2275 {
2276 	arc_state_t *state = hdr->b_l1hdr.b_state;
2277 
2278 	ASSERT(HDR_HAS_L1HDR(hdr));
2279 	if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) {
2280 		ASSERT(state == arc_anon);
2281 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2282 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2283 	}
2284 
2285 	if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2286 	    state != arc_anon && state != arc_l2c_only) {
2287 		/* We don't use the L2-only state list. */
2288 		multilist_remove(&state->arcs_list[arc_buf_type(hdr)], hdr);
2289 		arc_evictable_space_decrement(hdr, state);
2290 	}
2291 }
2292 
2293 /*
2294  * Remove a reference from this hdr. When the reference transitions from
2295  * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2296  * list making it eligible for eviction.
2297  */
2298 static int
remove_reference(arc_buf_hdr_t * hdr,const void * tag)2299 remove_reference(arc_buf_hdr_t *hdr, const void *tag)
2300 {
2301 	int cnt;
2302 	arc_state_t *state = hdr->b_l1hdr.b_state;
2303 
2304 	ASSERT(HDR_HAS_L1HDR(hdr));
2305 	ASSERT(state == arc_anon || MUTEX_HELD(HDR_LOCK(hdr)));
2306 	ASSERT(!GHOST_STATE(state));	/* arc_l2c_only counts as a ghost. */
2307 
2308 	if ((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) != 0)
2309 		return (cnt);
2310 
2311 	if (state == arc_anon) {
2312 		arc_hdr_destroy(hdr);
2313 		return (0);
2314 	}
2315 	if (state == arc_uncached && !HDR_PREFETCH(hdr)) {
2316 		arc_change_state(arc_anon, hdr);
2317 		arc_hdr_destroy(hdr);
2318 		return (0);
2319 	}
2320 	multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr);
2321 	arc_evictable_space_increment(hdr, state);
2322 	return (0);
2323 }
2324 
2325 /*
2326  * Returns detailed information about a specific arc buffer.  When the
2327  * state_index argument is set the function will calculate the arc header
2328  * list position for its arc state.  Since this requires a linear traversal
2329  * callers are strongly encourage not to do this.  However, it can be helpful
2330  * for targeted analysis so the functionality is provided.
2331  */
2332 void
arc_buf_info(arc_buf_t * ab,arc_buf_info_t * abi,int state_index)2333 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
2334 {
2335 	(void) state_index;
2336 	arc_buf_hdr_t *hdr = ab->b_hdr;
2337 	l1arc_buf_hdr_t *l1hdr = NULL;
2338 	l2arc_buf_hdr_t *l2hdr = NULL;
2339 	arc_state_t *state = NULL;
2340 
2341 	memset(abi, 0, sizeof (arc_buf_info_t));
2342 
2343 	if (hdr == NULL)
2344 		return;
2345 
2346 	abi->abi_flags = hdr->b_flags;
2347 
2348 	if (HDR_HAS_L1HDR(hdr)) {
2349 		l1hdr = &hdr->b_l1hdr;
2350 		state = l1hdr->b_state;
2351 	}
2352 	if (HDR_HAS_L2HDR(hdr))
2353 		l2hdr = &hdr->b_l2hdr;
2354 
2355 	if (l1hdr) {
2356 		abi->abi_bufcnt = 0;
2357 		for (arc_buf_t *buf = l1hdr->b_buf; buf; buf = buf->b_next)
2358 			abi->abi_bufcnt++;
2359 		abi->abi_access = l1hdr->b_arc_access;
2360 		abi->abi_mru_hits = l1hdr->b_mru_hits;
2361 		abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
2362 		abi->abi_mfu_hits = l1hdr->b_mfu_hits;
2363 		abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
2364 		abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt);
2365 	}
2366 
2367 	if (l2hdr) {
2368 		abi->abi_l2arc_dattr = l2hdr->b_daddr;
2369 		abi->abi_l2arc_hits = l2hdr->b_hits;
2370 	}
2371 
2372 	abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
2373 	abi->abi_state_contents = arc_buf_type(hdr);
2374 	abi->abi_size = arc_hdr_size(hdr);
2375 }
2376 
2377 /*
2378  * Move the supplied buffer to the indicated state. The hash lock
2379  * for the buffer must be held by the caller.
2380  */
2381 static void
arc_change_state(arc_state_t * new_state,arc_buf_hdr_t * hdr)2382 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr)
2383 {
2384 	arc_state_t *old_state;
2385 	int64_t refcnt;
2386 	boolean_t update_old, update_new;
2387 	arc_buf_contents_t type = arc_buf_type(hdr);
2388 
2389 	/*
2390 	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2391 	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
2392 	 * L1 hdr doesn't always exist when we change state to arc_anon before
2393 	 * destroying a header, in which case reallocating to add the L1 hdr is
2394 	 * pointless.
2395 	 */
2396 	if (HDR_HAS_L1HDR(hdr)) {
2397 		old_state = hdr->b_l1hdr.b_state;
2398 		refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt);
2399 		update_old = (hdr->b_l1hdr.b_buf != NULL ||
2400 		    hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
2401 
2402 		IMPLY(GHOST_STATE(old_state), hdr->b_l1hdr.b_buf == NULL);
2403 		IMPLY(GHOST_STATE(new_state), hdr->b_l1hdr.b_buf == NULL);
2404 		IMPLY(old_state == arc_anon, hdr->b_l1hdr.b_buf == NULL ||
2405 		    ARC_BUF_LAST(hdr->b_l1hdr.b_buf));
2406 	} else {
2407 		old_state = arc_l2c_only;
2408 		refcnt = 0;
2409 		update_old = B_FALSE;
2410 	}
2411 	update_new = update_old;
2412 	if (GHOST_STATE(old_state))
2413 		update_old = B_TRUE;
2414 	if (GHOST_STATE(new_state))
2415 		update_new = B_TRUE;
2416 
2417 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
2418 	ASSERT3P(new_state, !=, old_state);
2419 
2420 	/*
2421 	 * If this buffer is evictable, transfer it from the
2422 	 * old state list to the new state list.
2423 	 */
2424 	if (refcnt == 0) {
2425 		if (old_state != arc_anon && old_state != arc_l2c_only) {
2426 			ASSERT(HDR_HAS_L1HDR(hdr));
2427 			/* remove_reference() saves on insert. */
2428 			if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2429 				multilist_remove(&old_state->arcs_list[type],
2430 				    hdr);
2431 				arc_evictable_space_decrement(hdr, old_state);
2432 			}
2433 		}
2434 		if (new_state != arc_anon && new_state != arc_l2c_only) {
2435 			/*
2436 			 * An L1 header always exists here, since if we're
2437 			 * moving to some L1-cached state (i.e. not l2c_only or
2438 			 * anonymous), we realloc the header to add an L1hdr
2439 			 * beforehand.
2440 			 */
2441 			ASSERT(HDR_HAS_L1HDR(hdr));
2442 			multilist_insert(&new_state->arcs_list[type], hdr);
2443 			arc_evictable_space_increment(hdr, new_state);
2444 		}
2445 	}
2446 
2447 	ASSERT(!HDR_EMPTY(hdr));
2448 	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2449 		buf_hash_remove(hdr);
2450 
2451 	/* adjust state sizes (ignore arc_l2c_only) */
2452 
2453 	if (update_new && new_state != arc_l2c_only) {
2454 		ASSERT(HDR_HAS_L1HDR(hdr));
2455 		if (GHOST_STATE(new_state)) {
2456 
2457 			/*
2458 			 * When moving a header to a ghost state, we first
2459 			 * remove all arc buffers. Thus, we'll have no arc
2460 			 * buffer to use for the reference. As a result, we
2461 			 * use the arc header pointer for the reference.
2462 			 */
2463 			(void) zfs_refcount_add_many(
2464 			    &new_state->arcs_size[type],
2465 			    HDR_GET_LSIZE(hdr), hdr);
2466 			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2467 			ASSERT(!HDR_HAS_RABD(hdr));
2468 		} else {
2469 
2470 			/*
2471 			 * Each individual buffer holds a unique reference,
2472 			 * thus we must remove each of these references one
2473 			 * at a time.
2474 			 */
2475 			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2476 			    buf = buf->b_next) {
2477 
2478 				/*
2479 				 * When the arc_buf_t is sharing the data
2480 				 * block with the hdr, the owner of the
2481 				 * reference belongs to the hdr. Only
2482 				 * add to the refcount if the arc_buf_t is
2483 				 * not shared.
2484 				 */
2485 				if (ARC_BUF_SHARED(buf))
2486 					continue;
2487 
2488 				(void) zfs_refcount_add_many(
2489 				    &new_state->arcs_size[type],
2490 				    arc_buf_size(buf), buf);
2491 			}
2492 
2493 			if (hdr->b_l1hdr.b_pabd != NULL) {
2494 				(void) zfs_refcount_add_many(
2495 				    &new_state->arcs_size[type],
2496 				    arc_hdr_size(hdr), hdr);
2497 			}
2498 
2499 			if (HDR_HAS_RABD(hdr)) {
2500 				(void) zfs_refcount_add_many(
2501 				    &new_state->arcs_size[type],
2502 				    HDR_GET_PSIZE(hdr), hdr);
2503 			}
2504 		}
2505 	}
2506 
2507 	if (update_old && old_state != arc_l2c_only) {
2508 		ASSERT(HDR_HAS_L1HDR(hdr));
2509 		if (GHOST_STATE(old_state)) {
2510 			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2511 			ASSERT(!HDR_HAS_RABD(hdr));
2512 
2513 			/*
2514 			 * When moving a header off of a ghost state,
2515 			 * the header will not contain any arc buffers.
2516 			 * We use the arc header pointer for the reference
2517 			 * which is exactly what we did when we put the
2518 			 * header on the ghost state.
2519 			 */
2520 
2521 			(void) zfs_refcount_remove_many(
2522 			    &old_state->arcs_size[type],
2523 			    HDR_GET_LSIZE(hdr), hdr);
2524 		} else {
2525 
2526 			/*
2527 			 * Each individual buffer holds a unique reference,
2528 			 * thus we must remove each of these references one
2529 			 * at a time.
2530 			 */
2531 			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2532 			    buf = buf->b_next) {
2533 
2534 				/*
2535 				 * When the arc_buf_t is sharing the data
2536 				 * block with the hdr, the owner of the
2537 				 * reference belongs to the hdr. Only
2538 				 * add to the refcount if the arc_buf_t is
2539 				 * not shared.
2540 				 */
2541 				if (ARC_BUF_SHARED(buf))
2542 					continue;
2543 
2544 				(void) zfs_refcount_remove_many(
2545 				    &old_state->arcs_size[type],
2546 				    arc_buf_size(buf), buf);
2547 			}
2548 			ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
2549 			    HDR_HAS_RABD(hdr));
2550 
2551 			if (hdr->b_l1hdr.b_pabd != NULL) {
2552 				(void) zfs_refcount_remove_many(
2553 				    &old_state->arcs_size[type],
2554 				    arc_hdr_size(hdr), hdr);
2555 			}
2556 
2557 			if (HDR_HAS_RABD(hdr)) {
2558 				(void) zfs_refcount_remove_many(
2559 				    &old_state->arcs_size[type],
2560 				    HDR_GET_PSIZE(hdr), hdr);
2561 			}
2562 		}
2563 	}
2564 
2565 	if (HDR_HAS_L1HDR(hdr)) {
2566 		hdr->b_l1hdr.b_state = new_state;
2567 
2568 		if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) {
2569 			l2arc_hdr_arcstats_decrement_state(hdr);
2570 			hdr->b_l2hdr.b_arcs_state = new_state->arcs_state;
2571 			l2arc_hdr_arcstats_increment_state(hdr);
2572 		}
2573 	}
2574 }
2575 
2576 void
arc_space_consume(uint64_t space,arc_space_type_t type)2577 arc_space_consume(uint64_t space, arc_space_type_t type)
2578 {
2579 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2580 
2581 	switch (type) {
2582 	default:
2583 		break;
2584 	case ARC_SPACE_DATA:
2585 		ARCSTAT_INCR(arcstat_data_size, space);
2586 		break;
2587 	case ARC_SPACE_META:
2588 		ARCSTAT_INCR(arcstat_metadata_size, space);
2589 		break;
2590 	case ARC_SPACE_BONUS:
2591 		ARCSTAT_INCR(arcstat_bonus_size, space);
2592 		break;
2593 	case ARC_SPACE_DNODE:
2594 		ARCSTAT_INCR(arcstat_dnode_size, space);
2595 		break;
2596 	case ARC_SPACE_DBUF:
2597 		ARCSTAT_INCR(arcstat_dbuf_size, space);
2598 		break;
2599 	case ARC_SPACE_HDRS:
2600 		ARCSTAT_INCR(arcstat_hdr_size, space);
2601 		break;
2602 	case ARC_SPACE_L2HDRS:
2603 		aggsum_add(&arc_sums.arcstat_l2_hdr_size, space);
2604 		break;
2605 	case ARC_SPACE_ABD_CHUNK_WASTE:
2606 		/*
2607 		 * Note: this includes space wasted by all scatter ABD's, not
2608 		 * just those allocated by the ARC.  But the vast majority of
2609 		 * scatter ABD's come from the ARC, because other users are
2610 		 * very short-lived.
2611 		 */
2612 		ARCSTAT_INCR(arcstat_abd_chunk_waste_size, space);
2613 		break;
2614 	}
2615 
2616 	if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE)
2617 		ARCSTAT_INCR(arcstat_meta_used, space);
2618 
2619 	aggsum_add(&arc_sums.arcstat_size, space);
2620 }
2621 
2622 void
arc_space_return(uint64_t space,arc_space_type_t type)2623 arc_space_return(uint64_t space, arc_space_type_t type)
2624 {
2625 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2626 
2627 	switch (type) {
2628 	default:
2629 		break;
2630 	case ARC_SPACE_DATA:
2631 		ARCSTAT_INCR(arcstat_data_size, -space);
2632 		break;
2633 	case ARC_SPACE_META:
2634 		ARCSTAT_INCR(arcstat_metadata_size, -space);
2635 		break;
2636 	case ARC_SPACE_BONUS:
2637 		ARCSTAT_INCR(arcstat_bonus_size, -space);
2638 		break;
2639 	case ARC_SPACE_DNODE:
2640 		ARCSTAT_INCR(arcstat_dnode_size, -space);
2641 		break;
2642 	case ARC_SPACE_DBUF:
2643 		ARCSTAT_INCR(arcstat_dbuf_size, -space);
2644 		break;
2645 	case ARC_SPACE_HDRS:
2646 		ARCSTAT_INCR(arcstat_hdr_size, -space);
2647 		break;
2648 	case ARC_SPACE_L2HDRS:
2649 		aggsum_add(&arc_sums.arcstat_l2_hdr_size, -space);
2650 		break;
2651 	case ARC_SPACE_ABD_CHUNK_WASTE:
2652 		ARCSTAT_INCR(arcstat_abd_chunk_waste_size, -space);
2653 		break;
2654 	}
2655 
2656 	if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE)
2657 		ARCSTAT_INCR(arcstat_meta_used, -space);
2658 
2659 	ASSERT(aggsum_compare(&arc_sums.arcstat_size, space) >= 0);
2660 	aggsum_add(&arc_sums.arcstat_size, -space);
2661 }
2662 
2663 /*
2664  * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2665  * with the hdr's b_pabd.
2666  */
2667 static boolean_t
arc_can_share(arc_buf_hdr_t * hdr,arc_buf_t * buf)2668 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2669 {
2670 	/*
2671 	 * The criteria for sharing a hdr's data are:
2672 	 * 1. the buffer is not encrypted
2673 	 * 2. the hdr's compression matches the buf's compression
2674 	 * 3. the hdr doesn't need to be byteswapped
2675 	 * 4. the hdr isn't already being shared
2676 	 * 5. the buf is either compressed or it is the last buf in the hdr list
2677 	 *
2678 	 * Criterion #5 maintains the invariant that shared uncompressed
2679 	 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2680 	 * might ask, "if a compressed buf is allocated first, won't that be the
2681 	 * last thing in the list?", but in that case it's impossible to create
2682 	 * a shared uncompressed buf anyway (because the hdr must be compressed
2683 	 * to have the compressed buf). You might also think that #3 is
2684 	 * sufficient to make this guarantee, however it's possible
2685 	 * (specifically in the rare L2ARC write race mentioned in
2686 	 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2687 	 * is shareable, but wasn't at the time of its allocation. Rather than
2688 	 * allow a new shared uncompressed buf to be created and then shuffle
2689 	 * the list around to make it the last element, this simply disallows
2690 	 * sharing if the new buf isn't the first to be added.
2691 	 */
2692 	ASSERT3P(buf->b_hdr, ==, hdr);
2693 	boolean_t hdr_compressed =
2694 	    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF;
2695 	boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2696 	return (!ARC_BUF_ENCRYPTED(buf) &&
2697 	    buf_compressed == hdr_compressed &&
2698 	    hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2699 	    !HDR_SHARED_DATA(hdr) &&
2700 	    (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2701 }
2702 
2703 /*
2704  * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2705  * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2706  * copy was made successfully, or an error code otherwise.
2707  */
2708 static int
arc_buf_alloc_impl(arc_buf_hdr_t * hdr,spa_t * spa,const zbookmark_phys_t * zb,const void * tag,boolean_t encrypted,boolean_t compressed,boolean_t noauth,boolean_t fill,arc_buf_t ** ret)2709 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb,
2710     const void *tag, boolean_t encrypted, boolean_t compressed,
2711     boolean_t noauth, boolean_t fill, arc_buf_t **ret)
2712 {
2713 	arc_buf_t *buf;
2714 	arc_fill_flags_t flags = ARC_FILL_LOCKED;
2715 
2716 	ASSERT(HDR_HAS_L1HDR(hdr));
2717 	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2718 	VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2719 	    hdr->b_type == ARC_BUFC_METADATA);
2720 	ASSERT3P(ret, !=, NULL);
2721 	ASSERT3P(*ret, ==, NULL);
2722 	IMPLY(encrypted, compressed);
2723 
2724 	buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2725 	buf->b_hdr = hdr;
2726 	buf->b_data = NULL;
2727 	buf->b_next = hdr->b_l1hdr.b_buf;
2728 	buf->b_flags = 0;
2729 
2730 	add_reference(hdr, tag);
2731 
2732 	/*
2733 	 * We're about to change the hdr's b_flags. We must either
2734 	 * hold the hash_lock or be undiscoverable.
2735 	 */
2736 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2737 
2738 	/*
2739 	 * Only honor requests for compressed bufs if the hdr is actually
2740 	 * compressed. This must be overridden if the buffer is encrypted since
2741 	 * encrypted buffers cannot be decompressed.
2742 	 */
2743 	if (encrypted) {
2744 		buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2745 		buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED;
2746 		flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED;
2747 	} else if (compressed &&
2748 	    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
2749 		buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2750 		flags |= ARC_FILL_COMPRESSED;
2751 	}
2752 
2753 	if (noauth) {
2754 		ASSERT0(encrypted);
2755 		flags |= ARC_FILL_NOAUTH;
2756 	}
2757 
2758 	/*
2759 	 * If the hdr's data can be shared then we share the data buffer and
2760 	 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2761 	 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2762 	 * buffer to store the buf's data.
2763 	 *
2764 	 * There are two additional restrictions here because we're sharing
2765 	 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2766 	 * actively involved in an L2ARC write, because if this buf is used by
2767 	 * an arc_write() then the hdr's data buffer will be released when the
2768 	 * write completes, even though the L2ARC write might still be using it.
2769 	 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2770 	 * need to be ABD-aware.  It must be allocated via
2771 	 * zio_[data_]buf_alloc(), not as a page, because we need to be able
2772 	 * to abd_release_ownership_of_buf(), which isn't allowed on "linear
2773 	 * page" buffers because the ABD code needs to handle freeing them
2774 	 * specially.
2775 	 */
2776 	boolean_t can_share = arc_can_share(hdr, buf) &&
2777 	    !HDR_L2_WRITING(hdr) &&
2778 	    hdr->b_l1hdr.b_pabd != NULL &&
2779 	    abd_is_linear(hdr->b_l1hdr.b_pabd) &&
2780 	    !abd_is_linear_page(hdr->b_l1hdr.b_pabd);
2781 
2782 	/* Set up b_data and sharing */
2783 	if (can_share) {
2784 		buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2785 		buf->b_flags |= ARC_BUF_FLAG_SHARED;
2786 		arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2787 	} else {
2788 		buf->b_data =
2789 		    arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2790 		ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2791 	}
2792 	VERIFY3P(buf->b_data, !=, NULL);
2793 
2794 	hdr->b_l1hdr.b_buf = buf;
2795 
2796 	/*
2797 	 * If the user wants the data from the hdr, we need to either copy or
2798 	 * decompress the data.
2799 	 */
2800 	if (fill) {
2801 		ASSERT3P(zb, !=, NULL);
2802 		return (arc_buf_fill(buf, spa, zb, flags));
2803 	}
2804 
2805 	return (0);
2806 }
2807 
2808 static const char *arc_onloan_tag = "onloan";
2809 
2810 static inline void
arc_loaned_bytes_update(int64_t delta)2811 arc_loaned_bytes_update(int64_t delta)
2812 {
2813 	atomic_add_64(&arc_loaned_bytes, delta);
2814 
2815 	/* assert that it did not wrap around */
2816 	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2817 }
2818 
2819 /*
2820  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2821  * flight data by arc_tempreserve_space() until they are "returned". Loaned
2822  * buffers must be returned to the arc before they can be used by the DMU or
2823  * freed.
2824  */
2825 arc_buf_t *
arc_loan_buf(spa_t * spa,boolean_t is_metadata,int size)2826 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2827 {
2828 	arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2829 	    is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2830 
2831 	arc_loaned_bytes_update(arc_buf_size(buf));
2832 
2833 	return (buf);
2834 }
2835 
2836 arc_buf_t *
arc_loan_compressed_buf(spa_t * spa,uint64_t psize,uint64_t lsize,enum zio_compress compression_type,uint8_t complevel)2837 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2838     enum zio_compress compression_type, uint8_t complevel)
2839 {
2840 	arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2841 	    psize, lsize, compression_type, complevel);
2842 
2843 	arc_loaned_bytes_update(arc_buf_size(buf));
2844 
2845 	return (buf);
2846 }
2847 
2848 arc_buf_t *
arc_loan_raw_buf(spa_t * spa,uint64_t dsobj,boolean_t byteorder,const uint8_t * salt,const uint8_t * iv,const uint8_t * mac,dmu_object_type_t ot,uint64_t psize,uint64_t lsize,enum zio_compress compression_type,uint8_t complevel)2849 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder,
2850     const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
2851     dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
2852     enum zio_compress compression_type, uint8_t complevel)
2853 {
2854 	arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj,
2855 	    byteorder, salt, iv, mac, ot, psize, lsize, compression_type,
2856 	    complevel);
2857 
2858 	atomic_add_64(&arc_loaned_bytes, psize);
2859 	return (buf);
2860 }
2861 
2862 
2863 /*
2864  * Return a loaned arc buffer to the arc.
2865  */
2866 void
arc_return_buf(arc_buf_t * buf,const void * tag)2867 arc_return_buf(arc_buf_t *buf, const void *tag)
2868 {
2869 	arc_buf_hdr_t *hdr = buf->b_hdr;
2870 
2871 	ASSERT3P(buf->b_data, !=, NULL);
2872 	ASSERT(HDR_HAS_L1HDR(hdr));
2873 	(void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2874 	(void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2875 
2876 	arc_loaned_bytes_update(-arc_buf_size(buf));
2877 }
2878 
2879 /* Detach an arc_buf from a dbuf (tag) */
2880 void
arc_loan_inuse_buf(arc_buf_t * buf,const void * tag)2881 arc_loan_inuse_buf(arc_buf_t *buf, const void *tag)
2882 {
2883 	arc_buf_hdr_t *hdr = buf->b_hdr;
2884 
2885 	ASSERT3P(buf->b_data, !=, NULL);
2886 	ASSERT(HDR_HAS_L1HDR(hdr));
2887 	(void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2888 	(void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2889 
2890 	arc_loaned_bytes_update(arc_buf_size(buf));
2891 }
2892 
2893 static void
l2arc_free_abd_on_write(abd_t * abd,size_t size,arc_buf_contents_t type)2894 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2895 {
2896 	l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2897 
2898 	df->l2df_abd = abd;
2899 	df->l2df_size = size;
2900 	df->l2df_type = type;
2901 	mutex_enter(&l2arc_free_on_write_mtx);
2902 	list_insert_head(l2arc_free_on_write, df);
2903 	mutex_exit(&l2arc_free_on_write_mtx);
2904 }
2905 
2906 static void
arc_hdr_free_on_write(arc_buf_hdr_t * hdr,boolean_t free_rdata)2907 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata)
2908 {
2909 	arc_state_t *state = hdr->b_l1hdr.b_state;
2910 	arc_buf_contents_t type = arc_buf_type(hdr);
2911 	uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
2912 
2913 	/* protected by hash lock, if in the hash table */
2914 	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2915 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2916 		ASSERT(state != arc_anon && state != arc_l2c_only);
2917 
2918 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2919 		    size, hdr);
2920 	}
2921 	(void) zfs_refcount_remove_many(&state->arcs_size[type], size, hdr);
2922 	if (type == ARC_BUFC_METADATA) {
2923 		arc_space_return(size, ARC_SPACE_META);
2924 	} else {
2925 		ASSERT(type == ARC_BUFC_DATA);
2926 		arc_space_return(size, ARC_SPACE_DATA);
2927 	}
2928 
2929 	if (free_rdata) {
2930 		l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type);
2931 	} else {
2932 		l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2933 	}
2934 }
2935 
2936 /*
2937  * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2938  * data buffer, we transfer the refcount ownership to the hdr and update
2939  * the appropriate kstats.
2940  */
2941 static void
arc_share_buf(arc_buf_hdr_t * hdr,arc_buf_t * buf)2942 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2943 {
2944 	ASSERT(arc_can_share(hdr, buf));
2945 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2946 	ASSERT(!ARC_BUF_ENCRYPTED(buf));
2947 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2948 
2949 	/*
2950 	 * Start sharing the data buffer. We transfer the
2951 	 * refcount ownership to the hdr since it always owns
2952 	 * the refcount whenever an arc_buf_t is shared.
2953 	 */
2954 	zfs_refcount_transfer_ownership_many(
2955 	    &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)],
2956 	    arc_hdr_size(hdr), buf, hdr);
2957 	hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2958 	abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2959 	    HDR_ISTYPE_METADATA(hdr));
2960 	arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2961 	buf->b_flags |= ARC_BUF_FLAG_SHARED;
2962 
2963 	/*
2964 	 * Since we've transferred ownership to the hdr we need
2965 	 * to increment its compressed and uncompressed kstats and
2966 	 * decrement the overhead size.
2967 	 */
2968 	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2969 	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2970 	ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
2971 }
2972 
2973 static void
arc_unshare_buf(arc_buf_hdr_t * hdr,arc_buf_t * buf)2974 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2975 {
2976 	ASSERT(arc_buf_is_shared(buf));
2977 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2978 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2979 
2980 	/*
2981 	 * We are no longer sharing this buffer so we need
2982 	 * to transfer its ownership to the rightful owner.
2983 	 */
2984 	zfs_refcount_transfer_ownership_many(
2985 	    &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)],
2986 	    arc_hdr_size(hdr), hdr, buf);
2987 	arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2988 	abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
2989 	abd_free(hdr->b_l1hdr.b_pabd);
2990 	hdr->b_l1hdr.b_pabd = NULL;
2991 	buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2992 
2993 	/*
2994 	 * Since the buffer is no longer shared between
2995 	 * the arc buf and the hdr, count it as overhead.
2996 	 */
2997 	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2998 	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2999 	ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
3000 }
3001 
3002 /*
3003  * Remove an arc_buf_t from the hdr's buf list and return the last
3004  * arc_buf_t on the list. If no buffers remain on the list then return
3005  * NULL.
3006  */
3007 static arc_buf_t *
arc_buf_remove(arc_buf_hdr_t * hdr,arc_buf_t * buf)3008 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3009 {
3010 	ASSERT(HDR_HAS_L1HDR(hdr));
3011 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3012 
3013 	arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
3014 	arc_buf_t *lastbuf = NULL;
3015 
3016 	/*
3017 	 * Remove the buf from the hdr list and locate the last
3018 	 * remaining buffer on the list.
3019 	 */
3020 	while (*bufp != NULL) {
3021 		if (*bufp == buf)
3022 			*bufp = buf->b_next;
3023 
3024 		/*
3025 		 * If we've removed a buffer in the middle of
3026 		 * the list then update the lastbuf and update
3027 		 * bufp.
3028 		 */
3029 		if (*bufp != NULL) {
3030 			lastbuf = *bufp;
3031 			bufp = &(*bufp)->b_next;
3032 		}
3033 	}
3034 	buf->b_next = NULL;
3035 	ASSERT3P(lastbuf, !=, buf);
3036 	IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
3037 
3038 	return (lastbuf);
3039 }
3040 
3041 /*
3042  * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's
3043  * list and free it.
3044  */
3045 static void
arc_buf_destroy_impl(arc_buf_t * buf)3046 arc_buf_destroy_impl(arc_buf_t *buf)
3047 {
3048 	arc_buf_hdr_t *hdr = buf->b_hdr;
3049 
3050 	/*
3051 	 * Free up the data associated with the buf but only if we're not
3052 	 * sharing this with the hdr. If we are sharing it with the hdr, the
3053 	 * hdr is responsible for doing the free.
3054 	 */
3055 	if (buf->b_data != NULL) {
3056 		/*
3057 		 * We're about to change the hdr's b_flags. We must either
3058 		 * hold the hash_lock or be undiscoverable.
3059 		 */
3060 		ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3061 
3062 		arc_cksum_verify(buf);
3063 		arc_buf_unwatch(buf);
3064 
3065 		if (ARC_BUF_SHARED(buf)) {
3066 			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3067 		} else {
3068 			ASSERT(!arc_buf_is_shared(buf));
3069 			uint64_t size = arc_buf_size(buf);
3070 			arc_free_data_buf(hdr, buf->b_data, size, buf);
3071 			ARCSTAT_INCR(arcstat_overhead_size, -size);
3072 		}
3073 		buf->b_data = NULL;
3074 
3075 		/*
3076 		 * If we have no more encrypted buffers and we've already
3077 		 * gotten a copy of the decrypted data we can free b_rabd
3078 		 * to save some space.
3079 		 */
3080 		if (ARC_BUF_ENCRYPTED(buf) && HDR_HAS_RABD(hdr) &&
3081 		    hdr->b_l1hdr.b_pabd != NULL && !HDR_IO_IN_PROGRESS(hdr)) {
3082 			arc_buf_t *b;
3083 			for (b = hdr->b_l1hdr.b_buf; b; b = b->b_next) {
3084 				if (b != buf && ARC_BUF_ENCRYPTED(b))
3085 					break;
3086 			}
3087 			if (b == NULL)
3088 				arc_hdr_free_abd(hdr, B_TRUE);
3089 		}
3090 	}
3091 
3092 	arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
3093 
3094 	if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
3095 		/*
3096 		 * If the current arc_buf_t is sharing its data buffer with the
3097 		 * hdr, then reassign the hdr's b_pabd to share it with the new
3098 		 * buffer at the end of the list. The shared buffer is always
3099 		 * the last one on the hdr's buffer list.
3100 		 *
3101 		 * There is an equivalent case for compressed bufs, but since
3102 		 * they aren't guaranteed to be the last buf in the list and
3103 		 * that is an exceedingly rare case, we just allow that space be
3104 		 * wasted temporarily. We must also be careful not to share
3105 		 * encrypted buffers, since they cannot be shared.
3106 		 */
3107 		if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) {
3108 			/* Only one buf can be shared at once */
3109 			ASSERT(!arc_buf_is_shared(lastbuf));
3110 			/* hdr is uncompressed so can't have compressed buf */
3111 			ASSERT(!ARC_BUF_COMPRESSED(lastbuf));
3112 
3113 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3114 			arc_hdr_free_abd(hdr, B_FALSE);
3115 
3116 			/*
3117 			 * We must setup a new shared block between the
3118 			 * last buffer and the hdr. The data would have
3119 			 * been allocated by the arc buf so we need to transfer
3120 			 * ownership to the hdr since it's now being shared.
3121 			 */
3122 			arc_share_buf(hdr, lastbuf);
3123 		}
3124 	} else if (HDR_SHARED_DATA(hdr)) {
3125 		/*
3126 		 * Uncompressed shared buffers are always at the end
3127 		 * of the list. Compressed buffers don't have the
3128 		 * same requirements. This makes it hard to
3129 		 * simply assert that the lastbuf is shared so
3130 		 * we rely on the hdr's compression flags to determine
3131 		 * if we have a compressed, shared buffer.
3132 		 */
3133 		ASSERT3P(lastbuf, !=, NULL);
3134 		ASSERT(arc_buf_is_shared(lastbuf) ||
3135 		    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
3136 	}
3137 
3138 	/*
3139 	 * Free the checksum if we're removing the last uncompressed buf from
3140 	 * this hdr.
3141 	 */
3142 	if (!arc_hdr_has_uncompressed_buf(hdr)) {
3143 		arc_cksum_free(hdr);
3144 	}
3145 
3146 	/* clean up the buf */
3147 	buf->b_hdr = NULL;
3148 	kmem_cache_free(buf_cache, buf);
3149 }
3150 
3151 static void
arc_hdr_alloc_abd(arc_buf_hdr_t * hdr,int alloc_flags)3152 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags)
3153 {
3154 	uint64_t size;
3155 	boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0);
3156 
3157 	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3158 	ASSERT(HDR_HAS_L1HDR(hdr));
3159 	ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata);
3160 	IMPLY(alloc_rdata, HDR_PROTECTED(hdr));
3161 
3162 	if (alloc_rdata) {
3163 		size = HDR_GET_PSIZE(hdr);
3164 		ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL);
3165 		hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr,
3166 		    alloc_flags);
3167 		ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL);
3168 		ARCSTAT_INCR(arcstat_raw_size, size);
3169 	} else {
3170 		size = arc_hdr_size(hdr);
3171 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3172 		hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr,
3173 		    alloc_flags);
3174 		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3175 	}
3176 
3177 	ARCSTAT_INCR(arcstat_compressed_size, size);
3178 	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3179 }
3180 
3181 static void
arc_hdr_free_abd(arc_buf_hdr_t * hdr,boolean_t free_rdata)3182 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata)
3183 {
3184 	uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
3185 
3186 	ASSERT(HDR_HAS_L1HDR(hdr));
3187 	ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
3188 	IMPLY(free_rdata, HDR_HAS_RABD(hdr));
3189 
3190 	/*
3191 	 * If the hdr is currently being written to the l2arc then
3192 	 * we defer freeing the data by adding it to the l2arc_free_on_write
3193 	 * list. The l2arc will free the data once it's finished
3194 	 * writing it to the l2arc device.
3195 	 */
3196 	if (HDR_L2_WRITING(hdr)) {
3197 		arc_hdr_free_on_write(hdr, free_rdata);
3198 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
3199 	} else if (free_rdata) {
3200 		arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr);
3201 	} else {
3202 		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr);
3203 	}
3204 
3205 	if (free_rdata) {
3206 		hdr->b_crypt_hdr.b_rabd = NULL;
3207 		ARCSTAT_INCR(arcstat_raw_size, -size);
3208 	} else {
3209 		hdr->b_l1hdr.b_pabd = NULL;
3210 	}
3211 
3212 	if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr))
3213 		hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3214 
3215 	ARCSTAT_INCR(arcstat_compressed_size, -size);
3216 	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3217 }
3218 
3219 /*
3220  * Allocate empty anonymous ARC header.  The header will get its identity
3221  * assigned and buffers attached later as part of read or write operations.
3222  *
3223  * In case of read arc_read() assigns header its identify (b_dva + b_birth),
3224  * inserts it into ARC hash to become globally visible and allocates physical
3225  * (b_pabd) or raw (b_rabd) ABD buffer to read into from disk.  On disk read
3226  * completion arc_read_done() allocates ARC buffer(s) as needed, potentially
3227  * sharing one of them with the physical ABD buffer.
3228  *
3229  * In case of write arc_alloc_buf() allocates ARC buffer to be filled with
3230  * data.  Then after compression and/or encryption arc_write_ready() allocates
3231  * and fills (or potentially shares) physical (b_pabd) or raw (b_rabd) ABD
3232  * buffer.  On disk write completion arc_write_done() assigns the header its
3233  * new identity (b_dva + b_birth) and inserts into ARC hash.
3234  *
3235  * In case of partial overwrite the old data is read first as described. Then
3236  * arc_release() either allocates new anonymous ARC header and moves the ARC
3237  * buffer to it, or reuses the old ARC header by discarding its identity and
3238  * removing it from ARC hash.  After buffer modification normal write process
3239  * follows as described.
3240  */
3241 static arc_buf_hdr_t *
arc_hdr_alloc(uint64_t spa,int32_t psize,int32_t lsize,boolean_t protected,enum zio_compress compression_type,uint8_t complevel,arc_buf_contents_t type)3242 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
3243     boolean_t protected, enum zio_compress compression_type, uint8_t complevel,
3244     arc_buf_contents_t type)
3245 {
3246 	arc_buf_hdr_t *hdr;
3247 
3248 	VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
3249 	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3250 
3251 	ASSERT(HDR_EMPTY(hdr));
3252 #ifdef ZFS_DEBUG
3253 	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3254 #endif
3255 	HDR_SET_PSIZE(hdr, psize);
3256 	HDR_SET_LSIZE(hdr, lsize);
3257 	hdr->b_spa = spa;
3258 	hdr->b_type = type;
3259 	hdr->b_flags = 0;
3260 	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
3261 	arc_hdr_set_compress(hdr, compression_type);
3262 	hdr->b_complevel = complevel;
3263 	if (protected)
3264 		arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3265 
3266 	hdr->b_l1hdr.b_state = arc_anon;
3267 	hdr->b_l1hdr.b_arc_access = 0;
3268 	hdr->b_l1hdr.b_mru_hits = 0;
3269 	hdr->b_l1hdr.b_mru_ghost_hits = 0;
3270 	hdr->b_l1hdr.b_mfu_hits = 0;
3271 	hdr->b_l1hdr.b_mfu_ghost_hits = 0;
3272 	hdr->b_l1hdr.b_buf = NULL;
3273 
3274 	ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3275 
3276 	return (hdr);
3277 }
3278 
3279 /*
3280  * Transition between the two allocation states for the arc_buf_hdr struct.
3281  * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3282  * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3283  * version is used when a cache buffer is only in the L2ARC in order to reduce
3284  * memory usage.
3285  */
3286 static arc_buf_hdr_t *
arc_hdr_realloc(arc_buf_hdr_t * hdr,kmem_cache_t * old,kmem_cache_t * new)3287 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
3288 {
3289 	ASSERT(HDR_HAS_L2HDR(hdr));
3290 
3291 	arc_buf_hdr_t *nhdr;
3292 	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3293 
3294 	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3295 	    (old == hdr_l2only_cache && new == hdr_full_cache));
3296 
3297 	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
3298 
3299 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3300 	buf_hash_remove(hdr);
3301 
3302 	memcpy(nhdr, hdr, HDR_L2ONLY_SIZE);
3303 
3304 	if (new == hdr_full_cache) {
3305 		arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3306 		/*
3307 		 * arc_access and arc_change_state need to be aware that a
3308 		 * header has just come out of L2ARC, so we set its state to
3309 		 * l2c_only even though it's about to change.
3310 		 */
3311 		nhdr->b_l1hdr.b_state = arc_l2c_only;
3312 
3313 		/* Verify previous threads set to NULL before freeing */
3314 		ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
3315 		ASSERT(!HDR_HAS_RABD(hdr));
3316 	} else {
3317 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3318 #ifdef ZFS_DEBUG
3319 		ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3320 #endif
3321 
3322 		/*
3323 		 * If we've reached here, We must have been called from
3324 		 * arc_evict_hdr(), as such we should have already been
3325 		 * removed from any ghost list we were previously on
3326 		 * (which protects us from racing with arc_evict_state),
3327 		 * thus no locking is needed during this check.
3328 		 */
3329 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3330 
3331 		/*
3332 		 * A buffer must not be moved into the arc_l2c_only
3333 		 * state if it's not finished being written out to the
3334 		 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3335 		 * might try to be accessed, even though it was removed.
3336 		 */
3337 		VERIFY(!HDR_L2_WRITING(hdr));
3338 		VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3339 		ASSERT(!HDR_HAS_RABD(hdr));
3340 
3341 		arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3342 	}
3343 	/*
3344 	 * The header has been reallocated so we need to re-insert it into any
3345 	 * lists it was on.
3346 	 */
3347 	(void) buf_hash_insert(nhdr, NULL);
3348 
3349 	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3350 
3351 	mutex_enter(&dev->l2ad_mtx);
3352 
3353 	/*
3354 	 * We must place the realloc'ed header back into the list at
3355 	 * the same spot. Otherwise, if it's placed earlier in the list,
3356 	 * l2arc_write_buffers() could find it during the function's
3357 	 * write phase, and try to write it out to the l2arc.
3358 	 */
3359 	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3360 	list_remove(&dev->l2ad_buflist, hdr);
3361 
3362 	mutex_exit(&dev->l2ad_mtx);
3363 
3364 	/*
3365 	 * Since we're using the pointer address as the tag when
3366 	 * incrementing and decrementing the l2ad_alloc refcount, we
3367 	 * must remove the old pointer (that we're about to destroy) and
3368 	 * add the new pointer to the refcount. Otherwise we'd remove
3369 	 * the wrong pointer address when calling arc_hdr_destroy() later.
3370 	 */
3371 
3372 	(void) zfs_refcount_remove_many(&dev->l2ad_alloc,
3373 	    arc_hdr_size(hdr), hdr);
3374 	(void) zfs_refcount_add_many(&dev->l2ad_alloc,
3375 	    arc_hdr_size(nhdr), nhdr);
3376 
3377 	buf_discard_identity(hdr);
3378 	kmem_cache_free(old, hdr);
3379 
3380 	return (nhdr);
3381 }
3382 
3383 /*
3384  * This function is used by the send / receive code to convert a newly
3385  * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3386  * is also used to allow the root objset block to be updated without altering
3387  * its embedded MACs. Both block types will always be uncompressed so we do not
3388  * have to worry about compression type or psize.
3389  */
3390 void
arc_convert_to_raw(arc_buf_t * buf,uint64_t dsobj,boolean_t byteorder,dmu_object_type_t ot,const uint8_t * salt,const uint8_t * iv,const uint8_t * mac)3391 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder,
3392     dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv,
3393     const uint8_t *mac)
3394 {
3395 	arc_buf_hdr_t *hdr = buf->b_hdr;
3396 
3397 	ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET);
3398 	ASSERT(HDR_HAS_L1HDR(hdr));
3399 	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3400 
3401 	buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED);
3402 	arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3403 	hdr->b_crypt_hdr.b_dsobj = dsobj;
3404 	hdr->b_crypt_hdr.b_ot = ot;
3405 	hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3406 	    DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3407 	if (!arc_hdr_has_uncompressed_buf(hdr))
3408 		arc_cksum_free(hdr);
3409 
3410 	if (salt != NULL)
3411 		memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
3412 	if (iv != NULL)
3413 		memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
3414 	if (mac != NULL)
3415 		memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
3416 }
3417 
3418 /*
3419  * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3420  * The buf is returned thawed since we expect the consumer to modify it.
3421  */
3422 arc_buf_t *
arc_alloc_buf(spa_t * spa,const void * tag,arc_buf_contents_t type,int32_t size)3423 arc_alloc_buf(spa_t *spa, const void *tag, arc_buf_contents_t type,
3424     int32_t size)
3425 {
3426 	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3427 	    B_FALSE, ZIO_COMPRESS_OFF, 0, type);
3428 
3429 	arc_buf_t *buf = NULL;
3430 	VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE,
3431 	    B_FALSE, B_FALSE, &buf));
3432 	arc_buf_thaw(buf);
3433 
3434 	return (buf);
3435 }
3436 
3437 /*
3438  * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3439  * for bufs containing metadata.
3440  */
3441 arc_buf_t *
arc_alloc_compressed_buf(spa_t * spa,const void * tag,uint64_t psize,uint64_t lsize,enum zio_compress compression_type,uint8_t complevel)3442 arc_alloc_compressed_buf(spa_t *spa, const void *tag, uint64_t psize,
3443     uint64_t lsize, enum zio_compress compression_type, uint8_t complevel)
3444 {
3445 	ASSERT3U(lsize, >, 0);
3446 	ASSERT3U(lsize, >=, psize);
3447 	ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF);
3448 	ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3449 
3450 	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3451 	    B_FALSE, compression_type, complevel, ARC_BUFC_DATA);
3452 
3453 	arc_buf_t *buf = NULL;
3454 	VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE,
3455 	    B_TRUE, B_FALSE, B_FALSE, &buf));
3456 	arc_buf_thaw(buf);
3457 
3458 	/*
3459 	 * To ensure that the hdr has the correct data in it if we call
3460 	 * arc_untransform() on this buf before it's been written to disk,
3461 	 * it's easiest if we just set up sharing between the buf and the hdr.
3462 	 */
3463 	arc_share_buf(hdr, buf);
3464 
3465 	return (buf);
3466 }
3467 
3468 arc_buf_t *
arc_alloc_raw_buf(spa_t * spa,const void * tag,uint64_t dsobj,boolean_t byteorder,const uint8_t * salt,const uint8_t * iv,const uint8_t * mac,dmu_object_type_t ot,uint64_t psize,uint64_t lsize,enum zio_compress compression_type,uint8_t complevel)3469 arc_alloc_raw_buf(spa_t *spa, const void *tag, uint64_t dsobj,
3470     boolean_t byteorder, const uint8_t *salt, const uint8_t *iv,
3471     const uint8_t *mac, dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
3472     enum zio_compress compression_type, uint8_t complevel)
3473 {
3474 	arc_buf_hdr_t *hdr;
3475 	arc_buf_t *buf;
3476 	arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ?
3477 	    ARC_BUFC_METADATA : ARC_BUFC_DATA;
3478 
3479 	ASSERT3U(lsize, >, 0);
3480 	ASSERT3U(lsize, >=, psize);
3481 	ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF);
3482 	ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3483 
3484 	hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE,
3485 	    compression_type, complevel, type);
3486 
3487 	hdr->b_crypt_hdr.b_dsobj = dsobj;
3488 	hdr->b_crypt_hdr.b_ot = ot;
3489 	hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3490 	    DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3491 	memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
3492 	memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
3493 	memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
3494 
3495 	/*
3496 	 * This buffer will be considered encrypted even if the ot is not an
3497 	 * encrypted type. It will become authenticated instead in
3498 	 * arc_write_ready().
3499 	 */
3500 	buf = NULL;
3501 	VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE,
3502 	    B_FALSE, B_FALSE, &buf));
3503 	arc_buf_thaw(buf);
3504 
3505 	return (buf);
3506 }
3507 
3508 static void
l2arc_hdr_arcstats_update(arc_buf_hdr_t * hdr,boolean_t incr,boolean_t state_only)3509 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
3510     boolean_t state_only)
3511 {
3512 	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3513 	l2arc_dev_t *dev = l2hdr->b_dev;
3514 	uint64_t lsize = HDR_GET_LSIZE(hdr);
3515 	uint64_t psize = HDR_GET_PSIZE(hdr);
3516 	uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
3517 	arc_buf_contents_t type = hdr->b_type;
3518 	int64_t lsize_s;
3519 	int64_t psize_s;
3520 	int64_t asize_s;
3521 
3522 	if (incr) {
3523 		lsize_s = lsize;
3524 		psize_s = psize;
3525 		asize_s = asize;
3526 	} else {
3527 		lsize_s = -lsize;
3528 		psize_s = -psize;
3529 		asize_s = -asize;
3530 	}
3531 
3532 	/* If the buffer is a prefetch, count it as such. */
3533 	if (HDR_PREFETCH(hdr)) {
3534 		ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s);
3535 	} else {
3536 		/*
3537 		 * We use the value stored in the L2 header upon initial
3538 		 * caching in L2ARC. This value will be updated in case
3539 		 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC
3540 		 * metadata (log entry) cannot currently be updated. Having
3541 		 * the ARC state in the L2 header solves the problem of a
3542 		 * possibly absent L1 header (apparent in buffers restored
3543 		 * from persistent L2ARC).
3544 		 */
3545 		switch (hdr->b_l2hdr.b_arcs_state) {
3546 			case ARC_STATE_MRU_GHOST:
3547 			case ARC_STATE_MRU:
3548 				ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s);
3549 				break;
3550 			case ARC_STATE_MFU_GHOST:
3551 			case ARC_STATE_MFU:
3552 				ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s);
3553 				break;
3554 			default:
3555 				break;
3556 		}
3557 	}
3558 
3559 	if (state_only)
3560 		return;
3561 
3562 	ARCSTAT_INCR(arcstat_l2_psize, psize_s);
3563 	ARCSTAT_INCR(arcstat_l2_lsize, lsize_s);
3564 
3565 	switch (type) {
3566 		case ARC_BUFC_DATA:
3567 			ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s);
3568 			break;
3569 		case ARC_BUFC_METADATA:
3570 			ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s);
3571 			break;
3572 		default:
3573 			break;
3574 	}
3575 }
3576 
3577 
3578 static void
arc_hdr_l2hdr_destroy(arc_buf_hdr_t * hdr)3579 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3580 {
3581 	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3582 	l2arc_dev_t *dev = l2hdr->b_dev;
3583 	uint64_t psize = HDR_GET_PSIZE(hdr);
3584 	uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
3585 
3586 	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3587 	ASSERT(HDR_HAS_L2HDR(hdr));
3588 
3589 	list_remove(&dev->l2ad_buflist, hdr);
3590 
3591 	l2arc_hdr_arcstats_decrement(hdr);
3592 	vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
3593 
3594 	(void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3595 	    hdr);
3596 	arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3597 }
3598 
3599 static void
arc_hdr_destroy(arc_buf_hdr_t * hdr)3600 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3601 {
3602 	if (HDR_HAS_L1HDR(hdr)) {
3603 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3604 		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3605 	}
3606 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3607 	ASSERT(!HDR_IN_HASH_TABLE(hdr));
3608 
3609 	if (HDR_HAS_L2HDR(hdr)) {
3610 		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3611 		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3612 
3613 		if (!buflist_held)
3614 			mutex_enter(&dev->l2ad_mtx);
3615 
3616 		/*
3617 		 * Even though we checked this conditional above, we
3618 		 * need to check this again now that we have the
3619 		 * l2ad_mtx. This is because we could be racing with
3620 		 * another thread calling l2arc_evict() which might have
3621 		 * destroyed this header's L2 portion as we were waiting
3622 		 * to acquire the l2ad_mtx. If that happens, we don't
3623 		 * want to re-destroy the header's L2 portion.
3624 		 */
3625 		if (HDR_HAS_L2HDR(hdr)) {
3626 
3627 			if (!HDR_EMPTY(hdr))
3628 				buf_discard_identity(hdr);
3629 
3630 			arc_hdr_l2hdr_destroy(hdr);
3631 		}
3632 
3633 		if (!buflist_held)
3634 			mutex_exit(&dev->l2ad_mtx);
3635 	}
3636 
3637 	/*
3638 	 * The header's identify can only be safely discarded once it is no
3639 	 * longer discoverable.  This requires removing it from the hash table
3640 	 * and the l2arc header list.  After this point the hash lock can not
3641 	 * be used to protect the header.
3642 	 */
3643 	if (!HDR_EMPTY(hdr))
3644 		buf_discard_identity(hdr);
3645 
3646 	if (HDR_HAS_L1HDR(hdr)) {
3647 		arc_cksum_free(hdr);
3648 
3649 		while (hdr->b_l1hdr.b_buf != NULL)
3650 			arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3651 
3652 		if (hdr->b_l1hdr.b_pabd != NULL)
3653 			arc_hdr_free_abd(hdr, B_FALSE);
3654 
3655 		if (HDR_HAS_RABD(hdr))
3656 			arc_hdr_free_abd(hdr, B_TRUE);
3657 	}
3658 
3659 	ASSERT3P(hdr->b_hash_next, ==, NULL);
3660 	if (HDR_HAS_L1HDR(hdr)) {
3661 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3662 		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3663 #ifdef ZFS_DEBUG
3664 		ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3665 #endif
3666 		kmem_cache_free(hdr_full_cache, hdr);
3667 	} else {
3668 		kmem_cache_free(hdr_l2only_cache, hdr);
3669 	}
3670 }
3671 
3672 void
arc_buf_destroy(arc_buf_t * buf,const void * tag)3673 arc_buf_destroy(arc_buf_t *buf, const void *tag)
3674 {
3675 	arc_buf_hdr_t *hdr = buf->b_hdr;
3676 
3677 	if (hdr->b_l1hdr.b_state == arc_anon) {
3678 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
3679 		ASSERT(ARC_BUF_LAST(buf));
3680 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3681 		VERIFY0(remove_reference(hdr, tag));
3682 		return;
3683 	}
3684 
3685 	kmutex_t *hash_lock = HDR_LOCK(hdr);
3686 	mutex_enter(hash_lock);
3687 
3688 	ASSERT3P(hdr, ==, buf->b_hdr);
3689 	ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
3690 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3691 	ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3692 	ASSERT3P(buf->b_data, !=, NULL);
3693 
3694 	arc_buf_destroy_impl(buf);
3695 	(void) remove_reference(hdr, tag);
3696 	mutex_exit(hash_lock);
3697 }
3698 
3699 /*
3700  * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3701  * state of the header is dependent on its state prior to entering this
3702  * function. The following transitions are possible:
3703  *
3704  *    - arc_mru -> arc_mru_ghost
3705  *    - arc_mfu -> arc_mfu_ghost
3706  *    - arc_mru_ghost -> arc_l2c_only
3707  *    - arc_mru_ghost -> deleted
3708  *    - arc_mfu_ghost -> arc_l2c_only
3709  *    - arc_mfu_ghost -> deleted
3710  *    - arc_uncached -> deleted
3711  *
3712  * Return total size of evicted data buffers for eviction progress tracking.
3713  * When evicting from ghost states return logical buffer size to make eviction
3714  * progress at the same (or at least comparable) rate as from non-ghost states.
3715  *
3716  * Return *real_evicted for actual ARC size reduction to wake up threads
3717  * waiting for it.  For non-ghost states it includes size of evicted data
3718  * buffers (the headers are not freed there).  For ghost states it includes
3719  * only the evicted headers size.
3720  */
3721 static int64_t
arc_evict_hdr(arc_buf_hdr_t * hdr,uint64_t * real_evicted)3722 arc_evict_hdr(arc_buf_hdr_t *hdr, uint64_t *real_evicted)
3723 {
3724 	arc_state_t *evicted_state, *state;
3725 	int64_t bytes_evicted = 0;
3726 	uint_t min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
3727 	    arc_min_prescient_prefetch_ms : arc_min_prefetch_ms;
3728 
3729 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3730 	ASSERT(HDR_HAS_L1HDR(hdr));
3731 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3732 	ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3733 	ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3734 
3735 	*real_evicted = 0;
3736 	state = hdr->b_l1hdr.b_state;
3737 	if (GHOST_STATE(state)) {
3738 
3739 		/*
3740 		 * l2arc_write_buffers() relies on a header's L1 portion
3741 		 * (i.e. its b_pabd field) during it's write phase.
3742 		 * Thus, we cannot push a header onto the arc_l2c_only
3743 		 * state (removing its L1 piece) until the header is
3744 		 * done being written to the l2arc.
3745 		 */
3746 		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3747 			ARCSTAT_BUMP(arcstat_evict_l2_skip);
3748 			return (bytes_evicted);
3749 		}
3750 
3751 		ARCSTAT_BUMP(arcstat_deleted);
3752 		bytes_evicted += HDR_GET_LSIZE(hdr);
3753 
3754 		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3755 
3756 		if (HDR_HAS_L2HDR(hdr)) {
3757 			ASSERT(hdr->b_l1hdr.b_pabd == NULL);
3758 			ASSERT(!HDR_HAS_RABD(hdr));
3759 			/*
3760 			 * This buffer is cached on the 2nd Level ARC;
3761 			 * don't destroy the header.
3762 			 */
3763 			arc_change_state(arc_l2c_only, hdr);
3764 			/*
3765 			 * dropping from L1+L2 cached to L2-only,
3766 			 * realloc to remove the L1 header.
3767 			 */
3768 			(void) arc_hdr_realloc(hdr, hdr_full_cache,
3769 			    hdr_l2only_cache);
3770 			*real_evicted += HDR_FULL_SIZE - HDR_L2ONLY_SIZE;
3771 		} else {
3772 			arc_change_state(arc_anon, hdr);
3773 			arc_hdr_destroy(hdr);
3774 			*real_evicted += HDR_FULL_SIZE;
3775 		}
3776 		return (bytes_evicted);
3777 	}
3778 
3779 	ASSERT(state == arc_mru || state == arc_mfu || state == arc_uncached);
3780 	evicted_state = (state == arc_uncached) ? arc_anon :
3781 	    ((state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost);
3782 
3783 	/* prefetch buffers have a minimum lifespan */
3784 	if ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3785 	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3786 	    MSEC_TO_TICK(min_lifetime)) {
3787 		ARCSTAT_BUMP(arcstat_evict_skip);
3788 		return (bytes_evicted);
3789 	}
3790 
3791 	if (HDR_HAS_L2HDR(hdr)) {
3792 		ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3793 	} else {
3794 		if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3795 			ARCSTAT_INCR(arcstat_evict_l2_eligible,
3796 			    HDR_GET_LSIZE(hdr));
3797 
3798 			switch (state->arcs_state) {
3799 				case ARC_STATE_MRU:
3800 					ARCSTAT_INCR(
3801 					    arcstat_evict_l2_eligible_mru,
3802 					    HDR_GET_LSIZE(hdr));
3803 					break;
3804 				case ARC_STATE_MFU:
3805 					ARCSTAT_INCR(
3806 					    arcstat_evict_l2_eligible_mfu,
3807 					    HDR_GET_LSIZE(hdr));
3808 					break;
3809 				default:
3810 					break;
3811 			}
3812 		} else {
3813 			ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3814 			    HDR_GET_LSIZE(hdr));
3815 		}
3816 	}
3817 
3818 	bytes_evicted += arc_hdr_size(hdr);
3819 	*real_evicted += arc_hdr_size(hdr);
3820 
3821 	/*
3822 	 * If this hdr is being evicted and has a compressed buffer then we
3823 	 * discard it here before we change states.  This ensures that the
3824 	 * accounting is updated correctly in arc_free_data_impl().
3825 	 */
3826 	if (hdr->b_l1hdr.b_pabd != NULL)
3827 		arc_hdr_free_abd(hdr, B_FALSE);
3828 
3829 	if (HDR_HAS_RABD(hdr))
3830 		arc_hdr_free_abd(hdr, B_TRUE);
3831 
3832 	arc_change_state(evicted_state, hdr);
3833 	DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3834 	if (evicted_state == arc_anon) {
3835 		arc_hdr_destroy(hdr);
3836 		*real_evicted += HDR_FULL_SIZE;
3837 	} else {
3838 		ASSERT(HDR_IN_HASH_TABLE(hdr));
3839 	}
3840 
3841 	return (bytes_evicted);
3842 }
3843 
3844 static void
arc_set_need_free(void)3845 arc_set_need_free(void)
3846 {
3847 	ASSERT(MUTEX_HELD(&arc_evict_lock));
3848 	int64_t remaining = arc_free_memory() - arc_sys_free / 2;
3849 	arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters);
3850 	if (aw == NULL) {
3851 		arc_need_free = MAX(-remaining, 0);
3852 	} else {
3853 		arc_need_free =
3854 		    MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count));
3855 	}
3856 }
3857 
3858 static uint64_t
arc_evict_state_impl(multilist_t * ml,int idx,arc_buf_hdr_t * marker,uint64_t spa,uint64_t bytes)3859 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3860     uint64_t spa, uint64_t bytes)
3861 {
3862 	multilist_sublist_t *mls;
3863 	uint64_t bytes_evicted = 0, real_evicted = 0;
3864 	arc_buf_hdr_t *hdr;
3865 	kmutex_t *hash_lock;
3866 	uint_t evict_count = zfs_arc_evict_batch_limit;
3867 
3868 	ASSERT3P(marker, !=, NULL);
3869 
3870 	mls = multilist_sublist_lock_idx(ml, idx);
3871 
3872 	for (hdr = multilist_sublist_prev(mls, marker); likely(hdr != NULL);
3873 	    hdr = multilist_sublist_prev(mls, marker)) {
3874 		if ((evict_count == 0) || (bytes_evicted >= bytes))
3875 			break;
3876 
3877 		/*
3878 		 * To keep our iteration location, move the marker
3879 		 * forward. Since we're not holding hdr's hash lock, we
3880 		 * must be very careful and not remove 'hdr' from the
3881 		 * sublist. Otherwise, other consumers might mistake the
3882 		 * 'hdr' as not being on a sublist when they call the
3883 		 * multilist_link_active() function (they all rely on
3884 		 * the hash lock protecting concurrent insertions and
3885 		 * removals). multilist_sublist_move_forward() was
3886 		 * specifically implemented to ensure this is the case
3887 		 * (only 'marker' will be removed and re-inserted).
3888 		 */
3889 		multilist_sublist_move_forward(mls, marker);
3890 
3891 		/*
3892 		 * The only case where the b_spa field should ever be
3893 		 * zero, is the marker headers inserted by
3894 		 * arc_evict_state(). It's possible for multiple threads
3895 		 * to be calling arc_evict_state() concurrently (e.g.
3896 		 * dsl_pool_close() and zio_inject_fault()), so we must
3897 		 * skip any markers we see from these other threads.
3898 		 */
3899 		if (hdr->b_spa == 0)
3900 			continue;
3901 
3902 		/* we're only interested in evicting buffers of a certain spa */
3903 		if (spa != 0 && hdr->b_spa != spa) {
3904 			ARCSTAT_BUMP(arcstat_evict_skip);
3905 			continue;
3906 		}
3907 
3908 		hash_lock = HDR_LOCK(hdr);
3909 
3910 		/*
3911 		 * We aren't calling this function from any code path
3912 		 * that would already be holding a hash lock, so we're
3913 		 * asserting on this assumption to be defensive in case
3914 		 * this ever changes. Without this check, it would be
3915 		 * possible to incorrectly increment arcstat_mutex_miss
3916 		 * below (e.g. if the code changed such that we called
3917 		 * this function with a hash lock held).
3918 		 */
3919 		ASSERT(!MUTEX_HELD(hash_lock));
3920 
3921 		if (mutex_tryenter(hash_lock)) {
3922 			uint64_t revicted;
3923 			uint64_t evicted = arc_evict_hdr(hdr, &revicted);
3924 			mutex_exit(hash_lock);
3925 
3926 			bytes_evicted += evicted;
3927 			real_evicted += revicted;
3928 
3929 			/*
3930 			 * If evicted is zero, arc_evict_hdr() must have
3931 			 * decided to skip this header, don't increment
3932 			 * evict_count in this case.
3933 			 */
3934 			if (evicted != 0)
3935 				evict_count--;
3936 
3937 		} else {
3938 			ARCSTAT_BUMP(arcstat_mutex_miss);
3939 		}
3940 	}
3941 
3942 	multilist_sublist_unlock(mls);
3943 
3944 	/*
3945 	 * Increment the count of evicted bytes, and wake up any threads that
3946 	 * are waiting for the count to reach this value.  Since the list is
3947 	 * ordered by ascending aew_count, we pop off the beginning of the
3948 	 * list until we reach the end, or a waiter that's past the current
3949 	 * "count".  Doing this outside the loop reduces the number of times
3950 	 * we need to acquire the global arc_evict_lock.
3951 	 *
3952 	 * Only wake when there's sufficient free memory in the system
3953 	 * (specifically, arc_sys_free/2, which by default is a bit more than
3954 	 * 1/64th of RAM).  See the comments in arc_wait_for_eviction().
3955 	 */
3956 	mutex_enter(&arc_evict_lock);
3957 	arc_evict_count += real_evicted;
3958 
3959 	if (arc_free_memory() > arc_sys_free / 2) {
3960 		arc_evict_waiter_t *aw;
3961 		while ((aw = list_head(&arc_evict_waiters)) != NULL &&
3962 		    aw->aew_count <= arc_evict_count) {
3963 			list_remove(&arc_evict_waiters, aw);
3964 			cv_broadcast(&aw->aew_cv);
3965 		}
3966 	}
3967 	arc_set_need_free();
3968 	mutex_exit(&arc_evict_lock);
3969 
3970 	/*
3971 	 * If the ARC size is reduced from arc_c_max to arc_c_min (especially
3972 	 * if the average cached block is small), eviction can be on-CPU for
3973 	 * many seconds.  To ensure that other threads that may be bound to
3974 	 * this CPU are able to make progress, make a voluntary preemption
3975 	 * call here.
3976 	 */
3977 	kpreempt(KPREEMPT_SYNC);
3978 
3979 	return (bytes_evicted);
3980 }
3981 
3982 static arc_buf_hdr_t *
arc_state_alloc_marker(void)3983 arc_state_alloc_marker(void)
3984 {
3985 	arc_buf_hdr_t *marker = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
3986 
3987 	/*
3988 	 * A b_spa of 0 is used to indicate that this header is
3989 	 * a marker. This fact is used in arc_evict_state_impl().
3990 	 */
3991 	marker->b_spa = 0;
3992 
3993 	return (marker);
3994 }
3995 
3996 static void
arc_state_free_marker(arc_buf_hdr_t * marker)3997 arc_state_free_marker(arc_buf_hdr_t *marker)
3998 {
3999 	kmem_cache_free(hdr_full_cache, marker);
4000 }
4001 
4002 /*
4003  * Allocate an array of buffer headers used as placeholders during arc state
4004  * eviction.
4005  */
4006 static arc_buf_hdr_t **
arc_state_alloc_markers(int count)4007 arc_state_alloc_markers(int count)
4008 {
4009 	arc_buf_hdr_t **markers;
4010 
4011 	markers = kmem_zalloc(sizeof (*markers) * count, KM_SLEEP);
4012 	for (int i = 0; i < count; i++)
4013 		markers[i] = arc_state_alloc_marker();
4014 	return (markers);
4015 }
4016 
4017 static void
arc_state_free_markers(arc_buf_hdr_t ** markers,int count)4018 arc_state_free_markers(arc_buf_hdr_t **markers, int count)
4019 {
4020 	for (int i = 0; i < count; i++)
4021 		arc_state_free_marker(markers[i]);
4022 	kmem_free(markers, sizeof (*markers) * count);
4023 }
4024 
4025 /*
4026  * Evict buffers from the given arc state, until we've removed the
4027  * specified number of bytes. Move the removed buffers to the
4028  * appropriate evict state.
4029  *
4030  * This function makes a "best effort". It skips over any buffers
4031  * it can't get a hash_lock on, and so, may not catch all candidates.
4032  * It may also return without evicting as much space as requested.
4033  *
4034  * If bytes is specified using the special value ARC_EVICT_ALL, this
4035  * will evict all available (i.e. unlocked and evictable) buffers from
4036  * the given arc state; which is used by arc_flush().
4037  */
4038 static uint64_t
arc_evict_state(arc_state_t * state,arc_buf_contents_t type,uint64_t spa,uint64_t bytes)4039 arc_evict_state(arc_state_t *state, arc_buf_contents_t type, uint64_t spa,
4040     uint64_t bytes)
4041 {
4042 	uint64_t total_evicted = 0;
4043 	multilist_t *ml = &state->arcs_list[type];
4044 	int num_sublists;
4045 	arc_buf_hdr_t **markers;
4046 
4047 	num_sublists = multilist_get_num_sublists(ml);
4048 
4049 	/*
4050 	 * If we've tried to evict from each sublist, made some
4051 	 * progress, but still have not hit the target number of bytes
4052 	 * to evict, we want to keep trying. The markers allow us to
4053 	 * pick up where we left off for each individual sublist, rather
4054 	 * than starting from the tail each time.
4055 	 */
4056 	if (zthr_iscurthread(arc_evict_zthr)) {
4057 		markers = arc_state_evict_markers;
4058 		ASSERT3S(num_sublists, <=, arc_state_evict_marker_count);
4059 	} else {
4060 		markers = arc_state_alloc_markers(num_sublists);
4061 	}
4062 	for (int i = 0; i < num_sublists; i++) {
4063 		multilist_sublist_t *mls;
4064 
4065 		mls = multilist_sublist_lock_idx(ml, i);
4066 		multilist_sublist_insert_tail(mls, markers[i]);
4067 		multilist_sublist_unlock(mls);
4068 	}
4069 
4070 	/*
4071 	 * While we haven't hit our target number of bytes to evict, or
4072 	 * we're evicting all available buffers.
4073 	 */
4074 	while (total_evicted < bytes) {
4075 		int sublist_idx = multilist_get_random_index(ml);
4076 		uint64_t scan_evicted = 0;
4077 
4078 		/*
4079 		 * Start eviction using a randomly selected sublist,
4080 		 * this is to try and evenly balance eviction across all
4081 		 * sublists. Always starting at the same sublist
4082 		 * (e.g. index 0) would cause evictions to favor certain
4083 		 * sublists over others.
4084 		 */
4085 		for (int i = 0; i < num_sublists; i++) {
4086 			uint64_t bytes_remaining;
4087 			uint64_t bytes_evicted;
4088 
4089 			if (total_evicted < bytes)
4090 				bytes_remaining = bytes - total_evicted;
4091 			else
4092 				break;
4093 
4094 			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
4095 			    markers[sublist_idx], spa, bytes_remaining);
4096 
4097 			scan_evicted += bytes_evicted;
4098 			total_evicted += bytes_evicted;
4099 
4100 			/* we've reached the end, wrap to the beginning */
4101 			if (++sublist_idx >= num_sublists)
4102 				sublist_idx = 0;
4103 		}
4104 
4105 		/*
4106 		 * If we didn't evict anything during this scan, we have
4107 		 * no reason to believe we'll evict more during another
4108 		 * scan, so break the loop.
4109 		 */
4110 		if (scan_evicted == 0) {
4111 			/* This isn't possible, let's make that obvious */
4112 			ASSERT3S(bytes, !=, 0);
4113 
4114 			/*
4115 			 * When bytes is ARC_EVICT_ALL, the only way to
4116 			 * break the loop is when scan_evicted is zero.
4117 			 * In that case, we actually have evicted enough,
4118 			 * so we don't want to increment the kstat.
4119 			 */
4120 			if (bytes != ARC_EVICT_ALL) {
4121 				ASSERT3S(total_evicted, <, bytes);
4122 				ARCSTAT_BUMP(arcstat_evict_not_enough);
4123 			}
4124 
4125 			break;
4126 		}
4127 	}
4128 
4129 	for (int i = 0; i < num_sublists; i++) {
4130 		multilist_sublist_t *mls = multilist_sublist_lock_idx(ml, i);
4131 		multilist_sublist_remove(mls, markers[i]);
4132 		multilist_sublist_unlock(mls);
4133 	}
4134 	if (markers != arc_state_evict_markers)
4135 		arc_state_free_markers(markers, num_sublists);
4136 
4137 	return (total_evicted);
4138 }
4139 
4140 /*
4141  * Flush all "evictable" data of the given type from the arc state
4142  * specified. This will not evict any "active" buffers (i.e. referenced).
4143  *
4144  * When 'retry' is set to B_FALSE, the function will make a single pass
4145  * over the state and evict any buffers that it can. Since it doesn't
4146  * continually retry the eviction, it might end up leaving some buffers
4147  * in the ARC due to lock misses.
4148  *
4149  * When 'retry' is set to B_TRUE, the function will continually retry the
4150  * eviction until *all* evictable buffers have been removed from the
4151  * state. As a result, if concurrent insertions into the state are
4152  * allowed (e.g. if the ARC isn't shutting down), this function might
4153  * wind up in an infinite loop, continually trying to evict buffers.
4154  */
4155 static uint64_t
arc_flush_state(arc_state_t * state,uint64_t spa,arc_buf_contents_t type,boolean_t retry)4156 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
4157     boolean_t retry)
4158 {
4159 	uint64_t evicted = 0;
4160 
4161 	while (zfs_refcount_count(&state->arcs_esize[type]) != 0) {
4162 		evicted += arc_evict_state(state, type, spa, ARC_EVICT_ALL);
4163 
4164 		if (!retry)
4165 			break;
4166 	}
4167 
4168 	return (evicted);
4169 }
4170 
4171 /*
4172  * Evict the specified number of bytes from the state specified. This
4173  * function prevents us from trying to evict more from a state's list
4174  * than is "evictable", and to skip evicting altogether when passed a
4175  * negative value for "bytes". In contrast, arc_evict_state() will
4176  * evict everything it can, when passed a negative value for "bytes".
4177  */
4178 static uint64_t
arc_evict_impl(arc_state_t * state,arc_buf_contents_t type,int64_t bytes)4179 arc_evict_impl(arc_state_t *state, arc_buf_contents_t type, int64_t bytes)
4180 {
4181 	uint64_t delta;
4182 
4183 	if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) {
4184 		delta = MIN(zfs_refcount_count(&state->arcs_esize[type]),
4185 		    bytes);
4186 		return (arc_evict_state(state, type, 0, delta));
4187 	}
4188 
4189 	return (0);
4190 }
4191 
4192 /*
4193  * Adjust specified fraction, taking into account initial ghost state(s) size,
4194  * ghost hit bytes towards increasing the fraction, ghost hit bytes towards
4195  * decreasing it, plus a balance factor, controlling the decrease rate, used
4196  * to balance metadata vs data.
4197  */
4198 static uint64_t
arc_evict_adj(uint64_t frac,uint64_t total,uint64_t up,uint64_t down,uint_t balance)4199 arc_evict_adj(uint64_t frac, uint64_t total, uint64_t up, uint64_t down,
4200     uint_t balance)
4201 {
4202 	if (total < 8 || up + down == 0)
4203 		return (frac);
4204 
4205 	/*
4206 	 * We should not have more ghost hits than ghost size, but they
4207 	 * may get close.  Restrict maximum adjustment in that case.
4208 	 */
4209 	if (up + down >= total / 4) {
4210 		uint64_t scale = (up + down) / (total / 8);
4211 		up /= scale;
4212 		down /= scale;
4213 	}
4214 
4215 	/* Get maximal dynamic range by choosing optimal shifts. */
4216 	int s = highbit64(total);
4217 	s = MIN(64 - s, 32);
4218 
4219 	uint64_t ofrac = (1ULL << 32) - frac;
4220 
4221 	if (frac >= 4 * ofrac)
4222 		up /= frac / (2 * ofrac + 1);
4223 	up = (up << s) / (total >> (32 - s));
4224 	if (ofrac >= 4 * frac)
4225 		down /= ofrac / (2 * frac + 1);
4226 	down = (down << s) / (total >> (32 - s));
4227 	down = down * 100 / balance;
4228 
4229 	return (frac + up - down);
4230 }
4231 
4232 /*
4233  * Calculate (x * multiplier / divisor) without unnecesary overflows.
4234  */
4235 static uint64_t
arc_mf(uint64_t x,uint64_t multiplier,uint64_t divisor)4236 arc_mf(uint64_t x, uint64_t multiplier, uint64_t divisor)
4237 {
4238 	uint64_t q = (x / divisor);
4239 	uint64_t r = (x % divisor);
4240 
4241 	return ((q * multiplier) + ((r * multiplier) / divisor));
4242 }
4243 
4244 /*
4245  * Evict buffers from the cache, such that arcstat_size is capped by arc_c.
4246  */
4247 static uint64_t
arc_evict(void)4248 arc_evict(void)
4249 {
4250 	uint64_t bytes, total_evicted = 0;
4251 	int64_t e, mrud, mrum, mfud, mfum, w;
4252 	static uint64_t ogrd, ogrm, ogfd, ogfm;
4253 	static uint64_t gsrd, gsrm, gsfd, gsfm;
4254 	uint64_t ngrd, ngrm, ngfd, ngfm;
4255 
4256 	/* Get current size of ARC states we can evict from. */
4257 	mrud = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_DATA]) +
4258 	    zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]);
4259 	mrum = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA]) +
4260 	    zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
4261 	mfud = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
4262 	mfum = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
4263 	uint64_t d = mrud + mfud;
4264 	uint64_t m = mrum + mfum;
4265 	uint64_t t = d + m;
4266 
4267 	/* Get ARC ghost hits since last eviction. */
4268 	ngrd = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]);
4269 	uint64_t grd = ngrd - ogrd;
4270 	ogrd = ngrd;
4271 	ngrm = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]);
4272 	uint64_t grm = ngrm - ogrm;
4273 	ogrm = ngrm;
4274 	ngfd = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]);
4275 	uint64_t gfd = ngfd - ogfd;
4276 	ogfd = ngfd;
4277 	ngfm = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]);
4278 	uint64_t gfm = ngfm - ogfm;
4279 	ogfm = ngfm;
4280 
4281 	/* Adjust ARC states balance based on ghost hits. */
4282 	arc_meta = arc_evict_adj(arc_meta, gsrd + gsrm + gsfd + gsfm,
4283 	    grm + gfm, grd + gfd, zfs_arc_meta_balance);
4284 	arc_pd = arc_evict_adj(arc_pd, gsrd + gsfd, grd, gfd, 100);
4285 	arc_pm = arc_evict_adj(arc_pm, gsrm + gsfm, grm, gfm, 100);
4286 
4287 	uint64_t asize = aggsum_value(&arc_sums.arcstat_size);
4288 	uint64_t ac = arc_c;
4289 	int64_t wt = t - (asize - ac);
4290 
4291 	/*
4292 	 * Try to reduce pinned dnodes if more than 3/4 of wanted metadata
4293 	 * target is not evictable or if they go over arc_dnode_limit.
4294 	 */
4295 	int64_t prune = 0;
4296 	int64_t dn = wmsum_value(&arc_sums.arcstat_dnode_size);
4297 	int64_t nem = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA])
4298 	    + zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA])
4299 	    - zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA])
4300 	    - zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
4301 	w = wt * (int64_t)(arc_meta >> 16) >> 16;
4302 	if (nem > w * 3 / 4) {
4303 		prune = dn / sizeof (dnode_t) *
4304 		    zfs_arc_dnode_reduce_percent / 100;
4305 		if (nem < w && w > 4)
4306 			prune = arc_mf(prune, nem - w * 3 / 4, w / 4);
4307 	}
4308 	if (dn > arc_dnode_limit) {
4309 		prune = MAX(prune, (dn - arc_dnode_limit) / sizeof (dnode_t) *
4310 		    zfs_arc_dnode_reduce_percent / 100);
4311 	}
4312 	if (prune > 0)
4313 		arc_prune_async(prune);
4314 
4315 	/* Evict MRU metadata. */
4316 	w = wt * (int64_t)(arc_meta * arc_pm >> 48) >> 16;
4317 	e = MIN((int64_t)(asize - ac), (int64_t)(mrum - w));
4318 	bytes = arc_evict_impl(arc_mru, ARC_BUFC_METADATA, e);
4319 	total_evicted += bytes;
4320 	mrum -= bytes;
4321 	asize -= bytes;
4322 
4323 	/* Evict MFU metadata. */
4324 	w = wt * (int64_t)(arc_meta >> 16) >> 16;
4325 	e = MIN((int64_t)(asize - ac), (int64_t)(m - bytes - w));
4326 	bytes = arc_evict_impl(arc_mfu, ARC_BUFC_METADATA, e);
4327 	total_evicted += bytes;
4328 	mfum -= bytes;
4329 	asize -= bytes;
4330 
4331 	/* Evict MRU data. */
4332 	wt -= m - total_evicted;
4333 	w = wt * (int64_t)(arc_pd >> 16) >> 16;
4334 	e = MIN((int64_t)(asize - ac), (int64_t)(mrud - w));
4335 	bytes = arc_evict_impl(arc_mru, ARC_BUFC_DATA, e);
4336 	total_evicted += bytes;
4337 	mrud -= bytes;
4338 	asize -= bytes;
4339 
4340 	/* Evict MFU data. */
4341 	e = asize - ac;
4342 	bytes = arc_evict_impl(arc_mfu, ARC_BUFC_DATA, e);
4343 	mfud -= bytes;
4344 	total_evicted += bytes;
4345 
4346 	/*
4347 	 * Evict ghost lists
4348 	 *
4349 	 * Size of each state's ghost list represents how much that state
4350 	 * may grow by shrinking the other states.  Would it need to shrink
4351 	 * other states to zero (that is unlikely), its ghost size would be
4352 	 * equal to sum of other three state sizes.  But excessive ghost
4353 	 * size may result in false ghost hits (too far back), that may
4354 	 * never result in real cache hits if several states are competing.
4355 	 * So choose some arbitraty point of 1/2 of other state sizes.
4356 	 */
4357 	gsrd = (mrum + mfud + mfum) / 2;
4358 	e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]) -
4359 	    gsrd;
4360 	(void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_DATA, e);
4361 
4362 	gsrm = (mrud + mfud + mfum) / 2;
4363 	e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]) -
4364 	    gsrm;
4365 	(void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_METADATA, e);
4366 
4367 	gsfd = (mrud + mrum + mfum) / 2;
4368 	e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]) -
4369 	    gsfd;
4370 	(void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_DATA, e);
4371 
4372 	gsfm = (mrud + mrum + mfud) / 2;
4373 	e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]) -
4374 	    gsfm;
4375 	(void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_METADATA, e);
4376 
4377 	return (total_evicted);
4378 }
4379 
4380 void
arc_flush(spa_t * spa,boolean_t retry)4381 arc_flush(spa_t *spa, boolean_t retry)
4382 {
4383 	uint64_t guid = 0;
4384 
4385 	/*
4386 	 * If retry is B_TRUE, a spa must not be specified since we have
4387 	 * no good way to determine if all of a spa's buffers have been
4388 	 * evicted from an arc state.
4389 	 */
4390 	ASSERT(!retry || spa == NULL);
4391 
4392 	if (spa != NULL)
4393 		guid = spa_load_guid(spa);
4394 
4395 	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4396 	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4397 
4398 	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4399 	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4400 
4401 	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4402 	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
4403 
4404 	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4405 	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
4406 
4407 	(void) arc_flush_state(arc_uncached, guid, ARC_BUFC_DATA, retry);
4408 	(void) arc_flush_state(arc_uncached, guid, ARC_BUFC_METADATA, retry);
4409 }
4410 
4411 uint64_t
arc_reduce_target_size(uint64_t to_free)4412 arc_reduce_target_size(uint64_t to_free)
4413 {
4414 	/*
4415 	 * Get the actual arc size.  Even if we don't need it, this updates
4416 	 * the aggsum lower bound estimate for arc_is_overflowing().
4417 	 */
4418 	uint64_t asize = aggsum_value(&arc_sums.arcstat_size);
4419 
4420 	/*
4421 	 * All callers want the ARC to actually evict (at least) this much
4422 	 * memory.  Therefore we reduce from the lower of the current size and
4423 	 * the target size.  This way, even if arc_c is much higher than
4424 	 * arc_size (as can be the case after many calls to arc_freed(), we will
4425 	 * immediately have arc_c < arc_size and therefore the arc_evict_zthr
4426 	 * will evict.
4427 	 */
4428 	uint64_t c = arc_c;
4429 	if (c > arc_c_min) {
4430 		c = MIN(c, MAX(asize, arc_c_min));
4431 		to_free = MIN(to_free, c - arc_c_min);
4432 		arc_c = c - to_free;
4433 	} else {
4434 		to_free = 0;
4435 	}
4436 
4437 	/*
4438 	 * Whether or not we reduced the target size, request eviction if the
4439 	 * current size is over it now, since caller obviously wants some RAM.
4440 	 */
4441 	if (asize > arc_c) {
4442 		/* See comment in arc_evict_cb_check() on why lock+flag */
4443 		mutex_enter(&arc_evict_lock);
4444 		arc_evict_needed = B_TRUE;
4445 		mutex_exit(&arc_evict_lock);
4446 		zthr_wakeup(arc_evict_zthr);
4447 	}
4448 
4449 	return (to_free);
4450 }
4451 
4452 /*
4453  * Determine if the system is under memory pressure and is asking
4454  * to reclaim memory. A return value of B_TRUE indicates that the system
4455  * is under memory pressure and that the arc should adjust accordingly.
4456  */
4457 boolean_t
arc_reclaim_needed(void)4458 arc_reclaim_needed(void)
4459 {
4460 	return (arc_available_memory() < 0);
4461 }
4462 
4463 void
arc_kmem_reap_soon(void)4464 arc_kmem_reap_soon(void)
4465 {
4466 	size_t			i;
4467 	kmem_cache_t		*prev_cache = NULL;
4468 	kmem_cache_t		*prev_data_cache = NULL;
4469 
4470 #ifdef _KERNEL
4471 #if defined(_ILP32)
4472 	/*
4473 	 * Reclaim unused memory from all kmem caches.
4474 	 */
4475 	kmem_reap();
4476 #endif
4477 #endif
4478 
4479 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4480 #if defined(_ILP32)
4481 		/* reach upper limit of cache size on 32-bit */
4482 		if (zio_buf_cache[i] == NULL)
4483 			break;
4484 #endif
4485 		if (zio_buf_cache[i] != prev_cache) {
4486 			prev_cache = zio_buf_cache[i];
4487 			kmem_cache_reap_now(zio_buf_cache[i]);
4488 		}
4489 		if (zio_data_buf_cache[i] != prev_data_cache) {
4490 			prev_data_cache = zio_data_buf_cache[i];
4491 			kmem_cache_reap_now(zio_data_buf_cache[i]);
4492 		}
4493 	}
4494 	kmem_cache_reap_now(buf_cache);
4495 	kmem_cache_reap_now(hdr_full_cache);
4496 	kmem_cache_reap_now(hdr_l2only_cache);
4497 	kmem_cache_reap_now(zfs_btree_leaf_cache);
4498 	abd_cache_reap_now();
4499 }
4500 
4501 static boolean_t
arc_evict_cb_check(void * arg,zthr_t * zthr)4502 arc_evict_cb_check(void *arg, zthr_t *zthr)
4503 {
4504 	(void) arg, (void) zthr;
4505 
4506 #ifdef ZFS_DEBUG
4507 	/*
4508 	 * This is necessary in order to keep the kstat information
4509 	 * up to date for tools that display kstat data such as the
4510 	 * mdb ::arc dcmd and the Linux crash utility.  These tools
4511 	 * typically do not call kstat's update function, but simply
4512 	 * dump out stats from the most recent update.  Without
4513 	 * this call, these commands may show stale stats for the
4514 	 * anon, mru, mru_ghost, mfu, and mfu_ghost lists.  Even
4515 	 * with this call, the data might be out of date if the
4516 	 * evict thread hasn't been woken recently; but that should
4517 	 * suffice.  The arc_state_t structures can be queried
4518 	 * directly if more accurate information is needed.
4519 	 */
4520 	if (arc_ksp != NULL)
4521 		arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4522 #endif
4523 
4524 	/*
4525 	 * We have to rely on arc_wait_for_eviction() to tell us when to
4526 	 * evict, rather than checking if we are overflowing here, so that we
4527 	 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv.
4528 	 * If we have become "not overflowing" since arc_wait_for_eviction()
4529 	 * checked, we need to wake it up.  We could broadcast the CV here,
4530 	 * but arc_wait_for_eviction() may have not yet gone to sleep.  We
4531 	 * would need to use a mutex to ensure that this function doesn't
4532 	 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g.
4533 	 * the arc_evict_lock).  However, the lock ordering of such a lock
4534 	 * would necessarily be incorrect with respect to the zthr_lock,
4535 	 * which is held before this function is called, and is held by
4536 	 * arc_wait_for_eviction() when it calls zthr_wakeup().
4537 	 */
4538 	if (arc_evict_needed)
4539 		return (B_TRUE);
4540 
4541 	/*
4542 	 * If we have buffers in uncached state, evict them periodically.
4543 	 */
4544 	return ((zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_DATA]) +
4545 	    zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]) &&
4546 	    ddi_get_lbolt() - arc_last_uncached_flush >
4547 	    MSEC_TO_TICK(arc_min_prefetch_ms / 2)));
4548 }
4549 
4550 /*
4551  * Keep arc_size under arc_c by running arc_evict which evicts data
4552  * from the ARC.
4553  */
4554 static void
arc_evict_cb(void * arg,zthr_t * zthr)4555 arc_evict_cb(void *arg, zthr_t *zthr)
4556 {
4557 	(void) arg;
4558 
4559 	uint64_t evicted = 0;
4560 	fstrans_cookie_t cookie = spl_fstrans_mark();
4561 
4562 	/* Always try to evict from uncached state. */
4563 	arc_last_uncached_flush = ddi_get_lbolt();
4564 	evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_DATA, B_FALSE);
4565 	evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_METADATA, B_FALSE);
4566 
4567 	/* Evict from other states only if told to. */
4568 	if (arc_evict_needed)
4569 		evicted += arc_evict();
4570 
4571 	/*
4572 	 * If evicted is zero, we couldn't evict anything
4573 	 * via arc_evict(). This could be due to hash lock
4574 	 * collisions, but more likely due to the majority of
4575 	 * arc buffers being unevictable. Therefore, even if
4576 	 * arc_size is above arc_c, another pass is unlikely to
4577 	 * be helpful and could potentially cause us to enter an
4578 	 * infinite loop.  Additionally, zthr_iscancelled() is
4579 	 * checked here so that if the arc is shutting down, the
4580 	 * broadcast will wake any remaining arc evict waiters.
4581 	 *
4582 	 * Note we cancel using zthr instead of arc_evict_zthr
4583 	 * because the latter may not yet be initializd when the
4584 	 * callback is first invoked.
4585 	 */
4586 	mutex_enter(&arc_evict_lock);
4587 	arc_evict_needed = !zthr_iscancelled(zthr) &&
4588 	    evicted > 0 && aggsum_compare(&arc_sums.arcstat_size, arc_c) > 0;
4589 	if (!arc_evict_needed) {
4590 		/*
4591 		 * We're either no longer overflowing, or we
4592 		 * can't evict anything more, so we should wake
4593 		 * arc_get_data_impl() sooner.
4594 		 */
4595 		arc_evict_waiter_t *aw;
4596 		while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) {
4597 			cv_broadcast(&aw->aew_cv);
4598 		}
4599 		arc_set_need_free();
4600 	}
4601 	mutex_exit(&arc_evict_lock);
4602 	spl_fstrans_unmark(cookie);
4603 }
4604 
4605 static boolean_t
arc_reap_cb_check(void * arg,zthr_t * zthr)4606 arc_reap_cb_check(void *arg, zthr_t *zthr)
4607 {
4608 	(void) arg, (void) zthr;
4609 
4610 	int64_t free_memory = arc_available_memory();
4611 	static int reap_cb_check_counter = 0;
4612 
4613 	/*
4614 	 * If a kmem reap is already active, don't schedule more.  We must
4615 	 * check for this because kmem_cache_reap_soon() won't actually
4616 	 * block on the cache being reaped (this is to prevent callers from
4617 	 * becoming implicitly blocked by a system-wide kmem reap -- which,
4618 	 * on a system with many, many full magazines, can take minutes).
4619 	 */
4620 	if (!kmem_cache_reap_active() && free_memory < 0) {
4621 
4622 		arc_no_grow = B_TRUE;
4623 		arc_warm = B_TRUE;
4624 		/*
4625 		 * Wait at least zfs_grow_retry (default 5) seconds
4626 		 * before considering growing.
4627 		 */
4628 		arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4629 		return (B_TRUE);
4630 	} else if (free_memory < arc_c >> arc_no_grow_shift) {
4631 		arc_no_grow = B_TRUE;
4632 	} else if (gethrtime() >= arc_growtime) {
4633 		arc_no_grow = B_FALSE;
4634 	}
4635 
4636 	/*
4637 	 * Called unconditionally every 60 seconds to reclaim unused
4638 	 * zstd compression and decompression context. This is done
4639 	 * here to avoid the need for an independent thread.
4640 	 */
4641 	if (!((reap_cb_check_counter++) % 60))
4642 		zfs_zstd_cache_reap_now();
4643 
4644 	return (B_FALSE);
4645 }
4646 
4647 /*
4648  * Keep enough free memory in the system by reaping the ARC's kmem
4649  * caches.  To cause more slabs to be reapable, we may reduce the
4650  * target size of the cache (arc_c), causing the arc_evict_cb()
4651  * to free more buffers.
4652  */
4653 static void
arc_reap_cb(void * arg,zthr_t * zthr)4654 arc_reap_cb(void *arg, zthr_t *zthr)
4655 {
4656 	int64_t can_free, free_memory, to_free;
4657 
4658 	(void) arg, (void) zthr;
4659 	fstrans_cookie_t cookie = spl_fstrans_mark();
4660 
4661 	/*
4662 	 * Kick off asynchronous kmem_reap()'s of all our caches.
4663 	 */
4664 	arc_kmem_reap_soon();
4665 
4666 	/*
4667 	 * Wait at least arc_kmem_cache_reap_retry_ms between
4668 	 * arc_kmem_reap_soon() calls. Without this check it is possible to
4669 	 * end up in a situation where we spend lots of time reaping
4670 	 * caches, while we're near arc_c_min.  Waiting here also gives the
4671 	 * subsequent free memory check a chance of finding that the
4672 	 * asynchronous reap has already freed enough memory, and we don't
4673 	 * need to call arc_reduce_target_size().
4674 	 */
4675 	delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000);
4676 
4677 	/*
4678 	 * Reduce the target size as needed to maintain the amount of free
4679 	 * memory in the system at a fraction of the arc_size (1/128th by
4680 	 * default).  If oversubscribed (free_memory < 0) then reduce the
4681 	 * target arc_size by the deficit amount plus the fractional
4682 	 * amount.  If free memory is positive but less than the fractional
4683 	 * amount, reduce by what is needed to hit the fractional amount.
4684 	 */
4685 	free_memory = arc_available_memory();
4686 	can_free = arc_c - arc_c_min;
4687 	to_free = (MAX(can_free, 0) >> arc_shrink_shift) - free_memory;
4688 	if (to_free > 0)
4689 		arc_reduce_target_size(to_free);
4690 	spl_fstrans_unmark(cookie);
4691 }
4692 
4693 #ifdef _KERNEL
4694 /*
4695  * Determine the amount of memory eligible for eviction contained in the
4696  * ARC. All clean data reported by the ghost lists can always be safely
4697  * evicted. Due to arc_c_min, the same does not hold for all clean data
4698  * contained by the regular mru and mfu lists.
4699  *
4700  * In the case of the regular mru and mfu lists, we need to report as
4701  * much clean data as possible, such that evicting that same reported
4702  * data will not bring arc_size below arc_c_min. Thus, in certain
4703  * circumstances, the total amount of clean data in the mru and mfu
4704  * lists might not actually be evictable.
4705  *
4706  * The following two distinct cases are accounted for:
4707  *
4708  * 1. The sum of the amount of dirty data contained by both the mru and
4709  *    mfu lists, plus the ARC's other accounting (e.g. the anon list),
4710  *    is greater than or equal to arc_c_min.
4711  *    (i.e. amount of dirty data >= arc_c_min)
4712  *
4713  *    This is the easy case; all clean data contained by the mru and mfu
4714  *    lists is evictable. Evicting all clean data can only drop arc_size
4715  *    to the amount of dirty data, which is greater than arc_c_min.
4716  *
4717  * 2. The sum of the amount of dirty data contained by both the mru and
4718  *    mfu lists, plus the ARC's other accounting (e.g. the anon list),
4719  *    is less than arc_c_min.
4720  *    (i.e. arc_c_min > amount of dirty data)
4721  *
4722  *    2.1. arc_size is greater than or equal arc_c_min.
4723  *         (i.e. arc_size >= arc_c_min > amount of dirty data)
4724  *
4725  *         In this case, not all clean data from the regular mru and mfu
4726  *         lists is actually evictable; we must leave enough clean data
4727  *         to keep arc_size above arc_c_min. Thus, the maximum amount of
4728  *         evictable data from the two lists combined, is exactly the
4729  *         difference between arc_size and arc_c_min.
4730  *
4731  *    2.2. arc_size is less than arc_c_min
4732  *         (i.e. arc_c_min > arc_size > amount of dirty data)
4733  *
4734  *         In this case, none of the data contained in the mru and mfu
4735  *         lists is evictable, even if it's clean. Since arc_size is
4736  *         already below arc_c_min, evicting any more would only
4737  *         increase this negative difference.
4738  */
4739 
4740 #endif /* _KERNEL */
4741 
4742 /*
4743  * Adapt arc info given the number of bytes we are trying to add and
4744  * the state that we are coming from.  This function is only called
4745  * when we are adding new content to the cache.
4746  */
4747 static void
arc_adapt(uint64_t bytes)4748 arc_adapt(uint64_t bytes)
4749 {
4750 	/*
4751 	 * Wake reap thread if we do not have any available memory
4752 	 */
4753 	if (arc_reclaim_needed()) {
4754 		zthr_wakeup(arc_reap_zthr);
4755 		return;
4756 	}
4757 
4758 	if (arc_no_grow)
4759 		return;
4760 
4761 	if (arc_c >= arc_c_max)
4762 		return;
4763 
4764 	/*
4765 	 * If we're within (2 * maxblocksize) bytes of the target
4766 	 * cache size, increment the target cache size
4767 	 */
4768 	if (aggsum_upper_bound(&arc_sums.arcstat_size) +
4769 	    2 * SPA_MAXBLOCKSIZE >= arc_c) {
4770 		uint64_t dc = MAX(bytes, SPA_OLD_MAXBLOCKSIZE);
4771 		if (atomic_add_64_nv(&arc_c, dc) > arc_c_max)
4772 			arc_c = arc_c_max;
4773 	}
4774 }
4775 
4776 /*
4777  * Check if ARC current size has grown past our upper thresholds.
4778  */
4779 static arc_ovf_level_t
arc_is_overflowing(boolean_t lax,boolean_t use_reserve)4780 arc_is_overflowing(boolean_t lax, boolean_t use_reserve)
4781 {
4782 	/*
4783 	 * We just compare the lower bound here for performance reasons. Our
4784 	 * primary goals are to make sure that the arc never grows without
4785 	 * bound, and that it can reach its maximum size. This check
4786 	 * accomplishes both goals. The maximum amount we could run over by is
4787 	 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
4788 	 * in the ARC. In practice, that's in the tens of MB, which is low
4789 	 * enough to be safe.
4790 	 */
4791 	int64_t over = aggsum_lower_bound(&arc_sums.arcstat_size) - arc_c -
4792 	    zfs_max_recordsize;
4793 
4794 	/* Always allow at least one block of overflow. */
4795 	if (over < 0)
4796 		return (ARC_OVF_NONE);
4797 
4798 	/* If we are under memory pressure, report severe overflow. */
4799 	if (!lax)
4800 		return (ARC_OVF_SEVERE);
4801 
4802 	/* We are not under pressure, so be more or less relaxed. */
4803 	int64_t overflow = (arc_c >> zfs_arc_overflow_shift) / 2;
4804 	if (use_reserve)
4805 		overflow *= 3;
4806 	return (over < overflow ? ARC_OVF_SOME : ARC_OVF_SEVERE);
4807 }
4808 
4809 static abd_t *
arc_get_data_abd(arc_buf_hdr_t * hdr,uint64_t size,const void * tag,int alloc_flags)4810 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, const void *tag,
4811     int alloc_flags)
4812 {
4813 	arc_buf_contents_t type = arc_buf_type(hdr);
4814 
4815 	arc_get_data_impl(hdr, size, tag, alloc_flags);
4816 	if (alloc_flags & ARC_HDR_ALLOC_LINEAR)
4817 		return (abd_alloc_linear(size, type == ARC_BUFC_METADATA));
4818 	else
4819 		return (abd_alloc(size, type == ARC_BUFC_METADATA));
4820 }
4821 
4822 static void *
arc_get_data_buf(arc_buf_hdr_t * hdr,uint64_t size,const void * tag)4823 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, const void *tag)
4824 {
4825 	arc_buf_contents_t type = arc_buf_type(hdr);
4826 
4827 	arc_get_data_impl(hdr, size, tag, 0);
4828 	if (type == ARC_BUFC_METADATA) {
4829 		return (zio_buf_alloc(size));
4830 	} else {
4831 		ASSERT(type == ARC_BUFC_DATA);
4832 		return (zio_data_buf_alloc(size));
4833 	}
4834 }
4835 
4836 /*
4837  * Wait for the specified amount of data (in bytes) to be evicted from the
4838  * ARC, and for there to be sufficient free memory in the system.
4839  * The lax argument specifies that caller does not have a specific reason
4840  * to wait, not aware of any memory pressure.  Low memory handlers though
4841  * should set it to B_FALSE to wait for all required evictions to complete.
4842  * The use_reserve argument allows some callers to wait less than others
4843  * to not block critical code paths, possibly blocking other resources.
4844  */
4845 void
arc_wait_for_eviction(uint64_t amount,boolean_t lax,boolean_t use_reserve)4846 arc_wait_for_eviction(uint64_t amount, boolean_t lax, boolean_t use_reserve)
4847 {
4848 	switch (arc_is_overflowing(lax, use_reserve)) {
4849 	case ARC_OVF_NONE:
4850 		return;
4851 	case ARC_OVF_SOME:
4852 		/*
4853 		 * This is a bit racy without taking arc_evict_lock, but the
4854 		 * worst that can happen is we either call zthr_wakeup() extra
4855 		 * time due to race with other thread here, or the set flag
4856 		 * get cleared by arc_evict_cb(), which is unlikely due to
4857 		 * big hysteresis, but also not important since at this level
4858 		 * of overflow the eviction is purely advisory.  Same time
4859 		 * taking the global lock here every time without waiting for
4860 		 * the actual eviction creates a significant lock contention.
4861 		 */
4862 		if (!arc_evict_needed) {
4863 			arc_evict_needed = B_TRUE;
4864 			zthr_wakeup(arc_evict_zthr);
4865 		}
4866 		return;
4867 	case ARC_OVF_SEVERE:
4868 	default:
4869 	{
4870 		arc_evict_waiter_t aw;
4871 		list_link_init(&aw.aew_node);
4872 		cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL);
4873 
4874 		uint64_t last_count = 0;
4875 		mutex_enter(&arc_evict_lock);
4876 		if (!list_is_empty(&arc_evict_waiters)) {
4877 			arc_evict_waiter_t *last =
4878 			    list_tail(&arc_evict_waiters);
4879 			last_count = last->aew_count;
4880 		} else if (!arc_evict_needed) {
4881 			arc_evict_needed = B_TRUE;
4882 			zthr_wakeup(arc_evict_zthr);
4883 		}
4884 		/*
4885 		 * Note, the last waiter's count may be less than
4886 		 * arc_evict_count if we are low on memory in which
4887 		 * case arc_evict_state_impl() may have deferred
4888 		 * wakeups (but still incremented arc_evict_count).
4889 		 */
4890 		aw.aew_count = MAX(last_count, arc_evict_count) + amount;
4891 
4892 		list_insert_tail(&arc_evict_waiters, &aw);
4893 
4894 		arc_set_need_free();
4895 
4896 		DTRACE_PROBE3(arc__wait__for__eviction,
4897 		    uint64_t, amount,
4898 		    uint64_t, arc_evict_count,
4899 		    uint64_t, aw.aew_count);
4900 
4901 		/*
4902 		 * We will be woken up either when arc_evict_count reaches
4903 		 * aew_count, or when the ARC is no longer overflowing and
4904 		 * eviction completes.
4905 		 * In case of "false" wakeup, we will still be on the list.
4906 		 */
4907 		do {
4908 			cv_wait(&aw.aew_cv, &arc_evict_lock);
4909 		} while (list_link_active(&aw.aew_node));
4910 		mutex_exit(&arc_evict_lock);
4911 
4912 		cv_destroy(&aw.aew_cv);
4913 	}
4914 	}
4915 }
4916 
4917 /*
4918  * Allocate a block and return it to the caller. If we are hitting the
4919  * hard limit for the cache size, we must sleep, waiting for the eviction
4920  * thread to catch up. If we're past the target size but below the hard
4921  * limit, we'll only signal the reclaim thread and continue on.
4922  */
4923 static void
arc_get_data_impl(arc_buf_hdr_t * hdr,uint64_t size,const void * tag,int alloc_flags)4924 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag,
4925     int alloc_flags)
4926 {
4927 	arc_adapt(size);
4928 
4929 	/*
4930 	 * If arc_size is currently overflowing, we must be adding data
4931 	 * faster than we are evicting.  To ensure we don't compound the
4932 	 * problem by adding more data and forcing arc_size to grow even
4933 	 * further past it's target size, we wait for the eviction thread to
4934 	 * make some progress.  We also wait for there to be sufficient free
4935 	 * memory in the system, as measured by arc_free_memory().
4936 	 *
4937 	 * Specifically, we wait for zfs_arc_eviction_pct percent of the
4938 	 * requested size to be evicted.  This should be more than 100%, to
4939 	 * ensure that that progress is also made towards getting arc_size
4940 	 * under arc_c.  See the comment above zfs_arc_eviction_pct.
4941 	 */
4942 	arc_wait_for_eviction(size * zfs_arc_eviction_pct / 100,
4943 	    B_TRUE, alloc_flags & ARC_HDR_USE_RESERVE);
4944 
4945 	arc_buf_contents_t type = arc_buf_type(hdr);
4946 	if (type == ARC_BUFC_METADATA) {
4947 		arc_space_consume(size, ARC_SPACE_META);
4948 	} else {
4949 		arc_space_consume(size, ARC_SPACE_DATA);
4950 	}
4951 
4952 	/*
4953 	 * Update the state size.  Note that ghost states have a
4954 	 * "ghost size" and so don't need to be updated.
4955 	 */
4956 	arc_state_t *state = hdr->b_l1hdr.b_state;
4957 	if (!GHOST_STATE(state)) {
4958 
4959 		(void) zfs_refcount_add_many(&state->arcs_size[type], size,
4960 		    tag);
4961 
4962 		/*
4963 		 * If this is reached via arc_read, the link is
4964 		 * protected by the hash lock. If reached via
4965 		 * arc_buf_alloc, the header should not be accessed by
4966 		 * any other thread. And, if reached via arc_read_done,
4967 		 * the hash lock will protect it if it's found in the
4968 		 * hash table; otherwise no other thread should be
4969 		 * trying to [add|remove]_reference it.
4970 		 */
4971 		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4972 			ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4973 			(void) zfs_refcount_add_many(&state->arcs_esize[type],
4974 			    size, tag);
4975 		}
4976 	}
4977 }
4978 
4979 static void
arc_free_data_abd(arc_buf_hdr_t * hdr,abd_t * abd,uint64_t size,const void * tag)4980 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size,
4981     const void *tag)
4982 {
4983 	arc_free_data_impl(hdr, size, tag);
4984 	abd_free(abd);
4985 }
4986 
4987 static void
arc_free_data_buf(arc_buf_hdr_t * hdr,void * buf,uint64_t size,const void * tag)4988 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, const void *tag)
4989 {
4990 	arc_buf_contents_t type = arc_buf_type(hdr);
4991 
4992 	arc_free_data_impl(hdr, size, tag);
4993 	if (type == ARC_BUFC_METADATA) {
4994 		zio_buf_free(buf, size);
4995 	} else {
4996 		ASSERT(type == ARC_BUFC_DATA);
4997 		zio_data_buf_free(buf, size);
4998 	}
4999 }
5000 
5001 /*
5002  * Free the arc data buffer.
5003  */
5004 static void
arc_free_data_impl(arc_buf_hdr_t * hdr,uint64_t size,const void * tag)5005 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag)
5006 {
5007 	arc_state_t *state = hdr->b_l1hdr.b_state;
5008 	arc_buf_contents_t type = arc_buf_type(hdr);
5009 
5010 	/* protected by hash lock, if in the hash table */
5011 	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5012 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5013 		ASSERT(state != arc_anon && state != arc_l2c_only);
5014 
5015 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
5016 		    size, tag);
5017 	}
5018 	(void) zfs_refcount_remove_many(&state->arcs_size[type], size, tag);
5019 
5020 	VERIFY3U(hdr->b_type, ==, type);
5021 	if (type == ARC_BUFC_METADATA) {
5022 		arc_space_return(size, ARC_SPACE_META);
5023 	} else {
5024 		ASSERT(type == ARC_BUFC_DATA);
5025 		arc_space_return(size, ARC_SPACE_DATA);
5026 	}
5027 }
5028 
5029 /*
5030  * This routine is called whenever a buffer is accessed.
5031  */
5032 static void
arc_access(arc_buf_hdr_t * hdr,arc_flags_t arc_flags,boolean_t hit)5033 arc_access(arc_buf_hdr_t *hdr, arc_flags_t arc_flags, boolean_t hit)
5034 {
5035 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
5036 	ASSERT(HDR_HAS_L1HDR(hdr));
5037 
5038 	/*
5039 	 * Update buffer prefetch status.
5040 	 */
5041 	boolean_t was_prefetch = HDR_PREFETCH(hdr);
5042 	boolean_t now_prefetch = arc_flags & ARC_FLAG_PREFETCH;
5043 	if (was_prefetch != now_prefetch) {
5044 		if (was_prefetch) {
5045 			ARCSTAT_CONDSTAT(hit, demand_hit, demand_iohit,
5046 			    HDR_PRESCIENT_PREFETCH(hdr), prescient, predictive,
5047 			    prefetch);
5048 		}
5049 		if (HDR_HAS_L2HDR(hdr))
5050 			l2arc_hdr_arcstats_decrement_state(hdr);
5051 		if (was_prefetch) {
5052 			arc_hdr_clear_flags(hdr,
5053 			    ARC_FLAG_PREFETCH | ARC_FLAG_PRESCIENT_PREFETCH);
5054 		} else {
5055 			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5056 		}
5057 		if (HDR_HAS_L2HDR(hdr))
5058 			l2arc_hdr_arcstats_increment_state(hdr);
5059 	}
5060 	if (now_prefetch) {
5061 		if (arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
5062 			arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
5063 			ARCSTAT_BUMP(arcstat_prescient_prefetch);
5064 		} else {
5065 			ARCSTAT_BUMP(arcstat_predictive_prefetch);
5066 		}
5067 	}
5068 	if (arc_flags & ARC_FLAG_L2CACHE)
5069 		arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5070 
5071 	clock_t now = ddi_get_lbolt();
5072 	if (hdr->b_l1hdr.b_state == arc_anon) {
5073 		arc_state_t	*new_state;
5074 		/*
5075 		 * This buffer is not in the cache, and does not appear in
5076 		 * our "ghost" lists.  Add it to the MRU or uncached state.
5077 		 */
5078 		ASSERT0(hdr->b_l1hdr.b_arc_access);
5079 		hdr->b_l1hdr.b_arc_access = now;
5080 		if (HDR_UNCACHED(hdr)) {
5081 			new_state = arc_uncached;
5082 			DTRACE_PROBE1(new_state__uncached, arc_buf_hdr_t *,
5083 			    hdr);
5084 		} else {
5085 			new_state = arc_mru;
5086 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5087 		}
5088 		arc_change_state(new_state, hdr);
5089 	} else if (hdr->b_l1hdr.b_state == arc_mru) {
5090 		/*
5091 		 * This buffer has been accessed once recently and either
5092 		 * its read is still in progress or it is in the cache.
5093 		 */
5094 		if (HDR_IO_IN_PROGRESS(hdr)) {
5095 			hdr->b_l1hdr.b_arc_access = now;
5096 			return;
5097 		}
5098 		hdr->b_l1hdr.b_mru_hits++;
5099 		ARCSTAT_BUMP(arcstat_mru_hits);
5100 
5101 		/*
5102 		 * If the previous access was a prefetch, then it already
5103 		 * handled possible promotion, so nothing more to do for now.
5104 		 */
5105 		if (was_prefetch) {
5106 			hdr->b_l1hdr.b_arc_access = now;
5107 			return;
5108 		}
5109 
5110 		/*
5111 		 * If more than ARC_MINTIME have passed from the previous
5112 		 * hit, promote the buffer to the MFU state.
5113 		 */
5114 		if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
5115 		    ARC_MINTIME)) {
5116 			hdr->b_l1hdr.b_arc_access = now;
5117 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5118 			arc_change_state(arc_mfu, hdr);
5119 		}
5120 	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
5121 		arc_state_t	*new_state;
5122 		/*
5123 		 * This buffer has been accessed once recently, but was
5124 		 * evicted from the cache.  Would we have bigger MRU, it
5125 		 * would be an MRU hit, so handle it the same way, except
5126 		 * we don't need to check the previous access time.
5127 		 */
5128 		hdr->b_l1hdr.b_mru_ghost_hits++;
5129 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
5130 		hdr->b_l1hdr.b_arc_access = now;
5131 		wmsum_add(&arc_mru_ghost->arcs_hits[arc_buf_type(hdr)],
5132 		    arc_hdr_size(hdr));
5133 		if (was_prefetch) {
5134 			new_state = arc_mru;
5135 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5136 		} else {
5137 			new_state = arc_mfu;
5138 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5139 		}
5140 		arc_change_state(new_state, hdr);
5141 	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
5142 		/*
5143 		 * This buffer has been accessed more than once and either
5144 		 * still in the cache or being restored from one of ghosts.
5145 		 */
5146 		if (!HDR_IO_IN_PROGRESS(hdr)) {
5147 			hdr->b_l1hdr.b_mfu_hits++;
5148 			ARCSTAT_BUMP(arcstat_mfu_hits);
5149 		}
5150 		hdr->b_l1hdr.b_arc_access = now;
5151 	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
5152 		/*
5153 		 * This buffer has been accessed more than once recently, but
5154 		 * has been evicted from the cache.  Would we have bigger MFU
5155 		 * it would stay in cache, so move it back to MFU state.
5156 		 */
5157 		hdr->b_l1hdr.b_mfu_ghost_hits++;
5158 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
5159 		hdr->b_l1hdr.b_arc_access = now;
5160 		wmsum_add(&arc_mfu_ghost->arcs_hits[arc_buf_type(hdr)],
5161 		    arc_hdr_size(hdr));
5162 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5163 		arc_change_state(arc_mfu, hdr);
5164 	} else if (hdr->b_l1hdr.b_state == arc_uncached) {
5165 		/*
5166 		 * This buffer is uncacheable, but we got a hit.  Probably
5167 		 * a demand read after prefetch.  Nothing more to do here.
5168 		 */
5169 		if (!HDR_IO_IN_PROGRESS(hdr))
5170 			ARCSTAT_BUMP(arcstat_uncached_hits);
5171 		hdr->b_l1hdr.b_arc_access = now;
5172 	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
5173 		/*
5174 		 * This buffer is on the 2nd Level ARC and was not accessed
5175 		 * for a long time, so treat it as new and put into MRU.
5176 		 */
5177 		hdr->b_l1hdr.b_arc_access = now;
5178 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5179 		arc_change_state(arc_mru, hdr);
5180 	} else {
5181 		cmn_err(CE_PANIC, "invalid arc state 0x%p",
5182 		    hdr->b_l1hdr.b_state);
5183 	}
5184 }
5185 
5186 /*
5187  * This routine is called by dbuf_hold() to update the arc_access() state
5188  * which otherwise would be skipped for entries in the dbuf cache.
5189  */
5190 void
arc_buf_access(arc_buf_t * buf)5191 arc_buf_access(arc_buf_t *buf)
5192 {
5193 	arc_buf_hdr_t *hdr = buf->b_hdr;
5194 
5195 	/*
5196 	 * Avoid taking the hash_lock when possible as an optimization.
5197 	 * The header must be checked again under the hash_lock in order
5198 	 * to handle the case where it is concurrently being released.
5199 	 */
5200 	if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr))
5201 		return;
5202 
5203 	kmutex_t *hash_lock = HDR_LOCK(hdr);
5204 	mutex_enter(hash_lock);
5205 
5206 	if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5207 		mutex_exit(hash_lock);
5208 		ARCSTAT_BUMP(arcstat_access_skip);
5209 		return;
5210 	}
5211 
5212 	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5213 	    hdr->b_l1hdr.b_state == arc_mfu ||
5214 	    hdr->b_l1hdr.b_state == arc_uncached);
5215 
5216 	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5217 	arc_access(hdr, 0, B_TRUE);
5218 	mutex_exit(hash_lock);
5219 
5220 	ARCSTAT_BUMP(arcstat_hits);
5221 	ARCSTAT_CONDSTAT(B_TRUE /* demand */, demand, prefetch,
5222 	    !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
5223 }
5224 
5225 /* a generic arc_read_done_func_t which you can use */
5226 void
arc_bcopy_func(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * bp,arc_buf_t * buf,void * arg)5227 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5228     arc_buf_t *buf, void *arg)
5229 {
5230 	(void) zio, (void) zb, (void) bp;
5231 
5232 	if (buf == NULL)
5233 		return;
5234 
5235 	memcpy(arg, buf->b_data, arc_buf_size(buf));
5236 	arc_buf_destroy(buf, arg);
5237 }
5238 
5239 /* a generic arc_read_done_func_t */
5240 void
arc_getbuf_func(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * bp,arc_buf_t * buf,void * arg)5241 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5242     arc_buf_t *buf, void *arg)
5243 {
5244 	(void) zb, (void) bp;
5245 	arc_buf_t **bufp = arg;
5246 
5247 	if (buf == NULL) {
5248 		ASSERT(zio == NULL || zio->io_error != 0);
5249 		*bufp = NULL;
5250 	} else {
5251 		ASSERT(zio == NULL || zio->io_error == 0);
5252 		*bufp = buf;
5253 		ASSERT(buf->b_data != NULL);
5254 	}
5255 }
5256 
5257 static void
arc_hdr_verify(arc_buf_hdr_t * hdr,blkptr_t * bp)5258 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
5259 {
5260 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5261 		ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
5262 		ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF);
5263 	} else {
5264 		if (HDR_COMPRESSION_ENABLED(hdr)) {
5265 			ASSERT3U(arc_hdr_get_compress(hdr), ==,
5266 			    BP_GET_COMPRESS(bp));
5267 		}
5268 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5269 		ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
5270 		ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp));
5271 	}
5272 }
5273 
5274 static void
arc_read_done(zio_t * zio)5275 arc_read_done(zio_t *zio)
5276 {
5277 	blkptr_t 	*bp = zio->io_bp;
5278 	arc_buf_hdr_t	*hdr = zio->io_private;
5279 	kmutex_t	*hash_lock = NULL;
5280 	arc_callback_t	*callback_list;
5281 	arc_callback_t	*acb;
5282 
5283 	/*
5284 	 * The hdr was inserted into hash-table and removed from lists
5285 	 * prior to starting I/O.  We should find this header, since
5286 	 * it's in the hash table, and it should be legit since it's
5287 	 * not possible to evict it during the I/O.  The only possible
5288 	 * reason for it not to be found is if we were freed during the
5289 	 * read.
5290 	 */
5291 	if (HDR_IN_HASH_TABLE(hdr)) {
5292 		arc_buf_hdr_t *found;
5293 
5294 		ASSERT3U(hdr->b_birth, ==, BP_GET_BIRTH(zio->io_bp));
5295 		ASSERT3U(hdr->b_dva.dva_word[0], ==,
5296 		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
5297 		ASSERT3U(hdr->b_dva.dva_word[1], ==,
5298 		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
5299 
5300 		found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock);
5301 
5302 		ASSERT((found == hdr &&
5303 		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5304 		    (found == hdr && HDR_L2_READING(hdr)));
5305 		ASSERT3P(hash_lock, !=, NULL);
5306 	}
5307 
5308 	if (BP_IS_PROTECTED(bp)) {
5309 		hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
5310 		hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
5311 		zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
5312 		    hdr->b_crypt_hdr.b_iv);
5313 
5314 		if (zio->io_error == 0) {
5315 			if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) {
5316 				void *tmpbuf;
5317 
5318 				tmpbuf = abd_borrow_buf_copy(zio->io_abd,
5319 				    sizeof (zil_chain_t));
5320 				zio_crypt_decode_mac_zil(tmpbuf,
5321 				    hdr->b_crypt_hdr.b_mac);
5322 				abd_return_buf(zio->io_abd, tmpbuf,
5323 				    sizeof (zil_chain_t));
5324 			} else {
5325 				zio_crypt_decode_mac_bp(bp,
5326 				    hdr->b_crypt_hdr.b_mac);
5327 			}
5328 		}
5329 	}
5330 
5331 	if (zio->io_error == 0) {
5332 		/* byteswap if necessary */
5333 		if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5334 			if (BP_GET_LEVEL(zio->io_bp) > 0) {
5335 				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5336 			} else {
5337 				hdr->b_l1hdr.b_byteswap =
5338 				    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5339 			}
5340 		} else {
5341 			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5342 		}
5343 		if (!HDR_L2_READING(hdr)) {
5344 			hdr->b_complevel = zio->io_prop.zp_complevel;
5345 		}
5346 	}
5347 
5348 	arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
5349 	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
5350 		arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
5351 
5352 	callback_list = hdr->b_l1hdr.b_acb;
5353 	ASSERT3P(callback_list, !=, NULL);
5354 	hdr->b_l1hdr.b_acb = NULL;
5355 
5356 	/*
5357 	 * If a read request has a callback (i.e. acb_done is not NULL), then we
5358 	 * make a buf containing the data according to the parameters which were
5359 	 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5360 	 * aren't needlessly decompressing the data multiple times.
5361 	 */
5362 	int callback_cnt = 0;
5363 	for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5364 
5365 		/* We need the last one to call below in original order. */
5366 		callback_list = acb;
5367 
5368 		if (!acb->acb_done || acb->acb_nobuf)
5369 			continue;
5370 
5371 		callback_cnt++;
5372 
5373 		if (zio->io_error != 0)
5374 			continue;
5375 
5376 		int error = arc_buf_alloc_impl(hdr, zio->io_spa,
5377 		    &acb->acb_zb, acb->acb_private, acb->acb_encrypted,
5378 		    acb->acb_compressed, acb->acb_noauth, B_TRUE,
5379 		    &acb->acb_buf);
5380 
5381 		/*
5382 		 * Assert non-speculative zios didn't fail because an
5383 		 * encryption key wasn't loaded
5384 		 */
5385 		ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) ||
5386 		    error != EACCES);
5387 
5388 		/*
5389 		 * If we failed to decrypt, report an error now (as the zio
5390 		 * layer would have done if it had done the transforms).
5391 		 */
5392 		if (error == ECKSUM) {
5393 			ASSERT(BP_IS_PROTECTED(bp));
5394 			error = SET_ERROR(EIO);
5395 			if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5396 				spa_log_error(zio->io_spa, &acb->acb_zb,
5397 				    BP_GET_LOGICAL_BIRTH(zio->io_bp));
5398 				(void) zfs_ereport_post(
5399 				    FM_EREPORT_ZFS_AUTHENTICATION,
5400 				    zio->io_spa, NULL, &acb->acb_zb, zio, 0);
5401 			}
5402 		}
5403 
5404 		if (error != 0) {
5405 			/*
5406 			 * Decompression or decryption failed.  Set
5407 			 * io_error so that when we call acb_done
5408 			 * (below), we will indicate that the read
5409 			 * failed. Note that in the unusual case
5410 			 * where one callback is compressed and another
5411 			 * uncompressed, we will mark all of them
5412 			 * as failed, even though the uncompressed
5413 			 * one can't actually fail.  In this case,
5414 			 * the hdr will not be anonymous, because
5415 			 * if there are multiple callbacks, it's
5416 			 * because multiple threads found the same
5417 			 * arc buf in the hash table.
5418 			 */
5419 			zio->io_error = error;
5420 		}
5421 	}
5422 
5423 	/*
5424 	 * If there are multiple callbacks, we must have the hash lock,
5425 	 * because the only way for multiple threads to find this hdr is
5426 	 * in the hash table.  This ensures that if there are multiple
5427 	 * callbacks, the hdr is not anonymous.  If it were anonymous,
5428 	 * we couldn't use arc_buf_destroy() in the error case below.
5429 	 */
5430 	ASSERT(callback_cnt < 2 || hash_lock != NULL);
5431 
5432 	if (zio->io_error == 0) {
5433 		arc_hdr_verify(hdr, zio->io_bp);
5434 	} else {
5435 		arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5436 		if (hdr->b_l1hdr.b_state != arc_anon)
5437 			arc_change_state(arc_anon, hdr);
5438 		if (HDR_IN_HASH_TABLE(hdr))
5439 			buf_hash_remove(hdr);
5440 	}
5441 
5442 	arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5443 	(void) remove_reference(hdr, hdr);
5444 
5445 	if (hash_lock != NULL)
5446 		mutex_exit(hash_lock);
5447 
5448 	/* execute each callback and free its structure */
5449 	while ((acb = callback_list) != NULL) {
5450 		if (acb->acb_done != NULL) {
5451 			if (zio->io_error != 0 && acb->acb_buf != NULL) {
5452 				/*
5453 				 * If arc_buf_alloc_impl() fails during
5454 				 * decompression, the buf will still be
5455 				 * allocated, and needs to be freed here.
5456 				 */
5457 				arc_buf_destroy(acb->acb_buf,
5458 				    acb->acb_private);
5459 				acb->acb_buf = NULL;
5460 			}
5461 			acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
5462 			    acb->acb_buf, acb->acb_private);
5463 		}
5464 
5465 		if (acb->acb_zio_dummy != NULL) {
5466 			acb->acb_zio_dummy->io_error = zio->io_error;
5467 			zio_nowait(acb->acb_zio_dummy);
5468 		}
5469 
5470 		callback_list = acb->acb_prev;
5471 		if (acb->acb_wait) {
5472 			mutex_enter(&acb->acb_wait_lock);
5473 			acb->acb_wait_error = zio->io_error;
5474 			acb->acb_wait = B_FALSE;
5475 			cv_signal(&acb->acb_wait_cv);
5476 			mutex_exit(&acb->acb_wait_lock);
5477 			/* acb will be freed by the waiting thread. */
5478 		} else {
5479 			kmem_free(acb, sizeof (arc_callback_t));
5480 		}
5481 	}
5482 }
5483 
5484 /*
5485  * Lookup the block at the specified DVA (in bp), and return the manner in
5486  * which the block is cached. A zero return indicates not cached.
5487  */
5488 int
arc_cached(spa_t * spa,const blkptr_t * bp)5489 arc_cached(spa_t *spa, const blkptr_t *bp)
5490 {
5491 	arc_buf_hdr_t *hdr = NULL;
5492 	kmutex_t *hash_lock = NULL;
5493 	uint64_t guid = spa_load_guid(spa);
5494 	int flags = 0;
5495 
5496 	if (BP_IS_EMBEDDED(bp))
5497 		return (ARC_CACHED_EMBEDDED);
5498 
5499 	hdr = buf_hash_find(guid, bp, &hash_lock);
5500 	if (hdr == NULL)
5501 		return (0);
5502 
5503 	if (HDR_HAS_L1HDR(hdr)) {
5504 		arc_state_t *state = hdr->b_l1hdr.b_state;
5505 		/*
5506 		 * We switch to ensure that any future arc_state_type_t
5507 		 * changes are handled. This is just a shift to promote
5508 		 * more compile-time checking.
5509 		 */
5510 		switch (state->arcs_state) {
5511 		case ARC_STATE_ANON:
5512 			break;
5513 		case ARC_STATE_MRU:
5514 			flags |= ARC_CACHED_IN_MRU | ARC_CACHED_IN_L1;
5515 			break;
5516 		case ARC_STATE_MFU:
5517 			flags |= ARC_CACHED_IN_MFU | ARC_CACHED_IN_L1;
5518 			break;
5519 		case ARC_STATE_UNCACHED:
5520 			/* The header is still in L1, probably not for long */
5521 			flags |= ARC_CACHED_IN_L1;
5522 			break;
5523 		default:
5524 			break;
5525 		}
5526 	}
5527 	if (HDR_HAS_L2HDR(hdr))
5528 		flags |= ARC_CACHED_IN_L2;
5529 
5530 	mutex_exit(hash_lock);
5531 
5532 	return (flags);
5533 }
5534 
5535 /*
5536  * "Read" the block at the specified DVA (in bp) via the
5537  * cache.  If the block is found in the cache, invoke the provided
5538  * callback immediately and return.  Note that the `zio' parameter
5539  * in the callback will be NULL in this case, since no IO was
5540  * required.  If the block is not in the cache pass the read request
5541  * on to the spa with a substitute callback function, so that the
5542  * requested block will be added to the cache.
5543  *
5544  * If a read request arrives for a block that has a read in-progress,
5545  * either wait for the in-progress read to complete (and return the
5546  * results); or, if this is a read with a "done" func, add a record
5547  * to the read to invoke the "done" func when the read completes,
5548  * and return; or just return.
5549  *
5550  * arc_read_done() will invoke all the requested "done" functions
5551  * for readers of this block.
5552  */
5553 int
arc_read(zio_t * pio,spa_t * spa,const blkptr_t * bp,arc_read_done_func_t * done,void * private,zio_priority_t priority,int zio_flags,arc_flags_t * arc_flags,const zbookmark_phys_t * zb)5554 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
5555     arc_read_done_func_t *done, void *private, zio_priority_t priority,
5556     int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5557 {
5558 	arc_buf_hdr_t *hdr = NULL;
5559 	kmutex_t *hash_lock = NULL;
5560 	zio_t *rzio;
5561 	uint64_t guid = spa_load_guid(spa);
5562 	boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0;
5563 	boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) &&
5564 	    (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5565 	boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) &&
5566 	    (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5567 	boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp);
5568 	boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF;
5569 	arc_buf_t *buf = NULL;
5570 	int rc = 0;
5571 
5572 	ASSERT(!embedded_bp ||
5573 	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5574 	ASSERT(!BP_IS_HOLE(bp));
5575 	ASSERT(!BP_IS_REDACTED(bp));
5576 
5577 	/*
5578 	 * Normally SPL_FSTRANS will already be set since kernel threads which
5579 	 * expect to call the DMU interfaces will set it when created.  System
5580 	 * calls are similarly handled by setting/cleaning the bit in the
5581 	 * registered callback (module/os/.../zfs/zpl_*).
5582 	 *
5583 	 * External consumers such as Lustre which call the exported DMU
5584 	 * interfaces may not have set SPL_FSTRANS.  To avoid a deadlock
5585 	 * on the hash_lock always set and clear the bit.
5586 	 */
5587 	fstrans_cookie_t cookie = spl_fstrans_mark();
5588 top:
5589 	if (!embedded_bp) {
5590 		/*
5591 		 * Embedded BP's have no DVA and require no I/O to "read".
5592 		 * Create an anonymous arc buf to back it.
5593 		 */
5594 		hdr = buf_hash_find(guid, bp, &hash_lock);
5595 	}
5596 
5597 	/*
5598 	 * Determine if we have an L1 cache hit or a cache miss. For simplicity
5599 	 * we maintain encrypted data separately from compressed / uncompressed
5600 	 * data. If the user is requesting raw encrypted data and we don't have
5601 	 * that in the header we will read from disk to guarantee that we can
5602 	 * get it even if the encryption keys aren't loaded.
5603 	 */
5604 	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) ||
5605 	    (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) {
5606 		boolean_t is_data = !HDR_ISTYPE_METADATA(hdr);
5607 
5608 		/*
5609 		 * Verify the block pointer contents are reasonable.  This
5610 		 * should always be the case since the blkptr is protected by
5611 		 * a checksum.
5612 		 */
5613 		if (!zfs_blkptr_verify(spa, bp, BLK_CONFIG_SKIP,
5614 		    BLK_VERIFY_LOG)) {
5615 			mutex_exit(hash_lock);
5616 			rc = SET_ERROR(ECKSUM);
5617 			goto done;
5618 		}
5619 
5620 		if (HDR_IO_IN_PROGRESS(hdr)) {
5621 			if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
5622 				mutex_exit(hash_lock);
5623 				ARCSTAT_BUMP(arcstat_cached_only_in_progress);
5624 				rc = SET_ERROR(ENOENT);
5625 				goto done;
5626 			}
5627 
5628 			zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
5629 			ASSERT3P(head_zio, !=, NULL);
5630 			if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5631 			    priority == ZIO_PRIORITY_SYNC_READ) {
5632 				/*
5633 				 * This is a sync read that needs to wait for
5634 				 * an in-flight async read. Request that the
5635 				 * zio have its priority upgraded.
5636 				 */
5637 				zio_change_priority(head_zio, priority);
5638 				DTRACE_PROBE1(arc__async__upgrade__sync,
5639 				    arc_buf_hdr_t *, hdr);
5640 				ARCSTAT_BUMP(arcstat_async_upgrade_sync);
5641 			}
5642 
5643 			DTRACE_PROBE1(arc__iohit, arc_buf_hdr_t *, hdr);
5644 			arc_access(hdr, *arc_flags, B_FALSE);
5645 
5646 			/*
5647 			 * If there are multiple threads reading the same block
5648 			 * and that block is not yet in the ARC, then only one
5649 			 * thread will do the physical I/O and all other
5650 			 * threads will wait until that I/O completes.
5651 			 * Synchronous reads use the acb_wait_cv whereas nowait
5652 			 * reads register a callback. Both are signalled/called
5653 			 * in arc_read_done.
5654 			 *
5655 			 * Errors of the physical I/O may need to be propagated.
5656 			 * Synchronous read errors are returned here from
5657 			 * arc_read_done via acb_wait_error.  Nowait reads
5658 			 * attach the acb_zio_dummy zio to pio and
5659 			 * arc_read_done propagates the physical I/O's io_error
5660 			 * to acb_zio_dummy, and thereby to pio.
5661 			 */
5662 			arc_callback_t *acb = NULL;
5663 			if (done || pio || *arc_flags & ARC_FLAG_WAIT) {
5664 				acb = kmem_zalloc(sizeof (arc_callback_t),
5665 				    KM_SLEEP);
5666 				acb->acb_done = done;
5667 				acb->acb_private = private;
5668 				acb->acb_compressed = compressed_read;
5669 				acb->acb_encrypted = encrypted_read;
5670 				acb->acb_noauth = noauth_read;
5671 				acb->acb_nobuf = no_buf;
5672 				if (*arc_flags & ARC_FLAG_WAIT) {
5673 					acb->acb_wait = B_TRUE;
5674 					mutex_init(&acb->acb_wait_lock, NULL,
5675 					    MUTEX_DEFAULT, NULL);
5676 					cv_init(&acb->acb_wait_cv, NULL,
5677 					    CV_DEFAULT, NULL);
5678 				}
5679 				acb->acb_zb = *zb;
5680 				if (pio != NULL) {
5681 					acb->acb_zio_dummy = zio_null(pio,
5682 					    spa, NULL, NULL, NULL, zio_flags);
5683 				}
5684 				acb->acb_zio_head = head_zio;
5685 				acb->acb_next = hdr->b_l1hdr.b_acb;
5686 				hdr->b_l1hdr.b_acb->acb_prev = acb;
5687 				hdr->b_l1hdr.b_acb = acb;
5688 			}
5689 			mutex_exit(hash_lock);
5690 
5691 			ARCSTAT_BUMP(arcstat_iohits);
5692 			ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
5693 			    demand, prefetch, is_data, data, metadata, iohits);
5694 
5695 			if (*arc_flags & ARC_FLAG_WAIT) {
5696 				mutex_enter(&acb->acb_wait_lock);
5697 				while (acb->acb_wait) {
5698 					cv_wait(&acb->acb_wait_cv,
5699 					    &acb->acb_wait_lock);
5700 				}
5701 				rc = acb->acb_wait_error;
5702 				mutex_exit(&acb->acb_wait_lock);
5703 				mutex_destroy(&acb->acb_wait_lock);
5704 				cv_destroy(&acb->acb_wait_cv);
5705 				kmem_free(acb, sizeof (arc_callback_t));
5706 			}
5707 			goto out;
5708 		}
5709 
5710 		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5711 		    hdr->b_l1hdr.b_state == arc_mfu ||
5712 		    hdr->b_l1hdr.b_state == arc_uncached);
5713 
5714 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5715 		arc_access(hdr, *arc_flags, B_TRUE);
5716 
5717 		if (done && !no_buf) {
5718 			ASSERT(!embedded_bp || !BP_IS_HOLE(bp));
5719 
5720 			/* Get a buf with the desired data in it. */
5721 			rc = arc_buf_alloc_impl(hdr, spa, zb, private,
5722 			    encrypted_read, compressed_read, noauth_read,
5723 			    B_TRUE, &buf);
5724 			if (rc == ECKSUM) {
5725 				/*
5726 				 * Convert authentication and decryption errors
5727 				 * to EIO (and generate an ereport if needed)
5728 				 * before leaving the ARC.
5729 				 */
5730 				rc = SET_ERROR(EIO);
5731 				if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5732 					spa_log_error(spa, zb, hdr->b_birth);
5733 					(void) zfs_ereport_post(
5734 					    FM_EREPORT_ZFS_AUTHENTICATION,
5735 					    spa, NULL, zb, NULL, 0);
5736 				}
5737 			}
5738 			if (rc != 0) {
5739 				arc_buf_destroy_impl(buf);
5740 				buf = NULL;
5741 				(void) remove_reference(hdr, private);
5742 			}
5743 
5744 			/* assert any errors weren't due to unloaded keys */
5745 			ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
5746 			    rc != EACCES);
5747 		}
5748 		mutex_exit(hash_lock);
5749 		ARCSTAT_BUMP(arcstat_hits);
5750 		ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
5751 		    demand, prefetch, is_data, data, metadata, hits);
5752 		*arc_flags |= ARC_FLAG_CACHED;
5753 		goto done;
5754 	} else {
5755 		uint64_t lsize = BP_GET_LSIZE(bp);
5756 		uint64_t psize = BP_GET_PSIZE(bp);
5757 		arc_callback_t *acb;
5758 		vdev_t *vd = NULL;
5759 		uint64_t addr = 0;
5760 		boolean_t devw = B_FALSE;
5761 		uint64_t size;
5762 		abd_t *hdr_abd;
5763 		int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0;
5764 		arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
5765 
5766 		if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
5767 			if (hash_lock != NULL)
5768 				mutex_exit(hash_lock);
5769 			rc = SET_ERROR(ENOENT);
5770 			goto done;
5771 		}
5772 
5773 		/*
5774 		 * Verify the block pointer contents are reasonable.  This
5775 		 * should always be the case since the blkptr is protected by
5776 		 * a checksum.
5777 		 */
5778 		if (!zfs_blkptr_verify(spa, bp,
5779 		    (zio_flags & ZIO_FLAG_CONFIG_WRITER) ?
5780 		    BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
5781 			if (hash_lock != NULL)
5782 				mutex_exit(hash_lock);
5783 			rc = SET_ERROR(ECKSUM);
5784 			goto done;
5785 		}
5786 
5787 		if (hdr == NULL) {
5788 			/*
5789 			 * This block is not in the cache or it has
5790 			 * embedded data.
5791 			 */
5792 			arc_buf_hdr_t *exists = NULL;
5793 			hdr = arc_hdr_alloc(guid, psize, lsize,
5794 			    BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type);
5795 
5796 			if (!embedded_bp) {
5797 				hdr->b_dva = *BP_IDENTITY(bp);
5798 				hdr->b_birth = BP_GET_BIRTH(bp);
5799 				exists = buf_hash_insert(hdr, &hash_lock);
5800 			}
5801 			if (exists != NULL) {
5802 				/* somebody beat us to the hash insert */
5803 				mutex_exit(hash_lock);
5804 				buf_discard_identity(hdr);
5805 				arc_hdr_destroy(hdr);
5806 				goto top; /* restart the IO request */
5807 			}
5808 		} else {
5809 			/*
5810 			 * This block is in the ghost cache or encrypted data
5811 			 * was requested and we didn't have it. If it was
5812 			 * L2-only (and thus didn't have an L1 hdr),
5813 			 * we realloc the header to add an L1 hdr.
5814 			 */
5815 			if (!HDR_HAS_L1HDR(hdr)) {
5816 				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
5817 				    hdr_full_cache);
5818 			}
5819 
5820 			if (GHOST_STATE(hdr->b_l1hdr.b_state)) {
5821 				ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5822 				ASSERT(!HDR_HAS_RABD(hdr));
5823 				ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5824 				ASSERT0(zfs_refcount_count(
5825 				    &hdr->b_l1hdr.b_refcnt));
5826 				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
5827 #ifdef ZFS_DEBUG
5828 				ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
5829 #endif
5830 			} else if (HDR_IO_IN_PROGRESS(hdr)) {
5831 				/*
5832 				 * If this header already had an IO in progress
5833 				 * and we are performing another IO to fetch
5834 				 * encrypted data we must wait until the first
5835 				 * IO completes so as not to confuse
5836 				 * arc_read_done(). This should be very rare
5837 				 * and so the performance impact shouldn't
5838 				 * matter.
5839 				 */
5840 				arc_callback_t *acb = kmem_zalloc(
5841 				    sizeof (arc_callback_t), KM_SLEEP);
5842 				acb->acb_wait = B_TRUE;
5843 				mutex_init(&acb->acb_wait_lock, NULL,
5844 				    MUTEX_DEFAULT, NULL);
5845 				cv_init(&acb->acb_wait_cv, NULL, CV_DEFAULT,
5846 				    NULL);
5847 				acb->acb_zio_head =
5848 				    hdr->b_l1hdr.b_acb->acb_zio_head;
5849 				acb->acb_next = hdr->b_l1hdr.b_acb;
5850 				hdr->b_l1hdr.b_acb->acb_prev = acb;
5851 				hdr->b_l1hdr.b_acb = acb;
5852 				mutex_exit(hash_lock);
5853 				mutex_enter(&acb->acb_wait_lock);
5854 				while (acb->acb_wait) {
5855 					cv_wait(&acb->acb_wait_cv,
5856 					    &acb->acb_wait_lock);
5857 				}
5858 				mutex_exit(&acb->acb_wait_lock);
5859 				mutex_destroy(&acb->acb_wait_lock);
5860 				cv_destroy(&acb->acb_wait_cv);
5861 				kmem_free(acb, sizeof (arc_callback_t));
5862 				goto top;
5863 			}
5864 		}
5865 		if (*arc_flags & ARC_FLAG_UNCACHED) {
5866 			arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED);
5867 			if (!encrypted_read)
5868 				alloc_flags |= ARC_HDR_ALLOC_LINEAR;
5869 		}
5870 
5871 		/*
5872 		 * Take additional reference for IO_IN_PROGRESS.  It stops
5873 		 * arc_access() from putting this header without any buffers
5874 		 * and so other references but obviously nonevictable onto
5875 		 * the evictable list of MRU or MFU state.
5876 		 */
5877 		add_reference(hdr, hdr);
5878 		if (!embedded_bp)
5879 			arc_access(hdr, *arc_flags, B_FALSE);
5880 		arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5881 		arc_hdr_alloc_abd(hdr, alloc_flags);
5882 		if (encrypted_read) {
5883 			ASSERT(HDR_HAS_RABD(hdr));
5884 			size = HDR_GET_PSIZE(hdr);
5885 			hdr_abd = hdr->b_crypt_hdr.b_rabd;
5886 			zio_flags |= ZIO_FLAG_RAW;
5887 		} else {
5888 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5889 			size = arc_hdr_size(hdr);
5890 			hdr_abd = hdr->b_l1hdr.b_pabd;
5891 
5892 			if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
5893 				zio_flags |= ZIO_FLAG_RAW_COMPRESS;
5894 			}
5895 
5896 			/*
5897 			 * For authenticated bp's, we do not ask the ZIO layer
5898 			 * to authenticate them since this will cause the entire
5899 			 * IO to fail if the key isn't loaded. Instead, we
5900 			 * defer authentication until arc_buf_fill(), which will
5901 			 * verify the data when the key is available.
5902 			 */
5903 			if (BP_IS_AUTHENTICATED(bp))
5904 				zio_flags |= ZIO_FLAG_RAW_ENCRYPT;
5905 		}
5906 
5907 		if (BP_IS_AUTHENTICATED(bp))
5908 			arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
5909 		if (BP_GET_LEVEL(bp) > 0)
5910 			arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
5911 		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
5912 
5913 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
5914 		acb->acb_done = done;
5915 		acb->acb_private = private;
5916 		acb->acb_compressed = compressed_read;
5917 		acb->acb_encrypted = encrypted_read;
5918 		acb->acb_noauth = noauth_read;
5919 		acb->acb_zb = *zb;
5920 
5921 		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5922 		hdr->b_l1hdr.b_acb = acb;
5923 
5924 		if (HDR_HAS_L2HDR(hdr) &&
5925 		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
5926 			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
5927 			addr = hdr->b_l2hdr.b_daddr;
5928 			/*
5929 			 * Lock out L2ARC device removal.
5930 			 */
5931 			if (vdev_is_dead(vd) ||
5932 			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
5933 				vd = NULL;
5934 		}
5935 
5936 		/*
5937 		 * We count both async reads and scrub IOs as asynchronous so
5938 		 * that both can be upgraded in the event of a cache hit while
5939 		 * the read IO is still in-flight.
5940 		 */
5941 		if (priority == ZIO_PRIORITY_ASYNC_READ ||
5942 		    priority == ZIO_PRIORITY_SCRUB)
5943 			arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5944 		else
5945 			arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5946 
5947 		/*
5948 		 * At this point, we have a level 1 cache miss or a blkptr
5949 		 * with embedded data.  Try again in L2ARC if possible.
5950 		 */
5951 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
5952 
5953 		/*
5954 		 * Skip ARC stat bump for block pointers with embedded
5955 		 * data. The data are read from the blkptr itself via
5956 		 * decode_embedded_bp_compressed().
5957 		 */
5958 		if (!embedded_bp) {
5959 			DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr,
5960 			    blkptr_t *, bp, uint64_t, lsize,
5961 			    zbookmark_phys_t *, zb);
5962 			ARCSTAT_BUMP(arcstat_misses);
5963 			ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
5964 			    demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data,
5965 			    metadata, misses);
5966 			zfs_racct_read(spa, size, 1, 0);
5967 		}
5968 
5969 		/* Check if the spa even has l2 configured */
5970 		const boolean_t spa_has_l2 = l2arc_ndev != 0 &&
5971 		    spa->spa_l2cache.sav_count > 0;
5972 
5973 		if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) {
5974 			/*
5975 			 * Read from the L2ARC if the following are true:
5976 			 * 1. The L2ARC vdev was previously cached.
5977 			 * 2. This buffer still has L2ARC metadata.
5978 			 * 3. This buffer isn't currently writing to the L2ARC.
5979 			 * 4. The L2ARC entry wasn't evicted, which may
5980 			 *    also have invalidated the vdev.
5981 			 */
5982 			if (HDR_HAS_L2HDR(hdr) &&
5983 			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr)) {
5984 				l2arc_read_callback_t *cb;
5985 				abd_t *abd;
5986 				uint64_t asize;
5987 
5988 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
5989 				ARCSTAT_BUMP(arcstat_l2_hits);
5990 				hdr->b_l2hdr.b_hits++;
5991 
5992 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
5993 				    KM_SLEEP);
5994 				cb->l2rcb_hdr = hdr;
5995 				cb->l2rcb_bp = *bp;
5996 				cb->l2rcb_zb = *zb;
5997 				cb->l2rcb_flags = zio_flags;
5998 
5999 				/*
6000 				 * When Compressed ARC is disabled, but the
6001 				 * L2ARC block is compressed, arc_hdr_size()
6002 				 * will have returned LSIZE rather than PSIZE.
6003 				 */
6004 				if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
6005 				    !HDR_COMPRESSION_ENABLED(hdr) &&
6006 				    HDR_GET_PSIZE(hdr) != 0) {
6007 					size = HDR_GET_PSIZE(hdr);
6008 				}
6009 
6010 				asize = vdev_psize_to_asize(vd, size);
6011 				if (asize != size) {
6012 					abd = abd_alloc_for_io(asize,
6013 					    HDR_ISTYPE_METADATA(hdr));
6014 					cb->l2rcb_abd = abd;
6015 				} else {
6016 					abd = hdr_abd;
6017 				}
6018 
6019 				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
6020 				    addr + asize <= vd->vdev_psize -
6021 				    VDEV_LABEL_END_SIZE);
6022 
6023 				/*
6024 				 * l2arc read.  The SCL_L2ARC lock will be
6025 				 * released by l2arc_read_done().
6026 				 * Issue a null zio if the underlying buffer
6027 				 * was squashed to zero size by compression.
6028 				 */
6029 				ASSERT3U(arc_hdr_get_compress(hdr), !=,
6030 				    ZIO_COMPRESS_EMPTY);
6031 				rzio = zio_read_phys(pio, vd, addr,
6032 				    asize, abd,
6033 				    ZIO_CHECKSUM_OFF,
6034 				    l2arc_read_done, cb, priority,
6035 				    zio_flags | ZIO_FLAG_CANFAIL |
6036 				    ZIO_FLAG_DONT_PROPAGATE |
6037 				    ZIO_FLAG_DONT_RETRY, B_FALSE);
6038 				acb->acb_zio_head = rzio;
6039 
6040 				if (hash_lock != NULL)
6041 					mutex_exit(hash_lock);
6042 
6043 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
6044 				    zio_t *, rzio);
6045 				ARCSTAT_INCR(arcstat_l2_read_bytes,
6046 				    HDR_GET_PSIZE(hdr));
6047 
6048 				if (*arc_flags & ARC_FLAG_NOWAIT) {
6049 					zio_nowait(rzio);
6050 					goto out;
6051 				}
6052 
6053 				ASSERT(*arc_flags & ARC_FLAG_WAIT);
6054 				if (zio_wait(rzio) == 0)
6055 					goto out;
6056 
6057 				/* l2arc read error; goto zio_read() */
6058 				if (hash_lock != NULL)
6059 					mutex_enter(hash_lock);
6060 			} else {
6061 				DTRACE_PROBE1(l2arc__miss,
6062 				    arc_buf_hdr_t *, hdr);
6063 				ARCSTAT_BUMP(arcstat_l2_misses);
6064 				if (HDR_L2_WRITING(hdr))
6065 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
6066 				spa_config_exit(spa, SCL_L2ARC, vd);
6067 			}
6068 		} else {
6069 			if (vd != NULL)
6070 				spa_config_exit(spa, SCL_L2ARC, vd);
6071 
6072 			/*
6073 			 * Only a spa with l2 should contribute to l2
6074 			 * miss stats.  (Including the case of having a
6075 			 * faulted cache device - that's also a miss.)
6076 			 */
6077 			if (spa_has_l2) {
6078 				/*
6079 				 * Skip ARC stat bump for block pointers with
6080 				 * embedded data. The data are read from the
6081 				 * blkptr itself via
6082 				 * decode_embedded_bp_compressed().
6083 				 */
6084 				if (!embedded_bp) {
6085 					DTRACE_PROBE1(l2arc__miss,
6086 					    arc_buf_hdr_t *, hdr);
6087 					ARCSTAT_BUMP(arcstat_l2_misses);
6088 				}
6089 			}
6090 		}
6091 
6092 		rzio = zio_read(pio, spa, bp, hdr_abd, size,
6093 		    arc_read_done, hdr, priority, zio_flags, zb);
6094 		acb->acb_zio_head = rzio;
6095 
6096 		if (hash_lock != NULL)
6097 			mutex_exit(hash_lock);
6098 
6099 		if (*arc_flags & ARC_FLAG_WAIT) {
6100 			rc = zio_wait(rzio);
6101 			goto out;
6102 		}
6103 
6104 		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
6105 		zio_nowait(rzio);
6106 	}
6107 
6108 out:
6109 	/* embedded bps don't actually go to disk */
6110 	if (!embedded_bp)
6111 		spa_read_history_add(spa, zb, *arc_flags);
6112 	spl_fstrans_unmark(cookie);
6113 	return (rc);
6114 
6115 done:
6116 	if (done)
6117 		done(NULL, zb, bp, buf, private);
6118 	if (pio && rc != 0) {
6119 		zio_t *zio = zio_null(pio, spa, NULL, NULL, NULL, zio_flags);
6120 		zio->io_error = rc;
6121 		zio_nowait(zio);
6122 	}
6123 	goto out;
6124 }
6125 
6126 arc_prune_t *
arc_add_prune_callback(arc_prune_func_t * func,void * private)6127 arc_add_prune_callback(arc_prune_func_t *func, void *private)
6128 {
6129 	arc_prune_t *p;
6130 
6131 	p = kmem_alloc(sizeof (*p), KM_SLEEP);
6132 	p->p_pfunc = func;
6133 	p->p_private = private;
6134 	list_link_init(&p->p_node);
6135 	zfs_refcount_create(&p->p_refcnt);
6136 
6137 	mutex_enter(&arc_prune_mtx);
6138 	zfs_refcount_add(&p->p_refcnt, &arc_prune_list);
6139 	list_insert_head(&arc_prune_list, p);
6140 	mutex_exit(&arc_prune_mtx);
6141 
6142 	return (p);
6143 }
6144 
6145 void
arc_remove_prune_callback(arc_prune_t * p)6146 arc_remove_prune_callback(arc_prune_t *p)
6147 {
6148 	boolean_t wait = B_FALSE;
6149 	mutex_enter(&arc_prune_mtx);
6150 	list_remove(&arc_prune_list, p);
6151 	if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
6152 		wait = B_TRUE;
6153 	mutex_exit(&arc_prune_mtx);
6154 
6155 	/* wait for arc_prune_task to finish */
6156 	if (wait)
6157 		taskq_wait_outstanding(arc_prune_taskq, 0);
6158 	ASSERT0(zfs_refcount_count(&p->p_refcnt));
6159 	zfs_refcount_destroy(&p->p_refcnt);
6160 	kmem_free(p, sizeof (*p));
6161 }
6162 
6163 /*
6164  * Helper function for arc_prune_async() it is responsible for safely
6165  * handling the execution of a registered arc_prune_func_t.
6166  */
6167 static void
arc_prune_task(void * ptr)6168 arc_prune_task(void *ptr)
6169 {
6170 	arc_prune_t *ap = (arc_prune_t *)ptr;
6171 	arc_prune_func_t *func = ap->p_pfunc;
6172 
6173 	if (func != NULL)
6174 		func(ap->p_adjust, ap->p_private);
6175 
6176 	(void) zfs_refcount_remove(&ap->p_refcnt, func);
6177 }
6178 
6179 /*
6180  * Notify registered consumers they must drop holds on a portion of the ARC
6181  * buffers they reference.  This provides a mechanism to ensure the ARC can
6182  * honor the metadata limit and reclaim otherwise pinned ARC buffers.
6183  *
6184  * This operation is performed asynchronously so it may be safely called
6185  * in the context of the arc_reclaim_thread().  A reference is taken here
6186  * for each registered arc_prune_t and the arc_prune_task() is responsible
6187  * for releasing it once the registered arc_prune_func_t has completed.
6188  */
6189 static void
arc_prune_async(uint64_t adjust)6190 arc_prune_async(uint64_t adjust)
6191 {
6192 	arc_prune_t *ap;
6193 
6194 	mutex_enter(&arc_prune_mtx);
6195 	for (ap = list_head(&arc_prune_list); ap != NULL;
6196 	    ap = list_next(&arc_prune_list, ap)) {
6197 
6198 		if (zfs_refcount_count(&ap->p_refcnt) >= 2)
6199 			continue;
6200 
6201 		zfs_refcount_add(&ap->p_refcnt, ap->p_pfunc);
6202 		ap->p_adjust = adjust;
6203 		if (taskq_dispatch(arc_prune_taskq, arc_prune_task,
6204 		    ap, TQ_SLEEP) == TASKQID_INVALID) {
6205 			(void) zfs_refcount_remove(&ap->p_refcnt, ap->p_pfunc);
6206 			continue;
6207 		}
6208 		ARCSTAT_BUMP(arcstat_prune);
6209 	}
6210 	mutex_exit(&arc_prune_mtx);
6211 }
6212 
6213 /*
6214  * Notify the arc that a block was freed, and thus will never be used again.
6215  */
6216 void
arc_freed(spa_t * spa,const blkptr_t * bp)6217 arc_freed(spa_t *spa, const blkptr_t *bp)
6218 {
6219 	arc_buf_hdr_t *hdr;
6220 	kmutex_t *hash_lock;
6221 	uint64_t guid = spa_load_guid(spa);
6222 
6223 	ASSERT(!BP_IS_EMBEDDED(bp));
6224 
6225 	hdr = buf_hash_find(guid, bp, &hash_lock);
6226 	if (hdr == NULL)
6227 		return;
6228 
6229 	/*
6230 	 * We might be trying to free a block that is still doing I/O
6231 	 * (i.e. prefetch) or has some other reference (i.e. a dedup-ed,
6232 	 * dmu_sync-ed block). A block may also have a reference if it is
6233 	 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6234 	 * have written the new block to its final resting place on disk but
6235 	 * without the dedup flag set. This would have left the hdr in the MRU
6236 	 * state and discoverable. When the txg finally syncs it detects that
6237 	 * the block was overridden in open context and issues an override I/O.
6238 	 * Since this is a dedup block, the override I/O will determine if the
6239 	 * block is already in the DDT. If so, then it will replace the io_bp
6240 	 * with the bp from the DDT and allow the I/O to finish. When the I/O
6241 	 * reaches the done callback, dbuf_write_override_done, it will
6242 	 * check to see if the io_bp and io_bp_override are identical.
6243 	 * If they are not, then it indicates that the bp was replaced with
6244 	 * the bp in the DDT and the override bp is freed. This allows
6245 	 * us to arrive here with a reference on a block that is being
6246 	 * freed. So if we have an I/O in progress, or a reference to
6247 	 * this hdr, then we don't destroy the hdr.
6248 	 */
6249 	if (!HDR_HAS_L1HDR(hdr) ||
6250 	    zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6251 		arc_change_state(arc_anon, hdr);
6252 		arc_hdr_destroy(hdr);
6253 		mutex_exit(hash_lock);
6254 	} else {
6255 		mutex_exit(hash_lock);
6256 	}
6257 
6258 }
6259 
6260 /*
6261  * Release this buffer from the cache, making it an anonymous buffer.  This
6262  * must be done after a read and prior to modifying the buffer contents.
6263  * If the buffer has more than one reference, we must make
6264  * a new hdr for the buffer.
6265  */
6266 void
arc_release(arc_buf_t * buf,const void * tag)6267 arc_release(arc_buf_t *buf, const void *tag)
6268 {
6269 	arc_buf_hdr_t *hdr = buf->b_hdr;
6270 
6271 	/*
6272 	 * It would be nice to assert that if its DMU metadata (level >
6273 	 * 0 || it's the dnode file), then it must be syncing context.
6274 	 * But we don't know that information at this level.
6275 	 */
6276 
6277 	ASSERT(HDR_HAS_L1HDR(hdr));
6278 
6279 	/*
6280 	 * We don't grab the hash lock prior to this check, because if
6281 	 * the buffer's header is in the arc_anon state, it won't be
6282 	 * linked into the hash table.
6283 	 */
6284 	if (hdr->b_l1hdr.b_state == arc_anon) {
6285 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6286 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
6287 		ASSERT(!HDR_HAS_L2HDR(hdr));
6288 
6289 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
6290 		ASSERT(ARC_BUF_LAST(buf));
6291 		ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
6292 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6293 
6294 		hdr->b_l1hdr.b_arc_access = 0;
6295 
6296 		/*
6297 		 * If the buf is being overridden then it may already
6298 		 * have a hdr that is not empty.
6299 		 */
6300 		buf_discard_identity(hdr);
6301 		arc_buf_thaw(buf);
6302 
6303 		return;
6304 	}
6305 
6306 	kmutex_t *hash_lock = HDR_LOCK(hdr);
6307 	mutex_enter(hash_lock);
6308 
6309 	/*
6310 	 * This assignment is only valid as long as the hash_lock is
6311 	 * held, we must be careful not to reference state or the
6312 	 * b_state field after dropping the lock.
6313 	 */
6314 	arc_state_t *state = hdr->b_l1hdr.b_state;
6315 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6316 	ASSERT3P(state, !=, arc_anon);
6317 
6318 	/* this buffer is not on any list */
6319 	ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
6320 
6321 	if (HDR_HAS_L2HDR(hdr)) {
6322 		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6323 
6324 		/*
6325 		 * We have to recheck this conditional again now that
6326 		 * we're holding the l2ad_mtx to prevent a race with
6327 		 * another thread which might be concurrently calling
6328 		 * l2arc_evict(). In that case, l2arc_evict() might have
6329 		 * destroyed the header's L2 portion as we were waiting
6330 		 * to acquire the l2ad_mtx.
6331 		 */
6332 		if (HDR_HAS_L2HDR(hdr))
6333 			arc_hdr_l2hdr_destroy(hdr);
6334 
6335 		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6336 	}
6337 
6338 	/*
6339 	 * Do we have more than one buf?
6340 	 */
6341 	if (hdr->b_l1hdr.b_buf != buf || !ARC_BUF_LAST(buf)) {
6342 		arc_buf_hdr_t *nhdr;
6343 		uint64_t spa = hdr->b_spa;
6344 		uint64_t psize = HDR_GET_PSIZE(hdr);
6345 		uint64_t lsize = HDR_GET_LSIZE(hdr);
6346 		boolean_t protected = HDR_PROTECTED(hdr);
6347 		enum zio_compress compress = arc_hdr_get_compress(hdr);
6348 		arc_buf_contents_t type = arc_buf_type(hdr);
6349 		VERIFY3U(hdr->b_type, ==, type);
6350 
6351 		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
6352 		VERIFY3S(remove_reference(hdr, tag), >, 0);
6353 
6354 		if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
6355 			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6356 			ASSERT(ARC_BUF_LAST(buf));
6357 		}
6358 
6359 		/*
6360 		 * Pull the data off of this hdr and attach it to
6361 		 * a new anonymous hdr. Also find the last buffer
6362 		 * in the hdr's buffer list.
6363 		 */
6364 		arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
6365 		ASSERT3P(lastbuf, !=, NULL);
6366 
6367 		/*
6368 		 * If the current arc_buf_t and the hdr are sharing their data
6369 		 * buffer, then we must stop sharing that block.
6370 		 */
6371 		if (ARC_BUF_SHARED(buf)) {
6372 			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6373 			ASSERT(!arc_buf_is_shared(lastbuf));
6374 
6375 			/*
6376 			 * First, sever the block sharing relationship between
6377 			 * buf and the arc_buf_hdr_t.
6378 			 */
6379 			arc_unshare_buf(hdr, buf);
6380 
6381 			/*
6382 			 * Now we need to recreate the hdr's b_pabd. Since we
6383 			 * have lastbuf handy, we try to share with it, but if
6384 			 * we can't then we allocate a new b_pabd and copy the
6385 			 * data from buf into it.
6386 			 */
6387 			if (arc_can_share(hdr, lastbuf)) {
6388 				arc_share_buf(hdr, lastbuf);
6389 			} else {
6390 				arc_hdr_alloc_abd(hdr, 0);
6391 				abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
6392 				    buf->b_data, psize);
6393 			}
6394 			VERIFY3P(lastbuf->b_data, !=, NULL);
6395 		} else if (HDR_SHARED_DATA(hdr)) {
6396 			/*
6397 			 * Uncompressed shared buffers are always at the end
6398 			 * of the list. Compressed buffers don't have the
6399 			 * same requirements. This makes it hard to
6400 			 * simply assert that the lastbuf is shared so
6401 			 * we rely on the hdr's compression flags to determine
6402 			 * if we have a compressed, shared buffer.
6403 			 */
6404 			ASSERT(arc_buf_is_shared(lastbuf) ||
6405 			    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
6406 			ASSERT(!arc_buf_is_shared(buf));
6407 		}
6408 
6409 		ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
6410 		ASSERT3P(state, !=, arc_l2c_only);
6411 
6412 		(void) zfs_refcount_remove_many(&state->arcs_size[type],
6413 		    arc_buf_size(buf), buf);
6414 
6415 		if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6416 			ASSERT3P(state, !=, arc_l2c_only);
6417 			(void) zfs_refcount_remove_many(
6418 			    &state->arcs_esize[type],
6419 			    arc_buf_size(buf), buf);
6420 		}
6421 
6422 		arc_cksum_verify(buf);
6423 		arc_buf_unwatch(buf);
6424 
6425 		/* if this is the last uncompressed buf free the checksum */
6426 		if (!arc_hdr_has_uncompressed_buf(hdr))
6427 			arc_cksum_free(hdr);
6428 
6429 		mutex_exit(hash_lock);
6430 
6431 		nhdr = arc_hdr_alloc(spa, psize, lsize, protected,
6432 		    compress, hdr->b_complevel, type);
6433 		ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
6434 		ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt));
6435 		VERIFY3U(nhdr->b_type, ==, type);
6436 		ASSERT(!HDR_SHARED_DATA(nhdr));
6437 
6438 		nhdr->b_l1hdr.b_buf = buf;
6439 		(void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
6440 		buf->b_hdr = nhdr;
6441 
6442 		(void) zfs_refcount_add_many(&arc_anon->arcs_size[type],
6443 		    arc_buf_size(buf), buf);
6444 	} else {
6445 		ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
6446 		/* protected by hash lock, or hdr is on arc_anon */
6447 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6448 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6449 		hdr->b_l1hdr.b_mru_hits = 0;
6450 		hdr->b_l1hdr.b_mru_ghost_hits = 0;
6451 		hdr->b_l1hdr.b_mfu_hits = 0;
6452 		hdr->b_l1hdr.b_mfu_ghost_hits = 0;
6453 		arc_change_state(arc_anon, hdr);
6454 		hdr->b_l1hdr.b_arc_access = 0;
6455 
6456 		mutex_exit(hash_lock);
6457 		buf_discard_identity(hdr);
6458 		arc_buf_thaw(buf);
6459 	}
6460 }
6461 
6462 int
arc_released(arc_buf_t * buf)6463 arc_released(arc_buf_t *buf)
6464 {
6465 	return (buf->b_data != NULL &&
6466 	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
6467 }
6468 
6469 #ifdef ZFS_DEBUG
6470 int
arc_referenced(arc_buf_t * buf)6471 arc_referenced(arc_buf_t *buf)
6472 {
6473 	return (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
6474 }
6475 #endif
6476 
6477 static void
arc_write_ready(zio_t * zio)6478 arc_write_ready(zio_t *zio)
6479 {
6480 	arc_write_callback_t *callback = zio->io_private;
6481 	arc_buf_t *buf = callback->awcb_buf;
6482 	arc_buf_hdr_t *hdr = buf->b_hdr;
6483 	blkptr_t *bp = zio->io_bp;
6484 	uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp);
6485 	fstrans_cookie_t cookie = spl_fstrans_mark();
6486 
6487 	ASSERT(HDR_HAS_L1HDR(hdr));
6488 	ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
6489 	ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
6490 
6491 	/*
6492 	 * If we're reexecuting this zio because the pool suspended, then
6493 	 * cleanup any state that was previously set the first time the
6494 	 * callback was invoked.
6495 	 */
6496 	if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
6497 		arc_cksum_free(hdr);
6498 		arc_buf_unwatch(buf);
6499 		if (hdr->b_l1hdr.b_pabd != NULL) {
6500 			if (ARC_BUF_SHARED(buf)) {
6501 				arc_unshare_buf(hdr, buf);
6502 			} else {
6503 				ASSERT(!arc_buf_is_shared(buf));
6504 				arc_hdr_free_abd(hdr, B_FALSE);
6505 			}
6506 		}
6507 
6508 		if (HDR_HAS_RABD(hdr))
6509 			arc_hdr_free_abd(hdr, B_TRUE);
6510 	}
6511 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6512 	ASSERT(!HDR_HAS_RABD(hdr));
6513 	ASSERT(!HDR_SHARED_DATA(hdr));
6514 	ASSERT(!arc_buf_is_shared(buf));
6515 
6516 	callback->awcb_ready(zio, buf, callback->awcb_private);
6517 
6518 	if (HDR_IO_IN_PROGRESS(hdr)) {
6519 		ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
6520 	} else {
6521 		arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6522 		add_reference(hdr, hdr); /* For IO_IN_PROGRESS. */
6523 	}
6524 
6525 	if (BP_IS_PROTECTED(bp)) {
6526 		/* ZIL blocks are written through zio_rewrite */
6527 		ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
6528 
6529 		if (BP_SHOULD_BYTESWAP(bp)) {
6530 			if (BP_GET_LEVEL(bp) > 0) {
6531 				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
6532 			} else {
6533 				hdr->b_l1hdr.b_byteswap =
6534 				    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
6535 			}
6536 		} else {
6537 			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
6538 		}
6539 
6540 		arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
6541 		hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
6542 		hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
6543 		zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
6544 		    hdr->b_crypt_hdr.b_iv);
6545 		zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
6546 	} else {
6547 		arc_hdr_clear_flags(hdr, ARC_FLAG_PROTECTED);
6548 	}
6549 
6550 	/*
6551 	 * If this block was written for raw encryption but the zio layer
6552 	 * ended up only authenticating it, adjust the buffer flags now.
6553 	 */
6554 	if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) {
6555 		arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6556 		buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6557 		if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF)
6558 			buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6559 	} else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) {
6560 		buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6561 		buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6562 	}
6563 
6564 	/* this must be done after the buffer flags are adjusted */
6565 	arc_cksum_compute(buf);
6566 
6567 	enum zio_compress compress;
6568 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
6569 		compress = ZIO_COMPRESS_OFF;
6570 	} else {
6571 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
6572 		compress = BP_GET_COMPRESS(bp);
6573 	}
6574 	HDR_SET_PSIZE(hdr, psize);
6575 	arc_hdr_set_compress(hdr, compress);
6576 	hdr->b_complevel = zio->io_prop.zp_complevel;
6577 
6578 	if (zio->io_error != 0 || psize == 0)
6579 		goto out;
6580 
6581 	/*
6582 	 * Fill the hdr with data. If the buffer is encrypted we have no choice
6583 	 * but to copy the data into b_radb. If the hdr is compressed, the data
6584 	 * we want is available from the zio, otherwise we can take it from
6585 	 * the buf.
6586 	 *
6587 	 * We might be able to share the buf's data with the hdr here. However,
6588 	 * doing so would cause the ARC to be full of linear ABDs if we write a
6589 	 * lot of shareable data. As a compromise, we check whether scattered
6590 	 * ABDs are allowed, and assume that if they are then the user wants
6591 	 * the ARC to be primarily filled with them regardless of the data being
6592 	 * written. Therefore, if they're allowed then we allocate one and copy
6593 	 * the data into it; otherwise, we share the data directly if we can.
6594 	 */
6595 	if (ARC_BUF_ENCRYPTED(buf)) {
6596 		ASSERT3U(psize, >, 0);
6597 		ASSERT(ARC_BUF_COMPRESSED(buf));
6598 		arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA |
6599 		    ARC_HDR_USE_RESERVE);
6600 		abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6601 	} else if (!(HDR_UNCACHED(hdr) ||
6602 	    abd_size_alloc_linear(arc_buf_size(buf))) ||
6603 	    !arc_can_share(hdr, buf)) {
6604 		/*
6605 		 * Ideally, we would always copy the io_abd into b_pabd, but the
6606 		 * user may have disabled compressed ARC, thus we must check the
6607 		 * hdr's compression setting rather than the io_bp's.
6608 		 */
6609 		if (BP_IS_ENCRYPTED(bp)) {
6610 			ASSERT3U(psize, >, 0);
6611 			arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA |
6612 			    ARC_HDR_USE_RESERVE);
6613 			abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6614 		} else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
6615 		    !ARC_BUF_COMPRESSED(buf)) {
6616 			ASSERT3U(psize, >, 0);
6617 			arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE);
6618 			abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
6619 		} else {
6620 			ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
6621 			arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE);
6622 			abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
6623 			    arc_buf_size(buf));
6624 		}
6625 	} else {
6626 		ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
6627 		ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
6628 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
6629 		ASSERT(ARC_BUF_LAST(buf));
6630 
6631 		arc_share_buf(hdr, buf);
6632 	}
6633 
6634 out:
6635 	arc_hdr_verify(hdr, bp);
6636 	spl_fstrans_unmark(cookie);
6637 }
6638 
6639 static void
arc_write_children_ready(zio_t * zio)6640 arc_write_children_ready(zio_t *zio)
6641 {
6642 	arc_write_callback_t *callback = zio->io_private;
6643 	arc_buf_t *buf = callback->awcb_buf;
6644 
6645 	callback->awcb_children_ready(zio, buf, callback->awcb_private);
6646 }
6647 
6648 static void
arc_write_done(zio_t * zio)6649 arc_write_done(zio_t *zio)
6650 {
6651 	arc_write_callback_t *callback = zio->io_private;
6652 	arc_buf_t *buf = callback->awcb_buf;
6653 	arc_buf_hdr_t *hdr = buf->b_hdr;
6654 
6655 	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6656 
6657 	if (zio->io_error == 0) {
6658 		arc_hdr_verify(hdr, zio->io_bp);
6659 
6660 		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
6661 			buf_discard_identity(hdr);
6662 		} else {
6663 			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
6664 			hdr->b_birth = BP_GET_BIRTH(zio->io_bp);
6665 		}
6666 	} else {
6667 		ASSERT(HDR_EMPTY(hdr));
6668 	}
6669 
6670 	/*
6671 	 * If the block to be written was all-zero or compressed enough to be
6672 	 * embedded in the BP, no write was performed so there will be no
6673 	 * dva/birth/checksum.  The buffer must therefore remain anonymous
6674 	 * (and uncached).
6675 	 */
6676 	if (!HDR_EMPTY(hdr)) {
6677 		arc_buf_hdr_t *exists;
6678 		kmutex_t *hash_lock;
6679 
6680 		ASSERT3U(zio->io_error, ==, 0);
6681 
6682 		arc_cksum_verify(buf);
6683 
6684 		exists = buf_hash_insert(hdr, &hash_lock);
6685 		if (exists != NULL) {
6686 			/*
6687 			 * This can only happen if we overwrite for
6688 			 * sync-to-convergence, because we remove
6689 			 * buffers from the hash table when we arc_free().
6690 			 */
6691 			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
6692 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6693 					panic("bad overwrite, hdr=%p exists=%p",
6694 					    (void *)hdr, (void *)exists);
6695 				ASSERT(zfs_refcount_is_zero(
6696 				    &exists->b_l1hdr.b_refcnt));
6697 				arc_change_state(arc_anon, exists);
6698 				arc_hdr_destroy(exists);
6699 				mutex_exit(hash_lock);
6700 				exists = buf_hash_insert(hdr, &hash_lock);
6701 				ASSERT3P(exists, ==, NULL);
6702 			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
6703 				/* nopwrite */
6704 				ASSERT(zio->io_prop.zp_nopwrite);
6705 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6706 					panic("bad nopwrite, hdr=%p exists=%p",
6707 					    (void *)hdr, (void *)exists);
6708 			} else {
6709 				/* Dedup */
6710 				ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
6711 				ASSERT(ARC_BUF_LAST(hdr->b_l1hdr.b_buf));
6712 				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
6713 				ASSERT(BP_GET_DEDUP(zio->io_bp));
6714 				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
6715 			}
6716 		}
6717 		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6718 		VERIFY3S(remove_reference(hdr, hdr), >, 0);
6719 		/* if it's not anon, we are doing a scrub */
6720 		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
6721 			arc_access(hdr, 0, B_FALSE);
6722 		mutex_exit(hash_lock);
6723 	} else {
6724 		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6725 		VERIFY3S(remove_reference(hdr, hdr), >, 0);
6726 	}
6727 
6728 	callback->awcb_done(zio, buf, callback->awcb_private);
6729 
6730 	abd_free(zio->io_abd);
6731 	kmem_free(callback, sizeof (arc_write_callback_t));
6732 }
6733 
6734 zio_t *
arc_write(zio_t * pio,spa_t * spa,uint64_t txg,blkptr_t * bp,arc_buf_t * buf,boolean_t uncached,boolean_t l2arc,const zio_prop_t * zp,arc_write_done_func_t * ready,arc_write_done_func_t * children_ready,arc_write_done_func_t * done,void * private,zio_priority_t priority,int zio_flags,const zbookmark_phys_t * zb)6735 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
6736     blkptr_t *bp, arc_buf_t *buf, boolean_t uncached, boolean_t l2arc,
6737     const zio_prop_t *zp, arc_write_done_func_t *ready,
6738     arc_write_done_func_t *children_ready, arc_write_done_func_t *done,
6739     void *private, zio_priority_t priority, int zio_flags,
6740     const zbookmark_phys_t *zb)
6741 {
6742 	arc_buf_hdr_t *hdr = buf->b_hdr;
6743 	arc_write_callback_t *callback;
6744 	zio_t *zio;
6745 	zio_prop_t localprop = *zp;
6746 
6747 	ASSERT3P(ready, !=, NULL);
6748 	ASSERT3P(done, !=, NULL);
6749 	ASSERT(!HDR_IO_ERROR(hdr));
6750 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6751 	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6752 	ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
6753 	if (uncached)
6754 		arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED);
6755 	else if (l2arc)
6756 		arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6757 
6758 	if (ARC_BUF_ENCRYPTED(buf)) {
6759 		ASSERT(ARC_BUF_COMPRESSED(buf));
6760 		localprop.zp_encrypt = B_TRUE;
6761 		localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6762 		localprop.zp_complevel = hdr->b_complevel;
6763 		localprop.zp_byteorder =
6764 		    (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
6765 		    ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
6766 		memcpy(localprop.zp_salt, hdr->b_crypt_hdr.b_salt,
6767 		    ZIO_DATA_SALT_LEN);
6768 		memcpy(localprop.zp_iv, hdr->b_crypt_hdr.b_iv,
6769 		    ZIO_DATA_IV_LEN);
6770 		memcpy(localprop.zp_mac, hdr->b_crypt_hdr.b_mac,
6771 		    ZIO_DATA_MAC_LEN);
6772 		if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) {
6773 			localprop.zp_nopwrite = B_FALSE;
6774 			localprop.zp_copies =
6775 			    MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1);
6776 		}
6777 		zio_flags |= ZIO_FLAG_RAW;
6778 	} else if (ARC_BUF_COMPRESSED(buf)) {
6779 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
6780 		localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6781 		localprop.zp_complevel = hdr->b_complevel;
6782 		zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6783 	}
6784 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
6785 	callback->awcb_ready = ready;
6786 	callback->awcb_children_ready = children_ready;
6787 	callback->awcb_done = done;
6788 	callback->awcb_private = private;
6789 	callback->awcb_buf = buf;
6790 
6791 	/*
6792 	 * The hdr's b_pabd is now stale, free it now. A new data block
6793 	 * will be allocated when the zio pipeline calls arc_write_ready().
6794 	 */
6795 	if (hdr->b_l1hdr.b_pabd != NULL) {
6796 		/*
6797 		 * If the buf is currently sharing the data block with
6798 		 * the hdr then we need to break that relationship here.
6799 		 * The hdr will remain with a NULL data pointer and the
6800 		 * buf will take sole ownership of the block.
6801 		 */
6802 		if (ARC_BUF_SHARED(buf)) {
6803 			arc_unshare_buf(hdr, buf);
6804 		} else {
6805 			ASSERT(!arc_buf_is_shared(buf));
6806 			arc_hdr_free_abd(hdr, B_FALSE);
6807 		}
6808 		VERIFY3P(buf->b_data, !=, NULL);
6809 	}
6810 
6811 	if (HDR_HAS_RABD(hdr))
6812 		arc_hdr_free_abd(hdr, B_TRUE);
6813 
6814 	if (!(zio_flags & ZIO_FLAG_RAW))
6815 		arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
6816 
6817 	ASSERT(!arc_buf_is_shared(buf));
6818 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6819 
6820 	zio = zio_write(pio, spa, txg, bp,
6821 	    abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
6822 	    HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
6823 	    (children_ready != NULL) ? arc_write_children_ready : NULL,
6824 	    arc_write_done, callback, priority, zio_flags, zb);
6825 
6826 	return (zio);
6827 }
6828 
6829 void
arc_tempreserve_clear(uint64_t reserve)6830 arc_tempreserve_clear(uint64_t reserve)
6831 {
6832 	atomic_add_64(&arc_tempreserve, -reserve);
6833 	ASSERT((int64_t)arc_tempreserve >= 0);
6834 }
6835 
6836 int
arc_tempreserve_space(spa_t * spa,uint64_t reserve,uint64_t txg)6837 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg)
6838 {
6839 	int error;
6840 	uint64_t anon_size;
6841 
6842 	if (!arc_no_grow &&
6843 	    reserve > arc_c/4 &&
6844 	    reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
6845 		arc_c = MIN(arc_c_max, reserve * 4);
6846 
6847 	/*
6848 	 * Throttle when the calculated memory footprint for the TXG
6849 	 * exceeds the target ARC size.
6850 	 */
6851 	if (reserve > arc_c) {
6852 		DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
6853 		return (SET_ERROR(ERESTART));
6854 	}
6855 
6856 	/*
6857 	 * Don't count loaned bufs as in flight dirty data to prevent long
6858 	 * network delays from blocking transactions that are ready to be
6859 	 * assigned to a txg.
6860 	 */
6861 
6862 	/* assert that it has not wrapped around */
6863 	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
6864 
6865 	anon_size = MAX((int64_t)
6866 	    (zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]) +
6867 	    zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]) -
6868 	    arc_loaned_bytes), 0);
6869 
6870 	/*
6871 	 * Writes will, almost always, require additional memory allocations
6872 	 * in order to compress/encrypt/etc the data.  We therefore need to
6873 	 * make sure that there is sufficient available memory for this.
6874 	 */
6875 	error = arc_memory_throttle(spa, reserve, txg);
6876 	if (error != 0)
6877 		return (error);
6878 
6879 	/*
6880 	 * Throttle writes when the amount of dirty data in the cache
6881 	 * gets too large.  We try to keep the cache less than half full
6882 	 * of dirty blocks so that our sync times don't grow too large.
6883 	 *
6884 	 * In the case of one pool being built on another pool, we want
6885 	 * to make sure we don't end up throttling the lower (backing)
6886 	 * pool when the upper pool is the majority contributor to dirty
6887 	 * data. To insure we make forward progress during throttling, we
6888 	 * also check the current pool's net dirty data and only throttle
6889 	 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
6890 	 * data in the cache.
6891 	 *
6892 	 * Note: if two requests come in concurrently, we might let them
6893 	 * both succeed, when one of them should fail.  Not a huge deal.
6894 	 */
6895 	uint64_t total_dirty = reserve + arc_tempreserve + anon_size;
6896 	uint64_t spa_dirty_anon = spa_dirty_data(spa);
6897 	uint64_t rarc_c = arc_warm ? arc_c : arc_c_max;
6898 	if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 &&
6899 	    anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 &&
6900 	    spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) {
6901 #ifdef ZFS_DEBUG
6902 		uint64_t meta_esize = zfs_refcount_count(
6903 		    &arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6904 		uint64_t data_esize =
6905 		    zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6906 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
6907 		    "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n",
6908 		    (u_longlong_t)arc_tempreserve >> 10,
6909 		    (u_longlong_t)meta_esize >> 10,
6910 		    (u_longlong_t)data_esize >> 10,
6911 		    (u_longlong_t)reserve >> 10,
6912 		    (u_longlong_t)rarc_c >> 10);
6913 #endif
6914 		DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
6915 		return (SET_ERROR(ERESTART));
6916 	}
6917 	atomic_add_64(&arc_tempreserve, reserve);
6918 	return (0);
6919 }
6920 
6921 static void
arc_kstat_update_state(arc_state_t * state,kstat_named_t * size,kstat_named_t * data,kstat_named_t * metadata,kstat_named_t * evict_data,kstat_named_t * evict_metadata)6922 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
6923     kstat_named_t *data, kstat_named_t *metadata,
6924     kstat_named_t *evict_data, kstat_named_t *evict_metadata)
6925 {
6926 	data->value.ui64 =
6927 	    zfs_refcount_count(&state->arcs_size[ARC_BUFC_DATA]);
6928 	metadata->value.ui64 =
6929 	    zfs_refcount_count(&state->arcs_size[ARC_BUFC_METADATA]);
6930 	size->value.ui64 = data->value.ui64 + metadata->value.ui64;
6931 	evict_data->value.ui64 =
6932 	    zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
6933 	evict_metadata->value.ui64 =
6934 	    zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
6935 }
6936 
6937 static int
arc_kstat_update(kstat_t * ksp,int rw)6938 arc_kstat_update(kstat_t *ksp, int rw)
6939 {
6940 	arc_stats_t *as = ksp->ks_data;
6941 
6942 	if (rw == KSTAT_WRITE)
6943 		return (SET_ERROR(EACCES));
6944 
6945 	as->arcstat_hits.value.ui64 =
6946 	    wmsum_value(&arc_sums.arcstat_hits);
6947 	as->arcstat_iohits.value.ui64 =
6948 	    wmsum_value(&arc_sums.arcstat_iohits);
6949 	as->arcstat_misses.value.ui64 =
6950 	    wmsum_value(&arc_sums.arcstat_misses);
6951 	as->arcstat_demand_data_hits.value.ui64 =
6952 	    wmsum_value(&arc_sums.arcstat_demand_data_hits);
6953 	as->arcstat_demand_data_iohits.value.ui64 =
6954 	    wmsum_value(&arc_sums.arcstat_demand_data_iohits);
6955 	as->arcstat_demand_data_misses.value.ui64 =
6956 	    wmsum_value(&arc_sums.arcstat_demand_data_misses);
6957 	as->arcstat_demand_metadata_hits.value.ui64 =
6958 	    wmsum_value(&arc_sums.arcstat_demand_metadata_hits);
6959 	as->arcstat_demand_metadata_iohits.value.ui64 =
6960 	    wmsum_value(&arc_sums.arcstat_demand_metadata_iohits);
6961 	as->arcstat_demand_metadata_misses.value.ui64 =
6962 	    wmsum_value(&arc_sums.arcstat_demand_metadata_misses);
6963 	as->arcstat_prefetch_data_hits.value.ui64 =
6964 	    wmsum_value(&arc_sums.arcstat_prefetch_data_hits);
6965 	as->arcstat_prefetch_data_iohits.value.ui64 =
6966 	    wmsum_value(&arc_sums.arcstat_prefetch_data_iohits);
6967 	as->arcstat_prefetch_data_misses.value.ui64 =
6968 	    wmsum_value(&arc_sums.arcstat_prefetch_data_misses);
6969 	as->arcstat_prefetch_metadata_hits.value.ui64 =
6970 	    wmsum_value(&arc_sums.arcstat_prefetch_metadata_hits);
6971 	as->arcstat_prefetch_metadata_iohits.value.ui64 =
6972 	    wmsum_value(&arc_sums.arcstat_prefetch_metadata_iohits);
6973 	as->arcstat_prefetch_metadata_misses.value.ui64 =
6974 	    wmsum_value(&arc_sums.arcstat_prefetch_metadata_misses);
6975 	as->arcstat_mru_hits.value.ui64 =
6976 	    wmsum_value(&arc_sums.arcstat_mru_hits);
6977 	as->arcstat_mru_ghost_hits.value.ui64 =
6978 	    wmsum_value(&arc_sums.arcstat_mru_ghost_hits);
6979 	as->arcstat_mfu_hits.value.ui64 =
6980 	    wmsum_value(&arc_sums.arcstat_mfu_hits);
6981 	as->arcstat_mfu_ghost_hits.value.ui64 =
6982 	    wmsum_value(&arc_sums.arcstat_mfu_ghost_hits);
6983 	as->arcstat_uncached_hits.value.ui64 =
6984 	    wmsum_value(&arc_sums.arcstat_uncached_hits);
6985 	as->arcstat_deleted.value.ui64 =
6986 	    wmsum_value(&arc_sums.arcstat_deleted);
6987 	as->arcstat_mutex_miss.value.ui64 =
6988 	    wmsum_value(&arc_sums.arcstat_mutex_miss);
6989 	as->arcstat_access_skip.value.ui64 =
6990 	    wmsum_value(&arc_sums.arcstat_access_skip);
6991 	as->arcstat_evict_skip.value.ui64 =
6992 	    wmsum_value(&arc_sums.arcstat_evict_skip);
6993 	as->arcstat_evict_not_enough.value.ui64 =
6994 	    wmsum_value(&arc_sums.arcstat_evict_not_enough);
6995 	as->arcstat_evict_l2_cached.value.ui64 =
6996 	    wmsum_value(&arc_sums.arcstat_evict_l2_cached);
6997 	as->arcstat_evict_l2_eligible.value.ui64 =
6998 	    wmsum_value(&arc_sums.arcstat_evict_l2_eligible);
6999 	as->arcstat_evict_l2_eligible_mfu.value.ui64 =
7000 	    wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mfu);
7001 	as->arcstat_evict_l2_eligible_mru.value.ui64 =
7002 	    wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mru);
7003 	as->arcstat_evict_l2_ineligible.value.ui64 =
7004 	    wmsum_value(&arc_sums.arcstat_evict_l2_ineligible);
7005 	as->arcstat_evict_l2_skip.value.ui64 =
7006 	    wmsum_value(&arc_sums.arcstat_evict_l2_skip);
7007 	as->arcstat_hash_elements.value.ui64 =
7008 	    as->arcstat_hash_elements_max.value.ui64 =
7009 	    wmsum_value(&arc_sums.arcstat_hash_elements);
7010 	as->arcstat_hash_collisions.value.ui64 =
7011 	    wmsum_value(&arc_sums.arcstat_hash_collisions);
7012 	as->arcstat_hash_chains.value.ui64 =
7013 	    wmsum_value(&arc_sums.arcstat_hash_chains);
7014 	as->arcstat_size.value.ui64 =
7015 	    aggsum_value(&arc_sums.arcstat_size);
7016 	as->arcstat_compressed_size.value.ui64 =
7017 	    wmsum_value(&arc_sums.arcstat_compressed_size);
7018 	as->arcstat_uncompressed_size.value.ui64 =
7019 	    wmsum_value(&arc_sums.arcstat_uncompressed_size);
7020 	as->arcstat_overhead_size.value.ui64 =
7021 	    wmsum_value(&arc_sums.arcstat_overhead_size);
7022 	as->arcstat_hdr_size.value.ui64 =
7023 	    wmsum_value(&arc_sums.arcstat_hdr_size);
7024 	as->arcstat_data_size.value.ui64 =
7025 	    wmsum_value(&arc_sums.arcstat_data_size);
7026 	as->arcstat_metadata_size.value.ui64 =
7027 	    wmsum_value(&arc_sums.arcstat_metadata_size);
7028 	as->arcstat_dbuf_size.value.ui64 =
7029 	    wmsum_value(&arc_sums.arcstat_dbuf_size);
7030 #if defined(COMPAT_FREEBSD11)
7031 	as->arcstat_other_size.value.ui64 =
7032 	    wmsum_value(&arc_sums.arcstat_bonus_size) +
7033 	    wmsum_value(&arc_sums.arcstat_dnode_size) +
7034 	    wmsum_value(&arc_sums.arcstat_dbuf_size);
7035 #endif
7036 
7037 	arc_kstat_update_state(arc_anon,
7038 	    &as->arcstat_anon_size,
7039 	    &as->arcstat_anon_data,
7040 	    &as->arcstat_anon_metadata,
7041 	    &as->arcstat_anon_evictable_data,
7042 	    &as->arcstat_anon_evictable_metadata);
7043 	arc_kstat_update_state(arc_mru,
7044 	    &as->arcstat_mru_size,
7045 	    &as->arcstat_mru_data,
7046 	    &as->arcstat_mru_metadata,
7047 	    &as->arcstat_mru_evictable_data,
7048 	    &as->arcstat_mru_evictable_metadata);
7049 	arc_kstat_update_state(arc_mru_ghost,
7050 	    &as->arcstat_mru_ghost_size,
7051 	    &as->arcstat_mru_ghost_data,
7052 	    &as->arcstat_mru_ghost_metadata,
7053 	    &as->arcstat_mru_ghost_evictable_data,
7054 	    &as->arcstat_mru_ghost_evictable_metadata);
7055 	arc_kstat_update_state(arc_mfu,
7056 	    &as->arcstat_mfu_size,
7057 	    &as->arcstat_mfu_data,
7058 	    &as->arcstat_mfu_metadata,
7059 	    &as->arcstat_mfu_evictable_data,
7060 	    &as->arcstat_mfu_evictable_metadata);
7061 	arc_kstat_update_state(arc_mfu_ghost,
7062 	    &as->arcstat_mfu_ghost_size,
7063 	    &as->arcstat_mfu_ghost_data,
7064 	    &as->arcstat_mfu_ghost_metadata,
7065 	    &as->arcstat_mfu_ghost_evictable_data,
7066 	    &as->arcstat_mfu_ghost_evictable_metadata);
7067 	arc_kstat_update_state(arc_uncached,
7068 	    &as->arcstat_uncached_size,
7069 	    &as->arcstat_uncached_data,
7070 	    &as->arcstat_uncached_metadata,
7071 	    &as->arcstat_uncached_evictable_data,
7072 	    &as->arcstat_uncached_evictable_metadata);
7073 
7074 	as->arcstat_dnode_size.value.ui64 =
7075 	    wmsum_value(&arc_sums.arcstat_dnode_size);
7076 	as->arcstat_bonus_size.value.ui64 =
7077 	    wmsum_value(&arc_sums.arcstat_bonus_size);
7078 	as->arcstat_l2_hits.value.ui64 =
7079 	    wmsum_value(&arc_sums.arcstat_l2_hits);
7080 	as->arcstat_l2_misses.value.ui64 =
7081 	    wmsum_value(&arc_sums.arcstat_l2_misses);
7082 	as->arcstat_l2_prefetch_asize.value.ui64 =
7083 	    wmsum_value(&arc_sums.arcstat_l2_prefetch_asize);
7084 	as->arcstat_l2_mru_asize.value.ui64 =
7085 	    wmsum_value(&arc_sums.arcstat_l2_mru_asize);
7086 	as->arcstat_l2_mfu_asize.value.ui64 =
7087 	    wmsum_value(&arc_sums.arcstat_l2_mfu_asize);
7088 	as->arcstat_l2_bufc_data_asize.value.ui64 =
7089 	    wmsum_value(&arc_sums.arcstat_l2_bufc_data_asize);
7090 	as->arcstat_l2_bufc_metadata_asize.value.ui64 =
7091 	    wmsum_value(&arc_sums.arcstat_l2_bufc_metadata_asize);
7092 	as->arcstat_l2_feeds.value.ui64 =
7093 	    wmsum_value(&arc_sums.arcstat_l2_feeds);
7094 	as->arcstat_l2_rw_clash.value.ui64 =
7095 	    wmsum_value(&arc_sums.arcstat_l2_rw_clash);
7096 	as->arcstat_l2_read_bytes.value.ui64 =
7097 	    wmsum_value(&arc_sums.arcstat_l2_read_bytes);
7098 	as->arcstat_l2_write_bytes.value.ui64 =
7099 	    wmsum_value(&arc_sums.arcstat_l2_write_bytes);
7100 	as->arcstat_l2_writes_sent.value.ui64 =
7101 	    wmsum_value(&arc_sums.arcstat_l2_writes_sent);
7102 	as->arcstat_l2_writes_done.value.ui64 =
7103 	    wmsum_value(&arc_sums.arcstat_l2_writes_done);
7104 	as->arcstat_l2_writes_error.value.ui64 =
7105 	    wmsum_value(&arc_sums.arcstat_l2_writes_error);
7106 	as->arcstat_l2_writes_lock_retry.value.ui64 =
7107 	    wmsum_value(&arc_sums.arcstat_l2_writes_lock_retry);
7108 	as->arcstat_l2_evict_lock_retry.value.ui64 =
7109 	    wmsum_value(&arc_sums.arcstat_l2_evict_lock_retry);
7110 	as->arcstat_l2_evict_reading.value.ui64 =
7111 	    wmsum_value(&arc_sums.arcstat_l2_evict_reading);
7112 	as->arcstat_l2_evict_l1cached.value.ui64 =
7113 	    wmsum_value(&arc_sums.arcstat_l2_evict_l1cached);
7114 	as->arcstat_l2_free_on_write.value.ui64 =
7115 	    wmsum_value(&arc_sums.arcstat_l2_free_on_write);
7116 	as->arcstat_l2_abort_lowmem.value.ui64 =
7117 	    wmsum_value(&arc_sums.arcstat_l2_abort_lowmem);
7118 	as->arcstat_l2_cksum_bad.value.ui64 =
7119 	    wmsum_value(&arc_sums.arcstat_l2_cksum_bad);
7120 	as->arcstat_l2_io_error.value.ui64 =
7121 	    wmsum_value(&arc_sums.arcstat_l2_io_error);
7122 	as->arcstat_l2_lsize.value.ui64 =
7123 	    wmsum_value(&arc_sums.arcstat_l2_lsize);
7124 	as->arcstat_l2_psize.value.ui64 =
7125 	    wmsum_value(&arc_sums.arcstat_l2_psize);
7126 	as->arcstat_l2_hdr_size.value.ui64 =
7127 	    aggsum_value(&arc_sums.arcstat_l2_hdr_size);
7128 	as->arcstat_l2_log_blk_writes.value.ui64 =
7129 	    wmsum_value(&arc_sums.arcstat_l2_log_blk_writes);
7130 	as->arcstat_l2_log_blk_asize.value.ui64 =
7131 	    wmsum_value(&arc_sums.arcstat_l2_log_blk_asize);
7132 	as->arcstat_l2_log_blk_count.value.ui64 =
7133 	    wmsum_value(&arc_sums.arcstat_l2_log_blk_count);
7134 	as->arcstat_l2_rebuild_success.value.ui64 =
7135 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_success);
7136 	as->arcstat_l2_rebuild_abort_unsupported.value.ui64 =
7137 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7138 	as->arcstat_l2_rebuild_abort_io_errors.value.ui64 =
7139 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7140 	as->arcstat_l2_rebuild_abort_dh_errors.value.ui64 =
7141 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7142 	as->arcstat_l2_rebuild_abort_cksum_lb_errors.value.ui64 =
7143 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7144 	as->arcstat_l2_rebuild_abort_lowmem.value.ui64 =
7145 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7146 	as->arcstat_l2_rebuild_size.value.ui64 =
7147 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_size);
7148 	as->arcstat_l2_rebuild_asize.value.ui64 =
7149 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_asize);
7150 	as->arcstat_l2_rebuild_bufs.value.ui64 =
7151 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs);
7152 	as->arcstat_l2_rebuild_bufs_precached.value.ui64 =
7153 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7154 	as->arcstat_l2_rebuild_log_blks.value.ui64 =
7155 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_log_blks);
7156 	as->arcstat_memory_throttle_count.value.ui64 =
7157 	    wmsum_value(&arc_sums.arcstat_memory_throttle_count);
7158 	as->arcstat_memory_direct_count.value.ui64 =
7159 	    wmsum_value(&arc_sums.arcstat_memory_direct_count);
7160 	as->arcstat_memory_indirect_count.value.ui64 =
7161 	    wmsum_value(&arc_sums.arcstat_memory_indirect_count);
7162 
7163 	as->arcstat_memory_all_bytes.value.ui64 =
7164 	    arc_all_memory();
7165 	as->arcstat_memory_free_bytes.value.ui64 =
7166 	    arc_free_memory();
7167 	as->arcstat_memory_available_bytes.value.i64 =
7168 	    arc_available_memory();
7169 
7170 	as->arcstat_prune.value.ui64 =
7171 	    wmsum_value(&arc_sums.arcstat_prune);
7172 	as->arcstat_meta_used.value.ui64 =
7173 	    wmsum_value(&arc_sums.arcstat_meta_used);
7174 	as->arcstat_async_upgrade_sync.value.ui64 =
7175 	    wmsum_value(&arc_sums.arcstat_async_upgrade_sync);
7176 	as->arcstat_predictive_prefetch.value.ui64 =
7177 	    wmsum_value(&arc_sums.arcstat_predictive_prefetch);
7178 	as->arcstat_demand_hit_predictive_prefetch.value.ui64 =
7179 	    wmsum_value(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7180 	as->arcstat_demand_iohit_predictive_prefetch.value.ui64 =
7181 	    wmsum_value(&arc_sums.arcstat_demand_iohit_predictive_prefetch);
7182 	as->arcstat_prescient_prefetch.value.ui64 =
7183 	    wmsum_value(&arc_sums.arcstat_prescient_prefetch);
7184 	as->arcstat_demand_hit_prescient_prefetch.value.ui64 =
7185 	    wmsum_value(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7186 	as->arcstat_demand_iohit_prescient_prefetch.value.ui64 =
7187 	    wmsum_value(&arc_sums.arcstat_demand_iohit_prescient_prefetch);
7188 	as->arcstat_raw_size.value.ui64 =
7189 	    wmsum_value(&arc_sums.arcstat_raw_size);
7190 	as->arcstat_cached_only_in_progress.value.ui64 =
7191 	    wmsum_value(&arc_sums.arcstat_cached_only_in_progress);
7192 	as->arcstat_abd_chunk_waste_size.value.ui64 =
7193 	    wmsum_value(&arc_sums.arcstat_abd_chunk_waste_size);
7194 
7195 	return (0);
7196 }
7197 
7198 /*
7199  * This function *must* return indices evenly distributed between all
7200  * sublists of the multilist. This is needed due to how the ARC eviction
7201  * code is laid out; arc_evict_state() assumes ARC buffers are evenly
7202  * distributed between all sublists and uses this assumption when
7203  * deciding which sublist to evict from and how much to evict from it.
7204  */
7205 static unsigned int
arc_state_multilist_index_func(multilist_t * ml,void * obj)7206 arc_state_multilist_index_func(multilist_t *ml, void *obj)
7207 {
7208 	arc_buf_hdr_t *hdr = obj;
7209 
7210 	/*
7211 	 * We rely on b_dva to generate evenly distributed index
7212 	 * numbers using buf_hash below. So, as an added precaution,
7213 	 * let's make sure we never add empty buffers to the arc lists.
7214 	 */
7215 	ASSERT(!HDR_EMPTY(hdr));
7216 
7217 	/*
7218 	 * The assumption here, is the hash value for a given
7219 	 * arc_buf_hdr_t will remain constant throughout its lifetime
7220 	 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
7221 	 * Thus, we don't need to store the header's sublist index
7222 	 * on insertion, as this index can be recalculated on removal.
7223 	 *
7224 	 * Also, the low order bits of the hash value are thought to be
7225 	 * distributed evenly. Otherwise, in the case that the multilist
7226 	 * has a power of two number of sublists, each sublists' usage
7227 	 * would not be evenly distributed. In this context full 64bit
7228 	 * division would be a waste of time, so limit it to 32 bits.
7229 	 */
7230 	return ((unsigned int)buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
7231 	    multilist_get_num_sublists(ml));
7232 }
7233 
7234 static unsigned int
arc_state_l2c_multilist_index_func(multilist_t * ml,void * obj)7235 arc_state_l2c_multilist_index_func(multilist_t *ml, void *obj)
7236 {
7237 	panic("Header %p insert into arc_l2c_only %p", obj, ml);
7238 }
7239 
7240 #define	WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do {	\
7241 	if ((do_warn) && (tuning) && ((tuning) != (value))) {	\
7242 		cmn_err(CE_WARN,				\
7243 		    "ignoring tunable %s (using %llu instead)",	\
7244 		    (#tuning), (u_longlong_t)(value));	\
7245 	}							\
7246 } while (0)
7247 
7248 /*
7249  * Called during module initialization and periodically thereafter to
7250  * apply reasonable changes to the exposed performance tunings.  Can also be
7251  * called explicitly by param_set_arc_*() functions when ARC tunables are
7252  * updated manually.  Non-zero zfs_* values which differ from the currently set
7253  * values will be applied.
7254  */
7255 void
arc_tuning_update(boolean_t verbose)7256 arc_tuning_update(boolean_t verbose)
7257 {
7258 	uint64_t allmem = arc_all_memory();
7259 
7260 	/* Valid range: 32M - <arc_c_max> */
7261 	if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
7262 	    (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
7263 	    (zfs_arc_min <= arc_c_max)) {
7264 		arc_c_min = zfs_arc_min;
7265 		arc_c = MAX(arc_c, arc_c_min);
7266 	}
7267 	WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose);
7268 
7269 	/* Valid range: 64M - <all physical memory> */
7270 	if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
7271 	    (zfs_arc_max >= MIN_ARC_MAX) && (zfs_arc_max < allmem) &&
7272 	    (zfs_arc_max > arc_c_min)) {
7273 		arc_c_max = zfs_arc_max;
7274 		arc_c = MIN(arc_c, arc_c_max);
7275 		if (arc_dnode_limit > arc_c_max)
7276 			arc_dnode_limit = arc_c_max;
7277 	}
7278 	WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose);
7279 
7280 	/* Valid range: 0 - <all physical memory> */
7281 	arc_dnode_limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit :
7282 	    MIN(zfs_arc_dnode_limit_percent, 100) * arc_c_max / 100;
7283 	WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_limit, verbose);
7284 
7285 	/* Valid range: 1 - N */
7286 	if (zfs_arc_grow_retry)
7287 		arc_grow_retry = zfs_arc_grow_retry;
7288 
7289 	/* Valid range: 1 - N */
7290 	if (zfs_arc_shrink_shift) {
7291 		arc_shrink_shift = zfs_arc_shrink_shift;
7292 		arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
7293 	}
7294 
7295 	/* Valid range: 1 - N ms */
7296 	if (zfs_arc_min_prefetch_ms)
7297 		arc_min_prefetch_ms = zfs_arc_min_prefetch_ms;
7298 
7299 	/* Valid range: 1 - N ms */
7300 	if (zfs_arc_min_prescient_prefetch_ms) {
7301 		arc_min_prescient_prefetch_ms =
7302 		    zfs_arc_min_prescient_prefetch_ms;
7303 	}
7304 
7305 	/* Valid range: 0 - 100 */
7306 	if (zfs_arc_lotsfree_percent <= 100)
7307 		arc_lotsfree_percent = zfs_arc_lotsfree_percent;
7308 	WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent,
7309 	    verbose);
7310 
7311 	/* Valid range: 0 - <all physical memory> */
7312 	if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
7313 		arc_sys_free = MIN(zfs_arc_sys_free, allmem);
7314 	WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose);
7315 }
7316 
7317 static void
arc_state_multilist_init(multilist_t * ml,multilist_sublist_index_func_t * index_func,int * maxcountp)7318 arc_state_multilist_init(multilist_t *ml,
7319     multilist_sublist_index_func_t *index_func, int *maxcountp)
7320 {
7321 	multilist_create(ml, sizeof (arc_buf_hdr_t),
7322 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), index_func);
7323 	*maxcountp = MAX(*maxcountp, multilist_get_num_sublists(ml));
7324 }
7325 
7326 static void
arc_state_init(void)7327 arc_state_init(void)
7328 {
7329 	int num_sublists = 0;
7330 
7331 	arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_METADATA],
7332 	    arc_state_multilist_index_func, &num_sublists);
7333 	arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_DATA],
7334 	    arc_state_multilist_index_func, &num_sublists);
7335 	arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
7336 	    arc_state_multilist_index_func, &num_sublists);
7337 	arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
7338 	    arc_state_multilist_index_func, &num_sublists);
7339 	arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
7340 	    arc_state_multilist_index_func, &num_sublists);
7341 	arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_DATA],
7342 	    arc_state_multilist_index_func, &num_sublists);
7343 	arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
7344 	    arc_state_multilist_index_func, &num_sublists);
7345 	arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
7346 	    arc_state_multilist_index_func, &num_sublists);
7347 	arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_METADATA],
7348 	    arc_state_multilist_index_func, &num_sublists);
7349 	arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_DATA],
7350 	    arc_state_multilist_index_func, &num_sublists);
7351 
7352 	/*
7353 	 * L2 headers should never be on the L2 state list since they don't
7354 	 * have L1 headers allocated.  Special index function asserts that.
7355 	 */
7356 	arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
7357 	    arc_state_l2c_multilist_index_func, &num_sublists);
7358 	arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
7359 	    arc_state_l2c_multilist_index_func, &num_sublists);
7360 
7361 	/*
7362 	 * Keep track of the number of markers needed to reclaim buffers from
7363 	 * any ARC state.  The markers will be pre-allocated so as to minimize
7364 	 * the number of memory allocations performed by the eviction thread.
7365 	 */
7366 	arc_state_evict_marker_count = num_sublists;
7367 
7368 	zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7369 	zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7370 	zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7371 	zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7372 	zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7373 	zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7374 	zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7375 	zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7376 	zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7377 	zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7378 	zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7379 	zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7380 	zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]);
7381 	zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_DATA]);
7382 
7383 	zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_DATA]);
7384 	zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
7385 	zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_DATA]);
7386 	zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_METADATA]);
7387 	zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]);
7388 	zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]);
7389 	zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
7390 	zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
7391 	zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]);
7392 	zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]);
7393 	zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]);
7394 	zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]);
7395 	zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_DATA]);
7396 	zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_METADATA]);
7397 
7398 	wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA], 0);
7399 	wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA], 0);
7400 	wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA], 0);
7401 	wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA], 0);
7402 
7403 	wmsum_init(&arc_sums.arcstat_hits, 0);
7404 	wmsum_init(&arc_sums.arcstat_iohits, 0);
7405 	wmsum_init(&arc_sums.arcstat_misses, 0);
7406 	wmsum_init(&arc_sums.arcstat_demand_data_hits, 0);
7407 	wmsum_init(&arc_sums.arcstat_demand_data_iohits, 0);
7408 	wmsum_init(&arc_sums.arcstat_demand_data_misses, 0);
7409 	wmsum_init(&arc_sums.arcstat_demand_metadata_hits, 0);
7410 	wmsum_init(&arc_sums.arcstat_demand_metadata_iohits, 0);
7411 	wmsum_init(&arc_sums.arcstat_demand_metadata_misses, 0);
7412 	wmsum_init(&arc_sums.arcstat_prefetch_data_hits, 0);
7413 	wmsum_init(&arc_sums.arcstat_prefetch_data_iohits, 0);
7414 	wmsum_init(&arc_sums.arcstat_prefetch_data_misses, 0);
7415 	wmsum_init(&arc_sums.arcstat_prefetch_metadata_hits, 0);
7416 	wmsum_init(&arc_sums.arcstat_prefetch_metadata_iohits, 0);
7417 	wmsum_init(&arc_sums.arcstat_prefetch_metadata_misses, 0);
7418 	wmsum_init(&arc_sums.arcstat_mru_hits, 0);
7419 	wmsum_init(&arc_sums.arcstat_mru_ghost_hits, 0);
7420 	wmsum_init(&arc_sums.arcstat_mfu_hits, 0);
7421 	wmsum_init(&arc_sums.arcstat_mfu_ghost_hits, 0);
7422 	wmsum_init(&arc_sums.arcstat_uncached_hits, 0);
7423 	wmsum_init(&arc_sums.arcstat_deleted, 0);
7424 	wmsum_init(&arc_sums.arcstat_mutex_miss, 0);
7425 	wmsum_init(&arc_sums.arcstat_access_skip, 0);
7426 	wmsum_init(&arc_sums.arcstat_evict_skip, 0);
7427 	wmsum_init(&arc_sums.arcstat_evict_not_enough, 0);
7428 	wmsum_init(&arc_sums.arcstat_evict_l2_cached, 0);
7429 	wmsum_init(&arc_sums.arcstat_evict_l2_eligible, 0);
7430 	wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mfu, 0);
7431 	wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mru, 0);
7432 	wmsum_init(&arc_sums.arcstat_evict_l2_ineligible, 0);
7433 	wmsum_init(&arc_sums.arcstat_evict_l2_skip, 0);
7434 	wmsum_init(&arc_sums.arcstat_hash_elements, 0);
7435 	wmsum_init(&arc_sums.arcstat_hash_collisions, 0);
7436 	wmsum_init(&arc_sums.arcstat_hash_chains, 0);
7437 	aggsum_init(&arc_sums.arcstat_size, 0);
7438 	wmsum_init(&arc_sums.arcstat_compressed_size, 0);
7439 	wmsum_init(&arc_sums.arcstat_uncompressed_size, 0);
7440 	wmsum_init(&arc_sums.arcstat_overhead_size, 0);
7441 	wmsum_init(&arc_sums.arcstat_hdr_size, 0);
7442 	wmsum_init(&arc_sums.arcstat_data_size, 0);
7443 	wmsum_init(&arc_sums.arcstat_metadata_size, 0);
7444 	wmsum_init(&arc_sums.arcstat_dbuf_size, 0);
7445 	wmsum_init(&arc_sums.arcstat_dnode_size, 0);
7446 	wmsum_init(&arc_sums.arcstat_bonus_size, 0);
7447 	wmsum_init(&arc_sums.arcstat_l2_hits, 0);
7448 	wmsum_init(&arc_sums.arcstat_l2_misses, 0);
7449 	wmsum_init(&arc_sums.arcstat_l2_prefetch_asize, 0);
7450 	wmsum_init(&arc_sums.arcstat_l2_mru_asize, 0);
7451 	wmsum_init(&arc_sums.arcstat_l2_mfu_asize, 0);
7452 	wmsum_init(&arc_sums.arcstat_l2_bufc_data_asize, 0);
7453 	wmsum_init(&arc_sums.arcstat_l2_bufc_metadata_asize, 0);
7454 	wmsum_init(&arc_sums.arcstat_l2_feeds, 0);
7455 	wmsum_init(&arc_sums.arcstat_l2_rw_clash, 0);
7456 	wmsum_init(&arc_sums.arcstat_l2_read_bytes, 0);
7457 	wmsum_init(&arc_sums.arcstat_l2_write_bytes, 0);
7458 	wmsum_init(&arc_sums.arcstat_l2_writes_sent, 0);
7459 	wmsum_init(&arc_sums.arcstat_l2_writes_done, 0);
7460 	wmsum_init(&arc_sums.arcstat_l2_writes_error, 0);
7461 	wmsum_init(&arc_sums.arcstat_l2_writes_lock_retry, 0);
7462 	wmsum_init(&arc_sums.arcstat_l2_evict_lock_retry, 0);
7463 	wmsum_init(&arc_sums.arcstat_l2_evict_reading, 0);
7464 	wmsum_init(&arc_sums.arcstat_l2_evict_l1cached, 0);
7465 	wmsum_init(&arc_sums.arcstat_l2_free_on_write, 0);
7466 	wmsum_init(&arc_sums.arcstat_l2_abort_lowmem, 0);
7467 	wmsum_init(&arc_sums.arcstat_l2_cksum_bad, 0);
7468 	wmsum_init(&arc_sums.arcstat_l2_io_error, 0);
7469 	wmsum_init(&arc_sums.arcstat_l2_lsize, 0);
7470 	wmsum_init(&arc_sums.arcstat_l2_psize, 0);
7471 	aggsum_init(&arc_sums.arcstat_l2_hdr_size, 0);
7472 	wmsum_init(&arc_sums.arcstat_l2_log_blk_writes, 0);
7473 	wmsum_init(&arc_sums.arcstat_l2_log_blk_asize, 0);
7474 	wmsum_init(&arc_sums.arcstat_l2_log_blk_count, 0);
7475 	wmsum_init(&arc_sums.arcstat_l2_rebuild_success, 0);
7476 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_unsupported, 0);
7477 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_io_errors, 0);
7478 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_dh_errors, 0);
7479 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors, 0);
7480 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_lowmem, 0);
7481 	wmsum_init(&arc_sums.arcstat_l2_rebuild_size, 0);
7482 	wmsum_init(&arc_sums.arcstat_l2_rebuild_asize, 0);
7483 	wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs, 0);
7484 	wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs_precached, 0);
7485 	wmsum_init(&arc_sums.arcstat_l2_rebuild_log_blks, 0);
7486 	wmsum_init(&arc_sums.arcstat_memory_throttle_count, 0);
7487 	wmsum_init(&arc_sums.arcstat_memory_direct_count, 0);
7488 	wmsum_init(&arc_sums.arcstat_memory_indirect_count, 0);
7489 	wmsum_init(&arc_sums.arcstat_prune, 0);
7490 	wmsum_init(&arc_sums.arcstat_meta_used, 0);
7491 	wmsum_init(&arc_sums.arcstat_async_upgrade_sync, 0);
7492 	wmsum_init(&arc_sums.arcstat_predictive_prefetch, 0);
7493 	wmsum_init(&arc_sums.arcstat_demand_hit_predictive_prefetch, 0);
7494 	wmsum_init(&arc_sums.arcstat_demand_iohit_predictive_prefetch, 0);
7495 	wmsum_init(&arc_sums.arcstat_prescient_prefetch, 0);
7496 	wmsum_init(&arc_sums.arcstat_demand_hit_prescient_prefetch, 0);
7497 	wmsum_init(&arc_sums.arcstat_demand_iohit_prescient_prefetch, 0);
7498 	wmsum_init(&arc_sums.arcstat_raw_size, 0);
7499 	wmsum_init(&arc_sums.arcstat_cached_only_in_progress, 0);
7500 	wmsum_init(&arc_sums.arcstat_abd_chunk_waste_size, 0);
7501 
7502 	arc_anon->arcs_state = ARC_STATE_ANON;
7503 	arc_mru->arcs_state = ARC_STATE_MRU;
7504 	arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
7505 	arc_mfu->arcs_state = ARC_STATE_MFU;
7506 	arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
7507 	arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
7508 	arc_uncached->arcs_state = ARC_STATE_UNCACHED;
7509 }
7510 
7511 static void
arc_state_fini(void)7512 arc_state_fini(void)
7513 {
7514 	zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7515 	zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7516 	zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7517 	zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7518 	zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7519 	zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7520 	zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7521 	zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7522 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7523 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7524 	zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7525 	zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7526 	zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]);
7527 	zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_DATA]);
7528 
7529 	zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_DATA]);
7530 	zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
7531 	zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_DATA]);
7532 	zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_METADATA]);
7533 	zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]);
7534 	zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]);
7535 	zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
7536 	zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
7537 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]);
7538 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]);
7539 	zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]);
7540 	zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]);
7541 	zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_DATA]);
7542 	zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_METADATA]);
7543 
7544 	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
7545 	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
7546 	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
7547 	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
7548 	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
7549 	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
7550 	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
7551 	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
7552 	multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
7553 	multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
7554 	multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_METADATA]);
7555 	multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_DATA]);
7556 
7557 	wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]);
7558 	wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]);
7559 	wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]);
7560 	wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]);
7561 
7562 	wmsum_fini(&arc_sums.arcstat_hits);
7563 	wmsum_fini(&arc_sums.arcstat_iohits);
7564 	wmsum_fini(&arc_sums.arcstat_misses);
7565 	wmsum_fini(&arc_sums.arcstat_demand_data_hits);
7566 	wmsum_fini(&arc_sums.arcstat_demand_data_iohits);
7567 	wmsum_fini(&arc_sums.arcstat_demand_data_misses);
7568 	wmsum_fini(&arc_sums.arcstat_demand_metadata_hits);
7569 	wmsum_fini(&arc_sums.arcstat_demand_metadata_iohits);
7570 	wmsum_fini(&arc_sums.arcstat_demand_metadata_misses);
7571 	wmsum_fini(&arc_sums.arcstat_prefetch_data_hits);
7572 	wmsum_fini(&arc_sums.arcstat_prefetch_data_iohits);
7573 	wmsum_fini(&arc_sums.arcstat_prefetch_data_misses);
7574 	wmsum_fini(&arc_sums.arcstat_prefetch_metadata_hits);
7575 	wmsum_fini(&arc_sums.arcstat_prefetch_metadata_iohits);
7576 	wmsum_fini(&arc_sums.arcstat_prefetch_metadata_misses);
7577 	wmsum_fini(&arc_sums.arcstat_mru_hits);
7578 	wmsum_fini(&arc_sums.arcstat_mru_ghost_hits);
7579 	wmsum_fini(&arc_sums.arcstat_mfu_hits);
7580 	wmsum_fini(&arc_sums.arcstat_mfu_ghost_hits);
7581 	wmsum_fini(&arc_sums.arcstat_uncached_hits);
7582 	wmsum_fini(&arc_sums.arcstat_deleted);
7583 	wmsum_fini(&arc_sums.arcstat_mutex_miss);
7584 	wmsum_fini(&arc_sums.arcstat_access_skip);
7585 	wmsum_fini(&arc_sums.arcstat_evict_skip);
7586 	wmsum_fini(&arc_sums.arcstat_evict_not_enough);
7587 	wmsum_fini(&arc_sums.arcstat_evict_l2_cached);
7588 	wmsum_fini(&arc_sums.arcstat_evict_l2_eligible);
7589 	wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mfu);
7590 	wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mru);
7591 	wmsum_fini(&arc_sums.arcstat_evict_l2_ineligible);
7592 	wmsum_fini(&arc_sums.arcstat_evict_l2_skip);
7593 	wmsum_fini(&arc_sums.arcstat_hash_elements);
7594 	wmsum_fini(&arc_sums.arcstat_hash_collisions);
7595 	wmsum_fini(&arc_sums.arcstat_hash_chains);
7596 	aggsum_fini(&arc_sums.arcstat_size);
7597 	wmsum_fini(&arc_sums.arcstat_compressed_size);
7598 	wmsum_fini(&arc_sums.arcstat_uncompressed_size);
7599 	wmsum_fini(&arc_sums.arcstat_overhead_size);
7600 	wmsum_fini(&arc_sums.arcstat_hdr_size);
7601 	wmsum_fini(&arc_sums.arcstat_data_size);
7602 	wmsum_fini(&arc_sums.arcstat_metadata_size);
7603 	wmsum_fini(&arc_sums.arcstat_dbuf_size);
7604 	wmsum_fini(&arc_sums.arcstat_dnode_size);
7605 	wmsum_fini(&arc_sums.arcstat_bonus_size);
7606 	wmsum_fini(&arc_sums.arcstat_l2_hits);
7607 	wmsum_fini(&arc_sums.arcstat_l2_misses);
7608 	wmsum_fini(&arc_sums.arcstat_l2_prefetch_asize);
7609 	wmsum_fini(&arc_sums.arcstat_l2_mru_asize);
7610 	wmsum_fini(&arc_sums.arcstat_l2_mfu_asize);
7611 	wmsum_fini(&arc_sums.arcstat_l2_bufc_data_asize);
7612 	wmsum_fini(&arc_sums.arcstat_l2_bufc_metadata_asize);
7613 	wmsum_fini(&arc_sums.arcstat_l2_feeds);
7614 	wmsum_fini(&arc_sums.arcstat_l2_rw_clash);
7615 	wmsum_fini(&arc_sums.arcstat_l2_read_bytes);
7616 	wmsum_fini(&arc_sums.arcstat_l2_write_bytes);
7617 	wmsum_fini(&arc_sums.arcstat_l2_writes_sent);
7618 	wmsum_fini(&arc_sums.arcstat_l2_writes_done);
7619 	wmsum_fini(&arc_sums.arcstat_l2_writes_error);
7620 	wmsum_fini(&arc_sums.arcstat_l2_writes_lock_retry);
7621 	wmsum_fini(&arc_sums.arcstat_l2_evict_lock_retry);
7622 	wmsum_fini(&arc_sums.arcstat_l2_evict_reading);
7623 	wmsum_fini(&arc_sums.arcstat_l2_evict_l1cached);
7624 	wmsum_fini(&arc_sums.arcstat_l2_free_on_write);
7625 	wmsum_fini(&arc_sums.arcstat_l2_abort_lowmem);
7626 	wmsum_fini(&arc_sums.arcstat_l2_cksum_bad);
7627 	wmsum_fini(&arc_sums.arcstat_l2_io_error);
7628 	wmsum_fini(&arc_sums.arcstat_l2_lsize);
7629 	wmsum_fini(&arc_sums.arcstat_l2_psize);
7630 	aggsum_fini(&arc_sums.arcstat_l2_hdr_size);
7631 	wmsum_fini(&arc_sums.arcstat_l2_log_blk_writes);
7632 	wmsum_fini(&arc_sums.arcstat_l2_log_blk_asize);
7633 	wmsum_fini(&arc_sums.arcstat_l2_log_blk_count);
7634 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_success);
7635 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7636 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7637 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7638 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7639 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7640 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_size);
7641 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_asize);
7642 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs);
7643 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7644 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_log_blks);
7645 	wmsum_fini(&arc_sums.arcstat_memory_throttle_count);
7646 	wmsum_fini(&arc_sums.arcstat_memory_direct_count);
7647 	wmsum_fini(&arc_sums.arcstat_memory_indirect_count);
7648 	wmsum_fini(&arc_sums.arcstat_prune);
7649 	wmsum_fini(&arc_sums.arcstat_meta_used);
7650 	wmsum_fini(&arc_sums.arcstat_async_upgrade_sync);
7651 	wmsum_fini(&arc_sums.arcstat_predictive_prefetch);
7652 	wmsum_fini(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7653 	wmsum_fini(&arc_sums.arcstat_demand_iohit_predictive_prefetch);
7654 	wmsum_fini(&arc_sums.arcstat_prescient_prefetch);
7655 	wmsum_fini(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7656 	wmsum_fini(&arc_sums.arcstat_demand_iohit_prescient_prefetch);
7657 	wmsum_fini(&arc_sums.arcstat_raw_size);
7658 	wmsum_fini(&arc_sums.arcstat_cached_only_in_progress);
7659 	wmsum_fini(&arc_sums.arcstat_abd_chunk_waste_size);
7660 }
7661 
7662 uint64_t
arc_target_bytes(void)7663 arc_target_bytes(void)
7664 {
7665 	return (arc_c);
7666 }
7667 
7668 void
arc_set_limits(uint64_t allmem)7669 arc_set_limits(uint64_t allmem)
7670 {
7671 	/* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */
7672 	arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT);
7673 
7674 	/* How to set default max varies by platform. */
7675 	arc_c_max = arc_default_max(arc_c_min, allmem);
7676 }
7677 void
arc_init(void)7678 arc_init(void)
7679 {
7680 	uint64_t percent, allmem = arc_all_memory();
7681 	mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL);
7682 	list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t),
7683 	    offsetof(arc_evict_waiter_t, aew_node));
7684 
7685 	arc_min_prefetch_ms = 1000;
7686 	arc_min_prescient_prefetch_ms = 6000;
7687 
7688 #if defined(_KERNEL)
7689 	arc_lowmem_init();
7690 #endif
7691 
7692 	arc_set_limits(allmem);
7693 
7694 #ifdef _KERNEL
7695 	/*
7696 	 * If zfs_arc_max is non-zero at init, meaning it was set in the kernel
7697 	 * environment before the module was loaded, don't block setting the
7698 	 * maximum because it is less than arc_c_min, instead, reset arc_c_min
7699 	 * to a lower value.
7700 	 * zfs_arc_min will be handled by arc_tuning_update().
7701 	 */
7702 	if (zfs_arc_max != 0 && zfs_arc_max >= MIN_ARC_MAX &&
7703 	    zfs_arc_max < allmem) {
7704 		arc_c_max = zfs_arc_max;
7705 		if (arc_c_min >= arc_c_max) {
7706 			arc_c_min = MAX(zfs_arc_max / 2,
7707 			    2ULL << SPA_MAXBLOCKSHIFT);
7708 		}
7709 	}
7710 #else
7711 	/*
7712 	 * In userland, there's only the memory pressure that we artificially
7713 	 * create (see arc_available_memory()).  Don't let arc_c get too
7714 	 * small, because it can cause transactions to be larger than
7715 	 * arc_c, causing arc_tempreserve_space() to fail.
7716 	 */
7717 	arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT);
7718 #endif
7719 
7720 	arc_c = arc_c_min;
7721 	/*
7722 	 * 32-bit fixed point fractions of metadata from total ARC size,
7723 	 * MRU data from all data and MRU metadata from all metadata.
7724 	 */
7725 	arc_meta = (1ULL << 32) / 4;	/* Metadata is 25% of arc_c. */
7726 	arc_pd = (1ULL << 32) / 2;	/* Data MRU is 50% of data. */
7727 	arc_pm = (1ULL << 32) / 2;	/* Metadata MRU is 50% of metadata. */
7728 
7729 	percent = MIN(zfs_arc_dnode_limit_percent, 100);
7730 	arc_dnode_limit = arc_c_max * percent / 100;
7731 
7732 	/* Apply user specified tunings */
7733 	arc_tuning_update(B_TRUE);
7734 
7735 	/* if kmem_flags are set, lets try to use less memory */
7736 	if (kmem_debugging())
7737 		arc_c = arc_c / 2;
7738 	if (arc_c < arc_c_min)
7739 		arc_c = arc_c_min;
7740 
7741 	arc_register_hotplug();
7742 
7743 	arc_state_init();
7744 
7745 	buf_init();
7746 
7747 	list_create(&arc_prune_list, sizeof (arc_prune_t),
7748 	    offsetof(arc_prune_t, p_node));
7749 	mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
7750 
7751 	arc_prune_taskq = taskq_create("arc_prune", zfs_arc_prune_task_threads,
7752 	    defclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
7753 
7754 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
7755 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
7756 
7757 	if (arc_ksp != NULL) {
7758 		arc_ksp->ks_data = &arc_stats;
7759 		arc_ksp->ks_update = arc_kstat_update;
7760 		kstat_install(arc_ksp);
7761 	}
7762 
7763 	arc_state_evict_markers =
7764 	    arc_state_alloc_markers(arc_state_evict_marker_count);
7765 	arc_evict_zthr = zthr_create_timer("arc_evict",
7766 	    arc_evict_cb_check, arc_evict_cb, NULL, SEC2NSEC(1), defclsyspri);
7767 	arc_reap_zthr = zthr_create_timer("arc_reap",
7768 	    arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1), minclsyspri);
7769 
7770 	arc_warm = B_FALSE;
7771 
7772 	/*
7773 	 * Calculate maximum amount of dirty data per pool.
7774 	 *
7775 	 * If it has been set by a module parameter, take that.
7776 	 * Otherwise, use a percentage of physical memory defined by
7777 	 * zfs_dirty_data_max_percent (default 10%) with a cap at
7778 	 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
7779 	 */
7780 #ifdef __LP64__
7781 	if (zfs_dirty_data_max_max == 0)
7782 		zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
7783 		    allmem * zfs_dirty_data_max_max_percent / 100);
7784 #else
7785 	if (zfs_dirty_data_max_max == 0)
7786 		zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024,
7787 		    allmem * zfs_dirty_data_max_max_percent / 100);
7788 #endif
7789 
7790 	if (zfs_dirty_data_max == 0) {
7791 		zfs_dirty_data_max = allmem *
7792 		    zfs_dirty_data_max_percent / 100;
7793 		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
7794 		    zfs_dirty_data_max_max);
7795 	}
7796 
7797 	if (zfs_wrlog_data_max == 0) {
7798 
7799 		/*
7800 		 * dp_wrlog_total is reduced for each txg at the end of
7801 		 * spa_sync(). However, dp_dirty_total is reduced every time
7802 		 * a block is written out. Thus under normal operation,
7803 		 * dp_wrlog_total could grow 2 times as big as
7804 		 * zfs_dirty_data_max.
7805 		 */
7806 		zfs_wrlog_data_max = zfs_dirty_data_max * 2;
7807 	}
7808 }
7809 
7810 void
arc_fini(void)7811 arc_fini(void)
7812 {
7813 	arc_prune_t *p;
7814 
7815 #ifdef _KERNEL
7816 	arc_lowmem_fini();
7817 #endif /* _KERNEL */
7818 
7819 	/* Use B_TRUE to ensure *all* buffers are evicted */
7820 	arc_flush(NULL, B_TRUE);
7821 
7822 	if (arc_ksp != NULL) {
7823 		kstat_delete(arc_ksp);
7824 		arc_ksp = NULL;
7825 	}
7826 
7827 	taskq_wait(arc_prune_taskq);
7828 	taskq_destroy(arc_prune_taskq);
7829 
7830 	mutex_enter(&arc_prune_mtx);
7831 	while ((p = list_remove_head(&arc_prune_list)) != NULL) {
7832 		(void) zfs_refcount_remove(&p->p_refcnt, &arc_prune_list);
7833 		zfs_refcount_destroy(&p->p_refcnt);
7834 		kmem_free(p, sizeof (*p));
7835 	}
7836 	mutex_exit(&arc_prune_mtx);
7837 
7838 	list_destroy(&arc_prune_list);
7839 	mutex_destroy(&arc_prune_mtx);
7840 
7841 	(void) zthr_cancel(arc_evict_zthr);
7842 	(void) zthr_cancel(arc_reap_zthr);
7843 	arc_state_free_markers(arc_state_evict_markers,
7844 	    arc_state_evict_marker_count);
7845 
7846 	mutex_destroy(&arc_evict_lock);
7847 	list_destroy(&arc_evict_waiters);
7848 
7849 	/*
7850 	 * Free any buffers that were tagged for destruction.  This needs
7851 	 * to occur before arc_state_fini() runs and destroys the aggsum
7852 	 * values which are updated when freeing scatter ABDs.
7853 	 */
7854 	l2arc_do_free_on_write();
7855 
7856 	/*
7857 	 * buf_fini() must proceed arc_state_fini() because buf_fin() may
7858 	 * trigger the release of kmem magazines, which can callback to
7859 	 * arc_space_return() which accesses aggsums freed in act_state_fini().
7860 	 */
7861 	buf_fini();
7862 	arc_state_fini();
7863 
7864 	arc_unregister_hotplug();
7865 
7866 	/*
7867 	 * We destroy the zthrs after all the ARC state has been
7868 	 * torn down to avoid the case of them receiving any
7869 	 * wakeup() signals after they are destroyed.
7870 	 */
7871 	zthr_destroy(arc_evict_zthr);
7872 	zthr_destroy(arc_reap_zthr);
7873 
7874 	ASSERT0(arc_loaned_bytes);
7875 }
7876 
7877 /*
7878  * Level 2 ARC
7879  *
7880  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
7881  * It uses dedicated storage devices to hold cached data, which are populated
7882  * using large infrequent writes.  The main role of this cache is to boost
7883  * the performance of random read workloads.  The intended L2ARC devices
7884  * include short-stroked disks, solid state disks, and other media with
7885  * substantially faster read latency than disk.
7886  *
7887  *                 +-----------------------+
7888  *                 |         ARC           |
7889  *                 +-----------------------+
7890  *                    |         ^     ^
7891  *                    |         |     |
7892  *      l2arc_feed_thread()    arc_read()
7893  *                    |         |     |
7894  *                    |  l2arc read   |
7895  *                    V         |     |
7896  *               +---------------+    |
7897  *               |     L2ARC     |    |
7898  *               +---------------+    |
7899  *                   |    ^           |
7900  *          l2arc_write() |           |
7901  *                   |    |           |
7902  *                   V    |           |
7903  *                 +-------+      +-------+
7904  *                 | vdev  |      | vdev  |
7905  *                 | cache |      | cache |
7906  *                 +-------+      +-------+
7907  *                 +=========+     .-----.
7908  *                 :  L2ARC  :    |-_____-|
7909  *                 : devices :    | Disks |
7910  *                 +=========+    `-_____-'
7911  *
7912  * Read requests are satisfied from the following sources, in order:
7913  *
7914  *	1) ARC
7915  *	2) vdev cache of L2ARC devices
7916  *	3) L2ARC devices
7917  *	4) vdev cache of disks
7918  *	5) disks
7919  *
7920  * Some L2ARC device types exhibit extremely slow write performance.
7921  * To accommodate for this there are some significant differences between
7922  * the L2ARC and traditional cache design:
7923  *
7924  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
7925  * the ARC behave as usual, freeing buffers and placing headers on ghost
7926  * lists.  The ARC does not send buffers to the L2ARC during eviction as
7927  * this would add inflated write latencies for all ARC memory pressure.
7928  *
7929  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
7930  * It does this by periodically scanning buffers from the eviction-end of
7931  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
7932  * not already there. It scans until a headroom of buffers is satisfied,
7933  * which itself is a buffer for ARC eviction. If a compressible buffer is
7934  * found during scanning and selected for writing to an L2ARC device, we
7935  * temporarily boost scanning headroom during the next scan cycle to make
7936  * sure we adapt to compression effects (which might significantly reduce
7937  * the data volume we write to L2ARC). The thread that does this is
7938  * l2arc_feed_thread(), illustrated below; example sizes are included to
7939  * provide a better sense of ratio than this diagram:
7940  *
7941  *	       head -->                        tail
7942  *	        +---------------------+----------+
7943  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
7944  *	        +---------------------+----------+   |   o L2ARC eligible
7945  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
7946  *	        +---------------------+----------+   |
7947  *	             15.9 Gbytes      ^ 32 Mbytes    |
7948  *	                           headroom          |
7949  *	                                      l2arc_feed_thread()
7950  *	                                             |
7951  *	                 l2arc write hand <--[oooo]--'
7952  *	                         |           8 Mbyte
7953  *	                         |          write max
7954  *	                         V
7955  *		  +==============================+
7956  *	L2ARC dev |####|#|###|###|    |####| ... |
7957  *	          +==============================+
7958  *	                     32 Gbytes
7959  *
7960  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
7961  * evicted, then the L2ARC has cached a buffer much sooner than it probably
7962  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
7963  * safe to say that this is an uncommon case, since buffers at the end of
7964  * the ARC lists have moved there due to inactivity.
7965  *
7966  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
7967  * then the L2ARC simply misses copying some buffers.  This serves as a
7968  * pressure valve to prevent heavy read workloads from both stalling the ARC
7969  * with waits and clogging the L2ARC with writes.  This also helps prevent
7970  * the potential for the L2ARC to churn if it attempts to cache content too
7971  * quickly, such as during backups of the entire pool.
7972  *
7973  * 5. After system boot and before the ARC has filled main memory, there are
7974  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
7975  * lists can remain mostly static.  Instead of searching from tail of these
7976  * lists as pictured, the l2arc_feed_thread() will search from the list heads
7977  * for eligible buffers, greatly increasing its chance of finding them.
7978  *
7979  * The L2ARC device write speed is also boosted during this time so that
7980  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
7981  * there are no L2ARC reads, and no fear of degrading read performance
7982  * through increased writes.
7983  *
7984  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
7985  * the vdev queue can aggregate them into larger and fewer writes.  Each
7986  * device is written to in a rotor fashion, sweeping writes through
7987  * available space then repeating.
7988  *
7989  * 7. The L2ARC does not store dirty content.  It never needs to flush
7990  * write buffers back to disk based storage.
7991  *
7992  * 8. If an ARC buffer is written (and dirtied) which also exists in the
7993  * L2ARC, the now stale L2ARC buffer is immediately dropped.
7994  *
7995  * The performance of the L2ARC can be tweaked by a number of tunables, which
7996  * may be necessary for different workloads:
7997  *
7998  *	l2arc_write_max		max write bytes per interval
7999  *	l2arc_write_boost	extra write bytes during device warmup
8000  *	l2arc_noprefetch	skip caching prefetched buffers
8001  *	l2arc_headroom		number of max device writes to precache
8002  *	l2arc_headroom_boost	when we find compressed buffers during ARC
8003  *				scanning, we multiply headroom by this
8004  *				percentage factor for the next scan cycle,
8005  *				since more compressed buffers are likely to
8006  *				be present
8007  *	l2arc_feed_secs		seconds between L2ARC writing
8008  *
8009  * Tunables may be removed or added as future performance improvements are
8010  * integrated, and also may become zpool properties.
8011  *
8012  * There are three key functions that control how the L2ARC warms up:
8013  *
8014  *	l2arc_write_eligible()	check if a buffer is eligible to cache
8015  *	l2arc_write_size()	calculate how much to write
8016  *	l2arc_write_interval()	calculate sleep delay between writes
8017  *
8018  * These three functions determine what to write, how much, and how quickly
8019  * to send writes.
8020  *
8021  * L2ARC persistence:
8022  *
8023  * When writing buffers to L2ARC, we periodically add some metadata to
8024  * make sure we can pick them up after reboot, thus dramatically reducing
8025  * the impact that any downtime has on the performance of storage systems
8026  * with large caches.
8027  *
8028  * The implementation works fairly simply by integrating the following two
8029  * modifications:
8030  *
8031  * *) When writing to the L2ARC, we occasionally write a "l2arc log block",
8032  *    which is an additional piece of metadata which describes what's been
8033  *    written. This allows us to rebuild the arc_buf_hdr_t structures of the
8034  *    main ARC buffers. There are 2 linked-lists of log blocks headed by
8035  *    dh_start_lbps[2]. We alternate which chain we append to, so they are
8036  *    time-wise and offset-wise interleaved, but that is an optimization rather
8037  *    than for correctness. The log block also includes a pointer to the
8038  *    previous block in its chain.
8039  *
8040  * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device
8041  *    for our header bookkeeping purposes. This contains a device header,
8042  *    which contains our top-level reference structures. We update it each
8043  *    time we write a new log block, so that we're able to locate it in the
8044  *    L2ARC device. If this write results in an inconsistent device header
8045  *    (e.g. due to power failure), we detect this by verifying the header's
8046  *    checksum and simply fail to reconstruct the L2ARC after reboot.
8047  *
8048  * Implementation diagram:
8049  *
8050  * +=== L2ARC device (not to scale) ======================================+
8051  * |       ___two newest log block pointers__.__________                  |
8052  * |      /                                   \dh_start_lbps[1]           |
8053  * |	 /				       \         \dh_start_lbps[0]|
8054  * |.___/__.                                    V         V               |
8055  * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---|
8056  * ||   hdr|      ^         /^       /^        /         /                |
8057  * |+------+  ...--\-------/  \-----/--\------/         /                 |
8058  * |                \--------------/    \--------------/                  |
8059  * +======================================================================+
8060  *
8061  * As can be seen on the diagram, rather than using a simple linked list,
8062  * we use a pair of linked lists with alternating elements. This is a
8063  * performance enhancement due to the fact that we only find out the
8064  * address of the next log block access once the current block has been
8065  * completely read in. Obviously, this hurts performance, because we'd be
8066  * keeping the device's I/O queue at only a 1 operation deep, thus
8067  * incurring a large amount of I/O round-trip latency. Having two lists
8068  * allows us to fetch two log blocks ahead of where we are currently
8069  * rebuilding L2ARC buffers.
8070  *
8071  * On-device data structures:
8072  *
8073  * L2ARC device header:	l2arc_dev_hdr_phys_t
8074  * L2ARC log block:	l2arc_log_blk_phys_t
8075  *
8076  * L2ARC reconstruction:
8077  *
8078  * When writing data, we simply write in the standard rotary fashion,
8079  * evicting buffers as we go and simply writing new data over them (writing
8080  * a new log block every now and then). This obviously means that once we
8081  * loop around the end of the device, we will start cutting into an already
8082  * committed log block (and its referenced data buffers), like so:
8083  *
8084  *    current write head__       __old tail
8085  *                        \     /
8086  *                        V    V
8087  * <--|bufs |lb |bufs |lb |    |bufs |lb |bufs |lb |-->
8088  *                         ^    ^^^^^^^^^___________________________________
8089  *                         |                                                \
8090  *                   <<nextwrite>> may overwrite this blk and/or its bufs --'
8091  *
8092  * When importing the pool, we detect this situation and use it to stop
8093  * our scanning process (see l2arc_rebuild).
8094  *
8095  * There is one significant caveat to consider when rebuilding ARC contents
8096  * from an L2ARC device: what about invalidated buffers? Given the above
8097  * construction, we cannot update blocks which we've already written to amend
8098  * them to remove buffers which were invalidated. Thus, during reconstruction,
8099  * we might be populating the cache with buffers for data that's not on the
8100  * main pool anymore, or may have been overwritten!
8101  *
8102  * As it turns out, this isn't a problem. Every arc_read request includes
8103  * both the DVA and, crucially, the birth TXG of the BP the caller is
8104  * looking for. So even if the cache were populated by completely rotten
8105  * blocks for data that had been long deleted and/or overwritten, we'll
8106  * never actually return bad data from the cache, since the DVA with the
8107  * birth TXG uniquely identify a block in space and time - once created,
8108  * a block is immutable on disk. The worst thing we have done is wasted
8109  * some time and memory at l2arc rebuild to reconstruct outdated ARC
8110  * entries that will get dropped from the l2arc as it is being updated
8111  * with new blocks.
8112  *
8113  * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write
8114  * hand are not restored. This is done by saving the offset (in bytes)
8115  * l2arc_evict() has evicted to in the L2ARC device header and taking it
8116  * into account when restoring buffers.
8117  */
8118 
8119 static boolean_t
l2arc_write_eligible(uint64_t spa_guid,arc_buf_hdr_t * hdr)8120 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
8121 {
8122 	/*
8123 	 * A buffer is *not* eligible for the L2ARC if it:
8124 	 * 1. belongs to a different spa.
8125 	 * 2. is already cached on the L2ARC.
8126 	 * 3. has an I/O in progress (it may be an incomplete read).
8127 	 * 4. is flagged not eligible (zfs property).
8128 	 */
8129 	if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
8130 	    HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
8131 		return (B_FALSE);
8132 
8133 	return (B_TRUE);
8134 }
8135 
8136 static uint64_t
l2arc_write_size(l2arc_dev_t * dev)8137 l2arc_write_size(l2arc_dev_t *dev)
8138 {
8139 	uint64_t size;
8140 
8141 	/*
8142 	 * Make sure our globals have meaningful values in case the user
8143 	 * altered them.
8144 	 */
8145 	size = l2arc_write_max;
8146 	if (size == 0) {
8147 		cmn_err(CE_NOTE, "l2arc_write_max must be greater than zero, "
8148 		    "resetting it to the default (%d)", L2ARC_WRITE_SIZE);
8149 		size = l2arc_write_max = L2ARC_WRITE_SIZE;
8150 	}
8151 
8152 	if (arc_warm == B_FALSE)
8153 		size += l2arc_write_boost;
8154 
8155 	/* We need to add in the worst case scenario of log block overhead. */
8156 	size += l2arc_log_blk_overhead(size, dev);
8157 	if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) {
8158 		/*
8159 		 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100)
8160 		 * times the writesize, whichever is greater.
8161 		 */
8162 		size += MAX(64 * 1024 * 1024,
8163 		    (size * l2arc_trim_ahead) / 100);
8164 	}
8165 
8166 	/*
8167 	 * Make sure the write size does not exceed the size of the cache
8168 	 * device. This is important in l2arc_evict(), otherwise infinite
8169 	 * iteration can occur.
8170 	 */
8171 	size = MIN(size, (dev->l2ad_end - dev->l2ad_start) / 4);
8172 
8173 	size = P2ROUNDUP(size, 1ULL << dev->l2ad_vdev->vdev_ashift);
8174 
8175 	return (size);
8176 
8177 }
8178 
8179 static clock_t
l2arc_write_interval(clock_t began,uint64_t wanted,uint64_t wrote)8180 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
8181 {
8182 	clock_t interval, next, now;
8183 
8184 	/*
8185 	 * If the ARC lists are busy, increase our write rate; if the
8186 	 * lists are stale, idle back.  This is achieved by checking
8187 	 * how much we previously wrote - if it was more than half of
8188 	 * what we wanted, schedule the next write much sooner.
8189 	 */
8190 	if (l2arc_feed_again && wrote > (wanted / 2))
8191 		interval = (hz * l2arc_feed_min_ms) / 1000;
8192 	else
8193 		interval = hz * l2arc_feed_secs;
8194 
8195 	now = ddi_get_lbolt();
8196 	next = MAX(now, MIN(now + interval, began + interval));
8197 
8198 	return (next);
8199 }
8200 
8201 /*
8202  * Cycle through L2ARC devices.  This is how L2ARC load balances.
8203  * If a device is returned, this also returns holding the spa config lock.
8204  */
8205 static l2arc_dev_t *
l2arc_dev_get_next(void)8206 l2arc_dev_get_next(void)
8207 {
8208 	l2arc_dev_t *first, *next = NULL;
8209 
8210 	/*
8211 	 * Lock out the removal of spas (spa_namespace_lock), then removal
8212 	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
8213 	 * both locks will be dropped and a spa config lock held instead.
8214 	 */
8215 	mutex_enter(&spa_namespace_lock);
8216 	mutex_enter(&l2arc_dev_mtx);
8217 
8218 	/* if there are no vdevs, there is nothing to do */
8219 	if (l2arc_ndev == 0)
8220 		goto out;
8221 
8222 	first = NULL;
8223 	next = l2arc_dev_last;
8224 	do {
8225 		/* loop around the list looking for a non-faulted vdev */
8226 		if (next == NULL) {
8227 			next = list_head(l2arc_dev_list);
8228 		} else {
8229 			next = list_next(l2arc_dev_list, next);
8230 			if (next == NULL)
8231 				next = list_head(l2arc_dev_list);
8232 		}
8233 
8234 		/* if we have come back to the start, bail out */
8235 		if (first == NULL)
8236 			first = next;
8237 		else if (next == first)
8238 			break;
8239 
8240 		ASSERT3P(next, !=, NULL);
8241 	} while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild ||
8242 	    next->l2ad_trim_all || next->l2ad_spa->spa_is_exporting);
8243 
8244 	/* if we were unable to find any usable vdevs, return NULL */
8245 	if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild ||
8246 	    next->l2ad_trim_all || next->l2ad_spa->spa_is_exporting)
8247 		next = NULL;
8248 
8249 	l2arc_dev_last = next;
8250 
8251 out:
8252 	mutex_exit(&l2arc_dev_mtx);
8253 
8254 	/*
8255 	 * Grab the config lock to prevent the 'next' device from being
8256 	 * removed while we are writing to it.
8257 	 */
8258 	if (next != NULL)
8259 		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
8260 	mutex_exit(&spa_namespace_lock);
8261 
8262 	return (next);
8263 }
8264 
8265 /*
8266  * Free buffers that were tagged for destruction.
8267  */
8268 static void
l2arc_do_free_on_write(void)8269 l2arc_do_free_on_write(void)
8270 {
8271 	l2arc_data_free_t *df;
8272 
8273 	mutex_enter(&l2arc_free_on_write_mtx);
8274 	while ((df = list_remove_head(l2arc_free_on_write)) != NULL) {
8275 		ASSERT3P(df->l2df_abd, !=, NULL);
8276 		abd_free(df->l2df_abd);
8277 		kmem_free(df, sizeof (l2arc_data_free_t));
8278 	}
8279 	mutex_exit(&l2arc_free_on_write_mtx);
8280 }
8281 
8282 /*
8283  * A write to a cache device has completed.  Update all headers to allow
8284  * reads from these buffers to begin.
8285  */
8286 static void
l2arc_write_done(zio_t * zio)8287 l2arc_write_done(zio_t *zio)
8288 {
8289 	l2arc_write_callback_t	*cb;
8290 	l2arc_lb_abd_buf_t	*abd_buf;
8291 	l2arc_lb_ptr_buf_t	*lb_ptr_buf;
8292 	l2arc_dev_t		*dev;
8293 	l2arc_dev_hdr_phys_t	*l2dhdr;
8294 	list_t			*buflist;
8295 	arc_buf_hdr_t		*head, *hdr, *hdr_prev;
8296 	kmutex_t		*hash_lock;
8297 	int64_t			bytes_dropped = 0;
8298 
8299 	cb = zio->io_private;
8300 	ASSERT3P(cb, !=, NULL);
8301 	dev = cb->l2wcb_dev;
8302 	l2dhdr = dev->l2ad_dev_hdr;
8303 	ASSERT3P(dev, !=, NULL);
8304 	head = cb->l2wcb_head;
8305 	ASSERT3P(head, !=, NULL);
8306 	buflist = &dev->l2ad_buflist;
8307 	ASSERT3P(buflist, !=, NULL);
8308 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
8309 	    l2arc_write_callback_t *, cb);
8310 
8311 	/*
8312 	 * All writes completed, or an error was hit.
8313 	 */
8314 top:
8315 	mutex_enter(&dev->l2ad_mtx);
8316 	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
8317 		hdr_prev = list_prev(buflist, hdr);
8318 
8319 		hash_lock = HDR_LOCK(hdr);
8320 
8321 		/*
8322 		 * We cannot use mutex_enter or else we can deadlock
8323 		 * with l2arc_write_buffers (due to swapping the order
8324 		 * the hash lock and l2ad_mtx are taken).
8325 		 */
8326 		if (!mutex_tryenter(hash_lock)) {
8327 			/*
8328 			 * Missed the hash lock. We must retry so we
8329 			 * don't leave the ARC_FLAG_L2_WRITING bit set.
8330 			 */
8331 			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
8332 
8333 			/*
8334 			 * We don't want to rescan the headers we've
8335 			 * already marked as having been written out, so
8336 			 * we reinsert the head node so we can pick up
8337 			 * where we left off.
8338 			 */
8339 			list_remove(buflist, head);
8340 			list_insert_after(buflist, hdr, head);
8341 
8342 			mutex_exit(&dev->l2ad_mtx);
8343 
8344 			/*
8345 			 * We wait for the hash lock to become available
8346 			 * to try and prevent busy waiting, and increase
8347 			 * the chance we'll be able to acquire the lock
8348 			 * the next time around.
8349 			 */
8350 			mutex_enter(hash_lock);
8351 			mutex_exit(hash_lock);
8352 			goto top;
8353 		}
8354 
8355 		/*
8356 		 * We could not have been moved into the arc_l2c_only
8357 		 * state while in-flight due to our ARC_FLAG_L2_WRITING
8358 		 * bit being set. Let's just ensure that's being enforced.
8359 		 */
8360 		ASSERT(HDR_HAS_L1HDR(hdr));
8361 
8362 		/*
8363 		 * Skipped - drop L2ARC entry and mark the header as no
8364 		 * longer L2 eligibile.
8365 		 */
8366 		if (zio->io_error != 0) {
8367 			/*
8368 			 * Error - drop L2ARC entry.
8369 			 */
8370 			list_remove(buflist, hdr);
8371 			arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
8372 
8373 			uint64_t psize = HDR_GET_PSIZE(hdr);
8374 			l2arc_hdr_arcstats_decrement(hdr);
8375 
8376 			bytes_dropped +=
8377 			    vdev_psize_to_asize(dev->l2ad_vdev, psize);
8378 			(void) zfs_refcount_remove_many(&dev->l2ad_alloc,
8379 			    arc_hdr_size(hdr), hdr);
8380 		}
8381 
8382 		/*
8383 		 * Allow ARC to begin reads and ghost list evictions to
8384 		 * this L2ARC entry.
8385 		 */
8386 		arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
8387 
8388 		mutex_exit(hash_lock);
8389 	}
8390 
8391 	/*
8392 	 * Free the allocated abd buffers for writing the log blocks.
8393 	 * If the zio failed reclaim the allocated space and remove the
8394 	 * pointers to these log blocks from the log block pointer list
8395 	 * of the L2ARC device.
8396 	 */
8397 	while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) {
8398 		abd_free(abd_buf->abd);
8399 		zio_buf_free(abd_buf, sizeof (*abd_buf));
8400 		if (zio->io_error != 0) {
8401 			lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list);
8402 			/*
8403 			 * L2BLK_GET_PSIZE returns aligned size for log
8404 			 * blocks.
8405 			 */
8406 			uint64_t asize =
8407 			    L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop);
8408 			bytes_dropped += asize;
8409 			ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
8410 			ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
8411 			zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
8412 			    lb_ptr_buf);
8413 			(void) zfs_refcount_remove(&dev->l2ad_lb_count,
8414 			    lb_ptr_buf);
8415 			kmem_free(lb_ptr_buf->lb_ptr,
8416 			    sizeof (l2arc_log_blkptr_t));
8417 			kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
8418 		}
8419 	}
8420 	list_destroy(&cb->l2wcb_abd_list);
8421 
8422 	if (zio->io_error != 0) {
8423 		ARCSTAT_BUMP(arcstat_l2_writes_error);
8424 
8425 		/*
8426 		 * Restore the lbps array in the header to its previous state.
8427 		 * If the list of log block pointers is empty, zero out the
8428 		 * log block pointers in the device header.
8429 		 */
8430 		lb_ptr_buf = list_head(&dev->l2ad_lbptr_list);
8431 		for (int i = 0; i < 2; i++) {
8432 			if (lb_ptr_buf == NULL) {
8433 				/*
8434 				 * If the list is empty zero out the device
8435 				 * header. Otherwise zero out the second log
8436 				 * block pointer in the header.
8437 				 */
8438 				if (i == 0) {
8439 					memset(l2dhdr, 0,
8440 					    dev->l2ad_dev_hdr_asize);
8441 				} else {
8442 					memset(&l2dhdr->dh_start_lbps[i], 0,
8443 					    sizeof (l2arc_log_blkptr_t));
8444 				}
8445 				break;
8446 			}
8447 			memcpy(&l2dhdr->dh_start_lbps[i], lb_ptr_buf->lb_ptr,
8448 			    sizeof (l2arc_log_blkptr_t));
8449 			lb_ptr_buf = list_next(&dev->l2ad_lbptr_list,
8450 			    lb_ptr_buf);
8451 		}
8452 	}
8453 
8454 	ARCSTAT_BUMP(arcstat_l2_writes_done);
8455 	list_remove(buflist, head);
8456 	ASSERT(!HDR_HAS_L1HDR(head));
8457 	kmem_cache_free(hdr_l2only_cache, head);
8458 	mutex_exit(&dev->l2ad_mtx);
8459 
8460 	ASSERT(dev->l2ad_vdev != NULL);
8461 	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
8462 
8463 	l2arc_do_free_on_write();
8464 
8465 	kmem_free(cb, sizeof (l2arc_write_callback_t));
8466 }
8467 
8468 static int
l2arc_untransform(zio_t * zio,l2arc_read_callback_t * cb)8469 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb)
8470 {
8471 	int ret;
8472 	spa_t *spa = zio->io_spa;
8473 	arc_buf_hdr_t *hdr = cb->l2rcb_hdr;
8474 	blkptr_t *bp = zio->io_bp;
8475 	uint8_t salt[ZIO_DATA_SALT_LEN];
8476 	uint8_t iv[ZIO_DATA_IV_LEN];
8477 	uint8_t mac[ZIO_DATA_MAC_LEN];
8478 	boolean_t no_crypt = B_FALSE;
8479 
8480 	/*
8481 	 * ZIL data is never be written to the L2ARC, so we don't need
8482 	 * special handling for its unique MAC storage.
8483 	 */
8484 	ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
8485 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
8486 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8487 
8488 	/*
8489 	 * If the data was encrypted, decrypt it now. Note that
8490 	 * we must check the bp here and not the hdr, since the
8491 	 * hdr does not have its encryption parameters updated
8492 	 * until arc_read_done().
8493 	 */
8494 	if (BP_IS_ENCRYPTED(bp)) {
8495 		abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8496 		    ARC_HDR_USE_RESERVE);
8497 
8498 		zio_crypt_decode_params_bp(bp, salt, iv);
8499 		zio_crypt_decode_mac_bp(bp, mac);
8500 
8501 		ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb,
8502 		    BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
8503 		    salt, iv, mac, HDR_GET_PSIZE(hdr), eabd,
8504 		    hdr->b_l1hdr.b_pabd, &no_crypt);
8505 		if (ret != 0) {
8506 			arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8507 			goto error;
8508 		}
8509 
8510 		/*
8511 		 * If we actually performed decryption, replace b_pabd
8512 		 * with the decrypted data. Otherwise we can just throw
8513 		 * our decryption buffer away.
8514 		 */
8515 		if (!no_crypt) {
8516 			arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8517 			    arc_hdr_size(hdr), hdr);
8518 			hdr->b_l1hdr.b_pabd = eabd;
8519 			zio->io_abd = eabd;
8520 		} else {
8521 			arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8522 		}
8523 	}
8524 
8525 	/*
8526 	 * If the L2ARC block was compressed, but ARC compression
8527 	 * is disabled we decompress the data into a new buffer and
8528 	 * replace the existing data.
8529 	 */
8530 	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8531 	    !HDR_COMPRESSION_ENABLED(hdr)) {
8532 		abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8533 		    ARC_HDR_USE_RESERVE);
8534 
8535 		ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
8536 		    hdr->b_l1hdr.b_pabd, cabd, HDR_GET_PSIZE(hdr),
8537 		    HDR_GET_LSIZE(hdr), &hdr->b_complevel);
8538 		if (ret != 0) {
8539 			arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
8540 			goto error;
8541 		}
8542 
8543 		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8544 		    arc_hdr_size(hdr), hdr);
8545 		hdr->b_l1hdr.b_pabd = cabd;
8546 		zio->io_abd = cabd;
8547 		zio->io_size = HDR_GET_LSIZE(hdr);
8548 	}
8549 
8550 	return (0);
8551 
8552 error:
8553 	return (ret);
8554 }
8555 
8556 
8557 /*
8558  * A read to a cache device completed.  Validate buffer contents before
8559  * handing over to the regular ARC routines.
8560  */
8561 static void
l2arc_read_done(zio_t * zio)8562 l2arc_read_done(zio_t *zio)
8563 {
8564 	int tfm_error = 0;
8565 	l2arc_read_callback_t *cb = zio->io_private;
8566 	arc_buf_hdr_t *hdr;
8567 	kmutex_t *hash_lock;
8568 	boolean_t valid_cksum;
8569 	boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) &&
8570 	    (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT));
8571 
8572 	ASSERT3P(zio->io_vd, !=, NULL);
8573 	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
8574 
8575 	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
8576 
8577 	ASSERT3P(cb, !=, NULL);
8578 	hdr = cb->l2rcb_hdr;
8579 	ASSERT3P(hdr, !=, NULL);
8580 
8581 	hash_lock = HDR_LOCK(hdr);
8582 	mutex_enter(hash_lock);
8583 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
8584 
8585 	/*
8586 	 * If the data was read into a temporary buffer,
8587 	 * move it and free the buffer.
8588 	 */
8589 	if (cb->l2rcb_abd != NULL) {
8590 		ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
8591 		if (zio->io_error == 0) {
8592 			if (using_rdata) {
8593 				abd_copy(hdr->b_crypt_hdr.b_rabd,
8594 				    cb->l2rcb_abd, arc_hdr_size(hdr));
8595 			} else {
8596 				abd_copy(hdr->b_l1hdr.b_pabd,
8597 				    cb->l2rcb_abd, arc_hdr_size(hdr));
8598 			}
8599 		}
8600 
8601 		/*
8602 		 * The following must be done regardless of whether
8603 		 * there was an error:
8604 		 * - free the temporary buffer
8605 		 * - point zio to the real ARC buffer
8606 		 * - set zio size accordingly
8607 		 * These are required because zio is either re-used for
8608 		 * an I/O of the block in the case of the error
8609 		 * or the zio is passed to arc_read_done() and it
8610 		 * needs real data.
8611 		 */
8612 		abd_free(cb->l2rcb_abd);
8613 		zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
8614 
8615 		if (using_rdata) {
8616 			ASSERT(HDR_HAS_RABD(hdr));
8617 			zio->io_abd = zio->io_orig_abd =
8618 			    hdr->b_crypt_hdr.b_rabd;
8619 		} else {
8620 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8621 			zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
8622 		}
8623 	}
8624 
8625 	ASSERT3P(zio->io_abd, !=, NULL);
8626 
8627 	/*
8628 	 * Check this survived the L2ARC journey.
8629 	 */
8630 	ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd ||
8631 	    (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd));
8632 	zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
8633 	zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
8634 	zio->io_prop.zp_complevel = hdr->b_complevel;
8635 
8636 	valid_cksum = arc_cksum_is_equal(hdr, zio);
8637 
8638 	/*
8639 	 * b_rabd will always match the data as it exists on disk if it is
8640 	 * being used. Therefore if we are reading into b_rabd we do not
8641 	 * attempt to untransform the data.
8642 	 */
8643 	if (valid_cksum && !using_rdata)
8644 		tfm_error = l2arc_untransform(zio, cb);
8645 
8646 	if (valid_cksum && tfm_error == 0 && zio->io_error == 0 &&
8647 	    !HDR_L2_EVICTED(hdr)) {
8648 		mutex_exit(hash_lock);
8649 		zio->io_private = hdr;
8650 		arc_read_done(zio);
8651 	} else {
8652 		/*
8653 		 * Buffer didn't survive caching.  Increment stats and
8654 		 * reissue to the original storage device.
8655 		 */
8656 		if (zio->io_error != 0) {
8657 			ARCSTAT_BUMP(arcstat_l2_io_error);
8658 		} else {
8659 			zio->io_error = SET_ERROR(EIO);
8660 		}
8661 		if (!valid_cksum || tfm_error != 0)
8662 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
8663 
8664 		/*
8665 		 * If there's no waiter, issue an async i/o to the primary
8666 		 * storage now.  If there *is* a waiter, the caller must
8667 		 * issue the i/o in a context where it's OK to block.
8668 		 */
8669 		if (zio->io_waiter == NULL) {
8670 			zio_t *pio = zio_unique_parent(zio);
8671 			void *abd = (using_rdata) ?
8672 			    hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd;
8673 
8674 			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
8675 
8676 			zio = zio_read(pio, zio->io_spa, zio->io_bp,
8677 			    abd, zio->io_size, arc_read_done,
8678 			    hdr, zio->io_priority, cb->l2rcb_flags,
8679 			    &cb->l2rcb_zb);
8680 
8681 			/*
8682 			 * Original ZIO will be freed, so we need to update
8683 			 * ARC header with the new ZIO pointer to be used
8684 			 * by zio_change_priority() in arc_read().
8685 			 */
8686 			for (struct arc_callback *acb = hdr->b_l1hdr.b_acb;
8687 			    acb != NULL; acb = acb->acb_next)
8688 				acb->acb_zio_head = zio;
8689 
8690 			mutex_exit(hash_lock);
8691 			zio_nowait(zio);
8692 		} else {
8693 			mutex_exit(hash_lock);
8694 		}
8695 	}
8696 
8697 	kmem_free(cb, sizeof (l2arc_read_callback_t));
8698 }
8699 
8700 /*
8701  * This is the list priority from which the L2ARC will search for pages to
8702  * cache.  This is used within loops (0..3) to cycle through lists in the
8703  * desired order.  This order can have a significant effect on cache
8704  * performance.
8705  *
8706  * Currently the metadata lists are hit first, MFU then MRU, followed by
8707  * the data lists.  This function returns a locked list, and also returns
8708  * the lock pointer.
8709  */
8710 static multilist_sublist_t *
l2arc_sublist_lock(int list_num)8711 l2arc_sublist_lock(int list_num)
8712 {
8713 	multilist_t *ml = NULL;
8714 	unsigned int idx;
8715 
8716 	ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES);
8717 
8718 	switch (list_num) {
8719 	case 0:
8720 		ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
8721 		break;
8722 	case 1:
8723 		ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
8724 		break;
8725 	case 2:
8726 		ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
8727 		break;
8728 	case 3:
8729 		ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
8730 		break;
8731 	default:
8732 		return (NULL);
8733 	}
8734 
8735 	/*
8736 	 * Return a randomly-selected sublist. This is acceptable
8737 	 * because the caller feeds only a little bit of data for each
8738 	 * call (8MB). Subsequent calls will result in different
8739 	 * sublists being selected.
8740 	 */
8741 	idx = multilist_get_random_index(ml);
8742 	return (multilist_sublist_lock_idx(ml, idx));
8743 }
8744 
8745 /*
8746  * Calculates the maximum overhead of L2ARC metadata log blocks for a given
8747  * L2ARC write size. l2arc_evict and l2arc_write_size need to include this
8748  * overhead in processing to make sure there is enough headroom available
8749  * when writing buffers.
8750  */
8751 static inline uint64_t
l2arc_log_blk_overhead(uint64_t write_sz,l2arc_dev_t * dev)8752 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev)
8753 {
8754 	if (dev->l2ad_log_entries == 0) {
8755 		return (0);
8756 	} else {
8757 		uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT;
8758 
8759 		uint64_t log_blocks = (log_entries +
8760 		    dev->l2ad_log_entries - 1) /
8761 		    dev->l2ad_log_entries;
8762 
8763 		return (vdev_psize_to_asize(dev->l2ad_vdev,
8764 		    sizeof (l2arc_log_blk_phys_t)) * log_blocks);
8765 	}
8766 }
8767 
8768 /*
8769  * Evict buffers from the device write hand to the distance specified in
8770  * bytes. This distance may span populated buffers, it may span nothing.
8771  * This is clearing a region on the L2ARC device ready for writing.
8772  * If the 'all' boolean is set, every buffer is evicted.
8773  */
8774 static void
l2arc_evict(l2arc_dev_t * dev,uint64_t distance,boolean_t all)8775 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
8776 {
8777 	list_t *buflist;
8778 	arc_buf_hdr_t *hdr, *hdr_prev;
8779 	kmutex_t *hash_lock;
8780 	uint64_t taddr;
8781 	l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev;
8782 	vdev_t *vd = dev->l2ad_vdev;
8783 	boolean_t rerun;
8784 
8785 	buflist = &dev->l2ad_buflist;
8786 
8787 top:
8788 	rerun = B_FALSE;
8789 	if (dev->l2ad_hand + distance > dev->l2ad_end) {
8790 		/*
8791 		 * When there is no space to accommodate upcoming writes,
8792 		 * evict to the end. Then bump the write and evict hands
8793 		 * to the start and iterate. This iteration does not
8794 		 * happen indefinitely as we make sure in
8795 		 * l2arc_write_size() that when the write hand is reset,
8796 		 * the write size does not exceed the end of the device.
8797 		 */
8798 		rerun = B_TRUE;
8799 		taddr = dev->l2ad_end;
8800 	} else {
8801 		taddr = dev->l2ad_hand + distance;
8802 	}
8803 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
8804 	    uint64_t, taddr, boolean_t, all);
8805 
8806 	if (!all) {
8807 		/*
8808 		 * This check has to be placed after deciding whether to
8809 		 * iterate (rerun).
8810 		 */
8811 		if (dev->l2ad_first) {
8812 			/*
8813 			 * This is the first sweep through the device. There is
8814 			 * nothing to evict. We have already trimmmed the
8815 			 * whole device.
8816 			 */
8817 			goto out;
8818 		} else {
8819 			/*
8820 			 * Trim the space to be evicted.
8821 			 */
8822 			if (vd->vdev_has_trim && dev->l2ad_evict < taddr &&
8823 			    l2arc_trim_ahead > 0) {
8824 				/*
8825 				 * We have to drop the spa_config lock because
8826 				 * vdev_trim_range() will acquire it.
8827 				 * l2ad_evict already accounts for the label
8828 				 * size. To prevent vdev_trim_ranges() from
8829 				 * adding it again, we subtract it from
8830 				 * l2ad_evict.
8831 				 */
8832 				spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev);
8833 				vdev_trim_simple(vd,
8834 				    dev->l2ad_evict - VDEV_LABEL_START_SIZE,
8835 				    taddr - dev->l2ad_evict);
8836 				spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev,
8837 				    RW_READER);
8838 			}
8839 
8840 			/*
8841 			 * When rebuilding L2ARC we retrieve the evict hand
8842 			 * from the header of the device. Of note, l2arc_evict()
8843 			 * does not actually delete buffers from the cache
8844 			 * device, but trimming may do so depending on the
8845 			 * hardware implementation. Thus keeping track of the
8846 			 * evict hand is useful.
8847 			 */
8848 			dev->l2ad_evict = MAX(dev->l2ad_evict, taddr);
8849 		}
8850 	}
8851 
8852 retry:
8853 	mutex_enter(&dev->l2ad_mtx);
8854 	/*
8855 	 * We have to account for evicted log blocks. Run vdev_space_update()
8856 	 * on log blocks whose offset (in bytes) is before the evicted offset
8857 	 * (in bytes) by searching in the list of pointers to log blocks
8858 	 * present in the L2ARC device.
8859 	 */
8860 	for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf;
8861 	    lb_ptr_buf = lb_ptr_buf_prev) {
8862 
8863 		lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf);
8864 
8865 		/* L2BLK_GET_PSIZE returns aligned size for log blocks */
8866 		uint64_t asize = L2BLK_GET_PSIZE(
8867 		    (lb_ptr_buf->lb_ptr)->lbp_prop);
8868 
8869 		/*
8870 		 * We don't worry about log blocks left behind (ie
8871 		 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers()
8872 		 * will never write more than l2arc_evict() evicts.
8873 		 */
8874 		if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) {
8875 			break;
8876 		} else {
8877 			vdev_space_update(vd, -asize, 0, 0);
8878 			ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
8879 			ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
8880 			zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
8881 			    lb_ptr_buf);
8882 			(void) zfs_refcount_remove(&dev->l2ad_lb_count,
8883 			    lb_ptr_buf);
8884 			list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf);
8885 			kmem_free(lb_ptr_buf->lb_ptr,
8886 			    sizeof (l2arc_log_blkptr_t));
8887 			kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
8888 		}
8889 	}
8890 
8891 	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
8892 		hdr_prev = list_prev(buflist, hdr);
8893 
8894 		ASSERT(!HDR_EMPTY(hdr));
8895 		hash_lock = HDR_LOCK(hdr);
8896 
8897 		/*
8898 		 * We cannot use mutex_enter or else we can deadlock
8899 		 * with l2arc_write_buffers (due to swapping the order
8900 		 * the hash lock and l2ad_mtx are taken).
8901 		 */
8902 		if (!mutex_tryenter(hash_lock)) {
8903 			/*
8904 			 * Missed the hash lock.  Retry.
8905 			 */
8906 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
8907 			mutex_exit(&dev->l2ad_mtx);
8908 			mutex_enter(hash_lock);
8909 			mutex_exit(hash_lock);
8910 			goto retry;
8911 		}
8912 
8913 		/*
8914 		 * A header can't be on this list if it doesn't have L2 header.
8915 		 */
8916 		ASSERT(HDR_HAS_L2HDR(hdr));
8917 
8918 		/* Ensure this header has finished being written. */
8919 		ASSERT(!HDR_L2_WRITING(hdr));
8920 		ASSERT(!HDR_L2_WRITE_HEAD(hdr));
8921 
8922 		if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict ||
8923 		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
8924 			/*
8925 			 * We've evicted to the target address,
8926 			 * or the end of the device.
8927 			 */
8928 			mutex_exit(hash_lock);
8929 			break;
8930 		}
8931 
8932 		if (!HDR_HAS_L1HDR(hdr)) {
8933 			ASSERT(!HDR_L2_READING(hdr));
8934 			/*
8935 			 * This doesn't exist in the ARC.  Destroy.
8936 			 * arc_hdr_destroy() will call list_remove()
8937 			 * and decrement arcstat_l2_lsize.
8938 			 */
8939 			arc_change_state(arc_anon, hdr);
8940 			arc_hdr_destroy(hdr);
8941 		} else {
8942 			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
8943 			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
8944 			/*
8945 			 * Invalidate issued or about to be issued
8946 			 * reads, since we may be about to write
8947 			 * over this location.
8948 			 */
8949 			if (HDR_L2_READING(hdr)) {
8950 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
8951 				arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
8952 			}
8953 
8954 			arc_hdr_l2hdr_destroy(hdr);
8955 		}
8956 		mutex_exit(hash_lock);
8957 	}
8958 	mutex_exit(&dev->l2ad_mtx);
8959 
8960 out:
8961 	/*
8962 	 * We need to check if we evict all buffers, otherwise we may iterate
8963 	 * unnecessarily.
8964 	 */
8965 	if (!all && rerun) {
8966 		/*
8967 		 * Bump device hand to the device start if it is approaching the
8968 		 * end. l2arc_evict() has already evicted ahead for this case.
8969 		 */
8970 		dev->l2ad_hand = dev->l2ad_start;
8971 		dev->l2ad_evict = dev->l2ad_start;
8972 		dev->l2ad_first = B_FALSE;
8973 		goto top;
8974 	}
8975 
8976 	if (!all) {
8977 		/*
8978 		 * In case of cache device removal (all) the following
8979 		 * assertions may be violated without functional consequences
8980 		 * as the device is about to be removed.
8981 		 */
8982 		ASSERT3U(dev->l2ad_hand + distance, <=, dev->l2ad_end);
8983 		if (!dev->l2ad_first)
8984 			ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
8985 	}
8986 }
8987 
8988 /*
8989  * Handle any abd transforms that might be required for writing to the L2ARC.
8990  * If successful, this function will always return an abd with the data
8991  * transformed as it is on disk in a new abd of asize bytes.
8992  */
8993 static int
l2arc_apply_transforms(spa_t * spa,arc_buf_hdr_t * hdr,uint64_t asize,abd_t ** abd_out)8994 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize,
8995     abd_t **abd_out)
8996 {
8997 	int ret;
8998 	abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd;
8999 	enum zio_compress compress = HDR_GET_COMPRESS(hdr);
9000 	uint64_t psize = HDR_GET_PSIZE(hdr);
9001 	uint64_t size = arc_hdr_size(hdr);
9002 	boolean_t ismd = HDR_ISTYPE_METADATA(hdr);
9003 	boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
9004 	dsl_crypto_key_t *dck = NULL;
9005 	uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 };
9006 	boolean_t no_crypt = B_FALSE;
9007 
9008 	ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
9009 	    !HDR_COMPRESSION_ENABLED(hdr)) ||
9010 	    HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize);
9011 	ASSERT3U(psize, <=, asize);
9012 
9013 	/*
9014 	 * If this data simply needs its own buffer, we simply allocate it
9015 	 * and copy the data. This may be done to eliminate a dependency on a
9016 	 * shared buffer or to reallocate the buffer to match asize.
9017 	 */
9018 	if (HDR_HAS_RABD(hdr)) {
9019 		ASSERT3U(asize, >, psize);
9020 		to_write = abd_alloc_for_io(asize, ismd);
9021 		abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize);
9022 		abd_zero_off(to_write, psize, asize - psize);
9023 		goto out;
9024 	}
9025 
9026 	if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) &&
9027 	    !HDR_ENCRYPTED(hdr)) {
9028 		ASSERT3U(size, ==, psize);
9029 		to_write = abd_alloc_for_io(asize, ismd);
9030 		abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
9031 		if (asize > size)
9032 			abd_zero_off(to_write, size, asize - size);
9033 		goto out;
9034 	}
9035 
9036 	if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) {
9037 		cabd = abd_alloc_for_io(MAX(size, asize), ismd);
9038 		uint64_t csize = zio_compress_data(compress, to_write, &cabd,
9039 		    size, MIN(size, psize), hdr->b_complevel);
9040 		if (csize >= size || csize > psize) {
9041 			/*
9042 			 * We can't re-compress the block into the original
9043 			 * psize.  Even if it fits into asize, it does not
9044 			 * matter, since checksum will never match on read.
9045 			 */
9046 			abd_free(cabd);
9047 			return (SET_ERROR(EIO));
9048 		}
9049 		if (asize > csize)
9050 			abd_zero_off(cabd, csize, asize - csize);
9051 		to_write = cabd;
9052 	}
9053 
9054 	if (HDR_ENCRYPTED(hdr)) {
9055 		eabd = abd_alloc_for_io(asize, ismd);
9056 
9057 		/*
9058 		 * If the dataset was disowned before the buffer
9059 		 * made it to this point, the key to re-encrypt
9060 		 * it won't be available. In this case we simply
9061 		 * won't write the buffer to the L2ARC.
9062 		 */
9063 		ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj,
9064 		    FTAG, &dck);
9065 		if (ret != 0)
9066 			goto error;
9067 
9068 		ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
9069 		    hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt,
9070 		    hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd,
9071 		    &no_crypt);
9072 		if (ret != 0)
9073 			goto error;
9074 
9075 		if (no_crypt)
9076 			abd_copy(eabd, to_write, psize);
9077 
9078 		if (psize != asize)
9079 			abd_zero_off(eabd, psize, asize - psize);
9080 
9081 		/* assert that the MAC we got here matches the one we saved */
9082 		ASSERT0(memcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN));
9083 		spa_keystore_dsl_key_rele(spa, dck, FTAG);
9084 
9085 		if (to_write == cabd)
9086 			abd_free(cabd);
9087 
9088 		to_write = eabd;
9089 	}
9090 
9091 out:
9092 	ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd);
9093 	*abd_out = to_write;
9094 	return (0);
9095 
9096 error:
9097 	if (dck != NULL)
9098 		spa_keystore_dsl_key_rele(spa, dck, FTAG);
9099 	if (cabd != NULL)
9100 		abd_free(cabd);
9101 	if (eabd != NULL)
9102 		abd_free(eabd);
9103 
9104 	*abd_out = NULL;
9105 	return (ret);
9106 }
9107 
9108 static void
l2arc_blk_fetch_done(zio_t * zio)9109 l2arc_blk_fetch_done(zio_t *zio)
9110 {
9111 	l2arc_read_callback_t *cb;
9112 
9113 	cb = zio->io_private;
9114 	if (cb->l2rcb_abd != NULL)
9115 		abd_free(cb->l2rcb_abd);
9116 	kmem_free(cb, sizeof (l2arc_read_callback_t));
9117 }
9118 
9119 /*
9120  * Find and write ARC buffers to the L2ARC device.
9121  *
9122  * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
9123  * for reading until they have completed writing.
9124  * The headroom_boost is an in-out parameter used to maintain headroom boost
9125  * state between calls to this function.
9126  *
9127  * Returns the number of bytes actually written (which may be smaller than
9128  * the delta by which the device hand has changed due to alignment and the
9129  * writing of log blocks).
9130  */
9131 static uint64_t
l2arc_write_buffers(spa_t * spa,l2arc_dev_t * dev,uint64_t target_sz)9132 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
9133 {
9134 	arc_buf_hdr_t 		*hdr, *head, *marker;
9135 	uint64_t 		write_asize, write_psize, headroom;
9136 	boolean_t		full, from_head = !arc_warm;
9137 	l2arc_write_callback_t	*cb = NULL;
9138 	zio_t 			*pio, *wzio;
9139 	uint64_t 		guid = spa_load_guid(spa);
9140 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
9141 
9142 	ASSERT3P(dev->l2ad_vdev, !=, NULL);
9143 
9144 	pio = NULL;
9145 	write_asize = write_psize = 0;
9146 	full = B_FALSE;
9147 	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
9148 	arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
9149 	marker = arc_state_alloc_marker();
9150 
9151 	/*
9152 	 * Copy buffers for L2ARC writing.
9153 	 */
9154 	for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) {
9155 		/*
9156 		 * pass == 0: MFU meta
9157 		 * pass == 1: MRU meta
9158 		 * pass == 2: MFU data
9159 		 * pass == 3: MRU data
9160 		 */
9161 		if (l2arc_mfuonly == 1) {
9162 			if (pass == 1 || pass == 3)
9163 				continue;
9164 		} else if (l2arc_mfuonly > 1) {
9165 			if (pass == 3)
9166 				continue;
9167 		}
9168 
9169 		uint64_t passed_sz = 0;
9170 		headroom = target_sz * l2arc_headroom;
9171 		if (zfs_compressed_arc_enabled)
9172 			headroom = (headroom * l2arc_headroom_boost) / 100;
9173 
9174 		/*
9175 		 * Until the ARC is warm and starts to evict, read from the
9176 		 * head of the ARC lists rather than the tail.
9177 		 */
9178 		multilist_sublist_t *mls = l2arc_sublist_lock(pass);
9179 		ASSERT3P(mls, !=, NULL);
9180 		if (from_head)
9181 			hdr = multilist_sublist_head(mls);
9182 		else
9183 			hdr = multilist_sublist_tail(mls);
9184 
9185 		while (hdr != NULL) {
9186 			kmutex_t *hash_lock;
9187 			abd_t *to_write = NULL;
9188 
9189 			hash_lock = HDR_LOCK(hdr);
9190 			if (!mutex_tryenter(hash_lock)) {
9191 skip:
9192 				/* Skip this buffer rather than waiting. */
9193 				if (from_head)
9194 					hdr = multilist_sublist_next(mls, hdr);
9195 				else
9196 					hdr = multilist_sublist_prev(mls, hdr);
9197 				continue;
9198 			}
9199 
9200 			passed_sz += HDR_GET_LSIZE(hdr);
9201 			if (l2arc_headroom != 0 && passed_sz > headroom) {
9202 				/*
9203 				 * Searched too far.
9204 				 */
9205 				mutex_exit(hash_lock);
9206 				break;
9207 			}
9208 
9209 			if (!l2arc_write_eligible(guid, hdr)) {
9210 				mutex_exit(hash_lock);
9211 				goto skip;
9212 			}
9213 
9214 			ASSERT(HDR_HAS_L1HDR(hdr));
9215 			ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
9216 			ASSERT3U(arc_hdr_size(hdr), >, 0);
9217 			ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
9218 			    HDR_HAS_RABD(hdr));
9219 			uint64_t psize = HDR_GET_PSIZE(hdr);
9220 			uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
9221 			    psize);
9222 
9223 			/*
9224 			 * If the allocated size of this buffer plus the max
9225 			 * size for the pending log block exceeds the evicted
9226 			 * target size, terminate writing buffers for this run.
9227 			 */
9228 			if (write_asize + asize +
9229 			    sizeof (l2arc_log_blk_phys_t) > target_sz) {
9230 				full = B_TRUE;
9231 				mutex_exit(hash_lock);
9232 				break;
9233 			}
9234 
9235 			/*
9236 			 * We should not sleep with sublist lock held or it
9237 			 * may block ARC eviction.  Insert a marker to save
9238 			 * the position and drop the lock.
9239 			 */
9240 			if (from_head) {
9241 				multilist_sublist_insert_after(mls, hdr,
9242 				    marker);
9243 			} else {
9244 				multilist_sublist_insert_before(mls, hdr,
9245 				    marker);
9246 			}
9247 			multilist_sublist_unlock(mls);
9248 
9249 			/*
9250 			 * If this header has b_rabd, we can use this since it
9251 			 * must always match the data exactly as it exists on
9252 			 * disk. Otherwise, the L2ARC can normally use the
9253 			 * hdr's data, but if we're sharing data between the
9254 			 * hdr and one of its bufs, L2ARC needs its own copy of
9255 			 * the data so that the ZIO below can't race with the
9256 			 * buf consumer. To ensure that this copy will be
9257 			 * available for the lifetime of the ZIO and be cleaned
9258 			 * up afterwards, we add it to the l2arc_free_on_write
9259 			 * queue. If we need to apply any transforms to the
9260 			 * data (compression, encryption) we will also need the
9261 			 * extra buffer.
9262 			 */
9263 			if (HDR_HAS_RABD(hdr) && psize == asize) {
9264 				to_write = hdr->b_crypt_hdr.b_rabd;
9265 			} else if ((HDR_COMPRESSION_ENABLED(hdr) ||
9266 			    HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) &&
9267 			    !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) &&
9268 			    psize == asize) {
9269 				to_write = hdr->b_l1hdr.b_pabd;
9270 			} else {
9271 				int ret;
9272 				arc_buf_contents_t type = arc_buf_type(hdr);
9273 
9274 				ret = l2arc_apply_transforms(spa, hdr, asize,
9275 				    &to_write);
9276 				if (ret != 0) {
9277 					arc_hdr_clear_flags(hdr,
9278 					    ARC_FLAG_L2CACHE);
9279 					mutex_exit(hash_lock);
9280 					goto next;
9281 				}
9282 
9283 				l2arc_free_abd_on_write(to_write, asize, type);
9284 			}
9285 
9286 			hdr->b_l2hdr.b_dev = dev;
9287 			hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
9288 			hdr->b_l2hdr.b_hits = 0;
9289 			hdr->b_l2hdr.b_arcs_state =
9290 			    hdr->b_l1hdr.b_state->arcs_state;
9291 			arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR |
9292 			    ARC_FLAG_L2_WRITING);
9293 
9294 			(void) zfs_refcount_add_many(&dev->l2ad_alloc,
9295 			    arc_hdr_size(hdr), hdr);
9296 			l2arc_hdr_arcstats_increment(hdr);
9297 			vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
9298 
9299 			mutex_enter(&dev->l2ad_mtx);
9300 			if (pio == NULL) {
9301 				/*
9302 				 * Insert a dummy header on the buflist so
9303 				 * l2arc_write_done() can find where the
9304 				 * write buffers begin without searching.
9305 				 */
9306 				list_insert_head(&dev->l2ad_buflist, head);
9307 			}
9308 			list_insert_head(&dev->l2ad_buflist, hdr);
9309 			mutex_exit(&dev->l2ad_mtx);
9310 
9311 			boolean_t commit = l2arc_log_blk_insert(dev, hdr);
9312 			mutex_exit(hash_lock);
9313 
9314 			if (pio == NULL) {
9315 				cb = kmem_alloc(
9316 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
9317 				cb->l2wcb_dev = dev;
9318 				cb->l2wcb_head = head;
9319 				list_create(&cb->l2wcb_abd_list,
9320 				    sizeof (l2arc_lb_abd_buf_t),
9321 				    offsetof(l2arc_lb_abd_buf_t, node));
9322 				pio = zio_root(spa, l2arc_write_done, cb,
9323 				    ZIO_FLAG_CANFAIL);
9324 			}
9325 
9326 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
9327 			    dev->l2ad_hand, asize, to_write,
9328 			    ZIO_CHECKSUM_OFF, NULL, hdr,
9329 			    ZIO_PRIORITY_ASYNC_WRITE,
9330 			    ZIO_FLAG_CANFAIL, B_FALSE);
9331 
9332 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
9333 			    zio_t *, wzio);
9334 			zio_nowait(wzio);
9335 
9336 			write_psize += psize;
9337 			write_asize += asize;
9338 			dev->l2ad_hand += asize;
9339 
9340 			if (commit) {
9341 				/* l2ad_hand will be adjusted inside. */
9342 				write_asize +=
9343 				    l2arc_log_blk_commit(dev, pio, cb);
9344 			}
9345 
9346 next:
9347 			multilist_sublist_lock(mls);
9348 			if (from_head)
9349 				hdr = multilist_sublist_next(mls, marker);
9350 			else
9351 				hdr = multilist_sublist_prev(mls, marker);
9352 			multilist_sublist_remove(mls, marker);
9353 		}
9354 
9355 		multilist_sublist_unlock(mls);
9356 
9357 		if (full == B_TRUE)
9358 			break;
9359 	}
9360 
9361 	arc_state_free_marker(marker);
9362 
9363 	/* No buffers selected for writing? */
9364 	if (pio == NULL) {
9365 		ASSERT0(write_psize);
9366 		ASSERT(!HDR_HAS_L1HDR(head));
9367 		kmem_cache_free(hdr_l2only_cache, head);
9368 
9369 		/*
9370 		 * Although we did not write any buffers l2ad_evict may
9371 		 * have advanced.
9372 		 */
9373 		if (dev->l2ad_evict != l2dhdr->dh_evict)
9374 			l2arc_dev_hdr_update(dev);
9375 
9376 		return (0);
9377 	}
9378 
9379 	if (!dev->l2ad_first)
9380 		ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
9381 
9382 	ASSERT3U(write_asize, <=, target_sz);
9383 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
9384 	ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
9385 
9386 	dev->l2ad_writing = B_TRUE;
9387 	(void) zio_wait(pio);
9388 	dev->l2ad_writing = B_FALSE;
9389 
9390 	/*
9391 	 * Update the device header after the zio completes as
9392 	 * l2arc_write_done() may have updated the memory holding the log block
9393 	 * pointers in the device header.
9394 	 */
9395 	l2arc_dev_hdr_update(dev);
9396 
9397 	return (write_asize);
9398 }
9399 
9400 static boolean_t
l2arc_hdr_limit_reached(void)9401 l2arc_hdr_limit_reached(void)
9402 {
9403 	int64_t s = aggsum_upper_bound(&arc_sums.arcstat_l2_hdr_size);
9404 
9405 	return (arc_reclaim_needed() ||
9406 	    (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100));
9407 }
9408 
9409 /*
9410  * This thread feeds the L2ARC at regular intervals.  This is the beating
9411  * heart of the L2ARC.
9412  */
9413 static  __attribute__((noreturn)) void
l2arc_feed_thread(void * unused)9414 l2arc_feed_thread(void *unused)
9415 {
9416 	(void) unused;
9417 	callb_cpr_t cpr;
9418 	l2arc_dev_t *dev;
9419 	spa_t *spa;
9420 	uint64_t size, wrote;
9421 	clock_t begin, next = ddi_get_lbolt();
9422 	fstrans_cookie_t cookie;
9423 
9424 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
9425 
9426 	mutex_enter(&l2arc_feed_thr_lock);
9427 
9428 	cookie = spl_fstrans_mark();
9429 	while (l2arc_thread_exit == 0) {
9430 		CALLB_CPR_SAFE_BEGIN(&cpr);
9431 		(void) cv_timedwait_idle(&l2arc_feed_thr_cv,
9432 		    &l2arc_feed_thr_lock, next);
9433 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
9434 		next = ddi_get_lbolt() + hz;
9435 
9436 		/*
9437 		 * Quick check for L2ARC devices.
9438 		 */
9439 		mutex_enter(&l2arc_dev_mtx);
9440 		if (l2arc_ndev == 0) {
9441 			mutex_exit(&l2arc_dev_mtx);
9442 			continue;
9443 		}
9444 		mutex_exit(&l2arc_dev_mtx);
9445 		begin = ddi_get_lbolt();
9446 
9447 		/*
9448 		 * This selects the next l2arc device to write to, and in
9449 		 * doing so the next spa to feed from: dev->l2ad_spa.   This
9450 		 * will return NULL if there are now no l2arc devices or if
9451 		 * they are all faulted.
9452 		 *
9453 		 * If a device is returned, its spa's config lock is also
9454 		 * held to prevent device removal.  l2arc_dev_get_next()
9455 		 * will grab and release l2arc_dev_mtx.
9456 		 */
9457 		if ((dev = l2arc_dev_get_next()) == NULL)
9458 			continue;
9459 
9460 		spa = dev->l2ad_spa;
9461 		ASSERT3P(spa, !=, NULL);
9462 
9463 		/*
9464 		 * If the pool is read-only then force the feed thread to
9465 		 * sleep a little longer.
9466 		 */
9467 		if (!spa_writeable(spa)) {
9468 			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
9469 			spa_config_exit(spa, SCL_L2ARC, dev);
9470 			continue;
9471 		}
9472 
9473 		/*
9474 		 * Avoid contributing to memory pressure.
9475 		 */
9476 		if (l2arc_hdr_limit_reached()) {
9477 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
9478 			spa_config_exit(spa, SCL_L2ARC, dev);
9479 			continue;
9480 		}
9481 
9482 		ARCSTAT_BUMP(arcstat_l2_feeds);
9483 
9484 		size = l2arc_write_size(dev);
9485 
9486 		/*
9487 		 * Evict L2ARC buffers that will be overwritten.
9488 		 */
9489 		l2arc_evict(dev, size, B_FALSE);
9490 
9491 		/*
9492 		 * Write ARC buffers.
9493 		 */
9494 		wrote = l2arc_write_buffers(spa, dev, size);
9495 
9496 		/*
9497 		 * Calculate interval between writes.
9498 		 */
9499 		next = l2arc_write_interval(begin, size, wrote);
9500 		spa_config_exit(spa, SCL_L2ARC, dev);
9501 	}
9502 	spl_fstrans_unmark(cookie);
9503 
9504 	l2arc_thread_exit = 0;
9505 	cv_broadcast(&l2arc_feed_thr_cv);
9506 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
9507 	thread_exit();
9508 }
9509 
9510 boolean_t
l2arc_vdev_present(vdev_t * vd)9511 l2arc_vdev_present(vdev_t *vd)
9512 {
9513 	return (l2arc_vdev_get(vd) != NULL);
9514 }
9515 
9516 /*
9517  * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if
9518  * the vdev_t isn't an L2ARC device.
9519  */
9520 l2arc_dev_t *
l2arc_vdev_get(vdev_t * vd)9521 l2arc_vdev_get(vdev_t *vd)
9522 {
9523 	l2arc_dev_t	*dev;
9524 
9525 	mutex_enter(&l2arc_dev_mtx);
9526 	for (dev = list_head(l2arc_dev_list); dev != NULL;
9527 	    dev = list_next(l2arc_dev_list, dev)) {
9528 		if (dev->l2ad_vdev == vd)
9529 			break;
9530 	}
9531 	mutex_exit(&l2arc_dev_mtx);
9532 
9533 	return (dev);
9534 }
9535 
9536 static void
l2arc_rebuild_dev(l2arc_dev_t * dev,boolean_t reopen)9537 l2arc_rebuild_dev(l2arc_dev_t *dev, boolean_t reopen)
9538 {
9539 	l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
9540 	uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
9541 	spa_t *spa = dev->l2ad_spa;
9542 
9543 	/*
9544 	 * The L2ARC has to hold at least the payload of one log block for
9545 	 * them to be restored (persistent L2ARC). The payload of a log block
9546 	 * depends on the amount of its log entries. We always write log blocks
9547 	 * with 1022 entries. How many of them are committed or restored depends
9548 	 * on the size of the L2ARC device. Thus the maximum payload of
9549 	 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device
9550 	 * is less than that, we reduce the amount of committed and restored
9551 	 * log entries per block so as to enable persistence.
9552 	 */
9553 	if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) {
9554 		dev->l2ad_log_entries = 0;
9555 	} else {
9556 		dev->l2ad_log_entries = MIN((dev->l2ad_end -
9557 		    dev->l2ad_start) >> SPA_MAXBLOCKSHIFT,
9558 		    L2ARC_LOG_BLK_MAX_ENTRIES);
9559 	}
9560 
9561 	/*
9562 	 * Read the device header, if an error is returned do not rebuild L2ARC.
9563 	 */
9564 	if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) {
9565 		/*
9566 		 * If we are onlining a cache device (vdev_reopen) that was
9567 		 * still present (l2arc_vdev_present()) and rebuild is enabled,
9568 		 * we should evict all ARC buffers and pointers to log blocks
9569 		 * and reclaim their space before restoring its contents to
9570 		 * L2ARC.
9571 		 */
9572 		if (reopen) {
9573 			if (!l2arc_rebuild_enabled) {
9574 				return;
9575 			} else {
9576 				l2arc_evict(dev, 0, B_TRUE);
9577 				/* start a new log block */
9578 				dev->l2ad_log_ent_idx = 0;
9579 				dev->l2ad_log_blk_payload_asize = 0;
9580 				dev->l2ad_log_blk_payload_start = 0;
9581 			}
9582 		}
9583 		/*
9584 		 * Just mark the device as pending for a rebuild. We won't
9585 		 * be starting a rebuild in line here as it would block pool
9586 		 * import. Instead spa_load_impl will hand that off to an
9587 		 * async task which will call l2arc_spa_rebuild_start.
9588 		 */
9589 		dev->l2ad_rebuild = B_TRUE;
9590 	} else if (spa_writeable(spa)) {
9591 		/*
9592 		 * In this case TRIM the whole device if l2arc_trim_ahead > 0,
9593 		 * otherwise create a new header. We zero out the memory holding
9594 		 * the header to reset dh_start_lbps. If we TRIM the whole
9595 		 * device the new header will be written by
9596 		 * vdev_trim_l2arc_thread() at the end of the TRIM to update the
9597 		 * trim_state in the header too. When reading the header, if
9598 		 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0
9599 		 * we opt to TRIM the whole device again.
9600 		 */
9601 		if (l2arc_trim_ahead > 0) {
9602 			dev->l2ad_trim_all = B_TRUE;
9603 		} else {
9604 			memset(l2dhdr, 0, l2dhdr_asize);
9605 			l2arc_dev_hdr_update(dev);
9606 		}
9607 	}
9608 }
9609 
9610 /*
9611  * Add a vdev for use by the L2ARC.  By this point the spa has already
9612  * validated the vdev and opened it.
9613  */
9614 void
l2arc_add_vdev(spa_t * spa,vdev_t * vd)9615 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
9616 {
9617 	l2arc_dev_t		*adddev;
9618 	uint64_t		l2dhdr_asize;
9619 
9620 	ASSERT(!l2arc_vdev_present(vd));
9621 
9622 	/*
9623 	 * Create a new l2arc device entry.
9624 	 */
9625 	adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
9626 	adddev->l2ad_spa = spa;
9627 	adddev->l2ad_vdev = vd;
9628 	/* leave extra size for an l2arc device header */
9629 	l2dhdr_asize = adddev->l2ad_dev_hdr_asize =
9630 	    MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift);
9631 	adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize;
9632 	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
9633 	ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end);
9634 	adddev->l2ad_hand = adddev->l2ad_start;
9635 	adddev->l2ad_evict = adddev->l2ad_start;
9636 	adddev->l2ad_first = B_TRUE;
9637 	adddev->l2ad_writing = B_FALSE;
9638 	adddev->l2ad_trim_all = B_FALSE;
9639 	list_link_init(&adddev->l2ad_node);
9640 	adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP);
9641 
9642 	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
9643 	/*
9644 	 * This is a list of all ARC buffers that are still valid on the
9645 	 * device.
9646 	 */
9647 	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
9648 	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
9649 
9650 	/*
9651 	 * This is a list of pointers to log blocks that are still present
9652 	 * on the device.
9653 	 */
9654 	list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t),
9655 	    offsetof(l2arc_lb_ptr_buf_t, node));
9656 
9657 	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
9658 	zfs_refcount_create(&adddev->l2ad_alloc);
9659 	zfs_refcount_create(&adddev->l2ad_lb_asize);
9660 	zfs_refcount_create(&adddev->l2ad_lb_count);
9661 
9662 	/*
9663 	 * Decide if dev is eligible for L2ARC rebuild or whole device
9664 	 * trimming. This has to happen before the device is added in the
9665 	 * cache device list and l2arc_dev_mtx is released. Otherwise
9666 	 * l2arc_feed_thread() might already start writing on the
9667 	 * device.
9668 	 */
9669 	l2arc_rebuild_dev(adddev, B_FALSE);
9670 
9671 	/*
9672 	 * Add device to global list
9673 	 */
9674 	mutex_enter(&l2arc_dev_mtx);
9675 	list_insert_head(l2arc_dev_list, adddev);
9676 	atomic_inc_64(&l2arc_ndev);
9677 	mutex_exit(&l2arc_dev_mtx);
9678 }
9679 
9680 /*
9681  * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen()
9682  * in case of onlining a cache device.
9683  */
9684 void
l2arc_rebuild_vdev(vdev_t * vd,boolean_t reopen)9685 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen)
9686 {
9687 	l2arc_dev_t		*dev = NULL;
9688 
9689 	dev = l2arc_vdev_get(vd);
9690 	ASSERT3P(dev, !=, NULL);
9691 
9692 	/*
9693 	 * In contrast to l2arc_add_vdev() we do not have to worry about
9694 	 * l2arc_feed_thread() invalidating previous content when onlining a
9695 	 * cache device. The device parameters (l2ad*) are not cleared when
9696 	 * offlining the device and writing new buffers will not invalidate
9697 	 * all previous content. In worst case only buffers that have not had
9698 	 * their log block written to the device will be lost.
9699 	 * When onlining the cache device (ie offline->online without exporting
9700 	 * the pool in between) this happens:
9701 	 * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev()
9702 	 * 			|			|
9703 	 * 		vdev_is_dead() = B_FALSE	l2ad_rebuild = B_TRUE
9704 	 * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild
9705 	 * is set to B_TRUE we might write additional buffers to the device.
9706 	 */
9707 	l2arc_rebuild_dev(dev, reopen);
9708 }
9709 
9710 /*
9711  * Remove a vdev from the L2ARC.
9712  */
9713 void
l2arc_remove_vdev(vdev_t * vd)9714 l2arc_remove_vdev(vdev_t *vd)
9715 {
9716 	l2arc_dev_t *remdev = NULL;
9717 
9718 	/*
9719 	 * Find the device by vdev
9720 	 */
9721 	remdev = l2arc_vdev_get(vd);
9722 	ASSERT3P(remdev, !=, NULL);
9723 
9724 	/*
9725 	 * Cancel any ongoing or scheduled rebuild.
9726 	 */
9727 	mutex_enter(&l2arc_rebuild_thr_lock);
9728 	if (remdev->l2ad_rebuild_began == B_TRUE) {
9729 		remdev->l2ad_rebuild_cancel = B_TRUE;
9730 		while (remdev->l2ad_rebuild == B_TRUE)
9731 			cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock);
9732 	}
9733 	mutex_exit(&l2arc_rebuild_thr_lock);
9734 
9735 	/*
9736 	 * Remove device from global list
9737 	 */
9738 	mutex_enter(&l2arc_dev_mtx);
9739 	list_remove(l2arc_dev_list, remdev);
9740 	l2arc_dev_last = NULL;		/* may have been invalidated */
9741 	atomic_dec_64(&l2arc_ndev);
9742 	mutex_exit(&l2arc_dev_mtx);
9743 
9744 	/*
9745 	 * Clear all buflists and ARC references.  L2ARC device flush.
9746 	 */
9747 	l2arc_evict(remdev, 0, B_TRUE);
9748 	list_destroy(&remdev->l2ad_buflist);
9749 	ASSERT(list_is_empty(&remdev->l2ad_lbptr_list));
9750 	list_destroy(&remdev->l2ad_lbptr_list);
9751 	mutex_destroy(&remdev->l2ad_mtx);
9752 	zfs_refcount_destroy(&remdev->l2ad_alloc);
9753 	zfs_refcount_destroy(&remdev->l2ad_lb_asize);
9754 	zfs_refcount_destroy(&remdev->l2ad_lb_count);
9755 	kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize);
9756 	vmem_free(remdev, sizeof (l2arc_dev_t));
9757 }
9758 
9759 void
l2arc_init(void)9760 l2arc_init(void)
9761 {
9762 	l2arc_thread_exit = 0;
9763 	l2arc_ndev = 0;
9764 
9765 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
9766 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
9767 	mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL);
9768 	cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL);
9769 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
9770 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
9771 
9772 	l2arc_dev_list = &L2ARC_dev_list;
9773 	l2arc_free_on_write = &L2ARC_free_on_write;
9774 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
9775 	    offsetof(l2arc_dev_t, l2ad_node));
9776 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
9777 	    offsetof(l2arc_data_free_t, l2df_list_node));
9778 }
9779 
9780 void
l2arc_fini(void)9781 l2arc_fini(void)
9782 {
9783 	mutex_destroy(&l2arc_feed_thr_lock);
9784 	cv_destroy(&l2arc_feed_thr_cv);
9785 	mutex_destroy(&l2arc_rebuild_thr_lock);
9786 	cv_destroy(&l2arc_rebuild_thr_cv);
9787 	mutex_destroy(&l2arc_dev_mtx);
9788 	mutex_destroy(&l2arc_free_on_write_mtx);
9789 
9790 	list_destroy(l2arc_dev_list);
9791 	list_destroy(l2arc_free_on_write);
9792 }
9793 
9794 void
l2arc_start(void)9795 l2arc_start(void)
9796 {
9797 	if (!(spa_mode_global & SPA_MODE_WRITE))
9798 		return;
9799 
9800 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
9801 	    TS_RUN, defclsyspri);
9802 }
9803 
9804 void
l2arc_stop(void)9805 l2arc_stop(void)
9806 {
9807 	if (!(spa_mode_global & SPA_MODE_WRITE))
9808 		return;
9809 
9810 	mutex_enter(&l2arc_feed_thr_lock);
9811 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
9812 	l2arc_thread_exit = 1;
9813 	while (l2arc_thread_exit != 0)
9814 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
9815 	mutex_exit(&l2arc_feed_thr_lock);
9816 }
9817 
9818 /*
9819  * Punches out rebuild threads for the L2ARC devices in a spa. This should
9820  * be called after pool import from the spa async thread, since starting
9821  * these threads directly from spa_import() will make them part of the
9822  * "zpool import" context and delay process exit (and thus pool import).
9823  */
9824 void
l2arc_spa_rebuild_start(spa_t * spa)9825 l2arc_spa_rebuild_start(spa_t *spa)
9826 {
9827 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
9828 
9829 	/*
9830 	 * Locate the spa's l2arc devices and kick off rebuild threads.
9831 	 */
9832 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
9833 		l2arc_dev_t *dev =
9834 		    l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
9835 		if (dev == NULL) {
9836 			/* Don't attempt a rebuild if the vdev is UNAVAIL */
9837 			continue;
9838 		}
9839 		mutex_enter(&l2arc_rebuild_thr_lock);
9840 		if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) {
9841 			dev->l2ad_rebuild_began = B_TRUE;
9842 			(void) thread_create(NULL, 0, l2arc_dev_rebuild_thread,
9843 			    dev, 0, &p0, TS_RUN, minclsyspri);
9844 		}
9845 		mutex_exit(&l2arc_rebuild_thr_lock);
9846 	}
9847 }
9848 
9849 void
l2arc_spa_rebuild_stop(spa_t * spa)9850 l2arc_spa_rebuild_stop(spa_t *spa)
9851 {
9852 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
9853 	    spa->spa_export_thread == curthread);
9854 
9855 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
9856 		l2arc_dev_t *dev =
9857 		    l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
9858 		if (dev == NULL)
9859 			continue;
9860 		mutex_enter(&l2arc_rebuild_thr_lock);
9861 		dev->l2ad_rebuild_cancel = B_TRUE;
9862 		mutex_exit(&l2arc_rebuild_thr_lock);
9863 	}
9864 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
9865 		l2arc_dev_t *dev =
9866 		    l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
9867 		if (dev == NULL)
9868 			continue;
9869 		mutex_enter(&l2arc_rebuild_thr_lock);
9870 		if (dev->l2ad_rebuild_began == B_TRUE) {
9871 			while (dev->l2ad_rebuild == B_TRUE) {
9872 				cv_wait(&l2arc_rebuild_thr_cv,
9873 				    &l2arc_rebuild_thr_lock);
9874 			}
9875 		}
9876 		mutex_exit(&l2arc_rebuild_thr_lock);
9877 	}
9878 }
9879 
9880 /*
9881  * Main entry point for L2ARC rebuilding.
9882  */
9883 static __attribute__((noreturn)) void
l2arc_dev_rebuild_thread(void * arg)9884 l2arc_dev_rebuild_thread(void *arg)
9885 {
9886 	l2arc_dev_t *dev = arg;
9887 
9888 	VERIFY(dev->l2ad_rebuild);
9889 	(void) l2arc_rebuild(dev);
9890 	mutex_enter(&l2arc_rebuild_thr_lock);
9891 	dev->l2ad_rebuild_began = B_FALSE;
9892 	dev->l2ad_rebuild = B_FALSE;
9893 	cv_signal(&l2arc_rebuild_thr_cv);
9894 	mutex_exit(&l2arc_rebuild_thr_lock);
9895 
9896 	thread_exit();
9897 }
9898 
9899 /*
9900  * This function implements the actual L2ARC metadata rebuild. It:
9901  * starts reading the log block chain and restores each block's contents
9902  * to memory (reconstructing arc_buf_hdr_t's).
9903  *
9904  * Operation stops under any of the following conditions:
9905  *
9906  * 1) We reach the end of the log block chain.
9907  * 2) We encounter *any* error condition (cksum errors, io errors)
9908  */
9909 static int
l2arc_rebuild(l2arc_dev_t * dev)9910 l2arc_rebuild(l2arc_dev_t *dev)
9911 {
9912 	vdev_t			*vd = dev->l2ad_vdev;
9913 	spa_t			*spa = vd->vdev_spa;
9914 	int			err = 0;
9915 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
9916 	l2arc_log_blk_phys_t	*this_lb, *next_lb;
9917 	zio_t			*this_io = NULL, *next_io = NULL;
9918 	l2arc_log_blkptr_t	lbps[2];
9919 	l2arc_lb_ptr_buf_t	*lb_ptr_buf;
9920 	boolean_t		lock_held;
9921 
9922 	this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP);
9923 	next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP);
9924 
9925 	/*
9926 	 * We prevent device removal while issuing reads to the device,
9927 	 * then during the rebuilding phases we drop this lock again so
9928 	 * that a spa_unload or device remove can be initiated - this is
9929 	 * safe, because the spa will signal us to stop before removing
9930 	 * our device and wait for us to stop.
9931 	 */
9932 	spa_config_enter(spa, SCL_L2ARC, vd, RW_READER);
9933 	lock_held = B_TRUE;
9934 
9935 	/*
9936 	 * Retrieve the persistent L2ARC device state.
9937 	 * L2BLK_GET_PSIZE returns aligned size for log blocks.
9938 	 */
9939 	dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start);
9940 	dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr +
9941 	    L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop),
9942 	    dev->l2ad_start);
9943 	dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
9944 
9945 	vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time;
9946 	vd->vdev_trim_state = l2dhdr->dh_trim_state;
9947 
9948 	/*
9949 	 * In case the zfs module parameter l2arc_rebuild_enabled is false
9950 	 * we do not start the rebuild process.
9951 	 */
9952 	if (!l2arc_rebuild_enabled)
9953 		goto out;
9954 
9955 	/* Prepare the rebuild process */
9956 	memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps));
9957 
9958 	/* Start the rebuild process */
9959 	for (;;) {
9960 		if (!l2arc_log_blkptr_valid(dev, &lbps[0]))
9961 			break;
9962 
9963 		if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1],
9964 		    this_lb, next_lb, this_io, &next_io)) != 0)
9965 			goto out;
9966 
9967 		/*
9968 		 * Our memory pressure valve. If the system is running low
9969 		 * on memory, rather than swamping memory with new ARC buf
9970 		 * hdrs, we opt not to rebuild the L2ARC. At this point,
9971 		 * however, we have already set up our L2ARC dev to chain in
9972 		 * new metadata log blocks, so the user may choose to offline/
9973 		 * online the L2ARC dev at a later time (or re-import the pool)
9974 		 * to reconstruct it (when there's less memory pressure).
9975 		 */
9976 		if (l2arc_hdr_limit_reached()) {
9977 			ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem);
9978 			cmn_err(CE_NOTE, "System running low on memory, "
9979 			    "aborting L2ARC rebuild.");
9980 			err = SET_ERROR(ENOMEM);
9981 			goto out;
9982 		}
9983 
9984 		spa_config_exit(spa, SCL_L2ARC, vd);
9985 		lock_held = B_FALSE;
9986 
9987 		/*
9988 		 * Now that we know that the next_lb checks out alright, we
9989 		 * can start reconstruction from this log block.
9990 		 * L2BLK_GET_PSIZE returns aligned size for log blocks.
9991 		 */
9992 		uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
9993 		l2arc_log_blk_restore(dev, this_lb, asize);
9994 
9995 		/*
9996 		 * log block restored, include its pointer in the list of
9997 		 * pointers to log blocks present in the L2ARC device.
9998 		 */
9999 		lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
10000 		lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t),
10001 		    KM_SLEEP);
10002 		memcpy(lb_ptr_buf->lb_ptr, &lbps[0],
10003 		    sizeof (l2arc_log_blkptr_t));
10004 		mutex_enter(&dev->l2ad_mtx);
10005 		list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf);
10006 		ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
10007 		ARCSTAT_BUMP(arcstat_l2_log_blk_count);
10008 		zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
10009 		zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
10010 		mutex_exit(&dev->l2ad_mtx);
10011 		vdev_space_update(vd, asize, 0, 0);
10012 
10013 		/*
10014 		 * Protection against loops of log blocks:
10015 		 *
10016 		 *				       l2ad_hand  l2ad_evict
10017 		 *                                         V	      V
10018 		 * l2ad_start |=======================================| l2ad_end
10019 		 *             -----|||----|||---|||----|||
10020 		 *                  (3)    (2)   (1)    (0)
10021 		 *             ---|||---|||----|||---|||
10022 		 *		  (7)   (6)    (5)   (4)
10023 		 *
10024 		 * In this situation the pointer of log block (4) passes
10025 		 * l2arc_log_blkptr_valid() but the log block should not be
10026 		 * restored as it is overwritten by the payload of log block
10027 		 * (0). Only log blocks (0)-(3) should be restored. We check
10028 		 * whether l2ad_evict lies in between the payload starting
10029 		 * offset of the next log block (lbps[1].lbp_payload_start)
10030 		 * and the payload starting offset of the present log block
10031 		 * (lbps[0].lbp_payload_start). If true and this isn't the
10032 		 * first pass, we are looping from the beginning and we should
10033 		 * stop.
10034 		 */
10035 		if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
10036 		    lbps[0].lbp_payload_start, dev->l2ad_evict) &&
10037 		    !dev->l2ad_first)
10038 			goto out;
10039 
10040 		kpreempt(KPREEMPT_SYNC);
10041 		for (;;) {
10042 			mutex_enter(&l2arc_rebuild_thr_lock);
10043 			if (dev->l2ad_rebuild_cancel) {
10044 				mutex_exit(&l2arc_rebuild_thr_lock);
10045 				err = SET_ERROR(ECANCELED);
10046 				goto out;
10047 			}
10048 			mutex_exit(&l2arc_rebuild_thr_lock);
10049 			if (spa_config_tryenter(spa, SCL_L2ARC, vd,
10050 			    RW_READER)) {
10051 				lock_held = B_TRUE;
10052 				break;
10053 			}
10054 			/*
10055 			 * L2ARC config lock held by somebody in writer,
10056 			 * possibly due to them trying to remove us. They'll
10057 			 * likely to want us to shut down, so after a little
10058 			 * delay, we check l2ad_rebuild_cancel and retry
10059 			 * the lock again.
10060 			 */
10061 			delay(1);
10062 		}
10063 
10064 		/*
10065 		 * Continue with the next log block.
10066 		 */
10067 		lbps[0] = lbps[1];
10068 		lbps[1] = this_lb->lb_prev_lbp;
10069 		PTR_SWAP(this_lb, next_lb);
10070 		this_io = next_io;
10071 		next_io = NULL;
10072 	}
10073 
10074 	if (this_io != NULL)
10075 		l2arc_log_blk_fetch_abort(this_io);
10076 out:
10077 	if (next_io != NULL)
10078 		l2arc_log_blk_fetch_abort(next_io);
10079 	vmem_free(this_lb, sizeof (*this_lb));
10080 	vmem_free(next_lb, sizeof (*next_lb));
10081 
10082 	if (!l2arc_rebuild_enabled) {
10083 		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10084 		    "disabled");
10085 	} else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) {
10086 		ARCSTAT_BUMP(arcstat_l2_rebuild_success);
10087 		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10088 		    "successful, restored %llu blocks",
10089 		    (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10090 	} else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) {
10091 		/*
10092 		 * No error but also nothing restored, meaning the lbps array
10093 		 * in the device header points to invalid/non-present log
10094 		 * blocks. Reset the header.
10095 		 */
10096 		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10097 		    "no valid log blocks");
10098 		memset(l2dhdr, 0, dev->l2ad_dev_hdr_asize);
10099 		l2arc_dev_hdr_update(dev);
10100 	} else if (err == ECANCELED) {
10101 		/*
10102 		 * In case the rebuild was canceled do not log to spa history
10103 		 * log as the pool may be in the process of being removed.
10104 		 */
10105 		zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks",
10106 		    (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10107 	} else if (err != 0) {
10108 		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10109 		    "aborted, restored %llu blocks",
10110 		    (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10111 	}
10112 
10113 	if (lock_held)
10114 		spa_config_exit(spa, SCL_L2ARC, vd);
10115 
10116 	return (err);
10117 }
10118 
10119 /*
10120  * Attempts to read the device header on the provided L2ARC device and writes
10121  * it to `hdr'. On success, this function returns 0, otherwise the appropriate
10122  * error code is returned.
10123  */
10124 static int
l2arc_dev_hdr_read(l2arc_dev_t * dev)10125 l2arc_dev_hdr_read(l2arc_dev_t *dev)
10126 {
10127 	int			err;
10128 	uint64_t		guid;
10129 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
10130 	const uint64_t		l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10131 	abd_t 			*abd;
10132 
10133 	guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10134 
10135 	abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10136 
10137 	err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev,
10138 	    VDEV_LABEL_START_SIZE, l2dhdr_asize, abd,
10139 	    ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
10140 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
10141 	    ZIO_FLAG_SPECULATIVE, B_FALSE));
10142 
10143 	abd_free(abd);
10144 
10145 	if (err != 0) {
10146 		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors);
10147 		zfs_dbgmsg("L2ARC IO error (%d) while reading device header, "
10148 		    "vdev guid: %llu", err,
10149 		    (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10150 		return (err);
10151 	}
10152 
10153 	if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
10154 		byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr));
10155 
10156 	if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC ||
10157 	    l2dhdr->dh_spa_guid != guid ||
10158 	    l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid ||
10159 	    l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION ||
10160 	    l2dhdr->dh_log_entries != dev->l2ad_log_entries ||
10161 	    l2dhdr->dh_end != dev->l2ad_end ||
10162 	    !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end,
10163 	    l2dhdr->dh_evict) ||
10164 	    (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE &&
10165 	    l2arc_trim_ahead > 0)) {
10166 		/*
10167 		 * Attempt to rebuild a device containing no actual dev hdr
10168 		 * or containing a header from some other pool or from another
10169 		 * version of persistent L2ARC.
10170 		 */
10171 		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported);
10172 		return (SET_ERROR(ENOTSUP));
10173 	}
10174 
10175 	return (0);
10176 }
10177 
10178 /*
10179  * Reads L2ARC log blocks from storage and validates their contents.
10180  *
10181  * This function implements a simple fetcher to make sure that while
10182  * we're processing one buffer the L2ARC is already fetching the next
10183  * one in the chain.
10184  *
10185  * The arguments this_lp and next_lp point to the current and next log block
10186  * address in the block chain. Similarly, this_lb and next_lb hold the
10187  * l2arc_log_blk_phys_t's of the current and next L2ARC blk.
10188  *
10189  * The `this_io' and `next_io' arguments are used for block fetching.
10190  * When issuing the first blk IO during rebuild, you should pass NULL for
10191  * `this_io'. This function will then issue a sync IO to read the block and
10192  * also issue an async IO to fetch the next block in the block chain. The
10193  * fetched IO is returned in `next_io'. On subsequent calls to this
10194  * function, pass the value returned in `next_io' from the previous call
10195  * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO.
10196  * Prior to the call, you should initialize your `next_io' pointer to be
10197  * NULL. If no fetch IO was issued, the pointer is left set at NULL.
10198  *
10199  * On success, this function returns 0, otherwise it returns an appropriate
10200  * error code. On error the fetching IO is aborted and cleared before
10201  * returning from this function. Therefore, if we return `success', the
10202  * caller can assume that we have taken care of cleanup of fetch IOs.
10203  */
10204 static int
l2arc_log_blk_read(l2arc_dev_t * dev,const l2arc_log_blkptr_t * this_lbp,const l2arc_log_blkptr_t * next_lbp,l2arc_log_blk_phys_t * this_lb,l2arc_log_blk_phys_t * next_lb,zio_t * this_io,zio_t ** next_io)10205 l2arc_log_blk_read(l2arc_dev_t *dev,
10206     const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp,
10207     l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
10208     zio_t *this_io, zio_t **next_io)
10209 {
10210 	int		err = 0;
10211 	zio_cksum_t	cksum;
10212 	uint64_t	asize;
10213 
10214 	ASSERT(this_lbp != NULL && next_lbp != NULL);
10215 	ASSERT(this_lb != NULL && next_lb != NULL);
10216 	ASSERT(next_io != NULL && *next_io == NULL);
10217 	ASSERT(l2arc_log_blkptr_valid(dev, this_lbp));
10218 
10219 	/*
10220 	 * Check to see if we have issued the IO for this log block in a
10221 	 * previous run. If not, this is the first call, so issue it now.
10222 	 */
10223 	if (this_io == NULL) {
10224 		this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp,
10225 		    this_lb);
10226 	}
10227 
10228 	/*
10229 	 * Peek to see if we can start issuing the next IO immediately.
10230 	 */
10231 	if (l2arc_log_blkptr_valid(dev, next_lbp)) {
10232 		/*
10233 		 * Start issuing IO for the next log block early - this
10234 		 * should help keep the L2ARC device busy while we
10235 		 * decompress and restore this log block.
10236 		 */
10237 		*next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp,
10238 		    next_lb);
10239 	}
10240 
10241 	/* Wait for the IO to read this log block to complete */
10242 	if ((err = zio_wait(this_io)) != 0) {
10243 		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors);
10244 		zfs_dbgmsg("L2ARC IO error (%d) while reading log block, "
10245 		    "offset: %llu, vdev guid: %llu", err,
10246 		    (u_longlong_t)this_lbp->lbp_daddr,
10247 		    (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10248 		goto cleanup;
10249 	}
10250 
10251 	/*
10252 	 * Make sure the buffer checks out.
10253 	 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10254 	 */
10255 	asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop);
10256 	fletcher_4_native(this_lb, asize, NULL, &cksum);
10257 	if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) {
10258 		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors);
10259 		zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, "
10260 		    "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu",
10261 		    (u_longlong_t)this_lbp->lbp_daddr,
10262 		    (u_longlong_t)dev->l2ad_vdev->vdev_guid,
10263 		    (u_longlong_t)dev->l2ad_hand,
10264 		    (u_longlong_t)dev->l2ad_evict);
10265 		err = SET_ERROR(ECKSUM);
10266 		goto cleanup;
10267 	}
10268 
10269 	/* Now we can take our time decoding this buffer */
10270 	switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) {
10271 	case ZIO_COMPRESS_OFF:
10272 		break;
10273 	case ZIO_COMPRESS_LZ4: {
10274 		abd_t *abd = abd_alloc_linear(asize, B_TRUE);
10275 		abd_copy_from_buf_off(abd, this_lb, 0, asize);
10276 		abd_t dabd;
10277 		abd_get_from_buf_struct(&dabd, this_lb, sizeof (*this_lb));
10278 		err = zio_decompress_data(
10279 		    L2BLK_GET_COMPRESS((this_lbp)->lbp_prop),
10280 		    abd, &dabd, asize, sizeof (*this_lb), NULL);
10281 		abd_free(&dabd);
10282 		abd_free(abd);
10283 		if (err != 0) {
10284 			err = SET_ERROR(EINVAL);
10285 			goto cleanup;
10286 		}
10287 		break;
10288 	}
10289 	default:
10290 		err = SET_ERROR(EINVAL);
10291 		goto cleanup;
10292 	}
10293 	if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
10294 		byteswap_uint64_array(this_lb, sizeof (*this_lb));
10295 	if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) {
10296 		err = SET_ERROR(EINVAL);
10297 		goto cleanup;
10298 	}
10299 cleanup:
10300 	/* Abort an in-flight fetch I/O in case of error */
10301 	if (err != 0 && *next_io != NULL) {
10302 		l2arc_log_blk_fetch_abort(*next_io);
10303 		*next_io = NULL;
10304 	}
10305 	return (err);
10306 }
10307 
10308 /*
10309  * Restores the payload of a log block to ARC. This creates empty ARC hdr
10310  * entries which only contain an l2arc hdr, essentially restoring the
10311  * buffers to their L2ARC evicted state. This function also updates space
10312  * usage on the L2ARC vdev to make sure it tracks restored buffers.
10313  */
10314 static void
l2arc_log_blk_restore(l2arc_dev_t * dev,const l2arc_log_blk_phys_t * lb,uint64_t lb_asize)10315 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb,
10316     uint64_t lb_asize)
10317 {
10318 	uint64_t	size = 0, asize = 0;
10319 	uint64_t	log_entries = dev->l2ad_log_entries;
10320 
10321 	/*
10322 	 * Usually arc_adapt() is called only for data, not headers, but
10323 	 * since we may allocate significant amount of memory here, let ARC
10324 	 * grow its arc_c.
10325 	 */
10326 	arc_adapt(log_entries * HDR_L2ONLY_SIZE);
10327 
10328 	for (int i = log_entries - 1; i >= 0; i--) {
10329 		/*
10330 		 * Restore goes in the reverse temporal direction to preserve
10331 		 * correct temporal ordering of buffers in the l2ad_buflist.
10332 		 * l2arc_hdr_restore also does a list_insert_tail instead of
10333 		 * list_insert_head on the l2ad_buflist:
10334 		 *
10335 		 *		LIST	l2ad_buflist		LIST
10336 		 *		HEAD  <------ (time) ------	TAIL
10337 		 * direction	+-----+-----+-----+-----+-----+    direction
10338 		 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild
10339 		 * fill		+-----+-----+-----+-----+-----+
10340 		 *		^				^
10341 		 *		|				|
10342 		 *		|				|
10343 		 *	l2arc_feed_thread		l2arc_rebuild
10344 		 *	will place new bufs here	restores bufs here
10345 		 *
10346 		 * During l2arc_rebuild() the device is not used by
10347 		 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true.
10348 		 */
10349 		size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop);
10350 		asize += vdev_psize_to_asize(dev->l2ad_vdev,
10351 		    L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop));
10352 		l2arc_hdr_restore(&lb->lb_entries[i], dev);
10353 	}
10354 
10355 	/*
10356 	 * Record rebuild stats:
10357 	 *	size		Logical size of restored buffers in the L2ARC
10358 	 *	asize		Aligned size of restored buffers in the L2ARC
10359 	 */
10360 	ARCSTAT_INCR(arcstat_l2_rebuild_size, size);
10361 	ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize);
10362 	ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries);
10363 	ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize);
10364 	ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize);
10365 	ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks);
10366 }
10367 
10368 /*
10369  * Restores a single ARC buf hdr from a log entry. The ARC buffer is put
10370  * into a state indicating that it has been evicted to L2ARC.
10371  */
10372 static void
l2arc_hdr_restore(const l2arc_log_ent_phys_t * le,l2arc_dev_t * dev)10373 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev)
10374 {
10375 	arc_buf_hdr_t		*hdr, *exists;
10376 	kmutex_t		*hash_lock;
10377 	arc_buf_contents_t	type = L2BLK_GET_TYPE((le)->le_prop);
10378 	uint64_t		asize;
10379 
10380 	/*
10381 	 * Do all the allocation before grabbing any locks, this lets us
10382 	 * sleep if memory is full and we don't have to deal with failed
10383 	 * allocations.
10384 	 */
10385 	hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type,
10386 	    dev, le->le_dva, le->le_daddr,
10387 	    L2BLK_GET_PSIZE((le)->le_prop), le->le_birth,
10388 	    L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel,
10389 	    L2BLK_GET_PROTECTED((le)->le_prop),
10390 	    L2BLK_GET_PREFETCH((le)->le_prop),
10391 	    L2BLK_GET_STATE((le)->le_prop));
10392 	asize = vdev_psize_to_asize(dev->l2ad_vdev,
10393 	    L2BLK_GET_PSIZE((le)->le_prop));
10394 
10395 	/*
10396 	 * vdev_space_update() has to be called before arc_hdr_destroy() to
10397 	 * avoid underflow since the latter also calls vdev_space_update().
10398 	 */
10399 	l2arc_hdr_arcstats_increment(hdr);
10400 	vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10401 
10402 	mutex_enter(&dev->l2ad_mtx);
10403 	list_insert_tail(&dev->l2ad_buflist, hdr);
10404 	(void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
10405 	mutex_exit(&dev->l2ad_mtx);
10406 
10407 	exists = buf_hash_insert(hdr, &hash_lock);
10408 	if (exists) {
10409 		/* Buffer was already cached, no need to restore it. */
10410 		arc_hdr_destroy(hdr);
10411 		/*
10412 		 * If the buffer is already cached, check whether it has
10413 		 * L2ARC metadata. If not, enter them and update the flag.
10414 		 * This is important is case of onlining a cache device, since
10415 		 * we previously evicted all L2ARC metadata from ARC.
10416 		 */
10417 		if (!HDR_HAS_L2HDR(exists)) {
10418 			arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR);
10419 			exists->b_l2hdr.b_dev = dev;
10420 			exists->b_l2hdr.b_daddr = le->le_daddr;
10421 			exists->b_l2hdr.b_arcs_state =
10422 			    L2BLK_GET_STATE((le)->le_prop);
10423 			mutex_enter(&dev->l2ad_mtx);
10424 			list_insert_tail(&dev->l2ad_buflist, exists);
10425 			(void) zfs_refcount_add_many(&dev->l2ad_alloc,
10426 			    arc_hdr_size(exists), exists);
10427 			mutex_exit(&dev->l2ad_mtx);
10428 			l2arc_hdr_arcstats_increment(exists);
10429 			vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10430 		}
10431 		ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached);
10432 	}
10433 
10434 	mutex_exit(hash_lock);
10435 }
10436 
10437 /*
10438  * Starts an asynchronous read IO to read a log block. This is used in log
10439  * block reconstruction to start reading the next block before we are done
10440  * decoding and reconstructing the current block, to keep the l2arc device
10441  * nice and hot with read IO to process.
10442  * The returned zio will contain a newly allocated memory buffers for the IO
10443  * data which should then be freed by the caller once the zio is no longer
10444  * needed (i.e. due to it having completed). If you wish to abort this
10445  * zio, you should do so using l2arc_log_blk_fetch_abort, which takes
10446  * care of disposing of the allocated buffers correctly.
10447  */
10448 static zio_t *
l2arc_log_blk_fetch(vdev_t * vd,const l2arc_log_blkptr_t * lbp,l2arc_log_blk_phys_t * lb)10449 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp,
10450     l2arc_log_blk_phys_t *lb)
10451 {
10452 	uint32_t		asize;
10453 	zio_t			*pio;
10454 	l2arc_read_callback_t	*cb;
10455 
10456 	/* L2BLK_GET_PSIZE returns aligned size for log blocks */
10457 	asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10458 	ASSERT(asize <= sizeof (l2arc_log_blk_phys_t));
10459 
10460 	cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP);
10461 	cb->l2rcb_abd = abd_get_from_buf(lb, asize);
10462 	pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb,
10463 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY);
10464 	(void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize,
10465 	    cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL,
10466 	    ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL |
10467 	    ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE));
10468 
10469 	return (pio);
10470 }
10471 
10472 /*
10473  * Aborts a zio returned from l2arc_log_blk_fetch and frees the data
10474  * buffers allocated for it.
10475  */
10476 static void
l2arc_log_blk_fetch_abort(zio_t * zio)10477 l2arc_log_blk_fetch_abort(zio_t *zio)
10478 {
10479 	(void) zio_wait(zio);
10480 }
10481 
10482 /*
10483  * Creates a zio to update the device header on an l2arc device.
10484  */
10485 void
l2arc_dev_hdr_update(l2arc_dev_t * dev)10486 l2arc_dev_hdr_update(l2arc_dev_t *dev)
10487 {
10488 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
10489 	const uint64_t		l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10490 	abd_t			*abd;
10491 	int			err;
10492 
10493 	VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER));
10494 
10495 	l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC;
10496 	l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION;
10497 	l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10498 	l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid;
10499 	l2dhdr->dh_log_entries = dev->l2ad_log_entries;
10500 	l2dhdr->dh_evict = dev->l2ad_evict;
10501 	l2dhdr->dh_start = dev->l2ad_start;
10502 	l2dhdr->dh_end = dev->l2ad_end;
10503 	l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize);
10504 	l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count);
10505 	l2dhdr->dh_flags = 0;
10506 	l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time;
10507 	l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state;
10508 	if (dev->l2ad_first)
10509 		l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST;
10510 
10511 	abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10512 
10513 	err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev,
10514 	    VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL,
10515 	    NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE));
10516 
10517 	abd_free(abd);
10518 
10519 	if (err != 0) {
10520 		zfs_dbgmsg("L2ARC IO error (%d) while writing device header, "
10521 		    "vdev guid: %llu", err,
10522 		    (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10523 	}
10524 }
10525 
10526 /*
10527  * Commits a log block to the L2ARC device. This routine is invoked from
10528  * l2arc_write_buffers when the log block fills up.
10529  * This function allocates some memory to temporarily hold the serialized
10530  * buffer to be written. This is then released in l2arc_write_done.
10531  */
10532 static uint64_t
l2arc_log_blk_commit(l2arc_dev_t * dev,zio_t * pio,l2arc_write_callback_t * cb)10533 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb)
10534 {
10535 	l2arc_log_blk_phys_t	*lb = &dev->l2ad_log_blk;
10536 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
10537 	uint64_t		psize, asize;
10538 	zio_t			*wzio;
10539 	l2arc_lb_abd_buf_t	*abd_buf;
10540 	abd_t			*abd = NULL;
10541 	l2arc_lb_ptr_buf_t	*lb_ptr_buf;
10542 
10543 	VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries);
10544 
10545 	abd_buf = zio_buf_alloc(sizeof (*abd_buf));
10546 	abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb));
10547 	lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
10548 	lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP);
10549 
10550 	/* link the buffer into the block chain */
10551 	lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1];
10552 	lb->lb_magic = L2ARC_LOG_BLK_MAGIC;
10553 
10554 	/*
10555 	 * l2arc_log_blk_commit() may be called multiple times during a single
10556 	 * l2arc_write_buffers() call. Save the allocated abd buffers in a list
10557 	 * so we can free them in l2arc_write_done() later on.
10558 	 */
10559 	list_insert_tail(&cb->l2wcb_abd_list, abd_buf);
10560 
10561 	/* try to compress the buffer, at least one sector to save */
10562 	psize = zio_compress_data(ZIO_COMPRESS_LZ4,
10563 	    abd_buf->abd, &abd, sizeof (*lb),
10564 	    zio_get_compression_max_size(ZIO_COMPRESS_LZ4,
10565 	    dev->l2ad_vdev->vdev_ashift,
10566 	    dev->l2ad_vdev->vdev_ashift, sizeof (*lb)), 0);
10567 
10568 	/* a log block is never entirely zero */
10569 	ASSERT(psize != 0);
10570 	asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
10571 	ASSERT(asize <= sizeof (*lb));
10572 
10573 	/*
10574 	 * Update the start log block pointer in the device header to point
10575 	 * to the log block we're about to write.
10576 	 */
10577 	l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0];
10578 	l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand;
10579 	l2dhdr->dh_start_lbps[0].lbp_payload_asize =
10580 	    dev->l2ad_log_blk_payload_asize;
10581 	l2dhdr->dh_start_lbps[0].lbp_payload_start =
10582 	    dev->l2ad_log_blk_payload_start;
10583 	L2BLK_SET_LSIZE(
10584 	    (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb));
10585 	L2BLK_SET_PSIZE(
10586 	    (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize);
10587 	L2BLK_SET_CHECKSUM(
10588 	    (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10589 	    ZIO_CHECKSUM_FLETCHER_4);
10590 	if (asize < sizeof (*lb)) {
10591 		/* compression succeeded */
10592 		abd_zero_off(abd, psize, asize - psize);
10593 		L2BLK_SET_COMPRESS(
10594 		    (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10595 		    ZIO_COMPRESS_LZ4);
10596 	} else {
10597 		/* compression failed */
10598 		abd_copy_from_buf_off(abd, lb, 0, sizeof (*lb));
10599 		L2BLK_SET_COMPRESS(
10600 		    (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10601 		    ZIO_COMPRESS_OFF);
10602 	}
10603 
10604 	/* checksum what we're about to write */
10605 	abd_fletcher_4_native(abd, asize, NULL,
10606 	    &l2dhdr->dh_start_lbps[0].lbp_cksum);
10607 
10608 	abd_free(abd_buf->abd);
10609 
10610 	/* perform the write itself */
10611 	abd_buf->abd = abd;
10612 	wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand,
10613 	    asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL,
10614 	    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE);
10615 	DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio);
10616 	(void) zio_nowait(wzio);
10617 
10618 	dev->l2ad_hand += asize;
10619 	vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10620 
10621 	/*
10622 	 * Include the committed log block's pointer  in the list of pointers
10623 	 * to log blocks present in the L2ARC device.
10624 	 */
10625 	memcpy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[0],
10626 	    sizeof (l2arc_log_blkptr_t));
10627 	mutex_enter(&dev->l2ad_mtx);
10628 	list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf);
10629 	ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
10630 	ARCSTAT_BUMP(arcstat_l2_log_blk_count);
10631 	zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
10632 	zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
10633 	mutex_exit(&dev->l2ad_mtx);
10634 
10635 	/* bump the kstats */
10636 	ARCSTAT_INCR(arcstat_l2_write_bytes, asize);
10637 	ARCSTAT_BUMP(arcstat_l2_log_blk_writes);
10638 	ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize);
10639 	ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio,
10640 	    dev->l2ad_log_blk_payload_asize / asize);
10641 
10642 	/* start a new log block */
10643 	dev->l2ad_log_ent_idx = 0;
10644 	dev->l2ad_log_blk_payload_asize = 0;
10645 	dev->l2ad_log_blk_payload_start = 0;
10646 
10647 	return (asize);
10648 }
10649 
10650 /*
10651  * Validates an L2ARC log block address to make sure that it can be read
10652  * from the provided L2ARC device.
10653  */
10654 boolean_t
l2arc_log_blkptr_valid(l2arc_dev_t * dev,const l2arc_log_blkptr_t * lbp)10655 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp)
10656 {
10657 	/* L2BLK_GET_PSIZE returns aligned size for log blocks */
10658 	uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10659 	uint64_t end = lbp->lbp_daddr + asize - 1;
10660 	uint64_t start = lbp->lbp_payload_start;
10661 	boolean_t evicted = B_FALSE;
10662 
10663 	/*
10664 	 * A log block is valid if all of the following conditions are true:
10665 	 * - it fits entirely (including its payload) between l2ad_start and
10666 	 *   l2ad_end
10667 	 * - it has a valid size
10668 	 * - neither the log block itself nor part of its payload was evicted
10669 	 *   by l2arc_evict():
10670 	 *
10671 	 *		l2ad_hand          l2ad_evict
10672 	 *		|			 |	lbp_daddr
10673 	 *		|     start		 |	|  end
10674 	 *		|     |			 |	|  |
10675 	 *		V     V		         V	V  V
10676 	 *   l2ad_start ============================================ l2ad_end
10677 	 *                    --------------------------||||
10678 	 *				^		 ^
10679 	 *				|		log block
10680 	 *				payload
10681 	 */
10682 
10683 	evicted =
10684 	    l2arc_range_check_overlap(start, end, dev->l2ad_hand) ||
10685 	    l2arc_range_check_overlap(start, end, dev->l2ad_evict) ||
10686 	    l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) ||
10687 	    l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end);
10688 
10689 	return (start >= dev->l2ad_start && end <= dev->l2ad_end &&
10690 	    asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) &&
10691 	    (!evicted || dev->l2ad_first));
10692 }
10693 
10694 /*
10695  * Inserts ARC buffer header `hdr' into the current L2ARC log block on
10696  * the device. The buffer being inserted must be present in L2ARC.
10697  * Returns B_TRUE if the L2ARC log block is full and needs to be committed
10698  * to L2ARC, or B_FALSE if it still has room for more ARC buffers.
10699  */
10700 static boolean_t
l2arc_log_blk_insert(l2arc_dev_t * dev,const arc_buf_hdr_t * hdr)10701 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr)
10702 {
10703 	l2arc_log_blk_phys_t	*lb = &dev->l2ad_log_blk;
10704 	l2arc_log_ent_phys_t	*le;
10705 
10706 	if (dev->l2ad_log_entries == 0)
10707 		return (B_FALSE);
10708 
10709 	int index = dev->l2ad_log_ent_idx++;
10710 
10711 	ASSERT3S(index, <, dev->l2ad_log_entries);
10712 	ASSERT(HDR_HAS_L2HDR(hdr));
10713 
10714 	le = &lb->lb_entries[index];
10715 	memset(le, 0, sizeof (*le));
10716 	le->le_dva = hdr->b_dva;
10717 	le->le_birth = hdr->b_birth;
10718 	le->le_daddr = hdr->b_l2hdr.b_daddr;
10719 	if (index == 0)
10720 		dev->l2ad_log_blk_payload_start = le->le_daddr;
10721 	L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr));
10722 	L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr));
10723 	L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr));
10724 	le->le_complevel = hdr->b_complevel;
10725 	L2BLK_SET_TYPE((le)->le_prop, hdr->b_type);
10726 	L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr)));
10727 	L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr)));
10728 	L2BLK_SET_STATE((le)->le_prop, hdr->b_l2hdr.b_arcs_state);
10729 
10730 	dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev,
10731 	    HDR_GET_PSIZE(hdr));
10732 
10733 	return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries);
10734 }
10735 
10736 /*
10737  * Checks whether a given L2ARC device address sits in a time-sequential
10738  * range. The trick here is that the L2ARC is a rotary buffer, so we can't
10739  * just do a range comparison, we need to handle the situation in which the
10740  * range wraps around the end of the L2ARC device. Arguments:
10741  *	bottom -- Lower end of the range to check (written to earlier).
10742  *	top    -- Upper end of the range to check (written to later).
10743  *	check  -- The address for which we want to determine if it sits in
10744  *		  between the top and bottom.
10745  *
10746  * The 3-way conditional below represents the following cases:
10747  *
10748  *	bottom < top : Sequentially ordered case:
10749  *	  <check>--------+-------------------+
10750  *	                 |  (overlap here?)  |
10751  *	 L2ARC dev       V                   V
10752  *	 |---------------<bottom>============<top>--------------|
10753  *
10754  *	bottom > top: Looped-around case:
10755  *	                      <check>--------+------------------+
10756  *	                                     |  (overlap here?) |
10757  *	 L2ARC dev                           V                  V
10758  *	 |===============<top>---------------<bottom>===========|
10759  *	 ^               ^
10760  *	 |  (or here?)   |
10761  *	 +---------------+---------<check>
10762  *
10763  *	top == bottom : Just a single address comparison.
10764  */
10765 boolean_t
l2arc_range_check_overlap(uint64_t bottom,uint64_t top,uint64_t check)10766 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check)
10767 {
10768 	if (bottom < top)
10769 		return (bottom <= check && check <= top);
10770 	else if (bottom > top)
10771 		return (check <= top || bottom <= check);
10772 	else
10773 		return (check == top);
10774 }
10775 
10776 EXPORT_SYMBOL(arc_buf_size);
10777 EXPORT_SYMBOL(arc_write);
10778 EXPORT_SYMBOL(arc_read);
10779 EXPORT_SYMBOL(arc_buf_info);
10780 EXPORT_SYMBOL(arc_getbuf_func);
10781 EXPORT_SYMBOL(arc_add_prune_callback);
10782 EXPORT_SYMBOL(arc_remove_prune_callback);
10783 
10784 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_min,
10785 	spl_param_get_u64, ZMOD_RW, "Minimum ARC size in bytes");
10786 
10787 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_max,
10788 	spl_param_get_u64, ZMOD_RW, "Maximum ARC size in bytes");
10789 
10790 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_balance, UINT, ZMOD_RW,
10791 	"Balance between metadata and data on ghost hits.");
10792 
10793 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int,
10794 	param_get_uint, ZMOD_RW, "Seconds before growing ARC size");
10795 
10796 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int,
10797 	param_get_uint, ZMOD_RW, "log2(fraction of ARC to reclaim)");
10798 
10799 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW,
10800 	"Percent of pagecache to reclaim ARC to");
10801 
10802 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, UINT, ZMOD_RD,
10803 	"Target average block size");
10804 
10805 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW,
10806 	"Disable compressed ARC buffers");
10807 
10808 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int,
10809 	param_get_uint, ZMOD_RW, "Min life of prefetch block in ms");
10810 
10811 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms,
10812     param_set_arc_int, param_get_uint, ZMOD_RW,
10813 	"Min life of prescient prefetched block in ms");
10814 
10815 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, U64, ZMOD_RW,
10816 	"Max write bytes per interval");
10817 
10818 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, U64, ZMOD_RW,
10819 	"Extra write bytes during device warmup");
10820 
10821 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, U64, ZMOD_RW,
10822 	"Number of max device writes to precache");
10823 
10824 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, U64, ZMOD_RW,
10825 	"Compressed l2arc_headroom multiplier");
10826 
10827 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, U64, ZMOD_RW,
10828 	"TRIM ahead L2ARC write size multiplier");
10829 
10830 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, U64, ZMOD_RW,
10831 	"Seconds between L2ARC writing");
10832 
10833 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, U64, ZMOD_RW,
10834 	"Min feed interval in milliseconds");
10835 
10836 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW,
10837 	"Skip caching prefetched buffers");
10838 
10839 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW,
10840 	"Turbo L2ARC warmup");
10841 
10842 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW,
10843 	"No reads during writes");
10844 
10845 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, UINT, ZMOD_RW,
10846 	"Percent of ARC size allowed for L2ARC-only headers");
10847 
10848 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW,
10849 	"Rebuild the L2ARC when importing a pool");
10850 
10851 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, U64, ZMOD_RW,
10852 	"Min size in bytes to write rebuild log blocks in L2ARC");
10853 
10854 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW,
10855 	"Cache only MFU data from ARC into L2ARC");
10856 
10857 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, exclude_special, INT, ZMOD_RW,
10858 	"Exclude dbufs on special vdevs from being cached to L2ARC if set.");
10859 
10860 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int,
10861 	param_get_uint, ZMOD_RW, "System free memory I/O throttle in bytes");
10862 
10863 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_u64,
10864 	spl_param_get_u64, ZMOD_RW, "System free memory target size in bytes");
10865 
10866 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_u64,
10867 	spl_param_get_u64, ZMOD_RW, "Minimum bytes of dnodes in ARC");
10868 
10869 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent,
10870     param_set_arc_int, param_get_uint, ZMOD_RW,
10871 	"Percent of ARC meta buffers for dnodes");
10872 
10873 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, UINT, ZMOD_RW,
10874 	"Percentage of excess dnodes to try to unpin");
10875 
10876 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, UINT, ZMOD_RW,
10877 	"When full, ARC allocation waits for eviction of this % of alloc size");
10878 
10879 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, UINT, ZMOD_RW,
10880 	"The number of headers to evict per sublist before moving to the next");
10881 
10882 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, prune_task_threads, INT, ZMOD_RW,
10883 	"Number of arc_prune threads");
10884