1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4 *
5 * Authors:
6 * Alexander Graf <agraf@suse.de>
7 * Kevin Wolf <mail@kevin-wolf.de>
8 * Paul Mackerras <paulus@samba.org>
9 *
10 * Description:
11 * Functions relating to running KVM on Book 3S processors where
12 * we don't have access to hypervisor mode, and we run the guest
13 * in problem state (user mode).
14 *
15 * This file is derived from arch/powerpc/kvm/44x.c,
16 * by Hollis Blanchard <hollisb@us.ibm.com>.
17 */
18
19 #include <linux/kvm_host.h>
20 #include <linux/export.h>
21 #include <linux/err.h>
22 #include <linux/slab.h>
23
24 #include <asm/reg.h>
25 #include <asm/cputable.h>
26 #include <asm/cacheflush.h>
27 #include <linux/uaccess.h>
28 #include <asm/interrupt.h>
29 #include <asm/io.h>
30 #include <asm/kvm_ppc.h>
31 #include <asm/kvm_book3s.h>
32 #include <asm/mmu_context.h>
33 #include <asm/switch_to.h>
34 #include <asm/firmware.h>
35 #include <asm/setup.h>
36 #include <linux/gfp.h>
37 #include <linux/sched.h>
38 #include <linux/vmalloc.h>
39 #include <linux/highmem.h>
40 #include <linux/module.h>
41 #include <linux/miscdevice.h>
42 #include <asm/asm-prototypes.h>
43 #include <asm/tm.h>
44
45 #include "book3s.h"
46
47 #define CREATE_TRACE_POINTS
48 #include "trace_pr.h"
49
50 /* #define EXIT_DEBUG */
51 /* #define DEBUG_EXT */
52
53 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
54 ulong msr);
55 #ifdef CONFIG_PPC_BOOK3S_64
56 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac);
57 #endif
58
59 /* Some compatibility defines */
60 #ifdef CONFIG_PPC_BOOK3S_32
61 #define MSR_USER32 MSR_USER
62 #define MSR_USER64 MSR_USER
63 #define HW_PAGE_SIZE PAGE_SIZE
64 #define HPTE_R_M _PAGE_COHERENT
65 #endif
66
kvmppc_is_split_real(struct kvm_vcpu * vcpu)67 static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu)
68 {
69 ulong msr = kvmppc_get_msr(vcpu);
70 return (msr & (MSR_IR|MSR_DR)) == MSR_DR;
71 }
72
kvmppc_fixup_split_real(struct kvm_vcpu * vcpu)73 static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu)
74 {
75 ulong msr = kvmppc_get_msr(vcpu);
76 ulong pc = kvmppc_get_pc(vcpu);
77
78 /* We are in DR only split real mode */
79 if ((msr & (MSR_IR|MSR_DR)) != MSR_DR)
80 return;
81
82 /* We have not fixed up the guest already */
83 if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK)
84 return;
85
86 /* The code is in fixupable address space */
87 if (pc & SPLIT_HACK_MASK)
88 return;
89
90 vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK;
91 kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS);
92 }
93
kvmppc_unfixup_split_real(struct kvm_vcpu * vcpu)94 static void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu)
95 {
96 if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) {
97 ulong pc = kvmppc_get_pc(vcpu);
98 ulong lr = kvmppc_get_lr(vcpu);
99 if ((pc & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
100 kvmppc_set_pc(vcpu, pc & ~SPLIT_HACK_MASK);
101 if ((lr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
102 kvmppc_set_lr(vcpu, lr & ~SPLIT_HACK_MASK);
103 vcpu->arch.hflags &= ~BOOK3S_HFLAG_SPLIT_HACK;
104 }
105 }
106
kvmppc_inject_interrupt_pr(struct kvm_vcpu * vcpu,int vec,u64 srr1_flags)107 static void kvmppc_inject_interrupt_pr(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
108 {
109 unsigned long msr, pc, new_msr, new_pc;
110
111 kvmppc_unfixup_split_real(vcpu);
112
113 msr = kvmppc_get_msr(vcpu);
114 pc = kvmppc_get_pc(vcpu);
115 new_msr = vcpu->arch.intr_msr;
116 new_pc = to_book3s(vcpu)->hior + vec;
117
118 #ifdef CONFIG_PPC_BOOK3S_64
119 /* If transactional, change to suspend mode on IRQ delivery */
120 if (MSR_TM_TRANSACTIONAL(msr))
121 new_msr |= MSR_TS_S;
122 else
123 new_msr |= msr & MSR_TS_MASK;
124 #endif
125
126 kvmppc_set_srr0(vcpu, pc);
127 kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags);
128 kvmppc_set_pc(vcpu, new_pc);
129 kvmppc_set_msr(vcpu, new_msr);
130 }
131
kvmppc_core_vcpu_load_pr(struct kvm_vcpu * vcpu,int cpu)132 static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
133 {
134 #ifdef CONFIG_PPC_BOOK3S_64
135 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
136 memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
137 svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
138 svcpu->in_use = 0;
139 svcpu_put(svcpu);
140
141 /* Disable AIL if supported */
142 if (cpu_has_feature(CPU_FTR_HVMODE)) {
143 if (cpu_has_feature(CPU_FTR_ARCH_207S))
144 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL);
145 if (cpu_has_feature(CPU_FTR_ARCH_300) && (current->thread.fscr & FSCR_SCV))
146 mtspr(SPRN_FSCR, mfspr(SPRN_FSCR) & ~FSCR_SCV);
147 }
148 #endif
149
150 vcpu->cpu = smp_processor_id();
151 #ifdef CONFIG_PPC_BOOK3S_32
152 current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
153 #endif
154
155 if (kvmppc_is_split_real(vcpu))
156 kvmppc_fixup_split_real(vcpu);
157
158 kvmppc_restore_tm_pr(vcpu);
159 }
160
kvmppc_core_vcpu_put_pr(struct kvm_vcpu * vcpu)161 static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
162 {
163 #ifdef CONFIG_PPC_BOOK3S_64
164 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
165 if (svcpu->in_use) {
166 kvmppc_copy_from_svcpu(vcpu);
167 }
168 memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
169 to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
170 svcpu_put(svcpu);
171
172 /* Enable AIL if supported */
173 if (cpu_has_feature(CPU_FTR_HVMODE)) {
174 if (cpu_has_feature(CPU_FTR_ARCH_207S))
175 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3);
176 if (cpu_has_feature(CPU_FTR_ARCH_300) && (current->thread.fscr & FSCR_SCV))
177 mtspr(SPRN_FSCR, mfspr(SPRN_FSCR) | FSCR_SCV);
178 }
179 #endif
180
181 if (kvmppc_is_split_real(vcpu))
182 kvmppc_unfixup_split_real(vcpu);
183
184 kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
185 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
186 kvmppc_save_tm_pr(vcpu);
187
188 vcpu->cpu = -1;
189 }
190
191 /* Copy data needed by real-mode code from vcpu to shadow vcpu */
kvmppc_copy_to_svcpu(struct kvm_vcpu * vcpu)192 void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu)
193 {
194 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
195
196 svcpu->gpr[0] = vcpu->arch.regs.gpr[0];
197 svcpu->gpr[1] = vcpu->arch.regs.gpr[1];
198 svcpu->gpr[2] = vcpu->arch.regs.gpr[2];
199 svcpu->gpr[3] = vcpu->arch.regs.gpr[3];
200 svcpu->gpr[4] = vcpu->arch.regs.gpr[4];
201 svcpu->gpr[5] = vcpu->arch.regs.gpr[5];
202 svcpu->gpr[6] = vcpu->arch.regs.gpr[6];
203 svcpu->gpr[7] = vcpu->arch.regs.gpr[7];
204 svcpu->gpr[8] = vcpu->arch.regs.gpr[8];
205 svcpu->gpr[9] = vcpu->arch.regs.gpr[9];
206 svcpu->gpr[10] = vcpu->arch.regs.gpr[10];
207 svcpu->gpr[11] = vcpu->arch.regs.gpr[11];
208 svcpu->gpr[12] = vcpu->arch.regs.gpr[12];
209 svcpu->gpr[13] = vcpu->arch.regs.gpr[13];
210 svcpu->cr = vcpu->arch.regs.ccr;
211 svcpu->xer = vcpu->arch.regs.xer;
212 svcpu->ctr = vcpu->arch.regs.ctr;
213 svcpu->lr = vcpu->arch.regs.link;
214 svcpu->pc = vcpu->arch.regs.nip;
215 #ifdef CONFIG_PPC_BOOK3S_64
216 svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
217 #endif
218 /*
219 * Now also save the current time base value. We use this
220 * to find the guest purr and spurr value.
221 */
222 vcpu->arch.entry_tb = get_tb();
223 vcpu->arch.entry_vtb = get_vtb();
224 if (cpu_has_feature(CPU_FTR_ARCH_207S))
225 vcpu->arch.entry_ic = mfspr(SPRN_IC);
226 svcpu->in_use = true;
227
228 svcpu_put(svcpu);
229 }
230
kvmppc_recalc_shadow_msr(struct kvm_vcpu * vcpu)231 static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
232 {
233 ulong guest_msr = kvmppc_get_msr(vcpu);
234 ulong smsr = guest_msr;
235
236 /* Guest MSR values */
237 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
238 smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE |
239 MSR_TM | MSR_TS_MASK;
240 #else
241 smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
242 #endif
243 /* Process MSR values */
244 smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
245 /* External providers the guest reserved */
246 smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
247 /* 64-bit Process MSR values */
248 #ifdef CONFIG_PPC_BOOK3S_64
249 smsr |= MSR_HV;
250 #endif
251 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
252 /*
253 * in guest privileged state, we want to fail all TM transactions.
254 * So disable MSR TM bit so that all tbegin. will be able to be
255 * trapped into host.
256 */
257 if (!(guest_msr & MSR_PR))
258 smsr &= ~MSR_TM;
259 #endif
260 vcpu->arch.shadow_msr = smsr;
261 }
262
263 /* Copy data touched by real-mode code from shadow vcpu back to vcpu */
kvmppc_copy_from_svcpu(struct kvm_vcpu * vcpu)264 void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu)
265 {
266 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
267 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
268 ulong old_msr;
269 #endif
270
271 /*
272 * Maybe we were already preempted and synced the svcpu from
273 * our preempt notifiers. Don't bother touching this svcpu then.
274 */
275 if (!svcpu->in_use)
276 goto out;
277
278 vcpu->arch.regs.gpr[0] = svcpu->gpr[0];
279 vcpu->arch.regs.gpr[1] = svcpu->gpr[1];
280 vcpu->arch.regs.gpr[2] = svcpu->gpr[2];
281 vcpu->arch.regs.gpr[3] = svcpu->gpr[3];
282 vcpu->arch.regs.gpr[4] = svcpu->gpr[4];
283 vcpu->arch.regs.gpr[5] = svcpu->gpr[5];
284 vcpu->arch.regs.gpr[6] = svcpu->gpr[6];
285 vcpu->arch.regs.gpr[7] = svcpu->gpr[7];
286 vcpu->arch.regs.gpr[8] = svcpu->gpr[8];
287 vcpu->arch.regs.gpr[9] = svcpu->gpr[9];
288 vcpu->arch.regs.gpr[10] = svcpu->gpr[10];
289 vcpu->arch.regs.gpr[11] = svcpu->gpr[11];
290 vcpu->arch.regs.gpr[12] = svcpu->gpr[12];
291 vcpu->arch.regs.gpr[13] = svcpu->gpr[13];
292 vcpu->arch.regs.ccr = svcpu->cr;
293 vcpu->arch.regs.xer = svcpu->xer;
294 vcpu->arch.regs.ctr = svcpu->ctr;
295 vcpu->arch.regs.link = svcpu->lr;
296 vcpu->arch.regs.nip = svcpu->pc;
297 vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
298 vcpu->arch.fault_dar = svcpu->fault_dar;
299 vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
300 vcpu->arch.last_inst = svcpu->last_inst;
301 #ifdef CONFIG_PPC_BOOK3S_64
302 vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
303 #endif
304 /*
305 * Update purr and spurr using time base on exit.
306 */
307 vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
308 vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;
309 to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb;
310 if (cpu_has_feature(CPU_FTR_ARCH_207S))
311 vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic;
312
313 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
314 /*
315 * Unlike other MSR bits, MSR[TS]bits can be changed at guest without
316 * notifying host:
317 * modified by unprivileged instructions like "tbegin"/"tend"/
318 * "tresume"/"tsuspend" in PR KVM guest.
319 *
320 * It is necessary to sync here to calculate a correct shadow_msr.
321 *
322 * privileged guest's tbegin will be failed at present. So we
323 * only take care of problem state guest.
324 */
325 old_msr = kvmppc_get_msr(vcpu);
326 if (unlikely((old_msr & MSR_PR) &&
327 (vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) !=
328 (old_msr & (MSR_TS_MASK)))) {
329 old_msr &= ~(MSR_TS_MASK);
330 old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK));
331 kvmppc_set_msr_fast(vcpu, old_msr);
332 kvmppc_recalc_shadow_msr(vcpu);
333 }
334 #endif
335
336 svcpu->in_use = false;
337
338 out:
339 svcpu_put(svcpu);
340 }
341
342 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
kvmppc_save_tm_sprs(struct kvm_vcpu * vcpu)343 void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu)
344 {
345 tm_enable();
346 vcpu->arch.tfhar = mfspr(SPRN_TFHAR);
347 vcpu->arch.texasr = mfspr(SPRN_TEXASR);
348 vcpu->arch.tfiar = mfspr(SPRN_TFIAR);
349 tm_disable();
350 }
351
kvmppc_restore_tm_sprs(struct kvm_vcpu * vcpu)352 void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu)
353 {
354 tm_enable();
355 mtspr(SPRN_TFHAR, vcpu->arch.tfhar);
356 mtspr(SPRN_TEXASR, vcpu->arch.texasr);
357 mtspr(SPRN_TFIAR, vcpu->arch.tfiar);
358 tm_disable();
359 }
360
361 /* loadup math bits which is enabled at kvmppc_get_msr() but not enabled at
362 * hardware.
363 */
kvmppc_handle_lost_math_exts(struct kvm_vcpu * vcpu)364 static void kvmppc_handle_lost_math_exts(struct kvm_vcpu *vcpu)
365 {
366 ulong exit_nr;
367 ulong ext_diff = (kvmppc_get_msr(vcpu) & ~vcpu->arch.guest_owned_ext) &
368 (MSR_FP | MSR_VEC | MSR_VSX);
369
370 if (!ext_diff)
371 return;
372
373 if (ext_diff == MSR_FP)
374 exit_nr = BOOK3S_INTERRUPT_FP_UNAVAIL;
375 else if (ext_diff == MSR_VEC)
376 exit_nr = BOOK3S_INTERRUPT_ALTIVEC;
377 else
378 exit_nr = BOOK3S_INTERRUPT_VSX;
379
380 kvmppc_handle_ext(vcpu, exit_nr, ext_diff);
381 }
382
kvmppc_save_tm_pr(struct kvm_vcpu * vcpu)383 void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu)
384 {
385 if (!(MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)))) {
386 kvmppc_save_tm_sprs(vcpu);
387 return;
388 }
389
390 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
391 kvmppc_giveup_ext(vcpu, MSR_VSX);
392
393 preempt_disable();
394 _kvmppc_save_tm_pr(vcpu, mfmsr());
395 preempt_enable();
396 }
397
kvmppc_restore_tm_pr(struct kvm_vcpu * vcpu)398 void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu)
399 {
400 if (!MSR_TM_ACTIVE(kvmppc_get_msr(vcpu))) {
401 kvmppc_restore_tm_sprs(vcpu);
402 if (kvmppc_get_msr(vcpu) & MSR_TM) {
403 kvmppc_handle_lost_math_exts(vcpu);
404 if (vcpu->arch.fscr & FSCR_TAR)
405 kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
406 }
407 return;
408 }
409
410 preempt_disable();
411 _kvmppc_restore_tm_pr(vcpu, kvmppc_get_msr(vcpu));
412 preempt_enable();
413
414 if (kvmppc_get_msr(vcpu) & MSR_TM) {
415 kvmppc_handle_lost_math_exts(vcpu);
416 if (vcpu->arch.fscr & FSCR_TAR)
417 kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
418 }
419 }
420 #endif
421
kvmppc_core_check_requests_pr(struct kvm_vcpu * vcpu)422 static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
423 {
424 int r = 1; /* Indicate we want to get back into the guest */
425
426 /* We misuse TLB_FLUSH to indicate that we want to clear
427 all shadow cache entries */
428 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
429 kvmppc_mmu_pte_flush(vcpu, 0, 0);
430
431 return r;
432 }
433
434 /************* MMU Notifiers *************/
do_kvm_unmap_gfn(struct kvm * kvm,struct kvm_gfn_range * range)435 static bool do_kvm_unmap_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
436 {
437 unsigned long i;
438 struct kvm_vcpu *vcpu;
439
440 kvm_for_each_vcpu(i, vcpu, kvm)
441 kvmppc_mmu_pte_pflush(vcpu, range->start << PAGE_SHIFT,
442 range->end << PAGE_SHIFT);
443
444 return false;
445 }
446
kvm_unmap_gfn_range_pr(struct kvm * kvm,struct kvm_gfn_range * range)447 static bool kvm_unmap_gfn_range_pr(struct kvm *kvm, struct kvm_gfn_range *range)
448 {
449 return do_kvm_unmap_gfn(kvm, range);
450 }
451
kvm_age_gfn_pr(struct kvm * kvm,struct kvm_gfn_range * range)452 static bool kvm_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
453 {
454 /* XXX could be more clever ;) */
455 return false;
456 }
457
kvm_test_age_gfn_pr(struct kvm * kvm,struct kvm_gfn_range * range)458 static bool kvm_test_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
459 {
460 /* XXX could be more clever ;) */
461 return false;
462 }
463
464 /*****************************************/
465
kvmppc_set_msr_pr(struct kvm_vcpu * vcpu,u64 msr)466 static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
467 {
468 ulong old_msr;
469
470 /* For PAPR guest, make sure MSR reflects guest mode */
471 if (vcpu->arch.papr_enabled)
472 msr = (msr & ~MSR_HV) | MSR_ME;
473
474 #ifdef EXIT_DEBUG
475 printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
476 #endif
477
478 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
479 /* We should never target guest MSR to TS=10 && PR=0,
480 * since we always fail transaction for guest privilege
481 * state.
482 */
483 if (!(msr & MSR_PR) && MSR_TM_TRANSACTIONAL(msr))
484 kvmppc_emulate_tabort(vcpu,
485 TM_CAUSE_KVM_FAC_UNAV | TM_CAUSE_PERSISTENT);
486 #endif
487
488 old_msr = kvmppc_get_msr(vcpu);
489 msr &= to_book3s(vcpu)->msr_mask;
490 kvmppc_set_msr_fast(vcpu, msr);
491 kvmppc_recalc_shadow_msr(vcpu);
492
493 if (msr & MSR_POW) {
494 if (!vcpu->arch.pending_exceptions) {
495 kvm_vcpu_halt(vcpu);
496 vcpu->stat.generic.halt_wakeup++;
497
498 /* Unset POW bit after we woke up */
499 msr &= ~MSR_POW;
500 kvmppc_set_msr_fast(vcpu, msr);
501 }
502 }
503
504 if (kvmppc_is_split_real(vcpu))
505 kvmppc_fixup_split_real(vcpu);
506 else
507 kvmppc_unfixup_split_real(vcpu);
508
509 if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
510 (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
511 kvmppc_mmu_flush_segments(vcpu);
512 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
513
514 /* Preload magic page segment when in kernel mode */
515 if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
516 struct kvm_vcpu_arch *a = &vcpu->arch;
517
518 if (msr & MSR_DR)
519 kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
520 else
521 kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
522 }
523 }
524
525 /*
526 * When switching from 32 to 64-bit, we may have a stale 32-bit
527 * magic page around, we need to flush it. Typically 32-bit magic
528 * page will be instantiated when calling into RTAS. Note: We
529 * assume that such transition only happens while in kernel mode,
530 * ie, we never transition from user 32-bit to kernel 64-bit with
531 * a 32-bit magic page around.
532 */
533 if (vcpu->arch.magic_page_pa &&
534 !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
535 /* going from RTAS to normal kernel code */
536 kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
537 ~0xFFFUL);
538 }
539
540 /* Preload FPU if it's enabled */
541 if (kvmppc_get_msr(vcpu) & MSR_FP)
542 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
543
544 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
545 if (kvmppc_get_msr(vcpu) & MSR_TM)
546 kvmppc_handle_lost_math_exts(vcpu);
547 #endif
548 }
549
kvmppc_set_pvr_pr(struct kvm_vcpu * vcpu,u32 pvr)550 static void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
551 {
552 u32 host_pvr;
553
554 vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
555 vcpu->arch.pvr = pvr;
556 #ifdef CONFIG_PPC_BOOK3S_64
557 if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
558 kvmppc_mmu_book3s_64_init(vcpu);
559 if (!to_book3s(vcpu)->hior_explicit)
560 to_book3s(vcpu)->hior = 0xfff00000;
561 to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
562 vcpu->arch.cpu_type = KVM_CPU_3S_64;
563 } else
564 #endif
565 {
566 kvmppc_mmu_book3s_32_init(vcpu);
567 if (!to_book3s(vcpu)->hior_explicit)
568 to_book3s(vcpu)->hior = 0;
569 to_book3s(vcpu)->msr_mask = 0xffffffffULL;
570 vcpu->arch.cpu_type = KVM_CPU_3S_32;
571 }
572
573 kvmppc_sanity_check(vcpu);
574
575 /* If we are in hypervisor level on 970, we can tell the CPU to
576 * treat DCBZ as 32 bytes store */
577 vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
578 if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
579 !strcmp(cur_cpu_spec->platform, "ppc970"))
580 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
581
582 /* Cell performs badly if MSR_FEx are set. So let's hope nobody
583 really needs them in a VM on Cell and force disable them. */
584 if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
585 to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);
586
587 /*
588 * If they're asking for POWER6 or later, set the flag
589 * indicating that we can do multiple large page sizes
590 * and 1TB segments.
591 * Also set the flag that indicates that tlbie has the large
592 * page bit in the RB operand instead of the instruction.
593 */
594 switch (PVR_VER(pvr)) {
595 case PVR_POWER6:
596 case PVR_POWER7:
597 case PVR_POWER7p:
598 case PVR_POWER8:
599 case PVR_POWER8E:
600 case PVR_POWER8NVL:
601 case PVR_HX_C2000:
602 case PVR_POWER9:
603 vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
604 BOOK3S_HFLAG_NEW_TLBIE;
605 break;
606 }
607
608 #ifdef CONFIG_PPC_BOOK3S_32
609 /* 32 bit Book3S always has 32 byte dcbz */
610 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
611 #endif
612
613 /* On some CPUs we can execute paired single operations natively */
614 asm ( "mfpvr %0" : "=r"(host_pvr));
615 switch (host_pvr) {
616 case 0x00080200: /* lonestar 2.0 */
617 case 0x00088202: /* lonestar 2.2 */
618 case 0x70000100: /* gekko 1.0 */
619 case 0x00080100: /* gekko 2.0 */
620 case 0x00083203: /* gekko 2.3a */
621 case 0x00083213: /* gekko 2.3b */
622 case 0x00083204: /* gekko 2.4 */
623 case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */
624 case 0x00087200: /* broadway */
625 vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
626 /* Enable HID2.PSE - in case we need it later */
627 mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
628 }
629 }
630
631 /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
632 * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
633 * emulate 32 bytes dcbz length.
634 *
635 * The Book3s_64 inventors also realized this case and implemented a special bit
636 * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
637 *
638 * My approach here is to patch the dcbz instruction on executing pages.
639 */
kvmppc_patch_dcbz(struct kvm_vcpu * vcpu,struct kvmppc_pte * pte)640 static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
641 {
642 struct page *hpage;
643 u64 hpage_offset;
644 u32 *page;
645 int i;
646
647 hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
648 if (is_error_page(hpage))
649 return;
650
651 hpage_offset = pte->raddr & ~PAGE_MASK;
652 hpage_offset &= ~0xFFFULL;
653 hpage_offset /= 4;
654
655 get_page(hpage);
656 page = kmap_atomic(hpage);
657
658 /* patch dcbz into reserved instruction, so we trap */
659 for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
660 if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
661 page[i] &= cpu_to_be32(0xfffffff7);
662
663 kunmap_atomic(page);
664 put_page(hpage);
665 }
666
kvmppc_visible_gpa(struct kvm_vcpu * vcpu,gpa_t gpa)667 static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
668 {
669 ulong mp_pa = vcpu->arch.magic_page_pa;
670
671 if (!(kvmppc_get_msr(vcpu) & MSR_SF))
672 mp_pa = (uint32_t)mp_pa;
673
674 gpa &= ~0xFFFULL;
675 if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) {
676 return true;
677 }
678
679 return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT);
680 }
681
kvmppc_handle_pagefault(struct kvm_vcpu * vcpu,ulong eaddr,int vec)682 static int kvmppc_handle_pagefault(struct kvm_vcpu *vcpu,
683 ulong eaddr, int vec)
684 {
685 bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
686 bool iswrite = false;
687 int r = RESUME_GUEST;
688 int relocated;
689 int page_found = 0;
690 struct kvmppc_pte pte = { 0 };
691 bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
692 bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
693 u64 vsid;
694
695 relocated = data ? dr : ir;
696 if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
697 iswrite = true;
698
699 /* Resolve real address if translation turned on */
700 if (relocated) {
701 page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
702 } else {
703 pte.may_execute = true;
704 pte.may_read = true;
705 pte.may_write = true;
706 pte.raddr = eaddr & KVM_PAM;
707 pte.eaddr = eaddr;
708 pte.vpage = eaddr >> 12;
709 pte.page_size = MMU_PAGE_64K;
710 pte.wimg = HPTE_R_M;
711 }
712
713 switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
714 case 0:
715 pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
716 break;
717 case MSR_DR:
718 if (!data &&
719 (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) &&
720 ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS))
721 pte.raddr &= ~SPLIT_HACK_MASK;
722 fallthrough;
723 case MSR_IR:
724 vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
725
726 if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
727 pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
728 else
729 pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
730 pte.vpage |= vsid;
731
732 if (vsid == -1)
733 page_found = -EINVAL;
734 break;
735 }
736
737 if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
738 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
739 /*
740 * If we do the dcbz hack, we have to NX on every execution,
741 * so we can patch the executing code. This renders our guest
742 * NX-less.
743 */
744 pte.may_execute = !data;
745 }
746
747 if (page_found == -ENOENT || page_found == -EPERM) {
748 /* Page not found in guest PTE entries, or protection fault */
749 u64 flags;
750
751 if (page_found == -EPERM)
752 flags = DSISR_PROTFAULT;
753 else
754 flags = DSISR_NOHPTE;
755 if (data) {
756 flags |= vcpu->arch.fault_dsisr & DSISR_ISSTORE;
757 kvmppc_core_queue_data_storage(vcpu, 0, eaddr, flags);
758 } else {
759 kvmppc_core_queue_inst_storage(vcpu, flags);
760 }
761 } else if (page_found == -EINVAL) {
762 /* Page not found in guest SLB */
763 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
764 kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
765 } else if (kvmppc_visible_gpa(vcpu, pte.raddr)) {
766 if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
767 /*
768 * There is already a host HPTE there, presumably
769 * a read-only one for a page the guest thinks
770 * is writable, so get rid of it first.
771 */
772 kvmppc_mmu_unmap_page(vcpu, &pte);
773 }
774 /* The guest's PTE is not mapped yet. Map on the host */
775 if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) {
776 /* Exit KVM if mapping failed */
777 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
778 return RESUME_HOST;
779 }
780 if (data)
781 vcpu->stat.sp_storage++;
782 else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
783 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
784 kvmppc_patch_dcbz(vcpu, &pte);
785 } else {
786 /* MMIO */
787 vcpu->stat.mmio_exits++;
788 vcpu->arch.paddr_accessed = pte.raddr;
789 vcpu->arch.vaddr_accessed = pte.eaddr;
790 r = kvmppc_emulate_mmio(vcpu);
791 if ( r == RESUME_HOST_NV )
792 r = RESUME_HOST;
793 }
794
795 return r;
796 }
797
798 /* Give up external provider (FPU, Altivec, VSX) */
kvmppc_giveup_ext(struct kvm_vcpu * vcpu,ulong msr)799 void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
800 {
801 struct thread_struct *t = ¤t->thread;
802
803 /*
804 * VSX instructions can access FP and vector registers, so if
805 * we are giving up VSX, make sure we give up FP and VMX as well.
806 */
807 if (msr & MSR_VSX)
808 msr |= MSR_FP | MSR_VEC;
809
810 msr &= vcpu->arch.guest_owned_ext;
811 if (!msr)
812 return;
813
814 #ifdef DEBUG_EXT
815 printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
816 #endif
817
818 if (msr & MSR_FP) {
819 /*
820 * Note that on CPUs with VSX, giveup_fpu stores
821 * both the traditional FP registers and the added VSX
822 * registers into thread.fp_state.fpr[].
823 */
824 if (t->regs->msr & MSR_FP)
825 giveup_fpu(current);
826 t->fp_save_area = NULL;
827 }
828
829 #ifdef CONFIG_ALTIVEC
830 if (msr & MSR_VEC) {
831 if (current->thread.regs->msr & MSR_VEC)
832 giveup_altivec(current);
833 t->vr_save_area = NULL;
834 }
835 #endif
836
837 vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
838 kvmppc_recalc_shadow_msr(vcpu);
839 }
840
841 /* Give up facility (TAR / EBB / DSCR) */
kvmppc_giveup_fac(struct kvm_vcpu * vcpu,ulong fac)842 void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
843 {
844 #ifdef CONFIG_PPC_BOOK3S_64
845 if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
846 /* Facility not available to the guest, ignore giveup request*/
847 return;
848 }
849
850 switch (fac) {
851 case FSCR_TAR_LG:
852 vcpu->arch.tar = mfspr(SPRN_TAR);
853 mtspr(SPRN_TAR, current->thread.tar);
854 vcpu->arch.shadow_fscr &= ~FSCR_TAR;
855 break;
856 }
857 #endif
858 }
859
860 /* Handle external providers (FPU, Altivec, VSX) */
kvmppc_handle_ext(struct kvm_vcpu * vcpu,unsigned int exit_nr,ulong msr)861 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
862 ulong msr)
863 {
864 struct thread_struct *t = ¤t->thread;
865
866 /* When we have paired singles, we emulate in software */
867 if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
868 return RESUME_GUEST;
869
870 if (!(kvmppc_get_msr(vcpu) & msr)) {
871 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
872 return RESUME_GUEST;
873 }
874
875 if (msr == MSR_VSX) {
876 /* No VSX? Give an illegal instruction interrupt */
877 #ifdef CONFIG_VSX
878 if (!cpu_has_feature(CPU_FTR_VSX))
879 #endif
880 {
881 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
882 return RESUME_GUEST;
883 }
884
885 /*
886 * We have to load up all the FP and VMX registers before
887 * we can let the guest use VSX instructions.
888 */
889 msr = MSR_FP | MSR_VEC | MSR_VSX;
890 }
891
892 /* See if we already own all the ext(s) needed */
893 msr &= ~vcpu->arch.guest_owned_ext;
894 if (!msr)
895 return RESUME_GUEST;
896
897 #ifdef DEBUG_EXT
898 printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
899 #endif
900
901 if (msr & MSR_FP) {
902 preempt_disable();
903 enable_kernel_fp();
904 load_fp_state(&vcpu->arch.fp);
905 disable_kernel_fp();
906 t->fp_save_area = &vcpu->arch.fp;
907 preempt_enable();
908 }
909
910 if (msr & MSR_VEC) {
911 #ifdef CONFIG_ALTIVEC
912 preempt_disable();
913 enable_kernel_altivec();
914 load_vr_state(&vcpu->arch.vr);
915 disable_kernel_altivec();
916 t->vr_save_area = &vcpu->arch.vr;
917 preempt_enable();
918 #endif
919 }
920
921 t->regs->msr |= msr;
922 vcpu->arch.guest_owned_ext |= msr;
923 kvmppc_recalc_shadow_msr(vcpu);
924
925 return RESUME_GUEST;
926 }
927
928 /*
929 * Kernel code using FP or VMX could have flushed guest state to
930 * the thread_struct; if so, get it back now.
931 */
kvmppc_handle_lost_ext(struct kvm_vcpu * vcpu)932 static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
933 {
934 unsigned long lost_ext;
935
936 lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
937 if (!lost_ext)
938 return;
939
940 if (lost_ext & MSR_FP) {
941 preempt_disable();
942 enable_kernel_fp();
943 load_fp_state(&vcpu->arch.fp);
944 disable_kernel_fp();
945 preempt_enable();
946 }
947 #ifdef CONFIG_ALTIVEC
948 if (lost_ext & MSR_VEC) {
949 preempt_disable();
950 enable_kernel_altivec();
951 load_vr_state(&vcpu->arch.vr);
952 disable_kernel_altivec();
953 preempt_enable();
954 }
955 #endif
956 current->thread.regs->msr |= lost_ext;
957 }
958
959 #ifdef CONFIG_PPC_BOOK3S_64
960
kvmppc_trigger_fac_interrupt(struct kvm_vcpu * vcpu,ulong fac)961 void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
962 {
963 /* Inject the Interrupt Cause field and trigger a guest interrupt */
964 vcpu->arch.fscr &= ~(0xffULL << 56);
965 vcpu->arch.fscr |= (fac << 56);
966 kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
967 }
968
kvmppc_emulate_fac(struct kvm_vcpu * vcpu,ulong fac)969 static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
970 {
971 enum emulation_result er = EMULATE_FAIL;
972
973 if (!(kvmppc_get_msr(vcpu) & MSR_PR))
974 er = kvmppc_emulate_instruction(vcpu);
975
976 if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
977 /* Couldn't emulate, trigger interrupt in guest */
978 kvmppc_trigger_fac_interrupt(vcpu, fac);
979 }
980 }
981
982 /* Enable facilities (TAR, EBB, DSCR) for the guest */
kvmppc_handle_fac(struct kvm_vcpu * vcpu,ulong fac)983 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
984 {
985 bool guest_fac_enabled;
986 BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));
987
988 /*
989 * Not every facility is enabled by FSCR bits, check whether the
990 * guest has this facility enabled at all.
991 */
992 switch (fac) {
993 case FSCR_TAR_LG:
994 case FSCR_EBB_LG:
995 guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
996 break;
997 case FSCR_TM_LG:
998 guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
999 break;
1000 default:
1001 guest_fac_enabled = false;
1002 break;
1003 }
1004
1005 if (!guest_fac_enabled) {
1006 /* Facility not enabled by the guest */
1007 kvmppc_trigger_fac_interrupt(vcpu, fac);
1008 return RESUME_GUEST;
1009 }
1010
1011 switch (fac) {
1012 case FSCR_TAR_LG:
1013 /* TAR switching isn't lazy in Linux yet */
1014 current->thread.tar = mfspr(SPRN_TAR);
1015 mtspr(SPRN_TAR, vcpu->arch.tar);
1016 vcpu->arch.shadow_fscr |= FSCR_TAR;
1017 break;
1018 default:
1019 kvmppc_emulate_fac(vcpu, fac);
1020 break;
1021 }
1022
1023 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1024 /* Since we disabled MSR_TM at privilege state, the mfspr instruction
1025 * for TM spr can trigger TM fac unavailable. In this case, the
1026 * emulation is handled by kvmppc_emulate_fac(), which invokes
1027 * kvmppc_emulate_mfspr() finally. But note the mfspr can include
1028 * RT for NV registers. So it need to restore those NV reg to reflect
1029 * the update.
1030 */
1031 if ((fac == FSCR_TM_LG) && !(kvmppc_get_msr(vcpu) & MSR_PR))
1032 return RESUME_GUEST_NV;
1033 #endif
1034
1035 return RESUME_GUEST;
1036 }
1037
kvmppc_set_fscr(struct kvm_vcpu * vcpu,u64 fscr)1038 void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr)
1039 {
1040 if (fscr & FSCR_SCV)
1041 fscr &= ~FSCR_SCV; /* SCV must not be enabled */
1042 /* Prohibit prefixed instructions for now */
1043 fscr &= ~FSCR_PREFIX;
1044 if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) {
1045 /* TAR got dropped, drop it in shadow too */
1046 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1047 } else if (!(vcpu->arch.fscr & FSCR_TAR) && (fscr & FSCR_TAR)) {
1048 vcpu->arch.fscr = fscr;
1049 kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
1050 return;
1051 }
1052
1053 vcpu->arch.fscr = fscr;
1054 }
1055 #endif
1056
kvmppc_setup_debug(struct kvm_vcpu * vcpu)1057 static void kvmppc_setup_debug(struct kvm_vcpu *vcpu)
1058 {
1059 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1060 u64 msr = kvmppc_get_msr(vcpu);
1061
1062 kvmppc_set_msr(vcpu, msr | MSR_SE);
1063 }
1064 }
1065
kvmppc_clear_debug(struct kvm_vcpu * vcpu)1066 static void kvmppc_clear_debug(struct kvm_vcpu *vcpu)
1067 {
1068 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1069 u64 msr = kvmppc_get_msr(vcpu);
1070
1071 kvmppc_set_msr(vcpu, msr & ~MSR_SE);
1072 }
1073 }
1074
kvmppc_exit_pr_progint(struct kvm_vcpu * vcpu,unsigned int exit_nr)1075 static int kvmppc_exit_pr_progint(struct kvm_vcpu *vcpu, unsigned int exit_nr)
1076 {
1077 enum emulation_result er;
1078 ulong flags;
1079 ppc_inst_t last_inst;
1080 int emul, r;
1081
1082 /*
1083 * shadow_srr1 only contains valid flags if we came here via a program
1084 * exception. The other exceptions (emulation assist, FP unavailable,
1085 * etc.) do not provide flags in SRR1, so use an illegal-instruction
1086 * exception when injecting a program interrupt into the guest.
1087 */
1088 if (exit_nr == BOOK3S_INTERRUPT_PROGRAM)
1089 flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
1090 else
1091 flags = SRR1_PROGILL;
1092
1093 emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1094 if (emul != EMULATE_DONE)
1095 return RESUME_GUEST;
1096
1097 if (kvmppc_get_msr(vcpu) & MSR_PR) {
1098 #ifdef EXIT_DEBUG
1099 pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n",
1100 kvmppc_get_pc(vcpu), ppc_inst_val(last_inst));
1101 #endif
1102 if ((ppc_inst_val(last_inst) & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) {
1103 kvmppc_core_queue_program(vcpu, flags);
1104 return RESUME_GUEST;
1105 }
1106 }
1107
1108 vcpu->stat.emulated_inst_exits++;
1109 er = kvmppc_emulate_instruction(vcpu);
1110 switch (er) {
1111 case EMULATE_DONE:
1112 r = RESUME_GUEST_NV;
1113 break;
1114 case EMULATE_AGAIN:
1115 r = RESUME_GUEST;
1116 break;
1117 case EMULATE_FAIL:
1118 pr_crit("%s: emulation at %lx failed (%08x)\n",
1119 __func__, kvmppc_get_pc(vcpu), ppc_inst_val(last_inst));
1120 kvmppc_core_queue_program(vcpu, flags);
1121 r = RESUME_GUEST;
1122 break;
1123 case EMULATE_DO_MMIO:
1124 vcpu->run->exit_reason = KVM_EXIT_MMIO;
1125 r = RESUME_HOST_NV;
1126 break;
1127 case EMULATE_EXIT_USER:
1128 r = RESUME_HOST_NV;
1129 break;
1130 default:
1131 BUG();
1132 }
1133
1134 return r;
1135 }
1136
kvmppc_handle_exit_pr(struct kvm_vcpu * vcpu,unsigned int exit_nr)1137 int kvmppc_handle_exit_pr(struct kvm_vcpu *vcpu, unsigned int exit_nr)
1138 {
1139 struct kvm_run *run = vcpu->run;
1140 int r = RESUME_HOST;
1141 int s;
1142
1143 vcpu->stat.sum_exits++;
1144
1145 run->exit_reason = KVM_EXIT_UNKNOWN;
1146 run->ready_for_interrupt_injection = 1;
1147
1148 /* We get here with MSR.EE=1 */
1149
1150 trace_kvm_exit(exit_nr, vcpu);
1151 guest_exit();
1152
1153 switch (exit_nr) {
1154 case BOOK3S_INTERRUPT_INST_STORAGE:
1155 {
1156 ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1157 vcpu->stat.pf_instruc++;
1158
1159 if (kvmppc_is_split_real(vcpu))
1160 kvmppc_fixup_split_real(vcpu);
1161
1162 #ifdef CONFIG_PPC_BOOK3S_32
1163 /* We set segments as unused segments when invalidating them. So
1164 * treat the respective fault as segment fault. */
1165 {
1166 struct kvmppc_book3s_shadow_vcpu *svcpu;
1167 u32 sr;
1168
1169 svcpu = svcpu_get(vcpu);
1170 sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
1171 svcpu_put(svcpu);
1172 if (sr == SR_INVALID) {
1173 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
1174 r = RESUME_GUEST;
1175 break;
1176 }
1177 }
1178 #endif
1179
1180 /* only care about PTEG not found errors, but leave NX alone */
1181 if (shadow_srr1 & 0x40000000) {
1182 int idx = srcu_read_lock(&vcpu->kvm->srcu);
1183 r = kvmppc_handle_pagefault(vcpu, kvmppc_get_pc(vcpu), exit_nr);
1184 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1185 vcpu->stat.sp_instruc++;
1186 } else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
1187 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
1188 /*
1189 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
1190 * so we can't use the NX bit inside the guest. Let's cross our fingers,
1191 * that no guest that needs the dcbz hack does NX.
1192 */
1193 kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
1194 r = RESUME_GUEST;
1195 } else {
1196 kvmppc_core_queue_inst_storage(vcpu,
1197 shadow_srr1 & 0x58000000);
1198 r = RESUME_GUEST;
1199 }
1200 break;
1201 }
1202 case BOOK3S_INTERRUPT_DATA_STORAGE:
1203 {
1204 ulong dar = kvmppc_get_fault_dar(vcpu);
1205 u32 fault_dsisr = vcpu->arch.fault_dsisr;
1206 vcpu->stat.pf_storage++;
1207
1208 #ifdef CONFIG_PPC_BOOK3S_32
1209 /* We set segments as unused segments when invalidating them. So
1210 * treat the respective fault as segment fault. */
1211 {
1212 struct kvmppc_book3s_shadow_vcpu *svcpu;
1213 u32 sr;
1214
1215 svcpu = svcpu_get(vcpu);
1216 sr = svcpu->sr[dar >> SID_SHIFT];
1217 svcpu_put(svcpu);
1218 if (sr == SR_INVALID) {
1219 kvmppc_mmu_map_segment(vcpu, dar);
1220 r = RESUME_GUEST;
1221 break;
1222 }
1223 }
1224 #endif
1225
1226 /*
1227 * We need to handle missing shadow PTEs, and
1228 * protection faults due to us mapping a page read-only
1229 * when the guest thinks it is writable.
1230 */
1231 if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
1232 int idx = srcu_read_lock(&vcpu->kvm->srcu);
1233 r = kvmppc_handle_pagefault(vcpu, dar, exit_nr);
1234 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1235 } else {
1236 kvmppc_core_queue_data_storage(vcpu, 0, dar, fault_dsisr);
1237 r = RESUME_GUEST;
1238 }
1239 break;
1240 }
1241 case BOOK3S_INTERRUPT_DATA_SEGMENT:
1242 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
1243 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
1244 kvmppc_book3s_queue_irqprio(vcpu,
1245 BOOK3S_INTERRUPT_DATA_SEGMENT);
1246 }
1247 r = RESUME_GUEST;
1248 break;
1249 case BOOK3S_INTERRUPT_INST_SEGMENT:
1250 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
1251 kvmppc_book3s_queue_irqprio(vcpu,
1252 BOOK3S_INTERRUPT_INST_SEGMENT);
1253 }
1254 r = RESUME_GUEST;
1255 break;
1256 /* We're good on these - the host merely wanted to get our attention */
1257 case BOOK3S_INTERRUPT_DECREMENTER:
1258 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1259 case BOOK3S_INTERRUPT_DOORBELL:
1260 case BOOK3S_INTERRUPT_H_DOORBELL:
1261 vcpu->stat.dec_exits++;
1262 r = RESUME_GUEST;
1263 break;
1264 case BOOK3S_INTERRUPT_EXTERNAL:
1265 case BOOK3S_INTERRUPT_EXTERNAL_HV:
1266 case BOOK3S_INTERRUPT_H_VIRT:
1267 vcpu->stat.ext_intr_exits++;
1268 r = RESUME_GUEST;
1269 break;
1270 case BOOK3S_INTERRUPT_HMI:
1271 case BOOK3S_INTERRUPT_PERFMON:
1272 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1273 r = RESUME_GUEST;
1274 break;
1275 case BOOK3S_INTERRUPT_PROGRAM:
1276 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1277 r = kvmppc_exit_pr_progint(vcpu, exit_nr);
1278 break;
1279 case BOOK3S_INTERRUPT_SYSCALL:
1280 {
1281 ppc_inst_t last_sc;
1282 int emul;
1283
1284 /* Get last sc for papr */
1285 if (vcpu->arch.papr_enabled) {
1286 /* The sc instruction points SRR0 to the next inst */
1287 emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc);
1288 if (emul != EMULATE_DONE) {
1289 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4);
1290 r = RESUME_GUEST;
1291 break;
1292 }
1293 }
1294
1295 if (vcpu->arch.papr_enabled &&
1296 (ppc_inst_val(last_sc) == 0x44000022) &&
1297 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
1298 /* SC 1 papr hypercalls */
1299 ulong cmd = kvmppc_get_gpr(vcpu, 3);
1300 int i;
1301
1302 #ifdef CONFIG_PPC_BOOK3S_64
1303 if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
1304 r = RESUME_GUEST;
1305 break;
1306 }
1307 #endif
1308
1309 run->papr_hcall.nr = cmd;
1310 for (i = 0; i < 9; ++i) {
1311 ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
1312 run->papr_hcall.args[i] = gpr;
1313 }
1314 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1315 vcpu->arch.hcall_needed = 1;
1316 r = RESUME_HOST;
1317 } else if (vcpu->arch.osi_enabled &&
1318 (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
1319 (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
1320 /* MOL hypercalls */
1321 u64 *gprs = run->osi.gprs;
1322 int i;
1323
1324 run->exit_reason = KVM_EXIT_OSI;
1325 for (i = 0; i < 32; i++)
1326 gprs[i] = kvmppc_get_gpr(vcpu, i);
1327 vcpu->arch.osi_needed = 1;
1328 r = RESUME_HOST_NV;
1329 } else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
1330 (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
1331 /* KVM PV hypercalls */
1332 kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
1333 r = RESUME_GUEST;
1334 } else {
1335 /* Guest syscalls */
1336 vcpu->stat.syscall_exits++;
1337 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1338 r = RESUME_GUEST;
1339 }
1340 break;
1341 }
1342 case BOOK3S_INTERRUPT_FP_UNAVAIL:
1343 case BOOK3S_INTERRUPT_ALTIVEC:
1344 case BOOK3S_INTERRUPT_VSX:
1345 {
1346 int ext_msr = 0;
1347 int emul;
1348 ppc_inst_t last_inst;
1349
1350 if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) {
1351 /* Do paired single instruction emulation */
1352 emul = kvmppc_get_last_inst(vcpu, INST_GENERIC,
1353 &last_inst);
1354 if (emul == EMULATE_DONE)
1355 r = kvmppc_exit_pr_progint(vcpu, exit_nr);
1356 else
1357 r = RESUME_GUEST;
1358
1359 break;
1360 }
1361
1362 /* Enable external provider */
1363 switch (exit_nr) {
1364 case BOOK3S_INTERRUPT_FP_UNAVAIL:
1365 ext_msr = MSR_FP;
1366 break;
1367
1368 case BOOK3S_INTERRUPT_ALTIVEC:
1369 ext_msr = MSR_VEC;
1370 break;
1371
1372 case BOOK3S_INTERRUPT_VSX:
1373 ext_msr = MSR_VSX;
1374 break;
1375 }
1376
1377 r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
1378 break;
1379 }
1380 case BOOK3S_INTERRUPT_ALIGNMENT:
1381 {
1382 ppc_inst_t last_inst;
1383 int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1384
1385 if (emul == EMULATE_DONE) {
1386 u32 dsisr;
1387 u64 dar;
1388
1389 dsisr = kvmppc_alignment_dsisr(vcpu, ppc_inst_val(last_inst));
1390 dar = kvmppc_alignment_dar(vcpu, ppc_inst_val(last_inst));
1391
1392 kvmppc_set_dsisr(vcpu, dsisr);
1393 kvmppc_set_dar(vcpu, dar);
1394
1395 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1396 }
1397 r = RESUME_GUEST;
1398 break;
1399 }
1400 #ifdef CONFIG_PPC_BOOK3S_64
1401 case BOOK3S_INTERRUPT_FAC_UNAVAIL:
1402 r = kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
1403 break;
1404 #endif
1405 case BOOK3S_INTERRUPT_MACHINE_CHECK:
1406 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1407 r = RESUME_GUEST;
1408 break;
1409 case BOOK3S_INTERRUPT_TRACE:
1410 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1411 run->exit_reason = KVM_EXIT_DEBUG;
1412 r = RESUME_HOST;
1413 } else {
1414 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1415 r = RESUME_GUEST;
1416 }
1417 break;
1418 default:
1419 {
1420 ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1421 /* Ugh - bork here! What did we get? */
1422 printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1423 exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1424 r = RESUME_HOST;
1425 BUG();
1426 break;
1427 }
1428 }
1429
1430 if (!(r & RESUME_HOST)) {
1431 /* To avoid clobbering exit_reason, only check for signals if
1432 * we aren't already exiting to userspace for some other
1433 * reason. */
1434
1435 /*
1436 * Interrupts could be timers for the guest which we have to
1437 * inject again, so let's postpone them until we're in the guest
1438 * and if we really did time things so badly, then we just exit
1439 * again due to a host external interrupt.
1440 */
1441 s = kvmppc_prepare_to_enter(vcpu);
1442 if (s <= 0)
1443 r = s;
1444 else {
1445 /* interrupts now hard-disabled */
1446 kvmppc_fix_ee_before_entry();
1447 }
1448
1449 kvmppc_handle_lost_ext(vcpu);
1450 }
1451
1452 trace_kvm_book3s_reenter(r, vcpu);
1453
1454 return r;
1455 }
1456
kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1457 static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
1458 struct kvm_sregs *sregs)
1459 {
1460 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1461 int i;
1462
1463 sregs->pvr = vcpu->arch.pvr;
1464
1465 sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
1466 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1467 for (i = 0; i < 64; i++) {
1468 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
1469 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1470 }
1471 } else {
1472 for (i = 0; i < 16; i++)
1473 sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
1474
1475 for (i = 0; i < 8; i++) {
1476 sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
1477 sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
1478 }
1479 }
1480
1481 return 0;
1482 }
1483
kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1484 static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
1485 struct kvm_sregs *sregs)
1486 {
1487 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1488 int i;
1489
1490 kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1491
1492 vcpu3s->sdr1 = sregs->u.s.sdr1;
1493 #ifdef CONFIG_PPC_BOOK3S_64
1494 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1495 /* Flush all SLB entries */
1496 vcpu->arch.mmu.slbmte(vcpu, 0, 0);
1497 vcpu->arch.mmu.slbia(vcpu);
1498
1499 for (i = 0; i < 64; i++) {
1500 u64 rb = sregs->u.s.ppc64.slb[i].slbe;
1501 u64 rs = sregs->u.s.ppc64.slb[i].slbv;
1502
1503 if (rb & SLB_ESID_V)
1504 vcpu->arch.mmu.slbmte(vcpu, rs, rb);
1505 }
1506 } else
1507 #endif
1508 {
1509 for (i = 0; i < 16; i++) {
1510 vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
1511 }
1512 for (i = 0; i < 8; i++) {
1513 kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
1514 (u32)sregs->u.s.ppc32.ibat[i]);
1515 kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
1516 (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
1517 kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
1518 (u32)sregs->u.s.ppc32.dbat[i]);
1519 kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
1520 (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
1521 }
1522 }
1523
1524 /* Flush the MMU after messing with the segments */
1525 kvmppc_mmu_pte_flush(vcpu, 0, 0);
1526
1527 return 0;
1528 }
1529
kvmppc_get_one_reg_pr(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)1530 static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1531 union kvmppc_one_reg *val)
1532 {
1533 int r = 0;
1534
1535 switch (id) {
1536 case KVM_REG_PPC_DEBUG_INST:
1537 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1538 break;
1539 case KVM_REG_PPC_HIOR:
1540 *val = get_reg_val(id, to_book3s(vcpu)->hior);
1541 break;
1542 case KVM_REG_PPC_VTB:
1543 *val = get_reg_val(id, to_book3s(vcpu)->vtb);
1544 break;
1545 case KVM_REG_PPC_LPCR:
1546 case KVM_REG_PPC_LPCR_64:
1547 /*
1548 * We are only interested in the LPCR_ILE bit
1549 */
1550 if (vcpu->arch.intr_msr & MSR_LE)
1551 *val = get_reg_val(id, LPCR_ILE);
1552 else
1553 *val = get_reg_val(id, 0);
1554 break;
1555 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1556 case KVM_REG_PPC_TFHAR:
1557 *val = get_reg_val(id, vcpu->arch.tfhar);
1558 break;
1559 case KVM_REG_PPC_TFIAR:
1560 *val = get_reg_val(id, vcpu->arch.tfiar);
1561 break;
1562 case KVM_REG_PPC_TEXASR:
1563 *val = get_reg_val(id, vcpu->arch.texasr);
1564 break;
1565 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1566 *val = get_reg_val(id,
1567 vcpu->arch.gpr_tm[id-KVM_REG_PPC_TM_GPR0]);
1568 break;
1569 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1570 {
1571 int i, j;
1572
1573 i = id - KVM_REG_PPC_TM_VSR0;
1574 if (i < 32)
1575 for (j = 0; j < TS_FPRWIDTH; j++)
1576 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1577 else {
1578 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1579 val->vval = vcpu->arch.vr_tm.vr[i-32];
1580 else
1581 r = -ENXIO;
1582 }
1583 break;
1584 }
1585 case KVM_REG_PPC_TM_CR:
1586 *val = get_reg_val(id, vcpu->arch.cr_tm);
1587 break;
1588 case KVM_REG_PPC_TM_XER:
1589 *val = get_reg_val(id, vcpu->arch.xer_tm);
1590 break;
1591 case KVM_REG_PPC_TM_LR:
1592 *val = get_reg_val(id, vcpu->arch.lr_tm);
1593 break;
1594 case KVM_REG_PPC_TM_CTR:
1595 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1596 break;
1597 case KVM_REG_PPC_TM_FPSCR:
1598 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1599 break;
1600 case KVM_REG_PPC_TM_AMR:
1601 *val = get_reg_val(id, vcpu->arch.amr_tm);
1602 break;
1603 case KVM_REG_PPC_TM_PPR:
1604 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1605 break;
1606 case KVM_REG_PPC_TM_VRSAVE:
1607 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1608 break;
1609 case KVM_REG_PPC_TM_VSCR:
1610 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1611 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1612 else
1613 r = -ENXIO;
1614 break;
1615 case KVM_REG_PPC_TM_DSCR:
1616 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1617 break;
1618 case KVM_REG_PPC_TM_TAR:
1619 *val = get_reg_val(id, vcpu->arch.tar_tm);
1620 break;
1621 #endif
1622 default:
1623 r = -EINVAL;
1624 break;
1625 }
1626
1627 return r;
1628 }
1629
kvmppc_set_lpcr_pr(struct kvm_vcpu * vcpu,u64 new_lpcr)1630 static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
1631 {
1632 if (new_lpcr & LPCR_ILE)
1633 vcpu->arch.intr_msr |= MSR_LE;
1634 else
1635 vcpu->arch.intr_msr &= ~MSR_LE;
1636 }
1637
kvmppc_set_one_reg_pr(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)1638 static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1639 union kvmppc_one_reg *val)
1640 {
1641 int r = 0;
1642
1643 switch (id) {
1644 case KVM_REG_PPC_HIOR:
1645 to_book3s(vcpu)->hior = set_reg_val(id, *val);
1646 to_book3s(vcpu)->hior_explicit = true;
1647 break;
1648 case KVM_REG_PPC_VTB:
1649 to_book3s(vcpu)->vtb = set_reg_val(id, *val);
1650 break;
1651 case KVM_REG_PPC_LPCR:
1652 case KVM_REG_PPC_LPCR_64:
1653 kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
1654 break;
1655 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1656 case KVM_REG_PPC_TFHAR:
1657 vcpu->arch.tfhar = set_reg_val(id, *val);
1658 break;
1659 case KVM_REG_PPC_TFIAR:
1660 vcpu->arch.tfiar = set_reg_val(id, *val);
1661 break;
1662 case KVM_REG_PPC_TEXASR:
1663 vcpu->arch.texasr = set_reg_val(id, *val);
1664 break;
1665 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1666 vcpu->arch.gpr_tm[id - KVM_REG_PPC_TM_GPR0] =
1667 set_reg_val(id, *val);
1668 break;
1669 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1670 {
1671 int i, j;
1672
1673 i = id - KVM_REG_PPC_TM_VSR0;
1674 if (i < 32)
1675 for (j = 0; j < TS_FPRWIDTH; j++)
1676 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1677 else
1678 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1679 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1680 else
1681 r = -ENXIO;
1682 break;
1683 }
1684 case KVM_REG_PPC_TM_CR:
1685 vcpu->arch.cr_tm = set_reg_val(id, *val);
1686 break;
1687 case KVM_REG_PPC_TM_XER:
1688 vcpu->arch.xer_tm = set_reg_val(id, *val);
1689 break;
1690 case KVM_REG_PPC_TM_LR:
1691 vcpu->arch.lr_tm = set_reg_val(id, *val);
1692 break;
1693 case KVM_REG_PPC_TM_CTR:
1694 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1695 break;
1696 case KVM_REG_PPC_TM_FPSCR:
1697 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1698 break;
1699 case KVM_REG_PPC_TM_AMR:
1700 vcpu->arch.amr_tm = set_reg_val(id, *val);
1701 break;
1702 case KVM_REG_PPC_TM_PPR:
1703 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1704 break;
1705 case KVM_REG_PPC_TM_VRSAVE:
1706 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1707 break;
1708 case KVM_REG_PPC_TM_VSCR:
1709 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1710 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1711 else
1712 r = -ENXIO;
1713 break;
1714 case KVM_REG_PPC_TM_DSCR:
1715 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1716 break;
1717 case KVM_REG_PPC_TM_TAR:
1718 vcpu->arch.tar_tm = set_reg_val(id, *val);
1719 break;
1720 #endif
1721 default:
1722 r = -EINVAL;
1723 break;
1724 }
1725
1726 return r;
1727 }
1728
kvmppc_core_vcpu_create_pr(struct kvm_vcpu * vcpu)1729 static int kvmppc_core_vcpu_create_pr(struct kvm_vcpu *vcpu)
1730 {
1731 struct kvmppc_vcpu_book3s *vcpu_book3s;
1732 unsigned long p;
1733 int err;
1734
1735 err = -ENOMEM;
1736
1737 vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
1738 if (!vcpu_book3s)
1739 goto out;
1740 vcpu->arch.book3s = vcpu_book3s;
1741
1742 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1743 vcpu->arch.shadow_vcpu =
1744 kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
1745 if (!vcpu->arch.shadow_vcpu)
1746 goto free_vcpu3s;
1747 #endif
1748
1749 p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
1750 if (!p)
1751 goto free_shadow_vcpu;
1752 vcpu->arch.shared = (void *)p;
1753 #ifdef CONFIG_PPC_BOOK3S_64
1754 /* Always start the shared struct in native endian mode */
1755 #ifdef __BIG_ENDIAN__
1756 vcpu->arch.shared_big_endian = true;
1757 #else
1758 vcpu->arch.shared_big_endian = false;
1759 #endif
1760
1761 /*
1762 * Default to the same as the host if we're on sufficiently
1763 * recent machine that we have 1TB segments;
1764 * otherwise default to PPC970FX.
1765 */
1766 vcpu->arch.pvr = 0x3C0301;
1767 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1768 vcpu->arch.pvr = mfspr(SPRN_PVR);
1769 vcpu->arch.intr_msr = MSR_SF;
1770 #else
1771 /* default to book3s_32 (750) */
1772 vcpu->arch.pvr = 0x84202;
1773 vcpu->arch.intr_msr = 0;
1774 #endif
1775 kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1776 vcpu->arch.slb_nr = 64;
1777
1778 vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
1779
1780 err = kvmppc_mmu_init_pr(vcpu);
1781 if (err < 0)
1782 goto free_shared_page;
1783
1784 return 0;
1785
1786 free_shared_page:
1787 free_page((unsigned long)vcpu->arch.shared);
1788 free_shadow_vcpu:
1789 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1790 kfree(vcpu->arch.shadow_vcpu);
1791 free_vcpu3s:
1792 #endif
1793 vfree(vcpu_book3s);
1794 out:
1795 return err;
1796 }
1797
kvmppc_core_vcpu_free_pr(struct kvm_vcpu * vcpu)1798 static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1799 {
1800 struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
1801
1802 kvmppc_mmu_destroy_pr(vcpu);
1803 free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
1804 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1805 kfree(vcpu->arch.shadow_vcpu);
1806 #endif
1807 vfree(vcpu_book3s);
1808 }
1809
kvmppc_vcpu_run_pr(struct kvm_vcpu * vcpu)1810 static int kvmppc_vcpu_run_pr(struct kvm_vcpu *vcpu)
1811 {
1812 int ret;
1813
1814 /* Check if we can run the vcpu at all */
1815 if (!vcpu->arch.sane) {
1816 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1817 ret = -EINVAL;
1818 goto out;
1819 }
1820
1821 kvmppc_setup_debug(vcpu);
1822
1823 /*
1824 * Interrupts could be timers for the guest which we have to inject
1825 * again, so let's postpone them until we're in the guest and if we
1826 * really did time things so badly, then we just exit again due to
1827 * a host external interrupt.
1828 */
1829 ret = kvmppc_prepare_to_enter(vcpu);
1830 if (ret <= 0)
1831 goto out;
1832 /* interrupts now hard-disabled */
1833
1834 /* Save FPU, Altivec and VSX state */
1835 giveup_all(current);
1836
1837 /* Preload FPU if it's enabled */
1838 if (kvmppc_get_msr(vcpu) & MSR_FP)
1839 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
1840
1841 kvmppc_fix_ee_before_entry();
1842
1843 ret = __kvmppc_vcpu_run(vcpu);
1844
1845 kvmppc_clear_debug(vcpu);
1846
1847 /* No need for guest_exit. It's done in handle_exit.
1848 We also get here with interrupts enabled. */
1849
1850 /* Make sure we save the guest FPU/Altivec/VSX state */
1851 kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
1852
1853 /* Make sure we save the guest TAR/EBB/DSCR state */
1854 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1855
1856 srr_regs_clobbered();
1857 out:
1858 vcpu->mode = OUTSIDE_GUEST_MODE;
1859 return ret;
1860 }
1861
1862 /*
1863 * Get (and clear) the dirty memory log for a memory slot.
1864 */
kvm_vm_ioctl_get_dirty_log_pr(struct kvm * kvm,struct kvm_dirty_log * log)1865 static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
1866 struct kvm_dirty_log *log)
1867 {
1868 struct kvm_memory_slot *memslot;
1869 struct kvm_vcpu *vcpu;
1870 ulong ga, ga_end;
1871 int is_dirty = 0;
1872 int r;
1873 unsigned long n;
1874
1875 mutex_lock(&kvm->slots_lock);
1876
1877 r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot);
1878 if (r)
1879 goto out;
1880
1881 /* If nothing is dirty, don't bother messing with page tables. */
1882 if (is_dirty) {
1883 ga = memslot->base_gfn << PAGE_SHIFT;
1884 ga_end = ga + (memslot->npages << PAGE_SHIFT);
1885
1886 kvm_for_each_vcpu(n, vcpu, kvm)
1887 kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
1888
1889 n = kvm_dirty_bitmap_bytes(memslot);
1890 memset(memslot->dirty_bitmap, 0, n);
1891 }
1892
1893 r = 0;
1894 out:
1895 mutex_unlock(&kvm->slots_lock);
1896 return r;
1897 }
1898
kvmppc_core_flush_memslot_pr(struct kvm * kvm,struct kvm_memory_slot * memslot)1899 static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
1900 struct kvm_memory_slot *memslot)
1901 {
1902 return;
1903 }
1904
kvmppc_core_prepare_memory_region_pr(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)1905 static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
1906 const struct kvm_memory_slot *old,
1907 struct kvm_memory_slot *new,
1908 enum kvm_mr_change change)
1909 {
1910 return 0;
1911 }
1912
kvmppc_core_commit_memory_region_pr(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)1913 static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
1914 struct kvm_memory_slot *old,
1915 const struct kvm_memory_slot *new,
1916 enum kvm_mr_change change)
1917 {
1918 return;
1919 }
1920
kvmppc_core_free_memslot_pr(struct kvm_memory_slot * slot)1921 static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *slot)
1922 {
1923 return;
1924 }
1925
1926 #ifdef CONFIG_PPC64
kvm_vm_ioctl_get_smmu_info_pr(struct kvm * kvm,struct kvm_ppc_smmu_info * info)1927 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1928 struct kvm_ppc_smmu_info *info)
1929 {
1930 long int i;
1931 struct kvm_vcpu *vcpu;
1932
1933 info->flags = 0;
1934
1935 /* SLB is always 64 entries */
1936 info->slb_size = 64;
1937
1938 /* Standard 4k base page size segment */
1939 info->sps[0].page_shift = 12;
1940 info->sps[0].slb_enc = 0;
1941 info->sps[0].enc[0].page_shift = 12;
1942 info->sps[0].enc[0].pte_enc = 0;
1943
1944 /*
1945 * 64k large page size.
1946 * We only want to put this in if the CPUs we're emulating
1947 * support it, but unfortunately we don't have a vcpu easily
1948 * to hand here to test. Just pick the first vcpu, and if
1949 * that doesn't exist yet, report the minimum capability,
1950 * i.e., no 64k pages.
1951 * 1T segment support goes along with 64k pages.
1952 */
1953 i = 1;
1954 vcpu = kvm_get_vcpu(kvm, 0);
1955 if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
1956 info->flags = KVM_PPC_1T_SEGMENTS;
1957 info->sps[i].page_shift = 16;
1958 info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
1959 info->sps[i].enc[0].page_shift = 16;
1960 info->sps[i].enc[0].pte_enc = 1;
1961 ++i;
1962 }
1963
1964 /* Standard 16M large page size segment */
1965 info->sps[i].page_shift = 24;
1966 info->sps[i].slb_enc = SLB_VSID_L;
1967 info->sps[i].enc[0].page_shift = 24;
1968 info->sps[i].enc[0].pte_enc = 0;
1969
1970 return 0;
1971 }
1972
kvm_configure_mmu_pr(struct kvm * kvm,struct kvm_ppc_mmuv3_cfg * cfg)1973 static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
1974 {
1975 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1976 return -ENODEV;
1977 /* Require flags and process table base and size to all be zero. */
1978 if (cfg->flags || cfg->process_table)
1979 return -EINVAL;
1980 return 0;
1981 }
1982
1983 #else
kvm_vm_ioctl_get_smmu_info_pr(struct kvm * kvm,struct kvm_ppc_smmu_info * info)1984 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1985 struct kvm_ppc_smmu_info *info)
1986 {
1987 /* We should not get called */
1988 BUG();
1989 return 0;
1990 }
1991 #endif /* CONFIG_PPC64 */
1992
1993 static unsigned int kvm_global_user_count = 0;
1994 static DEFINE_SPINLOCK(kvm_global_user_count_lock);
1995
kvmppc_core_init_vm_pr(struct kvm * kvm)1996 static int kvmppc_core_init_vm_pr(struct kvm *kvm)
1997 {
1998 mutex_init(&kvm->arch.hpt_mutex);
1999
2000 #ifdef CONFIG_PPC_BOOK3S_64
2001 /* Start out with the default set of hcalls enabled */
2002 kvmppc_pr_init_default_hcalls(kvm);
2003 #endif
2004
2005 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2006 spin_lock(&kvm_global_user_count_lock);
2007 if (++kvm_global_user_count == 1)
2008 pseries_disable_reloc_on_exc();
2009 spin_unlock(&kvm_global_user_count_lock);
2010 }
2011 return 0;
2012 }
2013
kvmppc_core_destroy_vm_pr(struct kvm * kvm)2014 static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
2015 {
2016 #ifdef CONFIG_PPC64
2017 WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
2018 #endif
2019
2020 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2021 spin_lock(&kvm_global_user_count_lock);
2022 BUG_ON(kvm_global_user_count == 0);
2023 if (--kvm_global_user_count == 0)
2024 pseries_enable_reloc_on_exc();
2025 spin_unlock(&kvm_global_user_count_lock);
2026 }
2027 }
2028
kvmppc_core_check_processor_compat_pr(void)2029 static int kvmppc_core_check_processor_compat_pr(void)
2030 {
2031 /*
2032 * PR KVM can work on POWER9 inside a guest partition
2033 * running in HPT mode. It can't work if we are using
2034 * radix translation (because radix provides no way for
2035 * a process to have unique translations in quadrant 3).
2036 */
2037 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
2038 return -EIO;
2039 return 0;
2040 }
2041
kvm_arch_vm_ioctl_pr(struct file * filp,unsigned int ioctl,unsigned long arg)2042 static int kvm_arch_vm_ioctl_pr(struct file *filp,
2043 unsigned int ioctl, unsigned long arg)
2044 {
2045 return -ENOTTY;
2046 }
2047
2048 static struct kvmppc_ops kvm_ops_pr = {
2049 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
2050 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
2051 .get_one_reg = kvmppc_get_one_reg_pr,
2052 .set_one_reg = kvmppc_set_one_reg_pr,
2053 .vcpu_load = kvmppc_core_vcpu_load_pr,
2054 .vcpu_put = kvmppc_core_vcpu_put_pr,
2055 .inject_interrupt = kvmppc_inject_interrupt_pr,
2056 .set_msr = kvmppc_set_msr_pr,
2057 .vcpu_run = kvmppc_vcpu_run_pr,
2058 .vcpu_create = kvmppc_core_vcpu_create_pr,
2059 .vcpu_free = kvmppc_core_vcpu_free_pr,
2060 .check_requests = kvmppc_core_check_requests_pr,
2061 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
2062 .flush_memslot = kvmppc_core_flush_memslot_pr,
2063 .prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
2064 .commit_memory_region = kvmppc_core_commit_memory_region_pr,
2065 .unmap_gfn_range = kvm_unmap_gfn_range_pr,
2066 .age_gfn = kvm_age_gfn_pr,
2067 .test_age_gfn = kvm_test_age_gfn_pr,
2068 .free_memslot = kvmppc_core_free_memslot_pr,
2069 .init_vm = kvmppc_core_init_vm_pr,
2070 .destroy_vm = kvmppc_core_destroy_vm_pr,
2071 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
2072 .emulate_op = kvmppc_core_emulate_op_pr,
2073 .emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
2074 .emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
2075 .fast_vcpu_kick = kvm_vcpu_kick,
2076 .arch_vm_ioctl = kvm_arch_vm_ioctl_pr,
2077 #ifdef CONFIG_PPC_BOOK3S_64
2078 .hcall_implemented = kvmppc_hcall_impl_pr,
2079 .configure_mmu = kvm_configure_mmu_pr,
2080 #endif
2081 .giveup_ext = kvmppc_giveup_ext,
2082 };
2083
2084
kvmppc_book3s_init_pr(void)2085 int kvmppc_book3s_init_pr(void)
2086 {
2087 int r;
2088
2089 r = kvmppc_core_check_processor_compat_pr();
2090 if (r < 0)
2091 return r;
2092
2093 kvm_ops_pr.owner = THIS_MODULE;
2094 kvmppc_pr_ops = &kvm_ops_pr;
2095
2096 r = kvmppc_mmu_hpte_sysinit();
2097 return r;
2098 }
2099
kvmppc_book3s_exit_pr(void)2100 void kvmppc_book3s_exit_pr(void)
2101 {
2102 kvmppc_pr_ops = NULL;
2103 kvmppc_mmu_hpte_sysexit();
2104 }
2105
2106 /*
2107 * We only support separate modules for book3s 64
2108 */
2109 #ifdef CONFIG_PPC_BOOK3S_64
2110
2111 module_init(kvmppc_book3s_init_pr);
2112 module_exit(kvmppc_book3s_exit_pr);
2113
2114 MODULE_DESCRIPTION("KVM on Book3S without using hypervisor mode");
2115 MODULE_LICENSE("GPL");
2116 MODULE_ALIAS_MISCDEV(KVM_MINOR);
2117 MODULE_ALIAS("devname:kvm");
2118 #endif
2119