xref: /linux/arch/x86/kvm/x86.c (revision 3349e275067f94ffb4141989aed9cbae7409429b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36 
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
65 
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
68 
69 #include <asm/debugreg.h>
70 #include <asm/msr.h>
71 #include <asm/desc.h>
72 #include <asm/mce.h>
73 #include <asm/pkru.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
86 #include <asm/sgx.h>
87 #include <clocksource/hyperv_timer.h>
88 
89 #define CREATE_TRACE_POINTS
90 #include "trace.h"
91 
92 #define MAX_IO_MSRS 256
93 
94 /*
95  * Note, kvm_caps fields should *never* have default values, all fields must be
96  * recomputed from scratch during vendor module load, e.g. to account for a
97  * vendor module being reloaded with different module parameters.
98  */
99 struct kvm_caps kvm_caps __read_mostly;
100 EXPORT_SYMBOL_GPL(kvm_caps);
101 
102 struct kvm_host_values kvm_host __read_mostly;
103 EXPORT_SYMBOL_GPL(kvm_host);
104 
105 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
106 
107 #define emul_to_vcpu(ctxt) \
108 	((struct kvm_vcpu *)(ctxt)->vcpu)
109 
110 /* EFER defaults:
111  * - enable syscall per default because its emulated by KVM
112  * - enable LME and LMA per default on 64 bit KVM
113  */
114 #ifdef CONFIG_X86_64
115 static
116 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
117 #else
118 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
119 #endif
120 
121 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
122 
123 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
124 
125 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
126                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
127 
128 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
129 static void process_nmi(struct kvm_vcpu *vcpu);
130 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
131 static void store_regs(struct kvm_vcpu *vcpu);
132 static int sync_regs(struct kvm_vcpu *vcpu);
133 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
134 
135 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
136 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
137 
138 static DEFINE_MUTEX(vendor_module_lock);
139 struct kvm_x86_ops kvm_x86_ops __read_mostly;
140 
141 #define KVM_X86_OP(func)					     \
142 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
143 				*(((struct kvm_x86_ops *)0)->func));
144 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
145 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
146 #include <asm/kvm-x86-ops.h>
147 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
148 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
149 
150 static bool __read_mostly ignore_msrs = 0;
151 module_param(ignore_msrs, bool, 0644);
152 
153 bool __read_mostly report_ignored_msrs = true;
154 module_param(report_ignored_msrs, bool, 0644);
155 EXPORT_SYMBOL_GPL(report_ignored_msrs);
156 
157 unsigned int min_timer_period_us = 200;
158 module_param(min_timer_period_us, uint, 0644);
159 
160 static bool __read_mostly kvmclock_periodic_sync = true;
161 module_param(kvmclock_periodic_sync, bool, 0444);
162 
163 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
164 static u32 __read_mostly tsc_tolerance_ppm = 250;
165 module_param(tsc_tolerance_ppm, uint, 0644);
166 
167 static bool __read_mostly vector_hashing = true;
168 module_param(vector_hashing, bool, 0444);
169 
170 bool __read_mostly enable_vmware_backdoor = false;
171 module_param(enable_vmware_backdoor, bool, 0444);
172 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
173 
174 /*
175  * Flags to manipulate forced emulation behavior (any non-zero value will
176  * enable forced emulation).
177  */
178 #define KVM_FEP_CLEAR_RFLAGS_RF	BIT(1)
179 static int __read_mostly force_emulation_prefix;
180 module_param(force_emulation_prefix, int, 0644);
181 
182 int __read_mostly pi_inject_timer = -1;
183 module_param(pi_inject_timer, bint, 0644);
184 
185 /* Enable/disable PMU virtualization */
186 bool __read_mostly enable_pmu = true;
187 EXPORT_SYMBOL_GPL(enable_pmu);
188 module_param(enable_pmu, bool, 0444);
189 
190 bool __read_mostly eager_page_split = true;
191 module_param(eager_page_split, bool, 0644);
192 
193 /* Enable/disable SMT_RSB bug mitigation */
194 static bool __read_mostly mitigate_smt_rsb;
195 module_param(mitigate_smt_rsb, bool, 0444);
196 
197 /*
198  * Restoring the host value for MSRs that are only consumed when running in
199  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
200  * returns to userspace, i.e. the kernel can run with the guest's value.
201  */
202 #define KVM_MAX_NR_USER_RETURN_MSRS 16
203 
204 struct kvm_user_return_msrs {
205 	struct user_return_notifier urn;
206 	bool registered;
207 	struct kvm_user_return_msr_values {
208 		u64 host;
209 		u64 curr;
210 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
211 };
212 
213 u32 __read_mostly kvm_nr_uret_msrs;
214 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
215 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
216 static struct kvm_user_return_msrs __percpu *user_return_msrs;
217 
218 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
219 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
220 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
221 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
222 
223 bool __read_mostly allow_smaller_maxphyaddr = 0;
224 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
225 
226 bool __read_mostly enable_apicv = true;
227 EXPORT_SYMBOL_GPL(enable_apicv);
228 
229 bool __read_mostly enable_device_posted_irqs = true;
230 EXPORT_SYMBOL_GPL(enable_device_posted_irqs);
231 
232 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
233 	KVM_GENERIC_VM_STATS(),
234 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
235 	STATS_DESC_COUNTER(VM, mmu_pte_write),
236 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
237 	STATS_DESC_COUNTER(VM, mmu_flooded),
238 	STATS_DESC_COUNTER(VM, mmu_recycled),
239 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
240 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
241 	STATS_DESC_ICOUNTER(VM, pages_4k),
242 	STATS_DESC_ICOUNTER(VM, pages_2m),
243 	STATS_DESC_ICOUNTER(VM, pages_1g),
244 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
245 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
246 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
247 };
248 
249 const struct kvm_stats_header kvm_vm_stats_header = {
250 	.name_size = KVM_STATS_NAME_SIZE,
251 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
252 	.id_offset = sizeof(struct kvm_stats_header),
253 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
254 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
255 		       sizeof(kvm_vm_stats_desc),
256 };
257 
258 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
259 	KVM_GENERIC_VCPU_STATS(),
260 	STATS_DESC_COUNTER(VCPU, pf_taken),
261 	STATS_DESC_COUNTER(VCPU, pf_fixed),
262 	STATS_DESC_COUNTER(VCPU, pf_emulate),
263 	STATS_DESC_COUNTER(VCPU, pf_spurious),
264 	STATS_DESC_COUNTER(VCPU, pf_fast),
265 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
266 	STATS_DESC_COUNTER(VCPU, pf_guest),
267 	STATS_DESC_COUNTER(VCPU, tlb_flush),
268 	STATS_DESC_COUNTER(VCPU, invlpg),
269 	STATS_DESC_COUNTER(VCPU, exits),
270 	STATS_DESC_COUNTER(VCPU, io_exits),
271 	STATS_DESC_COUNTER(VCPU, mmio_exits),
272 	STATS_DESC_COUNTER(VCPU, signal_exits),
273 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
274 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
275 	STATS_DESC_COUNTER(VCPU, l1d_flush),
276 	STATS_DESC_COUNTER(VCPU, halt_exits),
277 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
278 	STATS_DESC_COUNTER(VCPU, irq_exits),
279 	STATS_DESC_COUNTER(VCPU, host_state_reload),
280 	STATS_DESC_COUNTER(VCPU, fpu_reload),
281 	STATS_DESC_COUNTER(VCPU, insn_emulation),
282 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
283 	STATS_DESC_COUNTER(VCPU, hypercalls),
284 	STATS_DESC_COUNTER(VCPU, irq_injections),
285 	STATS_DESC_COUNTER(VCPU, nmi_injections),
286 	STATS_DESC_COUNTER(VCPU, req_event),
287 	STATS_DESC_COUNTER(VCPU, nested_run),
288 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
289 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
290 	STATS_DESC_COUNTER(VCPU, preemption_reported),
291 	STATS_DESC_COUNTER(VCPU, preemption_other),
292 	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
293 	STATS_DESC_COUNTER(VCPU, notify_window_exits),
294 };
295 
296 const struct kvm_stats_header kvm_vcpu_stats_header = {
297 	.name_size = KVM_STATS_NAME_SIZE,
298 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
299 	.id_offset = sizeof(struct kvm_stats_header),
300 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
301 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
302 		       sizeof(kvm_vcpu_stats_desc),
303 };
304 
305 static struct kmem_cache *x86_emulator_cache;
306 
307 /*
308  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
309  * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
310  * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.  msrs_to_save holds MSRs that
311  * require host support, i.e. should be probed via RDMSR.  emulated_msrs holds
312  * MSRs that KVM emulates without strictly requiring host support.
313  * msr_based_features holds MSRs that enumerate features, i.e. are effectively
314  * CPUID leafs.  Note, msr_based_features isn't mutually exclusive with
315  * msrs_to_save and emulated_msrs.
316  */
317 
318 static const u32 msrs_to_save_base[] = {
319 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
320 	MSR_STAR,
321 #ifdef CONFIG_X86_64
322 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
323 #endif
324 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
325 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
326 	MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
327 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
328 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
329 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
330 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
331 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
332 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
333 	MSR_IA32_UMWAIT_CONTROL,
334 
335 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
336 };
337 
338 static const u32 msrs_to_save_pmu[] = {
339 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
340 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
341 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
342 	MSR_CORE_PERF_GLOBAL_CTRL,
343 	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
344 
345 	/* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */
346 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
347 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
348 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
349 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
350 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
351 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
352 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
353 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
354 
355 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
356 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
357 
358 	/* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */
359 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
360 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
361 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
362 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
363 
364 	MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
365 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
366 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
367 };
368 
369 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
370 			ARRAY_SIZE(msrs_to_save_pmu)];
371 static unsigned num_msrs_to_save;
372 
373 static const u32 emulated_msrs_all[] = {
374 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
375 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
376 
377 #ifdef CONFIG_KVM_HYPERV
378 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
379 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
380 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
381 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
382 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
383 	HV_X64_MSR_RESET,
384 	HV_X64_MSR_VP_INDEX,
385 	HV_X64_MSR_VP_RUNTIME,
386 	HV_X64_MSR_SCONTROL,
387 	HV_X64_MSR_STIMER0_CONFIG,
388 	HV_X64_MSR_VP_ASSIST_PAGE,
389 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
390 	HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
391 	HV_X64_MSR_SYNDBG_OPTIONS,
392 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
393 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
394 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
395 #endif
396 
397 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
398 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
399 
400 	MSR_IA32_TSC_ADJUST,
401 	MSR_IA32_TSC_DEADLINE,
402 	MSR_IA32_ARCH_CAPABILITIES,
403 	MSR_IA32_PERF_CAPABILITIES,
404 	MSR_IA32_MISC_ENABLE,
405 	MSR_IA32_MCG_STATUS,
406 	MSR_IA32_MCG_CTL,
407 	MSR_IA32_MCG_EXT_CTL,
408 	MSR_IA32_SMBASE,
409 	MSR_SMI_COUNT,
410 	MSR_PLATFORM_INFO,
411 	MSR_MISC_FEATURES_ENABLES,
412 	MSR_AMD64_VIRT_SPEC_CTRL,
413 	MSR_AMD64_TSC_RATIO,
414 	MSR_IA32_POWER_CTL,
415 	MSR_IA32_UCODE_REV,
416 
417 	/*
418 	 * KVM always supports the "true" VMX control MSRs, even if the host
419 	 * does not.  The VMX MSRs as a whole are considered "emulated" as KVM
420 	 * doesn't strictly require them to exist in the host (ignoring that
421 	 * KVM would refuse to load in the first place if the core set of MSRs
422 	 * aren't supported).
423 	 */
424 	MSR_IA32_VMX_BASIC,
425 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
426 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
427 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
428 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
429 	MSR_IA32_VMX_MISC,
430 	MSR_IA32_VMX_CR0_FIXED0,
431 	MSR_IA32_VMX_CR4_FIXED0,
432 	MSR_IA32_VMX_VMCS_ENUM,
433 	MSR_IA32_VMX_PROCBASED_CTLS2,
434 	MSR_IA32_VMX_EPT_VPID_CAP,
435 	MSR_IA32_VMX_VMFUNC,
436 
437 	MSR_K7_HWCR,
438 	MSR_KVM_POLL_CONTROL,
439 };
440 
441 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
442 static unsigned num_emulated_msrs;
443 
444 /*
445  * List of MSRs that control the existence of MSR-based features, i.e. MSRs
446  * that are effectively CPUID leafs.  VMX MSRs are also included in the set of
447  * feature MSRs, but are handled separately to allow expedited lookups.
448  */
449 static const u32 msr_based_features_all_except_vmx[] = {
450 	MSR_AMD64_DE_CFG,
451 	MSR_IA32_UCODE_REV,
452 	MSR_IA32_ARCH_CAPABILITIES,
453 	MSR_IA32_PERF_CAPABILITIES,
454 	MSR_PLATFORM_INFO,
455 };
456 
457 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
458 			      (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
459 static unsigned int num_msr_based_features;
460 
461 /*
462  * All feature MSRs except uCode revID, which tracks the currently loaded uCode
463  * patch, are immutable once the vCPU model is defined.
464  */
kvm_is_immutable_feature_msr(u32 msr)465 static bool kvm_is_immutable_feature_msr(u32 msr)
466 {
467 	int i;
468 
469 	if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
470 		return true;
471 
472 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
473 		if (msr == msr_based_features_all_except_vmx[i])
474 			return msr != MSR_IA32_UCODE_REV;
475 	}
476 
477 	return false;
478 }
479 
kvm_is_advertised_msr(u32 msr_index)480 static bool kvm_is_advertised_msr(u32 msr_index)
481 {
482 	unsigned int i;
483 
484 	for (i = 0; i < num_msrs_to_save; i++) {
485 		if (msrs_to_save[i] == msr_index)
486 			return true;
487 	}
488 
489 	for (i = 0; i < num_emulated_msrs; i++) {
490 		if (emulated_msrs[i] == msr_index)
491 			return true;
492 	}
493 
494 	return false;
495 }
496 
497 typedef int (*msr_access_t)(struct kvm_vcpu *vcpu, u32 index, u64 *data,
498 			    bool host_initiated);
499 
kvm_do_msr_access(struct kvm_vcpu * vcpu,u32 msr,u64 * data,bool host_initiated,enum kvm_msr_access rw,msr_access_t msr_access_fn)500 static __always_inline int kvm_do_msr_access(struct kvm_vcpu *vcpu, u32 msr,
501 					     u64 *data, bool host_initiated,
502 					     enum kvm_msr_access rw,
503 					     msr_access_t msr_access_fn)
504 {
505 	const char *op = rw == MSR_TYPE_W ? "wrmsr" : "rdmsr";
506 	int ret;
507 
508 	BUILD_BUG_ON(rw != MSR_TYPE_R && rw != MSR_TYPE_W);
509 
510 	/*
511 	 * Zero the data on read failures to avoid leaking stack data to the
512 	 * guest and/or userspace, e.g. if the failure is ignored below.
513 	 */
514 	ret = msr_access_fn(vcpu, msr, data, host_initiated);
515 	if (ret && rw == MSR_TYPE_R)
516 		*data = 0;
517 
518 	if (ret != KVM_MSR_RET_UNSUPPORTED)
519 		return ret;
520 
521 	/*
522 	 * Userspace is allowed to read MSRs, and write '0' to MSRs, that KVM
523 	 * advertises to userspace, even if an MSR isn't fully supported.
524 	 * Simply check that @data is '0', which covers both the write '0' case
525 	 * and all reads (in which case @data is zeroed on failure; see above).
526 	 */
527 	if (host_initiated && !*data && kvm_is_advertised_msr(msr))
528 		return 0;
529 
530 	if (!ignore_msrs) {
531 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
532 				      op, msr, *data);
533 		return ret;
534 	}
535 
536 	if (report_ignored_msrs)
537 		kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", op, msr, *data);
538 
539 	return 0;
540 }
541 
kvm_alloc_emulator_cache(void)542 static struct kmem_cache *kvm_alloc_emulator_cache(void)
543 {
544 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
545 	unsigned int size = sizeof(struct x86_emulate_ctxt);
546 
547 	return kmem_cache_create_usercopy("x86_emulator", size,
548 					  __alignof__(struct x86_emulate_ctxt),
549 					  SLAB_ACCOUNT, useroffset,
550 					  size - useroffset, NULL);
551 }
552 
553 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
554 
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)555 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
556 {
557 	int i;
558 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
559 		vcpu->arch.apf.gfns[i] = ~0;
560 }
561 
kvm_on_user_return(struct user_return_notifier * urn)562 static void kvm_on_user_return(struct user_return_notifier *urn)
563 {
564 	unsigned slot;
565 	struct kvm_user_return_msrs *msrs
566 		= container_of(urn, struct kvm_user_return_msrs, urn);
567 	struct kvm_user_return_msr_values *values;
568 	unsigned long flags;
569 
570 	/*
571 	 * Disabling irqs at this point since the following code could be
572 	 * interrupted and executed through kvm_arch_disable_virtualization_cpu()
573 	 */
574 	local_irq_save(flags);
575 	if (msrs->registered) {
576 		msrs->registered = false;
577 		user_return_notifier_unregister(urn);
578 	}
579 	local_irq_restore(flags);
580 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
581 		values = &msrs->values[slot];
582 		if (values->host != values->curr) {
583 			wrmsrq(kvm_uret_msrs_list[slot], values->host);
584 			values->curr = values->host;
585 		}
586 	}
587 }
588 
kvm_probe_user_return_msr(u32 msr)589 static int kvm_probe_user_return_msr(u32 msr)
590 {
591 	u64 val;
592 	int ret;
593 
594 	preempt_disable();
595 	ret = rdmsrq_safe(msr, &val);
596 	if (ret)
597 		goto out;
598 	ret = wrmsrq_safe(msr, val);
599 out:
600 	preempt_enable();
601 	return ret;
602 }
603 
kvm_add_user_return_msr(u32 msr)604 int kvm_add_user_return_msr(u32 msr)
605 {
606 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
607 
608 	if (kvm_probe_user_return_msr(msr))
609 		return -1;
610 
611 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
612 	return kvm_nr_uret_msrs++;
613 }
614 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
615 
kvm_find_user_return_msr(u32 msr)616 int kvm_find_user_return_msr(u32 msr)
617 {
618 	int i;
619 
620 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
621 		if (kvm_uret_msrs_list[i] == msr)
622 			return i;
623 	}
624 	return -1;
625 }
626 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
627 
kvm_user_return_msr_cpu_online(void)628 static void kvm_user_return_msr_cpu_online(void)
629 {
630 	struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
631 	u64 value;
632 	int i;
633 
634 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
635 		rdmsrq_safe(kvm_uret_msrs_list[i], &value);
636 		msrs->values[i].host = value;
637 		msrs->values[i].curr = value;
638 	}
639 }
640 
kvm_user_return_register_notifier(struct kvm_user_return_msrs * msrs)641 static void kvm_user_return_register_notifier(struct kvm_user_return_msrs *msrs)
642 {
643 	if (!msrs->registered) {
644 		msrs->urn.on_user_return = kvm_on_user_return;
645 		user_return_notifier_register(&msrs->urn);
646 		msrs->registered = true;
647 	}
648 }
649 
kvm_set_user_return_msr(unsigned slot,u64 value,u64 mask)650 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
651 {
652 	struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
653 	int err;
654 
655 	value = (value & mask) | (msrs->values[slot].host & ~mask);
656 	if (value == msrs->values[slot].curr)
657 		return 0;
658 	err = wrmsrq_safe(kvm_uret_msrs_list[slot], value);
659 	if (err)
660 		return 1;
661 
662 	msrs->values[slot].curr = value;
663 	kvm_user_return_register_notifier(msrs);
664 	return 0;
665 }
666 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
667 
kvm_user_return_msr_update_cache(unsigned int slot,u64 value)668 void kvm_user_return_msr_update_cache(unsigned int slot, u64 value)
669 {
670 	struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
671 
672 	msrs->values[slot].curr = value;
673 	kvm_user_return_register_notifier(msrs);
674 }
675 EXPORT_SYMBOL_GPL(kvm_user_return_msr_update_cache);
676 
drop_user_return_notifiers(void)677 static void drop_user_return_notifiers(void)
678 {
679 	struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
680 
681 	if (msrs->registered)
682 		kvm_on_user_return(&msrs->urn);
683 }
684 
685 /*
686  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
687  *
688  * Hardware virtualization extension instructions may fault if a reboot turns
689  * off virtualization while processes are running.  Usually after catching the
690  * fault we just panic; during reboot instead the instruction is ignored.
691  */
kvm_spurious_fault(void)692 noinstr void kvm_spurious_fault(void)
693 {
694 	/* Fault while not rebooting.  We want the trace. */
695 	BUG_ON(!kvm_rebooting);
696 }
697 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
698 
699 #define EXCPT_BENIGN		0
700 #define EXCPT_CONTRIBUTORY	1
701 #define EXCPT_PF		2
702 
exception_class(int vector)703 static int exception_class(int vector)
704 {
705 	switch (vector) {
706 	case PF_VECTOR:
707 		return EXCPT_PF;
708 	case DE_VECTOR:
709 	case TS_VECTOR:
710 	case NP_VECTOR:
711 	case SS_VECTOR:
712 	case GP_VECTOR:
713 		return EXCPT_CONTRIBUTORY;
714 	default:
715 		break;
716 	}
717 	return EXCPT_BENIGN;
718 }
719 
720 #define EXCPT_FAULT		0
721 #define EXCPT_TRAP		1
722 #define EXCPT_ABORT		2
723 #define EXCPT_INTERRUPT		3
724 #define EXCPT_DB		4
725 
exception_type(int vector)726 static int exception_type(int vector)
727 {
728 	unsigned int mask;
729 
730 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
731 		return EXCPT_INTERRUPT;
732 
733 	mask = 1 << vector;
734 
735 	/*
736 	 * #DBs can be trap-like or fault-like, the caller must check other CPU
737 	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
738 	 */
739 	if (mask & (1 << DB_VECTOR))
740 		return EXCPT_DB;
741 
742 	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
743 		return EXCPT_TRAP;
744 
745 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
746 		return EXCPT_ABORT;
747 
748 	/* Reserved exceptions will result in fault */
749 	return EXCPT_FAULT;
750 }
751 
kvm_deliver_exception_payload(struct kvm_vcpu * vcpu,struct kvm_queued_exception * ex)752 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
753 				   struct kvm_queued_exception *ex)
754 {
755 	if (!ex->has_payload)
756 		return;
757 
758 	switch (ex->vector) {
759 	case DB_VECTOR:
760 		/*
761 		 * "Certain debug exceptions may clear bit 0-3.  The
762 		 * remaining contents of the DR6 register are never
763 		 * cleared by the processor".
764 		 */
765 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
766 		/*
767 		 * In order to reflect the #DB exception payload in guest
768 		 * dr6, three components need to be considered: active low
769 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
770 		 * DR6_BS and DR6_BT)
771 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
772 		 * In the target guest dr6:
773 		 * FIXED_1 bits should always be set.
774 		 * Active low bits should be cleared if 1-setting in payload.
775 		 * Active high bits should be set if 1-setting in payload.
776 		 *
777 		 * Note, the payload is compatible with the pending debug
778 		 * exceptions/exit qualification under VMX, that active_low bits
779 		 * are active high in payload.
780 		 * So they need to be flipped for DR6.
781 		 */
782 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
783 		vcpu->arch.dr6 |= ex->payload;
784 		vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
785 
786 		/*
787 		 * The #DB payload is defined as compatible with the 'pending
788 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
789 		 * defined in the 'pending debug exceptions' field (enabled
790 		 * breakpoint), it is reserved and must be zero in DR6.
791 		 */
792 		vcpu->arch.dr6 &= ~BIT(12);
793 		break;
794 	case PF_VECTOR:
795 		vcpu->arch.cr2 = ex->payload;
796 		break;
797 	}
798 
799 	ex->has_payload = false;
800 	ex->payload = 0;
801 }
802 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
803 
kvm_queue_exception_vmexit(struct kvm_vcpu * vcpu,unsigned int vector,bool has_error_code,u32 error_code,bool has_payload,unsigned long payload)804 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
805 				       bool has_error_code, u32 error_code,
806 				       bool has_payload, unsigned long payload)
807 {
808 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
809 
810 	ex->vector = vector;
811 	ex->injected = false;
812 	ex->pending = true;
813 	ex->has_error_code = has_error_code;
814 	ex->error_code = error_code;
815 	ex->has_payload = has_payload;
816 	ex->payload = payload;
817 }
818 
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned int nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload)819 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, unsigned int nr,
820 				   bool has_error, u32 error_code,
821 				   bool has_payload, unsigned long payload)
822 {
823 	u32 prev_nr;
824 	int class1, class2;
825 
826 	kvm_make_request(KVM_REQ_EVENT, vcpu);
827 
828 	/*
829 	 * If the exception is destined for L2, morph it to a VM-Exit if L1
830 	 * wants to intercept the exception.
831 	 */
832 	if (is_guest_mode(vcpu) &&
833 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
834 		kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
835 					   has_payload, payload);
836 		return;
837 	}
838 
839 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
840 	queue:
841 		vcpu->arch.exception.pending = true;
842 		vcpu->arch.exception.injected = false;
843 
844 		vcpu->arch.exception.has_error_code = has_error;
845 		vcpu->arch.exception.vector = nr;
846 		vcpu->arch.exception.error_code = error_code;
847 		vcpu->arch.exception.has_payload = has_payload;
848 		vcpu->arch.exception.payload = payload;
849 		if (!is_guest_mode(vcpu))
850 			kvm_deliver_exception_payload(vcpu,
851 						      &vcpu->arch.exception);
852 		return;
853 	}
854 
855 	/* to check exception */
856 	prev_nr = vcpu->arch.exception.vector;
857 	if (prev_nr == DF_VECTOR) {
858 		/* triple fault -> shutdown */
859 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
860 		return;
861 	}
862 	class1 = exception_class(prev_nr);
863 	class2 = exception_class(nr);
864 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
865 	    (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
866 		/*
867 		 * Synthesize #DF.  Clear the previously injected or pending
868 		 * exception so as not to incorrectly trigger shutdown.
869 		 */
870 		vcpu->arch.exception.injected = false;
871 		vcpu->arch.exception.pending = false;
872 
873 		kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
874 	} else {
875 		/* replace previous exception with a new one in a hope
876 		   that instruction re-execution will regenerate lost
877 		   exception */
878 		goto queue;
879 	}
880 }
881 
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)882 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
883 {
884 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0);
885 }
886 EXPORT_SYMBOL_GPL(kvm_queue_exception);
887 
888 
kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)889 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
890 			   unsigned long payload)
891 {
892 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload);
893 }
894 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
895 
kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)896 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
897 				    u32 error_code, unsigned long payload)
898 {
899 	kvm_multiple_exception(vcpu, nr, true, error_code, true, payload);
900 }
901 
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned int nr,bool has_error_code,u32 error_code)902 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr,
903 			   bool has_error_code, u32 error_code)
904 {
905 
906 	/*
907 	 * On VM-Entry, an exception can be pending if and only if event
908 	 * injection was blocked by nested_run_pending.  In that case, however,
909 	 * vcpu_enter_guest() requests an immediate exit, and the guest
910 	 * shouldn't proceed far enough to need reinjection.
911 	 */
912 	WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
913 
914 	/*
915 	 * Do not check for interception when injecting an event for L2, as the
916 	 * exception was checked for intercept when it was original queued, and
917 	 * re-checking is incorrect if _L1_ injected the exception, in which
918 	 * case it's exempt from interception.
919 	 */
920 	kvm_make_request(KVM_REQ_EVENT, vcpu);
921 
922 	vcpu->arch.exception.injected = true;
923 	vcpu->arch.exception.has_error_code = has_error_code;
924 	vcpu->arch.exception.vector = nr;
925 	vcpu->arch.exception.error_code = error_code;
926 	vcpu->arch.exception.has_payload = false;
927 	vcpu->arch.exception.payload = 0;
928 }
929 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
930 
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)931 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
932 {
933 	if (err)
934 		kvm_inject_gp(vcpu, 0);
935 	else
936 		return kvm_skip_emulated_instruction(vcpu);
937 
938 	return 1;
939 }
940 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
941 
complete_emulated_insn_gp(struct kvm_vcpu * vcpu,int err)942 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
943 {
944 	if (err) {
945 		kvm_inject_gp(vcpu, 0);
946 		return 1;
947 	}
948 
949 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
950 				       EMULTYPE_COMPLETE_USER_EXIT);
951 }
952 
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)953 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
954 {
955 	++vcpu->stat.pf_guest;
956 
957 	/*
958 	 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
959 	 * whether or not L1 wants to intercept "regular" #PF.
960 	 */
961 	if (is_guest_mode(vcpu) && fault->async_page_fault)
962 		kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
963 					   true, fault->error_code,
964 					   true, fault->address);
965 	else
966 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
967 					fault->address);
968 }
969 
kvm_inject_emulated_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)970 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
971 				    struct x86_exception *fault)
972 {
973 	struct kvm_mmu *fault_mmu;
974 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
975 
976 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
977 					       vcpu->arch.walk_mmu;
978 
979 	/*
980 	 * Invalidate the TLB entry for the faulting address, if it exists,
981 	 * else the access will fault indefinitely (and to emulate hardware).
982 	 */
983 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
984 	    !(fault->error_code & PFERR_RSVD_MASK))
985 		kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
986 					KVM_MMU_ROOT_CURRENT);
987 
988 	fault_mmu->inject_page_fault(vcpu, fault);
989 }
990 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
991 
kvm_inject_nmi(struct kvm_vcpu * vcpu)992 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
993 {
994 	atomic_inc(&vcpu->arch.nmi_queued);
995 	kvm_make_request(KVM_REQ_NMI, vcpu);
996 }
997 
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)998 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
999 {
1000 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0);
1001 }
1002 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
1003 
1004 /*
1005  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
1006  * a #GP and return false.
1007  */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)1008 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
1009 {
1010 	if (kvm_x86_call(get_cpl)(vcpu) <= required_cpl)
1011 		return true;
1012 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
1013 	return false;
1014 }
1015 
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)1016 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
1017 {
1018 	if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
1019 		return true;
1020 
1021 	kvm_queue_exception(vcpu, UD_VECTOR);
1022 	return false;
1023 }
1024 EXPORT_SYMBOL_GPL(kvm_require_dr);
1025 
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)1026 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
1027 {
1028 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
1029 }
1030 
1031 /*
1032  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
1033  */
load_pdptrs(struct kvm_vcpu * vcpu,unsigned long cr3)1034 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
1035 {
1036 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
1037 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
1038 	gpa_t real_gpa;
1039 	int i;
1040 	int ret;
1041 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
1042 
1043 	/*
1044 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
1045 	 * to an L1 GPA.
1046 	 */
1047 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
1048 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
1049 	if (real_gpa == INVALID_GPA)
1050 		return 0;
1051 
1052 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
1053 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
1054 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
1055 	if (ret < 0)
1056 		return 0;
1057 
1058 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
1059 		if ((pdpte[i] & PT_PRESENT_MASK) &&
1060 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
1061 			return 0;
1062 		}
1063 	}
1064 
1065 	/*
1066 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
1067 	 * Shadow page roots need to be reconstructed instead.
1068 	 */
1069 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
1070 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
1071 
1072 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
1073 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
1074 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
1075 	vcpu->arch.pdptrs_from_userspace = false;
1076 
1077 	return 1;
1078 }
1079 EXPORT_SYMBOL_GPL(load_pdptrs);
1080 
kvm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1081 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1082 {
1083 #ifdef CONFIG_X86_64
1084 	if (cr0 & 0xffffffff00000000UL)
1085 		return false;
1086 #endif
1087 
1088 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
1089 		return false;
1090 
1091 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
1092 		return false;
1093 
1094 	return kvm_x86_call(is_valid_cr0)(vcpu, cr0);
1095 }
1096 
kvm_post_set_cr0(struct kvm_vcpu * vcpu,unsigned long old_cr0,unsigned long cr0)1097 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
1098 {
1099 	/*
1100 	 * CR0.WP is incorporated into the MMU role, but only for non-nested,
1101 	 * indirect shadow MMUs.  If paging is disabled, no updates are needed
1102 	 * as there are no permission bits to emulate.  If TDP is enabled, the
1103 	 * MMU's metadata needs to be updated, e.g. so that emulating guest
1104 	 * translations does the right thing, but there's no need to unload the
1105 	 * root as CR0.WP doesn't affect SPTEs.
1106 	 */
1107 	if ((cr0 ^ old_cr0) == X86_CR0_WP) {
1108 		if (!(cr0 & X86_CR0_PG))
1109 			return;
1110 
1111 		if (tdp_enabled) {
1112 			kvm_init_mmu(vcpu);
1113 			return;
1114 		}
1115 	}
1116 
1117 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
1118 		kvm_clear_async_pf_completion_queue(vcpu);
1119 		kvm_async_pf_hash_reset(vcpu);
1120 
1121 		/*
1122 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
1123 		 * perspective.
1124 		 */
1125 		if (!(cr0 & X86_CR0_PG))
1126 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1127 	}
1128 
1129 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
1130 		kvm_mmu_reset_context(vcpu);
1131 }
1132 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
1133 
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1134 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1135 {
1136 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
1137 
1138 	if (!kvm_is_valid_cr0(vcpu, cr0))
1139 		return 1;
1140 
1141 	cr0 |= X86_CR0_ET;
1142 
1143 	/* Write to CR0 reserved bits are ignored, even on Intel. */
1144 	cr0 &= ~CR0_RESERVED_BITS;
1145 
1146 #ifdef CONFIG_X86_64
1147 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
1148 	    (cr0 & X86_CR0_PG)) {
1149 		int cs_db, cs_l;
1150 
1151 		if (!is_pae(vcpu))
1152 			return 1;
1153 		kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
1154 		if (cs_l)
1155 			return 1;
1156 	}
1157 #endif
1158 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
1159 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
1160 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1161 		return 1;
1162 
1163 	if (!(cr0 & X86_CR0_PG) &&
1164 	    (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1165 		return 1;
1166 
1167 	kvm_x86_call(set_cr0)(vcpu, cr0);
1168 
1169 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
1170 
1171 	return 0;
1172 }
1173 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1174 
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)1175 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1176 {
1177 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1178 }
1179 EXPORT_SYMBOL_GPL(kvm_lmsw);
1180 
kvm_load_guest_xsave_state(struct kvm_vcpu * vcpu)1181 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1182 {
1183 	if (vcpu->arch.guest_state_protected)
1184 		return;
1185 
1186 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1187 
1188 		if (vcpu->arch.xcr0 != kvm_host.xcr0)
1189 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1190 
1191 		if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) &&
1192 		    vcpu->arch.ia32_xss != kvm_host.xss)
1193 			wrmsrq(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1194 	}
1195 
1196 	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1197 	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
1198 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1199 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1200 		wrpkru(vcpu->arch.pkru);
1201 }
1202 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1203 
kvm_load_host_xsave_state(struct kvm_vcpu * vcpu)1204 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1205 {
1206 	if (vcpu->arch.guest_state_protected)
1207 		return;
1208 
1209 	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1210 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1211 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1212 		vcpu->arch.pkru = rdpkru();
1213 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1214 			wrpkru(vcpu->arch.host_pkru);
1215 	}
1216 
1217 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1218 
1219 		if (vcpu->arch.xcr0 != kvm_host.xcr0)
1220 			xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0);
1221 
1222 		if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) &&
1223 		    vcpu->arch.ia32_xss != kvm_host.xss)
1224 			wrmsrq(MSR_IA32_XSS, kvm_host.xss);
1225 	}
1226 
1227 }
1228 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1229 
1230 #ifdef CONFIG_X86_64
kvm_guest_supported_xfd(struct kvm_vcpu * vcpu)1231 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1232 {
1233 	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1234 }
1235 #endif
1236 
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)1237 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1238 {
1239 	u64 xcr0 = xcr;
1240 	u64 old_xcr0 = vcpu->arch.xcr0;
1241 	u64 valid_bits;
1242 
1243 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1244 	if (index != XCR_XFEATURE_ENABLED_MASK)
1245 		return 1;
1246 	if (!(xcr0 & XFEATURE_MASK_FP))
1247 		return 1;
1248 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1249 		return 1;
1250 
1251 	/*
1252 	 * Do not allow the guest to set bits that we do not support
1253 	 * saving.  However, xcr0 bit 0 is always set, even if the
1254 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1255 	 */
1256 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1257 	if (xcr0 & ~valid_bits)
1258 		return 1;
1259 
1260 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1261 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1262 		return 1;
1263 
1264 	if (xcr0 & XFEATURE_MASK_AVX512) {
1265 		if (!(xcr0 & XFEATURE_MASK_YMM))
1266 			return 1;
1267 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1268 			return 1;
1269 	}
1270 
1271 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1272 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1273 		return 1;
1274 
1275 	vcpu->arch.xcr0 = xcr0;
1276 
1277 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1278 		vcpu->arch.cpuid_dynamic_bits_dirty = true;
1279 	return 0;
1280 }
1281 
kvm_emulate_xsetbv(struct kvm_vcpu * vcpu)1282 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1283 {
1284 	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1285 	if (kvm_x86_call(get_cpl)(vcpu) != 0 ||
1286 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1287 		kvm_inject_gp(vcpu, 0);
1288 		return 1;
1289 	}
1290 
1291 	return kvm_skip_emulated_instruction(vcpu);
1292 }
1293 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1294 
kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1295 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1296 {
1297 	return __kvm_is_valid_cr4(vcpu, cr4) &&
1298 	       kvm_x86_call(is_valid_cr4)(vcpu, cr4);
1299 }
1300 
kvm_post_set_cr4(struct kvm_vcpu * vcpu,unsigned long old_cr4,unsigned long cr4)1301 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1302 {
1303 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1304 		kvm_mmu_reset_context(vcpu);
1305 
1306 	/*
1307 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1308 	 * according to the SDM; however, stale prev_roots could be reused
1309 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1310 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1311 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1312 	 * so fall through.
1313 	 */
1314 	if (!tdp_enabled &&
1315 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1316 		kvm_mmu_unload(vcpu);
1317 
1318 	/*
1319 	 * The TLB has to be flushed for all PCIDs if any of the following
1320 	 * (architecturally required) changes happen:
1321 	 * - CR4.PCIDE is changed from 1 to 0
1322 	 * - CR4.PGE is toggled
1323 	 *
1324 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1325 	 */
1326 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1327 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1328 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1329 
1330 	/*
1331 	 * The TLB has to be flushed for the current PCID if any of the
1332 	 * following (architecturally required) changes happen:
1333 	 * - CR4.SMEP is changed from 0 to 1
1334 	 * - CR4.PAE is toggled
1335 	 */
1336 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1337 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1338 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1339 
1340 }
1341 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1342 
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1343 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1344 {
1345 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1346 
1347 	if (!kvm_is_valid_cr4(vcpu, cr4))
1348 		return 1;
1349 
1350 	if (is_long_mode(vcpu)) {
1351 		if (!(cr4 & X86_CR4_PAE))
1352 			return 1;
1353 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1354 			return 1;
1355 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1356 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1357 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1358 		return 1;
1359 
1360 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1361 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1362 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1363 			return 1;
1364 	}
1365 
1366 	kvm_x86_call(set_cr4)(vcpu, cr4);
1367 
1368 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1369 
1370 	return 0;
1371 }
1372 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1373 
kvm_invalidate_pcid(struct kvm_vcpu * vcpu,unsigned long pcid)1374 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1375 {
1376 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1377 	unsigned long roots_to_free = 0;
1378 	int i;
1379 
1380 	/*
1381 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1382 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1383 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1384 	 * the invalidation, but the guest's TLB entries need to be flushed as
1385 	 * the CPU may have cached entries in its TLB for the target PCID.
1386 	 */
1387 	if (unlikely(tdp_enabled)) {
1388 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1389 		return;
1390 	}
1391 
1392 	/*
1393 	 * If neither the current CR3 nor any of the prev_roots use the given
1394 	 * PCID, then nothing needs to be done here because a resync will
1395 	 * happen anyway before switching to any other CR3.
1396 	 */
1397 	if (kvm_get_active_pcid(vcpu) == pcid) {
1398 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1399 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1400 	}
1401 
1402 	/*
1403 	 * If PCID is disabled, there is no need to free prev_roots even if the
1404 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1405 	 * with PCIDE=0.
1406 	 */
1407 	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1408 		return;
1409 
1410 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1411 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1412 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1413 
1414 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1415 }
1416 
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1417 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1418 {
1419 	bool skip_tlb_flush = false;
1420 	unsigned long pcid = 0;
1421 #ifdef CONFIG_X86_64
1422 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1423 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1424 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1425 		pcid = cr3 & X86_CR3_PCID_MASK;
1426 	}
1427 #endif
1428 
1429 	/* PDPTRs are always reloaded for PAE paging. */
1430 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1431 		goto handle_tlb_flush;
1432 
1433 	/*
1434 	 * Do not condition the GPA check on long mode, this helper is used to
1435 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1436 	 * the current vCPU mode is accurate.
1437 	 */
1438 	if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1439 		return 1;
1440 
1441 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1442 		return 1;
1443 
1444 	if (cr3 != kvm_read_cr3(vcpu))
1445 		kvm_mmu_new_pgd(vcpu, cr3);
1446 
1447 	vcpu->arch.cr3 = cr3;
1448 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1449 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1450 
1451 handle_tlb_flush:
1452 	/*
1453 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1454 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1455 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1456 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1457 	 * i.e. only PCID=0 can be relevant.
1458 	 */
1459 	if (!skip_tlb_flush)
1460 		kvm_invalidate_pcid(vcpu, pcid);
1461 
1462 	return 0;
1463 }
1464 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1465 
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)1466 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1467 {
1468 	if (cr8 & CR8_RESERVED_BITS)
1469 		return 1;
1470 	if (lapic_in_kernel(vcpu))
1471 		kvm_lapic_set_tpr(vcpu, cr8);
1472 	else
1473 		vcpu->arch.cr8 = cr8;
1474 	return 0;
1475 }
1476 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1477 
kvm_get_cr8(struct kvm_vcpu * vcpu)1478 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1479 {
1480 	if (lapic_in_kernel(vcpu))
1481 		return kvm_lapic_get_cr8(vcpu);
1482 	else
1483 		return vcpu->arch.cr8;
1484 }
1485 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1486 
kvm_update_dr0123(struct kvm_vcpu * vcpu)1487 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1488 {
1489 	int i;
1490 
1491 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1492 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1493 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1494 	}
1495 }
1496 
kvm_update_dr7(struct kvm_vcpu * vcpu)1497 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1498 {
1499 	unsigned long dr7;
1500 
1501 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1502 		dr7 = vcpu->arch.guest_debug_dr7;
1503 	else
1504 		dr7 = vcpu->arch.dr7;
1505 	kvm_x86_call(set_dr7)(vcpu, dr7);
1506 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1507 	if (dr7 & DR7_BP_EN_MASK)
1508 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1509 }
1510 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1511 
kvm_dr6_fixed(struct kvm_vcpu * vcpu)1512 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1513 {
1514 	u64 fixed = DR6_FIXED_1;
1515 
1516 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_RTM))
1517 		fixed |= DR6_RTM;
1518 
1519 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1520 		fixed |= DR6_BUS_LOCK;
1521 	return fixed;
1522 }
1523 
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1524 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1525 {
1526 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1527 
1528 	switch (dr) {
1529 	case 0 ... 3:
1530 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1531 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1532 			vcpu->arch.eff_db[dr] = val;
1533 		break;
1534 	case 4:
1535 	case 6:
1536 		if (!kvm_dr6_valid(val))
1537 			return 1; /* #GP */
1538 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1539 		break;
1540 	case 5:
1541 	default: /* 7 */
1542 		if (!kvm_dr7_valid(val))
1543 			return 1; /* #GP */
1544 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1545 		kvm_update_dr7(vcpu);
1546 		break;
1547 	}
1548 
1549 	return 0;
1550 }
1551 EXPORT_SYMBOL_GPL(kvm_set_dr);
1552 
kvm_get_dr(struct kvm_vcpu * vcpu,int dr)1553 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr)
1554 {
1555 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1556 
1557 	switch (dr) {
1558 	case 0 ... 3:
1559 		return vcpu->arch.db[array_index_nospec(dr, size)];
1560 	case 4:
1561 	case 6:
1562 		return vcpu->arch.dr6;
1563 	case 5:
1564 	default: /* 7 */
1565 		return vcpu->arch.dr7;
1566 	}
1567 }
1568 EXPORT_SYMBOL_GPL(kvm_get_dr);
1569 
kvm_emulate_rdpmc(struct kvm_vcpu * vcpu)1570 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1571 {
1572 	u32 ecx = kvm_rcx_read(vcpu);
1573 	u64 data;
1574 
1575 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1576 		kvm_inject_gp(vcpu, 0);
1577 		return 1;
1578 	}
1579 
1580 	kvm_rax_write(vcpu, (u32)data);
1581 	kvm_rdx_write(vcpu, data >> 32);
1582 	return kvm_skip_emulated_instruction(vcpu);
1583 }
1584 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1585 
1586 /*
1587  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1588  * does not yet virtualize. These include:
1589  *   10 - MISC_PACKAGE_CTRLS
1590  *   11 - ENERGY_FILTERING_CTL
1591  *   12 - DOITM
1592  *   18 - FB_CLEAR_CTRL
1593  *   21 - XAPIC_DISABLE_STATUS
1594  *   23 - OVERCLOCKING_STATUS
1595  */
1596 
1597 #define KVM_SUPPORTED_ARCH_CAP \
1598 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1599 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1600 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1601 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1602 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1603 	 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO | ARCH_CAP_ITS_NO)
1604 
kvm_get_arch_capabilities(void)1605 static u64 kvm_get_arch_capabilities(void)
1606 {
1607 	u64 data = kvm_host.arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1608 
1609 	/*
1610 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1611 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1612 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1613 	 * L1 guests, so it need not worry about its own (L2) guests.
1614 	 */
1615 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1616 
1617 	/*
1618 	 * If we're doing cache flushes (either "always" or "cond")
1619 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1620 	 * If an outer hypervisor is doing the cache flush for us
1621 	 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1622 	 * capability to the guest too, and if EPT is disabled we're not
1623 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1624 	 * require a nested hypervisor to do a flush of its own.
1625 	 */
1626 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1627 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1628 
1629 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1630 		data |= ARCH_CAP_RDCL_NO;
1631 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1632 		data |= ARCH_CAP_SSB_NO;
1633 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1634 		data |= ARCH_CAP_MDS_NO;
1635 	if (!boot_cpu_has_bug(X86_BUG_RFDS))
1636 		data |= ARCH_CAP_RFDS_NO;
1637 	if (!boot_cpu_has_bug(X86_BUG_ITS))
1638 		data |= ARCH_CAP_ITS_NO;
1639 
1640 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1641 		/*
1642 		 * If RTM=0 because the kernel has disabled TSX, the host might
1643 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1644 		 * and therefore knows that there cannot be TAA) but keep
1645 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1646 		 * and we want to allow migrating those guests to tsx=off hosts.
1647 		 */
1648 		data &= ~ARCH_CAP_TAA_NO;
1649 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1650 		data |= ARCH_CAP_TAA_NO;
1651 	} else {
1652 		/*
1653 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1654 		 * host so the guest can choose between disabling TSX or
1655 		 * using VERW to clear CPU buffers.
1656 		 */
1657 	}
1658 
1659 	if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1660 		data |= ARCH_CAP_GDS_NO;
1661 
1662 	return data;
1663 }
1664 
kvm_get_feature_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1665 static int kvm_get_feature_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1666 			       bool host_initiated)
1667 {
1668 	WARN_ON_ONCE(!host_initiated);
1669 
1670 	switch (index) {
1671 	case MSR_IA32_ARCH_CAPABILITIES:
1672 		*data = kvm_get_arch_capabilities();
1673 		break;
1674 	case MSR_IA32_PERF_CAPABILITIES:
1675 		*data = kvm_caps.supported_perf_cap;
1676 		break;
1677 	case MSR_PLATFORM_INFO:
1678 		*data = MSR_PLATFORM_INFO_CPUID_FAULT;
1679 		break;
1680 	case MSR_IA32_UCODE_REV:
1681 		rdmsrq_safe(index, data);
1682 		break;
1683 	default:
1684 		return kvm_x86_call(get_feature_msr)(index, data);
1685 	}
1686 	return 0;
1687 }
1688 
do_get_feature_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1689 static int do_get_feature_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1690 {
1691 	return kvm_do_msr_access(vcpu, index, data, true, MSR_TYPE_R,
1692 				 kvm_get_feature_msr);
1693 }
1694 
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1695 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1696 {
1697 	if (efer & EFER_AUTOIBRS && !guest_cpu_cap_has(vcpu, X86_FEATURE_AUTOIBRS))
1698 		return false;
1699 
1700 	if (efer & EFER_FFXSR && !guest_cpu_cap_has(vcpu, X86_FEATURE_FXSR_OPT))
1701 		return false;
1702 
1703 	if (efer & EFER_SVME && !guest_cpu_cap_has(vcpu, X86_FEATURE_SVM))
1704 		return false;
1705 
1706 	if (efer & (EFER_LME | EFER_LMA) &&
1707 	    !guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
1708 		return false;
1709 
1710 	if (efer & EFER_NX && !guest_cpu_cap_has(vcpu, X86_FEATURE_NX))
1711 		return false;
1712 
1713 	return true;
1714 
1715 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1716 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1717 {
1718 	if (efer & efer_reserved_bits)
1719 		return false;
1720 
1721 	return __kvm_valid_efer(vcpu, efer);
1722 }
1723 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1724 
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1725 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1726 {
1727 	u64 old_efer = vcpu->arch.efer;
1728 	u64 efer = msr_info->data;
1729 	int r;
1730 
1731 	if (efer & efer_reserved_bits)
1732 		return 1;
1733 
1734 	if (!msr_info->host_initiated) {
1735 		if (!__kvm_valid_efer(vcpu, efer))
1736 			return 1;
1737 
1738 		if (is_paging(vcpu) &&
1739 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1740 			return 1;
1741 	}
1742 
1743 	efer &= ~EFER_LMA;
1744 	efer |= vcpu->arch.efer & EFER_LMA;
1745 
1746 	r = kvm_x86_call(set_efer)(vcpu, efer);
1747 	if (r) {
1748 		WARN_ON(r > 0);
1749 		return r;
1750 	}
1751 
1752 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1753 		kvm_mmu_reset_context(vcpu);
1754 
1755 	if (!static_cpu_has(X86_FEATURE_XSAVES) &&
1756 	    (efer & EFER_SVME))
1757 		kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1758 
1759 	return 0;
1760 }
1761 
kvm_enable_efer_bits(u64 mask)1762 void kvm_enable_efer_bits(u64 mask)
1763 {
1764        efer_reserved_bits &= ~mask;
1765 }
1766 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1767 
kvm_msr_allowed(struct kvm_vcpu * vcpu,u32 index,u32 type)1768 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1769 {
1770 	struct kvm_x86_msr_filter *msr_filter;
1771 	struct msr_bitmap_range *ranges;
1772 	struct kvm *kvm = vcpu->kvm;
1773 	bool allowed;
1774 	int idx;
1775 	u32 i;
1776 
1777 	/* x2APIC MSRs do not support filtering. */
1778 	if (index >= 0x800 && index <= 0x8ff)
1779 		return true;
1780 
1781 	idx = srcu_read_lock(&kvm->srcu);
1782 
1783 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1784 	if (!msr_filter) {
1785 		allowed = true;
1786 		goto out;
1787 	}
1788 
1789 	allowed = msr_filter->default_allow;
1790 	ranges = msr_filter->ranges;
1791 
1792 	for (i = 0; i < msr_filter->count; i++) {
1793 		u32 start = ranges[i].base;
1794 		u32 end = start + ranges[i].nmsrs;
1795 		u32 flags = ranges[i].flags;
1796 		unsigned long *bitmap = ranges[i].bitmap;
1797 
1798 		if ((index >= start) && (index < end) && (flags & type)) {
1799 			allowed = test_bit(index - start, bitmap);
1800 			break;
1801 		}
1802 	}
1803 
1804 out:
1805 	srcu_read_unlock(&kvm->srcu, idx);
1806 
1807 	return allowed;
1808 }
1809 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1810 
1811 /*
1812  * Write @data into the MSR specified by @index.  Select MSR specific fault
1813  * checks are bypassed if @host_initiated is %true.
1814  * Returns 0 on success, non-0 otherwise.
1815  * Assumes vcpu_load() was already called.
1816  */
__kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1817 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1818 			 bool host_initiated)
1819 {
1820 	struct msr_data msr;
1821 
1822 	switch (index) {
1823 	case MSR_FS_BASE:
1824 	case MSR_GS_BASE:
1825 	case MSR_KERNEL_GS_BASE:
1826 	case MSR_CSTAR:
1827 	case MSR_LSTAR:
1828 		if (is_noncanonical_msr_address(data, vcpu))
1829 			return 1;
1830 		break;
1831 	case MSR_IA32_SYSENTER_EIP:
1832 	case MSR_IA32_SYSENTER_ESP:
1833 		/*
1834 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1835 		 * non-canonical address is written on Intel but not on
1836 		 * AMD (which ignores the top 32-bits, because it does
1837 		 * not implement 64-bit SYSENTER).
1838 		 *
1839 		 * 64-bit code should hence be able to write a non-canonical
1840 		 * value on AMD.  Making the address canonical ensures that
1841 		 * vmentry does not fail on Intel after writing a non-canonical
1842 		 * value, and that something deterministic happens if the guest
1843 		 * invokes 64-bit SYSENTER.
1844 		 */
1845 		data = __canonical_address(data, max_host_virt_addr_bits());
1846 		break;
1847 	case MSR_TSC_AUX:
1848 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1849 			return 1;
1850 
1851 		if (!host_initiated &&
1852 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
1853 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID))
1854 			return 1;
1855 
1856 		/*
1857 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1858 		 * incomplete and conflicting architectural behavior.  Current
1859 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1860 		 * reserved and always read as zeros.  Enforce Intel's reserved
1861 		 * bits check if the guest CPU is Intel compatible, otherwise
1862 		 * clear the bits.  This ensures cross-vendor migration will
1863 		 * provide consistent behavior for the guest.
1864 		 */
1865 		if (guest_cpuid_is_intel_compatible(vcpu) && (data >> 32) != 0)
1866 			return 1;
1867 
1868 		data = (u32)data;
1869 		break;
1870 	}
1871 
1872 	msr.data = data;
1873 	msr.index = index;
1874 	msr.host_initiated = host_initiated;
1875 
1876 	return kvm_x86_call(set_msr)(vcpu, &msr);
1877 }
1878 
_kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1879 static int _kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1880 			bool host_initiated)
1881 {
1882 	return __kvm_set_msr(vcpu, index, *data, host_initiated);
1883 }
1884 
kvm_set_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1885 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1886 				     u32 index, u64 data, bool host_initiated)
1887 {
1888 	return kvm_do_msr_access(vcpu, index, &data, host_initiated, MSR_TYPE_W,
1889 				 _kvm_set_msr);
1890 }
1891 
1892 /*
1893  * Read the MSR specified by @index into @data.  Select MSR specific fault
1894  * checks are bypassed if @host_initiated is %true.
1895  * Returns 0 on success, non-0 otherwise.
1896  * Assumes vcpu_load() was already called.
1897  */
__kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1898 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1899 		  bool host_initiated)
1900 {
1901 	struct msr_data msr;
1902 	int ret;
1903 
1904 	switch (index) {
1905 	case MSR_TSC_AUX:
1906 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1907 			return 1;
1908 
1909 		if (!host_initiated &&
1910 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
1911 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID))
1912 			return 1;
1913 		break;
1914 	}
1915 
1916 	msr.index = index;
1917 	msr.host_initiated = host_initiated;
1918 
1919 	ret = kvm_x86_call(get_msr)(vcpu, &msr);
1920 	if (!ret)
1921 		*data = msr.data;
1922 	return ret;
1923 }
1924 
kvm_get_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1925 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1926 				     u32 index, u64 *data, bool host_initiated)
1927 {
1928 	return kvm_do_msr_access(vcpu, index, data, host_initiated, MSR_TYPE_R,
1929 				 __kvm_get_msr);
1930 }
1931 
kvm_get_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 * data)1932 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1933 {
1934 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1935 		return KVM_MSR_RET_FILTERED;
1936 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1937 }
1938 EXPORT_SYMBOL_GPL(kvm_get_msr_with_filter);
1939 
kvm_set_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 data)1940 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1941 {
1942 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1943 		return KVM_MSR_RET_FILTERED;
1944 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1945 }
1946 EXPORT_SYMBOL_GPL(kvm_set_msr_with_filter);
1947 
kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data)1948 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1949 {
1950 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1951 }
1952 EXPORT_SYMBOL_GPL(kvm_get_msr);
1953 
kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data)1954 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1955 {
1956 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1957 }
1958 EXPORT_SYMBOL_GPL(kvm_set_msr);
1959 
complete_userspace_rdmsr(struct kvm_vcpu * vcpu)1960 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1961 {
1962 	if (!vcpu->run->msr.error) {
1963 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1964 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1965 	}
1966 }
1967 
complete_emulated_msr_access(struct kvm_vcpu * vcpu)1968 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1969 {
1970 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1971 }
1972 
complete_emulated_rdmsr(struct kvm_vcpu * vcpu)1973 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1974 {
1975 	complete_userspace_rdmsr(vcpu);
1976 	return complete_emulated_msr_access(vcpu);
1977 }
1978 
complete_fast_msr_access(struct kvm_vcpu * vcpu)1979 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1980 {
1981 	return kvm_x86_call(complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1982 }
1983 
complete_fast_rdmsr(struct kvm_vcpu * vcpu)1984 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1985 {
1986 	complete_userspace_rdmsr(vcpu);
1987 	return complete_fast_msr_access(vcpu);
1988 }
1989 
kvm_msr_reason(int r)1990 static u64 kvm_msr_reason(int r)
1991 {
1992 	switch (r) {
1993 	case KVM_MSR_RET_UNSUPPORTED:
1994 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1995 	case KVM_MSR_RET_FILTERED:
1996 		return KVM_MSR_EXIT_REASON_FILTER;
1997 	default:
1998 		return KVM_MSR_EXIT_REASON_INVAL;
1999 	}
2000 }
2001 
kvm_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u32 exit_reason,u64 data,int (* completion)(struct kvm_vcpu * vcpu),int r)2002 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2003 			      u32 exit_reason, u64 data,
2004 			      int (*completion)(struct kvm_vcpu *vcpu),
2005 			      int r)
2006 {
2007 	u64 msr_reason = kvm_msr_reason(r);
2008 
2009 	/* Check if the user wanted to know about this MSR fault */
2010 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2011 		return 0;
2012 
2013 	vcpu->run->exit_reason = exit_reason;
2014 	vcpu->run->msr.error = 0;
2015 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2016 	vcpu->run->msr.reason = msr_reason;
2017 	vcpu->run->msr.index = index;
2018 	vcpu->run->msr.data = data;
2019 	vcpu->arch.complete_userspace_io = completion;
2020 
2021 	return 1;
2022 }
2023 
kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)2024 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2025 {
2026 	u32 ecx = kvm_rcx_read(vcpu);
2027 	u64 data;
2028 	int r;
2029 
2030 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2031 
2032 	if (!r) {
2033 		trace_kvm_msr_read(ecx, data);
2034 
2035 		kvm_rax_write(vcpu, data & -1u);
2036 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
2037 	} else {
2038 		/* MSR read failed? See if we should ask user space */
2039 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2040 				       complete_fast_rdmsr, r))
2041 			return 0;
2042 		trace_kvm_msr_read_ex(ecx);
2043 	}
2044 
2045 	return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2046 }
2047 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2048 
kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)2049 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2050 {
2051 	u32 ecx = kvm_rcx_read(vcpu);
2052 	u64 data = kvm_read_edx_eax(vcpu);
2053 	int r;
2054 
2055 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2056 
2057 	if (!r) {
2058 		trace_kvm_msr_write(ecx, data);
2059 	} else {
2060 		/* MSR write failed? See if we should ask user space */
2061 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2062 				       complete_fast_msr_access, r))
2063 			return 0;
2064 		/* Signal all other negative errors to userspace */
2065 		if (r < 0)
2066 			return r;
2067 		trace_kvm_msr_write_ex(ecx, data);
2068 	}
2069 
2070 	return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2071 }
2072 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2073 
kvm_emulate_as_nop(struct kvm_vcpu * vcpu)2074 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2075 {
2076 	return kvm_skip_emulated_instruction(vcpu);
2077 }
2078 
kvm_emulate_invd(struct kvm_vcpu * vcpu)2079 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2080 {
2081 	/* Treat an INVD instruction as a NOP and just skip it. */
2082 	return kvm_emulate_as_nop(vcpu);
2083 }
2084 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2085 
kvm_handle_invalid_op(struct kvm_vcpu * vcpu)2086 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2087 {
2088 	kvm_queue_exception(vcpu, UD_VECTOR);
2089 	return 1;
2090 }
2091 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2092 
2093 
kvm_emulate_monitor_mwait(struct kvm_vcpu * vcpu,const char * insn)2094 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2095 {
2096 	bool enabled;
2097 
2098 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS))
2099 		goto emulate_as_nop;
2100 
2101 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT))
2102 		enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_MWAIT);
2103 	else
2104 		enabled = vcpu->arch.ia32_misc_enable_msr & MSR_IA32_MISC_ENABLE_MWAIT;
2105 
2106 	if (!enabled)
2107 		return kvm_handle_invalid_op(vcpu);
2108 
2109 emulate_as_nop:
2110 	pr_warn_once("%s instruction emulated as NOP!\n", insn);
2111 	return kvm_emulate_as_nop(vcpu);
2112 }
kvm_emulate_mwait(struct kvm_vcpu * vcpu)2113 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2114 {
2115 	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2116 }
2117 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2118 
kvm_emulate_monitor(struct kvm_vcpu * vcpu)2119 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2120 {
2121 	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2122 }
2123 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2124 
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu)2125 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2126 {
2127 	xfer_to_guest_mode_prepare();
2128 
2129 	return READ_ONCE(vcpu->mode) == EXITING_GUEST_MODE ||
2130 	       kvm_request_pending(vcpu) || xfer_to_guest_mode_work_pending();
2131 }
2132 
2133 /*
2134  * The fast path for frequent and performance sensitive wrmsr emulation,
2135  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2136  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2137  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2138  * other cases which must be called after interrupts are enabled on the host.
2139  */
handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu * vcpu,u64 data)2140 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2141 {
2142 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2143 		return 1;
2144 
2145 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2146 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2147 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2148 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2149 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2150 
2151 	return 1;
2152 }
2153 
handle_fastpath_set_tscdeadline(struct kvm_vcpu * vcpu,u64 data)2154 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2155 {
2156 	if (!kvm_can_use_hv_timer(vcpu))
2157 		return 1;
2158 
2159 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2160 	return 0;
2161 }
2162 
handle_fastpath_set_msr_irqoff(struct kvm_vcpu * vcpu)2163 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2164 {
2165 	u32 msr = kvm_rcx_read(vcpu);
2166 	u64 data;
2167 	fastpath_t ret;
2168 	bool handled;
2169 
2170 	kvm_vcpu_srcu_read_lock(vcpu);
2171 
2172 	switch (msr) {
2173 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2174 		data = kvm_read_edx_eax(vcpu);
2175 		handled = !handle_fastpath_set_x2apic_icr_irqoff(vcpu, data);
2176 		break;
2177 	case MSR_IA32_TSC_DEADLINE:
2178 		data = kvm_read_edx_eax(vcpu);
2179 		handled = !handle_fastpath_set_tscdeadline(vcpu, data);
2180 		break;
2181 	default:
2182 		handled = false;
2183 		break;
2184 	}
2185 
2186 	if (handled) {
2187 		if (!kvm_skip_emulated_instruction(vcpu))
2188 			ret = EXIT_FASTPATH_EXIT_USERSPACE;
2189 		else
2190 			ret = EXIT_FASTPATH_REENTER_GUEST;
2191 		trace_kvm_msr_write(msr, data);
2192 	} else {
2193 		ret = EXIT_FASTPATH_NONE;
2194 	}
2195 
2196 	kvm_vcpu_srcu_read_unlock(vcpu);
2197 
2198 	return ret;
2199 }
2200 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2201 
2202 /*
2203  * Adapt set_msr() to msr_io()'s calling convention
2204  */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2205 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2206 {
2207 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2208 }
2209 
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2210 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2211 {
2212 	u64 val;
2213 
2214 	/*
2215 	 * Disallow writes to immutable feature MSRs after KVM_RUN.  KVM does
2216 	 * not support modifying the guest vCPU model on the fly, e.g. changing
2217 	 * the nVMX capabilities while L2 is running is nonsensical.  Allow
2218 	 * writes of the same value, e.g. to allow userspace to blindly stuff
2219 	 * all MSRs when emulating RESET.
2220 	 */
2221 	if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) &&
2222 	    (do_get_msr(vcpu, index, &val) || *data != val))
2223 		return -EINVAL;
2224 
2225 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2226 }
2227 
2228 #ifdef CONFIG_X86_64
2229 struct pvclock_clock {
2230 	int vclock_mode;
2231 	u64 cycle_last;
2232 	u64 mask;
2233 	u32 mult;
2234 	u32 shift;
2235 	u64 base_cycles;
2236 	u64 offset;
2237 };
2238 
2239 struct pvclock_gtod_data {
2240 	seqcount_t	seq;
2241 
2242 	struct pvclock_clock clock; /* extract of a clocksource struct */
2243 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2244 
2245 	ktime_t		offs_boot;
2246 	u64		wall_time_sec;
2247 };
2248 
2249 static struct pvclock_gtod_data pvclock_gtod_data;
2250 
update_pvclock_gtod(struct timekeeper * tk)2251 static void update_pvclock_gtod(struct timekeeper *tk)
2252 {
2253 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2254 
2255 	write_seqcount_begin(&vdata->seq);
2256 
2257 	/* copy pvclock gtod data */
2258 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2259 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2260 	vdata->clock.mask		= tk->tkr_mono.mask;
2261 	vdata->clock.mult		= tk->tkr_mono.mult;
2262 	vdata->clock.shift		= tk->tkr_mono.shift;
2263 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2264 	vdata->clock.offset		= tk->tkr_mono.base;
2265 
2266 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2267 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2268 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2269 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2270 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2271 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2272 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2273 
2274 	vdata->wall_time_sec            = tk->xtime_sec;
2275 
2276 	vdata->offs_boot		= tk->offs_boot;
2277 
2278 	write_seqcount_end(&vdata->seq);
2279 }
2280 
get_kvmclock_base_ns(void)2281 static s64 get_kvmclock_base_ns(void)
2282 {
2283 	/* Count up from boot time, but with the frequency of the raw clock.  */
2284 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2285 }
2286 #else
get_kvmclock_base_ns(void)2287 static s64 get_kvmclock_base_ns(void)
2288 {
2289 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2290 	return ktime_get_boottime_ns();
2291 }
2292 #endif
2293 
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock,int sec_hi_ofs)2294 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2295 {
2296 	int version;
2297 	int r;
2298 	struct pvclock_wall_clock wc;
2299 	u32 wc_sec_hi;
2300 	u64 wall_nsec;
2301 
2302 	if (!wall_clock)
2303 		return;
2304 
2305 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2306 	if (r)
2307 		return;
2308 
2309 	if (version & 1)
2310 		++version;  /* first time write, random junk */
2311 
2312 	++version;
2313 
2314 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2315 		return;
2316 
2317 	wall_nsec = kvm_get_wall_clock_epoch(kvm);
2318 
2319 	wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2320 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2321 	wc.version = version;
2322 
2323 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2324 
2325 	if (sec_hi_ofs) {
2326 		wc_sec_hi = wall_nsec >> 32;
2327 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2328 				&wc_sec_hi, sizeof(wc_sec_hi));
2329 	}
2330 
2331 	version++;
2332 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2333 }
2334 
kvm_write_system_time(struct kvm_vcpu * vcpu,gpa_t system_time,bool old_msr,bool host_initiated)2335 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2336 				  bool old_msr, bool host_initiated)
2337 {
2338 	struct kvm_arch *ka = &vcpu->kvm->arch;
2339 
2340 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2341 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2342 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2343 
2344 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2345 	}
2346 
2347 	vcpu->arch.time = system_time;
2348 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2349 
2350 	/* we verify if the enable bit is set... */
2351 	if (system_time & 1)
2352 		kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2353 				 sizeof(struct pvclock_vcpu_time_info));
2354 	else
2355 		kvm_gpc_deactivate(&vcpu->arch.pv_time);
2356 
2357 	return;
2358 }
2359 
div_frac(uint32_t dividend,uint32_t divisor)2360 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2361 {
2362 	do_shl32_div32(dividend, divisor);
2363 	return dividend;
2364 }
2365 
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)2366 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2367 			       s8 *pshift, u32 *pmultiplier)
2368 {
2369 	uint64_t scaled64;
2370 	int32_t  shift = 0;
2371 	uint64_t tps64;
2372 	uint32_t tps32;
2373 
2374 	tps64 = base_hz;
2375 	scaled64 = scaled_hz;
2376 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2377 		tps64 >>= 1;
2378 		shift--;
2379 	}
2380 
2381 	tps32 = (uint32_t)tps64;
2382 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2383 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2384 			scaled64 >>= 1;
2385 		else
2386 			tps32 <<= 1;
2387 		shift++;
2388 	}
2389 
2390 	*pshift = shift;
2391 	*pmultiplier = div_frac(scaled64, tps32);
2392 }
2393 
2394 #ifdef CONFIG_X86_64
2395 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2396 #endif
2397 
2398 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2399 static unsigned long max_tsc_khz;
2400 
adjust_tsc_khz(u32 khz,s32 ppm)2401 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2402 {
2403 	u64 v = (u64)khz * (1000000 + ppm);
2404 	do_div(v, 1000000);
2405 	return v;
2406 }
2407 
2408 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2409 
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)2410 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2411 {
2412 	u64 ratio;
2413 
2414 	/* Guest TSC same frequency as host TSC? */
2415 	if (!scale) {
2416 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2417 		return 0;
2418 	}
2419 
2420 	/* TSC scaling supported? */
2421 	if (!kvm_caps.has_tsc_control) {
2422 		if (user_tsc_khz > tsc_khz) {
2423 			vcpu->arch.tsc_catchup = 1;
2424 			vcpu->arch.tsc_always_catchup = 1;
2425 			return 0;
2426 		} else {
2427 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2428 			return -1;
2429 		}
2430 	}
2431 
2432 	/* TSC scaling required  - calculate ratio */
2433 	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2434 				user_tsc_khz, tsc_khz);
2435 
2436 	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2437 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2438 			            user_tsc_khz);
2439 		return -1;
2440 	}
2441 
2442 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2443 	return 0;
2444 }
2445 
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)2446 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2447 {
2448 	u32 thresh_lo, thresh_hi;
2449 	int use_scaling = 0;
2450 
2451 	/* tsc_khz can be zero if TSC calibration fails */
2452 	if (user_tsc_khz == 0) {
2453 		/* set tsc_scaling_ratio to a safe value */
2454 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2455 		return -1;
2456 	}
2457 
2458 	/* Compute a scale to convert nanoseconds in TSC cycles */
2459 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2460 			   &vcpu->arch.virtual_tsc_shift,
2461 			   &vcpu->arch.virtual_tsc_mult);
2462 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2463 
2464 	/*
2465 	 * Compute the variation in TSC rate which is acceptable
2466 	 * within the range of tolerance and decide if the
2467 	 * rate being applied is within that bounds of the hardware
2468 	 * rate.  If so, no scaling or compensation need be done.
2469 	 */
2470 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2471 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2472 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2473 		pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2474 			 user_tsc_khz, thresh_lo, thresh_hi);
2475 		use_scaling = 1;
2476 	}
2477 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2478 }
2479 
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)2480 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2481 {
2482 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2483 				      vcpu->arch.virtual_tsc_mult,
2484 				      vcpu->arch.virtual_tsc_shift);
2485 	tsc += vcpu->arch.this_tsc_write;
2486 	return tsc;
2487 }
2488 
2489 #ifdef CONFIG_X86_64
gtod_is_based_on_tsc(int mode)2490 static inline bool gtod_is_based_on_tsc(int mode)
2491 {
2492 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2493 }
2494 #endif
2495 
kvm_track_tsc_matching(struct kvm_vcpu * vcpu,bool new_generation)2496 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2497 {
2498 #ifdef CONFIG_X86_64
2499 	struct kvm_arch *ka = &vcpu->kvm->arch;
2500 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2501 
2502 	/*
2503 	 * To use the masterclock, the host clocksource must be based on TSC
2504 	 * and all vCPUs must have matching TSCs.  Note, the count for matching
2505 	 * vCPUs doesn't include the reference vCPU, hence "+1".
2506 	 */
2507 	bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2508 				 atomic_read(&vcpu->kvm->online_vcpus)) &&
2509 				gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2510 
2511 	/*
2512 	 * Request a masterclock update if the masterclock needs to be toggled
2513 	 * on/off, or when starting a new generation and the masterclock is
2514 	 * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2515 	 * taken _after_ the new generation is created).
2516 	 */
2517 	if ((ka->use_master_clock && new_generation) ||
2518 	    (ka->use_master_clock != use_master_clock))
2519 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2520 
2521 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2522 			    atomic_read(&vcpu->kvm->online_vcpus),
2523 		            ka->use_master_clock, gtod->clock.vclock_mode);
2524 #endif
2525 }
2526 
2527 /*
2528  * Multiply tsc by a fixed point number represented by ratio.
2529  *
2530  * The most significant 64-N bits (mult) of ratio represent the
2531  * integral part of the fixed point number; the remaining N bits
2532  * (frac) represent the fractional part, ie. ratio represents a fixed
2533  * point number (mult + frac * 2^(-N)).
2534  *
2535  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2536  */
__scale_tsc(u64 ratio,u64 tsc)2537 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2538 {
2539 	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2540 }
2541 
kvm_scale_tsc(u64 tsc,u64 ratio)2542 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2543 {
2544 	u64 _tsc = tsc;
2545 
2546 	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2547 		_tsc = __scale_tsc(ratio, tsc);
2548 
2549 	return _tsc;
2550 }
2551 
kvm_compute_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)2552 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2553 {
2554 	u64 tsc;
2555 
2556 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2557 
2558 	return target_tsc - tsc;
2559 }
2560 
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2561 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2562 {
2563 	return vcpu->arch.l1_tsc_offset +
2564 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2565 }
2566 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2567 
kvm_calc_nested_tsc_offset(u64 l1_offset,u64 l2_offset,u64 l2_multiplier)2568 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2569 {
2570 	u64 nested_offset;
2571 
2572 	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2573 		nested_offset = l1_offset;
2574 	else
2575 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2576 						kvm_caps.tsc_scaling_ratio_frac_bits);
2577 
2578 	nested_offset += l2_offset;
2579 	return nested_offset;
2580 }
2581 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2582 
kvm_calc_nested_tsc_multiplier(u64 l1_multiplier,u64 l2_multiplier)2583 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2584 {
2585 	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2586 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2587 				       kvm_caps.tsc_scaling_ratio_frac_bits);
2588 
2589 	return l1_multiplier;
2590 }
2591 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2592 
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 l1_offset)2593 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2594 {
2595 	if (vcpu->arch.guest_tsc_protected)
2596 		return;
2597 
2598 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2599 				   vcpu->arch.l1_tsc_offset,
2600 				   l1_offset);
2601 
2602 	vcpu->arch.l1_tsc_offset = l1_offset;
2603 
2604 	/*
2605 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2606 	 * according to the spec this should set L1's TSC (as opposed to
2607 	 * setting L1's offset for L2).
2608 	 */
2609 	if (is_guest_mode(vcpu))
2610 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2611 			l1_offset,
2612 			kvm_x86_call(get_l2_tsc_offset)(vcpu),
2613 			kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2614 	else
2615 		vcpu->arch.tsc_offset = l1_offset;
2616 
2617 	kvm_x86_call(write_tsc_offset)(vcpu);
2618 }
2619 
kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu * vcpu,u64 l1_multiplier)2620 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2621 {
2622 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2623 
2624 	/* Userspace is changing the multiplier while L2 is active */
2625 	if (is_guest_mode(vcpu))
2626 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2627 			l1_multiplier,
2628 			kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2629 	else
2630 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2631 
2632 	if (kvm_caps.has_tsc_control)
2633 		kvm_x86_call(write_tsc_multiplier)(vcpu);
2634 }
2635 
kvm_check_tsc_unstable(void)2636 static inline bool kvm_check_tsc_unstable(void)
2637 {
2638 #ifdef CONFIG_X86_64
2639 	/*
2640 	 * TSC is marked unstable when we're running on Hyper-V,
2641 	 * 'TSC page' clocksource is good.
2642 	 */
2643 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2644 		return false;
2645 #endif
2646 	return check_tsc_unstable();
2647 }
2648 
2649 /*
2650  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2651  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2652  * participates in.
2653  */
__kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 offset,u64 tsc,u64 ns,bool matched,bool user_set_tsc)2654 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2655 				  u64 ns, bool matched, bool user_set_tsc)
2656 {
2657 	struct kvm *kvm = vcpu->kvm;
2658 
2659 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2660 
2661 	if (vcpu->arch.guest_tsc_protected)
2662 		return;
2663 
2664 	if (user_set_tsc)
2665 		vcpu->kvm->arch.user_set_tsc = true;
2666 
2667 	/*
2668 	 * We also track th most recent recorded KHZ, write and time to
2669 	 * allow the matching interval to be extended at each write.
2670 	 */
2671 	kvm->arch.last_tsc_nsec = ns;
2672 	kvm->arch.last_tsc_write = tsc;
2673 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2674 	kvm->arch.last_tsc_offset = offset;
2675 
2676 	vcpu->arch.last_guest_tsc = tsc;
2677 
2678 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2679 
2680 	if (!matched) {
2681 		/*
2682 		 * We split periods of matched TSC writes into generations.
2683 		 * For each generation, we track the original measured
2684 		 * nanosecond time, offset, and write, so if TSCs are in
2685 		 * sync, we can match exact offset, and if not, we can match
2686 		 * exact software computation in compute_guest_tsc()
2687 		 *
2688 		 * These values are tracked in kvm->arch.cur_xxx variables.
2689 		 */
2690 		kvm->arch.cur_tsc_generation++;
2691 		kvm->arch.cur_tsc_nsec = ns;
2692 		kvm->arch.cur_tsc_write = tsc;
2693 		kvm->arch.cur_tsc_offset = offset;
2694 		kvm->arch.nr_vcpus_matched_tsc = 0;
2695 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2696 		kvm->arch.nr_vcpus_matched_tsc++;
2697 	}
2698 
2699 	/* Keep track of which generation this VCPU has synchronized to */
2700 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2701 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2702 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2703 
2704 	kvm_track_tsc_matching(vcpu, !matched);
2705 }
2706 
kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 * user_value)2707 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2708 {
2709 	u64 data = user_value ? *user_value : 0;
2710 	struct kvm *kvm = vcpu->kvm;
2711 	u64 offset, ns, elapsed;
2712 	unsigned long flags;
2713 	bool matched = false;
2714 	bool synchronizing = false;
2715 
2716 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2717 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2718 	ns = get_kvmclock_base_ns();
2719 	elapsed = ns - kvm->arch.last_tsc_nsec;
2720 
2721 	if (vcpu->arch.virtual_tsc_khz) {
2722 		if (data == 0) {
2723 			/*
2724 			 * Force synchronization when creating a vCPU, or when
2725 			 * userspace explicitly writes a zero value.
2726 			 */
2727 			synchronizing = true;
2728 		} else if (kvm->arch.user_set_tsc) {
2729 			u64 tsc_exp = kvm->arch.last_tsc_write +
2730 						nsec_to_cycles(vcpu, elapsed);
2731 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2732 			/*
2733 			 * Here lies UAPI baggage: when a user-initiated TSC write has
2734 			 * a small delta (1 second) of virtual cycle time against the
2735 			 * previously set vCPU, we assume that they were intended to be
2736 			 * in sync and the delta was only due to the racy nature of the
2737 			 * legacy API.
2738 			 *
2739 			 * This trick falls down when restoring a guest which genuinely
2740 			 * has been running for less time than the 1 second of imprecision
2741 			 * which we allow for in the legacy API. In this case, the first
2742 			 * value written by userspace (on any vCPU) should not be subject
2743 			 * to this 'correction' to make it sync up with values that only
2744 			 * come from the kernel's default vCPU creation. Make the 1-second
2745 			 * slop hack only trigger if the user_set_tsc flag is already set.
2746 			 */
2747 			synchronizing = data < tsc_exp + tsc_hz &&
2748 					data + tsc_hz > tsc_exp;
2749 		}
2750 	}
2751 
2752 
2753 	/*
2754 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2755 	 * TSC, we add elapsed time in this computation.  We could let the
2756 	 * compensation code attempt to catch up if we fall behind, but
2757 	 * it's better to try to match offsets from the beginning.
2758          */
2759 	if (synchronizing &&
2760 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2761 		if (!kvm_check_tsc_unstable()) {
2762 			offset = kvm->arch.cur_tsc_offset;
2763 		} else {
2764 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2765 			data += delta;
2766 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2767 		}
2768 		matched = true;
2769 	}
2770 
2771 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched, !!user_value);
2772 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2773 }
2774 
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2775 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2776 					   s64 adjustment)
2777 {
2778 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2779 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2780 }
2781 
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)2782 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2783 {
2784 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2785 		WARN_ON(adjustment < 0);
2786 	adjustment = kvm_scale_tsc((u64) adjustment,
2787 				   vcpu->arch.l1_tsc_scaling_ratio);
2788 	adjust_tsc_offset_guest(vcpu, adjustment);
2789 }
2790 
2791 #ifdef CONFIG_X86_64
2792 
read_tsc(void)2793 static u64 read_tsc(void)
2794 {
2795 	u64 ret = (u64)rdtsc_ordered();
2796 	u64 last = pvclock_gtod_data.clock.cycle_last;
2797 
2798 	if (likely(ret >= last))
2799 		return ret;
2800 
2801 	/*
2802 	 * GCC likes to generate cmov here, but this branch is extremely
2803 	 * predictable (it's just a function of time and the likely is
2804 	 * very likely) and there's a data dependence, so force GCC
2805 	 * to generate a branch instead.  I don't barrier() because
2806 	 * we don't actually need a barrier, and if this function
2807 	 * ever gets inlined it will generate worse code.
2808 	 */
2809 	asm volatile ("");
2810 	return last;
2811 }
2812 
vgettsc(struct pvclock_clock * clock,u64 * tsc_timestamp,int * mode)2813 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2814 			  int *mode)
2815 {
2816 	u64 tsc_pg_val;
2817 	long v;
2818 
2819 	switch (clock->vclock_mode) {
2820 	case VDSO_CLOCKMODE_HVCLOCK:
2821 		if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2822 					 tsc_timestamp, &tsc_pg_val)) {
2823 			/* TSC page valid */
2824 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2825 			v = (tsc_pg_val - clock->cycle_last) &
2826 				clock->mask;
2827 		} else {
2828 			/* TSC page invalid */
2829 			*mode = VDSO_CLOCKMODE_NONE;
2830 		}
2831 		break;
2832 	case VDSO_CLOCKMODE_TSC:
2833 		*mode = VDSO_CLOCKMODE_TSC;
2834 		*tsc_timestamp = read_tsc();
2835 		v = (*tsc_timestamp - clock->cycle_last) &
2836 			clock->mask;
2837 		break;
2838 	default:
2839 		*mode = VDSO_CLOCKMODE_NONE;
2840 	}
2841 
2842 	if (*mode == VDSO_CLOCKMODE_NONE)
2843 		*tsc_timestamp = v = 0;
2844 
2845 	return v * clock->mult;
2846 }
2847 
2848 /*
2849  * As with get_kvmclock_base_ns(), this counts from boot time, at the
2850  * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot).
2851  */
do_kvmclock_base(s64 * t,u64 * tsc_timestamp)2852 static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp)
2853 {
2854 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2855 	unsigned long seq;
2856 	int mode;
2857 	u64 ns;
2858 
2859 	do {
2860 		seq = read_seqcount_begin(&gtod->seq);
2861 		ns = gtod->raw_clock.base_cycles;
2862 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2863 		ns >>= gtod->raw_clock.shift;
2864 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2865 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2866 	*t = ns;
2867 
2868 	return mode;
2869 }
2870 
2871 /*
2872  * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with
2873  * no boot time offset.
2874  */
do_monotonic(s64 * t,u64 * tsc_timestamp)2875 static int do_monotonic(s64 *t, u64 *tsc_timestamp)
2876 {
2877 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2878 	unsigned long seq;
2879 	int mode;
2880 	u64 ns;
2881 
2882 	do {
2883 		seq = read_seqcount_begin(&gtod->seq);
2884 		ns = gtod->clock.base_cycles;
2885 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2886 		ns >>= gtod->clock.shift;
2887 		ns += ktime_to_ns(gtod->clock.offset);
2888 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2889 	*t = ns;
2890 
2891 	return mode;
2892 }
2893 
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)2894 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2895 {
2896 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2897 	unsigned long seq;
2898 	int mode;
2899 	u64 ns;
2900 
2901 	do {
2902 		seq = read_seqcount_begin(&gtod->seq);
2903 		ts->tv_sec = gtod->wall_time_sec;
2904 		ns = gtod->clock.base_cycles;
2905 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2906 		ns >>= gtod->clock.shift;
2907 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2908 
2909 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2910 	ts->tv_nsec = ns;
2911 
2912 	return mode;
2913 }
2914 
2915 /*
2916  * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and
2917  * reports the TSC value from which it do so. Returns true if host is
2918  * using TSC based clocksource.
2919  */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2920 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2921 {
2922 	/* checked again under seqlock below */
2923 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2924 		return false;
2925 
2926 	return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns,
2927 						     tsc_timestamp));
2928 }
2929 
2930 /*
2931  * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did
2932  * so. Returns true if host is using TSC based clocksource.
2933  */
kvm_get_monotonic_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2934 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2935 {
2936 	/* checked again under seqlock below */
2937 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2938 		return false;
2939 
2940 	return gtod_is_based_on_tsc(do_monotonic(kernel_ns,
2941 						 tsc_timestamp));
2942 }
2943 
2944 /*
2945  * Calculates CLOCK_REALTIME and reports the TSC value from which it did
2946  * so. Returns true if host is using TSC based clocksource.
2947  *
2948  * DO NOT USE this for anything related to migration. You want CLOCK_TAI
2949  * for that.
2950  */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)2951 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2952 					   u64 *tsc_timestamp)
2953 {
2954 	/* checked again under seqlock below */
2955 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2956 		return false;
2957 
2958 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2959 }
2960 #endif
2961 
2962 /*
2963  *
2964  * Assuming a stable TSC across physical CPUS, and a stable TSC
2965  * across virtual CPUs, the following condition is possible.
2966  * Each numbered line represents an event visible to both
2967  * CPUs at the next numbered event.
2968  *
2969  * "timespecX" represents host monotonic time. "tscX" represents
2970  * RDTSC value.
2971  *
2972  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2973  *
2974  * 1.  read timespec0,tsc0
2975  * 2.					| timespec1 = timespec0 + N
2976  * 					| tsc1 = tsc0 + M
2977  * 3. transition to guest		| transition to guest
2978  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2979  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2980  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2981  *
2982  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2983  *
2984  * 	- ret0 < ret1
2985  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2986  *		...
2987  *	- 0 < N - M => M < N
2988  *
2989  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2990  * always the case (the difference between two distinct xtime instances
2991  * might be smaller then the difference between corresponding TSC reads,
2992  * when updating guest vcpus pvclock areas).
2993  *
2994  * To avoid that problem, do not allow visibility of distinct
2995  * system_timestamp/tsc_timestamp values simultaneously: use a master
2996  * copy of host monotonic time values. Update that master copy
2997  * in lockstep.
2998  *
2999  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
3000  *
3001  */
3002 
pvclock_update_vm_gtod_copy(struct kvm * kvm)3003 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
3004 {
3005 #ifdef CONFIG_X86_64
3006 	struct kvm_arch *ka = &kvm->arch;
3007 	int vclock_mode;
3008 	bool host_tsc_clocksource, vcpus_matched;
3009 
3010 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
3011 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
3012 			atomic_read(&kvm->online_vcpus));
3013 
3014 	/*
3015 	 * If the host uses TSC clock, then passthrough TSC as stable
3016 	 * to the guest.
3017 	 */
3018 	host_tsc_clocksource = kvm_get_time_and_clockread(
3019 					&ka->master_kernel_ns,
3020 					&ka->master_cycle_now);
3021 
3022 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
3023 				&& !ka->backwards_tsc_observed
3024 				&& !ka->boot_vcpu_runs_old_kvmclock;
3025 
3026 	if (ka->use_master_clock)
3027 		atomic_set(&kvm_guest_has_master_clock, 1);
3028 
3029 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
3030 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
3031 					vcpus_matched);
3032 #endif
3033 }
3034 
kvm_make_mclock_inprogress_request(struct kvm * kvm)3035 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
3036 {
3037 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3038 }
3039 
__kvm_start_pvclock_update(struct kvm * kvm)3040 static void __kvm_start_pvclock_update(struct kvm *kvm)
3041 {
3042 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3043 	write_seqcount_begin(&kvm->arch.pvclock_sc);
3044 }
3045 
kvm_start_pvclock_update(struct kvm * kvm)3046 static void kvm_start_pvclock_update(struct kvm *kvm)
3047 {
3048 	kvm_make_mclock_inprogress_request(kvm);
3049 
3050 	/* no guest entries from this point */
3051 	__kvm_start_pvclock_update(kvm);
3052 }
3053 
kvm_end_pvclock_update(struct kvm * kvm)3054 static void kvm_end_pvclock_update(struct kvm *kvm)
3055 {
3056 	struct kvm_arch *ka = &kvm->arch;
3057 	struct kvm_vcpu *vcpu;
3058 	unsigned long i;
3059 
3060 	write_seqcount_end(&ka->pvclock_sc);
3061 	raw_spin_unlock_irq(&ka->tsc_write_lock);
3062 	kvm_for_each_vcpu(i, vcpu, kvm)
3063 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3064 
3065 	/* guest entries allowed */
3066 	kvm_for_each_vcpu(i, vcpu, kvm)
3067 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3068 }
3069 
kvm_update_masterclock(struct kvm * kvm)3070 static void kvm_update_masterclock(struct kvm *kvm)
3071 {
3072 	kvm_hv_request_tsc_page_update(kvm);
3073 	kvm_start_pvclock_update(kvm);
3074 	pvclock_update_vm_gtod_copy(kvm);
3075 	kvm_end_pvclock_update(kvm);
3076 }
3077 
3078 /*
3079  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3080  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
3081  * can change during boot even if the TSC is constant, as it's possible for KVM
3082  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
3083  * notification when calibration completes, but practically speaking calibration
3084  * will complete before userspace is alive enough to create VMs.
3085  */
get_cpu_tsc_khz(void)3086 static unsigned long get_cpu_tsc_khz(void)
3087 {
3088 	if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3089 		return tsc_khz;
3090 	else
3091 		return __this_cpu_read(cpu_tsc_khz);
3092 }
3093 
3094 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
__get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3095 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3096 {
3097 	struct kvm_arch *ka = &kvm->arch;
3098 	struct pvclock_vcpu_time_info hv_clock;
3099 
3100 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
3101 	get_cpu();
3102 
3103 	data->flags = 0;
3104 	if (ka->use_master_clock &&
3105 	    (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3106 #ifdef CONFIG_X86_64
3107 		struct timespec64 ts;
3108 
3109 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3110 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3111 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3112 		} else
3113 #endif
3114 		data->host_tsc = rdtsc();
3115 
3116 		data->flags |= KVM_CLOCK_TSC_STABLE;
3117 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3118 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3119 		kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3120 				   &hv_clock.tsc_shift,
3121 				   &hv_clock.tsc_to_system_mul);
3122 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3123 	} else {
3124 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3125 	}
3126 
3127 	put_cpu();
3128 }
3129 
get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3130 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3131 {
3132 	struct kvm_arch *ka = &kvm->arch;
3133 	unsigned seq;
3134 
3135 	do {
3136 		seq = read_seqcount_begin(&ka->pvclock_sc);
3137 		__get_kvmclock(kvm, data);
3138 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3139 }
3140 
get_kvmclock_ns(struct kvm * kvm)3141 u64 get_kvmclock_ns(struct kvm *kvm)
3142 {
3143 	struct kvm_clock_data data;
3144 
3145 	get_kvmclock(kvm, &data);
3146 	return data.clock;
3147 }
3148 
kvm_setup_guest_pvclock(struct pvclock_vcpu_time_info * ref_hv_clock,struct kvm_vcpu * vcpu,struct gfn_to_pfn_cache * gpc,unsigned int offset)3149 static void kvm_setup_guest_pvclock(struct pvclock_vcpu_time_info *ref_hv_clock,
3150 				    struct kvm_vcpu *vcpu,
3151 				    struct gfn_to_pfn_cache *gpc,
3152 				    unsigned int offset)
3153 {
3154 	struct pvclock_vcpu_time_info *guest_hv_clock;
3155 	struct pvclock_vcpu_time_info hv_clock;
3156 	unsigned long flags;
3157 
3158 	memcpy(&hv_clock, ref_hv_clock, sizeof(hv_clock));
3159 
3160 	read_lock_irqsave(&gpc->lock, flags);
3161 	while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3162 		read_unlock_irqrestore(&gpc->lock, flags);
3163 
3164 		if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3165 			return;
3166 
3167 		read_lock_irqsave(&gpc->lock, flags);
3168 	}
3169 
3170 	guest_hv_clock = (void *)(gpc->khva + offset);
3171 
3172 	/*
3173 	 * This VCPU is paused, but it's legal for a guest to read another
3174 	 * VCPU's kvmclock, so we really have to follow the specification where
3175 	 * it says that version is odd if data is being modified, and even after
3176 	 * it is consistent.
3177 	 */
3178 
3179 	guest_hv_clock->version = hv_clock.version = (guest_hv_clock->version + 1) | 1;
3180 	smp_wmb();
3181 
3182 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3183 	hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3184 
3185 	memcpy(guest_hv_clock, &hv_clock, sizeof(*guest_hv_clock));
3186 
3187 	smp_wmb();
3188 
3189 	guest_hv_clock->version = ++hv_clock.version;
3190 
3191 	kvm_gpc_mark_dirty_in_slot(gpc);
3192 	read_unlock_irqrestore(&gpc->lock, flags);
3193 
3194 	trace_kvm_pvclock_update(vcpu->vcpu_id, &hv_clock);
3195 }
3196 
kvm_guest_time_update(struct kvm_vcpu * v)3197 int kvm_guest_time_update(struct kvm_vcpu *v)
3198 {
3199 	struct pvclock_vcpu_time_info hv_clock = {};
3200 	unsigned long flags, tgt_tsc_khz;
3201 	unsigned seq;
3202 	struct kvm_vcpu_arch *vcpu = &v->arch;
3203 	struct kvm_arch *ka = &v->kvm->arch;
3204 	s64 kernel_ns;
3205 	u64 tsc_timestamp, host_tsc;
3206 	bool use_master_clock;
3207 
3208 	kernel_ns = 0;
3209 	host_tsc = 0;
3210 
3211 	/*
3212 	 * If the host uses TSC clock, then passthrough TSC as stable
3213 	 * to the guest.
3214 	 */
3215 	do {
3216 		seq = read_seqcount_begin(&ka->pvclock_sc);
3217 		use_master_clock = ka->use_master_clock;
3218 		if (use_master_clock) {
3219 			host_tsc = ka->master_cycle_now;
3220 			kernel_ns = ka->master_kernel_ns;
3221 		}
3222 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3223 
3224 	/* Keep irq disabled to prevent changes to the clock */
3225 	local_irq_save(flags);
3226 	tgt_tsc_khz = get_cpu_tsc_khz();
3227 	if (unlikely(tgt_tsc_khz == 0)) {
3228 		local_irq_restore(flags);
3229 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3230 		return 1;
3231 	}
3232 	if (!use_master_clock) {
3233 		host_tsc = rdtsc();
3234 		kernel_ns = get_kvmclock_base_ns();
3235 	}
3236 
3237 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3238 
3239 	/*
3240 	 * We may have to catch up the TSC to match elapsed wall clock
3241 	 * time for two reasons, even if kvmclock is used.
3242 	 *   1) CPU could have been running below the maximum TSC rate
3243 	 *   2) Broken TSC compensation resets the base at each VCPU
3244 	 *      entry to avoid unknown leaps of TSC even when running
3245 	 *      again on the same CPU.  This may cause apparent elapsed
3246 	 *      time to disappear, and the guest to stand still or run
3247 	 *	very slowly.
3248 	 */
3249 	if (vcpu->tsc_catchup) {
3250 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3251 		if (tsc > tsc_timestamp) {
3252 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3253 			tsc_timestamp = tsc;
3254 		}
3255 	}
3256 
3257 	local_irq_restore(flags);
3258 
3259 	/* With all the info we got, fill in the values */
3260 
3261 	if (kvm_caps.has_tsc_control)
3262 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3263 					    v->arch.l1_tsc_scaling_ratio);
3264 
3265 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3266 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3267 				   &vcpu->pvclock_tsc_shift,
3268 				   &vcpu->pvclock_tsc_mul);
3269 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3270 	}
3271 
3272 	hv_clock.tsc_shift = vcpu->pvclock_tsc_shift;
3273 	hv_clock.tsc_to_system_mul = vcpu->pvclock_tsc_mul;
3274 	hv_clock.tsc_timestamp = tsc_timestamp;
3275 	hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3276 	vcpu->last_guest_tsc = tsc_timestamp;
3277 
3278 	/* If the host uses TSC clocksource, then it is stable */
3279 	hv_clock.flags = 0;
3280 	if (use_master_clock)
3281 		hv_clock.flags |= PVCLOCK_TSC_STABLE_BIT;
3282 
3283 	if (vcpu->pv_time.active) {
3284 		/*
3285 		 * GUEST_STOPPED is only supported by kvmclock, and KVM's
3286 		 * historic behavior is to only process the request if kvmclock
3287 		 * is active/enabled.
3288 		 */
3289 		if (vcpu->pvclock_set_guest_stopped_request) {
3290 			hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3291 			vcpu->pvclock_set_guest_stopped_request = false;
3292 		}
3293 		kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->pv_time, 0);
3294 
3295 		hv_clock.flags &= ~PVCLOCK_GUEST_STOPPED;
3296 	}
3297 
3298 	kvm_hv_setup_tsc_page(v->kvm, &hv_clock);
3299 
3300 #ifdef CONFIG_KVM_XEN
3301 	/*
3302 	 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3303 	 * explicitly told to use TSC as its clocksource Xen will not set this bit.
3304 	 * This default behaviour led to bugs in some guest kernels which cause
3305 	 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3306 	 *
3307 	 * Note!  Clear TSC_STABLE only for Xen clocks, i.e. the order matters!
3308 	 */
3309 	if (ka->xen.hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE)
3310 		hv_clock.flags &= ~PVCLOCK_TSC_STABLE_BIT;
3311 
3312 	if (vcpu->xen.vcpu_info_cache.active)
3313 		kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_info_cache,
3314 					offsetof(struct compat_vcpu_info, time));
3315 	if (vcpu->xen.vcpu_time_info_cache.active)
3316 		kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_time_info_cache, 0);
3317 #endif
3318 	return 0;
3319 }
3320 
3321 /*
3322  * The pvclock_wall_clock ABI tells the guest the wall clock time at
3323  * which it started (i.e. its epoch, when its kvmclock was zero).
3324  *
3325  * In fact those clocks are subtly different; wall clock frequency is
3326  * adjusted by NTP and has leap seconds, while the kvmclock is a
3327  * simple function of the TSC without any such adjustment.
3328  *
3329  * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3330  * that and kvmclock, but even that would be subject to change over
3331  * time.
3332  *
3333  * Attempt to calculate the epoch at a given moment using the *same*
3334  * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3335  * wallclock and kvmclock times, and subtracting one from the other.
3336  *
3337  * Fall back to using their values at slightly different moments by
3338  * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3339  */
kvm_get_wall_clock_epoch(struct kvm * kvm)3340 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3341 {
3342 #ifdef CONFIG_X86_64
3343 	struct pvclock_vcpu_time_info hv_clock;
3344 	struct kvm_arch *ka = &kvm->arch;
3345 	unsigned long seq, local_tsc_khz;
3346 	struct timespec64 ts;
3347 	uint64_t host_tsc;
3348 
3349 	do {
3350 		seq = read_seqcount_begin(&ka->pvclock_sc);
3351 
3352 		local_tsc_khz = 0;
3353 		if (!ka->use_master_clock)
3354 			break;
3355 
3356 		/*
3357 		 * The TSC read and the call to get_cpu_tsc_khz() must happen
3358 		 * on the same CPU.
3359 		 */
3360 		get_cpu();
3361 
3362 		local_tsc_khz = get_cpu_tsc_khz();
3363 
3364 		if (local_tsc_khz &&
3365 		    !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3366 			local_tsc_khz = 0; /* Fall back to old method */
3367 
3368 		put_cpu();
3369 
3370 		/*
3371 		 * These values must be snapshotted within the seqcount loop.
3372 		 * After that, it's just mathematics which can happen on any
3373 		 * CPU at any time.
3374 		 */
3375 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3376 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3377 
3378 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3379 
3380 	/*
3381 	 * If the conditions were right, and obtaining the wallclock+TSC was
3382 	 * successful, calculate the KVM clock at the corresponding time and
3383 	 * subtract one from the other to get the guest's epoch in nanoseconds
3384 	 * since 1970-01-01.
3385 	 */
3386 	if (local_tsc_khz) {
3387 		kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3388 				   &hv_clock.tsc_shift,
3389 				   &hv_clock.tsc_to_system_mul);
3390 		return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3391 			__pvclock_read_cycles(&hv_clock, host_tsc);
3392 	}
3393 #endif
3394 	return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3395 }
3396 
3397 /*
3398  * kvmclock updates which are isolated to a given vcpu, such as
3399  * vcpu->cpu migration, should not allow system_timestamp from
3400  * the rest of the vcpus to remain static. Otherwise ntp frequency
3401  * correction applies to one vcpu's system_timestamp but not
3402  * the others.
3403  *
3404  * So in those cases, request a kvmclock update for all vcpus.
3405  * We need to rate-limit these requests though, as they can
3406  * considerably slow guests that have a large number of vcpus.
3407  * The time for a remote vcpu to update its kvmclock is bound
3408  * by the delay we use to rate-limit the updates.
3409  */
3410 
3411 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3412 
kvmclock_update_fn(struct work_struct * work)3413 static void kvmclock_update_fn(struct work_struct *work)
3414 {
3415 	unsigned long i;
3416 	struct delayed_work *dwork = to_delayed_work(work);
3417 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3418 					   kvmclock_update_work);
3419 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3420 	struct kvm_vcpu *vcpu;
3421 
3422 	kvm_for_each_vcpu(i, vcpu, kvm) {
3423 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3424 		kvm_vcpu_kick(vcpu);
3425 	}
3426 }
3427 
kvm_gen_kvmclock_update(struct kvm_vcpu * v)3428 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3429 {
3430 	struct kvm *kvm = v->kvm;
3431 
3432 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3433 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3434 					KVMCLOCK_UPDATE_DELAY);
3435 }
3436 
3437 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3438 
kvmclock_sync_fn(struct work_struct * work)3439 static void kvmclock_sync_fn(struct work_struct *work)
3440 {
3441 	struct delayed_work *dwork = to_delayed_work(work);
3442 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3443 					   kvmclock_sync_work);
3444 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3445 
3446 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3447 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3448 					KVMCLOCK_SYNC_PERIOD);
3449 }
3450 
3451 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
is_mci_control_msr(u32 msr)3452 static bool is_mci_control_msr(u32 msr)
3453 {
3454 	return (msr & 3) == 0;
3455 }
is_mci_status_msr(u32 msr)3456 static bool is_mci_status_msr(u32 msr)
3457 {
3458 	return (msr & 3) == 1;
3459 }
3460 
3461 /*
3462  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3463  */
can_set_mci_status(struct kvm_vcpu * vcpu)3464 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3465 {
3466 	/* McStatusWrEn enabled? */
3467 	if (guest_cpuid_is_amd_compatible(vcpu))
3468 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3469 
3470 	return false;
3471 }
3472 
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3473 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3474 {
3475 	u64 mcg_cap = vcpu->arch.mcg_cap;
3476 	unsigned bank_num = mcg_cap & 0xff;
3477 	u32 msr = msr_info->index;
3478 	u64 data = msr_info->data;
3479 	u32 offset, last_msr;
3480 
3481 	switch (msr) {
3482 	case MSR_IA32_MCG_STATUS:
3483 		vcpu->arch.mcg_status = data;
3484 		break;
3485 	case MSR_IA32_MCG_CTL:
3486 		if (!(mcg_cap & MCG_CTL_P) &&
3487 		    (data || !msr_info->host_initiated))
3488 			return 1;
3489 		if (data != 0 && data != ~(u64)0)
3490 			return 1;
3491 		vcpu->arch.mcg_ctl = data;
3492 		break;
3493 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3494 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3495 		if (msr > last_msr)
3496 			return 1;
3497 
3498 		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3499 			return 1;
3500 		/* An attempt to write a 1 to a reserved bit raises #GP */
3501 		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3502 			return 1;
3503 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3504 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3505 		vcpu->arch.mci_ctl2_banks[offset] = data;
3506 		break;
3507 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3508 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3509 		if (msr > last_msr)
3510 			return 1;
3511 
3512 		/*
3513 		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3514 		 * values are architecturally undefined.  But, some Linux
3515 		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3516 		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3517 		 * other bits in order to avoid an uncaught #GP in the guest.
3518 		 *
3519 		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3520 		 * single-bit ECC data errors.
3521 		 */
3522 		if (is_mci_control_msr(msr) &&
3523 		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3524 			return 1;
3525 
3526 		/*
3527 		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3528 		 * AMD-based CPUs allow non-zero values, but if and only if
3529 		 * HWCR[McStatusWrEn] is set.
3530 		 */
3531 		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3532 		    data != 0 && !can_set_mci_status(vcpu))
3533 			return 1;
3534 
3535 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3536 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3537 		vcpu->arch.mce_banks[offset] = data;
3538 		break;
3539 	default:
3540 		return 1;
3541 	}
3542 	return 0;
3543 }
3544 
kvm_pv_async_pf_enabled(struct kvm_vcpu * vcpu)3545 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3546 {
3547 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3548 
3549 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3550 }
3551 
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)3552 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3553 {
3554 	gpa_t gpa = data & ~0x3f;
3555 
3556 	/* Bits 4:5 are reserved, Should be zero */
3557 	if (data & 0x30)
3558 		return 1;
3559 
3560 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3561 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3562 		return 1;
3563 
3564 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3565 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3566 		return 1;
3567 
3568 	if (!lapic_in_kernel(vcpu))
3569 		return data ? 1 : 0;
3570 
3571 	vcpu->arch.apf.msr_en_val = data;
3572 
3573 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3574 		kvm_clear_async_pf_completion_queue(vcpu);
3575 		kvm_async_pf_hash_reset(vcpu);
3576 		return 0;
3577 	}
3578 
3579 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3580 					sizeof(u64)))
3581 		return 1;
3582 
3583 	vcpu->arch.apf.send_always = (data & KVM_ASYNC_PF_SEND_ALWAYS);
3584 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3585 
3586 	kvm_async_pf_wakeup_all(vcpu);
3587 
3588 	return 0;
3589 }
3590 
kvm_pv_enable_async_pf_int(struct kvm_vcpu * vcpu,u64 data)3591 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3592 {
3593 	/* Bits 8-63 are reserved */
3594 	if (data >> 8)
3595 		return 1;
3596 
3597 	if (!lapic_in_kernel(vcpu))
3598 		return 1;
3599 
3600 	vcpu->arch.apf.msr_int_val = data;
3601 
3602 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3603 
3604 	return 0;
3605 }
3606 
kvmclock_reset(struct kvm_vcpu * vcpu)3607 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3608 {
3609 	kvm_gpc_deactivate(&vcpu->arch.pv_time);
3610 	vcpu->arch.time = 0;
3611 }
3612 
kvm_vcpu_flush_tlb_all(struct kvm_vcpu * vcpu)3613 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3614 {
3615 	++vcpu->stat.tlb_flush;
3616 	kvm_x86_call(flush_tlb_all)(vcpu);
3617 
3618 	/* Flushing all ASIDs flushes the current ASID... */
3619 	kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3620 }
3621 
kvm_vcpu_flush_tlb_guest(struct kvm_vcpu * vcpu)3622 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3623 {
3624 	++vcpu->stat.tlb_flush;
3625 
3626 	if (!tdp_enabled) {
3627 		/*
3628 		 * A TLB flush on behalf of the guest is equivalent to
3629 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3630 		 * a forced sync of the shadow page tables.  Ensure all the
3631 		 * roots are synced and the guest TLB in hardware is clean.
3632 		 */
3633 		kvm_mmu_sync_roots(vcpu);
3634 		kvm_mmu_sync_prev_roots(vcpu);
3635 	}
3636 
3637 	kvm_x86_call(flush_tlb_guest)(vcpu);
3638 
3639 	/*
3640 	 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3641 	 * grained flushing.
3642 	 */
3643 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3644 }
3645 
3646 
kvm_vcpu_flush_tlb_current(struct kvm_vcpu * vcpu)3647 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3648 {
3649 	++vcpu->stat.tlb_flush;
3650 	kvm_x86_call(flush_tlb_current)(vcpu);
3651 }
3652 
3653 /*
3654  * Service "local" TLB flush requests, which are specific to the current MMU
3655  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3656  * TLB flushes that are targeted at an MMU context also need to be serviced
3657  * prior before nested VM-Enter/VM-Exit.
3658  */
kvm_service_local_tlb_flush_requests(struct kvm_vcpu * vcpu)3659 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3660 {
3661 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3662 		kvm_vcpu_flush_tlb_current(vcpu);
3663 
3664 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3665 		kvm_vcpu_flush_tlb_guest(vcpu);
3666 }
3667 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3668 
record_steal_time(struct kvm_vcpu * vcpu)3669 static void record_steal_time(struct kvm_vcpu *vcpu)
3670 {
3671 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3672 	struct kvm_steal_time __user *st;
3673 	struct kvm_memslots *slots;
3674 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3675 	u64 steal;
3676 	u32 version;
3677 
3678 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3679 		kvm_xen_runstate_set_running(vcpu);
3680 		return;
3681 	}
3682 
3683 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3684 		return;
3685 
3686 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3687 		return;
3688 
3689 	slots = kvm_memslots(vcpu->kvm);
3690 
3691 	if (unlikely(slots->generation != ghc->generation ||
3692 		     gpa != ghc->gpa ||
3693 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3694 		/* We rely on the fact that it fits in a single page. */
3695 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3696 
3697 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3698 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3699 			return;
3700 	}
3701 
3702 	st = (struct kvm_steal_time __user *)ghc->hva;
3703 	/*
3704 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3705 	 * expensive IPIs.
3706 	 */
3707 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3708 		u8 st_preempted = 0;
3709 		int err = -EFAULT;
3710 
3711 		if (!user_access_begin(st, sizeof(*st)))
3712 			return;
3713 
3714 		asm volatile("1: xchgb %0, %2\n"
3715 			     "xor %1, %1\n"
3716 			     "2:\n"
3717 			     _ASM_EXTABLE_UA(1b, 2b)
3718 			     : "+q" (st_preempted),
3719 			       "+&r" (err),
3720 			       "+m" (st->preempted));
3721 		if (err)
3722 			goto out;
3723 
3724 		user_access_end();
3725 
3726 		vcpu->arch.st.preempted = 0;
3727 
3728 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3729 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3730 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3731 			kvm_vcpu_flush_tlb_guest(vcpu);
3732 
3733 		if (!user_access_begin(st, sizeof(*st)))
3734 			goto dirty;
3735 	} else {
3736 		if (!user_access_begin(st, sizeof(*st)))
3737 			return;
3738 
3739 		unsafe_put_user(0, &st->preempted, out);
3740 		vcpu->arch.st.preempted = 0;
3741 	}
3742 
3743 	unsafe_get_user(version, &st->version, out);
3744 	if (version & 1)
3745 		version += 1;  /* first time write, random junk */
3746 
3747 	version += 1;
3748 	unsafe_put_user(version, &st->version, out);
3749 
3750 	smp_wmb();
3751 
3752 	unsafe_get_user(steal, &st->steal, out);
3753 	steal += current->sched_info.run_delay -
3754 		vcpu->arch.st.last_steal;
3755 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3756 	unsafe_put_user(steal, &st->steal, out);
3757 
3758 	version += 1;
3759 	unsafe_put_user(version, &st->version, out);
3760 
3761  out:
3762 	user_access_end();
3763  dirty:
3764 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3765 }
3766 
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3767 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3768 {
3769 	u32 msr = msr_info->index;
3770 	u64 data = msr_info->data;
3771 
3772 	/*
3773 	 * Do not allow host-initiated writes to trigger the Xen hypercall
3774 	 * page setup; it could incur locking paths which are not expected
3775 	 * if userspace sets the MSR in an unusual location.
3776 	 */
3777 	if (kvm_xen_is_hypercall_page_msr(vcpu->kvm, msr) &&
3778 	    !msr_info->host_initiated)
3779 		return kvm_xen_write_hypercall_page(vcpu, data);
3780 
3781 	switch (msr) {
3782 	case MSR_AMD64_NB_CFG:
3783 	case MSR_IA32_UCODE_WRITE:
3784 	case MSR_VM_HSAVE_PA:
3785 	case MSR_AMD64_PATCH_LOADER:
3786 	case MSR_AMD64_BU_CFG2:
3787 	case MSR_AMD64_DC_CFG:
3788 	case MSR_AMD64_TW_CFG:
3789 	case MSR_F15H_EX_CFG:
3790 		break;
3791 
3792 	case MSR_IA32_UCODE_REV:
3793 		if (msr_info->host_initiated)
3794 			vcpu->arch.microcode_version = data;
3795 		break;
3796 	case MSR_IA32_ARCH_CAPABILITIES:
3797 		if (!msr_info->host_initiated ||
3798 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3799 			return KVM_MSR_RET_UNSUPPORTED;
3800 		vcpu->arch.arch_capabilities = data;
3801 		break;
3802 	case MSR_IA32_PERF_CAPABILITIES:
3803 		if (!msr_info->host_initiated ||
3804 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM))
3805 			return KVM_MSR_RET_UNSUPPORTED;
3806 
3807 		if (data & ~kvm_caps.supported_perf_cap)
3808 			return 1;
3809 
3810 		/*
3811 		 * Note, this is not just a performance optimization!  KVM
3812 		 * disallows changing feature MSRs after the vCPU has run; PMU
3813 		 * refresh will bug the VM if called after the vCPU has run.
3814 		 */
3815 		if (vcpu->arch.perf_capabilities == data)
3816 			break;
3817 
3818 		vcpu->arch.perf_capabilities = data;
3819 		kvm_pmu_refresh(vcpu);
3820 		break;
3821 	case MSR_IA32_PRED_CMD: {
3822 		u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3823 
3824 		if (!msr_info->host_initiated) {
3825 			if ((!guest_has_pred_cmd_msr(vcpu)))
3826 				return 1;
3827 
3828 			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3829 			    !guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_IBPB))
3830 				reserved_bits |= PRED_CMD_IBPB;
3831 
3832 			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SBPB))
3833 				reserved_bits |= PRED_CMD_SBPB;
3834 		}
3835 
3836 		if (!boot_cpu_has(X86_FEATURE_IBPB))
3837 			reserved_bits |= PRED_CMD_IBPB;
3838 
3839 		if (!boot_cpu_has(X86_FEATURE_SBPB))
3840 			reserved_bits |= PRED_CMD_SBPB;
3841 
3842 		if (data & reserved_bits)
3843 			return 1;
3844 
3845 		if (!data)
3846 			break;
3847 
3848 		wrmsrq(MSR_IA32_PRED_CMD, data);
3849 		break;
3850 	}
3851 	case MSR_IA32_FLUSH_CMD:
3852 		if (!msr_info->host_initiated &&
3853 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D))
3854 			return 1;
3855 
3856 		if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3857 			return 1;
3858 		if (!data)
3859 			break;
3860 
3861 		wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3862 		break;
3863 	case MSR_EFER:
3864 		return set_efer(vcpu, msr_info);
3865 	case MSR_K7_HWCR:
3866 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3867 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3868 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3869 
3870 		/*
3871 		 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3872 		 * through at least v6.6 whine if TscFreqSel is clear,
3873 		 * depending on F/M/S.
3874 		 */
3875 		if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
3876 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3877 			return 1;
3878 		}
3879 		vcpu->arch.msr_hwcr = data;
3880 		break;
3881 	case MSR_FAM10H_MMIO_CONF_BASE:
3882 		if (data != 0) {
3883 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3884 			return 1;
3885 		}
3886 		break;
3887 	case MSR_IA32_CR_PAT:
3888 		if (!kvm_pat_valid(data))
3889 			return 1;
3890 
3891 		vcpu->arch.pat = data;
3892 		break;
3893 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3894 	case MSR_MTRRdefType:
3895 		return kvm_mtrr_set_msr(vcpu, msr, data);
3896 	case MSR_IA32_APICBASE:
3897 		return kvm_apic_set_base(vcpu, data, msr_info->host_initiated);
3898 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3899 		return kvm_x2apic_msr_write(vcpu, msr, data);
3900 	case MSR_IA32_TSC_DEADLINE:
3901 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3902 		break;
3903 	case MSR_IA32_TSC_ADJUST:
3904 		if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3905 			if (!msr_info->host_initiated) {
3906 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3907 				adjust_tsc_offset_guest(vcpu, adj);
3908 				/* Before back to guest, tsc_timestamp must be adjusted
3909 				 * as well, otherwise guest's percpu pvclock time could jump.
3910 				 */
3911 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3912 			}
3913 			vcpu->arch.ia32_tsc_adjust_msr = data;
3914 		}
3915 		break;
3916 	case MSR_IA32_MISC_ENABLE: {
3917 		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3918 
3919 		if (!msr_info->host_initiated) {
3920 			/* RO bits */
3921 			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3922 				return 1;
3923 
3924 			/* R bits, i.e. writes are ignored, but don't fault. */
3925 			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3926 			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3927 		}
3928 
3929 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3930 		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3931 			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XMM3))
3932 				return 1;
3933 			vcpu->arch.ia32_misc_enable_msr = data;
3934 			vcpu->arch.cpuid_dynamic_bits_dirty = true;
3935 		} else {
3936 			vcpu->arch.ia32_misc_enable_msr = data;
3937 		}
3938 		break;
3939 	}
3940 	case MSR_IA32_SMBASE:
3941 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3942 			return 1;
3943 		vcpu->arch.smbase = data;
3944 		break;
3945 	case MSR_IA32_POWER_CTL:
3946 		vcpu->arch.msr_ia32_power_ctl = data;
3947 		break;
3948 	case MSR_IA32_TSC:
3949 		if (msr_info->host_initiated) {
3950 			kvm_synchronize_tsc(vcpu, &data);
3951 		} else if (!vcpu->arch.guest_tsc_protected) {
3952 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3953 			adjust_tsc_offset_guest(vcpu, adj);
3954 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3955 		}
3956 		break;
3957 	case MSR_IA32_XSS:
3958 		if (!msr_info->host_initiated &&
3959 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3960 			return 1;
3961 		/*
3962 		 * KVM supports exposing PT to the guest, but does not support
3963 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3964 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3965 		 */
3966 		if (data & ~kvm_caps.supported_xss)
3967 			return 1;
3968 		vcpu->arch.ia32_xss = data;
3969 		vcpu->arch.cpuid_dynamic_bits_dirty = true;
3970 		break;
3971 	case MSR_SMI_COUNT:
3972 		if (!msr_info->host_initiated)
3973 			return 1;
3974 		vcpu->arch.smi_count = data;
3975 		break;
3976 	case MSR_KVM_WALL_CLOCK_NEW:
3977 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3978 			return 1;
3979 
3980 		vcpu->kvm->arch.wall_clock = data;
3981 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3982 		break;
3983 	case MSR_KVM_WALL_CLOCK:
3984 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3985 			return 1;
3986 
3987 		vcpu->kvm->arch.wall_clock = data;
3988 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3989 		break;
3990 	case MSR_KVM_SYSTEM_TIME_NEW:
3991 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3992 			return 1;
3993 
3994 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3995 		break;
3996 	case MSR_KVM_SYSTEM_TIME:
3997 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3998 			return 1;
3999 
4000 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
4001 		break;
4002 	case MSR_KVM_ASYNC_PF_EN:
4003 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4004 			return 1;
4005 
4006 		if (kvm_pv_enable_async_pf(vcpu, data))
4007 			return 1;
4008 		break;
4009 	case MSR_KVM_ASYNC_PF_INT:
4010 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4011 			return 1;
4012 
4013 		if (kvm_pv_enable_async_pf_int(vcpu, data))
4014 			return 1;
4015 		break;
4016 	case MSR_KVM_ASYNC_PF_ACK:
4017 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4018 			return 1;
4019 		if (data & 0x1) {
4020 			vcpu->arch.apf.pageready_pending = false;
4021 			kvm_check_async_pf_completion(vcpu);
4022 		}
4023 		break;
4024 	case MSR_KVM_STEAL_TIME:
4025 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4026 			return 1;
4027 
4028 		if (unlikely(!sched_info_on()))
4029 			return 1;
4030 
4031 		if (data & KVM_STEAL_RESERVED_MASK)
4032 			return 1;
4033 
4034 		vcpu->arch.st.msr_val = data;
4035 
4036 		if (!(data & KVM_MSR_ENABLED))
4037 			break;
4038 
4039 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4040 
4041 		break;
4042 	case MSR_KVM_PV_EOI_EN:
4043 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4044 			return 1;
4045 
4046 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
4047 			return 1;
4048 		break;
4049 
4050 	case MSR_KVM_POLL_CONTROL:
4051 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4052 			return 1;
4053 
4054 		/* only enable bit supported */
4055 		if (data & (-1ULL << 1))
4056 			return 1;
4057 
4058 		vcpu->arch.msr_kvm_poll_control = data;
4059 		break;
4060 
4061 	case MSR_IA32_MCG_CTL:
4062 	case MSR_IA32_MCG_STATUS:
4063 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4064 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4065 		return set_msr_mce(vcpu, msr_info);
4066 
4067 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4068 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4069 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4070 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4071 		if (kvm_pmu_is_valid_msr(vcpu, msr))
4072 			return kvm_pmu_set_msr(vcpu, msr_info);
4073 
4074 		if (data)
4075 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4076 		break;
4077 	case MSR_K7_CLK_CTL:
4078 		/*
4079 		 * Ignore all writes to this no longer documented MSR.
4080 		 * Writes are only relevant for old K7 processors,
4081 		 * all pre-dating SVM, but a recommended workaround from
4082 		 * AMD for these chips. It is possible to specify the
4083 		 * affected processor models on the command line, hence
4084 		 * the need to ignore the workaround.
4085 		 */
4086 		break;
4087 #ifdef CONFIG_KVM_HYPERV
4088 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4089 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4090 	case HV_X64_MSR_SYNDBG_OPTIONS:
4091 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4092 	case HV_X64_MSR_CRASH_CTL:
4093 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4094 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4095 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4096 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4097 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4098 		return kvm_hv_set_msr_common(vcpu, msr, data,
4099 					     msr_info->host_initiated);
4100 #endif
4101 	case MSR_IA32_BBL_CR_CTL3:
4102 		/* Drop writes to this legacy MSR -- see rdmsr
4103 		 * counterpart for further detail.
4104 		 */
4105 		kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4106 		break;
4107 	case MSR_AMD64_OSVW_ID_LENGTH:
4108 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4109 			return 1;
4110 		vcpu->arch.osvw.length = data;
4111 		break;
4112 	case MSR_AMD64_OSVW_STATUS:
4113 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4114 			return 1;
4115 		vcpu->arch.osvw.status = data;
4116 		break;
4117 	case MSR_PLATFORM_INFO:
4118 		if (!msr_info->host_initiated)
4119 			return 1;
4120 		vcpu->arch.msr_platform_info = data;
4121 		break;
4122 	case MSR_MISC_FEATURES_ENABLES:
4123 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4124 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4125 		     !supports_cpuid_fault(vcpu)))
4126 			return 1;
4127 		vcpu->arch.msr_misc_features_enables = data;
4128 		break;
4129 #ifdef CONFIG_X86_64
4130 	case MSR_IA32_XFD:
4131 		if (!msr_info->host_initiated &&
4132 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4133 			return 1;
4134 
4135 		if (data & ~kvm_guest_supported_xfd(vcpu))
4136 			return 1;
4137 
4138 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4139 		break;
4140 	case MSR_IA32_XFD_ERR:
4141 		if (!msr_info->host_initiated &&
4142 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4143 			return 1;
4144 
4145 		if (data & ~kvm_guest_supported_xfd(vcpu))
4146 			return 1;
4147 
4148 		vcpu->arch.guest_fpu.xfd_err = data;
4149 		break;
4150 #endif
4151 	default:
4152 		if (kvm_pmu_is_valid_msr(vcpu, msr))
4153 			return kvm_pmu_set_msr(vcpu, msr_info);
4154 
4155 		return KVM_MSR_RET_UNSUPPORTED;
4156 	}
4157 	return 0;
4158 }
4159 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4160 
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)4161 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4162 {
4163 	u64 data;
4164 	u64 mcg_cap = vcpu->arch.mcg_cap;
4165 	unsigned bank_num = mcg_cap & 0xff;
4166 	u32 offset, last_msr;
4167 
4168 	switch (msr) {
4169 	case MSR_IA32_P5_MC_ADDR:
4170 	case MSR_IA32_P5_MC_TYPE:
4171 		data = 0;
4172 		break;
4173 	case MSR_IA32_MCG_CAP:
4174 		data = vcpu->arch.mcg_cap;
4175 		break;
4176 	case MSR_IA32_MCG_CTL:
4177 		if (!(mcg_cap & MCG_CTL_P) && !host)
4178 			return 1;
4179 		data = vcpu->arch.mcg_ctl;
4180 		break;
4181 	case MSR_IA32_MCG_STATUS:
4182 		data = vcpu->arch.mcg_status;
4183 		break;
4184 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4185 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4186 		if (msr > last_msr)
4187 			return 1;
4188 
4189 		if (!(mcg_cap & MCG_CMCI_P) && !host)
4190 			return 1;
4191 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4192 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
4193 		data = vcpu->arch.mci_ctl2_banks[offset];
4194 		break;
4195 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4196 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4197 		if (msr > last_msr)
4198 			return 1;
4199 
4200 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4201 					    last_msr + 1 - MSR_IA32_MC0_CTL);
4202 		data = vcpu->arch.mce_banks[offset];
4203 		break;
4204 	default:
4205 		return 1;
4206 	}
4207 	*pdata = data;
4208 	return 0;
4209 }
4210 
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)4211 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4212 {
4213 	switch (msr_info->index) {
4214 	case MSR_IA32_PLATFORM_ID:
4215 	case MSR_IA32_EBL_CR_POWERON:
4216 	case MSR_IA32_LASTBRANCHFROMIP:
4217 	case MSR_IA32_LASTBRANCHTOIP:
4218 	case MSR_IA32_LASTINTFROMIP:
4219 	case MSR_IA32_LASTINTTOIP:
4220 	case MSR_AMD64_SYSCFG:
4221 	case MSR_K8_TSEG_ADDR:
4222 	case MSR_K8_TSEG_MASK:
4223 	case MSR_VM_HSAVE_PA:
4224 	case MSR_K8_INT_PENDING_MSG:
4225 	case MSR_AMD64_NB_CFG:
4226 	case MSR_FAM10H_MMIO_CONF_BASE:
4227 	case MSR_AMD64_BU_CFG2:
4228 	case MSR_IA32_PERF_CTL:
4229 	case MSR_AMD64_DC_CFG:
4230 	case MSR_AMD64_TW_CFG:
4231 	case MSR_F15H_EX_CFG:
4232 	/*
4233 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4234 	 * limit) MSRs. Just return 0, as we do not want to expose the host
4235 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
4236 	 * so for existing CPU-specific MSRs.
4237 	 */
4238 	case MSR_RAPL_POWER_UNIT:
4239 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
4240 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
4241 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
4242 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
4243 		msr_info->data = 0;
4244 		break;
4245 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4246 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4247 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4248 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4249 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4250 			return kvm_pmu_get_msr(vcpu, msr_info);
4251 		msr_info->data = 0;
4252 		break;
4253 	case MSR_IA32_UCODE_REV:
4254 		msr_info->data = vcpu->arch.microcode_version;
4255 		break;
4256 	case MSR_IA32_ARCH_CAPABILITIES:
4257 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4258 			return KVM_MSR_RET_UNSUPPORTED;
4259 		msr_info->data = vcpu->arch.arch_capabilities;
4260 		break;
4261 	case MSR_IA32_PERF_CAPABILITIES:
4262 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM))
4263 			return KVM_MSR_RET_UNSUPPORTED;
4264 		msr_info->data = vcpu->arch.perf_capabilities;
4265 		break;
4266 	case MSR_IA32_POWER_CTL:
4267 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4268 		break;
4269 	case MSR_IA32_TSC: {
4270 		/*
4271 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4272 		 * even when not intercepted. AMD manual doesn't explicitly
4273 		 * state this but appears to behave the same.
4274 		 *
4275 		 * On userspace reads and writes, however, we unconditionally
4276 		 * return L1's TSC value to ensure backwards-compatible
4277 		 * behavior for migration.
4278 		 */
4279 		u64 offset, ratio;
4280 
4281 		if (msr_info->host_initiated) {
4282 			offset = vcpu->arch.l1_tsc_offset;
4283 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
4284 		} else {
4285 			offset = vcpu->arch.tsc_offset;
4286 			ratio = vcpu->arch.tsc_scaling_ratio;
4287 		}
4288 
4289 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4290 		break;
4291 	}
4292 	case MSR_IA32_CR_PAT:
4293 		msr_info->data = vcpu->arch.pat;
4294 		break;
4295 	case MSR_MTRRcap:
4296 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4297 	case MSR_MTRRdefType:
4298 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4299 	case 0xcd: /* fsb frequency */
4300 		msr_info->data = 3;
4301 		break;
4302 		/*
4303 		 * MSR_EBC_FREQUENCY_ID
4304 		 * Conservative value valid for even the basic CPU models.
4305 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4306 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4307 		 * and 266MHz for model 3, or 4. Set Core Clock
4308 		 * Frequency to System Bus Frequency Ratio to 1 (bits
4309 		 * 31:24) even though these are only valid for CPU
4310 		 * models > 2, however guests may end up dividing or
4311 		 * multiplying by zero otherwise.
4312 		 */
4313 	case MSR_EBC_FREQUENCY_ID:
4314 		msr_info->data = 1 << 24;
4315 		break;
4316 	case MSR_IA32_APICBASE:
4317 		msr_info->data = vcpu->arch.apic_base;
4318 		break;
4319 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4320 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4321 	case MSR_IA32_TSC_DEADLINE:
4322 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4323 		break;
4324 	case MSR_IA32_TSC_ADJUST:
4325 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4326 		break;
4327 	case MSR_IA32_MISC_ENABLE:
4328 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4329 		break;
4330 	case MSR_IA32_SMBASE:
4331 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4332 			return 1;
4333 		msr_info->data = vcpu->arch.smbase;
4334 		break;
4335 	case MSR_SMI_COUNT:
4336 		msr_info->data = vcpu->arch.smi_count;
4337 		break;
4338 	case MSR_IA32_PERF_STATUS:
4339 		/* TSC increment by tick */
4340 		msr_info->data = 1000ULL;
4341 		/* CPU multiplier */
4342 		msr_info->data |= (((uint64_t)4ULL) << 40);
4343 		break;
4344 	case MSR_EFER:
4345 		msr_info->data = vcpu->arch.efer;
4346 		break;
4347 	case MSR_KVM_WALL_CLOCK:
4348 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4349 			return 1;
4350 
4351 		msr_info->data = vcpu->kvm->arch.wall_clock;
4352 		break;
4353 	case MSR_KVM_WALL_CLOCK_NEW:
4354 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4355 			return 1;
4356 
4357 		msr_info->data = vcpu->kvm->arch.wall_clock;
4358 		break;
4359 	case MSR_KVM_SYSTEM_TIME:
4360 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4361 			return 1;
4362 
4363 		msr_info->data = vcpu->arch.time;
4364 		break;
4365 	case MSR_KVM_SYSTEM_TIME_NEW:
4366 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4367 			return 1;
4368 
4369 		msr_info->data = vcpu->arch.time;
4370 		break;
4371 	case MSR_KVM_ASYNC_PF_EN:
4372 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4373 			return 1;
4374 
4375 		msr_info->data = vcpu->arch.apf.msr_en_val;
4376 		break;
4377 	case MSR_KVM_ASYNC_PF_INT:
4378 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4379 			return 1;
4380 
4381 		msr_info->data = vcpu->arch.apf.msr_int_val;
4382 		break;
4383 	case MSR_KVM_ASYNC_PF_ACK:
4384 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4385 			return 1;
4386 
4387 		msr_info->data = 0;
4388 		break;
4389 	case MSR_KVM_STEAL_TIME:
4390 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4391 			return 1;
4392 
4393 		msr_info->data = vcpu->arch.st.msr_val;
4394 		break;
4395 	case MSR_KVM_PV_EOI_EN:
4396 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4397 			return 1;
4398 
4399 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4400 		break;
4401 	case MSR_KVM_POLL_CONTROL:
4402 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4403 			return 1;
4404 
4405 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4406 		break;
4407 	case MSR_IA32_P5_MC_ADDR:
4408 	case MSR_IA32_P5_MC_TYPE:
4409 	case MSR_IA32_MCG_CAP:
4410 	case MSR_IA32_MCG_CTL:
4411 	case MSR_IA32_MCG_STATUS:
4412 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4413 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4414 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4415 				   msr_info->host_initiated);
4416 	case MSR_IA32_XSS:
4417 		if (!msr_info->host_initiated &&
4418 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4419 			return 1;
4420 		msr_info->data = vcpu->arch.ia32_xss;
4421 		break;
4422 	case MSR_K7_CLK_CTL:
4423 		/*
4424 		 * Provide expected ramp-up count for K7. All other
4425 		 * are set to zero, indicating minimum divisors for
4426 		 * every field.
4427 		 *
4428 		 * This prevents guest kernels on AMD host with CPU
4429 		 * type 6, model 8 and higher from exploding due to
4430 		 * the rdmsr failing.
4431 		 */
4432 		msr_info->data = 0x20000000;
4433 		break;
4434 #ifdef CONFIG_KVM_HYPERV
4435 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4436 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4437 	case HV_X64_MSR_SYNDBG_OPTIONS:
4438 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4439 	case HV_X64_MSR_CRASH_CTL:
4440 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4441 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4442 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4443 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4444 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4445 		return kvm_hv_get_msr_common(vcpu,
4446 					     msr_info->index, &msr_info->data,
4447 					     msr_info->host_initiated);
4448 #endif
4449 	case MSR_IA32_BBL_CR_CTL3:
4450 		/* This legacy MSR exists but isn't fully documented in current
4451 		 * silicon.  It is however accessed by winxp in very narrow
4452 		 * scenarios where it sets bit #19, itself documented as
4453 		 * a "reserved" bit.  Best effort attempt to source coherent
4454 		 * read data here should the balance of the register be
4455 		 * interpreted by the guest:
4456 		 *
4457 		 * L2 cache control register 3: 64GB range, 256KB size,
4458 		 * enabled, latency 0x1, configured
4459 		 */
4460 		msr_info->data = 0xbe702111;
4461 		break;
4462 	case MSR_AMD64_OSVW_ID_LENGTH:
4463 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4464 			return 1;
4465 		msr_info->data = vcpu->arch.osvw.length;
4466 		break;
4467 	case MSR_AMD64_OSVW_STATUS:
4468 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4469 			return 1;
4470 		msr_info->data = vcpu->arch.osvw.status;
4471 		break;
4472 	case MSR_PLATFORM_INFO:
4473 		if (!msr_info->host_initiated &&
4474 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4475 			return 1;
4476 		msr_info->data = vcpu->arch.msr_platform_info;
4477 		break;
4478 	case MSR_MISC_FEATURES_ENABLES:
4479 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4480 		break;
4481 	case MSR_K7_HWCR:
4482 		msr_info->data = vcpu->arch.msr_hwcr;
4483 		break;
4484 #ifdef CONFIG_X86_64
4485 	case MSR_IA32_XFD:
4486 		if (!msr_info->host_initiated &&
4487 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4488 			return 1;
4489 
4490 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4491 		break;
4492 	case MSR_IA32_XFD_ERR:
4493 		if (!msr_info->host_initiated &&
4494 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4495 			return 1;
4496 
4497 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4498 		break;
4499 #endif
4500 	default:
4501 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4502 			return kvm_pmu_get_msr(vcpu, msr_info);
4503 
4504 		return KVM_MSR_RET_UNSUPPORTED;
4505 	}
4506 	return 0;
4507 }
4508 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4509 
4510 /*
4511  * Read or write a bunch of msrs. All parameters are kernel addresses.
4512  *
4513  * @return number of msrs set successfully.
4514  */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))4515 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4516 		    struct kvm_msr_entry *entries,
4517 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4518 				  unsigned index, u64 *data))
4519 {
4520 	int i;
4521 
4522 	for (i = 0; i < msrs->nmsrs; ++i)
4523 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4524 			break;
4525 
4526 	return i;
4527 }
4528 
4529 /*
4530  * Read or write a bunch of msrs. Parameters are user addresses.
4531  *
4532  * @return number of msrs set successfully.
4533  */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)4534 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4535 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4536 				unsigned index, u64 *data),
4537 		  int writeback)
4538 {
4539 	struct kvm_msrs msrs;
4540 	struct kvm_msr_entry *entries;
4541 	unsigned size;
4542 	int r;
4543 
4544 	r = -EFAULT;
4545 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4546 		goto out;
4547 
4548 	r = -E2BIG;
4549 	if (msrs.nmsrs >= MAX_IO_MSRS)
4550 		goto out;
4551 
4552 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4553 	entries = memdup_user(user_msrs->entries, size);
4554 	if (IS_ERR(entries)) {
4555 		r = PTR_ERR(entries);
4556 		goto out;
4557 	}
4558 
4559 	r = __msr_io(vcpu, &msrs, entries, do_msr);
4560 
4561 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4562 		r = -EFAULT;
4563 
4564 	kfree(entries);
4565 out:
4566 	return r;
4567 }
4568 
kvm_can_mwait_in_guest(void)4569 static inline bool kvm_can_mwait_in_guest(void)
4570 {
4571 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4572 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4573 		boot_cpu_has(X86_FEATURE_ARAT);
4574 }
4575 
kvm_get_allowed_disable_exits(void)4576 static u64 kvm_get_allowed_disable_exits(void)
4577 {
4578 	u64 r = KVM_X86_DISABLE_EXITS_PAUSE;
4579 
4580 	if (!mitigate_smt_rsb) {
4581 		r |= KVM_X86_DISABLE_EXITS_HLT |
4582 			KVM_X86_DISABLE_EXITS_CSTATE;
4583 
4584 		if (kvm_can_mwait_in_guest())
4585 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
4586 	}
4587 	return r;
4588 }
4589 
4590 #ifdef CONFIG_KVM_HYPERV
kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 __user * cpuid_arg)4591 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4592 					    struct kvm_cpuid2 __user *cpuid_arg)
4593 {
4594 	struct kvm_cpuid2 cpuid;
4595 	int r;
4596 
4597 	r = -EFAULT;
4598 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4599 		return r;
4600 
4601 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4602 	if (r)
4603 		return r;
4604 
4605 	r = -EFAULT;
4606 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4607 		return r;
4608 
4609 	return 0;
4610 }
4611 #endif
4612 
kvm_is_vm_type_supported(unsigned long type)4613 static bool kvm_is_vm_type_supported(unsigned long type)
4614 {
4615 	return type < 32 && (kvm_caps.supported_vm_types & BIT(type));
4616 }
4617 
kvm_sync_valid_fields(struct kvm * kvm)4618 static inline u64 kvm_sync_valid_fields(struct kvm *kvm)
4619 {
4620 	return kvm && kvm->arch.has_protected_state ? 0 : KVM_SYNC_X86_VALID_FIELDS;
4621 }
4622 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)4623 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4624 {
4625 	int r = 0;
4626 
4627 	switch (ext) {
4628 	case KVM_CAP_IRQCHIP:
4629 	case KVM_CAP_HLT:
4630 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4631 	case KVM_CAP_SET_TSS_ADDR:
4632 	case KVM_CAP_EXT_CPUID:
4633 	case KVM_CAP_EXT_EMUL_CPUID:
4634 	case KVM_CAP_CLOCKSOURCE:
4635 	case KVM_CAP_PIT:
4636 	case KVM_CAP_NOP_IO_DELAY:
4637 	case KVM_CAP_MP_STATE:
4638 	case KVM_CAP_SYNC_MMU:
4639 	case KVM_CAP_USER_NMI:
4640 	case KVM_CAP_REINJECT_CONTROL:
4641 	case KVM_CAP_IRQ_INJECT_STATUS:
4642 	case KVM_CAP_IOEVENTFD:
4643 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4644 	case KVM_CAP_PIT2:
4645 	case KVM_CAP_PIT_STATE2:
4646 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4647 	case KVM_CAP_VCPU_EVENTS:
4648 #ifdef CONFIG_KVM_HYPERV
4649 	case KVM_CAP_HYPERV:
4650 	case KVM_CAP_HYPERV_VAPIC:
4651 	case KVM_CAP_HYPERV_SPIN:
4652 	case KVM_CAP_HYPERV_TIME:
4653 	case KVM_CAP_HYPERV_SYNIC:
4654 	case KVM_CAP_HYPERV_SYNIC2:
4655 	case KVM_CAP_HYPERV_VP_INDEX:
4656 	case KVM_CAP_HYPERV_EVENTFD:
4657 	case KVM_CAP_HYPERV_TLBFLUSH:
4658 	case KVM_CAP_HYPERV_SEND_IPI:
4659 	case KVM_CAP_HYPERV_CPUID:
4660 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4661 	case KVM_CAP_SYS_HYPERV_CPUID:
4662 #endif
4663 	case KVM_CAP_PCI_SEGMENT:
4664 	case KVM_CAP_DEBUGREGS:
4665 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4666 	case KVM_CAP_XSAVE:
4667 	case KVM_CAP_ASYNC_PF:
4668 	case KVM_CAP_ASYNC_PF_INT:
4669 	case KVM_CAP_GET_TSC_KHZ:
4670 	case KVM_CAP_KVMCLOCK_CTRL:
4671 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4672 	case KVM_CAP_TSC_DEADLINE_TIMER:
4673 	case KVM_CAP_DISABLE_QUIRKS:
4674 	case KVM_CAP_SET_BOOT_CPU_ID:
4675  	case KVM_CAP_SPLIT_IRQCHIP:
4676 	case KVM_CAP_IMMEDIATE_EXIT:
4677 	case KVM_CAP_PMU_EVENT_FILTER:
4678 	case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4679 	case KVM_CAP_GET_MSR_FEATURES:
4680 	case KVM_CAP_MSR_PLATFORM_INFO:
4681 	case KVM_CAP_EXCEPTION_PAYLOAD:
4682 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4683 	case KVM_CAP_SET_GUEST_DEBUG:
4684 	case KVM_CAP_LAST_CPU:
4685 	case KVM_CAP_X86_USER_SPACE_MSR:
4686 	case KVM_CAP_X86_MSR_FILTER:
4687 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4688 #ifdef CONFIG_X86_SGX_KVM
4689 	case KVM_CAP_SGX_ATTRIBUTE:
4690 #endif
4691 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4692 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4693 	case KVM_CAP_SREGS2:
4694 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4695 	case KVM_CAP_VCPU_ATTRIBUTES:
4696 	case KVM_CAP_SYS_ATTRIBUTES:
4697 	case KVM_CAP_VAPIC:
4698 	case KVM_CAP_ENABLE_CAP:
4699 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4700 	case KVM_CAP_IRQFD_RESAMPLE:
4701 	case KVM_CAP_MEMORY_FAULT_INFO:
4702 	case KVM_CAP_X86_GUEST_MODE:
4703 		r = 1;
4704 		break;
4705 	case KVM_CAP_PRE_FAULT_MEMORY:
4706 		r = tdp_enabled;
4707 		break;
4708 	case KVM_CAP_X86_APIC_BUS_CYCLES_NS:
4709 		r = APIC_BUS_CYCLE_NS_DEFAULT;
4710 		break;
4711 	case KVM_CAP_EXIT_HYPERCALL:
4712 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4713 		break;
4714 	case KVM_CAP_SET_GUEST_DEBUG2:
4715 		return KVM_GUESTDBG_VALID_MASK;
4716 #ifdef CONFIG_KVM_XEN
4717 	case KVM_CAP_XEN_HVM:
4718 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4719 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4720 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4721 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4722 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
4723 		    KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE |
4724 		    KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA;
4725 		if (sched_info_on())
4726 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4727 			     KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4728 		break;
4729 #endif
4730 	case KVM_CAP_SYNC_REGS:
4731 		r = kvm_sync_valid_fields(kvm);
4732 		break;
4733 	case KVM_CAP_ADJUST_CLOCK:
4734 		r = KVM_CLOCK_VALID_FLAGS;
4735 		break;
4736 	case KVM_CAP_X86_DISABLE_EXITS:
4737 		r = kvm_get_allowed_disable_exits();
4738 		break;
4739 	case KVM_CAP_X86_SMM:
4740 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4741 			break;
4742 
4743 		/* SMBASE is usually relocated above 1M on modern chipsets,
4744 		 * and SMM handlers might indeed rely on 4G segment limits,
4745 		 * so do not report SMM to be available if real mode is
4746 		 * emulated via vm86 mode.  Still, do not go to great lengths
4747 		 * to avoid userspace's usage of the feature, because it is a
4748 		 * fringe case that is not enabled except via specific settings
4749 		 * of the module parameters.
4750 		 */
4751 		r = kvm_x86_call(has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4752 		break;
4753 	case KVM_CAP_NR_VCPUS:
4754 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4755 		break;
4756 	case KVM_CAP_MAX_VCPUS:
4757 		r = KVM_MAX_VCPUS;
4758 		if (kvm)
4759 			r = kvm->max_vcpus;
4760 		break;
4761 	case KVM_CAP_MAX_VCPU_ID:
4762 		r = KVM_MAX_VCPU_IDS;
4763 		break;
4764 	case KVM_CAP_PV_MMU:	/* obsolete */
4765 		r = 0;
4766 		break;
4767 	case KVM_CAP_MCE:
4768 		r = KVM_MAX_MCE_BANKS;
4769 		break;
4770 	case KVM_CAP_XCRS:
4771 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4772 		break;
4773 	case KVM_CAP_TSC_CONTROL:
4774 	case KVM_CAP_VM_TSC_CONTROL:
4775 		r = kvm_caps.has_tsc_control;
4776 		break;
4777 	case KVM_CAP_X2APIC_API:
4778 		r = KVM_X2APIC_API_VALID_FLAGS;
4779 		break;
4780 	case KVM_CAP_NESTED_STATE:
4781 		r = kvm_x86_ops.nested_ops->get_state ?
4782 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4783 		break;
4784 #ifdef CONFIG_KVM_HYPERV
4785 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4786 		r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4787 		break;
4788 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4789 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4790 		break;
4791 #endif
4792 	case KVM_CAP_SMALLER_MAXPHYADDR:
4793 		r = (int) allow_smaller_maxphyaddr;
4794 		break;
4795 	case KVM_CAP_STEAL_TIME:
4796 		r = sched_info_on();
4797 		break;
4798 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4799 		if (kvm_caps.has_bus_lock_exit)
4800 			r = KVM_BUS_LOCK_DETECTION_OFF |
4801 			    KVM_BUS_LOCK_DETECTION_EXIT;
4802 		else
4803 			r = 0;
4804 		break;
4805 	case KVM_CAP_XSAVE2: {
4806 		r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4807 		if (r < sizeof(struct kvm_xsave))
4808 			r = sizeof(struct kvm_xsave);
4809 		break;
4810 	}
4811 	case KVM_CAP_PMU_CAPABILITY:
4812 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4813 		break;
4814 	case KVM_CAP_DISABLE_QUIRKS2:
4815 		r = kvm_caps.supported_quirks;
4816 		break;
4817 	case KVM_CAP_X86_NOTIFY_VMEXIT:
4818 		r = kvm_caps.has_notify_vmexit;
4819 		break;
4820 	case KVM_CAP_VM_TYPES:
4821 		r = kvm_caps.supported_vm_types;
4822 		break;
4823 	case KVM_CAP_READONLY_MEM:
4824 		r = kvm ? kvm_arch_has_readonly_mem(kvm) : 1;
4825 		break;
4826 	default:
4827 		break;
4828 	}
4829 	return r;
4830 }
4831 
__kvm_x86_dev_get_attr(struct kvm_device_attr * attr,u64 * val)4832 static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val)
4833 {
4834 	if (attr->group) {
4835 		if (kvm_x86_ops.dev_get_attr)
4836 			return kvm_x86_call(dev_get_attr)(attr->group, attr->attr, val);
4837 		return -ENXIO;
4838 	}
4839 
4840 	switch (attr->attr) {
4841 	case KVM_X86_XCOMP_GUEST_SUPP:
4842 		*val = kvm_caps.supported_xcr0;
4843 		return 0;
4844 	default:
4845 		return -ENXIO;
4846 	}
4847 }
4848 
kvm_x86_dev_get_attr(struct kvm_device_attr * attr)4849 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4850 {
4851 	u64 __user *uaddr = u64_to_user_ptr(attr->addr);
4852 	int r;
4853 	u64 val;
4854 
4855 	r = __kvm_x86_dev_get_attr(attr, &val);
4856 	if (r < 0)
4857 		return r;
4858 
4859 	if (put_user(val, uaddr))
4860 		return -EFAULT;
4861 
4862 	return 0;
4863 }
4864 
kvm_x86_dev_has_attr(struct kvm_device_attr * attr)4865 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4866 {
4867 	u64 val;
4868 
4869 	return __kvm_x86_dev_get_attr(attr, &val);
4870 }
4871 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4872 long kvm_arch_dev_ioctl(struct file *filp,
4873 			unsigned int ioctl, unsigned long arg)
4874 {
4875 	void __user *argp = (void __user *)arg;
4876 	long r;
4877 
4878 	switch (ioctl) {
4879 	case KVM_GET_MSR_INDEX_LIST: {
4880 		struct kvm_msr_list __user *user_msr_list = argp;
4881 		struct kvm_msr_list msr_list;
4882 		unsigned n;
4883 
4884 		r = -EFAULT;
4885 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4886 			goto out;
4887 		n = msr_list.nmsrs;
4888 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4889 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4890 			goto out;
4891 		r = -E2BIG;
4892 		if (n < msr_list.nmsrs)
4893 			goto out;
4894 		r = -EFAULT;
4895 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4896 				 num_msrs_to_save * sizeof(u32)))
4897 			goto out;
4898 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4899 				 &emulated_msrs,
4900 				 num_emulated_msrs * sizeof(u32)))
4901 			goto out;
4902 		r = 0;
4903 		break;
4904 	}
4905 	case KVM_GET_SUPPORTED_CPUID:
4906 	case KVM_GET_EMULATED_CPUID: {
4907 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4908 		struct kvm_cpuid2 cpuid;
4909 
4910 		r = -EFAULT;
4911 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4912 			goto out;
4913 
4914 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4915 					    ioctl);
4916 		if (r)
4917 			goto out;
4918 
4919 		r = -EFAULT;
4920 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4921 			goto out;
4922 		r = 0;
4923 		break;
4924 	}
4925 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4926 		r = -EFAULT;
4927 		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4928 				 sizeof(kvm_caps.supported_mce_cap)))
4929 			goto out;
4930 		r = 0;
4931 		break;
4932 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4933 		struct kvm_msr_list __user *user_msr_list = argp;
4934 		struct kvm_msr_list msr_list;
4935 		unsigned int n;
4936 
4937 		r = -EFAULT;
4938 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4939 			goto out;
4940 		n = msr_list.nmsrs;
4941 		msr_list.nmsrs = num_msr_based_features;
4942 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4943 			goto out;
4944 		r = -E2BIG;
4945 		if (n < msr_list.nmsrs)
4946 			goto out;
4947 		r = -EFAULT;
4948 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4949 				 num_msr_based_features * sizeof(u32)))
4950 			goto out;
4951 		r = 0;
4952 		break;
4953 	}
4954 	case KVM_GET_MSRS:
4955 		r = msr_io(NULL, argp, do_get_feature_msr, 1);
4956 		break;
4957 #ifdef CONFIG_KVM_HYPERV
4958 	case KVM_GET_SUPPORTED_HV_CPUID:
4959 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4960 		break;
4961 #endif
4962 	case KVM_GET_DEVICE_ATTR: {
4963 		struct kvm_device_attr attr;
4964 		r = -EFAULT;
4965 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4966 			break;
4967 		r = kvm_x86_dev_get_attr(&attr);
4968 		break;
4969 	}
4970 	case KVM_HAS_DEVICE_ATTR: {
4971 		struct kvm_device_attr attr;
4972 		r = -EFAULT;
4973 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4974 			break;
4975 		r = kvm_x86_dev_has_attr(&attr);
4976 		break;
4977 	}
4978 	default:
4979 		r = -EINVAL;
4980 		break;
4981 	}
4982 out:
4983 	return r;
4984 }
4985 
wbinvd_ipi(void * garbage)4986 static void wbinvd_ipi(void *garbage)
4987 {
4988 	wbinvd();
4989 }
4990 
need_emulate_wbinvd(struct kvm_vcpu * vcpu)4991 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4992 {
4993 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4994 }
4995 
4996 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
4997 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)4998 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4999 {
5000 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
5001 
5002 	vcpu->arch.l1tf_flush_l1d = true;
5003 
5004 	if (vcpu->scheduled_out && pmu->version && pmu->event_count) {
5005 		pmu->need_cleanup = true;
5006 		kvm_make_request(KVM_REQ_PMU, vcpu);
5007 	}
5008 
5009 	/* Address WBINVD may be executed by guest */
5010 	if (need_emulate_wbinvd(vcpu)) {
5011 		if (kvm_x86_call(has_wbinvd_exit)())
5012 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5013 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
5014 			smp_call_function_single(vcpu->cpu,
5015 					wbinvd_ipi, NULL, 1);
5016 	}
5017 
5018 	kvm_x86_call(vcpu_load)(vcpu, cpu);
5019 
5020 	if (vcpu != per_cpu(last_vcpu, cpu)) {
5021 		/*
5022 		 * Flush the branch predictor when switching vCPUs on the same
5023 		 * physical CPU, as each vCPU needs its own branch prediction
5024 		 * domain.  No IBPB is needed when switching between L1 and L2
5025 		 * on the same vCPU unless IBRS is advertised to the vCPU; that
5026 		 * is handled on the nested VM-Exit path.
5027 		 */
5028 		if (static_branch_likely(&switch_vcpu_ibpb))
5029 			indirect_branch_prediction_barrier();
5030 		per_cpu(last_vcpu, cpu) = vcpu;
5031 	}
5032 
5033 	/* Save host pkru register if supported */
5034 	vcpu->arch.host_pkru = read_pkru();
5035 
5036 	/* Apply any externally detected TSC adjustments (due to suspend) */
5037 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
5038 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
5039 		vcpu->arch.tsc_offset_adjustment = 0;
5040 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5041 	}
5042 
5043 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
5044 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
5045 				rdtsc() - vcpu->arch.last_host_tsc;
5046 		if (tsc_delta < 0)
5047 			mark_tsc_unstable("KVM discovered backwards TSC");
5048 
5049 		if (kvm_check_tsc_unstable()) {
5050 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
5051 						vcpu->arch.last_guest_tsc);
5052 			kvm_vcpu_write_tsc_offset(vcpu, offset);
5053 			if (!vcpu->arch.guest_tsc_protected)
5054 				vcpu->arch.tsc_catchup = 1;
5055 		}
5056 
5057 		if (kvm_lapic_hv_timer_in_use(vcpu))
5058 			kvm_lapic_restart_hv_timer(vcpu);
5059 
5060 		/*
5061 		 * On a host with synchronized TSC, there is no need to update
5062 		 * kvmclock on vcpu->cpu migration
5063 		 */
5064 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
5065 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
5066 		if (vcpu->cpu != cpu)
5067 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
5068 		vcpu->cpu = cpu;
5069 	}
5070 
5071 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
5072 }
5073 
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)5074 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
5075 {
5076 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
5077 	struct kvm_steal_time __user *st;
5078 	struct kvm_memslots *slots;
5079 	static const u8 preempted = KVM_VCPU_PREEMPTED;
5080 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5081 
5082 	/*
5083 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
5084 	 * an instruction boundary and will not trigger guest emulation of any
5085 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
5086 	 * when this is true, for example allowing the vCPU to be marked
5087 	 * preempted if and only if the VM-Exit was due to a host interrupt.
5088 	 */
5089 	if (!vcpu->arch.at_instruction_boundary) {
5090 		vcpu->stat.preemption_other++;
5091 		return;
5092 	}
5093 
5094 	vcpu->stat.preemption_reported++;
5095 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5096 		return;
5097 
5098 	if (vcpu->arch.st.preempted)
5099 		return;
5100 
5101 	/* This happens on process exit */
5102 	if (unlikely(current->mm != vcpu->kvm->mm))
5103 		return;
5104 
5105 	slots = kvm_memslots(vcpu->kvm);
5106 
5107 	if (unlikely(slots->generation != ghc->generation ||
5108 		     gpa != ghc->gpa ||
5109 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5110 		return;
5111 
5112 	st = (struct kvm_steal_time __user *)ghc->hva;
5113 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5114 
5115 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5116 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5117 
5118 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5119 }
5120 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)5121 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5122 {
5123 	int idx;
5124 
5125 	if (vcpu->preempted) {
5126 		/*
5127 		 * Assume protected guests are in-kernel.  Inefficient yielding
5128 		 * due to false positives is preferable to never yielding due
5129 		 * to false negatives.
5130 		 */
5131 		vcpu->arch.preempted_in_kernel = vcpu->arch.guest_state_protected ||
5132 						 !kvm_x86_call(get_cpl_no_cache)(vcpu);
5133 
5134 		/*
5135 		 * Take the srcu lock as memslots will be accessed to check the gfn
5136 		 * cache generation against the memslots generation.
5137 		 */
5138 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5139 		if (kvm_xen_msr_enabled(vcpu->kvm))
5140 			kvm_xen_runstate_set_preempted(vcpu);
5141 		else
5142 			kvm_steal_time_set_preempted(vcpu);
5143 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5144 	}
5145 
5146 	kvm_x86_call(vcpu_put)(vcpu);
5147 	vcpu->arch.last_host_tsc = rdtsc();
5148 }
5149 
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5150 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5151 				    struct kvm_lapic_state *s)
5152 {
5153 	if (vcpu->arch.apic->guest_apic_protected)
5154 		return -EINVAL;
5155 
5156 	kvm_x86_call(sync_pir_to_irr)(vcpu);
5157 
5158 	return kvm_apic_get_state(vcpu, s);
5159 }
5160 
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5161 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5162 				    struct kvm_lapic_state *s)
5163 {
5164 	int r;
5165 
5166 	if (vcpu->arch.apic->guest_apic_protected)
5167 		return -EINVAL;
5168 
5169 	r = kvm_apic_set_state(vcpu, s);
5170 	if (r)
5171 		return r;
5172 	update_cr8_intercept(vcpu);
5173 
5174 	return 0;
5175 }
5176 
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)5177 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5178 {
5179 	/*
5180 	 * We can accept userspace's request for interrupt injection
5181 	 * as long as we have a place to store the interrupt number.
5182 	 * The actual injection will happen when the CPU is able to
5183 	 * deliver the interrupt.
5184 	 */
5185 	if (kvm_cpu_has_extint(vcpu))
5186 		return false;
5187 
5188 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
5189 	return (!lapic_in_kernel(vcpu) ||
5190 		kvm_apic_accept_pic_intr(vcpu));
5191 }
5192 
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)5193 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5194 {
5195 	/*
5196 	 * Do not cause an interrupt window exit if an exception
5197 	 * is pending or an event needs reinjection; userspace
5198 	 * might want to inject the interrupt manually using KVM_SET_REGS
5199 	 * or KVM_SET_SREGS.  For that to work, we must be at an
5200 	 * instruction boundary and with no events half-injected.
5201 	 */
5202 	return (kvm_arch_interrupt_allowed(vcpu) &&
5203 		kvm_cpu_accept_dm_intr(vcpu) &&
5204 		!kvm_event_needs_reinjection(vcpu) &&
5205 		!kvm_is_exception_pending(vcpu));
5206 }
5207 
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)5208 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5209 				    struct kvm_interrupt *irq)
5210 {
5211 	if (irq->irq >= KVM_NR_INTERRUPTS)
5212 		return -EINVAL;
5213 
5214 	if (!irqchip_in_kernel(vcpu->kvm)) {
5215 		kvm_queue_interrupt(vcpu, irq->irq, false);
5216 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5217 		return 0;
5218 	}
5219 
5220 	/*
5221 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
5222 	 * fail for in-kernel 8259.
5223 	 */
5224 	if (pic_in_kernel(vcpu->kvm))
5225 		return -ENXIO;
5226 
5227 	if (vcpu->arch.pending_external_vector != -1)
5228 		return -EEXIST;
5229 
5230 	vcpu->arch.pending_external_vector = irq->irq;
5231 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5232 	return 0;
5233 }
5234 
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)5235 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5236 {
5237 	kvm_inject_nmi(vcpu);
5238 
5239 	return 0;
5240 }
5241 
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)5242 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5243 					   struct kvm_tpr_access_ctl *tac)
5244 {
5245 	if (tac->flags)
5246 		return -EINVAL;
5247 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
5248 	return 0;
5249 }
5250 
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)5251 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5252 					u64 mcg_cap)
5253 {
5254 	int r;
5255 	unsigned bank_num = mcg_cap & 0xff, bank;
5256 
5257 	r = -EINVAL;
5258 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5259 		goto out;
5260 	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5261 		goto out;
5262 	r = 0;
5263 	vcpu->arch.mcg_cap = mcg_cap;
5264 	/* Init IA32_MCG_CTL to all 1s */
5265 	if (mcg_cap & MCG_CTL_P)
5266 		vcpu->arch.mcg_ctl = ~(u64)0;
5267 	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5268 	for (bank = 0; bank < bank_num; bank++) {
5269 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5270 		if (mcg_cap & MCG_CMCI_P)
5271 			vcpu->arch.mci_ctl2_banks[bank] = 0;
5272 	}
5273 
5274 	kvm_apic_after_set_mcg_cap(vcpu);
5275 
5276 	kvm_x86_call(setup_mce)(vcpu);
5277 out:
5278 	return r;
5279 }
5280 
5281 /*
5282  * Validate this is an UCNA (uncorrectable no action) error by checking the
5283  * MCG_STATUS and MCi_STATUS registers:
5284  * - none of the bits for Machine Check Exceptions are set
5285  * - both the VAL (valid) and UC (uncorrectable) bits are set
5286  * MCI_STATUS_PCC - Processor Context Corrupted
5287  * MCI_STATUS_S - Signaled as a Machine Check Exception
5288  * MCI_STATUS_AR - Software recoverable Action Required
5289  */
is_ucna(struct kvm_x86_mce * mce)5290 static bool is_ucna(struct kvm_x86_mce *mce)
5291 {
5292 	return	!mce->mcg_status &&
5293 		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5294 		(mce->status & MCI_STATUS_VAL) &&
5295 		(mce->status & MCI_STATUS_UC);
5296 }
5297 
kvm_vcpu_x86_set_ucna(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce,u64 * banks)5298 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5299 {
5300 	u64 mcg_cap = vcpu->arch.mcg_cap;
5301 
5302 	banks[1] = mce->status;
5303 	banks[2] = mce->addr;
5304 	banks[3] = mce->misc;
5305 	vcpu->arch.mcg_status = mce->mcg_status;
5306 
5307 	if (!(mcg_cap & MCG_CMCI_P) ||
5308 	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5309 		return 0;
5310 
5311 	if (lapic_in_kernel(vcpu))
5312 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5313 
5314 	return 0;
5315 }
5316 
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)5317 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5318 				      struct kvm_x86_mce *mce)
5319 {
5320 	u64 mcg_cap = vcpu->arch.mcg_cap;
5321 	unsigned bank_num = mcg_cap & 0xff;
5322 	u64 *banks = vcpu->arch.mce_banks;
5323 
5324 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5325 		return -EINVAL;
5326 
5327 	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5328 
5329 	if (is_ucna(mce))
5330 		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5331 
5332 	/*
5333 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5334 	 * reporting is disabled
5335 	 */
5336 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5337 	    vcpu->arch.mcg_ctl != ~(u64)0)
5338 		return 0;
5339 	/*
5340 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5341 	 * reporting is disabled for the bank
5342 	 */
5343 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5344 		return 0;
5345 	if (mce->status & MCI_STATUS_UC) {
5346 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5347 		    !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5348 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5349 			return 0;
5350 		}
5351 		if (banks[1] & MCI_STATUS_VAL)
5352 			mce->status |= MCI_STATUS_OVER;
5353 		banks[2] = mce->addr;
5354 		banks[3] = mce->misc;
5355 		vcpu->arch.mcg_status = mce->mcg_status;
5356 		banks[1] = mce->status;
5357 		kvm_queue_exception(vcpu, MC_VECTOR);
5358 	} else if (!(banks[1] & MCI_STATUS_VAL)
5359 		   || !(banks[1] & MCI_STATUS_UC)) {
5360 		if (banks[1] & MCI_STATUS_VAL)
5361 			mce->status |= MCI_STATUS_OVER;
5362 		banks[2] = mce->addr;
5363 		banks[3] = mce->misc;
5364 		banks[1] = mce->status;
5365 	} else
5366 		banks[1] |= MCI_STATUS_OVER;
5367 	return 0;
5368 }
5369 
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5370 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5371 					       struct kvm_vcpu_events *events)
5372 {
5373 	struct kvm_queued_exception *ex;
5374 
5375 	process_nmi(vcpu);
5376 
5377 #ifdef CONFIG_KVM_SMM
5378 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5379 		process_smi(vcpu);
5380 #endif
5381 
5382 	/*
5383 	 * KVM's ABI only allows for one exception to be migrated.  Luckily,
5384 	 * the only time there can be two queued exceptions is if there's a
5385 	 * non-exiting _injected_ exception, and a pending exiting exception.
5386 	 * In that case, ignore the VM-Exiting exception as it's an extension
5387 	 * of the injected exception.
5388 	 */
5389 	if (vcpu->arch.exception_vmexit.pending &&
5390 	    !vcpu->arch.exception.pending &&
5391 	    !vcpu->arch.exception.injected)
5392 		ex = &vcpu->arch.exception_vmexit;
5393 	else
5394 		ex = &vcpu->arch.exception;
5395 
5396 	/*
5397 	 * In guest mode, payload delivery should be deferred if the exception
5398 	 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5399 	 * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5400 	 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5401 	 * propagate the payload and so it cannot be safely deferred.  Deliver
5402 	 * the payload if the capability hasn't been requested.
5403 	 */
5404 	if (!vcpu->kvm->arch.exception_payload_enabled &&
5405 	    ex->pending && ex->has_payload)
5406 		kvm_deliver_exception_payload(vcpu, ex);
5407 
5408 	memset(events, 0, sizeof(*events));
5409 
5410 	/*
5411 	 * The API doesn't provide the instruction length for software
5412 	 * exceptions, so don't report them. As long as the guest RIP
5413 	 * isn't advanced, we should expect to encounter the exception
5414 	 * again.
5415 	 */
5416 	if (!kvm_exception_is_soft(ex->vector)) {
5417 		events->exception.injected = ex->injected;
5418 		events->exception.pending = ex->pending;
5419 		/*
5420 		 * For ABI compatibility, deliberately conflate
5421 		 * pending and injected exceptions when
5422 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5423 		 */
5424 		if (!vcpu->kvm->arch.exception_payload_enabled)
5425 			events->exception.injected |= ex->pending;
5426 	}
5427 	events->exception.nr = ex->vector;
5428 	events->exception.has_error_code = ex->has_error_code;
5429 	events->exception.error_code = ex->error_code;
5430 	events->exception_has_payload = ex->has_payload;
5431 	events->exception_payload = ex->payload;
5432 
5433 	events->interrupt.injected =
5434 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5435 	events->interrupt.nr = vcpu->arch.interrupt.nr;
5436 	events->interrupt.shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
5437 
5438 	events->nmi.injected = vcpu->arch.nmi_injected;
5439 	events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5440 	events->nmi.masked = kvm_x86_call(get_nmi_mask)(vcpu);
5441 
5442 	/* events->sipi_vector is never valid when reporting to user space */
5443 
5444 #ifdef CONFIG_KVM_SMM
5445 	events->smi.smm = is_smm(vcpu);
5446 	events->smi.pending = vcpu->arch.smi_pending;
5447 	events->smi.smm_inside_nmi =
5448 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5449 #endif
5450 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5451 
5452 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5453 			 | KVM_VCPUEVENT_VALID_SHADOW
5454 			 | KVM_VCPUEVENT_VALID_SMM);
5455 	if (vcpu->kvm->arch.exception_payload_enabled)
5456 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5457 	if (vcpu->kvm->arch.triple_fault_event) {
5458 		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5459 		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5460 	}
5461 }
5462 
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5463 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5464 					      struct kvm_vcpu_events *events)
5465 {
5466 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5467 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5468 			      | KVM_VCPUEVENT_VALID_SHADOW
5469 			      | KVM_VCPUEVENT_VALID_SMM
5470 			      | KVM_VCPUEVENT_VALID_PAYLOAD
5471 			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5472 		return -EINVAL;
5473 
5474 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5475 		if (!vcpu->kvm->arch.exception_payload_enabled)
5476 			return -EINVAL;
5477 		if (events->exception.pending)
5478 			events->exception.injected = 0;
5479 		else
5480 			events->exception_has_payload = 0;
5481 	} else {
5482 		events->exception.pending = 0;
5483 		events->exception_has_payload = 0;
5484 	}
5485 
5486 	if ((events->exception.injected || events->exception.pending) &&
5487 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5488 		return -EINVAL;
5489 
5490 	/* INITs are latched while in SMM */
5491 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5492 	    (events->smi.smm || events->smi.pending) &&
5493 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5494 		return -EINVAL;
5495 
5496 	process_nmi(vcpu);
5497 
5498 	/*
5499 	 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5500 	 * morph the exception to a VM-Exit if appropriate.  Do this only for
5501 	 * pending exceptions, already-injected exceptions are not subject to
5502 	 * intercpetion.  Note, userspace that conflates pending and injected
5503 	 * is hosed, and will incorrectly convert an injected exception into a
5504 	 * pending exception, which in turn may cause a spurious VM-Exit.
5505 	 */
5506 	vcpu->arch.exception_from_userspace = events->exception.pending;
5507 
5508 	vcpu->arch.exception_vmexit.pending = false;
5509 
5510 	vcpu->arch.exception.injected = events->exception.injected;
5511 	vcpu->arch.exception.pending = events->exception.pending;
5512 	vcpu->arch.exception.vector = events->exception.nr;
5513 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5514 	vcpu->arch.exception.error_code = events->exception.error_code;
5515 	vcpu->arch.exception.has_payload = events->exception_has_payload;
5516 	vcpu->arch.exception.payload = events->exception_payload;
5517 
5518 	vcpu->arch.interrupt.injected = events->interrupt.injected;
5519 	vcpu->arch.interrupt.nr = events->interrupt.nr;
5520 	vcpu->arch.interrupt.soft = events->interrupt.soft;
5521 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5522 		kvm_x86_call(set_interrupt_shadow)(vcpu,
5523 						   events->interrupt.shadow);
5524 
5525 	vcpu->arch.nmi_injected = events->nmi.injected;
5526 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5527 		vcpu->arch.nmi_pending = 0;
5528 		atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5529 		if (events->nmi.pending)
5530 			kvm_make_request(KVM_REQ_NMI, vcpu);
5531 	}
5532 	kvm_x86_call(set_nmi_mask)(vcpu, events->nmi.masked);
5533 
5534 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5535 	    lapic_in_kernel(vcpu))
5536 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5537 
5538 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5539 #ifdef CONFIG_KVM_SMM
5540 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5541 			kvm_leave_nested(vcpu);
5542 			kvm_smm_changed(vcpu, events->smi.smm);
5543 		}
5544 
5545 		vcpu->arch.smi_pending = events->smi.pending;
5546 
5547 		if (events->smi.smm) {
5548 			if (events->smi.smm_inside_nmi)
5549 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5550 			else
5551 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5552 		}
5553 
5554 #else
5555 		if (events->smi.smm || events->smi.pending ||
5556 		    events->smi.smm_inside_nmi)
5557 			return -EINVAL;
5558 #endif
5559 
5560 		if (lapic_in_kernel(vcpu)) {
5561 			if (events->smi.latched_init)
5562 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5563 			else
5564 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5565 		}
5566 	}
5567 
5568 	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5569 		if (!vcpu->kvm->arch.triple_fault_event)
5570 			return -EINVAL;
5571 		if (events->triple_fault.pending)
5572 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5573 		else
5574 			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5575 	}
5576 
5577 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5578 
5579 	return 0;
5580 }
5581 
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5582 static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5583 					    struct kvm_debugregs *dbgregs)
5584 {
5585 	unsigned int i;
5586 
5587 	if (vcpu->kvm->arch.has_protected_state &&
5588 	    vcpu->arch.guest_state_protected)
5589 		return -EINVAL;
5590 
5591 	memset(dbgregs, 0, sizeof(*dbgregs));
5592 
5593 	BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db));
5594 	for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5595 		dbgregs->db[i] = vcpu->arch.db[i];
5596 
5597 	dbgregs->dr6 = vcpu->arch.dr6;
5598 	dbgregs->dr7 = vcpu->arch.dr7;
5599 	return 0;
5600 }
5601 
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5602 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5603 					    struct kvm_debugregs *dbgregs)
5604 {
5605 	unsigned int i;
5606 
5607 	if (vcpu->kvm->arch.has_protected_state &&
5608 	    vcpu->arch.guest_state_protected)
5609 		return -EINVAL;
5610 
5611 	if (dbgregs->flags)
5612 		return -EINVAL;
5613 
5614 	if (!kvm_dr6_valid(dbgregs->dr6))
5615 		return -EINVAL;
5616 	if (!kvm_dr7_valid(dbgregs->dr7))
5617 		return -EINVAL;
5618 
5619 	for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5620 		vcpu->arch.db[i] = dbgregs->db[i];
5621 
5622 	kvm_update_dr0123(vcpu);
5623 	vcpu->arch.dr6 = dbgregs->dr6;
5624 	vcpu->arch.dr7 = dbgregs->dr7;
5625 	kvm_update_dr7(vcpu);
5626 
5627 	return 0;
5628 }
5629 
5630 
kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu * vcpu,u8 * state,unsigned int size)5631 static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5632 					 u8 *state, unsigned int size)
5633 {
5634 	/*
5635 	 * Only copy state for features that are enabled for the guest.  The
5636 	 * state itself isn't problematic, but setting bits in the header for
5637 	 * features that are supported in *this* host but not exposed to the
5638 	 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5639 	 * compatible host without the features that are NOT exposed to the
5640 	 * guest.
5641 	 *
5642 	 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5643 	 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5644 	 * supported by the host.
5645 	 */
5646 	u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5647 			     XFEATURE_MASK_FPSSE;
5648 
5649 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5650 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5651 
5652 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5653 				       supported_xcr0, vcpu->arch.pkru);
5654 	return 0;
5655 }
5656 
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5657 static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5658 					struct kvm_xsave *guest_xsave)
5659 {
5660 	return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5661 					     sizeof(guest_xsave->region));
5662 }
5663 
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5664 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5665 					struct kvm_xsave *guest_xsave)
5666 {
5667 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5668 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5669 
5670 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5671 					      guest_xsave->region,
5672 					      kvm_caps.supported_xcr0,
5673 					      &vcpu->arch.pkru);
5674 }
5675 
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5676 static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5677 				       struct kvm_xcrs *guest_xcrs)
5678 {
5679 	if (vcpu->kvm->arch.has_protected_state &&
5680 	    vcpu->arch.guest_state_protected)
5681 		return -EINVAL;
5682 
5683 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5684 		guest_xcrs->nr_xcrs = 0;
5685 		return 0;
5686 	}
5687 
5688 	guest_xcrs->nr_xcrs = 1;
5689 	guest_xcrs->flags = 0;
5690 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5691 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5692 	return 0;
5693 }
5694 
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5695 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5696 				       struct kvm_xcrs *guest_xcrs)
5697 {
5698 	int i, r = 0;
5699 
5700 	if (vcpu->kvm->arch.has_protected_state &&
5701 	    vcpu->arch.guest_state_protected)
5702 		return -EINVAL;
5703 
5704 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5705 		return -EINVAL;
5706 
5707 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5708 		return -EINVAL;
5709 
5710 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5711 		/* Only support XCR0 currently */
5712 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5713 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5714 				guest_xcrs->xcrs[i].value);
5715 			break;
5716 		}
5717 	if (r)
5718 		r = -EINVAL;
5719 	return r;
5720 }
5721 
5722 /*
5723  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5724  * stopped by the hypervisor.  This function will be called from the host only.
5725  * EINVAL is returned when the host attempts to set the flag for a guest that
5726  * does not support pv clocks.
5727  */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)5728 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5729 {
5730 	if (!vcpu->arch.pv_time.active)
5731 		return -EINVAL;
5732 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5733 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5734 	return 0;
5735 }
5736 
kvm_arch_tsc_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5737 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5738 				 struct kvm_device_attr *attr)
5739 {
5740 	int r;
5741 
5742 	switch (attr->attr) {
5743 	case KVM_VCPU_TSC_OFFSET:
5744 		r = 0;
5745 		break;
5746 	default:
5747 		r = -ENXIO;
5748 	}
5749 
5750 	return r;
5751 }
5752 
kvm_arch_tsc_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5753 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5754 				 struct kvm_device_attr *attr)
5755 {
5756 	u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5757 	int r;
5758 
5759 	switch (attr->attr) {
5760 	case KVM_VCPU_TSC_OFFSET:
5761 		r = -EFAULT;
5762 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5763 			break;
5764 		r = 0;
5765 		break;
5766 	default:
5767 		r = -ENXIO;
5768 	}
5769 
5770 	return r;
5771 }
5772 
kvm_arch_tsc_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5773 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5774 				 struct kvm_device_attr *attr)
5775 {
5776 	u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5777 	struct kvm *kvm = vcpu->kvm;
5778 	int r;
5779 
5780 	switch (attr->attr) {
5781 	case KVM_VCPU_TSC_OFFSET: {
5782 		u64 offset, tsc, ns;
5783 		unsigned long flags;
5784 		bool matched;
5785 
5786 		r = -EFAULT;
5787 		if (get_user(offset, uaddr))
5788 			break;
5789 
5790 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5791 
5792 		matched = (vcpu->arch.virtual_tsc_khz &&
5793 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5794 			   kvm->arch.last_tsc_offset == offset);
5795 
5796 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5797 		ns = get_kvmclock_base_ns();
5798 
5799 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched, true);
5800 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5801 
5802 		r = 0;
5803 		break;
5804 	}
5805 	default:
5806 		r = -ENXIO;
5807 	}
5808 
5809 	return r;
5810 }
5811 
kvm_vcpu_ioctl_device_attr(struct kvm_vcpu * vcpu,unsigned int ioctl,void __user * argp)5812 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5813 				      unsigned int ioctl,
5814 				      void __user *argp)
5815 {
5816 	struct kvm_device_attr attr;
5817 	int r;
5818 
5819 	if (copy_from_user(&attr, argp, sizeof(attr)))
5820 		return -EFAULT;
5821 
5822 	if (attr.group != KVM_VCPU_TSC_CTRL)
5823 		return -ENXIO;
5824 
5825 	switch (ioctl) {
5826 	case KVM_HAS_DEVICE_ATTR:
5827 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5828 		break;
5829 	case KVM_GET_DEVICE_ATTR:
5830 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5831 		break;
5832 	case KVM_SET_DEVICE_ATTR:
5833 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5834 		break;
5835 	}
5836 
5837 	return r;
5838 }
5839 
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)5840 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5841 				     struct kvm_enable_cap *cap)
5842 {
5843 	if (cap->flags)
5844 		return -EINVAL;
5845 
5846 	switch (cap->cap) {
5847 #ifdef CONFIG_KVM_HYPERV
5848 	case KVM_CAP_HYPERV_SYNIC2:
5849 		if (cap->args[0])
5850 			return -EINVAL;
5851 		fallthrough;
5852 
5853 	case KVM_CAP_HYPERV_SYNIC:
5854 		if (!irqchip_in_kernel(vcpu->kvm))
5855 			return -EINVAL;
5856 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5857 					     KVM_CAP_HYPERV_SYNIC2);
5858 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5859 		{
5860 			int r;
5861 			uint16_t vmcs_version;
5862 			void __user *user_ptr;
5863 
5864 			if (!kvm_x86_ops.nested_ops->enable_evmcs)
5865 				return -ENOTTY;
5866 			r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5867 			if (!r) {
5868 				user_ptr = (void __user *)(uintptr_t)cap->args[0];
5869 				if (copy_to_user(user_ptr, &vmcs_version,
5870 						 sizeof(vmcs_version)))
5871 					r = -EFAULT;
5872 			}
5873 			return r;
5874 		}
5875 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5876 		if (!kvm_x86_ops.enable_l2_tlb_flush)
5877 			return -ENOTTY;
5878 
5879 		return kvm_x86_call(enable_l2_tlb_flush)(vcpu);
5880 
5881 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5882 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5883 #endif
5884 
5885 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5886 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5887 		return 0;
5888 	default:
5889 		return -EINVAL;
5890 	}
5891 }
5892 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5893 long kvm_arch_vcpu_ioctl(struct file *filp,
5894 			 unsigned int ioctl, unsigned long arg)
5895 {
5896 	struct kvm_vcpu *vcpu = filp->private_data;
5897 	void __user *argp = (void __user *)arg;
5898 	int r;
5899 	union {
5900 		struct kvm_sregs2 *sregs2;
5901 		struct kvm_lapic_state *lapic;
5902 		struct kvm_xsave *xsave;
5903 		struct kvm_xcrs *xcrs;
5904 		void *buffer;
5905 	} u;
5906 
5907 	vcpu_load(vcpu);
5908 
5909 	u.buffer = NULL;
5910 	switch (ioctl) {
5911 	case KVM_GET_LAPIC: {
5912 		r = -EINVAL;
5913 		if (!lapic_in_kernel(vcpu))
5914 			goto out;
5915 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
5916 
5917 		r = -ENOMEM;
5918 		if (!u.lapic)
5919 			goto out;
5920 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5921 		if (r)
5922 			goto out;
5923 		r = -EFAULT;
5924 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5925 			goto out;
5926 		r = 0;
5927 		break;
5928 	}
5929 	case KVM_SET_LAPIC: {
5930 		r = -EINVAL;
5931 		if (!lapic_in_kernel(vcpu))
5932 			goto out;
5933 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5934 		if (IS_ERR(u.lapic)) {
5935 			r = PTR_ERR(u.lapic);
5936 			goto out_nofree;
5937 		}
5938 
5939 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5940 		break;
5941 	}
5942 	case KVM_INTERRUPT: {
5943 		struct kvm_interrupt irq;
5944 
5945 		r = -EFAULT;
5946 		if (copy_from_user(&irq, argp, sizeof(irq)))
5947 			goto out;
5948 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5949 		break;
5950 	}
5951 	case KVM_NMI: {
5952 		r = kvm_vcpu_ioctl_nmi(vcpu);
5953 		break;
5954 	}
5955 	case KVM_SMI: {
5956 		r = kvm_inject_smi(vcpu);
5957 		break;
5958 	}
5959 	case KVM_SET_CPUID: {
5960 		struct kvm_cpuid __user *cpuid_arg = argp;
5961 		struct kvm_cpuid cpuid;
5962 
5963 		r = -EFAULT;
5964 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5965 			goto out;
5966 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5967 		break;
5968 	}
5969 	case KVM_SET_CPUID2: {
5970 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5971 		struct kvm_cpuid2 cpuid;
5972 
5973 		r = -EFAULT;
5974 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5975 			goto out;
5976 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5977 					      cpuid_arg->entries);
5978 		break;
5979 	}
5980 	case KVM_GET_CPUID2: {
5981 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5982 		struct kvm_cpuid2 cpuid;
5983 
5984 		r = -EFAULT;
5985 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5986 			goto out;
5987 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5988 					      cpuid_arg->entries);
5989 		if (r)
5990 			goto out;
5991 		r = -EFAULT;
5992 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5993 			goto out;
5994 		r = 0;
5995 		break;
5996 	}
5997 	case KVM_GET_MSRS: {
5998 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5999 		r = msr_io(vcpu, argp, do_get_msr, 1);
6000 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
6001 		break;
6002 	}
6003 	case KVM_SET_MSRS: {
6004 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
6005 		r = msr_io(vcpu, argp, do_set_msr, 0);
6006 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
6007 		break;
6008 	}
6009 	case KVM_TPR_ACCESS_REPORTING: {
6010 		struct kvm_tpr_access_ctl tac;
6011 
6012 		r = -EFAULT;
6013 		if (copy_from_user(&tac, argp, sizeof(tac)))
6014 			goto out;
6015 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
6016 		if (r)
6017 			goto out;
6018 		r = -EFAULT;
6019 		if (copy_to_user(argp, &tac, sizeof(tac)))
6020 			goto out;
6021 		r = 0;
6022 		break;
6023 	};
6024 	case KVM_SET_VAPIC_ADDR: {
6025 		struct kvm_vapic_addr va;
6026 		int idx;
6027 
6028 		r = -EINVAL;
6029 		if (!lapic_in_kernel(vcpu))
6030 			goto out;
6031 		r = -EFAULT;
6032 		if (copy_from_user(&va, argp, sizeof(va)))
6033 			goto out;
6034 		idx = srcu_read_lock(&vcpu->kvm->srcu);
6035 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
6036 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
6037 		break;
6038 	}
6039 	case KVM_X86_SETUP_MCE: {
6040 		u64 mcg_cap;
6041 
6042 		r = -EFAULT;
6043 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
6044 			goto out;
6045 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
6046 		break;
6047 	}
6048 	case KVM_X86_SET_MCE: {
6049 		struct kvm_x86_mce mce;
6050 
6051 		r = -EFAULT;
6052 		if (copy_from_user(&mce, argp, sizeof(mce)))
6053 			goto out;
6054 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
6055 		break;
6056 	}
6057 	case KVM_GET_VCPU_EVENTS: {
6058 		struct kvm_vcpu_events events;
6059 
6060 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
6061 
6062 		r = -EFAULT;
6063 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
6064 			break;
6065 		r = 0;
6066 		break;
6067 	}
6068 	case KVM_SET_VCPU_EVENTS: {
6069 		struct kvm_vcpu_events events;
6070 
6071 		r = -EFAULT;
6072 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
6073 			break;
6074 
6075 		kvm_vcpu_srcu_read_lock(vcpu);
6076 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
6077 		kvm_vcpu_srcu_read_unlock(vcpu);
6078 		break;
6079 	}
6080 	case KVM_GET_DEBUGREGS: {
6081 		struct kvm_debugregs dbgregs;
6082 
6083 		r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
6084 		if (r < 0)
6085 			break;
6086 
6087 		r = -EFAULT;
6088 		if (copy_to_user(argp, &dbgregs,
6089 				 sizeof(struct kvm_debugregs)))
6090 			break;
6091 		r = 0;
6092 		break;
6093 	}
6094 	case KVM_SET_DEBUGREGS: {
6095 		struct kvm_debugregs dbgregs;
6096 
6097 		r = -EFAULT;
6098 		if (copy_from_user(&dbgregs, argp,
6099 				   sizeof(struct kvm_debugregs)))
6100 			break;
6101 
6102 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
6103 		break;
6104 	}
6105 	case KVM_GET_XSAVE: {
6106 		r = -EINVAL;
6107 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6108 			break;
6109 
6110 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
6111 		r = -ENOMEM;
6112 		if (!u.xsave)
6113 			break;
6114 
6115 		r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6116 		if (r < 0)
6117 			break;
6118 
6119 		r = -EFAULT;
6120 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6121 			break;
6122 		r = 0;
6123 		break;
6124 	}
6125 	case KVM_SET_XSAVE: {
6126 		int size = vcpu->arch.guest_fpu.uabi_size;
6127 
6128 		u.xsave = memdup_user(argp, size);
6129 		if (IS_ERR(u.xsave)) {
6130 			r = PTR_ERR(u.xsave);
6131 			goto out_nofree;
6132 		}
6133 
6134 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6135 		break;
6136 	}
6137 
6138 	case KVM_GET_XSAVE2: {
6139 		int size = vcpu->arch.guest_fpu.uabi_size;
6140 
6141 		u.xsave = kzalloc(size, GFP_KERNEL);
6142 		r = -ENOMEM;
6143 		if (!u.xsave)
6144 			break;
6145 
6146 		r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6147 		if (r < 0)
6148 			break;
6149 
6150 		r = -EFAULT;
6151 		if (copy_to_user(argp, u.xsave, size))
6152 			break;
6153 
6154 		r = 0;
6155 		break;
6156 	}
6157 
6158 	case KVM_GET_XCRS: {
6159 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
6160 		r = -ENOMEM;
6161 		if (!u.xcrs)
6162 			break;
6163 
6164 		r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6165 		if (r < 0)
6166 			break;
6167 
6168 		r = -EFAULT;
6169 		if (copy_to_user(argp, u.xcrs,
6170 				 sizeof(struct kvm_xcrs)))
6171 			break;
6172 		r = 0;
6173 		break;
6174 	}
6175 	case KVM_SET_XCRS: {
6176 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6177 		if (IS_ERR(u.xcrs)) {
6178 			r = PTR_ERR(u.xcrs);
6179 			goto out_nofree;
6180 		}
6181 
6182 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6183 		break;
6184 	}
6185 	case KVM_SET_TSC_KHZ: {
6186 		u32 user_tsc_khz;
6187 
6188 		r = -EINVAL;
6189 		user_tsc_khz = (u32)arg;
6190 
6191 		if (kvm_caps.has_tsc_control &&
6192 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6193 			goto out;
6194 
6195 		if (user_tsc_khz == 0)
6196 			user_tsc_khz = tsc_khz;
6197 
6198 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6199 			r = 0;
6200 
6201 		goto out;
6202 	}
6203 	case KVM_GET_TSC_KHZ: {
6204 		r = vcpu->arch.virtual_tsc_khz;
6205 		goto out;
6206 	}
6207 	case KVM_KVMCLOCK_CTRL: {
6208 		r = kvm_set_guest_paused(vcpu);
6209 		goto out;
6210 	}
6211 	case KVM_ENABLE_CAP: {
6212 		struct kvm_enable_cap cap;
6213 
6214 		r = -EFAULT;
6215 		if (copy_from_user(&cap, argp, sizeof(cap)))
6216 			goto out;
6217 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6218 		break;
6219 	}
6220 	case KVM_GET_NESTED_STATE: {
6221 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
6222 		u32 user_data_size;
6223 
6224 		r = -EINVAL;
6225 		if (!kvm_x86_ops.nested_ops->get_state)
6226 			break;
6227 
6228 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6229 		r = -EFAULT;
6230 		if (get_user(user_data_size, &user_kvm_nested_state->size))
6231 			break;
6232 
6233 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6234 						     user_data_size);
6235 		if (r < 0)
6236 			break;
6237 
6238 		if (r > user_data_size) {
6239 			if (put_user(r, &user_kvm_nested_state->size))
6240 				r = -EFAULT;
6241 			else
6242 				r = -E2BIG;
6243 			break;
6244 		}
6245 
6246 		r = 0;
6247 		break;
6248 	}
6249 	case KVM_SET_NESTED_STATE: {
6250 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
6251 		struct kvm_nested_state kvm_state;
6252 		int idx;
6253 
6254 		r = -EINVAL;
6255 		if (!kvm_x86_ops.nested_ops->set_state)
6256 			break;
6257 
6258 		r = -EFAULT;
6259 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6260 			break;
6261 
6262 		r = -EINVAL;
6263 		if (kvm_state.size < sizeof(kvm_state))
6264 			break;
6265 
6266 		if (kvm_state.flags &
6267 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6268 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6269 		      | KVM_STATE_NESTED_GIF_SET))
6270 			break;
6271 
6272 		/* nested_run_pending implies guest_mode.  */
6273 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6274 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6275 			break;
6276 
6277 		idx = srcu_read_lock(&vcpu->kvm->srcu);
6278 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6279 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
6280 		break;
6281 	}
6282 #ifdef CONFIG_KVM_HYPERV
6283 	case KVM_GET_SUPPORTED_HV_CPUID:
6284 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6285 		break;
6286 #endif
6287 #ifdef CONFIG_KVM_XEN
6288 	case KVM_XEN_VCPU_GET_ATTR: {
6289 		struct kvm_xen_vcpu_attr xva;
6290 
6291 		r = -EFAULT;
6292 		if (copy_from_user(&xva, argp, sizeof(xva)))
6293 			goto out;
6294 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6295 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6296 			r = -EFAULT;
6297 		break;
6298 	}
6299 	case KVM_XEN_VCPU_SET_ATTR: {
6300 		struct kvm_xen_vcpu_attr xva;
6301 
6302 		r = -EFAULT;
6303 		if (copy_from_user(&xva, argp, sizeof(xva)))
6304 			goto out;
6305 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6306 		break;
6307 	}
6308 #endif
6309 	case KVM_GET_SREGS2: {
6310 		r = -EINVAL;
6311 		if (vcpu->kvm->arch.has_protected_state &&
6312 		    vcpu->arch.guest_state_protected)
6313 			goto out;
6314 
6315 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6316 		r = -ENOMEM;
6317 		if (!u.sregs2)
6318 			goto out;
6319 		__get_sregs2(vcpu, u.sregs2);
6320 		r = -EFAULT;
6321 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6322 			goto out;
6323 		r = 0;
6324 		break;
6325 	}
6326 	case KVM_SET_SREGS2: {
6327 		r = -EINVAL;
6328 		if (vcpu->kvm->arch.has_protected_state &&
6329 		    vcpu->arch.guest_state_protected)
6330 			goto out;
6331 
6332 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6333 		if (IS_ERR(u.sregs2)) {
6334 			r = PTR_ERR(u.sregs2);
6335 			u.sregs2 = NULL;
6336 			goto out;
6337 		}
6338 		r = __set_sregs2(vcpu, u.sregs2);
6339 		break;
6340 	}
6341 	case KVM_HAS_DEVICE_ATTR:
6342 	case KVM_GET_DEVICE_ATTR:
6343 	case KVM_SET_DEVICE_ATTR:
6344 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6345 		break;
6346 	case KVM_MEMORY_ENCRYPT_OP:
6347 		r = -ENOTTY;
6348 		if (!kvm_x86_ops.vcpu_mem_enc_ioctl)
6349 			goto out;
6350 		r = kvm_x86_ops.vcpu_mem_enc_ioctl(vcpu, argp);
6351 		break;
6352 	default:
6353 		r = -EINVAL;
6354 	}
6355 out:
6356 	kfree(u.buffer);
6357 out_nofree:
6358 	vcpu_put(vcpu);
6359 	return r;
6360 }
6361 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)6362 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6363 {
6364 	return VM_FAULT_SIGBUS;
6365 }
6366 
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)6367 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6368 {
6369 	int ret;
6370 
6371 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
6372 		return -EINVAL;
6373 	ret = kvm_x86_call(set_tss_addr)(kvm, addr);
6374 	return ret;
6375 }
6376 
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)6377 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6378 					      u64 ident_addr)
6379 {
6380 	return kvm_x86_call(set_identity_map_addr)(kvm, ident_addr);
6381 }
6382 
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)6383 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6384 					 unsigned long kvm_nr_mmu_pages)
6385 {
6386 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6387 		return -EINVAL;
6388 
6389 	mutex_lock(&kvm->slots_lock);
6390 
6391 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6392 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6393 
6394 	mutex_unlock(&kvm->slots_lock);
6395 	return 0;
6396 }
6397 
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6398 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6399 {
6400 	struct kvm_pic *pic = kvm->arch.vpic;
6401 	int r;
6402 
6403 	r = 0;
6404 	switch (chip->chip_id) {
6405 	case KVM_IRQCHIP_PIC_MASTER:
6406 		memcpy(&chip->chip.pic, &pic->pics[0],
6407 			sizeof(struct kvm_pic_state));
6408 		break;
6409 	case KVM_IRQCHIP_PIC_SLAVE:
6410 		memcpy(&chip->chip.pic, &pic->pics[1],
6411 			sizeof(struct kvm_pic_state));
6412 		break;
6413 	case KVM_IRQCHIP_IOAPIC:
6414 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
6415 		break;
6416 	default:
6417 		r = -EINVAL;
6418 		break;
6419 	}
6420 	return r;
6421 }
6422 
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6423 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6424 {
6425 	struct kvm_pic *pic = kvm->arch.vpic;
6426 	int r;
6427 
6428 	r = 0;
6429 	switch (chip->chip_id) {
6430 	case KVM_IRQCHIP_PIC_MASTER:
6431 		spin_lock(&pic->lock);
6432 		memcpy(&pic->pics[0], &chip->chip.pic,
6433 			sizeof(struct kvm_pic_state));
6434 		spin_unlock(&pic->lock);
6435 		break;
6436 	case KVM_IRQCHIP_PIC_SLAVE:
6437 		spin_lock(&pic->lock);
6438 		memcpy(&pic->pics[1], &chip->chip.pic,
6439 			sizeof(struct kvm_pic_state));
6440 		spin_unlock(&pic->lock);
6441 		break;
6442 	case KVM_IRQCHIP_IOAPIC:
6443 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
6444 		break;
6445 	default:
6446 		r = -EINVAL;
6447 		break;
6448 	}
6449 	kvm_pic_update_irq(pic);
6450 	return r;
6451 }
6452 
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)6453 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6454 {
6455 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6456 
6457 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6458 
6459 	mutex_lock(&kps->lock);
6460 	memcpy(ps, &kps->channels, sizeof(*ps));
6461 	mutex_unlock(&kps->lock);
6462 	return 0;
6463 }
6464 
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)6465 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6466 {
6467 	int i;
6468 	struct kvm_pit *pit = kvm->arch.vpit;
6469 
6470 	mutex_lock(&pit->pit_state.lock);
6471 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6472 	for (i = 0; i < 3; i++)
6473 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6474 	mutex_unlock(&pit->pit_state.lock);
6475 	return 0;
6476 }
6477 
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6478 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6479 {
6480 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
6481 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6482 		sizeof(ps->channels));
6483 	ps->flags = kvm->arch.vpit->pit_state.flags;
6484 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6485 	memset(&ps->reserved, 0, sizeof(ps->reserved));
6486 	return 0;
6487 }
6488 
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6489 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6490 {
6491 	int start = 0;
6492 	int i;
6493 	u32 prev_legacy, cur_legacy;
6494 	struct kvm_pit *pit = kvm->arch.vpit;
6495 
6496 	mutex_lock(&pit->pit_state.lock);
6497 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6498 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6499 	if (!prev_legacy && cur_legacy)
6500 		start = 1;
6501 	memcpy(&pit->pit_state.channels, &ps->channels,
6502 	       sizeof(pit->pit_state.channels));
6503 	pit->pit_state.flags = ps->flags;
6504 	for (i = 0; i < 3; i++)
6505 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6506 				   start && i == 0);
6507 	mutex_unlock(&pit->pit_state.lock);
6508 	return 0;
6509 }
6510 
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)6511 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6512 				 struct kvm_reinject_control *control)
6513 {
6514 	struct kvm_pit *pit = kvm->arch.vpit;
6515 
6516 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
6517 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6518 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6519 	 */
6520 	mutex_lock(&pit->pit_state.lock);
6521 	kvm_pit_set_reinject(pit, control->pit_reinject);
6522 	mutex_unlock(&pit->pit_state.lock);
6523 
6524 	return 0;
6525 }
6526 
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)6527 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6528 {
6529 
6530 	/*
6531 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6532 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6533 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6534 	 * VM-Exit.
6535 	 */
6536 	struct kvm_vcpu *vcpu;
6537 	unsigned long i;
6538 
6539 	if (!kvm->arch.cpu_dirty_log_size)
6540 		return;
6541 
6542 	kvm_for_each_vcpu(i, vcpu, kvm)
6543 		kvm_vcpu_kick(vcpu);
6544 }
6545 
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)6546 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6547 			bool line_status)
6548 {
6549 	if (!irqchip_in_kernel(kvm))
6550 		return -ENXIO;
6551 
6552 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6553 					irq_event->irq, irq_event->level,
6554 					line_status);
6555 	return 0;
6556 }
6557 
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)6558 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6559 			    struct kvm_enable_cap *cap)
6560 {
6561 	int r;
6562 
6563 	if (cap->flags)
6564 		return -EINVAL;
6565 
6566 	switch (cap->cap) {
6567 	case KVM_CAP_DISABLE_QUIRKS2:
6568 		r = -EINVAL;
6569 		if (cap->args[0] & ~kvm_caps.supported_quirks)
6570 			break;
6571 		fallthrough;
6572 	case KVM_CAP_DISABLE_QUIRKS:
6573 		kvm->arch.disabled_quirks |= cap->args[0] & kvm_caps.supported_quirks;
6574 		r = 0;
6575 		break;
6576 	case KVM_CAP_SPLIT_IRQCHIP: {
6577 		mutex_lock(&kvm->lock);
6578 		r = -EINVAL;
6579 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6580 			goto split_irqchip_unlock;
6581 		r = -EEXIST;
6582 		if (irqchip_in_kernel(kvm))
6583 			goto split_irqchip_unlock;
6584 		if (kvm->created_vcpus)
6585 			goto split_irqchip_unlock;
6586 		/* Pairs with irqchip_in_kernel. */
6587 		smp_wmb();
6588 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6589 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6590 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6591 		r = 0;
6592 split_irqchip_unlock:
6593 		mutex_unlock(&kvm->lock);
6594 		break;
6595 	}
6596 	case KVM_CAP_X2APIC_API:
6597 		r = -EINVAL;
6598 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6599 			break;
6600 
6601 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6602 			kvm->arch.x2apic_format = true;
6603 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6604 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6605 
6606 		r = 0;
6607 		break;
6608 	case KVM_CAP_X86_DISABLE_EXITS:
6609 		r = -EINVAL;
6610 		if (cap->args[0] & ~kvm_get_allowed_disable_exits())
6611 			break;
6612 
6613 		mutex_lock(&kvm->lock);
6614 		if (kvm->created_vcpus)
6615 			goto disable_exits_unlock;
6616 
6617 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6618 		    "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6619 
6620 		if (!mitigate_smt_rsb && boot_cpu_has_bug(X86_BUG_SMT_RSB) &&
6621 		    cpu_smt_possible() &&
6622 		    (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6623 			pr_warn_once(SMT_RSB_MSG);
6624 
6625 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6626 			kvm->arch.pause_in_guest = true;
6627 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT)
6628 			kvm->arch.mwait_in_guest = true;
6629 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6630 			kvm->arch.hlt_in_guest = true;
6631 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6632 			kvm->arch.cstate_in_guest = true;
6633 		r = 0;
6634 disable_exits_unlock:
6635 		mutex_unlock(&kvm->lock);
6636 		break;
6637 	case KVM_CAP_MSR_PLATFORM_INFO:
6638 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6639 		r = 0;
6640 		break;
6641 	case KVM_CAP_EXCEPTION_PAYLOAD:
6642 		kvm->arch.exception_payload_enabled = cap->args[0];
6643 		r = 0;
6644 		break;
6645 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6646 		kvm->arch.triple_fault_event = cap->args[0];
6647 		r = 0;
6648 		break;
6649 	case KVM_CAP_X86_USER_SPACE_MSR:
6650 		r = -EINVAL;
6651 		if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6652 			break;
6653 		kvm->arch.user_space_msr_mask = cap->args[0];
6654 		r = 0;
6655 		break;
6656 	case KVM_CAP_X86_BUS_LOCK_EXIT:
6657 		r = -EINVAL;
6658 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6659 			break;
6660 
6661 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6662 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6663 			break;
6664 
6665 		if (kvm_caps.has_bus_lock_exit &&
6666 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6667 			kvm->arch.bus_lock_detection_enabled = true;
6668 		r = 0;
6669 		break;
6670 #ifdef CONFIG_X86_SGX_KVM
6671 	case KVM_CAP_SGX_ATTRIBUTE: {
6672 		unsigned long allowed_attributes = 0;
6673 
6674 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6675 		if (r)
6676 			break;
6677 
6678 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6679 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6680 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6681 			kvm->arch.sgx_provisioning_allowed = true;
6682 		else
6683 			r = -EINVAL;
6684 		break;
6685 	}
6686 #endif
6687 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6688 		r = -EINVAL;
6689 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6690 			break;
6691 
6692 		r = kvm_x86_call(vm_copy_enc_context_from)(kvm, cap->args[0]);
6693 		break;
6694 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6695 		r = -EINVAL;
6696 		if (!kvm_x86_ops.vm_move_enc_context_from)
6697 			break;
6698 
6699 		r = kvm_x86_call(vm_move_enc_context_from)(kvm, cap->args[0]);
6700 		break;
6701 	case KVM_CAP_EXIT_HYPERCALL:
6702 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6703 			r = -EINVAL;
6704 			break;
6705 		}
6706 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6707 		r = 0;
6708 		break;
6709 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6710 		r = -EINVAL;
6711 		if (cap->args[0] & ~1)
6712 			break;
6713 		kvm->arch.exit_on_emulation_error = cap->args[0];
6714 		r = 0;
6715 		break;
6716 	case KVM_CAP_PMU_CAPABILITY:
6717 		r = -EINVAL;
6718 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6719 			break;
6720 
6721 		mutex_lock(&kvm->lock);
6722 		if (!kvm->created_vcpus) {
6723 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6724 			r = 0;
6725 		}
6726 		mutex_unlock(&kvm->lock);
6727 		break;
6728 	case KVM_CAP_MAX_VCPU_ID:
6729 		r = -EINVAL;
6730 		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6731 			break;
6732 
6733 		mutex_lock(&kvm->lock);
6734 		if (kvm->arch.bsp_vcpu_id > cap->args[0]) {
6735 			;
6736 		} else if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6737 			r = 0;
6738 		} else if (!kvm->arch.max_vcpu_ids) {
6739 			kvm->arch.max_vcpu_ids = cap->args[0];
6740 			r = 0;
6741 		}
6742 		mutex_unlock(&kvm->lock);
6743 		break;
6744 	case KVM_CAP_X86_NOTIFY_VMEXIT:
6745 		r = -EINVAL;
6746 		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6747 			break;
6748 		if (!kvm_caps.has_notify_vmexit)
6749 			break;
6750 		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6751 			break;
6752 		mutex_lock(&kvm->lock);
6753 		if (!kvm->created_vcpus) {
6754 			kvm->arch.notify_window = cap->args[0] >> 32;
6755 			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6756 			r = 0;
6757 		}
6758 		mutex_unlock(&kvm->lock);
6759 		break;
6760 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6761 		r = -EINVAL;
6762 
6763 		/*
6764 		 * Since the risk of disabling NX hugepages is a guest crashing
6765 		 * the system, ensure the userspace process has permission to
6766 		 * reboot the system.
6767 		 *
6768 		 * Note that unlike the reboot() syscall, the process must have
6769 		 * this capability in the root namespace because exposing
6770 		 * /dev/kvm into a container does not limit the scope of the
6771 		 * iTLB multihit bug to that container. In other words,
6772 		 * this must use capable(), not ns_capable().
6773 		 */
6774 		if (!capable(CAP_SYS_BOOT)) {
6775 			r = -EPERM;
6776 			break;
6777 		}
6778 
6779 		if (cap->args[0])
6780 			break;
6781 
6782 		mutex_lock(&kvm->lock);
6783 		if (!kvm->created_vcpus) {
6784 			kvm->arch.disable_nx_huge_pages = true;
6785 			r = 0;
6786 		}
6787 		mutex_unlock(&kvm->lock);
6788 		break;
6789 	case KVM_CAP_X86_APIC_BUS_CYCLES_NS: {
6790 		u64 bus_cycle_ns = cap->args[0];
6791 		u64 unused;
6792 
6793 		/*
6794 		 * Guard against overflow in tmict_to_ns(). 128 is the highest
6795 		 * divide value that can be programmed in APIC_TDCR.
6796 		 */
6797 		r = -EINVAL;
6798 		if (!bus_cycle_ns ||
6799 		    check_mul_overflow((u64)U32_MAX * 128, bus_cycle_ns, &unused))
6800 			break;
6801 
6802 		r = 0;
6803 		mutex_lock(&kvm->lock);
6804 		if (!irqchip_in_kernel(kvm))
6805 			r = -ENXIO;
6806 		else if (kvm->created_vcpus)
6807 			r = -EINVAL;
6808 		else
6809 			kvm->arch.apic_bus_cycle_ns = bus_cycle_ns;
6810 		mutex_unlock(&kvm->lock);
6811 		break;
6812 	}
6813 	default:
6814 		r = -EINVAL;
6815 		break;
6816 	}
6817 	return r;
6818 }
6819 
kvm_alloc_msr_filter(bool default_allow)6820 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6821 {
6822 	struct kvm_x86_msr_filter *msr_filter;
6823 
6824 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6825 	if (!msr_filter)
6826 		return NULL;
6827 
6828 	msr_filter->default_allow = default_allow;
6829 	return msr_filter;
6830 }
6831 
kvm_free_msr_filter(struct kvm_x86_msr_filter * msr_filter)6832 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6833 {
6834 	u32 i;
6835 
6836 	if (!msr_filter)
6837 		return;
6838 
6839 	for (i = 0; i < msr_filter->count; i++)
6840 		kfree(msr_filter->ranges[i].bitmap);
6841 
6842 	kfree(msr_filter);
6843 }
6844 
kvm_add_msr_filter(struct kvm_x86_msr_filter * msr_filter,struct kvm_msr_filter_range * user_range)6845 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6846 			      struct kvm_msr_filter_range *user_range)
6847 {
6848 	unsigned long *bitmap;
6849 	size_t bitmap_size;
6850 
6851 	if (!user_range->nmsrs)
6852 		return 0;
6853 
6854 	if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6855 		return -EINVAL;
6856 
6857 	if (!user_range->flags)
6858 		return -EINVAL;
6859 
6860 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6861 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6862 		return -EINVAL;
6863 
6864 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6865 	if (IS_ERR(bitmap))
6866 		return PTR_ERR(bitmap);
6867 
6868 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6869 		.flags = user_range->flags,
6870 		.base = user_range->base,
6871 		.nmsrs = user_range->nmsrs,
6872 		.bitmap = bitmap,
6873 	};
6874 
6875 	msr_filter->count++;
6876 	return 0;
6877 }
6878 
kvm_vm_ioctl_set_msr_filter(struct kvm * kvm,struct kvm_msr_filter * filter)6879 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6880 				       struct kvm_msr_filter *filter)
6881 {
6882 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6883 	bool default_allow;
6884 	bool empty = true;
6885 	int r;
6886 	u32 i;
6887 
6888 	if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6889 		return -EINVAL;
6890 
6891 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6892 		empty &= !filter->ranges[i].nmsrs;
6893 
6894 	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6895 	if (empty && !default_allow)
6896 		return -EINVAL;
6897 
6898 	new_filter = kvm_alloc_msr_filter(default_allow);
6899 	if (!new_filter)
6900 		return -ENOMEM;
6901 
6902 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6903 		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6904 		if (r) {
6905 			kvm_free_msr_filter(new_filter);
6906 			return r;
6907 		}
6908 	}
6909 
6910 	mutex_lock(&kvm->lock);
6911 	old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6912 					 mutex_is_locked(&kvm->lock));
6913 	mutex_unlock(&kvm->lock);
6914 	synchronize_srcu(&kvm->srcu);
6915 
6916 	kvm_free_msr_filter(old_filter);
6917 
6918 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6919 
6920 	return 0;
6921 }
6922 
6923 #ifdef CONFIG_KVM_COMPAT
6924 /* for KVM_X86_SET_MSR_FILTER */
6925 struct kvm_msr_filter_range_compat {
6926 	__u32 flags;
6927 	__u32 nmsrs;
6928 	__u32 base;
6929 	__u32 bitmap;
6930 };
6931 
6932 struct kvm_msr_filter_compat {
6933 	__u32 flags;
6934 	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6935 };
6936 
6937 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6938 
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6939 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6940 			      unsigned long arg)
6941 {
6942 	void __user *argp = (void __user *)arg;
6943 	struct kvm *kvm = filp->private_data;
6944 	long r = -ENOTTY;
6945 
6946 	switch (ioctl) {
6947 	case KVM_X86_SET_MSR_FILTER_COMPAT: {
6948 		struct kvm_msr_filter __user *user_msr_filter = argp;
6949 		struct kvm_msr_filter_compat filter_compat;
6950 		struct kvm_msr_filter filter;
6951 		int i;
6952 
6953 		if (copy_from_user(&filter_compat, user_msr_filter,
6954 				   sizeof(filter_compat)))
6955 			return -EFAULT;
6956 
6957 		filter.flags = filter_compat.flags;
6958 		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6959 			struct kvm_msr_filter_range_compat *cr;
6960 
6961 			cr = &filter_compat.ranges[i];
6962 			filter.ranges[i] = (struct kvm_msr_filter_range) {
6963 				.flags = cr->flags,
6964 				.nmsrs = cr->nmsrs,
6965 				.base = cr->base,
6966 				.bitmap = (__u8 *)(ulong)cr->bitmap,
6967 			};
6968 		}
6969 
6970 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6971 		break;
6972 	}
6973 	}
6974 
6975 	return r;
6976 }
6977 #endif
6978 
6979 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_arch_suspend_notifier(struct kvm * kvm)6980 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6981 {
6982 	struct kvm_vcpu *vcpu;
6983 	unsigned long i;
6984 
6985 	/*
6986 	 * Ignore the return, marking the guest paused only "fails" if the vCPU
6987 	 * isn't using kvmclock; continuing on is correct and desirable.
6988 	 */
6989 	kvm_for_each_vcpu(i, vcpu, kvm)
6990 		(void)kvm_set_guest_paused(vcpu);
6991 
6992 	return NOTIFY_DONE;
6993 }
6994 
kvm_arch_pm_notifier(struct kvm * kvm,unsigned long state)6995 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6996 {
6997 	switch (state) {
6998 	case PM_HIBERNATION_PREPARE:
6999 	case PM_SUSPEND_PREPARE:
7000 		return kvm_arch_suspend_notifier(kvm);
7001 	}
7002 
7003 	return NOTIFY_DONE;
7004 }
7005 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
7006 
kvm_vm_ioctl_get_clock(struct kvm * kvm,void __user * argp)7007 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
7008 {
7009 	struct kvm_clock_data data = { 0 };
7010 
7011 	get_kvmclock(kvm, &data);
7012 	if (copy_to_user(argp, &data, sizeof(data)))
7013 		return -EFAULT;
7014 
7015 	return 0;
7016 }
7017 
kvm_vm_ioctl_set_clock(struct kvm * kvm,void __user * argp)7018 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
7019 {
7020 	struct kvm_arch *ka = &kvm->arch;
7021 	struct kvm_clock_data data;
7022 	u64 now_raw_ns;
7023 
7024 	if (copy_from_user(&data, argp, sizeof(data)))
7025 		return -EFAULT;
7026 
7027 	/*
7028 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
7029 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
7030 	 */
7031 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
7032 		return -EINVAL;
7033 
7034 	kvm_hv_request_tsc_page_update(kvm);
7035 	kvm_start_pvclock_update(kvm);
7036 	pvclock_update_vm_gtod_copy(kvm);
7037 
7038 	/*
7039 	 * This pairs with kvm_guest_time_update(): when masterclock is
7040 	 * in use, we use master_kernel_ns + kvmclock_offset to set
7041 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
7042 	 * is slightly ahead) here we risk going negative on unsigned
7043 	 * 'system_time' when 'data.clock' is very small.
7044 	 */
7045 	if (data.flags & KVM_CLOCK_REALTIME) {
7046 		u64 now_real_ns = ktime_get_real_ns();
7047 
7048 		/*
7049 		 * Avoid stepping the kvmclock backwards.
7050 		 */
7051 		if (now_real_ns > data.realtime)
7052 			data.clock += now_real_ns - data.realtime;
7053 	}
7054 
7055 	if (ka->use_master_clock)
7056 		now_raw_ns = ka->master_kernel_ns;
7057 	else
7058 		now_raw_ns = get_kvmclock_base_ns();
7059 	ka->kvmclock_offset = data.clock - now_raw_ns;
7060 	kvm_end_pvclock_update(kvm);
7061 	return 0;
7062 }
7063 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)7064 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
7065 {
7066 	struct kvm *kvm = filp->private_data;
7067 	void __user *argp = (void __user *)arg;
7068 	int r = -ENOTTY;
7069 	/*
7070 	 * This union makes it completely explicit to gcc-3.x
7071 	 * that these two variables' stack usage should be
7072 	 * combined, not added together.
7073 	 */
7074 	union {
7075 		struct kvm_pit_state ps;
7076 		struct kvm_pit_state2 ps2;
7077 		struct kvm_pit_config pit_config;
7078 	} u;
7079 
7080 	switch (ioctl) {
7081 	case KVM_SET_TSS_ADDR:
7082 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
7083 		break;
7084 	case KVM_SET_IDENTITY_MAP_ADDR: {
7085 		u64 ident_addr;
7086 
7087 		mutex_lock(&kvm->lock);
7088 		r = -EINVAL;
7089 		if (kvm->created_vcpus)
7090 			goto set_identity_unlock;
7091 		r = -EFAULT;
7092 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
7093 			goto set_identity_unlock;
7094 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
7095 set_identity_unlock:
7096 		mutex_unlock(&kvm->lock);
7097 		break;
7098 	}
7099 	case KVM_SET_NR_MMU_PAGES:
7100 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
7101 		break;
7102 	case KVM_CREATE_IRQCHIP: {
7103 		mutex_lock(&kvm->lock);
7104 
7105 		r = -EEXIST;
7106 		if (irqchip_in_kernel(kvm))
7107 			goto create_irqchip_unlock;
7108 
7109 		r = -EINVAL;
7110 		if (kvm->created_vcpus)
7111 			goto create_irqchip_unlock;
7112 
7113 		r = kvm_pic_init(kvm);
7114 		if (r)
7115 			goto create_irqchip_unlock;
7116 
7117 		r = kvm_ioapic_init(kvm);
7118 		if (r) {
7119 			kvm_pic_destroy(kvm);
7120 			goto create_irqchip_unlock;
7121 		}
7122 
7123 		r = kvm_setup_default_irq_routing(kvm);
7124 		if (r) {
7125 			kvm_ioapic_destroy(kvm);
7126 			kvm_pic_destroy(kvm);
7127 			goto create_irqchip_unlock;
7128 		}
7129 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
7130 		smp_wmb();
7131 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
7132 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
7133 	create_irqchip_unlock:
7134 		mutex_unlock(&kvm->lock);
7135 		break;
7136 	}
7137 	case KVM_CREATE_PIT:
7138 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
7139 		goto create_pit;
7140 	case KVM_CREATE_PIT2:
7141 		r = -EFAULT;
7142 		if (copy_from_user(&u.pit_config, argp,
7143 				   sizeof(struct kvm_pit_config)))
7144 			goto out;
7145 	create_pit:
7146 		mutex_lock(&kvm->lock);
7147 		r = -EEXIST;
7148 		if (kvm->arch.vpit)
7149 			goto create_pit_unlock;
7150 		r = -ENOENT;
7151 		if (!pic_in_kernel(kvm))
7152 			goto create_pit_unlock;
7153 		r = -ENOMEM;
7154 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7155 		if (kvm->arch.vpit)
7156 			r = 0;
7157 	create_pit_unlock:
7158 		mutex_unlock(&kvm->lock);
7159 		break;
7160 	case KVM_GET_IRQCHIP: {
7161 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7162 		struct kvm_irqchip *chip;
7163 
7164 		chip = memdup_user(argp, sizeof(*chip));
7165 		if (IS_ERR(chip)) {
7166 			r = PTR_ERR(chip);
7167 			goto out;
7168 		}
7169 
7170 		r = -ENXIO;
7171 		if (!irqchip_kernel(kvm))
7172 			goto get_irqchip_out;
7173 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7174 		if (r)
7175 			goto get_irqchip_out;
7176 		r = -EFAULT;
7177 		if (copy_to_user(argp, chip, sizeof(*chip)))
7178 			goto get_irqchip_out;
7179 		r = 0;
7180 	get_irqchip_out:
7181 		kfree(chip);
7182 		break;
7183 	}
7184 	case KVM_SET_IRQCHIP: {
7185 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7186 		struct kvm_irqchip *chip;
7187 
7188 		chip = memdup_user(argp, sizeof(*chip));
7189 		if (IS_ERR(chip)) {
7190 			r = PTR_ERR(chip);
7191 			goto out;
7192 		}
7193 
7194 		r = -ENXIO;
7195 		if (!irqchip_kernel(kvm))
7196 			goto set_irqchip_out;
7197 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7198 	set_irqchip_out:
7199 		kfree(chip);
7200 		break;
7201 	}
7202 	case KVM_GET_PIT: {
7203 		r = -EFAULT;
7204 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7205 			goto out;
7206 		r = -ENXIO;
7207 		if (!kvm->arch.vpit)
7208 			goto out;
7209 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7210 		if (r)
7211 			goto out;
7212 		r = -EFAULT;
7213 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7214 			goto out;
7215 		r = 0;
7216 		break;
7217 	}
7218 	case KVM_SET_PIT: {
7219 		r = -EFAULT;
7220 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7221 			goto out;
7222 		mutex_lock(&kvm->lock);
7223 		r = -ENXIO;
7224 		if (!kvm->arch.vpit)
7225 			goto set_pit_out;
7226 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7227 set_pit_out:
7228 		mutex_unlock(&kvm->lock);
7229 		break;
7230 	}
7231 	case KVM_GET_PIT2: {
7232 		r = -ENXIO;
7233 		if (!kvm->arch.vpit)
7234 			goto out;
7235 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7236 		if (r)
7237 			goto out;
7238 		r = -EFAULT;
7239 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7240 			goto out;
7241 		r = 0;
7242 		break;
7243 	}
7244 	case KVM_SET_PIT2: {
7245 		r = -EFAULT;
7246 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7247 			goto out;
7248 		mutex_lock(&kvm->lock);
7249 		r = -ENXIO;
7250 		if (!kvm->arch.vpit)
7251 			goto set_pit2_out;
7252 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7253 set_pit2_out:
7254 		mutex_unlock(&kvm->lock);
7255 		break;
7256 	}
7257 	case KVM_REINJECT_CONTROL: {
7258 		struct kvm_reinject_control control;
7259 		r =  -EFAULT;
7260 		if (copy_from_user(&control, argp, sizeof(control)))
7261 			goto out;
7262 		r = -ENXIO;
7263 		if (!kvm->arch.vpit)
7264 			goto out;
7265 		r = kvm_vm_ioctl_reinject(kvm, &control);
7266 		break;
7267 	}
7268 	case KVM_SET_BOOT_CPU_ID:
7269 		r = 0;
7270 		mutex_lock(&kvm->lock);
7271 		if (kvm->created_vcpus)
7272 			r = -EBUSY;
7273 		else if (arg > KVM_MAX_VCPU_IDS ||
7274 			 (kvm->arch.max_vcpu_ids && arg > kvm->arch.max_vcpu_ids))
7275 			r = -EINVAL;
7276 		else
7277 			kvm->arch.bsp_vcpu_id = arg;
7278 		mutex_unlock(&kvm->lock);
7279 		break;
7280 #ifdef CONFIG_KVM_XEN
7281 	case KVM_XEN_HVM_CONFIG: {
7282 		struct kvm_xen_hvm_config xhc;
7283 		r = -EFAULT;
7284 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
7285 			goto out;
7286 		r = kvm_xen_hvm_config(kvm, &xhc);
7287 		break;
7288 	}
7289 	case KVM_XEN_HVM_GET_ATTR: {
7290 		struct kvm_xen_hvm_attr xha;
7291 
7292 		r = -EFAULT;
7293 		if (copy_from_user(&xha, argp, sizeof(xha)))
7294 			goto out;
7295 		r = kvm_xen_hvm_get_attr(kvm, &xha);
7296 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7297 			r = -EFAULT;
7298 		break;
7299 	}
7300 	case KVM_XEN_HVM_SET_ATTR: {
7301 		struct kvm_xen_hvm_attr xha;
7302 
7303 		r = -EFAULT;
7304 		if (copy_from_user(&xha, argp, sizeof(xha)))
7305 			goto out;
7306 		r = kvm_xen_hvm_set_attr(kvm, &xha);
7307 		break;
7308 	}
7309 	case KVM_XEN_HVM_EVTCHN_SEND: {
7310 		struct kvm_irq_routing_xen_evtchn uxe;
7311 
7312 		r = -EFAULT;
7313 		if (copy_from_user(&uxe, argp, sizeof(uxe)))
7314 			goto out;
7315 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7316 		break;
7317 	}
7318 #endif
7319 	case KVM_SET_CLOCK:
7320 		r = kvm_vm_ioctl_set_clock(kvm, argp);
7321 		break;
7322 	case KVM_GET_CLOCK:
7323 		r = kvm_vm_ioctl_get_clock(kvm, argp);
7324 		break;
7325 	case KVM_SET_TSC_KHZ: {
7326 		u32 user_tsc_khz;
7327 
7328 		r = -EINVAL;
7329 		user_tsc_khz = (u32)arg;
7330 
7331 		if (kvm_caps.has_tsc_control &&
7332 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7333 			goto out;
7334 
7335 		if (user_tsc_khz == 0)
7336 			user_tsc_khz = tsc_khz;
7337 
7338 		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7339 		r = 0;
7340 
7341 		goto out;
7342 	}
7343 	case KVM_GET_TSC_KHZ: {
7344 		r = READ_ONCE(kvm->arch.default_tsc_khz);
7345 		goto out;
7346 	}
7347 	case KVM_MEMORY_ENCRYPT_OP:
7348 		r = -ENOTTY;
7349 		if (!kvm_x86_ops.mem_enc_ioctl)
7350 			goto out;
7351 
7352 		r = kvm_x86_call(mem_enc_ioctl)(kvm, argp);
7353 		break;
7354 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
7355 		struct kvm_enc_region region;
7356 
7357 		r = -EFAULT;
7358 		if (copy_from_user(&region, argp, sizeof(region)))
7359 			goto out;
7360 
7361 		r = -ENOTTY;
7362 		if (!kvm_x86_ops.mem_enc_register_region)
7363 			goto out;
7364 
7365 		r = kvm_x86_call(mem_enc_register_region)(kvm, &region);
7366 		break;
7367 	}
7368 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7369 		struct kvm_enc_region region;
7370 
7371 		r = -EFAULT;
7372 		if (copy_from_user(&region, argp, sizeof(region)))
7373 			goto out;
7374 
7375 		r = -ENOTTY;
7376 		if (!kvm_x86_ops.mem_enc_unregister_region)
7377 			goto out;
7378 
7379 		r = kvm_x86_call(mem_enc_unregister_region)(kvm, &region);
7380 		break;
7381 	}
7382 #ifdef CONFIG_KVM_HYPERV
7383 	case KVM_HYPERV_EVENTFD: {
7384 		struct kvm_hyperv_eventfd hvevfd;
7385 
7386 		r = -EFAULT;
7387 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7388 			goto out;
7389 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7390 		break;
7391 	}
7392 #endif
7393 	case KVM_SET_PMU_EVENT_FILTER:
7394 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7395 		break;
7396 	case KVM_X86_SET_MSR_FILTER: {
7397 		struct kvm_msr_filter __user *user_msr_filter = argp;
7398 		struct kvm_msr_filter filter;
7399 
7400 		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7401 			return -EFAULT;
7402 
7403 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7404 		break;
7405 	}
7406 	default:
7407 		r = -ENOTTY;
7408 	}
7409 out:
7410 	return r;
7411 }
7412 
kvm_probe_feature_msr(u32 msr_index)7413 static void kvm_probe_feature_msr(u32 msr_index)
7414 {
7415 	u64 data;
7416 
7417 	if (kvm_get_feature_msr(NULL, msr_index, &data, true))
7418 		return;
7419 
7420 	msr_based_features[num_msr_based_features++] = msr_index;
7421 }
7422 
kvm_probe_msr_to_save(u32 msr_index)7423 static void kvm_probe_msr_to_save(u32 msr_index)
7424 {
7425 	u32 dummy[2];
7426 
7427 	if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7428 		return;
7429 
7430 	/*
7431 	 * Even MSRs that are valid in the host may not be exposed to guests in
7432 	 * some cases.
7433 	 */
7434 	switch (msr_index) {
7435 	case MSR_IA32_BNDCFGS:
7436 		if (!kvm_mpx_supported())
7437 			return;
7438 		break;
7439 	case MSR_TSC_AUX:
7440 		if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7441 		    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7442 			return;
7443 		break;
7444 	case MSR_IA32_UMWAIT_CONTROL:
7445 		if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7446 			return;
7447 		break;
7448 	case MSR_IA32_RTIT_CTL:
7449 	case MSR_IA32_RTIT_STATUS:
7450 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7451 			return;
7452 		break;
7453 	case MSR_IA32_RTIT_CR3_MATCH:
7454 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7455 		    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7456 			return;
7457 		break;
7458 	case MSR_IA32_RTIT_OUTPUT_BASE:
7459 	case MSR_IA32_RTIT_OUTPUT_MASK:
7460 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7461 		    (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7462 		     !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7463 			return;
7464 		break;
7465 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7466 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7467 		    (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7468 		     intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7469 			return;
7470 		break;
7471 	case MSR_ARCH_PERFMON_PERFCTR0 ...
7472 	     MSR_ARCH_PERFMON_PERFCTR0 + KVM_MAX_NR_GP_COUNTERS - 1:
7473 		if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7474 		    kvm_pmu_cap.num_counters_gp)
7475 			return;
7476 		break;
7477 	case MSR_ARCH_PERFMON_EVENTSEL0 ...
7478 	     MSR_ARCH_PERFMON_EVENTSEL0 + KVM_MAX_NR_GP_COUNTERS - 1:
7479 		if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7480 		    kvm_pmu_cap.num_counters_gp)
7481 			return;
7482 		break;
7483 	case MSR_ARCH_PERFMON_FIXED_CTR0 ...
7484 	     MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_MAX_NR_FIXED_COUNTERS - 1:
7485 		if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7486 		    kvm_pmu_cap.num_counters_fixed)
7487 			return;
7488 		break;
7489 	case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7490 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7491 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7492 		if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7493 			return;
7494 		break;
7495 	case MSR_IA32_XFD:
7496 	case MSR_IA32_XFD_ERR:
7497 		if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7498 			return;
7499 		break;
7500 	case MSR_IA32_TSX_CTRL:
7501 		if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7502 			return;
7503 		break;
7504 	default:
7505 		break;
7506 	}
7507 
7508 	msrs_to_save[num_msrs_to_save++] = msr_index;
7509 }
7510 
kvm_init_msr_lists(void)7511 static void kvm_init_msr_lists(void)
7512 {
7513 	unsigned i;
7514 
7515 	BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS != 3,
7516 			 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7517 
7518 	num_msrs_to_save = 0;
7519 	num_emulated_msrs = 0;
7520 	num_msr_based_features = 0;
7521 
7522 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7523 		kvm_probe_msr_to_save(msrs_to_save_base[i]);
7524 
7525 	if (enable_pmu) {
7526 		for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7527 			kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7528 	}
7529 
7530 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7531 		if (!kvm_x86_call(has_emulated_msr)(NULL,
7532 						    emulated_msrs_all[i]))
7533 			continue;
7534 
7535 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7536 	}
7537 
7538 	for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7539 		kvm_probe_feature_msr(i);
7540 
7541 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7542 		kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7543 }
7544 
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)7545 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7546 			   const void *v)
7547 {
7548 	int handled = 0;
7549 	int n;
7550 
7551 	do {
7552 		n = min(len, 8);
7553 		if (!(lapic_in_kernel(vcpu) &&
7554 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7555 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7556 			break;
7557 		handled += n;
7558 		addr += n;
7559 		len -= n;
7560 		v += n;
7561 	} while (len);
7562 
7563 	return handled;
7564 }
7565 
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)7566 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7567 {
7568 	int handled = 0;
7569 	int n;
7570 
7571 	do {
7572 		n = min(len, 8);
7573 		if (!(lapic_in_kernel(vcpu) &&
7574 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7575 					 addr, n, v))
7576 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7577 			break;
7578 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7579 		handled += n;
7580 		addr += n;
7581 		len -= n;
7582 		v += n;
7583 	} while (len);
7584 
7585 	return handled;
7586 }
7587 
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7588 void kvm_set_segment(struct kvm_vcpu *vcpu,
7589 		     struct kvm_segment *var, int seg)
7590 {
7591 	kvm_x86_call(set_segment)(vcpu, var, seg);
7592 }
7593 
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7594 void kvm_get_segment(struct kvm_vcpu *vcpu,
7595 		     struct kvm_segment *var, int seg)
7596 {
7597 	kvm_x86_call(get_segment)(vcpu, var, seg);
7598 }
7599 
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u64 access,struct x86_exception * exception)7600 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7601 			   struct x86_exception *exception)
7602 {
7603 	struct kvm_mmu *mmu = vcpu->arch.mmu;
7604 	gpa_t t_gpa;
7605 
7606 	BUG_ON(!mmu_is_nested(vcpu));
7607 
7608 	/* NPT walks are always user-walks */
7609 	access |= PFERR_USER_MASK;
7610 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7611 
7612 	return t_gpa;
7613 }
7614 
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7615 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7616 			      struct x86_exception *exception)
7617 {
7618 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7619 
7620 	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7621 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7622 }
7623 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7624 
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7625 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7626 			       struct x86_exception *exception)
7627 {
7628 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7629 
7630 	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7631 	access |= PFERR_WRITE_MASK;
7632 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7633 }
7634 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7635 
7636 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7637 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7638 				struct x86_exception *exception)
7639 {
7640 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7641 
7642 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7643 }
7644 
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7645 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7646 				      struct kvm_vcpu *vcpu, u64 access,
7647 				      struct x86_exception *exception)
7648 {
7649 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7650 	void *data = val;
7651 	int r = X86EMUL_CONTINUE;
7652 
7653 	while (bytes) {
7654 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7655 		unsigned offset = addr & (PAGE_SIZE-1);
7656 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7657 		int ret;
7658 
7659 		if (gpa == INVALID_GPA)
7660 			return X86EMUL_PROPAGATE_FAULT;
7661 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7662 					       offset, toread);
7663 		if (ret < 0) {
7664 			r = X86EMUL_IO_NEEDED;
7665 			goto out;
7666 		}
7667 
7668 		bytes -= toread;
7669 		data += toread;
7670 		addr += toread;
7671 	}
7672 out:
7673 	return r;
7674 }
7675 
7676 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7677 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7678 				gva_t addr, void *val, unsigned int bytes,
7679 				struct x86_exception *exception)
7680 {
7681 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7682 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7683 	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7684 	unsigned offset;
7685 	int ret;
7686 
7687 	/* Inline kvm_read_guest_virt_helper for speed.  */
7688 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7689 				    exception);
7690 	if (unlikely(gpa == INVALID_GPA))
7691 		return X86EMUL_PROPAGATE_FAULT;
7692 
7693 	offset = addr & (PAGE_SIZE-1);
7694 	if (WARN_ON(offset + bytes > PAGE_SIZE))
7695 		bytes = (unsigned)PAGE_SIZE - offset;
7696 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7697 				       offset, bytes);
7698 	if (unlikely(ret < 0))
7699 		return X86EMUL_IO_NEEDED;
7700 
7701 	return X86EMUL_CONTINUE;
7702 }
7703 
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7704 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7705 			       gva_t addr, void *val, unsigned int bytes,
7706 			       struct x86_exception *exception)
7707 {
7708 	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7709 
7710 	/*
7711 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7712 	 * is returned, but our callers are not ready for that and they blindly
7713 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7714 	 * uninitialized kernel stack memory into cr2 and error code.
7715 	 */
7716 	memset(exception, 0, sizeof(*exception));
7717 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7718 					  exception);
7719 }
7720 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7721 
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7722 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7723 			     gva_t addr, void *val, unsigned int bytes,
7724 			     struct x86_exception *exception, bool system)
7725 {
7726 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7727 	u64 access = 0;
7728 
7729 	if (system)
7730 		access |= PFERR_IMPLICIT_ACCESS;
7731 	else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7732 		access |= PFERR_USER_MASK;
7733 
7734 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7735 }
7736 
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7737 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7738 				      struct kvm_vcpu *vcpu, u64 access,
7739 				      struct x86_exception *exception)
7740 {
7741 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7742 	void *data = val;
7743 	int r = X86EMUL_CONTINUE;
7744 
7745 	while (bytes) {
7746 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7747 		unsigned offset = addr & (PAGE_SIZE-1);
7748 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7749 		int ret;
7750 
7751 		if (gpa == INVALID_GPA)
7752 			return X86EMUL_PROPAGATE_FAULT;
7753 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7754 		if (ret < 0) {
7755 			r = X86EMUL_IO_NEEDED;
7756 			goto out;
7757 		}
7758 
7759 		bytes -= towrite;
7760 		data += towrite;
7761 		addr += towrite;
7762 	}
7763 out:
7764 	return r;
7765 }
7766 
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7767 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7768 			      unsigned int bytes, struct x86_exception *exception,
7769 			      bool system)
7770 {
7771 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7772 	u64 access = PFERR_WRITE_MASK;
7773 
7774 	if (system)
7775 		access |= PFERR_IMPLICIT_ACCESS;
7776 	else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7777 		access |= PFERR_USER_MASK;
7778 
7779 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7780 					   access, exception);
7781 }
7782 
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7783 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7784 				unsigned int bytes, struct x86_exception *exception)
7785 {
7786 	/* kvm_write_guest_virt_system can pull in tons of pages. */
7787 	vcpu->arch.l1tf_flush_l1d = true;
7788 
7789 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7790 					   PFERR_WRITE_MASK, exception);
7791 }
7792 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7793 
kvm_check_emulate_insn(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)7794 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7795 				  void *insn, int insn_len)
7796 {
7797 	return kvm_x86_call(check_emulate_instruction)(vcpu, emul_type,
7798 						       insn, insn_len);
7799 }
7800 
handle_ud(struct kvm_vcpu * vcpu)7801 int handle_ud(struct kvm_vcpu *vcpu)
7802 {
7803 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7804 	int fep_flags = READ_ONCE(force_emulation_prefix);
7805 	int emul_type = EMULTYPE_TRAP_UD;
7806 	char sig[5]; /* ud2; .ascii "kvm" */
7807 	struct x86_exception e;
7808 	int r;
7809 
7810 	r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
7811 	if (r != X86EMUL_CONTINUE)
7812 		return 1;
7813 
7814 	if (fep_flags &&
7815 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7816 				sig, sizeof(sig), &e) == 0 &&
7817 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7818 		if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7819 			kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7820 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7821 		emul_type = EMULTYPE_TRAP_UD_FORCED;
7822 	}
7823 
7824 	return kvm_emulate_instruction(vcpu, emul_type);
7825 }
7826 EXPORT_SYMBOL_GPL(handle_ud);
7827 
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)7828 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7829 			    gpa_t gpa, bool write)
7830 {
7831 	/* For APIC access vmexit */
7832 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7833 		return 1;
7834 
7835 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7836 		trace_vcpu_match_mmio(gva, gpa, write, true);
7837 		return 1;
7838 	}
7839 
7840 	return 0;
7841 }
7842 
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)7843 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7844 				gpa_t *gpa, struct x86_exception *exception,
7845 				bool write)
7846 {
7847 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7848 	u64 access = ((kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7849 		     | (write ? PFERR_WRITE_MASK : 0);
7850 
7851 	/*
7852 	 * currently PKRU is only applied to ept enabled guest so
7853 	 * there is no pkey in EPT page table for L1 guest or EPT
7854 	 * shadow page table for L2 guest.
7855 	 */
7856 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7857 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7858 			      vcpu->arch.mmio_access, 0, access))) {
7859 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7860 					(gva & (PAGE_SIZE - 1));
7861 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7862 		return 1;
7863 	}
7864 
7865 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7866 
7867 	if (*gpa == INVALID_GPA)
7868 		return -1;
7869 
7870 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7871 }
7872 
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)7873 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7874 			const void *val, int bytes)
7875 {
7876 	int ret;
7877 
7878 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7879 	if (ret < 0)
7880 		return 0;
7881 	kvm_page_track_write(vcpu, gpa, val, bytes);
7882 	return 1;
7883 }
7884 
7885 struct read_write_emulator_ops {
7886 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7887 				  int bytes);
7888 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7889 				  void *val, int bytes);
7890 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7891 			       int bytes, void *val);
7892 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7893 				    void *val, int bytes);
7894 	bool write;
7895 };
7896 
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)7897 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7898 {
7899 	if (vcpu->mmio_read_completed) {
7900 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7901 			       vcpu->mmio_fragments[0].gpa, val);
7902 		vcpu->mmio_read_completed = 0;
7903 		return 1;
7904 	}
7905 
7906 	return 0;
7907 }
7908 
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7909 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7910 			void *val, int bytes)
7911 {
7912 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7913 }
7914 
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7915 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7916 			 void *val, int bytes)
7917 {
7918 	return emulator_write_phys(vcpu, gpa, val, bytes);
7919 }
7920 
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)7921 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7922 {
7923 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7924 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7925 }
7926 
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7927 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7928 			  void *val, int bytes)
7929 {
7930 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7931 	return X86EMUL_IO_NEEDED;
7932 }
7933 
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7934 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7935 			   void *val, int bytes)
7936 {
7937 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7938 
7939 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7940 	return X86EMUL_CONTINUE;
7941 }
7942 
7943 static const struct read_write_emulator_ops read_emultor = {
7944 	.read_write_prepare = read_prepare,
7945 	.read_write_emulate = read_emulate,
7946 	.read_write_mmio = vcpu_mmio_read,
7947 	.read_write_exit_mmio = read_exit_mmio,
7948 };
7949 
7950 static const struct read_write_emulator_ops write_emultor = {
7951 	.read_write_emulate = write_emulate,
7952 	.read_write_mmio = write_mmio,
7953 	.read_write_exit_mmio = write_exit_mmio,
7954 	.write = true,
7955 };
7956 
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)7957 static int emulator_read_write_onepage(unsigned long addr, void *val,
7958 				       unsigned int bytes,
7959 				       struct x86_exception *exception,
7960 				       struct kvm_vcpu *vcpu,
7961 				       const struct read_write_emulator_ops *ops)
7962 {
7963 	gpa_t gpa;
7964 	int handled, ret;
7965 	bool write = ops->write;
7966 	struct kvm_mmio_fragment *frag;
7967 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7968 
7969 	/*
7970 	 * If the exit was due to a NPF we may already have a GPA.
7971 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7972 	 * Note, this cannot be used on string operations since string
7973 	 * operation using rep will only have the initial GPA from the NPF
7974 	 * occurred.
7975 	 */
7976 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7977 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7978 		gpa = ctxt->gpa_val;
7979 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7980 	} else {
7981 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7982 		if (ret < 0)
7983 			return X86EMUL_PROPAGATE_FAULT;
7984 	}
7985 
7986 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7987 		return X86EMUL_CONTINUE;
7988 
7989 	/*
7990 	 * Is this MMIO handled locally?
7991 	 */
7992 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7993 	if (handled == bytes)
7994 		return X86EMUL_CONTINUE;
7995 
7996 	gpa += handled;
7997 	bytes -= handled;
7998 	val += handled;
7999 
8000 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
8001 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
8002 	frag->gpa = gpa;
8003 	frag->data = val;
8004 	frag->len = bytes;
8005 	return X86EMUL_CONTINUE;
8006 }
8007 
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)8008 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
8009 			unsigned long addr,
8010 			void *val, unsigned int bytes,
8011 			struct x86_exception *exception,
8012 			const struct read_write_emulator_ops *ops)
8013 {
8014 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8015 	gpa_t gpa;
8016 	int rc;
8017 
8018 	if (ops->read_write_prepare &&
8019 		  ops->read_write_prepare(vcpu, val, bytes))
8020 		return X86EMUL_CONTINUE;
8021 
8022 	vcpu->mmio_nr_fragments = 0;
8023 
8024 	/* Crossing a page boundary? */
8025 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
8026 		int now;
8027 
8028 		now = -addr & ~PAGE_MASK;
8029 		rc = emulator_read_write_onepage(addr, val, now, exception,
8030 						 vcpu, ops);
8031 
8032 		if (rc != X86EMUL_CONTINUE)
8033 			return rc;
8034 		addr += now;
8035 		if (ctxt->mode != X86EMUL_MODE_PROT64)
8036 			addr = (u32)addr;
8037 		val += now;
8038 		bytes -= now;
8039 	}
8040 
8041 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
8042 					 vcpu, ops);
8043 	if (rc != X86EMUL_CONTINUE)
8044 		return rc;
8045 
8046 	if (!vcpu->mmio_nr_fragments)
8047 		return X86EMUL_CONTINUE;
8048 
8049 	gpa = vcpu->mmio_fragments[0].gpa;
8050 
8051 	vcpu->mmio_needed = 1;
8052 	vcpu->mmio_cur_fragment = 0;
8053 
8054 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
8055 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
8056 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
8057 	vcpu->run->mmio.phys_addr = gpa;
8058 
8059 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
8060 }
8061 
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)8062 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
8063 				  unsigned long addr,
8064 				  void *val,
8065 				  unsigned int bytes,
8066 				  struct x86_exception *exception)
8067 {
8068 	return emulator_read_write(ctxt, addr, val, bytes,
8069 				   exception, &read_emultor);
8070 }
8071 
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)8072 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
8073 			    unsigned long addr,
8074 			    const void *val,
8075 			    unsigned int bytes,
8076 			    struct x86_exception *exception)
8077 {
8078 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
8079 				   exception, &write_emultor);
8080 }
8081 
8082 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
8083 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
8084 
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)8085 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
8086 				     unsigned long addr,
8087 				     const void *old,
8088 				     const void *new,
8089 				     unsigned int bytes,
8090 				     struct x86_exception *exception)
8091 {
8092 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8093 	u64 page_line_mask;
8094 	unsigned long hva;
8095 	gpa_t gpa;
8096 	int r;
8097 
8098 	/* guests cmpxchg8b have to be emulated atomically */
8099 	if (bytes > 8 || (bytes & (bytes - 1)))
8100 		goto emul_write;
8101 
8102 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
8103 
8104 	if (gpa == INVALID_GPA ||
8105 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8106 		goto emul_write;
8107 
8108 	/*
8109 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
8110 	 * enabled in the host and the access splits a cache line.
8111 	 */
8112 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
8113 		page_line_mask = ~(cache_line_size() - 1);
8114 	else
8115 		page_line_mask = PAGE_MASK;
8116 
8117 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
8118 		goto emul_write;
8119 
8120 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
8121 	if (kvm_is_error_hva(hva))
8122 		goto emul_write;
8123 
8124 	hva += offset_in_page(gpa);
8125 
8126 	switch (bytes) {
8127 	case 1:
8128 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
8129 		break;
8130 	case 2:
8131 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
8132 		break;
8133 	case 4:
8134 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
8135 		break;
8136 	case 8:
8137 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
8138 		break;
8139 	default:
8140 		BUG();
8141 	}
8142 
8143 	if (r < 0)
8144 		return X86EMUL_UNHANDLEABLE;
8145 
8146 	/*
8147 	 * Mark the page dirty _before_ checking whether or not the CMPXCHG was
8148 	 * successful, as the old value is written back on failure.  Note, for
8149 	 * live migration, this is unnecessarily conservative as CMPXCHG writes
8150 	 * back the original value and the access is atomic, but KVM's ABI is
8151 	 * that all writes are dirty logged, regardless of the value written.
8152 	 */
8153 	kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
8154 
8155 	if (r)
8156 		return X86EMUL_CMPXCHG_FAILED;
8157 
8158 	kvm_page_track_write(vcpu, gpa, new, bytes);
8159 
8160 	return X86EMUL_CONTINUE;
8161 
8162 emul_write:
8163 	pr_warn_once("emulating exchange as write\n");
8164 
8165 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8166 }
8167 
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * data,unsigned int count,bool in)8168 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8169 			       unsigned short port, void *data,
8170 			       unsigned int count, bool in)
8171 {
8172 	unsigned i;
8173 	int r;
8174 
8175 	WARN_ON_ONCE(vcpu->arch.pio.count);
8176 	for (i = 0; i < count; i++) {
8177 		if (in)
8178 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8179 		else
8180 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8181 
8182 		if (r) {
8183 			if (i == 0)
8184 				goto userspace_io;
8185 
8186 			/*
8187 			 * Userspace must have unregistered the device while PIO
8188 			 * was running.  Drop writes / read as 0.
8189 			 */
8190 			if (in)
8191 				memset(data, 0, size * (count - i));
8192 			break;
8193 		}
8194 
8195 		data += size;
8196 	}
8197 	return 1;
8198 
8199 userspace_io:
8200 	vcpu->arch.pio.port = port;
8201 	vcpu->arch.pio.in = in;
8202 	vcpu->arch.pio.count = count;
8203 	vcpu->arch.pio.size = size;
8204 
8205 	if (in)
8206 		memset(vcpu->arch.pio_data, 0, size * count);
8207 	else
8208 		memcpy(vcpu->arch.pio_data, data, size * count);
8209 
8210 	vcpu->run->exit_reason = KVM_EXIT_IO;
8211 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8212 	vcpu->run->io.size = size;
8213 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8214 	vcpu->run->io.count = count;
8215 	vcpu->run->io.port = port;
8216 	return 0;
8217 }
8218 
emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count)8219 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8220       			   unsigned short port, void *val, unsigned int count)
8221 {
8222 	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8223 	if (r)
8224 		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8225 
8226 	return r;
8227 }
8228 
complete_emulator_pio_in(struct kvm_vcpu * vcpu,void * val)8229 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8230 {
8231 	int size = vcpu->arch.pio.size;
8232 	unsigned int count = vcpu->arch.pio.count;
8233 	memcpy(val, vcpu->arch.pio_data, size * count);
8234 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8235 	vcpu->arch.pio.count = 0;
8236 }
8237 
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)8238 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8239 				    int size, unsigned short port, void *val,
8240 				    unsigned int count)
8241 {
8242 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8243 	if (vcpu->arch.pio.count) {
8244 		/*
8245 		 * Complete a previous iteration that required userspace I/O.
8246 		 * Note, @count isn't guaranteed to match pio.count as userspace
8247 		 * can modify ECX before rerunning the vCPU.  Ignore any such
8248 		 * shenanigans as KVM doesn't support modifying the rep count,
8249 		 * and the emulator ensures @count doesn't overflow the buffer.
8250 		 */
8251 		complete_emulator_pio_in(vcpu, val);
8252 		return 1;
8253 	}
8254 
8255 	return emulator_pio_in(vcpu, size, port, val, count);
8256 }
8257 
emulator_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port,const void * val,unsigned int count)8258 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8259 			    unsigned short port, const void *val,
8260 			    unsigned int count)
8261 {
8262 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8263 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8264 }
8265 
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)8266 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8267 				     int size, unsigned short port,
8268 				     const void *val, unsigned int count)
8269 {
8270 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8271 }
8272 
get_segment_base(struct kvm_vcpu * vcpu,int seg)8273 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8274 {
8275 	return kvm_x86_call(get_segment_base)(vcpu, seg);
8276 }
8277 
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)8278 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8279 {
8280 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8281 }
8282 
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)8283 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8284 {
8285 	if (!need_emulate_wbinvd(vcpu))
8286 		return X86EMUL_CONTINUE;
8287 
8288 	if (kvm_x86_call(has_wbinvd_exit)()) {
8289 		int cpu = get_cpu();
8290 
8291 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8292 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
8293 				wbinvd_ipi, NULL, 1);
8294 		put_cpu();
8295 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8296 	} else
8297 		wbinvd();
8298 	return X86EMUL_CONTINUE;
8299 }
8300 
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)8301 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8302 {
8303 	kvm_emulate_wbinvd_noskip(vcpu);
8304 	return kvm_skip_emulated_instruction(vcpu);
8305 }
8306 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8307 
8308 
8309 
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)8310 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8311 {
8312 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8313 }
8314 
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr)8315 static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr)
8316 {
8317 	return kvm_get_dr(emul_to_vcpu(ctxt), dr);
8318 }
8319 
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)8320 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8321 			   unsigned long value)
8322 {
8323 
8324 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8325 }
8326 
mk_cr_64(u64 curr_cr,u32 new_val)8327 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8328 {
8329 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8330 }
8331 
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)8332 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8333 {
8334 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8335 	unsigned long value;
8336 
8337 	switch (cr) {
8338 	case 0:
8339 		value = kvm_read_cr0(vcpu);
8340 		break;
8341 	case 2:
8342 		value = vcpu->arch.cr2;
8343 		break;
8344 	case 3:
8345 		value = kvm_read_cr3(vcpu);
8346 		break;
8347 	case 4:
8348 		value = kvm_read_cr4(vcpu);
8349 		break;
8350 	case 8:
8351 		value = kvm_get_cr8(vcpu);
8352 		break;
8353 	default:
8354 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8355 		return 0;
8356 	}
8357 
8358 	return value;
8359 }
8360 
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)8361 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8362 {
8363 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8364 	int res = 0;
8365 
8366 	switch (cr) {
8367 	case 0:
8368 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8369 		break;
8370 	case 2:
8371 		vcpu->arch.cr2 = val;
8372 		break;
8373 	case 3:
8374 		res = kvm_set_cr3(vcpu, val);
8375 		break;
8376 	case 4:
8377 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8378 		break;
8379 	case 8:
8380 		res = kvm_set_cr8(vcpu, val);
8381 		break;
8382 	default:
8383 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8384 		res = -1;
8385 	}
8386 
8387 	return res;
8388 }
8389 
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)8390 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8391 {
8392 	return kvm_x86_call(get_cpl)(emul_to_vcpu(ctxt));
8393 }
8394 
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8395 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8396 {
8397 	kvm_x86_call(get_gdt)(emul_to_vcpu(ctxt), dt);
8398 }
8399 
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8400 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8401 {
8402 	kvm_x86_call(get_idt)(emul_to_vcpu(ctxt), dt);
8403 }
8404 
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8405 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8406 {
8407 	kvm_x86_call(set_gdt)(emul_to_vcpu(ctxt), dt);
8408 }
8409 
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8410 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8411 {
8412 	kvm_x86_call(set_idt)(emul_to_vcpu(ctxt), dt);
8413 }
8414 
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)8415 static unsigned long emulator_get_cached_segment_base(
8416 	struct x86_emulate_ctxt *ctxt, int seg)
8417 {
8418 	return get_segment_base(emul_to_vcpu(ctxt), seg);
8419 }
8420 
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)8421 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8422 				 struct desc_struct *desc, u32 *base3,
8423 				 int seg)
8424 {
8425 	struct kvm_segment var;
8426 
8427 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8428 	*selector = var.selector;
8429 
8430 	if (var.unusable) {
8431 		memset(desc, 0, sizeof(*desc));
8432 		if (base3)
8433 			*base3 = 0;
8434 		return false;
8435 	}
8436 
8437 	if (var.g)
8438 		var.limit >>= 12;
8439 	set_desc_limit(desc, var.limit);
8440 	set_desc_base(desc, (unsigned long)var.base);
8441 #ifdef CONFIG_X86_64
8442 	if (base3)
8443 		*base3 = var.base >> 32;
8444 #endif
8445 	desc->type = var.type;
8446 	desc->s = var.s;
8447 	desc->dpl = var.dpl;
8448 	desc->p = var.present;
8449 	desc->avl = var.avl;
8450 	desc->l = var.l;
8451 	desc->d = var.db;
8452 	desc->g = var.g;
8453 
8454 	return true;
8455 }
8456 
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)8457 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8458 				 struct desc_struct *desc, u32 base3,
8459 				 int seg)
8460 {
8461 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8462 	struct kvm_segment var;
8463 
8464 	var.selector = selector;
8465 	var.base = get_desc_base(desc);
8466 #ifdef CONFIG_X86_64
8467 	var.base |= ((u64)base3) << 32;
8468 #endif
8469 	var.limit = get_desc_limit(desc);
8470 	if (desc->g)
8471 		var.limit = (var.limit << 12) | 0xfff;
8472 	var.type = desc->type;
8473 	var.dpl = desc->dpl;
8474 	var.db = desc->d;
8475 	var.s = desc->s;
8476 	var.l = desc->l;
8477 	var.g = desc->g;
8478 	var.avl = desc->avl;
8479 	var.present = desc->p;
8480 	var.unusable = !var.present;
8481 	var.padding = 0;
8482 
8483 	kvm_set_segment(vcpu, &var, seg);
8484 	return;
8485 }
8486 
emulator_get_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8487 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8488 					u32 msr_index, u64 *pdata)
8489 {
8490 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8491 	int r;
8492 
8493 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8494 	if (r < 0)
8495 		return X86EMUL_UNHANDLEABLE;
8496 
8497 	if (r) {
8498 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8499 				       complete_emulated_rdmsr, r))
8500 			return X86EMUL_IO_NEEDED;
8501 
8502 		trace_kvm_msr_read_ex(msr_index);
8503 		return X86EMUL_PROPAGATE_FAULT;
8504 	}
8505 
8506 	trace_kvm_msr_read(msr_index, *pdata);
8507 	return X86EMUL_CONTINUE;
8508 }
8509 
emulator_set_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)8510 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8511 					u32 msr_index, u64 data)
8512 {
8513 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8514 	int r;
8515 
8516 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8517 	if (r < 0)
8518 		return X86EMUL_UNHANDLEABLE;
8519 
8520 	if (r) {
8521 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8522 				       complete_emulated_msr_access, r))
8523 			return X86EMUL_IO_NEEDED;
8524 
8525 		trace_kvm_msr_write_ex(msr_index, data);
8526 		return X86EMUL_PROPAGATE_FAULT;
8527 	}
8528 
8529 	trace_kvm_msr_write(msr_index, data);
8530 	return X86EMUL_CONTINUE;
8531 }
8532 
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8533 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8534 			    u32 msr_index, u64 *pdata)
8535 {
8536 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8537 }
8538 
emulator_check_rdpmc_early(struct x86_emulate_ctxt * ctxt,u32 pmc)8539 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc)
8540 {
8541 	return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc);
8542 }
8543 
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)8544 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8545 			     u32 pmc, u64 *pdata)
8546 {
8547 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8548 }
8549 
emulator_halt(struct x86_emulate_ctxt * ctxt)8550 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8551 {
8552 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8553 }
8554 
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)8555 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8556 			      struct x86_instruction_info *info,
8557 			      enum x86_intercept_stage stage)
8558 {
8559 	return kvm_x86_call(check_intercept)(emul_to_vcpu(ctxt), info, stage,
8560 					     &ctxt->exception);
8561 }
8562 
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)8563 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8564 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8565 			      bool exact_only)
8566 {
8567 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8568 }
8569 
emulator_guest_has_movbe(struct x86_emulate_ctxt * ctxt)8570 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8571 {
8572 	return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8573 }
8574 
emulator_guest_has_fxsr(struct x86_emulate_ctxt * ctxt)8575 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8576 {
8577 	return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8578 }
8579 
emulator_guest_has_rdpid(struct x86_emulate_ctxt * ctxt)8580 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8581 {
8582 	return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8583 }
8584 
emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt * ctxt)8585 static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt *ctxt)
8586 {
8587 	return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt));
8588 }
8589 
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)8590 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8591 {
8592 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8593 }
8594 
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)8595 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8596 {
8597 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8598 }
8599 
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)8600 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8601 {
8602 	kvm_x86_call(set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8603 }
8604 
emulator_is_smm(struct x86_emulate_ctxt * ctxt)8605 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8606 {
8607 	return is_smm(emul_to_vcpu(ctxt));
8608 }
8609 
emulator_is_guest_mode(struct x86_emulate_ctxt * ctxt)8610 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8611 {
8612 	return is_guest_mode(emul_to_vcpu(ctxt));
8613 }
8614 
8615 #ifndef CONFIG_KVM_SMM
emulator_leave_smm(struct x86_emulate_ctxt * ctxt)8616 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8617 {
8618 	WARN_ON_ONCE(1);
8619 	return X86EMUL_UNHANDLEABLE;
8620 }
8621 #endif
8622 
emulator_triple_fault(struct x86_emulate_ctxt * ctxt)8623 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8624 {
8625 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8626 }
8627 
emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)8628 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8629 {
8630 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8631 }
8632 
emulator_vm_bugged(struct x86_emulate_ctxt * ctxt)8633 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8634 {
8635 	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8636 
8637 	if (!kvm->vm_bugged)
8638 		kvm_vm_bugged(kvm);
8639 }
8640 
emulator_get_untagged_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8641 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8642 					gva_t addr, unsigned int flags)
8643 {
8644 	if (!kvm_x86_ops.get_untagged_addr)
8645 		return addr;
8646 
8647 	return kvm_x86_call(get_untagged_addr)(emul_to_vcpu(ctxt),
8648 					       addr, flags);
8649 }
8650 
emulator_is_canonical_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8651 static bool emulator_is_canonical_addr(struct x86_emulate_ctxt *ctxt,
8652 				       gva_t addr, unsigned int flags)
8653 {
8654 	return !is_noncanonical_address(addr, emul_to_vcpu(ctxt), flags);
8655 }
8656 
8657 static const struct x86_emulate_ops emulate_ops = {
8658 	.vm_bugged           = emulator_vm_bugged,
8659 	.read_gpr            = emulator_read_gpr,
8660 	.write_gpr           = emulator_write_gpr,
8661 	.read_std            = emulator_read_std,
8662 	.write_std           = emulator_write_std,
8663 	.fetch               = kvm_fetch_guest_virt,
8664 	.read_emulated       = emulator_read_emulated,
8665 	.write_emulated      = emulator_write_emulated,
8666 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8667 	.invlpg              = emulator_invlpg,
8668 	.pio_in_emulated     = emulator_pio_in_emulated,
8669 	.pio_out_emulated    = emulator_pio_out_emulated,
8670 	.get_segment         = emulator_get_segment,
8671 	.set_segment         = emulator_set_segment,
8672 	.get_cached_segment_base = emulator_get_cached_segment_base,
8673 	.get_gdt             = emulator_get_gdt,
8674 	.get_idt	     = emulator_get_idt,
8675 	.set_gdt             = emulator_set_gdt,
8676 	.set_idt	     = emulator_set_idt,
8677 	.get_cr              = emulator_get_cr,
8678 	.set_cr              = emulator_set_cr,
8679 	.cpl                 = emulator_get_cpl,
8680 	.get_dr              = emulator_get_dr,
8681 	.set_dr              = emulator_set_dr,
8682 	.set_msr_with_filter = emulator_set_msr_with_filter,
8683 	.get_msr_with_filter = emulator_get_msr_with_filter,
8684 	.get_msr             = emulator_get_msr,
8685 	.check_rdpmc_early   = emulator_check_rdpmc_early,
8686 	.read_pmc            = emulator_read_pmc,
8687 	.halt                = emulator_halt,
8688 	.wbinvd              = emulator_wbinvd,
8689 	.fix_hypercall       = emulator_fix_hypercall,
8690 	.intercept           = emulator_intercept,
8691 	.get_cpuid           = emulator_get_cpuid,
8692 	.guest_has_movbe     = emulator_guest_has_movbe,
8693 	.guest_has_fxsr      = emulator_guest_has_fxsr,
8694 	.guest_has_rdpid     = emulator_guest_has_rdpid,
8695 	.guest_cpuid_is_intel_compatible = emulator_guest_cpuid_is_intel_compatible,
8696 	.set_nmi_mask        = emulator_set_nmi_mask,
8697 	.is_smm              = emulator_is_smm,
8698 	.is_guest_mode       = emulator_is_guest_mode,
8699 	.leave_smm           = emulator_leave_smm,
8700 	.triple_fault        = emulator_triple_fault,
8701 	.set_xcr             = emulator_set_xcr,
8702 	.get_untagged_addr   = emulator_get_untagged_addr,
8703 	.is_canonical_addr   = emulator_is_canonical_addr,
8704 };
8705 
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)8706 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8707 {
8708 	u32 int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
8709 	/*
8710 	 * an sti; sti; sequence only disable interrupts for the first
8711 	 * instruction. So, if the last instruction, be it emulated or
8712 	 * not, left the system with the INT_STI flag enabled, it
8713 	 * means that the last instruction is an sti. We should not
8714 	 * leave the flag on in this case. The same goes for mov ss
8715 	 */
8716 	if (int_shadow & mask)
8717 		mask = 0;
8718 	if (unlikely(int_shadow || mask)) {
8719 		kvm_x86_call(set_interrupt_shadow)(vcpu, mask);
8720 		if (!mask)
8721 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8722 	}
8723 }
8724 
inject_emulated_exception(struct kvm_vcpu * vcpu)8725 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8726 {
8727 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8728 
8729 	if (ctxt->exception.vector == PF_VECTOR)
8730 		kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8731 	else if (ctxt->exception.error_code_valid)
8732 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8733 				      ctxt->exception.error_code);
8734 	else
8735 		kvm_queue_exception(vcpu, ctxt->exception.vector);
8736 }
8737 
alloc_emulate_ctxt(struct kvm_vcpu * vcpu)8738 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8739 {
8740 	struct x86_emulate_ctxt *ctxt;
8741 
8742 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8743 	if (!ctxt) {
8744 		pr_err("failed to allocate vcpu's emulator\n");
8745 		return NULL;
8746 	}
8747 
8748 	ctxt->vcpu = vcpu;
8749 	ctxt->ops = &emulate_ops;
8750 	vcpu->arch.emulate_ctxt = ctxt;
8751 
8752 	return ctxt;
8753 }
8754 
init_emulate_ctxt(struct kvm_vcpu * vcpu)8755 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8756 {
8757 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8758 	int cs_db, cs_l;
8759 
8760 	kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8761 
8762 	ctxt->gpa_available = false;
8763 	ctxt->eflags = kvm_get_rflags(vcpu);
8764 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8765 
8766 	ctxt->eip = kvm_rip_read(vcpu);
8767 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8768 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8769 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8770 		     cs_db				? X86EMUL_MODE_PROT32 :
8771 							  X86EMUL_MODE_PROT16;
8772 	ctxt->interruptibility = 0;
8773 	ctxt->have_exception = false;
8774 	ctxt->exception.vector = -1;
8775 	ctxt->perm_ok = false;
8776 
8777 	init_decode_cache(ctxt);
8778 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8779 }
8780 
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)8781 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8782 {
8783 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8784 	int ret;
8785 
8786 	init_emulate_ctxt(vcpu);
8787 
8788 	ctxt->op_bytes = 2;
8789 	ctxt->ad_bytes = 2;
8790 	ctxt->_eip = ctxt->eip + inc_eip;
8791 	ret = emulate_int_real(ctxt, irq);
8792 
8793 	if (ret != X86EMUL_CONTINUE) {
8794 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8795 	} else {
8796 		ctxt->eip = ctxt->_eip;
8797 		kvm_rip_write(vcpu, ctxt->eip);
8798 		kvm_set_rflags(vcpu, ctxt->eflags);
8799 	}
8800 }
8801 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8802 
prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata,u8 * insn_bytes,u8 insn_size)8803 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8804 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8805 {
8806 	struct kvm_run *run = vcpu->run;
8807 	u64 info[5];
8808 	u8 info_start;
8809 
8810 	/*
8811 	 * Zero the whole array used to retrieve the exit info, as casting to
8812 	 * u32 for select entries will leave some chunks uninitialized.
8813 	 */
8814 	memset(&info, 0, sizeof(info));
8815 
8816 	kvm_x86_call(get_exit_info)(vcpu, (u32 *)&info[0], &info[1], &info[2],
8817 				    (u32 *)&info[3], (u32 *)&info[4]);
8818 
8819 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8820 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8821 
8822 	/*
8823 	 * There's currently space for 13 entries, but 5 are used for the exit
8824 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8825 	 * when expanding kvm_run.emulation_failure in the future.
8826 	 */
8827 	if (WARN_ON_ONCE(ndata > 4))
8828 		ndata = 4;
8829 
8830 	/* Always include the flags as a 'data' entry. */
8831 	info_start = 1;
8832 	run->emulation_failure.flags = 0;
8833 
8834 	if (insn_size) {
8835 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8836 			      sizeof(run->emulation_failure.insn_bytes) != 16));
8837 		info_start += 2;
8838 		run->emulation_failure.flags |=
8839 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8840 		run->emulation_failure.insn_size = insn_size;
8841 		memset(run->emulation_failure.insn_bytes, 0x90,
8842 		       sizeof(run->emulation_failure.insn_bytes));
8843 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8844 	}
8845 
8846 	memcpy(&run->internal.data[info_start], info, sizeof(info));
8847 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8848 	       ndata * sizeof(data[0]));
8849 
8850 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8851 }
8852 
prepare_emulation_ctxt_failure_exit(struct kvm_vcpu * vcpu)8853 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8854 {
8855 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8856 
8857 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8858 				       ctxt->fetch.end - ctxt->fetch.data);
8859 }
8860 
__kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata)8861 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8862 					  u8 ndata)
8863 {
8864 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8865 }
8866 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8867 
kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu)8868 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8869 {
8870 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8871 }
8872 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8873 
kvm_prepare_event_vectoring_exit(struct kvm_vcpu * vcpu,gpa_t gpa)8874 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa)
8875 {
8876 	u32 reason, intr_info, error_code;
8877 	struct kvm_run *run = vcpu->run;
8878 	u64 info1, info2;
8879 	int ndata = 0;
8880 
8881 	kvm_x86_call(get_exit_info)(vcpu, &reason, &info1, &info2,
8882 				    &intr_info, &error_code);
8883 
8884 	run->internal.data[ndata++] = info2;
8885 	run->internal.data[ndata++] = reason;
8886 	run->internal.data[ndata++] = info1;
8887 	run->internal.data[ndata++] = gpa;
8888 	run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
8889 
8890 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8891 	run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8892 	run->internal.ndata = ndata;
8893 }
8894 EXPORT_SYMBOL_GPL(kvm_prepare_event_vectoring_exit);
8895 
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)8896 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8897 {
8898 	struct kvm *kvm = vcpu->kvm;
8899 
8900 	++vcpu->stat.insn_emulation_fail;
8901 	trace_kvm_emulate_insn_failed(vcpu);
8902 
8903 	if (emulation_type & EMULTYPE_VMWARE_GP) {
8904 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8905 		return 1;
8906 	}
8907 
8908 	if (kvm->arch.exit_on_emulation_error ||
8909 	    (emulation_type & EMULTYPE_SKIP)) {
8910 		prepare_emulation_ctxt_failure_exit(vcpu);
8911 		return 0;
8912 	}
8913 
8914 	kvm_queue_exception(vcpu, UD_VECTOR);
8915 
8916 	if (!is_guest_mode(vcpu) && kvm_x86_call(get_cpl)(vcpu) == 0) {
8917 		prepare_emulation_ctxt_failure_exit(vcpu);
8918 		return 0;
8919 	}
8920 
8921 	return 1;
8922 }
8923 
kvm_unprotect_and_retry_on_failure(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type)8924 static bool kvm_unprotect_and_retry_on_failure(struct kvm_vcpu *vcpu,
8925 					       gpa_t cr2_or_gpa,
8926 					       int emulation_type)
8927 {
8928 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8929 		return false;
8930 
8931 	/*
8932 	 * If the failed instruction faulted on an access to page tables that
8933 	 * are used to translate any part of the instruction, KVM can't resolve
8934 	 * the issue by unprotecting the gfn, as zapping the shadow page will
8935 	 * result in the instruction taking a !PRESENT page fault and thus put
8936 	 * the vCPU into an infinite loop of page faults.  E.g. KVM will create
8937 	 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and
8938 	 * then zap the SPTE to unprotect the gfn, and then do it all over
8939 	 * again.  Report the error to userspace.
8940 	 */
8941 	if (emulation_type & EMULTYPE_WRITE_PF_TO_SP)
8942 		return false;
8943 
8944 	/*
8945 	 * If emulation may have been triggered by a write to a shadowed page
8946 	 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the
8947 	 * guest to let the CPU re-execute the instruction in the hope that the
8948 	 * CPU can cleanly execute the instruction that KVM failed to emulate.
8949 	 */
8950 	__kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, true);
8951 
8952 	/*
8953 	 * Retry even if _this_ vCPU didn't unprotect the gfn, as it's possible
8954 	 * all SPTEs were already zapped by a different task.  The alternative
8955 	 * is to report the error to userspace and likely terminate the guest,
8956 	 * and the last_retry_{eip,addr} checks will prevent retrying the page
8957 	 * fault indefinitely, i.e. there's nothing to lose by retrying.
8958 	 */
8959 	return true;
8960 }
8961 
8962 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8963 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8964 
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)8965 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8966 				unsigned long *db)
8967 {
8968 	u32 dr6 = 0;
8969 	int i;
8970 	u32 enable, rwlen;
8971 
8972 	enable = dr7;
8973 	rwlen = dr7 >> 16;
8974 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8975 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8976 			dr6 |= (1 << i);
8977 	return dr6;
8978 }
8979 
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)8980 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8981 {
8982 	struct kvm_run *kvm_run = vcpu->run;
8983 
8984 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8985 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8986 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8987 		kvm_run->debug.arch.exception = DB_VECTOR;
8988 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8989 		return 0;
8990 	}
8991 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8992 	return 1;
8993 }
8994 
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)8995 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8996 {
8997 	unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
8998 	int r;
8999 
9000 	r = kvm_x86_call(skip_emulated_instruction)(vcpu);
9001 	if (unlikely(!r))
9002 		return 0;
9003 
9004 	kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
9005 
9006 	/*
9007 	 * rflags is the old, "raw" value of the flags.  The new value has
9008 	 * not been saved yet.
9009 	 *
9010 	 * This is correct even for TF set by the guest, because "the
9011 	 * processor will not generate this exception after the instruction
9012 	 * that sets the TF flag".
9013 	 */
9014 	if (unlikely(rflags & X86_EFLAGS_TF))
9015 		r = kvm_vcpu_do_singlestep(vcpu);
9016 	return r;
9017 }
9018 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
9019 
kvm_is_code_breakpoint_inhibited(struct kvm_vcpu * vcpu)9020 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
9021 {
9022 	if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
9023 		return true;
9024 
9025 	/*
9026 	 * Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is
9027 	 * active, but AMD compatible CPUs do not.
9028 	 */
9029 	if (!guest_cpuid_is_intel_compatible(vcpu))
9030 		return false;
9031 
9032 	return kvm_x86_call(get_interrupt_shadow)(vcpu) & KVM_X86_SHADOW_INT_MOV_SS;
9033 }
9034 
kvm_vcpu_check_code_breakpoint(struct kvm_vcpu * vcpu,int emulation_type,int * r)9035 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
9036 					   int emulation_type, int *r)
9037 {
9038 	WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
9039 
9040 	/*
9041 	 * Do not check for code breakpoints if hardware has already done the
9042 	 * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
9043 	 * the instruction has passed all exception checks, and all intercepted
9044 	 * exceptions that trigger emulation have lower priority than code
9045 	 * breakpoints, i.e. the fact that the intercepted exception occurred
9046 	 * means any code breakpoints have already been serviced.
9047 	 *
9048 	 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
9049 	 * hardware has checked the RIP of the magic prefix, but not the RIP of
9050 	 * the instruction being emulated.  The intent of forced emulation is
9051 	 * to behave as if KVM intercepted the instruction without an exception
9052 	 * and without a prefix.
9053 	 */
9054 	if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
9055 			      EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
9056 		return false;
9057 
9058 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
9059 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
9060 		struct kvm_run *kvm_run = vcpu->run;
9061 		unsigned long eip = kvm_get_linear_rip(vcpu);
9062 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9063 					   vcpu->arch.guest_debug_dr7,
9064 					   vcpu->arch.eff_db);
9065 
9066 		if (dr6 != 0) {
9067 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
9068 			kvm_run->debug.arch.pc = eip;
9069 			kvm_run->debug.arch.exception = DB_VECTOR;
9070 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
9071 			*r = 0;
9072 			return true;
9073 		}
9074 	}
9075 
9076 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
9077 	    !kvm_is_code_breakpoint_inhibited(vcpu)) {
9078 		unsigned long eip = kvm_get_linear_rip(vcpu);
9079 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9080 					   vcpu->arch.dr7,
9081 					   vcpu->arch.db);
9082 
9083 		if (dr6 != 0) {
9084 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
9085 			*r = 1;
9086 			return true;
9087 		}
9088 	}
9089 
9090 	return false;
9091 }
9092 
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)9093 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
9094 {
9095 	switch (ctxt->opcode_len) {
9096 	case 1:
9097 		switch (ctxt->b) {
9098 		case 0xe4:	/* IN */
9099 		case 0xe5:
9100 		case 0xec:
9101 		case 0xed:
9102 		case 0xe6:	/* OUT */
9103 		case 0xe7:
9104 		case 0xee:
9105 		case 0xef:
9106 		case 0x6c:	/* INS */
9107 		case 0x6d:
9108 		case 0x6e:	/* OUTS */
9109 		case 0x6f:
9110 			return true;
9111 		}
9112 		break;
9113 	case 2:
9114 		switch (ctxt->b) {
9115 		case 0x33:	/* RDPMC */
9116 			return true;
9117 		}
9118 		break;
9119 	}
9120 
9121 	return false;
9122 }
9123 
9124 /*
9125  * Decode an instruction for emulation.  The caller is responsible for handling
9126  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
9127  * (and wrong) when emulating on an intercepted fault-like exception[*], as
9128  * code breakpoints have higher priority and thus have already been done by
9129  * hardware.
9130  *
9131  * [*] Except #MC, which is higher priority, but KVM should never emulate in
9132  *     response to a machine check.
9133  */
x86_decode_emulated_instruction(struct kvm_vcpu * vcpu,int emulation_type,void * insn,int insn_len)9134 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9135 				    void *insn, int insn_len)
9136 {
9137 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9138 	int r;
9139 
9140 	init_emulate_ctxt(vcpu);
9141 
9142 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9143 
9144 	trace_kvm_emulate_insn_start(vcpu);
9145 	++vcpu->stat.insn_emulation;
9146 
9147 	return r;
9148 }
9149 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
9150 
x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)9151 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9152 			    int emulation_type, void *insn, int insn_len)
9153 {
9154 	int r;
9155 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9156 	bool writeback = true;
9157 
9158 	if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9159 	    (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
9160 	     WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))))
9161 		emulation_type &= ~EMULTYPE_ALLOW_RETRY_PF;
9162 
9163 	r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9164 	if (r != X86EMUL_CONTINUE) {
9165 		if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9166 			return 1;
9167 
9168 		if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9169 						       emulation_type))
9170 			return 1;
9171 
9172 		if (r == X86EMUL_UNHANDLEABLE_VECTORING) {
9173 			kvm_prepare_event_vectoring_exit(vcpu, cr2_or_gpa);
9174 			return 0;
9175 		}
9176 
9177 		WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9178 		return handle_emulation_failure(vcpu, emulation_type);
9179 	}
9180 
9181 	vcpu->arch.l1tf_flush_l1d = true;
9182 
9183 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9184 		kvm_clear_exception_queue(vcpu);
9185 
9186 		/*
9187 		 * Return immediately if RIP hits a code breakpoint, such #DBs
9188 		 * are fault-like and are higher priority than any faults on
9189 		 * the code fetch itself.
9190 		 */
9191 		if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9192 			return r;
9193 
9194 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
9195 						    insn, insn_len);
9196 		if (r != EMULATION_OK)  {
9197 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
9198 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9199 				kvm_queue_exception(vcpu, UD_VECTOR);
9200 				return 1;
9201 			}
9202 			if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9203 							       emulation_type))
9204 				return 1;
9205 
9206 			if (ctxt->have_exception &&
9207 			    !(emulation_type & EMULTYPE_SKIP)) {
9208 				/*
9209 				 * #UD should result in just EMULATION_FAILED, and trap-like
9210 				 * exception should not be encountered during decode.
9211 				 */
9212 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9213 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9214 				inject_emulated_exception(vcpu);
9215 				return 1;
9216 			}
9217 			return handle_emulation_failure(vcpu, emulation_type);
9218 		}
9219 	}
9220 
9221 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9222 	    !is_vmware_backdoor_opcode(ctxt)) {
9223 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9224 		return 1;
9225 	}
9226 
9227 	/*
9228 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9229 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9230 	 * The caller is responsible for updating interruptibility state and
9231 	 * injecting single-step #DBs.
9232 	 */
9233 	if (emulation_type & EMULTYPE_SKIP) {
9234 		if (ctxt->mode != X86EMUL_MODE_PROT64)
9235 			ctxt->eip = (u32)ctxt->_eip;
9236 		else
9237 			ctxt->eip = ctxt->_eip;
9238 
9239 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9240 			r = 1;
9241 			goto writeback;
9242 		}
9243 
9244 		kvm_rip_write(vcpu, ctxt->eip);
9245 		if (ctxt->eflags & X86_EFLAGS_RF)
9246 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9247 		return 1;
9248 	}
9249 
9250 	/*
9251 	 * If emulation was caused by a write-protection #PF on a non-page_table
9252 	 * writing instruction, try to unprotect the gfn, i.e. zap shadow pages,
9253 	 * and retry the instruction, as the vCPU is likely no longer using the
9254 	 * gfn as a page table.
9255 	 */
9256 	if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9257 	    !x86_page_table_writing_insn(ctxt) &&
9258 	    kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa))
9259 		return 1;
9260 
9261 	/* this is needed for vmware backdoor interface to work since it
9262 	   changes registers values  during IO operation */
9263 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9264 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9265 		emulator_invalidate_register_cache(ctxt);
9266 	}
9267 
9268 restart:
9269 	if (emulation_type & EMULTYPE_PF) {
9270 		/* Save the faulting GPA (cr2) in the address field */
9271 		ctxt->exception.address = cr2_or_gpa;
9272 
9273 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
9274 		if (vcpu->arch.mmu->root_role.direct) {
9275 			ctxt->gpa_available = true;
9276 			ctxt->gpa_val = cr2_or_gpa;
9277 		}
9278 	} else {
9279 		/* Sanitize the address out of an abundance of paranoia. */
9280 		ctxt->exception.address = 0;
9281 	}
9282 
9283 	r = x86_emulate_insn(ctxt);
9284 
9285 	if (r == EMULATION_INTERCEPTED)
9286 		return 1;
9287 
9288 	if (r == EMULATION_FAILED) {
9289 		if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9290 						       emulation_type))
9291 			return 1;
9292 
9293 		return handle_emulation_failure(vcpu, emulation_type);
9294 	}
9295 
9296 	if (ctxt->have_exception) {
9297 		WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9298 		vcpu->mmio_needed = false;
9299 		r = 1;
9300 		inject_emulated_exception(vcpu);
9301 	} else if (vcpu->arch.pio.count) {
9302 		if (!vcpu->arch.pio.in) {
9303 			/* FIXME: return into emulator if single-stepping.  */
9304 			vcpu->arch.pio.count = 0;
9305 		} else {
9306 			writeback = false;
9307 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
9308 		}
9309 		r = 0;
9310 	} else if (vcpu->mmio_needed) {
9311 		++vcpu->stat.mmio_exits;
9312 
9313 		if (!vcpu->mmio_is_write)
9314 			writeback = false;
9315 		r = 0;
9316 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9317 	} else if (vcpu->arch.complete_userspace_io) {
9318 		writeback = false;
9319 		r = 0;
9320 	} else if (r == EMULATION_RESTART)
9321 		goto restart;
9322 	else
9323 		r = 1;
9324 
9325 writeback:
9326 	if (writeback) {
9327 		unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
9328 		toggle_interruptibility(vcpu, ctxt->interruptibility);
9329 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9330 
9331 		/*
9332 		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9333 		 * only supports code breakpoints and general detect #DB, both
9334 		 * of which are fault-like.
9335 		 */
9336 		if (!ctxt->have_exception ||
9337 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9338 			kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
9339 			if (ctxt->is_branch)
9340 				kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED);
9341 			kvm_rip_write(vcpu, ctxt->eip);
9342 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9343 				r = kvm_vcpu_do_singlestep(vcpu);
9344 			kvm_x86_call(update_emulated_instruction)(vcpu);
9345 			__kvm_set_rflags(vcpu, ctxt->eflags);
9346 		}
9347 
9348 		/*
9349 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9350 		 * do nothing, and it will be requested again as soon as
9351 		 * the shadow expires.  But we still need to check here,
9352 		 * because POPF has no interrupt shadow.
9353 		 */
9354 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9355 			kvm_make_request(KVM_REQ_EVENT, vcpu);
9356 	} else
9357 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9358 
9359 	return r;
9360 }
9361 
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)9362 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9363 {
9364 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9365 }
9366 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9367 
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)9368 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9369 					void *insn, int insn_len)
9370 {
9371 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9372 }
9373 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9374 
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)9375 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9376 {
9377 	vcpu->arch.pio.count = 0;
9378 	return 1;
9379 }
9380 
complete_fast_pio_out(struct kvm_vcpu * vcpu)9381 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9382 {
9383 	vcpu->arch.pio.count = 0;
9384 
9385 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip)))
9386 		return 1;
9387 
9388 	return kvm_skip_emulated_instruction(vcpu);
9389 }
9390 
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)9391 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9392 			    unsigned short port)
9393 {
9394 	unsigned long val = kvm_rax_read(vcpu);
9395 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9396 
9397 	if (ret)
9398 		return ret;
9399 
9400 	/*
9401 	 * Workaround userspace that relies on old KVM behavior of %rip being
9402 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9403 	 */
9404 	if (port == 0x7e &&
9405 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9406 		vcpu->arch.complete_userspace_io =
9407 			complete_fast_pio_out_port_0x7e;
9408 		kvm_skip_emulated_instruction(vcpu);
9409 	} else {
9410 		vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu);
9411 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9412 	}
9413 	return 0;
9414 }
9415 
complete_fast_pio_in(struct kvm_vcpu * vcpu)9416 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9417 {
9418 	unsigned long val;
9419 
9420 	/* We should only ever be called with arch.pio.count equal to 1 */
9421 	BUG_ON(vcpu->arch.pio.count != 1);
9422 
9423 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip))) {
9424 		vcpu->arch.pio.count = 0;
9425 		return 1;
9426 	}
9427 
9428 	/* For size less than 4 we merge, else we zero extend */
9429 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9430 
9431 	complete_emulator_pio_in(vcpu, &val);
9432 	kvm_rax_write(vcpu, val);
9433 
9434 	return kvm_skip_emulated_instruction(vcpu);
9435 }
9436 
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)9437 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9438 			   unsigned short port)
9439 {
9440 	unsigned long val;
9441 	int ret;
9442 
9443 	/* For size less than 4 we merge, else we zero extend */
9444 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9445 
9446 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
9447 	if (ret) {
9448 		kvm_rax_write(vcpu, val);
9449 		return ret;
9450 	}
9451 
9452 	vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu);
9453 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9454 
9455 	return 0;
9456 }
9457 
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)9458 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9459 {
9460 	int ret;
9461 
9462 	if (in)
9463 		ret = kvm_fast_pio_in(vcpu, size, port);
9464 	else
9465 		ret = kvm_fast_pio_out(vcpu, size, port);
9466 	return ret && kvm_skip_emulated_instruction(vcpu);
9467 }
9468 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9469 
kvmclock_cpu_down_prep(unsigned int cpu)9470 static int kvmclock_cpu_down_prep(unsigned int cpu)
9471 {
9472 	__this_cpu_write(cpu_tsc_khz, 0);
9473 	return 0;
9474 }
9475 
tsc_khz_changed(void * data)9476 static void tsc_khz_changed(void *data)
9477 {
9478 	struct cpufreq_freqs *freq = data;
9479 	unsigned long khz;
9480 
9481 	WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9482 
9483 	if (data)
9484 		khz = freq->new;
9485 	else
9486 		khz = cpufreq_quick_get(raw_smp_processor_id());
9487 	if (!khz)
9488 		khz = tsc_khz;
9489 	__this_cpu_write(cpu_tsc_khz, khz);
9490 }
9491 
9492 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)9493 static void kvm_hyperv_tsc_notifier(void)
9494 {
9495 	struct kvm *kvm;
9496 	int cpu;
9497 
9498 	mutex_lock(&kvm_lock);
9499 	list_for_each_entry(kvm, &vm_list, vm_list)
9500 		kvm_make_mclock_inprogress_request(kvm);
9501 
9502 	/* no guest entries from this point */
9503 	hyperv_stop_tsc_emulation();
9504 
9505 	/* TSC frequency always matches when on Hyper-V */
9506 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9507 		for_each_present_cpu(cpu)
9508 			per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9509 	}
9510 	kvm_caps.max_guest_tsc_khz = tsc_khz;
9511 
9512 	list_for_each_entry(kvm, &vm_list, vm_list) {
9513 		__kvm_start_pvclock_update(kvm);
9514 		pvclock_update_vm_gtod_copy(kvm);
9515 		kvm_end_pvclock_update(kvm);
9516 	}
9517 
9518 	mutex_unlock(&kvm_lock);
9519 }
9520 #endif
9521 
__kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)9522 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9523 {
9524 	struct kvm *kvm;
9525 	struct kvm_vcpu *vcpu;
9526 	int send_ipi = 0;
9527 	unsigned long i;
9528 
9529 	/*
9530 	 * We allow guests to temporarily run on slowing clocks,
9531 	 * provided we notify them after, or to run on accelerating
9532 	 * clocks, provided we notify them before.  Thus time never
9533 	 * goes backwards.
9534 	 *
9535 	 * However, we have a problem.  We can't atomically update
9536 	 * the frequency of a given CPU from this function; it is
9537 	 * merely a notifier, which can be called from any CPU.
9538 	 * Changing the TSC frequency at arbitrary points in time
9539 	 * requires a recomputation of local variables related to
9540 	 * the TSC for each VCPU.  We must flag these local variables
9541 	 * to be updated and be sure the update takes place with the
9542 	 * new frequency before any guests proceed.
9543 	 *
9544 	 * Unfortunately, the combination of hotplug CPU and frequency
9545 	 * change creates an intractable locking scenario; the order
9546 	 * of when these callouts happen is undefined with respect to
9547 	 * CPU hotplug, and they can race with each other.  As such,
9548 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9549 	 * undefined; you can actually have a CPU frequency change take
9550 	 * place in between the computation of X and the setting of the
9551 	 * variable.  To protect against this problem, all updates of
9552 	 * the per_cpu tsc_khz variable are done in an interrupt
9553 	 * protected IPI, and all callers wishing to update the value
9554 	 * must wait for a synchronous IPI to complete (which is trivial
9555 	 * if the caller is on the CPU already).  This establishes the
9556 	 * necessary total order on variable updates.
9557 	 *
9558 	 * Note that because a guest time update may take place
9559 	 * anytime after the setting of the VCPU's request bit, the
9560 	 * correct TSC value must be set before the request.  However,
9561 	 * to ensure the update actually makes it to any guest which
9562 	 * starts running in hardware virtualization between the set
9563 	 * and the acquisition of the spinlock, we must also ping the
9564 	 * CPU after setting the request bit.
9565 	 *
9566 	 */
9567 
9568 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9569 
9570 	mutex_lock(&kvm_lock);
9571 	list_for_each_entry(kvm, &vm_list, vm_list) {
9572 		kvm_for_each_vcpu(i, vcpu, kvm) {
9573 			if (vcpu->cpu != cpu)
9574 				continue;
9575 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9576 			if (vcpu->cpu != raw_smp_processor_id())
9577 				send_ipi = 1;
9578 		}
9579 	}
9580 	mutex_unlock(&kvm_lock);
9581 
9582 	if (freq->old < freq->new && send_ipi) {
9583 		/*
9584 		 * We upscale the frequency.  Must make the guest
9585 		 * doesn't see old kvmclock values while running with
9586 		 * the new frequency, otherwise we risk the guest sees
9587 		 * time go backwards.
9588 		 *
9589 		 * In case we update the frequency for another cpu
9590 		 * (which might be in guest context) send an interrupt
9591 		 * to kick the cpu out of guest context.  Next time
9592 		 * guest context is entered kvmclock will be updated,
9593 		 * so the guest will not see stale values.
9594 		 */
9595 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9596 	}
9597 }
9598 
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)9599 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9600 				     void *data)
9601 {
9602 	struct cpufreq_freqs *freq = data;
9603 	int cpu;
9604 
9605 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9606 		return 0;
9607 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9608 		return 0;
9609 
9610 	for_each_cpu(cpu, freq->policy->cpus)
9611 		__kvmclock_cpufreq_notifier(freq, cpu);
9612 
9613 	return 0;
9614 }
9615 
9616 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9617 	.notifier_call  = kvmclock_cpufreq_notifier
9618 };
9619 
kvmclock_cpu_online(unsigned int cpu)9620 static int kvmclock_cpu_online(unsigned int cpu)
9621 {
9622 	tsc_khz_changed(NULL);
9623 	return 0;
9624 }
9625 
kvm_timer_init(void)9626 static void kvm_timer_init(void)
9627 {
9628 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9629 		max_tsc_khz = tsc_khz;
9630 
9631 		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9632 			struct cpufreq_policy *policy;
9633 			int cpu;
9634 
9635 			cpu = get_cpu();
9636 			policy = cpufreq_cpu_get(cpu);
9637 			if (policy) {
9638 				if (policy->cpuinfo.max_freq)
9639 					max_tsc_khz = policy->cpuinfo.max_freq;
9640 				cpufreq_cpu_put(policy);
9641 			}
9642 			put_cpu();
9643 		}
9644 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9645 					  CPUFREQ_TRANSITION_NOTIFIER);
9646 
9647 		cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9648 				  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9649 	}
9650 }
9651 
9652 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)9653 static void pvclock_gtod_update_fn(struct work_struct *work)
9654 {
9655 	struct kvm *kvm;
9656 	struct kvm_vcpu *vcpu;
9657 	unsigned long i;
9658 
9659 	mutex_lock(&kvm_lock);
9660 	list_for_each_entry(kvm, &vm_list, vm_list)
9661 		kvm_for_each_vcpu(i, vcpu, kvm)
9662 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9663 	atomic_set(&kvm_guest_has_master_clock, 0);
9664 	mutex_unlock(&kvm_lock);
9665 }
9666 
9667 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9668 
9669 /*
9670  * Indirection to move queue_work() out of the tk_core.seq write held
9671  * region to prevent possible deadlocks against time accessors which
9672  * are invoked with work related locks held.
9673  */
pvclock_irq_work_fn(struct irq_work * w)9674 static void pvclock_irq_work_fn(struct irq_work *w)
9675 {
9676 	queue_work(system_long_wq, &pvclock_gtod_work);
9677 }
9678 
9679 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9680 
9681 /*
9682  * Notification about pvclock gtod data update.
9683  */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)9684 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9685 			       void *priv)
9686 {
9687 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9688 	struct timekeeper *tk = priv;
9689 
9690 	update_pvclock_gtod(tk);
9691 
9692 	/*
9693 	 * Disable master clock if host does not trust, or does not use,
9694 	 * TSC based clocksource. Delegate queue_work() to irq_work as
9695 	 * this is invoked with tk_core.seq write held.
9696 	 */
9697 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9698 	    atomic_read(&kvm_guest_has_master_clock) != 0)
9699 		irq_work_queue(&pvclock_irq_work);
9700 	return 0;
9701 }
9702 
9703 static struct notifier_block pvclock_gtod_notifier = {
9704 	.notifier_call = pvclock_gtod_notify,
9705 };
9706 #endif
9707 
kvm_ops_update(struct kvm_x86_init_ops * ops)9708 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9709 {
9710 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9711 
9712 #define __KVM_X86_OP(func) \
9713 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9714 #define KVM_X86_OP(func) \
9715 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9716 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9717 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9718 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9719 					   (void *)__static_call_return0);
9720 #include <asm/kvm-x86-ops.h>
9721 #undef __KVM_X86_OP
9722 
9723 	kvm_pmu_ops_update(ops->pmu_ops);
9724 }
9725 
kvm_x86_check_processor_compatibility(void)9726 static int kvm_x86_check_processor_compatibility(void)
9727 {
9728 	int cpu = smp_processor_id();
9729 	struct cpuinfo_x86 *c = &cpu_data(cpu);
9730 
9731 	/*
9732 	 * Compatibility checks are done when loading KVM and when enabling
9733 	 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9734 	 * compatible, i.e. KVM should never perform a compatibility check on
9735 	 * an offline CPU.
9736 	 */
9737 	WARN_ON(!cpu_online(cpu));
9738 
9739 	if (__cr4_reserved_bits(cpu_has, c) !=
9740 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9741 		return -EIO;
9742 
9743 	return kvm_x86_call(check_processor_compatibility)();
9744 }
9745 
kvm_x86_check_cpu_compat(void * ret)9746 static void kvm_x86_check_cpu_compat(void *ret)
9747 {
9748 	*(int *)ret = kvm_x86_check_processor_compatibility();
9749 }
9750 
kvm_x86_vendor_init(struct kvm_x86_init_ops * ops)9751 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9752 {
9753 	u64 host_pat;
9754 	int r, cpu;
9755 
9756 	guard(mutex)(&vendor_module_lock);
9757 
9758 	if (kvm_x86_ops.enable_virtualization_cpu) {
9759 		pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9760 		return -EEXIST;
9761 	}
9762 
9763 	/*
9764 	 * KVM explicitly assumes that the guest has an FPU and
9765 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9766 	 * vCPU's FPU state as a fxregs_state struct.
9767 	 */
9768 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9769 		pr_err("inadequate fpu\n");
9770 		return -EOPNOTSUPP;
9771 	}
9772 
9773 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9774 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9775 		return -EOPNOTSUPP;
9776 	}
9777 
9778 	/*
9779 	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9780 	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9781 	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9782 	 * with an exception.  PAT[0] is set to WB on RESET and also by the
9783 	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9784 	 */
9785 	if (rdmsrq_safe(MSR_IA32_CR_PAT, &host_pat) ||
9786 	    (host_pat & GENMASK(2, 0)) != 6) {
9787 		pr_err("host PAT[0] is not WB\n");
9788 		return -EIO;
9789 	}
9790 
9791 	memset(&kvm_caps, 0, sizeof(kvm_caps));
9792 
9793 	x86_emulator_cache = kvm_alloc_emulator_cache();
9794 	if (!x86_emulator_cache) {
9795 		pr_err("failed to allocate cache for x86 emulator\n");
9796 		return -ENOMEM;
9797 	}
9798 
9799 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9800 	if (!user_return_msrs) {
9801 		pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9802 		r = -ENOMEM;
9803 		goto out_free_x86_emulator_cache;
9804 	}
9805 	kvm_nr_uret_msrs = 0;
9806 
9807 	r = kvm_mmu_vendor_module_init();
9808 	if (r)
9809 		goto out_free_percpu;
9810 
9811 	kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM);
9812 	kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P;
9813 
9814 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9815 		kvm_host.xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9816 		kvm_caps.supported_xcr0 = kvm_host.xcr0 & KVM_SUPPORTED_XCR0;
9817 	}
9818 	kvm_caps.supported_quirks = KVM_X86_VALID_QUIRKS;
9819 	kvm_caps.inapplicable_quirks = KVM_X86_CONDITIONAL_QUIRKS;
9820 
9821 	rdmsrq_safe(MSR_EFER, &kvm_host.efer);
9822 
9823 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9824 		rdmsrq(MSR_IA32_XSS, kvm_host.xss);
9825 
9826 	kvm_init_pmu_capability(ops->pmu_ops);
9827 
9828 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9829 		rdmsrq(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities);
9830 
9831 	r = ops->hardware_setup();
9832 	if (r != 0)
9833 		goto out_mmu_exit;
9834 
9835 	enable_device_posted_irqs &= enable_apicv &&
9836 				     irq_remapping_cap(IRQ_POSTING_CAP);
9837 
9838 	kvm_ops_update(ops);
9839 
9840 	for_each_online_cpu(cpu) {
9841 		smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9842 		if (r < 0)
9843 			goto out_unwind_ops;
9844 	}
9845 
9846 	/*
9847 	 * Point of no return!  DO NOT add error paths below this point unless
9848 	 * absolutely necessary, as most operations from this point forward
9849 	 * require unwinding.
9850 	 */
9851 	kvm_timer_init();
9852 
9853 	if (pi_inject_timer == -1)
9854 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9855 #ifdef CONFIG_X86_64
9856 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9857 
9858 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9859 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9860 #endif
9861 
9862 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9863 
9864 	if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled)
9865 		kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM);
9866 
9867 	/* KVM always ignores guest PAT for shadow paging.  */
9868 	if (!tdp_enabled)
9869 		kvm_caps.supported_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT;
9870 
9871 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9872 		kvm_caps.supported_xss = 0;
9873 
9874 	if (kvm_caps.has_tsc_control) {
9875 		/*
9876 		 * Make sure the user can only configure tsc_khz values that
9877 		 * fit into a signed integer.
9878 		 * A min value is not calculated because it will always
9879 		 * be 1 on all machines.
9880 		 */
9881 		u64 max = min(0x7fffffffULL,
9882 			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9883 		kvm_caps.max_guest_tsc_khz = max;
9884 	}
9885 	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9886 	kvm_init_msr_lists();
9887 	return 0;
9888 
9889 out_unwind_ops:
9890 	kvm_x86_ops.enable_virtualization_cpu = NULL;
9891 	kvm_x86_call(hardware_unsetup)();
9892 out_mmu_exit:
9893 	kvm_mmu_vendor_module_exit();
9894 out_free_percpu:
9895 	free_percpu(user_return_msrs);
9896 out_free_x86_emulator_cache:
9897 	kmem_cache_destroy(x86_emulator_cache);
9898 	return r;
9899 }
9900 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9901 
kvm_x86_vendor_exit(void)9902 void kvm_x86_vendor_exit(void)
9903 {
9904 	kvm_unregister_perf_callbacks();
9905 
9906 #ifdef CONFIG_X86_64
9907 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9908 		clear_hv_tscchange_cb();
9909 #endif
9910 	kvm_lapic_exit();
9911 
9912 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9913 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9914 					    CPUFREQ_TRANSITION_NOTIFIER);
9915 		cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9916 	}
9917 #ifdef CONFIG_X86_64
9918 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9919 	irq_work_sync(&pvclock_irq_work);
9920 	cancel_work_sync(&pvclock_gtod_work);
9921 #endif
9922 	kvm_x86_call(hardware_unsetup)();
9923 	kvm_mmu_vendor_module_exit();
9924 	free_percpu(user_return_msrs);
9925 	kmem_cache_destroy(x86_emulator_cache);
9926 #ifdef CONFIG_KVM_XEN
9927 	static_key_deferred_flush(&kvm_xen_enabled);
9928 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9929 #endif
9930 	mutex_lock(&vendor_module_lock);
9931 	kvm_x86_ops.enable_virtualization_cpu = NULL;
9932 	mutex_unlock(&vendor_module_lock);
9933 }
9934 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9935 
9936 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)9937 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9938 			        unsigned long clock_type)
9939 {
9940 	struct kvm_clock_pairing clock_pairing;
9941 	struct timespec64 ts;
9942 	u64 cycle;
9943 	int ret;
9944 
9945 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9946 		return -KVM_EOPNOTSUPP;
9947 
9948 	/*
9949 	 * When tsc is in permanent catchup mode guests won't be able to use
9950 	 * pvclock_read_retry loop to get consistent view of pvclock
9951 	 */
9952 	if (vcpu->arch.tsc_always_catchup)
9953 		return -KVM_EOPNOTSUPP;
9954 
9955 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9956 		return -KVM_EOPNOTSUPP;
9957 
9958 	clock_pairing.sec = ts.tv_sec;
9959 	clock_pairing.nsec = ts.tv_nsec;
9960 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9961 	clock_pairing.flags = 0;
9962 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9963 
9964 	ret = 0;
9965 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9966 			    sizeof(struct kvm_clock_pairing)))
9967 		ret = -KVM_EFAULT;
9968 
9969 	return ret;
9970 }
9971 #endif
9972 
9973 /*
9974  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9975  *
9976  * @apicid - apicid of vcpu to be kicked.
9977  */
kvm_pv_kick_cpu_op(struct kvm * kvm,int apicid)9978 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9979 {
9980 	/*
9981 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9982 	 * common code, e.g. for tracing. Defer initialization to the compiler.
9983 	 */
9984 	struct kvm_lapic_irq lapic_irq = {
9985 		.delivery_mode = APIC_DM_REMRD,
9986 		.dest_mode = APIC_DEST_PHYSICAL,
9987 		.shorthand = APIC_DEST_NOSHORT,
9988 		.dest_id = apicid,
9989 	};
9990 
9991 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9992 }
9993 
kvm_apicv_activated(struct kvm * kvm)9994 bool kvm_apicv_activated(struct kvm *kvm)
9995 {
9996 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9997 }
9998 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9999 
kvm_vcpu_apicv_activated(struct kvm_vcpu * vcpu)10000 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
10001 {
10002 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
10003 	ulong vcpu_reasons =
10004 			kvm_x86_call(vcpu_get_apicv_inhibit_reasons)(vcpu);
10005 
10006 	return (vm_reasons | vcpu_reasons) == 0;
10007 }
10008 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
10009 
set_or_clear_apicv_inhibit(unsigned long * inhibits,enum kvm_apicv_inhibit reason,bool set)10010 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
10011 				       enum kvm_apicv_inhibit reason, bool set)
10012 {
10013 	const struct trace_print_flags apicv_inhibits[] = { APICV_INHIBIT_REASONS };
10014 
10015 	BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits) != NR_APICV_INHIBIT_REASONS);
10016 
10017 	if (set)
10018 		__set_bit(reason, inhibits);
10019 	else
10020 		__clear_bit(reason, inhibits);
10021 
10022 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
10023 }
10024 
kvm_apicv_init(struct kvm * kvm)10025 static void kvm_apicv_init(struct kvm *kvm)
10026 {
10027 	enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT :
10028 						       APICV_INHIBIT_REASON_DISABLED;
10029 
10030 	set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true);
10031 
10032 	init_rwsem(&kvm->arch.apicv_update_lock);
10033 }
10034 
kvm_sched_yield(struct kvm_vcpu * vcpu,unsigned long dest_id)10035 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
10036 {
10037 	struct kvm_vcpu *target = NULL;
10038 	struct kvm_apic_map *map;
10039 
10040 	vcpu->stat.directed_yield_attempted++;
10041 
10042 	if (single_task_running())
10043 		goto no_yield;
10044 
10045 	rcu_read_lock();
10046 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
10047 
10048 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
10049 		target = map->phys_map[dest_id]->vcpu;
10050 
10051 	rcu_read_unlock();
10052 
10053 	if (!target || !READ_ONCE(target->ready))
10054 		goto no_yield;
10055 
10056 	/* Ignore requests to yield to self */
10057 	if (vcpu == target)
10058 		goto no_yield;
10059 
10060 	if (kvm_vcpu_yield_to(target) <= 0)
10061 		goto no_yield;
10062 
10063 	vcpu->stat.directed_yield_successful++;
10064 
10065 no_yield:
10066 	return;
10067 }
10068 
complete_hypercall_exit(struct kvm_vcpu * vcpu)10069 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
10070 {
10071 	u64 ret = vcpu->run->hypercall.ret;
10072 
10073 	if (!is_64_bit_hypercall(vcpu))
10074 		ret = (u32)ret;
10075 	kvm_rax_write(vcpu, ret);
10076 	return kvm_skip_emulated_instruction(vcpu);
10077 }
10078 
____kvm_emulate_hypercall(struct kvm_vcpu * vcpu,int cpl,int (* complete_hypercall)(struct kvm_vcpu *))10079 int ____kvm_emulate_hypercall(struct kvm_vcpu *vcpu, int cpl,
10080 			      int (*complete_hypercall)(struct kvm_vcpu *))
10081 {
10082 	unsigned long ret;
10083 	unsigned long nr = kvm_rax_read(vcpu);
10084 	unsigned long a0 = kvm_rbx_read(vcpu);
10085 	unsigned long a1 = kvm_rcx_read(vcpu);
10086 	unsigned long a2 = kvm_rdx_read(vcpu);
10087 	unsigned long a3 = kvm_rsi_read(vcpu);
10088 	int op_64_bit = is_64_bit_hypercall(vcpu);
10089 
10090 	++vcpu->stat.hypercalls;
10091 
10092 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
10093 
10094 	if (!op_64_bit) {
10095 		nr &= 0xFFFFFFFF;
10096 		a0 &= 0xFFFFFFFF;
10097 		a1 &= 0xFFFFFFFF;
10098 		a2 &= 0xFFFFFFFF;
10099 		a3 &= 0xFFFFFFFF;
10100 	}
10101 
10102 	if (cpl) {
10103 		ret = -KVM_EPERM;
10104 		goto out;
10105 	}
10106 
10107 	ret = -KVM_ENOSYS;
10108 
10109 	switch (nr) {
10110 	case KVM_HC_VAPIC_POLL_IRQ:
10111 		ret = 0;
10112 		break;
10113 	case KVM_HC_KICK_CPU:
10114 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10115 			break;
10116 
10117 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10118 		kvm_sched_yield(vcpu, a1);
10119 		ret = 0;
10120 		break;
10121 #ifdef CONFIG_X86_64
10122 	case KVM_HC_CLOCK_PAIRING:
10123 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10124 		break;
10125 #endif
10126 	case KVM_HC_SEND_IPI:
10127 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10128 			break;
10129 
10130 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10131 		break;
10132 	case KVM_HC_SCHED_YIELD:
10133 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10134 			break;
10135 
10136 		kvm_sched_yield(vcpu, a0);
10137 		ret = 0;
10138 		break;
10139 	case KVM_HC_MAP_GPA_RANGE: {
10140 		u64 gpa = a0, npages = a1, attrs = a2;
10141 
10142 		ret = -KVM_ENOSYS;
10143 		if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE))
10144 			break;
10145 
10146 		if (!PAGE_ALIGNED(gpa) || !npages ||
10147 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10148 			ret = -KVM_EINVAL;
10149 			break;
10150 		}
10151 
10152 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
10153 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
10154 		/*
10155 		 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
10156 		 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
10157 		 * it was always zero on KVM_EXIT_HYPERCALL.  Since KVM is now overwriting
10158 		 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
10159 		 */
10160 		vcpu->run->hypercall.ret = 0;
10161 		vcpu->run->hypercall.args[0]  = gpa;
10162 		vcpu->run->hypercall.args[1]  = npages;
10163 		vcpu->run->hypercall.args[2]  = attrs;
10164 		vcpu->run->hypercall.flags    = 0;
10165 		if (op_64_bit)
10166 			vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10167 
10168 		WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10169 		vcpu->arch.complete_userspace_io = complete_hypercall;
10170 		return 0;
10171 	}
10172 	default:
10173 		ret = -KVM_ENOSYS;
10174 		break;
10175 	}
10176 
10177 out:
10178 	vcpu->run->hypercall.ret = ret;
10179 	return 1;
10180 }
10181 EXPORT_SYMBOL_GPL(____kvm_emulate_hypercall);
10182 
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)10183 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
10184 {
10185 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
10186 		return kvm_xen_hypercall(vcpu);
10187 
10188 	if (kvm_hv_hypercall_enabled(vcpu))
10189 		return kvm_hv_hypercall(vcpu);
10190 
10191 	return __kvm_emulate_hypercall(vcpu, kvm_x86_call(get_cpl)(vcpu),
10192 				       complete_hypercall_exit);
10193 }
10194 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
10195 
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)10196 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10197 {
10198 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10199 	char instruction[3];
10200 	unsigned long rip = kvm_rip_read(vcpu);
10201 
10202 	/*
10203 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
10204 	 * the pieces.
10205 	 */
10206 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10207 		ctxt->exception.error_code_valid = false;
10208 		ctxt->exception.vector = UD_VECTOR;
10209 		ctxt->have_exception = true;
10210 		return X86EMUL_PROPAGATE_FAULT;
10211 	}
10212 
10213 	kvm_x86_call(patch_hypercall)(vcpu, instruction);
10214 
10215 	return emulator_write_emulated(ctxt, rip, instruction, 3,
10216 		&ctxt->exception);
10217 }
10218 
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)10219 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10220 {
10221 	return vcpu->run->request_interrupt_window &&
10222 		likely(!pic_in_kernel(vcpu->kvm));
10223 }
10224 
10225 /* Called within kvm->srcu read side.  */
post_kvm_run_save(struct kvm_vcpu * vcpu)10226 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10227 {
10228 	struct kvm_run *kvm_run = vcpu->run;
10229 
10230 	kvm_run->if_flag = kvm_x86_call(get_if_flag)(vcpu);
10231 	kvm_run->cr8 = kvm_get_cr8(vcpu);
10232 	kvm_run->apic_base = vcpu->arch.apic_base;
10233 
10234 	kvm_run->ready_for_interrupt_injection =
10235 		pic_in_kernel(vcpu->kvm) ||
10236 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
10237 
10238 	if (is_smm(vcpu))
10239 		kvm_run->flags |= KVM_RUN_X86_SMM;
10240 	if (is_guest_mode(vcpu))
10241 		kvm_run->flags |= KVM_RUN_X86_GUEST_MODE;
10242 }
10243 
update_cr8_intercept(struct kvm_vcpu * vcpu)10244 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10245 {
10246 	int max_irr, tpr;
10247 
10248 	if (!kvm_x86_ops.update_cr8_intercept)
10249 		return;
10250 
10251 	if (!lapic_in_kernel(vcpu))
10252 		return;
10253 
10254 	if (vcpu->arch.apic->apicv_active)
10255 		return;
10256 
10257 	if (!vcpu->arch.apic->vapic_addr)
10258 		max_irr = kvm_lapic_find_highest_irr(vcpu);
10259 	else
10260 		max_irr = -1;
10261 
10262 	if (max_irr != -1)
10263 		max_irr >>= 4;
10264 
10265 	tpr = kvm_lapic_get_cr8(vcpu);
10266 
10267 	kvm_x86_call(update_cr8_intercept)(vcpu, tpr, max_irr);
10268 }
10269 
10270 
kvm_check_nested_events(struct kvm_vcpu * vcpu)10271 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10272 {
10273 	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10274 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
10275 		return 1;
10276 	}
10277 
10278 	return kvm_x86_ops.nested_ops->check_events(vcpu);
10279 }
10280 
kvm_inject_exception(struct kvm_vcpu * vcpu)10281 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10282 {
10283 	/*
10284 	 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10285 	 * exceptions don't report error codes.  The presence of an error code
10286 	 * is carried with the exception and only stripped when the exception
10287 	 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10288 	 * report an error code despite the CPU being in Real Mode.
10289 	 */
10290 	vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10291 
10292 	trace_kvm_inj_exception(vcpu->arch.exception.vector,
10293 				vcpu->arch.exception.has_error_code,
10294 				vcpu->arch.exception.error_code,
10295 				vcpu->arch.exception.injected);
10296 
10297 	kvm_x86_call(inject_exception)(vcpu);
10298 }
10299 
10300 /*
10301  * Check for any event (interrupt or exception) that is ready to be injected,
10302  * and if there is at least one event, inject the event with the highest
10303  * priority.  This handles both "pending" events, i.e. events that have never
10304  * been injected into the guest, and "injected" events, i.e. events that were
10305  * injected as part of a previous VM-Enter, but weren't successfully delivered
10306  * and need to be re-injected.
10307  *
10308  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10309  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
10310  * be able to inject exceptions in the "middle" of an instruction, and so must
10311  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10312  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10313  * boundaries is necessary and correct.
10314  *
10315  * For simplicity, KVM uses a single path to inject all events (except events
10316  * that are injected directly from L1 to L2) and doesn't explicitly track
10317  * instruction boundaries for asynchronous events.  However, because VM-Exits
10318  * that can occur during instruction execution typically result in KVM skipping
10319  * the instruction or injecting an exception, e.g. instruction and exception
10320  * intercepts, and because pending exceptions have higher priority than pending
10321  * interrupts, KVM still honors instruction boundaries in most scenarios.
10322  *
10323  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10324  * the instruction or inject an exception, then KVM can incorrecty inject a new
10325  * asynchronous event if the event became pending after the CPU fetched the
10326  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
10327  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10328  * injected on the restarted instruction instead of being deferred until the
10329  * instruction completes.
10330  *
10331  * In practice, this virtualization hole is unlikely to be observed by the
10332  * guest, and even less likely to cause functional problems.  To detect the
10333  * hole, the guest would have to trigger an event on a side effect of an early
10334  * phase of instruction execution, e.g. on the instruction fetch from memory.
10335  * And for it to be a functional problem, the guest would need to depend on the
10336  * ordering between that side effect, the instruction completing, _and_ the
10337  * delivery of the asynchronous event.
10338  */
kvm_check_and_inject_events(struct kvm_vcpu * vcpu,bool * req_immediate_exit)10339 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10340 				       bool *req_immediate_exit)
10341 {
10342 	bool can_inject;
10343 	int r;
10344 
10345 	/*
10346 	 * Process nested events first, as nested VM-Exit supersedes event
10347 	 * re-injection.  If there's an event queued for re-injection, it will
10348 	 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10349 	 */
10350 	if (is_guest_mode(vcpu))
10351 		r = kvm_check_nested_events(vcpu);
10352 	else
10353 		r = 0;
10354 
10355 	/*
10356 	 * Re-inject exceptions and events *especially* if immediate entry+exit
10357 	 * to/from L2 is needed, as any event that has already been injected
10358 	 * into L2 needs to complete its lifecycle before injecting a new event.
10359 	 *
10360 	 * Don't re-inject an NMI or interrupt if there is a pending exception.
10361 	 * This collision arises if an exception occurred while vectoring the
10362 	 * injected event, KVM intercepted said exception, and KVM ultimately
10363 	 * determined the fault belongs to the guest and queues the exception
10364 	 * for injection back into the guest.
10365 	 *
10366 	 * "Injected" interrupts can also collide with pending exceptions if
10367 	 * userspace ignores the "ready for injection" flag and blindly queues
10368 	 * an interrupt.  In that case, prioritizing the exception is correct,
10369 	 * as the exception "occurred" before the exit to userspace.  Trap-like
10370 	 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10371 	 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10372 	 * priority, they're only generated (pended) during instruction
10373 	 * execution, and interrupts are recognized at instruction boundaries.
10374 	 * Thus a pending fault-like exception means the fault occurred on the
10375 	 * *previous* instruction and must be serviced prior to recognizing any
10376 	 * new events in order to fully complete the previous instruction.
10377 	 */
10378 	if (vcpu->arch.exception.injected)
10379 		kvm_inject_exception(vcpu);
10380 	else if (kvm_is_exception_pending(vcpu))
10381 		; /* see above */
10382 	else if (vcpu->arch.nmi_injected)
10383 		kvm_x86_call(inject_nmi)(vcpu);
10384 	else if (vcpu->arch.interrupt.injected)
10385 		kvm_x86_call(inject_irq)(vcpu, true);
10386 
10387 	/*
10388 	 * Exceptions that morph to VM-Exits are handled above, and pending
10389 	 * exceptions on top of injected exceptions that do not VM-Exit should
10390 	 * either morph to #DF or, sadly, override the injected exception.
10391 	 */
10392 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
10393 		     vcpu->arch.exception.pending);
10394 
10395 	/*
10396 	 * Bail if immediate entry+exit to/from the guest is needed to complete
10397 	 * nested VM-Enter or event re-injection so that a different pending
10398 	 * event can be serviced (or if KVM needs to exit to userspace).
10399 	 *
10400 	 * Otherwise, continue processing events even if VM-Exit occurred.  The
10401 	 * VM-Exit will have cleared exceptions that were meant for L2, but
10402 	 * there may now be events that can be injected into L1.
10403 	 */
10404 	if (r < 0)
10405 		goto out;
10406 
10407 	/*
10408 	 * A pending exception VM-Exit should either result in nested VM-Exit
10409 	 * or force an immediate re-entry and exit to/from L2, and exception
10410 	 * VM-Exits cannot be injected (flag should _never_ be set).
10411 	 */
10412 	WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10413 		     vcpu->arch.exception_vmexit.pending);
10414 
10415 	/*
10416 	 * New events, other than exceptions, cannot be injected if KVM needs
10417 	 * to re-inject a previous event.  See above comments on re-injecting
10418 	 * for why pending exceptions get priority.
10419 	 */
10420 	can_inject = !kvm_event_needs_reinjection(vcpu);
10421 
10422 	if (vcpu->arch.exception.pending) {
10423 		/*
10424 		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10425 		 * value pushed on the stack.  Trap-like exception and all #DBs
10426 		 * leave RF as-is (KVM follows Intel's behavior in this regard;
10427 		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10428 		 *
10429 		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10430 		 * describe the behavior of General Detect #DBs, which are
10431 		 * fault-like.  They do _not_ set RF, a la code breakpoints.
10432 		 */
10433 		if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10434 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10435 					     X86_EFLAGS_RF);
10436 
10437 		if (vcpu->arch.exception.vector == DB_VECTOR) {
10438 			kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10439 			if (vcpu->arch.dr7 & DR7_GD) {
10440 				vcpu->arch.dr7 &= ~DR7_GD;
10441 				kvm_update_dr7(vcpu);
10442 			}
10443 		}
10444 
10445 		kvm_inject_exception(vcpu);
10446 
10447 		vcpu->arch.exception.pending = false;
10448 		vcpu->arch.exception.injected = true;
10449 
10450 		can_inject = false;
10451 	}
10452 
10453 	/* Don't inject interrupts if the user asked to avoid doing so */
10454 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10455 		return 0;
10456 
10457 	/*
10458 	 * Finally, inject interrupt events.  If an event cannot be injected
10459 	 * due to architectural conditions (e.g. IF=0) a window-open exit
10460 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10461 	 * and can architecturally be injected, but we cannot do it right now:
10462 	 * an interrupt could have arrived just now and we have to inject it
10463 	 * as a vmexit, or there could already an event in the queue, which is
10464 	 * indicated by can_inject.  In that case we request an immediate exit
10465 	 * in order to make progress and get back here for another iteration.
10466 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10467 	 */
10468 #ifdef CONFIG_KVM_SMM
10469 	if (vcpu->arch.smi_pending) {
10470 		r = can_inject ? kvm_x86_call(smi_allowed)(vcpu, true) :
10471 				 -EBUSY;
10472 		if (r < 0)
10473 			goto out;
10474 		if (r) {
10475 			vcpu->arch.smi_pending = false;
10476 			++vcpu->arch.smi_count;
10477 			enter_smm(vcpu);
10478 			can_inject = false;
10479 		} else
10480 			kvm_x86_call(enable_smi_window)(vcpu);
10481 	}
10482 #endif
10483 
10484 	if (vcpu->arch.nmi_pending) {
10485 		r = can_inject ? kvm_x86_call(nmi_allowed)(vcpu, true) :
10486 				 -EBUSY;
10487 		if (r < 0)
10488 			goto out;
10489 		if (r) {
10490 			--vcpu->arch.nmi_pending;
10491 			vcpu->arch.nmi_injected = true;
10492 			kvm_x86_call(inject_nmi)(vcpu);
10493 			can_inject = false;
10494 			WARN_ON(kvm_x86_call(nmi_allowed)(vcpu, true) < 0);
10495 		}
10496 		if (vcpu->arch.nmi_pending)
10497 			kvm_x86_call(enable_nmi_window)(vcpu);
10498 	}
10499 
10500 	if (kvm_cpu_has_injectable_intr(vcpu)) {
10501 		r = can_inject ? kvm_x86_call(interrupt_allowed)(vcpu, true) :
10502 				 -EBUSY;
10503 		if (r < 0)
10504 			goto out;
10505 		if (r) {
10506 			int irq = kvm_cpu_get_interrupt(vcpu);
10507 
10508 			if (!WARN_ON_ONCE(irq == -1)) {
10509 				kvm_queue_interrupt(vcpu, irq, false);
10510 				kvm_x86_call(inject_irq)(vcpu, false);
10511 				WARN_ON(kvm_x86_call(interrupt_allowed)(vcpu, true) < 0);
10512 			}
10513 		}
10514 		if (kvm_cpu_has_injectable_intr(vcpu))
10515 			kvm_x86_call(enable_irq_window)(vcpu);
10516 	}
10517 
10518 	if (is_guest_mode(vcpu) &&
10519 	    kvm_x86_ops.nested_ops->has_events &&
10520 	    kvm_x86_ops.nested_ops->has_events(vcpu, true))
10521 		*req_immediate_exit = true;
10522 
10523 	/*
10524 	 * KVM must never queue a new exception while injecting an event; KVM
10525 	 * is done emulating and should only propagate the to-be-injected event
10526 	 * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10527 	 * infinite loop as KVM will bail from VM-Enter to inject the pending
10528 	 * exception and start the cycle all over.
10529 	 *
10530 	 * Exempt triple faults as they have special handling and won't put the
10531 	 * vCPU into an infinite loop.  Triple fault can be queued when running
10532 	 * VMX without unrestricted guest, as that requires KVM to emulate Real
10533 	 * Mode events (see kvm_inject_realmode_interrupt()).
10534 	 */
10535 	WARN_ON_ONCE(vcpu->arch.exception.pending ||
10536 		     vcpu->arch.exception_vmexit.pending);
10537 	return 0;
10538 
10539 out:
10540 	if (r == -EBUSY) {
10541 		*req_immediate_exit = true;
10542 		r = 0;
10543 	}
10544 	return r;
10545 }
10546 
process_nmi(struct kvm_vcpu * vcpu)10547 static void process_nmi(struct kvm_vcpu *vcpu)
10548 {
10549 	unsigned int limit;
10550 
10551 	/*
10552 	 * x86 is limited to one NMI pending, but because KVM can't react to
10553 	 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10554 	 * scheduled out, KVM needs to play nice with two queued NMIs showing
10555 	 * up at the same time.  To handle this scenario, allow two NMIs to be
10556 	 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10557 	 * waiting for a previous NMI injection to complete (which effectively
10558 	 * blocks NMIs).  KVM will immediately inject one of the two NMIs, and
10559 	 * will request an NMI window to handle the second NMI.
10560 	 */
10561 	if (kvm_x86_call(get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10562 		limit = 1;
10563 	else
10564 		limit = 2;
10565 
10566 	/*
10567 	 * Adjust the limit to account for pending virtual NMIs, which aren't
10568 	 * tracked in vcpu->arch.nmi_pending.
10569 	 */
10570 	if (kvm_x86_call(is_vnmi_pending)(vcpu))
10571 		limit--;
10572 
10573 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10574 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10575 
10576 	if (vcpu->arch.nmi_pending &&
10577 	    (kvm_x86_call(set_vnmi_pending)(vcpu)))
10578 		vcpu->arch.nmi_pending--;
10579 
10580 	if (vcpu->arch.nmi_pending)
10581 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10582 }
10583 
10584 /* Return total number of NMIs pending injection to the VM */
kvm_get_nr_pending_nmis(struct kvm_vcpu * vcpu)10585 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10586 {
10587 	return vcpu->arch.nmi_pending +
10588 	       kvm_x86_call(is_vnmi_pending)(vcpu);
10589 }
10590 
kvm_make_scan_ioapic_request_mask(struct kvm * kvm,unsigned long * vcpu_bitmap)10591 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10592 				       unsigned long *vcpu_bitmap)
10593 {
10594 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10595 }
10596 
kvm_make_scan_ioapic_request(struct kvm * kvm)10597 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10598 {
10599 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10600 }
10601 
__kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10602 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10603 {
10604 	struct kvm_lapic *apic = vcpu->arch.apic;
10605 	bool activate;
10606 
10607 	if (!lapic_in_kernel(vcpu))
10608 		return;
10609 
10610 	down_read(&vcpu->kvm->arch.apicv_update_lock);
10611 	preempt_disable();
10612 
10613 	/* Do not activate APICV when APIC is disabled */
10614 	activate = kvm_vcpu_apicv_activated(vcpu) &&
10615 		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10616 
10617 	if (apic->apicv_active == activate)
10618 		goto out;
10619 
10620 	apic->apicv_active = activate;
10621 	kvm_apic_update_apicv(vcpu);
10622 	kvm_x86_call(refresh_apicv_exec_ctrl)(vcpu);
10623 
10624 	/*
10625 	 * When APICv gets disabled, we may still have injected interrupts
10626 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10627 	 * still active when the interrupt got accepted. Make sure
10628 	 * kvm_check_and_inject_events() is called to check for that.
10629 	 */
10630 	if (!apic->apicv_active)
10631 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10632 
10633 out:
10634 	preempt_enable();
10635 	up_read(&vcpu->kvm->arch.apicv_update_lock);
10636 }
10637 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10638 
kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10639 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10640 {
10641 	if (!lapic_in_kernel(vcpu))
10642 		return;
10643 
10644 	/*
10645 	 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10646 	 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10647 	 * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10648 	 * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10649 	 * this case so that KVM can use the AVIC doorbell to inject interrupts
10650 	 * to running vCPUs, but KVM must not create SPTEs for the APIC base as
10651 	 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10652 	 * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10653 	 * access page is sticky.
10654 	 */
10655 	if (apic_x2apic_mode(vcpu->arch.apic) &&
10656 	    kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10657 		kvm_inhibit_apic_access_page(vcpu);
10658 
10659 	__kvm_vcpu_update_apicv(vcpu);
10660 }
10661 
__kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10662 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10663 				      enum kvm_apicv_inhibit reason, bool set)
10664 {
10665 	unsigned long old, new;
10666 
10667 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10668 
10669 	if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10670 		return;
10671 
10672 	old = new = kvm->arch.apicv_inhibit_reasons;
10673 
10674 	set_or_clear_apicv_inhibit(&new, reason, set);
10675 
10676 	if (!!old != !!new) {
10677 		/*
10678 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10679 		 * false positives in the sanity check WARN in vcpu_enter_guest().
10680 		 * This task will wait for all vCPUs to ack the kick IRQ before
10681 		 * updating apicv_inhibit_reasons, and all other vCPUs will
10682 		 * block on acquiring apicv_update_lock so that vCPUs can't
10683 		 * redo vcpu_enter_guest() without seeing the new inhibit state.
10684 		 *
10685 		 * Note, holding apicv_update_lock and taking it in the read
10686 		 * side (handling the request) also prevents other vCPUs from
10687 		 * servicing the request with a stale apicv_inhibit_reasons.
10688 		 */
10689 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10690 		kvm->arch.apicv_inhibit_reasons = new;
10691 		if (new) {
10692 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10693 			int idx = srcu_read_lock(&kvm->srcu);
10694 
10695 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10696 			srcu_read_unlock(&kvm->srcu, idx);
10697 		}
10698 	} else {
10699 		kvm->arch.apicv_inhibit_reasons = new;
10700 	}
10701 }
10702 
kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10703 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10704 				    enum kvm_apicv_inhibit reason, bool set)
10705 {
10706 	if (!enable_apicv)
10707 		return;
10708 
10709 	down_write(&kvm->arch.apicv_update_lock);
10710 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10711 	up_write(&kvm->arch.apicv_update_lock);
10712 }
10713 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10714 
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)10715 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10716 {
10717 	if (!kvm_apic_present(vcpu))
10718 		return;
10719 
10720 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10721 	vcpu->arch.highest_stale_pending_ioapic_eoi = -1;
10722 
10723 	kvm_x86_call(sync_pir_to_irr)(vcpu);
10724 
10725 	if (irqchip_split(vcpu->kvm))
10726 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10727 	else if (ioapic_in_kernel(vcpu->kvm))
10728 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10729 
10730 	if (is_guest_mode(vcpu))
10731 		vcpu->arch.load_eoi_exitmap_pending = true;
10732 	else
10733 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10734 }
10735 
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)10736 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10737 {
10738 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10739 		return;
10740 
10741 #ifdef CONFIG_KVM_HYPERV
10742 	if (to_hv_vcpu(vcpu)) {
10743 		u64 eoi_exit_bitmap[4];
10744 
10745 		bitmap_or((ulong *)eoi_exit_bitmap,
10746 			  vcpu->arch.ioapic_handled_vectors,
10747 			  to_hv_synic(vcpu)->vec_bitmap, 256);
10748 		kvm_x86_call(load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10749 		return;
10750 	}
10751 #endif
10752 	kvm_x86_call(load_eoi_exitmap)(
10753 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10754 }
10755 
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)10756 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10757 {
10758 	kvm_x86_call(guest_memory_reclaimed)(kvm);
10759 }
10760 
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)10761 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10762 {
10763 	if (!lapic_in_kernel(vcpu))
10764 		return;
10765 
10766 	kvm_x86_call(set_apic_access_page_addr)(vcpu);
10767 }
10768 
10769 /*
10770  * Called within kvm->srcu read side.
10771  * Returns 1 to let vcpu_run() continue the guest execution loop without
10772  * exiting to the userspace.  Otherwise, the value will be returned to the
10773  * userspace.
10774  */
vcpu_enter_guest(struct kvm_vcpu * vcpu)10775 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10776 {
10777 	int r;
10778 	bool req_int_win =
10779 		dm_request_for_irq_injection(vcpu) &&
10780 		kvm_cpu_accept_dm_intr(vcpu);
10781 	fastpath_t exit_fastpath;
10782 
10783 	bool req_immediate_exit = false;
10784 
10785 	if (kvm_request_pending(vcpu)) {
10786 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10787 			r = -EIO;
10788 			goto out;
10789 		}
10790 
10791 		if (kvm_dirty_ring_check_request(vcpu)) {
10792 			r = 0;
10793 			goto out;
10794 		}
10795 
10796 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10797 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10798 				r = 0;
10799 				goto out;
10800 			}
10801 		}
10802 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10803 			kvm_mmu_free_obsolete_roots(vcpu);
10804 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10805 			__kvm_migrate_timers(vcpu);
10806 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10807 			kvm_update_masterclock(vcpu->kvm);
10808 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10809 			kvm_gen_kvmclock_update(vcpu);
10810 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10811 			r = kvm_guest_time_update(vcpu);
10812 			if (unlikely(r))
10813 				goto out;
10814 		}
10815 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10816 			kvm_mmu_sync_roots(vcpu);
10817 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10818 			kvm_mmu_load_pgd(vcpu);
10819 
10820 		/*
10821 		 * Note, the order matters here, as flushing "all" TLB entries
10822 		 * also flushes the "current" TLB entries, i.e. servicing the
10823 		 * flush "all" will clear any request to flush "current".
10824 		 */
10825 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10826 			kvm_vcpu_flush_tlb_all(vcpu);
10827 
10828 		kvm_service_local_tlb_flush_requests(vcpu);
10829 
10830 		/*
10831 		 * Fall back to a "full" guest flush if Hyper-V's precise
10832 		 * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10833 		 * the flushes are considered "remote" and not "local" because
10834 		 * the requests can be initiated from other vCPUs.
10835 		 */
10836 #ifdef CONFIG_KVM_HYPERV
10837 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10838 		    kvm_hv_vcpu_flush_tlb(vcpu))
10839 			kvm_vcpu_flush_tlb_guest(vcpu);
10840 #endif
10841 
10842 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10843 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10844 			r = 0;
10845 			goto out;
10846 		}
10847 		if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10848 			if (is_guest_mode(vcpu))
10849 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10850 
10851 			if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10852 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10853 				vcpu->mmio_needed = 0;
10854 				r = 0;
10855 				goto out;
10856 			}
10857 		}
10858 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10859 			/* Page is swapped out. Do synthetic halt */
10860 			vcpu->arch.apf.halted = true;
10861 			r = 1;
10862 			goto out;
10863 		}
10864 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10865 			record_steal_time(vcpu);
10866 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10867 			kvm_pmu_handle_event(vcpu);
10868 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10869 			kvm_pmu_deliver_pmi(vcpu);
10870 #ifdef CONFIG_KVM_SMM
10871 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10872 			process_smi(vcpu);
10873 #endif
10874 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10875 			process_nmi(vcpu);
10876 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10877 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10878 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10879 				     vcpu->arch.ioapic_handled_vectors)) {
10880 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10881 				vcpu->run->eoi.vector =
10882 						vcpu->arch.pending_ioapic_eoi;
10883 				r = 0;
10884 				goto out;
10885 			}
10886 		}
10887 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10888 			vcpu_scan_ioapic(vcpu);
10889 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10890 			vcpu_load_eoi_exitmap(vcpu);
10891 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10892 			kvm_vcpu_reload_apic_access_page(vcpu);
10893 #ifdef CONFIG_KVM_HYPERV
10894 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10895 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10896 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10897 			vcpu->run->system_event.ndata = 0;
10898 			r = 0;
10899 			goto out;
10900 		}
10901 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10902 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10903 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10904 			vcpu->run->system_event.ndata = 0;
10905 			r = 0;
10906 			goto out;
10907 		}
10908 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10909 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10910 
10911 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10912 			vcpu->run->hyperv = hv_vcpu->exit;
10913 			r = 0;
10914 			goto out;
10915 		}
10916 
10917 		/*
10918 		 * KVM_REQ_HV_STIMER has to be processed after
10919 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10920 		 * depend on the guest clock being up-to-date
10921 		 */
10922 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10923 			kvm_hv_process_stimers(vcpu);
10924 #endif
10925 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10926 			kvm_vcpu_update_apicv(vcpu);
10927 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10928 			kvm_check_async_pf_completion(vcpu);
10929 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10930 			kvm_x86_call(msr_filter_changed)(vcpu);
10931 
10932 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10933 			kvm_x86_call(update_cpu_dirty_logging)(vcpu);
10934 
10935 		if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) {
10936 			kvm_vcpu_reset(vcpu, true);
10937 			if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) {
10938 				r = 1;
10939 				goto out;
10940 			}
10941 		}
10942 	}
10943 
10944 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10945 	    kvm_xen_has_interrupt(vcpu)) {
10946 		++vcpu->stat.req_event;
10947 		r = kvm_apic_accept_events(vcpu);
10948 		if (r < 0) {
10949 			r = 0;
10950 			goto out;
10951 		}
10952 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10953 			r = 1;
10954 			goto out;
10955 		}
10956 
10957 		r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10958 		if (r < 0) {
10959 			r = 0;
10960 			goto out;
10961 		}
10962 		if (req_int_win)
10963 			kvm_x86_call(enable_irq_window)(vcpu);
10964 
10965 		if (kvm_lapic_enabled(vcpu)) {
10966 			update_cr8_intercept(vcpu);
10967 			kvm_lapic_sync_to_vapic(vcpu);
10968 		}
10969 	}
10970 
10971 	r = kvm_mmu_reload(vcpu);
10972 	if (unlikely(r)) {
10973 		goto cancel_injection;
10974 	}
10975 
10976 	preempt_disable();
10977 
10978 	kvm_x86_call(prepare_switch_to_guest)(vcpu);
10979 
10980 	/*
10981 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10982 	 * IPI are then delayed after guest entry, which ensures that they
10983 	 * result in virtual interrupt delivery.
10984 	 */
10985 	local_irq_disable();
10986 
10987 	/* Store vcpu->apicv_active before vcpu->mode.  */
10988 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10989 
10990 	kvm_vcpu_srcu_read_unlock(vcpu);
10991 
10992 	/*
10993 	 * 1) We should set ->mode before checking ->requests.  Please see
10994 	 * the comment in kvm_vcpu_exiting_guest_mode().
10995 	 *
10996 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10997 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10998 	 * (see vmx_deliver_posted_interrupt).
10999 	 *
11000 	 * 3) This also orders the write to mode from any reads to the page
11001 	 * tables done while the VCPU is running.  Please see the comment
11002 	 * in kvm_flush_remote_tlbs.
11003 	 */
11004 	smp_mb__after_srcu_read_unlock();
11005 
11006 	/*
11007 	 * Process pending posted interrupts to handle the case where the
11008 	 * notification IRQ arrived in the host, or was never sent (because the
11009 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
11010 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
11011 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
11012 	 */
11013 	if (kvm_lapic_enabled(vcpu))
11014 		kvm_x86_call(sync_pir_to_irr)(vcpu);
11015 
11016 	if (kvm_vcpu_exit_request(vcpu)) {
11017 		vcpu->mode = OUTSIDE_GUEST_MODE;
11018 		smp_wmb();
11019 		local_irq_enable();
11020 		preempt_enable();
11021 		kvm_vcpu_srcu_read_lock(vcpu);
11022 		r = 1;
11023 		goto cancel_injection;
11024 	}
11025 
11026 	if (req_immediate_exit)
11027 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11028 
11029 	fpregs_assert_state_consistent();
11030 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
11031 		switch_fpu_return();
11032 
11033 	if (vcpu->arch.guest_fpu.xfd_err)
11034 		wrmsrq(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
11035 
11036 	if (unlikely(vcpu->arch.switch_db_regs &&
11037 		     !(vcpu->arch.switch_db_regs & KVM_DEBUGREG_AUTO_SWITCH))) {
11038 		set_debugreg(0, 7);
11039 		set_debugreg(vcpu->arch.eff_db[0], 0);
11040 		set_debugreg(vcpu->arch.eff_db[1], 1);
11041 		set_debugreg(vcpu->arch.eff_db[2], 2);
11042 		set_debugreg(vcpu->arch.eff_db[3], 3);
11043 		/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
11044 		if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
11045 			kvm_x86_call(set_dr6)(vcpu, vcpu->arch.dr6);
11046 	} else if (unlikely(hw_breakpoint_active())) {
11047 		set_debugreg(0, 7);
11048 	}
11049 
11050 	vcpu->arch.host_debugctl = get_debugctlmsr();
11051 
11052 	guest_timing_enter_irqoff();
11053 
11054 	for (;;) {
11055 		/*
11056 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
11057 		 * update must kick and wait for all vCPUs before toggling the
11058 		 * per-VM state, and responding vCPUs must wait for the update
11059 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
11060 		 */
11061 		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
11062 			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
11063 
11064 		exit_fastpath = kvm_x86_call(vcpu_run)(vcpu,
11065 						       req_immediate_exit);
11066 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
11067 			break;
11068 
11069 		if (kvm_lapic_enabled(vcpu))
11070 			kvm_x86_call(sync_pir_to_irr)(vcpu);
11071 
11072 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
11073 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
11074 			break;
11075 		}
11076 
11077 		/* Note, VM-Exits that go down the "slow" path are accounted below. */
11078 		++vcpu->stat.exits;
11079 	}
11080 
11081 	/*
11082 	 * Do this here before restoring debug registers on the host.  And
11083 	 * since we do this before handling the vmexit, a DR access vmexit
11084 	 * can (a) read the correct value of the debug registers, (b) set
11085 	 * KVM_DEBUGREG_WONT_EXIT again.
11086 	 */
11087 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
11088 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
11089 		WARN_ON(vcpu->arch.switch_db_regs & KVM_DEBUGREG_AUTO_SWITCH);
11090 		kvm_x86_call(sync_dirty_debug_regs)(vcpu);
11091 		kvm_update_dr0123(vcpu);
11092 		kvm_update_dr7(vcpu);
11093 	}
11094 
11095 	/*
11096 	 * If the guest has used debug registers, at least dr7
11097 	 * will be disabled while returning to the host.
11098 	 * If we don't have active breakpoints in the host, we don't
11099 	 * care about the messed up debug address registers. But if
11100 	 * we have some of them active, restore the old state.
11101 	 */
11102 	if (hw_breakpoint_active())
11103 		hw_breakpoint_restore();
11104 
11105 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
11106 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
11107 
11108 	vcpu->mode = OUTSIDE_GUEST_MODE;
11109 	smp_wmb();
11110 
11111 	/*
11112 	 * Sync xfd before calling handle_exit_irqoff() which may
11113 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11114 	 * in #NM irqoff handler).
11115 	 */
11116 	if (vcpu->arch.xfd_no_write_intercept)
11117 		fpu_sync_guest_vmexit_xfd_state();
11118 
11119 	kvm_x86_call(handle_exit_irqoff)(vcpu);
11120 
11121 	if (vcpu->arch.guest_fpu.xfd_err)
11122 		wrmsrq(MSR_IA32_XFD_ERR, 0);
11123 
11124 	/*
11125 	 * Consume any pending interrupts, including the possible source of
11126 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11127 	 * An instruction is required after local_irq_enable() to fully unblock
11128 	 * interrupts on processors that implement an interrupt shadow, the
11129 	 * stat.exits increment will do nicely.
11130 	 */
11131 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11132 	local_irq_enable();
11133 	++vcpu->stat.exits;
11134 	local_irq_disable();
11135 	kvm_after_interrupt(vcpu);
11136 
11137 	/*
11138 	 * Wait until after servicing IRQs to account guest time so that any
11139 	 * ticks that occurred while running the guest are properly accounted
11140 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
11141 	 * of accounting via context tracking, but the loss of accuracy is
11142 	 * acceptable for all known use cases.
11143 	 */
11144 	guest_timing_exit_irqoff();
11145 
11146 	local_irq_enable();
11147 	preempt_enable();
11148 
11149 	kvm_vcpu_srcu_read_lock(vcpu);
11150 
11151 	/*
11152 	 * Call this to ensure WC buffers in guest are evicted after each VM
11153 	 * Exit, so that the evicted WC writes can be snooped across all cpus
11154 	 */
11155 	smp_mb__after_srcu_read_lock();
11156 
11157 	/*
11158 	 * Profile KVM exit RIPs:
11159 	 */
11160 	if (unlikely(prof_on == KVM_PROFILING &&
11161 		     !vcpu->arch.guest_state_protected)) {
11162 		unsigned long rip = kvm_rip_read(vcpu);
11163 		profile_hit(KVM_PROFILING, (void *)rip);
11164 	}
11165 
11166 	if (unlikely(vcpu->arch.tsc_always_catchup))
11167 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11168 
11169 	if (vcpu->arch.apic_attention)
11170 		kvm_lapic_sync_from_vapic(vcpu);
11171 
11172 	if (unlikely(exit_fastpath == EXIT_FASTPATH_EXIT_USERSPACE))
11173 		return 0;
11174 
11175 	r = kvm_x86_call(handle_exit)(vcpu, exit_fastpath);
11176 	return r;
11177 
11178 cancel_injection:
11179 	if (req_immediate_exit)
11180 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11181 	kvm_x86_call(cancel_injection)(vcpu);
11182 	if (unlikely(vcpu->arch.apic_attention))
11183 		kvm_lapic_sync_from_vapic(vcpu);
11184 out:
11185 	return r;
11186 }
11187 
kvm_vcpu_running(struct kvm_vcpu * vcpu)11188 static bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11189 {
11190 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11191 		!vcpu->arch.apf.halted);
11192 }
11193 
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)11194 bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11195 {
11196 	if (!list_empty_careful(&vcpu->async_pf.done))
11197 		return true;
11198 
11199 	if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
11200 	    kvm_apic_init_sipi_allowed(vcpu))
11201 		return true;
11202 
11203 	if (kvm_is_exception_pending(vcpu))
11204 		return true;
11205 
11206 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11207 	    (vcpu->arch.nmi_pending &&
11208 	     kvm_x86_call(nmi_allowed)(vcpu, false)))
11209 		return true;
11210 
11211 #ifdef CONFIG_KVM_SMM
11212 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11213 	    (vcpu->arch.smi_pending &&
11214 	     kvm_x86_call(smi_allowed)(vcpu, false)))
11215 		return true;
11216 #endif
11217 
11218 	if (kvm_test_request(KVM_REQ_PMI, vcpu))
11219 		return true;
11220 
11221 	if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu))
11222 		return true;
11223 
11224 	if (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu))
11225 		return true;
11226 
11227 	if (kvm_hv_has_stimer_pending(vcpu))
11228 		return true;
11229 
11230 	if (is_guest_mode(vcpu) &&
11231 	    kvm_x86_ops.nested_ops->has_events &&
11232 	    kvm_x86_ops.nested_ops->has_events(vcpu, false))
11233 		return true;
11234 
11235 	if (kvm_xen_has_pending_events(vcpu))
11236 		return true;
11237 
11238 	return false;
11239 }
11240 EXPORT_SYMBOL_GPL(kvm_vcpu_has_events);
11241 
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)11242 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11243 {
11244 	return kvm_vcpu_running(vcpu) || vcpu->arch.pv.pv_unhalted ||
11245 	       kvm_vcpu_has_events(vcpu);
11246 }
11247 
11248 /* Called within kvm->srcu read side.  */
vcpu_block(struct kvm_vcpu * vcpu)11249 static inline int vcpu_block(struct kvm_vcpu *vcpu)
11250 {
11251 	bool hv_timer;
11252 
11253 	if (!kvm_arch_vcpu_runnable(vcpu)) {
11254 		/*
11255 		 * Switch to the software timer before halt-polling/blocking as
11256 		 * the guest's timer may be a break event for the vCPU, and the
11257 		 * hypervisor timer runs only when the CPU is in guest mode.
11258 		 * Switch before halt-polling so that KVM recognizes an expired
11259 		 * timer before blocking.
11260 		 */
11261 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11262 		if (hv_timer)
11263 			kvm_lapic_switch_to_sw_timer(vcpu);
11264 
11265 		kvm_vcpu_srcu_read_unlock(vcpu);
11266 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11267 			kvm_vcpu_halt(vcpu);
11268 		else
11269 			kvm_vcpu_block(vcpu);
11270 		kvm_vcpu_srcu_read_lock(vcpu);
11271 
11272 		if (hv_timer)
11273 			kvm_lapic_switch_to_hv_timer(vcpu);
11274 
11275 		/*
11276 		 * If the vCPU is not runnable, a signal or another host event
11277 		 * of some kind is pending; service it without changing the
11278 		 * vCPU's activity state.
11279 		 */
11280 		if (!kvm_arch_vcpu_runnable(vcpu))
11281 			return 1;
11282 	}
11283 
11284 	/*
11285 	 * Evaluate nested events before exiting the halted state.  This allows
11286 	 * the halt state to be recorded properly in the VMCS12's activity
11287 	 * state field (AMD does not have a similar field and a VM-Exit always
11288 	 * causes a spurious wakeup from HLT).
11289 	 */
11290 	if (is_guest_mode(vcpu)) {
11291 		int r = kvm_check_nested_events(vcpu);
11292 
11293 		WARN_ON_ONCE(r == -EBUSY);
11294 		if (r < 0)
11295 			return 0;
11296 	}
11297 
11298 	if (kvm_apic_accept_events(vcpu) < 0)
11299 		return 0;
11300 	switch(vcpu->arch.mp_state) {
11301 	case KVM_MP_STATE_HALTED:
11302 	case KVM_MP_STATE_AP_RESET_HOLD:
11303 		kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
11304 		fallthrough;
11305 	case KVM_MP_STATE_RUNNABLE:
11306 		vcpu->arch.apf.halted = false;
11307 		break;
11308 	case KVM_MP_STATE_INIT_RECEIVED:
11309 		break;
11310 	default:
11311 		WARN_ON_ONCE(1);
11312 		break;
11313 	}
11314 	return 1;
11315 }
11316 
11317 /* Called within kvm->srcu read side.  */
vcpu_run(struct kvm_vcpu * vcpu)11318 static int vcpu_run(struct kvm_vcpu *vcpu)
11319 {
11320 	int r;
11321 
11322 	vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11323 
11324 	for (;;) {
11325 		/*
11326 		 * If another guest vCPU requests a PV TLB flush in the middle
11327 		 * of instruction emulation, the rest of the emulation could
11328 		 * use a stale page translation. Assume that any code after
11329 		 * this point can start executing an instruction.
11330 		 */
11331 		vcpu->arch.at_instruction_boundary = false;
11332 		if (kvm_vcpu_running(vcpu)) {
11333 			r = vcpu_enter_guest(vcpu);
11334 		} else {
11335 			r = vcpu_block(vcpu);
11336 		}
11337 
11338 		if (r <= 0)
11339 			break;
11340 
11341 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11342 		if (kvm_xen_has_pending_events(vcpu))
11343 			kvm_xen_inject_pending_events(vcpu);
11344 
11345 		if (kvm_cpu_has_pending_timer(vcpu))
11346 			kvm_inject_pending_timer_irqs(vcpu);
11347 
11348 		if (dm_request_for_irq_injection(vcpu) &&
11349 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11350 			r = 0;
11351 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11352 			++vcpu->stat.request_irq_exits;
11353 			break;
11354 		}
11355 
11356 		if (__xfer_to_guest_mode_work_pending()) {
11357 			kvm_vcpu_srcu_read_unlock(vcpu);
11358 			r = xfer_to_guest_mode_handle_work(vcpu);
11359 			kvm_vcpu_srcu_read_lock(vcpu);
11360 			if (r)
11361 				return r;
11362 		}
11363 	}
11364 
11365 	return r;
11366 }
11367 
__kvm_emulate_halt(struct kvm_vcpu * vcpu,int state,int reason)11368 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
11369 {
11370 	/*
11371 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
11372 	 * local APIC is in-kernel, the run loop will detect the non-runnable
11373 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
11374 	 * managed by userspace, in which case userspace is responsible for
11375 	 * handling wake events.
11376 	 */
11377 	++vcpu->stat.halt_exits;
11378 	if (lapic_in_kernel(vcpu)) {
11379 		if (kvm_vcpu_has_events(vcpu) || vcpu->arch.pv.pv_unhalted)
11380 			state = KVM_MP_STATE_RUNNABLE;
11381 		kvm_set_mp_state(vcpu, state);
11382 		return 1;
11383 	} else {
11384 		vcpu->run->exit_reason = reason;
11385 		return 0;
11386 	}
11387 }
11388 
kvm_emulate_halt_noskip(struct kvm_vcpu * vcpu)11389 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
11390 {
11391 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
11392 }
11393 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
11394 
kvm_emulate_halt(struct kvm_vcpu * vcpu)11395 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
11396 {
11397 	int ret = kvm_skip_emulated_instruction(vcpu);
11398 	/*
11399 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
11400 	 * KVM_EXIT_DEBUG here.
11401 	 */
11402 	return kvm_emulate_halt_noskip(vcpu) && ret;
11403 }
11404 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
11405 
handle_fastpath_hlt(struct kvm_vcpu * vcpu)11406 fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu)
11407 {
11408 	int ret;
11409 
11410 	kvm_vcpu_srcu_read_lock(vcpu);
11411 	ret = kvm_emulate_halt(vcpu);
11412 	kvm_vcpu_srcu_read_unlock(vcpu);
11413 
11414 	if (!ret)
11415 		return EXIT_FASTPATH_EXIT_USERSPACE;
11416 
11417 	if (kvm_vcpu_running(vcpu))
11418 		return EXIT_FASTPATH_REENTER_GUEST;
11419 
11420 	return EXIT_FASTPATH_EXIT_HANDLED;
11421 }
11422 EXPORT_SYMBOL_GPL(handle_fastpath_hlt);
11423 
kvm_emulate_ap_reset_hold(struct kvm_vcpu * vcpu)11424 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
11425 {
11426 	int ret = kvm_skip_emulated_instruction(vcpu);
11427 
11428 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
11429 					KVM_EXIT_AP_RESET_HOLD) && ret;
11430 }
11431 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
11432 
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)11433 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11434 {
11435 	return kvm_vcpu_apicv_active(vcpu) &&
11436 	       kvm_x86_call(dy_apicv_has_pending_interrupt)(vcpu);
11437 }
11438 
kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu * vcpu)11439 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
11440 {
11441 	return vcpu->arch.preempted_in_kernel;
11442 }
11443 
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)11444 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11445 {
11446 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11447 		return true;
11448 
11449 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11450 #ifdef CONFIG_KVM_SMM
11451 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
11452 #endif
11453 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
11454 		return true;
11455 
11456 	return kvm_arch_dy_has_pending_interrupt(vcpu);
11457 }
11458 
complete_emulated_io(struct kvm_vcpu * vcpu)11459 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11460 {
11461 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11462 }
11463 
complete_emulated_pio(struct kvm_vcpu * vcpu)11464 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11465 {
11466 	BUG_ON(!vcpu->arch.pio.count);
11467 
11468 	return complete_emulated_io(vcpu);
11469 }
11470 
11471 /*
11472  * Implements the following, as a state machine:
11473  *
11474  * read:
11475  *   for each fragment
11476  *     for each mmio piece in the fragment
11477  *       write gpa, len
11478  *       exit
11479  *       copy data
11480  *   execute insn
11481  *
11482  * write:
11483  *   for each fragment
11484  *     for each mmio piece in the fragment
11485  *       write gpa, len
11486  *       copy data
11487  *       exit
11488  */
complete_emulated_mmio(struct kvm_vcpu * vcpu)11489 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11490 {
11491 	struct kvm_run *run = vcpu->run;
11492 	struct kvm_mmio_fragment *frag;
11493 	unsigned len;
11494 
11495 	BUG_ON(!vcpu->mmio_needed);
11496 
11497 	/* Complete previous fragment */
11498 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11499 	len = min(8u, frag->len);
11500 	if (!vcpu->mmio_is_write)
11501 		memcpy(frag->data, run->mmio.data, len);
11502 
11503 	if (frag->len <= 8) {
11504 		/* Switch to the next fragment. */
11505 		frag++;
11506 		vcpu->mmio_cur_fragment++;
11507 	} else {
11508 		/* Go forward to the next mmio piece. */
11509 		frag->data += len;
11510 		frag->gpa += len;
11511 		frag->len -= len;
11512 	}
11513 
11514 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11515 		vcpu->mmio_needed = 0;
11516 
11517 		/* FIXME: return into emulator if single-stepping.  */
11518 		if (vcpu->mmio_is_write)
11519 			return 1;
11520 		vcpu->mmio_read_completed = 1;
11521 		return complete_emulated_io(vcpu);
11522 	}
11523 
11524 	run->exit_reason = KVM_EXIT_MMIO;
11525 	run->mmio.phys_addr = frag->gpa;
11526 	if (vcpu->mmio_is_write)
11527 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11528 	run->mmio.len = min(8u, frag->len);
11529 	run->mmio.is_write = vcpu->mmio_is_write;
11530 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11531 	return 0;
11532 }
11533 
11534 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)11535 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11536 {
11537 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11538 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11539 	trace_kvm_fpu(1);
11540 }
11541 
11542 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)11543 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11544 {
11545 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11546 	++vcpu->stat.fpu_reload;
11547 	trace_kvm_fpu(0);
11548 }
11549 
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)11550 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11551 {
11552 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
11553 	struct kvm_run *kvm_run = vcpu->run;
11554 	u64 sync_valid_fields;
11555 	int r;
11556 
11557 	r = kvm_mmu_post_init_vm(vcpu->kvm);
11558 	if (r)
11559 		return r;
11560 
11561 	vcpu_load(vcpu);
11562 	kvm_sigset_activate(vcpu);
11563 	kvm_run->flags = 0;
11564 	kvm_load_guest_fpu(vcpu);
11565 
11566 	kvm_vcpu_srcu_read_lock(vcpu);
11567 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11568 		if (!vcpu->wants_to_run) {
11569 			r = -EINTR;
11570 			goto out;
11571 		}
11572 
11573 		/*
11574 		 * Don't bother switching APIC timer emulation from the
11575 		 * hypervisor timer to the software timer, the only way for the
11576 		 * APIC timer to be active is if userspace stuffed vCPU state,
11577 		 * i.e. put the vCPU into a nonsensical state.  Only an INIT
11578 		 * will transition the vCPU out of UNINITIALIZED (without more
11579 		 * state stuffing from userspace), which will reset the local
11580 		 * APIC and thus cancel the timer or drop the IRQ (if the timer
11581 		 * already expired).
11582 		 */
11583 		kvm_vcpu_srcu_read_unlock(vcpu);
11584 		kvm_vcpu_block(vcpu);
11585 		kvm_vcpu_srcu_read_lock(vcpu);
11586 
11587 		if (kvm_apic_accept_events(vcpu) < 0) {
11588 			r = 0;
11589 			goto out;
11590 		}
11591 		r = -EAGAIN;
11592 		if (signal_pending(current)) {
11593 			r = -EINTR;
11594 			kvm_run->exit_reason = KVM_EXIT_INTR;
11595 			++vcpu->stat.signal_exits;
11596 		}
11597 		goto out;
11598 	}
11599 
11600 	sync_valid_fields = kvm_sync_valid_fields(vcpu->kvm);
11601 	if ((kvm_run->kvm_valid_regs & ~sync_valid_fields) ||
11602 	    (kvm_run->kvm_dirty_regs & ~sync_valid_fields)) {
11603 		r = -EINVAL;
11604 		goto out;
11605 	}
11606 
11607 	if (kvm_run->kvm_dirty_regs) {
11608 		r = sync_regs(vcpu);
11609 		if (r != 0)
11610 			goto out;
11611 	}
11612 
11613 	/* re-sync apic's tpr */
11614 	if (!lapic_in_kernel(vcpu)) {
11615 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11616 			r = -EINVAL;
11617 			goto out;
11618 		}
11619 	}
11620 
11621 	/*
11622 	 * If userspace set a pending exception and L2 is active, convert it to
11623 	 * a pending VM-Exit if L1 wants to intercept the exception.
11624 	 */
11625 	if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11626 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11627 							ex->error_code)) {
11628 		kvm_queue_exception_vmexit(vcpu, ex->vector,
11629 					   ex->has_error_code, ex->error_code,
11630 					   ex->has_payload, ex->payload);
11631 		ex->injected = false;
11632 		ex->pending = false;
11633 	}
11634 	vcpu->arch.exception_from_userspace = false;
11635 
11636 	if (unlikely(vcpu->arch.complete_userspace_io)) {
11637 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11638 		vcpu->arch.complete_userspace_io = NULL;
11639 		r = cui(vcpu);
11640 		if (r <= 0)
11641 			goto out;
11642 	} else {
11643 		WARN_ON_ONCE(vcpu->arch.pio.count);
11644 		WARN_ON_ONCE(vcpu->mmio_needed);
11645 	}
11646 
11647 	if (!vcpu->wants_to_run) {
11648 		r = -EINTR;
11649 		goto out;
11650 	}
11651 
11652 	r = kvm_x86_call(vcpu_pre_run)(vcpu);
11653 	if (r <= 0)
11654 		goto out;
11655 
11656 	r = vcpu_run(vcpu);
11657 
11658 out:
11659 	kvm_put_guest_fpu(vcpu);
11660 	if (kvm_run->kvm_valid_regs && likely(!vcpu->arch.guest_state_protected))
11661 		store_regs(vcpu);
11662 	post_kvm_run_save(vcpu);
11663 	kvm_vcpu_srcu_read_unlock(vcpu);
11664 
11665 	kvm_sigset_deactivate(vcpu);
11666 	vcpu_put(vcpu);
11667 	return r;
11668 }
11669 
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11670 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11671 {
11672 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11673 		/*
11674 		 * We are here if userspace calls get_regs() in the middle of
11675 		 * instruction emulation. Registers state needs to be copied
11676 		 * back from emulation context to vcpu. Userspace shouldn't do
11677 		 * that usually, but some bad designed PV devices (vmware
11678 		 * backdoor interface) need this to work
11679 		 */
11680 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11681 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11682 	}
11683 	regs->rax = kvm_rax_read(vcpu);
11684 	regs->rbx = kvm_rbx_read(vcpu);
11685 	regs->rcx = kvm_rcx_read(vcpu);
11686 	regs->rdx = kvm_rdx_read(vcpu);
11687 	regs->rsi = kvm_rsi_read(vcpu);
11688 	regs->rdi = kvm_rdi_read(vcpu);
11689 	regs->rsp = kvm_rsp_read(vcpu);
11690 	regs->rbp = kvm_rbp_read(vcpu);
11691 #ifdef CONFIG_X86_64
11692 	regs->r8 = kvm_r8_read(vcpu);
11693 	regs->r9 = kvm_r9_read(vcpu);
11694 	regs->r10 = kvm_r10_read(vcpu);
11695 	regs->r11 = kvm_r11_read(vcpu);
11696 	regs->r12 = kvm_r12_read(vcpu);
11697 	regs->r13 = kvm_r13_read(vcpu);
11698 	regs->r14 = kvm_r14_read(vcpu);
11699 	regs->r15 = kvm_r15_read(vcpu);
11700 #endif
11701 
11702 	regs->rip = kvm_rip_read(vcpu);
11703 	regs->rflags = kvm_get_rflags(vcpu);
11704 }
11705 
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11706 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11707 {
11708 	if (vcpu->kvm->arch.has_protected_state &&
11709 	    vcpu->arch.guest_state_protected)
11710 		return -EINVAL;
11711 
11712 	vcpu_load(vcpu);
11713 	__get_regs(vcpu, regs);
11714 	vcpu_put(vcpu);
11715 	return 0;
11716 }
11717 
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11718 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11719 {
11720 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11721 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11722 
11723 	kvm_rax_write(vcpu, regs->rax);
11724 	kvm_rbx_write(vcpu, regs->rbx);
11725 	kvm_rcx_write(vcpu, regs->rcx);
11726 	kvm_rdx_write(vcpu, regs->rdx);
11727 	kvm_rsi_write(vcpu, regs->rsi);
11728 	kvm_rdi_write(vcpu, regs->rdi);
11729 	kvm_rsp_write(vcpu, regs->rsp);
11730 	kvm_rbp_write(vcpu, regs->rbp);
11731 #ifdef CONFIG_X86_64
11732 	kvm_r8_write(vcpu, regs->r8);
11733 	kvm_r9_write(vcpu, regs->r9);
11734 	kvm_r10_write(vcpu, regs->r10);
11735 	kvm_r11_write(vcpu, regs->r11);
11736 	kvm_r12_write(vcpu, regs->r12);
11737 	kvm_r13_write(vcpu, regs->r13);
11738 	kvm_r14_write(vcpu, regs->r14);
11739 	kvm_r15_write(vcpu, regs->r15);
11740 #endif
11741 
11742 	kvm_rip_write(vcpu, regs->rip);
11743 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11744 
11745 	vcpu->arch.exception.pending = false;
11746 	vcpu->arch.exception_vmexit.pending = false;
11747 
11748 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11749 }
11750 
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11751 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11752 {
11753 	if (vcpu->kvm->arch.has_protected_state &&
11754 	    vcpu->arch.guest_state_protected)
11755 		return -EINVAL;
11756 
11757 	vcpu_load(vcpu);
11758 	__set_regs(vcpu, regs);
11759 	vcpu_put(vcpu);
11760 	return 0;
11761 }
11762 
__get_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11763 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11764 {
11765 	struct desc_ptr dt;
11766 
11767 	if (vcpu->arch.guest_state_protected)
11768 		goto skip_protected_regs;
11769 
11770 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11771 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11772 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11773 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11774 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11775 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11776 
11777 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11778 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11779 
11780 	kvm_x86_call(get_idt)(vcpu, &dt);
11781 	sregs->idt.limit = dt.size;
11782 	sregs->idt.base = dt.address;
11783 	kvm_x86_call(get_gdt)(vcpu, &dt);
11784 	sregs->gdt.limit = dt.size;
11785 	sregs->gdt.base = dt.address;
11786 
11787 	sregs->cr2 = vcpu->arch.cr2;
11788 	sregs->cr3 = kvm_read_cr3(vcpu);
11789 
11790 skip_protected_regs:
11791 	sregs->cr0 = kvm_read_cr0(vcpu);
11792 	sregs->cr4 = kvm_read_cr4(vcpu);
11793 	sregs->cr8 = kvm_get_cr8(vcpu);
11794 	sregs->efer = vcpu->arch.efer;
11795 	sregs->apic_base = vcpu->arch.apic_base;
11796 }
11797 
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11798 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11799 {
11800 	__get_sregs_common(vcpu, sregs);
11801 
11802 	if (vcpu->arch.guest_state_protected)
11803 		return;
11804 
11805 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11806 		set_bit(vcpu->arch.interrupt.nr,
11807 			(unsigned long *)sregs->interrupt_bitmap);
11808 }
11809 
__get_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)11810 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11811 {
11812 	int i;
11813 
11814 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11815 
11816 	if (vcpu->arch.guest_state_protected)
11817 		return;
11818 
11819 	if (is_pae_paging(vcpu)) {
11820 		for (i = 0 ; i < 4 ; i++)
11821 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11822 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11823 	}
11824 }
11825 
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11826 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11827 				  struct kvm_sregs *sregs)
11828 {
11829 	if (vcpu->kvm->arch.has_protected_state &&
11830 	    vcpu->arch.guest_state_protected)
11831 		return -EINVAL;
11832 
11833 	vcpu_load(vcpu);
11834 	__get_sregs(vcpu, sregs);
11835 	vcpu_put(vcpu);
11836 	return 0;
11837 }
11838 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11839 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11840 				    struct kvm_mp_state *mp_state)
11841 {
11842 	int r;
11843 
11844 	vcpu_load(vcpu);
11845 	if (kvm_mpx_supported())
11846 		kvm_load_guest_fpu(vcpu);
11847 
11848 	kvm_vcpu_srcu_read_lock(vcpu);
11849 
11850 	r = kvm_apic_accept_events(vcpu);
11851 	if (r < 0)
11852 		goto out;
11853 	r = 0;
11854 
11855 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11856 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11857 	    vcpu->arch.pv.pv_unhalted)
11858 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11859 	else
11860 		mp_state->mp_state = vcpu->arch.mp_state;
11861 
11862 out:
11863 	kvm_vcpu_srcu_read_unlock(vcpu);
11864 
11865 	if (kvm_mpx_supported())
11866 		kvm_put_guest_fpu(vcpu);
11867 	vcpu_put(vcpu);
11868 	return r;
11869 }
11870 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11871 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11872 				    struct kvm_mp_state *mp_state)
11873 {
11874 	int ret = -EINVAL;
11875 
11876 	vcpu_load(vcpu);
11877 
11878 	switch (mp_state->mp_state) {
11879 	case KVM_MP_STATE_UNINITIALIZED:
11880 	case KVM_MP_STATE_HALTED:
11881 	case KVM_MP_STATE_AP_RESET_HOLD:
11882 	case KVM_MP_STATE_INIT_RECEIVED:
11883 	case KVM_MP_STATE_SIPI_RECEIVED:
11884 		if (!lapic_in_kernel(vcpu))
11885 			goto out;
11886 		break;
11887 
11888 	case KVM_MP_STATE_RUNNABLE:
11889 		break;
11890 
11891 	default:
11892 		goto out;
11893 	}
11894 
11895 	/*
11896 	 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11897 	 * forcing the guest into INIT/SIPI if those events are supposed to be
11898 	 * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11899 	 * if an SMI is pending as well.
11900 	 */
11901 	if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11902 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11903 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11904 		goto out;
11905 
11906 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11907 		kvm_set_mp_state(vcpu, KVM_MP_STATE_INIT_RECEIVED);
11908 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11909 	} else
11910 		kvm_set_mp_state(vcpu, mp_state->mp_state);
11911 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11912 
11913 	ret = 0;
11914 out:
11915 	vcpu_put(vcpu);
11916 	return ret;
11917 }
11918 
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)11919 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11920 		    int reason, bool has_error_code, u32 error_code)
11921 {
11922 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11923 	int ret;
11924 
11925 	init_emulate_ctxt(vcpu);
11926 
11927 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11928 				   has_error_code, error_code);
11929 
11930 	/*
11931 	 * Report an error userspace if MMIO is needed, as KVM doesn't support
11932 	 * MMIO during a task switch (or any other complex operation).
11933 	 */
11934 	if (ret || vcpu->mmio_needed) {
11935 		vcpu->mmio_needed = false;
11936 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11937 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11938 		vcpu->run->internal.ndata = 0;
11939 		return 0;
11940 	}
11941 
11942 	kvm_rip_write(vcpu, ctxt->eip);
11943 	kvm_set_rflags(vcpu, ctxt->eflags);
11944 	return 1;
11945 }
11946 EXPORT_SYMBOL_GPL(kvm_task_switch);
11947 
kvm_is_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11948 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11949 {
11950 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11951 		/*
11952 		 * When EFER.LME and CR0.PG are set, the processor is in
11953 		 * 64-bit mode (though maybe in a 32-bit code segment).
11954 		 * CR4.PAE and EFER.LMA must be set.
11955 		 */
11956 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11957 			return false;
11958 		if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
11959 			return false;
11960 	} else {
11961 		/*
11962 		 * Not in 64-bit mode: EFER.LMA is clear and the code
11963 		 * segment cannot be 64-bit.
11964 		 */
11965 		if (sregs->efer & EFER_LMA || sregs->cs.l)
11966 			return false;
11967 	}
11968 
11969 	return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11970 	       kvm_is_valid_cr0(vcpu, sregs->cr0);
11971 }
11972 
__set_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs,int * mmu_reset_needed,bool update_pdptrs)11973 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11974 		int *mmu_reset_needed, bool update_pdptrs)
11975 {
11976 	int idx;
11977 	struct desc_ptr dt;
11978 
11979 	if (!kvm_is_valid_sregs(vcpu, sregs))
11980 		return -EINVAL;
11981 
11982 	if (kvm_apic_set_base(vcpu, sregs->apic_base, true))
11983 		return -EINVAL;
11984 
11985 	if (vcpu->arch.guest_state_protected)
11986 		return 0;
11987 
11988 	dt.size = sregs->idt.limit;
11989 	dt.address = sregs->idt.base;
11990 	kvm_x86_call(set_idt)(vcpu, &dt);
11991 	dt.size = sregs->gdt.limit;
11992 	dt.address = sregs->gdt.base;
11993 	kvm_x86_call(set_gdt)(vcpu, &dt);
11994 
11995 	vcpu->arch.cr2 = sregs->cr2;
11996 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11997 	vcpu->arch.cr3 = sregs->cr3;
11998 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11999 	kvm_x86_call(post_set_cr3)(vcpu, sregs->cr3);
12000 
12001 	kvm_set_cr8(vcpu, sregs->cr8);
12002 
12003 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
12004 	kvm_x86_call(set_efer)(vcpu, sregs->efer);
12005 
12006 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
12007 	kvm_x86_call(set_cr0)(vcpu, sregs->cr0);
12008 
12009 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
12010 	kvm_x86_call(set_cr4)(vcpu, sregs->cr4);
12011 
12012 	if (update_pdptrs) {
12013 		idx = srcu_read_lock(&vcpu->kvm->srcu);
12014 		if (is_pae_paging(vcpu)) {
12015 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
12016 			*mmu_reset_needed = 1;
12017 		}
12018 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
12019 	}
12020 
12021 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
12022 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
12023 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
12024 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
12025 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
12026 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
12027 
12028 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
12029 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
12030 
12031 	update_cr8_intercept(vcpu);
12032 
12033 	/* Older userspace won't unhalt the vcpu on reset. */
12034 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
12035 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
12036 	    !is_protmode(vcpu))
12037 		kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
12038 
12039 	return 0;
12040 }
12041 
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12042 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
12043 {
12044 	int pending_vec, max_bits;
12045 	int mmu_reset_needed = 0;
12046 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
12047 
12048 	if (ret)
12049 		return ret;
12050 
12051 	if (mmu_reset_needed) {
12052 		kvm_mmu_reset_context(vcpu);
12053 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12054 	}
12055 
12056 	max_bits = KVM_NR_INTERRUPTS;
12057 	pending_vec = find_first_bit(
12058 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
12059 
12060 	if (pending_vec < max_bits) {
12061 		kvm_queue_interrupt(vcpu, pending_vec, false);
12062 		pr_debug("Set back pending irq %d\n", pending_vec);
12063 		kvm_make_request(KVM_REQ_EVENT, vcpu);
12064 	}
12065 	return 0;
12066 }
12067 
__set_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)12068 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
12069 {
12070 	int mmu_reset_needed = 0;
12071 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
12072 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
12073 		!(sregs2->efer & EFER_LMA);
12074 	int i, ret;
12075 
12076 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
12077 		return -EINVAL;
12078 
12079 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
12080 		return -EINVAL;
12081 
12082 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
12083 				 &mmu_reset_needed, !valid_pdptrs);
12084 	if (ret)
12085 		return ret;
12086 
12087 	if (valid_pdptrs) {
12088 		for (i = 0; i < 4 ; i++)
12089 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
12090 
12091 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
12092 		mmu_reset_needed = 1;
12093 		vcpu->arch.pdptrs_from_userspace = true;
12094 	}
12095 	if (mmu_reset_needed) {
12096 		kvm_mmu_reset_context(vcpu);
12097 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12098 	}
12099 	return 0;
12100 }
12101 
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12102 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
12103 				  struct kvm_sregs *sregs)
12104 {
12105 	int ret;
12106 
12107 	if (vcpu->kvm->arch.has_protected_state &&
12108 	    vcpu->arch.guest_state_protected)
12109 		return -EINVAL;
12110 
12111 	vcpu_load(vcpu);
12112 	ret = __set_sregs(vcpu, sregs);
12113 	vcpu_put(vcpu);
12114 	return ret;
12115 }
12116 
kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm * kvm)12117 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
12118 {
12119 	bool set = false;
12120 	struct kvm_vcpu *vcpu;
12121 	unsigned long i;
12122 
12123 	if (!enable_apicv)
12124 		return;
12125 
12126 	down_write(&kvm->arch.apicv_update_lock);
12127 
12128 	kvm_for_each_vcpu(i, vcpu, kvm) {
12129 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
12130 			set = true;
12131 			break;
12132 		}
12133 	}
12134 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
12135 	up_write(&kvm->arch.apicv_update_lock);
12136 }
12137 
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)12138 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
12139 					struct kvm_guest_debug *dbg)
12140 {
12141 	unsigned long rflags;
12142 	int i, r;
12143 
12144 	if (vcpu->arch.guest_state_protected)
12145 		return -EINVAL;
12146 
12147 	vcpu_load(vcpu);
12148 
12149 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
12150 		r = -EBUSY;
12151 		if (kvm_is_exception_pending(vcpu))
12152 			goto out;
12153 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
12154 			kvm_queue_exception(vcpu, DB_VECTOR);
12155 		else
12156 			kvm_queue_exception(vcpu, BP_VECTOR);
12157 	}
12158 
12159 	/*
12160 	 * Read rflags as long as potentially injected trace flags are still
12161 	 * filtered out.
12162 	 */
12163 	rflags = kvm_get_rflags(vcpu);
12164 
12165 	vcpu->guest_debug = dbg->control;
12166 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
12167 		vcpu->guest_debug = 0;
12168 
12169 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
12170 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
12171 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
12172 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
12173 	} else {
12174 		for (i = 0; i < KVM_NR_DB_REGS; i++)
12175 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
12176 	}
12177 	kvm_update_dr7(vcpu);
12178 
12179 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12180 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
12181 
12182 	/*
12183 	 * Trigger an rflags update that will inject or remove the trace
12184 	 * flags.
12185 	 */
12186 	kvm_set_rflags(vcpu, rflags);
12187 
12188 	kvm_x86_call(update_exception_bitmap)(vcpu);
12189 
12190 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
12191 
12192 	r = 0;
12193 
12194 out:
12195 	vcpu_put(vcpu);
12196 	return r;
12197 }
12198 
12199 /*
12200  * Translate a guest virtual address to a guest physical address.
12201  */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)12202 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
12203 				    struct kvm_translation *tr)
12204 {
12205 	unsigned long vaddr = tr->linear_address;
12206 	gpa_t gpa;
12207 	int idx;
12208 
12209 	vcpu_load(vcpu);
12210 
12211 	idx = srcu_read_lock(&vcpu->kvm->srcu);
12212 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
12213 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
12214 	tr->physical_address = gpa;
12215 	tr->valid = gpa != INVALID_GPA;
12216 	tr->writeable = 1;
12217 	tr->usermode = 0;
12218 
12219 	vcpu_put(vcpu);
12220 	return 0;
12221 }
12222 
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12223 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12224 {
12225 	struct fxregs_state *fxsave;
12226 
12227 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12228 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12229 
12230 	vcpu_load(vcpu);
12231 
12232 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12233 	memcpy(fpu->fpr, fxsave->st_space, 128);
12234 	fpu->fcw = fxsave->cwd;
12235 	fpu->fsw = fxsave->swd;
12236 	fpu->ftwx = fxsave->twd;
12237 	fpu->last_opcode = fxsave->fop;
12238 	fpu->last_ip = fxsave->rip;
12239 	fpu->last_dp = fxsave->rdp;
12240 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
12241 
12242 	vcpu_put(vcpu);
12243 	return 0;
12244 }
12245 
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12246 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12247 {
12248 	struct fxregs_state *fxsave;
12249 
12250 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12251 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12252 
12253 	vcpu_load(vcpu);
12254 
12255 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12256 
12257 	memcpy(fxsave->st_space, fpu->fpr, 128);
12258 	fxsave->cwd = fpu->fcw;
12259 	fxsave->swd = fpu->fsw;
12260 	fxsave->twd = fpu->ftwx;
12261 	fxsave->fop = fpu->last_opcode;
12262 	fxsave->rip = fpu->last_ip;
12263 	fxsave->rdp = fpu->last_dp;
12264 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
12265 
12266 	vcpu_put(vcpu);
12267 	return 0;
12268 }
12269 
store_regs(struct kvm_vcpu * vcpu)12270 static void store_regs(struct kvm_vcpu *vcpu)
12271 {
12272 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
12273 
12274 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
12275 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
12276 
12277 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
12278 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
12279 
12280 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
12281 		kvm_vcpu_ioctl_x86_get_vcpu_events(
12282 				vcpu, &vcpu->run->s.regs.events);
12283 }
12284 
sync_regs(struct kvm_vcpu * vcpu)12285 static int sync_regs(struct kvm_vcpu *vcpu)
12286 {
12287 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
12288 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
12289 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
12290 	}
12291 
12292 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
12293 		struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
12294 
12295 		if (__set_sregs(vcpu, &sregs))
12296 			return -EINVAL;
12297 
12298 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
12299 	}
12300 
12301 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
12302 		struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12303 
12304 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12305 			return -EINVAL;
12306 
12307 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12308 	}
12309 
12310 	return 0;
12311 }
12312 
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)12313 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12314 {
12315 	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12316 		pr_warn_once("SMP vm created on host with unstable TSC; "
12317 			     "guest TSC will not be reliable\n");
12318 
12319 	if (!kvm->arch.max_vcpu_ids)
12320 		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12321 
12322 	if (id >= kvm->arch.max_vcpu_ids)
12323 		return -EINVAL;
12324 
12325 	return kvm_x86_call(vcpu_precreate)(kvm);
12326 }
12327 
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)12328 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12329 {
12330 	struct page *page;
12331 	int r;
12332 
12333 	vcpu->arch.last_vmentry_cpu = -1;
12334 	vcpu->arch.regs_avail = ~0;
12335 	vcpu->arch.regs_dirty = ~0;
12336 
12337 	kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm);
12338 
12339 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12340 		kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
12341 	else
12342 		kvm_set_mp_state(vcpu, KVM_MP_STATE_UNINITIALIZED);
12343 
12344 	r = kvm_mmu_create(vcpu);
12345 	if (r < 0)
12346 		return r;
12347 
12348 	r = kvm_create_lapic(vcpu);
12349 	if (r < 0)
12350 		goto fail_mmu_destroy;
12351 
12352 	r = -ENOMEM;
12353 
12354 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12355 	if (!page)
12356 		goto fail_free_lapic;
12357 	vcpu->arch.pio_data = page_address(page);
12358 
12359 	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12360 				       GFP_KERNEL_ACCOUNT);
12361 	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12362 					    GFP_KERNEL_ACCOUNT);
12363 	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12364 		goto fail_free_mce_banks;
12365 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12366 
12367 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12368 				GFP_KERNEL_ACCOUNT))
12369 		goto fail_free_mce_banks;
12370 
12371 	if (!alloc_emulate_ctxt(vcpu))
12372 		goto free_wbinvd_dirty_mask;
12373 
12374 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12375 		pr_err("failed to allocate vcpu's fpu\n");
12376 		goto free_emulate_ctxt;
12377 	}
12378 
12379 	kvm_async_pf_hash_reset(vcpu);
12380 
12381 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) {
12382 		vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12383 		vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12384 		vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12385 	}
12386 	kvm_pmu_init(vcpu);
12387 
12388 	vcpu->arch.pending_external_vector = -1;
12389 	vcpu->arch.preempted_in_kernel = false;
12390 
12391 #if IS_ENABLED(CONFIG_HYPERV)
12392 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
12393 #endif
12394 
12395 	r = kvm_x86_call(vcpu_create)(vcpu);
12396 	if (r)
12397 		goto free_guest_fpu;
12398 
12399 	kvm_xen_init_vcpu(vcpu);
12400 	vcpu_load(vcpu);
12401 	kvm_vcpu_after_set_cpuid(vcpu);
12402 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12403 	kvm_vcpu_reset(vcpu, false);
12404 	kvm_init_mmu(vcpu);
12405 	vcpu_put(vcpu);
12406 	return 0;
12407 
12408 free_guest_fpu:
12409 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12410 free_emulate_ctxt:
12411 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12412 free_wbinvd_dirty_mask:
12413 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12414 fail_free_mce_banks:
12415 	kfree(vcpu->arch.mce_banks);
12416 	kfree(vcpu->arch.mci_ctl2_banks);
12417 	free_page((unsigned long)vcpu->arch.pio_data);
12418 fail_free_lapic:
12419 	kvm_free_lapic(vcpu);
12420 fail_mmu_destroy:
12421 	kvm_mmu_destroy(vcpu);
12422 	return r;
12423 }
12424 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)12425 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12426 {
12427 	struct kvm *kvm = vcpu->kvm;
12428 
12429 	if (mutex_lock_killable(&vcpu->mutex))
12430 		return;
12431 	vcpu_load(vcpu);
12432 	kvm_synchronize_tsc(vcpu, NULL);
12433 	vcpu_put(vcpu);
12434 
12435 	/* poll control enabled by default */
12436 	vcpu->arch.msr_kvm_poll_control = 1;
12437 
12438 	mutex_unlock(&vcpu->mutex);
12439 
12440 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12441 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12442 						KVMCLOCK_SYNC_PERIOD);
12443 }
12444 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)12445 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12446 {
12447 	int idx, cpu;
12448 
12449 	kvm_clear_async_pf_completion_queue(vcpu);
12450 	kvm_mmu_unload(vcpu);
12451 
12452 	kvmclock_reset(vcpu);
12453 
12454 	for_each_possible_cpu(cpu)
12455 		cmpxchg(per_cpu_ptr(&last_vcpu, cpu), vcpu, NULL);
12456 
12457 	kvm_x86_call(vcpu_free)(vcpu);
12458 
12459 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12460 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12461 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12462 
12463 	kvm_xen_destroy_vcpu(vcpu);
12464 	kvm_hv_vcpu_uninit(vcpu);
12465 	kvm_pmu_destroy(vcpu);
12466 	kfree(vcpu->arch.mce_banks);
12467 	kfree(vcpu->arch.mci_ctl2_banks);
12468 	kvm_free_lapic(vcpu);
12469 	idx = srcu_read_lock(&vcpu->kvm->srcu);
12470 	kvm_mmu_destroy(vcpu);
12471 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
12472 	free_page((unsigned long)vcpu->arch.pio_data);
12473 	kvfree(vcpu->arch.cpuid_entries);
12474 }
12475 
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)12476 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12477 {
12478 	struct kvm_cpuid_entry2 *cpuid_0x1;
12479 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
12480 	unsigned long new_cr0;
12481 
12482 	/*
12483 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12484 	 * to handle side effects.  RESET emulation hits those flows and relies
12485 	 * on emulated/virtualized registers, including those that are loaded
12486 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
12487 	 * to detect improper or missing initialization.
12488 	 */
12489 	WARN_ON_ONCE(!init_event &&
12490 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12491 
12492 	/*
12493 	 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12494 	 * possible to INIT the vCPU while L2 is active.  Force the vCPU back
12495 	 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12496 	 * bits), i.e. virtualization is disabled.
12497 	 */
12498 	if (is_guest_mode(vcpu))
12499 		kvm_leave_nested(vcpu);
12500 
12501 	kvm_lapic_reset(vcpu, init_event);
12502 
12503 	WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12504 	vcpu->arch.hflags = 0;
12505 
12506 	vcpu->arch.smi_pending = 0;
12507 	vcpu->arch.smi_count = 0;
12508 	atomic_set(&vcpu->arch.nmi_queued, 0);
12509 	vcpu->arch.nmi_pending = 0;
12510 	vcpu->arch.nmi_injected = false;
12511 	kvm_clear_interrupt_queue(vcpu);
12512 	kvm_clear_exception_queue(vcpu);
12513 
12514 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12515 	kvm_update_dr0123(vcpu);
12516 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12517 	vcpu->arch.dr7 = DR7_FIXED_1;
12518 	kvm_update_dr7(vcpu);
12519 
12520 	vcpu->arch.cr2 = 0;
12521 
12522 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12523 	vcpu->arch.apf.msr_en_val = 0;
12524 	vcpu->arch.apf.msr_int_val = 0;
12525 	vcpu->arch.st.msr_val = 0;
12526 
12527 	kvmclock_reset(vcpu);
12528 
12529 	kvm_clear_async_pf_completion_queue(vcpu);
12530 	kvm_async_pf_hash_reset(vcpu);
12531 	vcpu->arch.apf.halted = false;
12532 
12533 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12534 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12535 
12536 		/*
12537 		 * All paths that lead to INIT are required to load the guest's
12538 		 * FPU state (because most paths are buried in KVM_RUN).
12539 		 */
12540 		if (init_event)
12541 			kvm_put_guest_fpu(vcpu);
12542 
12543 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12544 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12545 
12546 		if (init_event)
12547 			kvm_load_guest_fpu(vcpu);
12548 	}
12549 
12550 	if (!init_event) {
12551 		vcpu->arch.smbase = 0x30000;
12552 
12553 		vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12554 
12555 		vcpu->arch.msr_misc_features_enables = 0;
12556 		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12557 						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12558 
12559 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12560 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12561 	}
12562 
12563 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12564 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12565 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12566 
12567 	/*
12568 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12569 	 * if no CPUID match is found.  Note, it's impossible to get a match at
12570 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12571 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12572 	 * on RESET.  But, go through the motions in case that's ever remedied.
12573 	 */
12574 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12575 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12576 
12577 	kvm_x86_call(vcpu_reset)(vcpu, init_event);
12578 
12579 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12580 	kvm_rip_write(vcpu, 0xfff0);
12581 
12582 	vcpu->arch.cr3 = 0;
12583 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12584 
12585 	/*
12586 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
12587 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12588 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
12589 	 */
12590 	new_cr0 = X86_CR0_ET;
12591 	if (init_event)
12592 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12593 	else
12594 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12595 
12596 	kvm_x86_call(set_cr0)(vcpu, new_cr0);
12597 	kvm_x86_call(set_cr4)(vcpu, 0);
12598 	kvm_x86_call(set_efer)(vcpu, 0);
12599 	kvm_x86_call(update_exception_bitmap)(vcpu);
12600 
12601 	/*
12602 	 * On the standard CR0/CR4/EFER modification paths, there are several
12603 	 * complex conditions determining whether the MMU has to be reset and/or
12604 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12605 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12606 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12607 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
12608 	 */
12609 	if (old_cr0 & X86_CR0_PG) {
12610 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12611 		kvm_mmu_reset_context(vcpu);
12612 	}
12613 
12614 	/*
12615 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12616 	 * APM states the TLBs are untouched by INIT, but it also states that
12617 	 * the TLBs are flushed on "External initialization of the processor."
12618 	 * Flush the guest TLB regardless of vendor, there is no meaningful
12619 	 * benefit in relying on the guest to flush the TLB immediately after
12620 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
12621 	 * performance perspective.
12622 	 */
12623 	if (init_event)
12624 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12625 }
12626 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12627 
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)12628 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12629 {
12630 	struct kvm_segment cs;
12631 
12632 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12633 	cs.selector = vector << 8;
12634 	cs.base = vector << 12;
12635 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12636 	kvm_rip_write(vcpu, 0);
12637 }
12638 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12639 
kvm_arch_enable_virtualization(void)12640 void kvm_arch_enable_virtualization(void)
12641 {
12642 	cpu_emergency_register_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12643 }
12644 
kvm_arch_disable_virtualization(void)12645 void kvm_arch_disable_virtualization(void)
12646 {
12647 	cpu_emergency_unregister_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12648 }
12649 
kvm_arch_enable_virtualization_cpu(void)12650 int kvm_arch_enable_virtualization_cpu(void)
12651 {
12652 	struct kvm *kvm;
12653 	struct kvm_vcpu *vcpu;
12654 	unsigned long i;
12655 	int ret;
12656 	u64 local_tsc;
12657 	u64 max_tsc = 0;
12658 	bool stable, backwards_tsc = false;
12659 
12660 	kvm_user_return_msr_cpu_online();
12661 
12662 	ret = kvm_x86_check_processor_compatibility();
12663 	if (ret)
12664 		return ret;
12665 
12666 	ret = kvm_x86_call(enable_virtualization_cpu)();
12667 	if (ret != 0)
12668 		return ret;
12669 
12670 	local_tsc = rdtsc();
12671 	stable = !kvm_check_tsc_unstable();
12672 	list_for_each_entry(kvm, &vm_list, vm_list) {
12673 		kvm_for_each_vcpu(i, vcpu, kvm) {
12674 			if (!stable && vcpu->cpu == smp_processor_id())
12675 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12676 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12677 				backwards_tsc = true;
12678 				if (vcpu->arch.last_host_tsc > max_tsc)
12679 					max_tsc = vcpu->arch.last_host_tsc;
12680 			}
12681 		}
12682 	}
12683 
12684 	/*
12685 	 * Sometimes, even reliable TSCs go backwards.  This happens on
12686 	 * platforms that reset TSC during suspend or hibernate actions, but
12687 	 * maintain synchronization.  We must compensate.  Fortunately, we can
12688 	 * detect that condition here, which happens early in CPU bringup,
12689 	 * before any KVM threads can be running.  Unfortunately, we can't
12690 	 * bring the TSCs fully up to date with real time, as we aren't yet far
12691 	 * enough into CPU bringup that we know how much real time has actually
12692 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12693 	 * variables that haven't been updated yet.
12694 	 *
12695 	 * So we simply find the maximum observed TSC above, then record the
12696 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12697 	 * the adjustment will be applied.  Note that we accumulate
12698 	 * adjustments, in case multiple suspend cycles happen before some VCPU
12699 	 * gets a chance to run again.  In the event that no KVM threads get a
12700 	 * chance to run, we will miss the entire elapsed period, as we'll have
12701 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12702 	 * loose cycle time.  This isn't too big a deal, since the loss will be
12703 	 * uniform across all VCPUs (not to mention the scenario is extremely
12704 	 * unlikely). It is possible that a second hibernate recovery happens
12705 	 * much faster than a first, causing the observed TSC here to be
12706 	 * smaller; this would require additional padding adjustment, which is
12707 	 * why we set last_host_tsc to the local tsc observed here.
12708 	 *
12709 	 * N.B. - this code below runs only on platforms with reliable TSC,
12710 	 * as that is the only way backwards_tsc is set above.  Also note
12711 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12712 	 * have the same delta_cyc adjustment applied if backwards_tsc
12713 	 * is detected.  Note further, this adjustment is only done once,
12714 	 * as we reset last_host_tsc on all VCPUs to stop this from being
12715 	 * called multiple times (one for each physical CPU bringup).
12716 	 *
12717 	 * Platforms with unreliable TSCs don't have to deal with this, they
12718 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
12719 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
12720 	 * guarantee that they stay in perfect synchronization.
12721 	 */
12722 	if (backwards_tsc) {
12723 		u64 delta_cyc = max_tsc - local_tsc;
12724 		list_for_each_entry(kvm, &vm_list, vm_list) {
12725 			kvm->arch.backwards_tsc_observed = true;
12726 			kvm_for_each_vcpu(i, vcpu, kvm) {
12727 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
12728 				vcpu->arch.last_host_tsc = local_tsc;
12729 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12730 			}
12731 
12732 			/*
12733 			 * We have to disable TSC offset matching.. if you were
12734 			 * booting a VM while issuing an S4 host suspend....
12735 			 * you may have some problem.  Solving this issue is
12736 			 * left as an exercise to the reader.
12737 			 */
12738 			kvm->arch.last_tsc_nsec = 0;
12739 			kvm->arch.last_tsc_write = 0;
12740 		}
12741 
12742 	}
12743 	return 0;
12744 }
12745 
kvm_arch_disable_virtualization_cpu(void)12746 void kvm_arch_disable_virtualization_cpu(void)
12747 {
12748 	kvm_x86_call(disable_virtualization_cpu)();
12749 	drop_user_return_notifiers();
12750 }
12751 
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)12752 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12753 {
12754 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12755 }
12756 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
12757 
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)12758 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12759 {
12760 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12761 }
12762 
kvm_arch_free_vm(struct kvm * kvm)12763 void kvm_arch_free_vm(struct kvm *kvm)
12764 {
12765 #if IS_ENABLED(CONFIG_HYPERV)
12766 	kfree(kvm->arch.hv_pa_pg);
12767 #endif
12768 	__kvm_arch_free_vm(kvm);
12769 }
12770 
12771 
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)12772 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12773 {
12774 	int ret;
12775 	unsigned long flags;
12776 
12777 	if (!kvm_is_vm_type_supported(type))
12778 		return -EINVAL;
12779 
12780 	kvm->arch.vm_type = type;
12781 	kvm->arch.has_private_mem =
12782 		(type == KVM_X86_SW_PROTECTED_VM);
12783 	/* Decided by the vendor code for other VM types.  */
12784 	kvm->arch.pre_fault_allowed =
12785 		type == KVM_X86_DEFAULT_VM || type == KVM_X86_SW_PROTECTED_VM;
12786 	kvm->arch.disabled_quirks = kvm_caps.inapplicable_quirks & kvm_caps.supported_quirks;
12787 
12788 	ret = kvm_page_track_init(kvm);
12789 	if (ret)
12790 		goto out;
12791 
12792 	kvm_mmu_init_vm(kvm);
12793 
12794 	ret = kvm_x86_call(vm_init)(kvm);
12795 	if (ret)
12796 		goto out_uninit_mmu;
12797 
12798 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12799 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12800 
12801 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12802 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12803 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12804 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12805 		&kvm->arch.irq_sources_bitmap);
12806 
12807 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12808 	mutex_init(&kvm->arch.apic_map_lock);
12809 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12810 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12811 
12812 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12813 	pvclock_update_vm_gtod_copy(kvm);
12814 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12815 
12816 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12817 	kvm->arch.apic_bus_cycle_ns = APIC_BUS_CYCLE_NS_DEFAULT;
12818 	kvm->arch.guest_can_read_msr_platform_info = true;
12819 	kvm->arch.enable_pmu = enable_pmu;
12820 
12821 #if IS_ENABLED(CONFIG_HYPERV)
12822 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12823 	kvm->arch.hv_root_tdp = INVALID_PAGE;
12824 #endif
12825 
12826 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12827 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12828 
12829 	kvm_apicv_init(kvm);
12830 	kvm_hv_init_vm(kvm);
12831 	kvm_xen_init_vm(kvm);
12832 
12833 	if (ignore_msrs && !report_ignored_msrs) {
12834 		pr_warn_once("Running KVM with ignore_msrs=1 and report_ignored_msrs=0 is not a\n"
12835 			     "a supported configuration.  Lying to the guest about the existence of MSRs\n"
12836 			     "may cause the guest operating system to hang or produce errors.  If a guest\n"
12837 			     "does not run without ignore_msrs=1, please report it to kvm@vger.kernel.org.\n");
12838 	}
12839 
12840 	once_init(&kvm->arch.nx_once);
12841 	return 0;
12842 
12843 out_uninit_mmu:
12844 	kvm_mmu_uninit_vm(kvm);
12845 	kvm_page_track_cleanup(kvm);
12846 out:
12847 	return ret;
12848 }
12849 
12850 /**
12851  * __x86_set_memory_region: Setup KVM internal memory slot
12852  *
12853  * @kvm: the kvm pointer to the VM.
12854  * @id: the slot ID to setup.
12855  * @gpa: the GPA to install the slot (unused when @size == 0).
12856  * @size: the size of the slot. Set to zero to uninstall a slot.
12857  *
12858  * This function helps to setup a KVM internal memory slot.  Specify
12859  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12860  * slot.  The return code can be one of the following:
12861  *
12862  *   HVA:           on success (uninstall will return a bogus HVA)
12863  *   -errno:        on error
12864  *
12865  * The caller should always use IS_ERR() to check the return value
12866  * before use.  Note, the KVM internal memory slots are guaranteed to
12867  * remain valid and unchanged until the VM is destroyed, i.e., the
12868  * GPA->HVA translation will not change.  However, the HVA is a user
12869  * address, i.e. its accessibility is not guaranteed, and must be
12870  * accessed via __copy_{to,from}_user().
12871  */
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)12872 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12873 				      u32 size)
12874 {
12875 	int i, r;
12876 	unsigned long hva, old_npages;
12877 	struct kvm_memslots *slots = kvm_memslots(kvm);
12878 	struct kvm_memory_slot *slot;
12879 
12880 	lockdep_assert_held(&kvm->slots_lock);
12881 
12882 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12883 		return ERR_PTR_USR(-EINVAL);
12884 
12885 	slot = id_to_memslot(slots, id);
12886 	if (size) {
12887 		if (slot && slot->npages)
12888 			return ERR_PTR_USR(-EEXIST);
12889 
12890 		/*
12891 		 * MAP_SHARED to prevent internal slot pages from being moved
12892 		 * by fork()/COW.
12893 		 */
12894 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12895 			      MAP_SHARED | MAP_ANONYMOUS, 0);
12896 		if (IS_ERR_VALUE(hva))
12897 			return (void __user *)hva;
12898 	} else {
12899 		if (!slot || !slot->npages)
12900 			return NULL;
12901 
12902 		old_npages = slot->npages;
12903 		hva = slot->userspace_addr;
12904 	}
12905 
12906 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
12907 		struct kvm_userspace_memory_region2 m;
12908 
12909 		m.slot = id | (i << 16);
12910 		m.flags = 0;
12911 		m.guest_phys_addr = gpa;
12912 		m.userspace_addr = hva;
12913 		m.memory_size = size;
12914 		r = kvm_set_internal_memslot(kvm, &m);
12915 		if (r < 0)
12916 			return ERR_PTR_USR(r);
12917 	}
12918 
12919 	if (!size)
12920 		vm_munmap(hva, old_npages * PAGE_SIZE);
12921 
12922 	return (void __user *)hva;
12923 }
12924 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12925 
kvm_arch_pre_destroy_vm(struct kvm * kvm)12926 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12927 {
12928 	/*
12929 	 * Stop all background workers and kthreads before destroying vCPUs, as
12930 	 * iterating over vCPUs in a different task while vCPUs are being freed
12931 	 * is unsafe, i.e. will lead to use-after-free.  The PIT also needs to
12932 	 * be stopped before IRQ routing is freed.
12933 	 */
12934 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12935 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12936 
12937 	kvm_free_pit(kvm);
12938 
12939 	kvm_mmu_pre_destroy_vm(kvm);
12940 	static_call_cond(kvm_x86_vm_pre_destroy)(kvm);
12941 }
12942 
kvm_arch_destroy_vm(struct kvm * kvm)12943 void kvm_arch_destroy_vm(struct kvm *kvm)
12944 {
12945 	if (current->mm == kvm->mm) {
12946 		/*
12947 		 * Free memory regions allocated on behalf of userspace,
12948 		 * unless the memory map has changed due to process exit
12949 		 * or fd copying.
12950 		 */
12951 		mutex_lock(&kvm->slots_lock);
12952 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12953 					0, 0);
12954 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12955 					0, 0);
12956 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12957 		mutex_unlock(&kvm->slots_lock);
12958 	}
12959 	kvm_destroy_vcpus(kvm);
12960 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12961 	kvm_pic_destroy(kvm);
12962 	kvm_ioapic_destroy(kvm);
12963 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12964 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12965 	kvm_mmu_uninit_vm(kvm);
12966 	kvm_page_track_cleanup(kvm);
12967 	kvm_xen_destroy_vm(kvm);
12968 	kvm_hv_destroy_vm(kvm);
12969 	kvm_x86_call(vm_destroy)(kvm);
12970 }
12971 
memslot_rmap_free(struct kvm_memory_slot * slot)12972 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12973 {
12974 	int i;
12975 
12976 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12977 		vfree(slot->arch.rmap[i]);
12978 		slot->arch.rmap[i] = NULL;
12979 	}
12980 }
12981 
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)12982 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12983 {
12984 	int i;
12985 
12986 	memslot_rmap_free(slot);
12987 
12988 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12989 		vfree(slot->arch.lpage_info[i - 1]);
12990 		slot->arch.lpage_info[i - 1] = NULL;
12991 	}
12992 
12993 	kvm_page_track_free_memslot(slot);
12994 }
12995 
memslot_rmap_alloc(struct kvm_memory_slot * slot,unsigned long npages)12996 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12997 {
12998 	const int sz = sizeof(*slot->arch.rmap[0]);
12999 	int i;
13000 
13001 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
13002 		int level = i + 1;
13003 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
13004 
13005 		if (slot->arch.rmap[i])
13006 			continue;
13007 
13008 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
13009 		if (!slot->arch.rmap[i]) {
13010 			memslot_rmap_free(slot);
13011 			return -ENOMEM;
13012 		}
13013 	}
13014 
13015 	return 0;
13016 }
13017 
kvm_alloc_memslot_metadata(struct kvm * kvm,struct kvm_memory_slot * slot)13018 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
13019 				      struct kvm_memory_slot *slot)
13020 {
13021 	unsigned long npages = slot->npages;
13022 	int i, r;
13023 
13024 	/*
13025 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
13026 	 * old arrays will be freed by kvm_set_memory_region() if installing
13027 	 * the new memslot is successful.
13028 	 */
13029 	memset(&slot->arch, 0, sizeof(slot->arch));
13030 
13031 	if (kvm_memslots_have_rmaps(kvm)) {
13032 		r = memslot_rmap_alloc(slot, npages);
13033 		if (r)
13034 			return r;
13035 	}
13036 
13037 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13038 		struct kvm_lpage_info *linfo;
13039 		unsigned long ugfn;
13040 		int lpages;
13041 		int level = i + 1;
13042 
13043 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
13044 
13045 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
13046 		if (!linfo)
13047 			goto out_free;
13048 
13049 		slot->arch.lpage_info[i - 1] = linfo;
13050 
13051 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
13052 			linfo[0].disallow_lpage = 1;
13053 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
13054 			linfo[lpages - 1].disallow_lpage = 1;
13055 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
13056 		/*
13057 		 * If the gfn and userspace address are not aligned wrt each
13058 		 * other, disable large page support for this slot.
13059 		 */
13060 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
13061 			unsigned long j;
13062 
13063 			for (j = 0; j < lpages; ++j)
13064 				linfo[j].disallow_lpage = 1;
13065 		}
13066 	}
13067 
13068 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
13069 	kvm_mmu_init_memslot_memory_attributes(kvm, slot);
13070 #endif
13071 
13072 	if (kvm_page_track_create_memslot(kvm, slot, npages))
13073 		goto out_free;
13074 
13075 	return 0;
13076 
13077 out_free:
13078 	memslot_rmap_free(slot);
13079 
13080 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13081 		vfree(slot->arch.lpage_info[i - 1]);
13082 		slot->arch.lpage_info[i - 1] = NULL;
13083 	}
13084 	return -ENOMEM;
13085 }
13086 
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)13087 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
13088 {
13089 	struct kvm_vcpu *vcpu;
13090 	unsigned long i;
13091 
13092 	/*
13093 	 * memslots->generation has been incremented.
13094 	 * mmio generation may have reached its maximum value.
13095 	 */
13096 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
13097 
13098 	/* Force re-initialization of steal_time cache */
13099 	kvm_for_each_vcpu(i, vcpu, kvm)
13100 		kvm_vcpu_kick(vcpu);
13101 }
13102 
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)13103 int kvm_arch_prepare_memory_region(struct kvm *kvm,
13104 				   const struct kvm_memory_slot *old,
13105 				   struct kvm_memory_slot *new,
13106 				   enum kvm_mr_change change)
13107 {
13108 	/*
13109 	 * KVM doesn't support moving memslots when there are external page
13110 	 * trackers attached to the VM, i.e. if KVMGT is in use.
13111 	 */
13112 	if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
13113 		return -EINVAL;
13114 
13115 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
13116 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
13117 			return -EINVAL;
13118 
13119 		if (kvm_is_gfn_alias(kvm, new->base_gfn + new->npages - 1))
13120 			return -EINVAL;
13121 
13122 		return kvm_alloc_memslot_metadata(kvm, new);
13123 	}
13124 
13125 	if (change == KVM_MR_FLAGS_ONLY)
13126 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
13127 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
13128 		return -EIO;
13129 
13130 	return 0;
13131 }
13132 
13133 
kvm_mmu_update_cpu_dirty_logging(struct kvm * kvm,bool enable)13134 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
13135 {
13136 	int nr_slots;
13137 
13138 	if (!kvm->arch.cpu_dirty_log_size)
13139 		return;
13140 
13141 	nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
13142 	if ((enable && nr_slots == 1) || !nr_slots)
13143 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
13144 }
13145 
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13146 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
13147 				     struct kvm_memory_slot *old,
13148 				     const struct kvm_memory_slot *new,
13149 				     enum kvm_mr_change change)
13150 {
13151 	u32 old_flags = old ? old->flags : 0;
13152 	u32 new_flags = new ? new->flags : 0;
13153 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
13154 
13155 	/*
13156 	 * Update CPU dirty logging if dirty logging is being toggled.  This
13157 	 * applies to all operations.
13158 	 */
13159 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
13160 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
13161 
13162 	/*
13163 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
13164 	 * made writable) or CREATE/MOVE/DELETE of a slot.
13165 	 *
13166 	 * For a memslot with dirty logging disabled:
13167 	 * CREATE:      No dirty mappings will already exist.
13168 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
13169 	 *		kvm_arch_flush_shadow_memslot()
13170 	 *
13171 	 * For a memslot with dirty logging enabled:
13172 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
13173 	 *		and no dirty bits to clear.
13174 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
13175 	 *		kvm_arch_flush_shadow_memslot().
13176 	 */
13177 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
13178 		return;
13179 
13180 	/*
13181 	 * READONLY and non-flags changes were filtered out above, and the only
13182 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
13183 	 * logging isn't being toggled on or off.
13184 	 */
13185 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
13186 		return;
13187 
13188 	if (!log_dirty_pages) {
13189 		/*
13190 		 * Recover huge page mappings in the slot now that dirty logging
13191 		 * is disabled, i.e. now that KVM does not have to track guest
13192 		 * writes at 4KiB granularity.
13193 		 *
13194 		 * Dirty logging might be disabled by userspace if an ongoing VM
13195 		 * live migration is cancelled and the VM must continue running
13196 		 * on the source.
13197 		 */
13198 		kvm_mmu_recover_huge_pages(kvm, new);
13199 	} else {
13200 		/*
13201 		 * Initially-all-set does not require write protecting any page,
13202 		 * because they're all assumed to be dirty.
13203 		 */
13204 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
13205 			return;
13206 
13207 		if (READ_ONCE(eager_page_split))
13208 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
13209 
13210 		if (kvm->arch.cpu_dirty_log_size) {
13211 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
13212 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
13213 		} else {
13214 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
13215 		}
13216 
13217 		/*
13218 		 * Unconditionally flush the TLBs after enabling dirty logging.
13219 		 * A flush is almost always going to be necessary (see below),
13220 		 * and unconditionally flushing allows the helpers to omit
13221 		 * the subtly complex checks when removing write access.
13222 		 *
13223 		 * Do the flush outside of mmu_lock to reduce the amount of
13224 		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
13225 		 * safe as KVM only needs to guarantee the slot is fully
13226 		 * write-protected before returning to userspace, i.e. before
13227 		 * userspace can consume the dirty status.
13228 		 *
13229 		 * Flushing outside of mmu_lock requires KVM to be careful when
13230 		 * making decisions based on writable status of an SPTE, e.g. a
13231 		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
13232 		 *
13233 		 * Specifically, KVM also write-protects guest page tables to
13234 		 * monitor changes when using shadow paging, and must guarantee
13235 		 * no CPUs can write to those page before mmu_lock is dropped.
13236 		 * Because CPUs may have stale TLB entries at this point, a
13237 		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
13238 		 *
13239 		 * KVM also allows making SPTES writable outside of mmu_lock,
13240 		 * e.g. to allow dirty logging without taking mmu_lock.
13241 		 *
13242 		 * To handle these scenarios, KVM uses a separate software-only
13243 		 * bit (MMU-writable) to track if a SPTE is !writable due to
13244 		 * a guest page table being write-protected (KVM clears the
13245 		 * MMU-writable flag when write-protecting for shadow paging).
13246 		 *
13247 		 * The use of MMU-writable is also the primary motivation for
13248 		 * the unconditional flush.  Because KVM must guarantee that a
13249 		 * CPU doesn't contain stale, writable TLB entries for a
13250 		 * !MMU-writable SPTE, KVM must flush if it encounters any
13251 		 * MMU-writable SPTE regardless of whether the actual hardware
13252 		 * writable bit was set.  I.e. KVM is almost guaranteed to need
13253 		 * to flush, while unconditionally flushing allows the "remove
13254 		 * write access" helpers to ignore MMU-writable entirely.
13255 		 *
13256 		 * See is_writable_pte() for more details (the case involving
13257 		 * access-tracked SPTEs is particularly relevant).
13258 		 */
13259 		kvm_flush_remote_tlbs_memslot(kvm, new);
13260 	}
13261 }
13262 
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13263 void kvm_arch_commit_memory_region(struct kvm *kvm,
13264 				struct kvm_memory_slot *old,
13265 				const struct kvm_memory_slot *new,
13266 				enum kvm_mr_change change)
13267 {
13268 	if (change == KVM_MR_DELETE)
13269 		kvm_page_track_delete_slot(kvm, old);
13270 
13271 	if (!kvm->arch.n_requested_mmu_pages &&
13272 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
13273 		unsigned long nr_mmu_pages;
13274 
13275 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
13276 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
13277 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
13278 	}
13279 
13280 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
13281 
13282 	/* Free the arrays associated with the old memslot. */
13283 	if (change == KVM_MR_MOVE)
13284 		kvm_arch_free_memslot(kvm, old);
13285 }
13286 
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)13287 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13288 {
13289 	WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13290 
13291 	if (vcpu->arch.guest_state_protected)
13292 		return true;
13293 
13294 	return kvm_x86_call(get_cpl)(vcpu) == 0;
13295 }
13296 
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)13297 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13298 {
13299 	WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13300 
13301 	if (vcpu->arch.guest_state_protected)
13302 		return 0;
13303 
13304 	return kvm_rip_read(vcpu);
13305 }
13306 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)13307 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13308 {
13309 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13310 }
13311 
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)13312 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13313 {
13314 	return kvm_x86_call(interrupt_allowed)(vcpu, false);
13315 }
13316 
kvm_get_linear_rip(struct kvm_vcpu * vcpu)13317 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13318 {
13319 	/* Can't read the RIP when guest state is protected, just return 0 */
13320 	if (vcpu->arch.guest_state_protected)
13321 		return 0;
13322 
13323 	if (is_64_bit_mode(vcpu))
13324 		return kvm_rip_read(vcpu);
13325 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13326 		     kvm_rip_read(vcpu));
13327 }
13328 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
13329 
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)13330 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13331 {
13332 	return kvm_get_linear_rip(vcpu) == linear_rip;
13333 }
13334 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
13335 
kvm_get_rflags(struct kvm_vcpu * vcpu)13336 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13337 {
13338 	unsigned long rflags;
13339 
13340 	rflags = kvm_x86_call(get_rflags)(vcpu);
13341 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13342 		rflags &= ~X86_EFLAGS_TF;
13343 	return rflags;
13344 }
13345 EXPORT_SYMBOL_GPL(kvm_get_rflags);
13346 
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13347 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13348 {
13349 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13350 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13351 		rflags |= X86_EFLAGS_TF;
13352 	kvm_x86_call(set_rflags)(vcpu, rflags);
13353 }
13354 
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13355 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13356 {
13357 	__kvm_set_rflags(vcpu, rflags);
13358 	kvm_make_request(KVM_REQ_EVENT, vcpu);
13359 }
13360 EXPORT_SYMBOL_GPL(kvm_set_rflags);
13361 
kvm_async_pf_hash_fn(gfn_t gfn)13362 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13363 {
13364 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13365 
13366 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13367 }
13368 
kvm_async_pf_next_probe(u32 key)13369 static inline u32 kvm_async_pf_next_probe(u32 key)
13370 {
13371 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13372 }
13373 
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13374 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13375 {
13376 	u32 key = kvm_async_pf_hash_fn(gfn);
13377 
13378 	while (vcpu->arch.apf.gfns[key] != ~0)
13379 		key = kvm_async_pf_next_probe(key);
13380 
13381 	vcpu->arch.apf.gfns[key] = gfn;
13382 }
13383 
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)13384 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13385 {
13386 	int i;
13387 	u32 key = kvm_async_pf_hash_fn(gfn);
13388 
13389 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
13390 		     (vcpu->arch.apf.gfns[key] != gfn &&
13391 		      vcpu->arch.apf.gfns[key] != ~0); i++)
13392 		key = kvm_async_pf_next_probe(key);
13393 
13394 	return key;
13395 }
13396 
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13397 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13398 {
13399 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13400 }
13401 
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13402 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13403 {
13404 	u32 i, j, k;
13405 
13406 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13407 
13408 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13409 		return;
13410 
13411 	while (true) {
13412 		vcpu->arch.apf.gfns[i] = ~0;
13413 		do {
13414 			j = kvm_async_pf_next_probe(j);
13415 			if (vcpu->arch.apf.gfns[j] == ~0)
13416 				return;
13417 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13418 			/*
13419 			 * k lies cyclically in ]i,j]
13420 			 * |    i.k.j |
13421 			 * |....j i.k.| or  |.k..j i...|
13422 			 */
13423 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13424 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13425 		i = j;
13426 	}
13427 }
13428 
apf_put_user_notpresent(struct kvm_vcpu * vcpu)13429 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13430 {
13431 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13432 
13433 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13434 				      sizeof(reason));
13435 }
13436 
apf_put_user_ready(struct kvm_vcpu * vcpu,u32 token)13437 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13438 {
13439 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13440 
13441 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13442 					     &token, offset, sizeof(token));
13443 }
13444 
apf_pageready_slot_free(struct kvm_vcpu * vcpu)13445 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13446 {
13447 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13448 	u32 val;
13449 
13450 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13451 					 &val, offset, sizeof(val)))
13452 		return false;
13453 
13454 	return !val;
13455 }
13456 
kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)13457 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13458 {
13459 
13460 	if (!kvm_pv_async_pf_enabled(vcpu))
13461 		return false;
13462 
13463 	if (!vcpu->arch.apf.send_always &&
13464 	    (vcpu->arch.guest_state_protected || !kvm_x86_call(get_cpl)(vcpu)))
13465 		return false;
13466 
13467 	if (is_guest_mode(vcpu)) {
13468 		/*
13469 		 * L1 needs to opt into the special #PF vmexits that are
13470 		 * used to deliver async page faults.
13471 		 */
13472 		return vcpu->arch.apf.delivery_as_pf_vmexit;
13473 	} else {
13474 		/*
13475 		 * Play it safe in case the guest temporarily disables paging.
13476 		 * The real mode IDT in particular is unlikely to have a #PF
13477 		 * exception setup.
13478 		 */
13479 		return is_paging(vcpu);
13480 	}
13481 }
13482 
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)13483 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13484 {
13485 	if (unlikely(!lapic_in_kernel(vcpu) ||
13486 		     kvm_event_needs_reinjection(vcpu) ||
13487 		     kvm_is_exception_pending(vcpu)))
13488 		return false;
13489 
13490 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13491 		return false;
13492 
13493 	/*
13494 	 * If interrupts are off we cannot even use an artificial
13495 	 * halt state.
13496 	 */
13497 	return kvm_arch_interrupt_allowed(vcpu);
13498 }
13499 
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13500 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13501 				     struct kvm_async_pf *work)
13502 {
13503 	struct x86_exception fault;
13504 
13505 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13506 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13507 
13508 	if (kvm_can_deliver_async_pf(vcpu) &&
13509 	    !apf_put_user_notpresent(vcpu)) {
13510 		fault.vector = PF_VECTOR;
13511 		fault.error_code_valid = true;
13512 		fault.error_code = 0;
13513 		fault.nested_page_fault = false;
13514 		fault.address = work->arch.token;
13515 		fault.async_page_fault = true;
13516 		kvm_inject_page_fault(vcpu, &fault);
13517 		return true;
13518 	} else {
13519 		/*
13520 		 * It is not possible to deliver a paravirtualized asynchronous
13521 		 * page fault, but putting the guest in an artificial halt state
13522 		 * can be beneficial nevertheless: if an interrupt arrives, we
13523 		 * can deliver it timely and perhaps the guest will schedule
13524 		 * another process.  When the instruction that triggered a page
13525 		 * fault is retried, hopefully the page will be ready in the host.
13526 		 */
13527 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13528 		return false;
13529 	}
13530 }
13531 
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13532 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13533 				 struct kvm_async_pf *work)
13534 {
13535 	struct kvm_lapic_irq irq = {
13536 		.delivery_mode = APIC_DM_FIXED,
13537 		.vector = vcpu->arch.apf.vec
13538 	};
13539 
13540 	if (work->wakeup_all)
13541 		work->arch.token = ~0; /* broadcast wakeup */
13542 	else
13543 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13544 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13545 
13546 	if ((work->wakeup_all || work->notpresent_injected) &&
13547 	    kvm_pv_async_pf_enabled(vcpu) &&
13548 	    !apf_put_user_ready(vcpu, work->arch.token)) {
13549 		vcpu->arch.apf.pageready_pending = true;
13550 		kvm_apic_set_irq(vcpu, &irq, NULL);
13551 	}
13552 
13553 	vcpu->arch.apf.halted = false;
13554 	kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
13555 }
13556 
kvm_arch_async_page_present_queued(struct kvm_vcpu * vcpu)13557 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13558 {
13559 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
13560 	if (!vcpu->arch.apf.pageready_pending)
13561 		kvm_vcpu_kick(vcpu);
13562 }
13563 
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)13564 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13565 {
13566 	if (!kvm_pv_async_pf_enabled(vcpu))
13567 		return true;
13568 	else
13569 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13570 }
13571 
kvm_arch_start_assignment(struct kvm * kvm)13572 void kvm_arch_start_assignment(struct kvm *kvm)
13573 {
13574 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13575 		kvm_x86_call(pi_start_assignment)(kvm);
13576 }
13577 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13578 
kvm_arch_end_assignment(struct kvm * kvm)13579 void kvm_arch_end_assignment(struct kvm *kvm)
13580 {
13581 	atomic_dec(&kvm->arch.assigned_device_count);
13582 }
13583 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13584 
kvm_arch_has_assigned_device(struct kvm * kvm)13585 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13586 {
13587 	return raw_atomic_read(&kvm->arch.assigned_device_count);
13588 }
13589 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13590 
kvm_noncoherent_dma_assignment_start_or_stop(struct kvm * kvm)13591 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13592 {
13593 	/*
13594 	 * Non-coherent DMA assignment and de-assignment may affect whether or
13595 	 * not KVM honors guest PAT, and thus may cause changes in EPT SPTEs
13596 	 * due to toggling the "ignore PAT" bit.  Zap all SPTEs when the first
13597 	 * (or last) non-coherent device is (un)registered to so that new SPTEs
13598 	 * with the correct "ignore guest PAT" setting are created.
13599 	 *
13600 	 * If KVM always honors guest PAT, however, there is nothing to do.
13601 	 */
13602 	if (kvm_check_has_quirk(kvm, KVM_X86_QUIRK_IGNORE_GUEST_PAT))
13603 		kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13604 }
13605 
kvm_arch_register_noncoherent_dma(struct kvm * kvm)13606 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13607 {
13608 	if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13609 		kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13610 }
13611 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13612 
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)13613 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13614 {
13615 	if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13616 		kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13617 }
13618 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13619 
kvm_arch_has_noncoherent_dma(struct kvm * kvm)13620 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13621 {
13622 	return atomic_read(&kvm->arch.noncoherent_dma_count);
13623 }
13624 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13625 
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13626 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13627 				      struct irq_bypass_producer *prod)
13628 {
13629 	struct kvm_kernel_irqfd *irqfd =
13630 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13631 	struct kvm *kvm = irqfd->kvm;
13632 	int ret;
13633 
13634 	kvm_arch_start_assignment(irqfd->kvm);
13635 
13636 	spin_lock_irq(&kvm->irqfds.lock);
13637 	irqfd->producer = prod;
13638 
13639 	ret = kvm_x86_call(pi_update_irte)(irqfd->kvm,
13640 					   prod->irq, irqfd->gsi, 1);
13641 	if (ret)
13642 		kvm_arch_end_assignment(irqfd->kvm);
13643 
13644 	spin_unlock_irq(&kvm->irqfds.lock);
13645 
13646 
13647 	return ret;
13648 }
13649 
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13650 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13651 				      struct irq_bypass_producer *prod)
13652 {
13653 	int ret;
13654 	struct kvm_kernel_irqfd *irqfd =
13655 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13656 	struct kvm *kvm = irqfd->kvm;
13657 
13658 	WARN_ON(irqfd->producer != prod);
13659 
13660 	/*
13661 	 * When producer of consumer is unregistered, we change back to
13662 	 * remapped mode, so we can re-use the current implementation
13663 	 * when the irq is masked/disabled or the consumer side (KVM
13664 	 * int this case doesn't want to receive the interrupts.
13665 	*/
13666 	spin_lock_irq(&kvm->irqfds.lock);
13667 	irqfd->producer = NULL;
13668 
13669 	ret = kvm_x86_call(pi_update_irte)(irqfd->kvm,
13670 					   prod->irq, irqfd->gsi, 0);
13671 	if (ret)
13672 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13673 		       " fails: %d\n", irqfd->consumer.token, ret);
13674 
13675 	spin_unlock_irq(&kvm->irqfds.lock);
13676 
13677 
13678 	kvm_arch_end_assignment(irqfd->kvm);
13679 }
13680 
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)13681 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13682 				   uint32_t guest_irq, bool set)
13683 {
13684 	return kvm_x86_call(pi_update_irte)(kvm, host_irq, guest_irq, set);
13685 }
13686 
kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry * old,struct kvm_kernel_irq_routing_entry * new)13687 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13688 				  struct kvm_kernel_irq_routing_entry *new)
13689 {
13690 	if (old->type != KVM_IRQ_ROUTING_MSI ||
13691 	    new->type != KVM_IRQ_ROUTING_MSI)
13692 		return true;
13693 
13694 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13695 }
13696 
kvm_vector_hashing_enabled(void)13697 bool kvm_vector_hashing_enabled(void)
13698 {
13699 	return vector_hashing;
13700 }
13701 
kvm_arch_no_poll(struct kvm_vcpu * vcpu)13702 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13703 {
13704 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13705 }
13706 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13707 
13708 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
kvm_arch_gmem_prepare(struct kvm * kvm,gfn_t gfn,kvm_pfn_t pfn,int max_order)13709 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order)
13710 {
13711 	return kvm_x86_call(gmem_prepare)(kvm, pfn, gfn, max_order);
13712 }
13713 #endif
13714 
13715 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
kvm_arch_gmem_invalidate(kvm_pfn_t start,kvm_pfn_t end)13716 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
13717 {
13718 	kvm_x86_call(gmem_invalidate)(start, end);
13719 }
13720 #endif
13721 
kvm_spec_ctrl_test_value(u64 value)13722 int kvm_spec_ctrl_test_value(u64 value)
13723 {
13724 	/*
13725 	 * test that setting IA32_SPEC_CTRL to given value
13726 	 * is allowed by the host processor
13727 	 */
13728 
13729 	u64 saved_value;
13730 	unsigned long flags;
13731 	int ret = 0;
13732 
13733 	local_irq_save(flags);
13734 
13735 	if (rdmsrq_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13736 		ret = 1;
13737 	else if (wrmsrq_safe(MSR_IA32_SPEC_CTRL, value))
13738 		ret = 1;
13739 	else
13740 		wrmsrq(MSR_IA32_SPEC_CTRL, saved_value);
13741 
13742 	local_irq_restore(flags);
13743 
13744 	return ret;
13745 }
13746 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13747 
kvm_fixup_and_inject_pf_error(struct kvm_vcpu * vcpu,gva_t gva,u16 error_code)13748 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13749 {
13750 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13751 	struct x86_exception fault;
13752 	u64 access = error_code &
13753 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13754 
13755 	if (!(error_code & PFERR_PRESENT_MASK) ||
13756 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13757 		/*
13758 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13759 		 * tables probably do not match the TLB.  Just proceed
13760 		 * with the error code that the processor gave.
13761 		 */
13762 		fault.vector = PF_VECTOR;
13763 		fault.error_code_valid = true;
13764 		fault.error_code = error_code;
13765 		fault.nested_page_fault = false;
13766 		fault.address = gva;
13767 		fault.async_page_fault = false;
13768 	}
13769 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13770 }
13771 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13772 
13773 /*
13774  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13775  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13776  * indicates whether exit to userspace is needed.
13777  */
kvm_handle_memory_failure(struct kvm_vcpu * vcpu,int r,struct x86_exception * e)13778 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13779 			      struct x86_exception *e)
13780 {
13781 	if (r == X86EMUL_PROPAGATE_FAULT) {
13782 		if (KVM_BUG_ON(!e, vcpu->kvm))
13783 			return -EIO;
13784 
13785 		kvm_inject_emulated_page_fault(vcpu, e);
13786 		return 1;
13787 	}
13788 
13789 	/*
13790 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13791 	 * while handling a VMX instruction KVM could've handled the request
13792 	 * correctly by exiting to userspace and performing I/O but there
13793 	 * doesn't seem to be a real use-case behind such requests, just return
13794 	 * KVM_EXIT_INTERNAL_ERROR for now.
13795 	 */
13796 	kvm_prepare_emulation_failure_exit(vcpu);
13797 
13798 	return 0;
13799 }
13800 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13801 
kvm_handle_invpcid(struct kvm_vcpu * vcpu,unsigned long type,gva_t gva)13802 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13803 {
13804 	bool pcid_enabled;
13805 	struct x86_exception e;
13806 	struct {
13807 		u64 pcid;
13808 		u64 gla;
13809 	} operand;
13810 	int r;
13811 
13812 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13813 	if (r != X86EMUL_CONTINUE)
13814 		return kvm_handle_memory_failure(vcpu, r, &e);
13815 
13816 	if (operand.pcid >> 12 != 0) {
13817 		kvm_inject_gp(vcpu, 0);
13818 		return 1;
13819 	}
13820 
13821 	pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13822 
13823 	switch (type) {
13824 	case INVPCID_TYPE_INDIV_ADDR:
13825 		/*
13826 		 * LAM doesn't apply to addresses that are inputs to TLB
13827 		 * invalidation.
13828 		 */
13829 		if ((!pcid_enabled && (operand.pcid != 0)) ||
13830 		    is_noncanonical_invlpg_address(operand.gla, vcpu)) {
13831 			kvm_inject_gp(vcpu, 0);
13832 			return 1;
13833 		}
13834 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13835 		return kvm_skip_emulated_instruction(vcpu);
13836 
13837 	case INVPCID_TYPE_SINGLE_CTXT:
13838 		if (!pcid_enabled && (operand.pcid != 0)) {
13839 			kvm_inject_gp(vcpu, 0);
13840 			return 1;
13841 		}
13842 
13843 		kvm_invalidate_pcid(vcpu, operand.pcid);
13844 		return kvm_skip_emulated_instruction(vcpu);
13845 
13846 	case INVPCID_TYPE_ALL_NON_GLOBAL:
13847 		/*
13848 		 * Currently, KVM doesn't mark global entries in the shadow
13849 		 * page tables, so a non-global flush just degenerates to a
13850 		 * global flush. If needed, we could optimize this later by
13851 		 * keeping track of global entries in shadow page tables.
13852 		 */
13853 
13854 		fallthrough;
13855 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
13856 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13857 		return kvm_skip_emulated_instruction(vcpu);
13858 
13859 	default:
13860 		kvm_inject_gp(vcpu, 0);
13861 		return 1;
13862 	}
13863 }
13864 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13865 
complete_sev_es_emulated_mmio(struct kvm_vcpu * vcpu)13866 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13867 {
13868 	struct kvm_run *run = vcpu->run;
13869 	struct kvm_mmio_fragment *frag;
13870 	unsigned int len;
13871 
13872 	BUG_ON(!vcpu->mmio_needed);
13873 
13874 	/* Complete previous fragment */
13875 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13876 	len = min(8u, frag->len);
13877 	if (!vcpu->mmio_is_write)
13878 		memcpy(frag->data, run->mmio.data, len);
13879 
13880 	if (frag->len <= 8) {
13881 		/* Switch to the next fragment. */
13882 		frag++;
13883 		vcpu->mmio_cur_fragment++;
13884 	} else {
13885 		/* Go forward to the next mmio piece. */
13886 		frag->data += len;
13887 		frag->gpa += len;
13888 		frag->len -= len;
13889 	}
13890 
13891 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13892 		vcpu->mmio_needed = 0;
13893 
13894 		// VMG change, at this point, we're always done
13895 		// RIP has already been advanced
13896 		return 1;
13897 	}
13898 
13899 	// More MMIO is needed
13900 	run->mmio.phys_addr = frag->gpa;
13901 	run->mmio.len = min(8u, frag->len);
13902 	run->mmio.is_write = vcpu->mmio_is_write;
13903 	if (run->mmio.is_write)
13904 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13905 	run->exit_reason = KVM_EXIT_MMIO;
13906 
13907 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13908 
13909 	return 0;
13910 }
13911 
kvm_sev_es_mmio_write(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13912 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13913 			  void *data)
13914 {
13915 	int handled;
13916 	struct kvm_mmio_fragment *frag;
13917 
13918 	if (!data)
13919 		return -EINVAL;
13920 
13921 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13922 	if (handled == bytes)
13923 		return 1;
13924 
13925 	bytes -= handled;
13926 	gpa += handled;
13927 	data += handled;
13928 
13929 	/*TODO: Check if need to increment number of frags */
13930 	frag = vcpu->mmio_fragments;
13931 	vcpu->mmio_nr_fragments = 1;
13932 	frag->len = bytes;
13933 	frag->gpa = gpa;
13934 	frag->data = data;
13935 
13936 	vcpu->mmio_needed = 1;
13937 	vcpu->mmio_cur_fragment = 0;
13938 
13939 	vcpu->run->mmio.phys_addr = gpa;
13940 	vcpu->run->mmio.len = min(8u, frag->len);
13941 	vcpu->run->mmio.is_write = 1;
13942 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13943 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13944 
13945 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13946 
13947 	return 0;
13948 }
13949 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13950 
kvm_sev_es_mmio_read(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13951 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13952 			 void *data)
13953 {
13954 	int handled;
13955 	struct kvm_mmio_fragment *frag;
13956 
13957 	if (!data)
13958 		return -EINVAL;
13959 
13960 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13961 	if (handled == bytes)
13962 		return 1;
13963 
13964 	bytes -= handled;
13965 	gpa += handled;
13966 	data += handled;
13967 
13968 	/*TODO: Check if need to increment number of frags */
13969 	frag = vcpu->mmio_fragments;
13970 	vcpu->mmio_nr_fragments = 1;
13971 	frag->len = bytes;
13972 	frag->gpa = gpa;
13973 	frag->data = data;
13974 
13975 	vcpu->mmio_needed = 1;
13976 	vcpu->mmio_cur_fragment = 0;
13977 
13978 	vcpu->run->mmio.phys_addr = gpa;
13979 	vcpu->run->mmio.len = min(8u, frag->len);
13980 	vcpu->run->mmio.is_write = 0;
13981 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13982 
13983 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13984 
13985 	return 0;
13986 }
13987 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13988 
advance_sev_es_emulated_pio(struct kvm_vcpu * vcpu,unsigned count,int size)13989 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13990 {
13991 	vcpu->arch.sev_pio_count -= count;
13992 	vcpu->arch.sev_pio_data += count * size;
13993 }
13994 
13995 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13996 			   unsigned int port);
13997 
complete_sev_es_emulated_outs(struct kvm_vcpu * vcpu)13998 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13999 {
14000 	int size = vcpu->arch.pio.size;
14001 	int port = vcpu->arch.pio.port;
14002 
14003 	vcpu->arch.pio.count = 0;
14004 	if (vcpu->arch.sev_pio_count)
14005 		return kvm_sev_es_outs(vcpu, size, port);
14006 	return 1;
14007 }
14008 
kvm_sev_es_outs(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)14009 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
14010 			   unsigned int port)
14011 {
14012 	for (;;) {
14013 		unsigned int count =
14014 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
14015 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
14016 
14017 		/* memcpy done already by emulator_pio_out.  */
14018 		advance_sev_es_emulated_pio(vcpu, count, size);
14019 		if (!ret)
14020 			break;
14021 
14022 		/* Emulation done by the kernel.  */
14023 		if (!vcpu->arch.sev_pio_count)
14024 			return 1;
14025 	}
14026 
14027 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
14028 	return 0;
14029 }
14030 
14031 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
14032 			  unsigned int port);
14033 
complete_sev_es_emulated_ins(struct kvm_vcpu * vcpu)14034 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
14035 {
14036 	unsigned count = vcpu->arch.pio.count;
14037 	int size = vcpu->arch.pio.size;
14038 	int port = vcpu->arch.pio.port;
14039 
14040 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
14041 	advance_sev_es_emulated_pio(vcpu, count, size);
14042 	if (vcpu->arch.sev_pio_count)
14043 		return kvm_sev_es_ins(vcpu, size, port);
14044 	return 1;
14045 }
14046 
kvm_sev_es_ins(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)14047 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
14048 			  unsigned int port)
14049 {
14050 	for (;;) {
14051 		unsigned int count =
14052 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
14053 		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
14054 			break;
14055 
14056 		/* Emulation done by the kernel.  */
14057 		advance_sev_es_emulated_pio(vcpu, count, size);
14058 		if (!vcpu->arch.sev_pio_count)
14059 			return 1;
14060 	}
14061 
14062 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
14063 	return 0;
14064 }
14065 
kvm_sev_es_string_io(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port,void * data,unsigned int count,int in)14066 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
14067 			 unsigned int port, void *data,  unsigned int count,
14068 			 int in)
14069 {
14070 	vcpu->arch.sev_pio_data = data;
14071 	vcpu->arch.sev_pio_count = count;
14072 	return in ? kvm_sev_es_ins(vcpu, size, port)
14073 		  : kvm_sev_es_outs(vcpu, size, port);
14074 }
14075 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
14076 
14077 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
14078 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
14079 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_mmio);
14080 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
14081 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
14082 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
14083 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
14084 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
14085 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
14086 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
14087 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
14088 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
14089 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
14090 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
14091 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
14092 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
14093 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
14094 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
14095 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
14096 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
14097 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
14098 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
14099 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
14100 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
14101 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
14102 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
14103 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
14104 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
14105 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
14106 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
14107 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault);
14108 
kvm_x86_init(void)14109 static int __init kvm_x86_init(void)
14110 {
14111 	kvm_init_xstate_sizes();
14112 
14113 	kvm_mmu_x86_module_init();
14114 	mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
14115 	return 0;
14116 }
14117 module_init(kvm_x86_init);
14118 
kvm_x86_exit(void)14119 static void __exit kvm_x86_exit(void)
14120 {
14121 	WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu));
14122 }
14123 module_exit(kvm_x86_exit);
14124