1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/mman.h>
9 #include <linux/kvm_host.h>
10 #include <linux/io.h>
11 #include <linux/hugetlb.h>
12 #include <linux/sched/signal.h>
13 #include <trace/events/kvm.h>
14 #include <asm/acpi.h>
15 #include <asm/pgalloc.h>
16 #include <asm/cacheflush.h>
17 #include <asm/kvm_arm.h>
18 #include <asm/kvm_mmu.h>
19 #include <asm/kvm_pgtable.h>
20 #include <asm/kvm_pkvm.h>
21 #include <asm/kvm_asm.h>
22 #include <asm/kvm_emulate.h>
23 #include <asm/virt.h>
24
25 #include "trace.h"
26
27 static struct kvm_pgtable *hyp_pgtable;
28 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
29
30 static unsigned long __ro_after_init hyp_idmap_start;
31 static unsigned long __ro_after_init hyp_idmap_end;
32 static phys_addr_t __ro_after_init hyp_idmap_vector;
33
34 u32 __ro_after_init __hyp_va_bits;
35
36 static unsigned long __ro_after_init io_map_base;
37
38 #define KVM_PGT_FN(fn) (!is_protected_kvm_enabled() ? fn : p ## fn)
39
__stage2_range_addr_end(phys_addr_t addr,phys_addr_t end,phys_addr_t size)40 static phys_addr_t __stage2_range_addr_end(phys_addr_t addr, phys_addr_t end,
41 phys_addr_t size)
42 {
43 phys_addr_t boundary = ALIGN_DOWN(addr + size, size);
44
45 return (boundary - 1 < end - 1) ? boundary : end;
46 }
47
stage2_range_addr_end(phys_addr_t addr,phys_addr_t end)48 static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end)
49 {
50 phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL);
51
52 return __stage2_range_addr_end(addr, end, size);
53 }
54
55 /*
56 * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
57 * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
58 * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
59 * long will also starve other vCPUs. We have to also make sure that the page
60 * tables are not freed while we released the lock.
61 */
stage2_apply_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,phys_addr_t end,int (* fn)(struct kvm_pgtable *,u64,u64),bool resched)62 static int stage2_apply_range(struct kvm_s2_mmu *mmu, phys_addr_t addr,
63 phys_addr_t end,
64 int (*fn)(struct kvm_pgtable *, u64, u64),
65 bool resched)
66 {
67 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
68 int ret;
69 u64 next;
70
71 do {
72 struct kvm_pgtable *pgt = mmu->pgt;
73 if (!pgt)
74 return -EINVAL;
75
76 next = stage2_range_addr_end(addr, end);
77 ret = fn(pgt, addr, next - addr);
78 if (ret)
79 break;
80
81 if (resched && next != end)
82 cond_resched_rwlock_write(&kvm->mmu_lock);
83 } while (addr = next, addr != end);
84
85 return ret;
86 }
87
88 #define stage2_apply_range_resched(mmu, addr, end, fn) \
89 stage2_apply_range(mmu, addr, end, fn, true)
90
91 /*
92 * Get the maximum number of page-tables pages needed to split a range
93 * of blocks into PAGE_SIZE PTEs. It assumes the range is already
94 * mapped at level 2, or at level 1 if allowed.
95 */
kvm_mmu_split_nr_page_tables(u64 range)96 static int kvm_mmu_split_nr_page_tables(u64 range)
97 {
98 int n = 0;
99
100 if (KVM_PGTABLE_MIN_BLOCK_LEVEL < 2)
101 n += DIV_ROUND_UP(range, PUD_SIZE);
102 n += DIV_ROUND_UP(range, PMD_SIZE);
103 return n;
104 }
105
need_split_memcache_topup_or_resched(struct kvm * kvm)106 static bool need_split_memcache_topup_or_resched(struct kvm *kvm)
107 {
108 struct kvm_mmu_memory_cache *cache;
109 u64 chunk_size, min;
110
111 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
112 return true;
113
114 chunk_size = kvm->arch.mmu.split_page_chunk_size;
115 min = kvm_mmu_split_nr_page_tables(chunk_size);
116 cache = &kvm->arch.mmu.split_page_cache;
117 return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
118 }
119
kvm_mmu_split_huge_pages(struct kvm * kvm,phys_addr_t addr,phys_addr_t end)120 static int kvm_mmu_split_huge_pages(struct kvm *kvm, phys_addr_t addr,
121 phys_addr_t end)
122 {
123 struct kvm_mmu_memory_cache *cache;
124 struct kvm_pgtable *pgt;
125 int ret, cache_capacity;
126 u64 next, chunk_size;
127
128 lockdep_assert_held_write(&kvm->mmu_lock);
129
130 chunk_size = kvm->arch.mmu.split_page_chunk_size;
131 cache_capacity = kvm_mmu_split_nr_page_tables(chunk_size);
132
133 if (chunk_size == 0)
134 return 0;
135
136 cache = &kvm->arch.mmu.split_page_cache;
137
138 do {
139 if (need_split_memcache_topup_or_resched(kvm)) {
140 write_unlock(&kvm->mmu_lock);
141 cond_resched();
142 /* Eager page splitting is best-effort. */
143 ret = __kvm_mmu_topup_memory_cache(cache,
144 cache_capacity,
145 cache_capacity);
146 write_lock(&kvm->mmu_lock);
147 if (ret)
148 break;
149 }
150
151 pgt = kvm->arch.mmu.pgt;
152 if (!pgt)
153 return -EINVAL;
154
155 next = __stage2_range_addr_end(addr, end, chunk_size);
156 ret = KVM_PGT_FN(kvm_pgtable_stage2_split)(pgt, addr, next - addr, cache);
157 if (ret)
158 break;
159 } while (addr = next, addr != end);
160
161 return ret;
162 }
163
memslot_is_logging(struct kvm_memory_slot * memslot)164 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
165 {
166 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
167 }
168
169 /**
170 * kvm_arch_flush_remote_tlbs() - flush all VM TLB entries for v7/8
171 * @kvm: pointer to kvm structure.
172 *
173 * Interface to HYP function to flush all VM TLB entries
174 */
kvm_arch_flush_remote_tlbs(struct kvm * kvm)175 int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
176 {
177 if (is_protected_kvm_enabled())
178 kvm_call_hyp_nvhe(__pkvm_tlb_flush_vmid, kvm->arch.pkvm.handle);
179 else
180 kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
181 return 0;
182 }
183
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)184 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
185 gfn_t gfn, u64 nr_pages)
186 {
187 u64 size = nr_pages << PAGE_SHIFT;
188 u64 addr = gfn << PAGE_SHIFT;
189
190 if (is_protected_kvm_enabled())
191 kvm_call_hyp_nvhe(__pkvm_tlb_flush_vmid, kvm->arch.pkvm.handle);
192 else
193 kvm_tlb_flush_vmid_range(&kvm->arch.mmu, addr, size);
194 return 0;
195 }
196
stage2_memcache_zalloc_page(void * arg)197 static void *stage2_memcache_zalloc_page(void *arg)
198 {
199 struct kvm_mmu_memory_cache *mc = arg;
200 void *virt;
201
202 /* Allocated with __GFP_ZERO, so no need to zero */
203 virt = kvm_mmu_memory_cache_alloc(mc);
204 if (virt)
205 kvm_account_pgtable_pages(virt, 1);
206 return virt;
207 }
208
kvm_host_zalloc_pages_exact(size_t size)209 static void *kvm_host_zalloc_pages_exact(size_t size)
210 {
211 return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
212 }
213
kvm_s2_zalloc_pages_exact(size_t size)214 static void *kvm_s2_zalloc_pages_exact(size_t size)
215 {
216 void *virt = kvm_host_zalloc_pages_exact(size);
217
218 if (virt)
219 kvm_account_pgtable_pages(virt, (size >> PAGE_SHIFT));
220 return virt;
221 }
222
kvm_s2_free_pages_exact(void * virt,size_t size)223 static void kvm_s2_free_pages_exact(void *virt, size_t size)
224 {
225 kvm_account_pgtable_pages(virt, -(size >> PAGE_SHIFT));
226 free_pages_exact(virt, size);
227 }
228
229 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops;
230
stage2_free_unlinked_table_rcu_cb(struct rcu_head * head)231 static void stage2_free_unlinked_table_rcu_cb(struct rcu_head *head)
232 {
233 struct page *page = container_of(head, struct page, rcu_head);
234 void *pgtable = page_to_virt(page);
235 s8 level = page_private(page);
236
237 KVM_PGT_FN(kvm_pgtable_stage2_free_unlinked)(&kvm_s2_mm_ops, pgtable, level);
238 }
239
stage2_free_unlinked_table(void * addr,s8 level)240 static void stage2_free_unlinked_table(void *addr, s8 level)
241 {
242 struct page *page = virt_to_page(addr);
243
244 set_page_private(page, (unsigned long)level);
245 call_rcu(&page->rcu_head, stage2_free_unlinked_table_rcu_cb);
246 }
247
kvm_host_get_page(void * addr)248 static void kvm_host_get_page(void *addr)
249 {
250 get_page(virt_to_page(addr));
251 }
252
kvm_host_put_page(void * addr)253 static void kvm_host_put_page(void *addr)
254 {
255 put_page(virt_to_page(addr));
256 }
257
kvm_s2_put_page(void * addr)258 static void kvm_s2_put_page(void *addr)
259 {
260 struct page *p = virt_to_page(addr);
261 /* Dropping last refcount, the page will be freed */
262 if (page_count(p) == 1)
263 kvm_account_pgtable_pages(addr, -1);
264 put_page(p);
265 }
266
kvm_host_page_count(void * addr)267 static int kvm_host_page_count(void *addr)
268 {
269 return page_count(virt_to_page(addr));
270 }
271
kvm_host_pa(void * addr)272 static phys_addr_t kvm_host_pa(void *addr)
273 {
274 return __pa(addr);
275 }
276
kvm_host_va(phys_addr_t phys)277 static void *kvm_host_va(phys_addr_t phys)
278 {
279 return __va(phys);
280 }
281
clean_dcache_guest_page(void * va,size_t size)282 static void clean_dcache_guest_page(void *va, size_t size)
283 {
284 __clean_dcache_guest_page(va, size);
285 }
286
invalidate_icache_guest_page(void * va,size_t size)287 static void invalidate_icache_guest_page(void *va, size_t size)
288 {
289 __invalidate_icache_guest_page(va, size);
290 }
291
292 /*
293 * Unmapping vs dcache management:
294 *
295 * If a guest maps certain memory pages as uncached, all writes will
296 * bypass the data cache and go directly to RAM. However, the CPUs
297 * can still speculate reads (not writes) and fill cache lines with
298 * data.
299 *
300 * Those cache lines will be *clean* cache lines though, so a
301 * clean+invalidate operation is equivalent to an invalidate
302 * operation, because no cache lines are marked dirty.
303 *
304 * Those clean cache lines could be filled prior to an uncached write
305 * by the guest, and the cache coherent IO subsystem would therefore
306 * end up writing old data to disk.
307 *
308 * This is why right after unmapping a page/section and invalidating
309 * the corresponding TLBs, we flush to make sure the IO subsystem will
310 * never hit in the cache.
311 *
312 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
313 * we then fully enforce cacheability of RAM, no matter what the guest
314 * does.
315 */
316 /**
317 * __unmap_stage2_range -- Clear stage2 page table entries to unmap a range
318 * @mmu: The KVM stage-2 MMU pointer
319 * @start: The intermediate physical base address of the range to unmap
320 * @size: The size of the area to unmap
321 * @may_block: Whether or not we are permitted to block
322 *
323 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
324 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
325 * destroying the VM), otherwise another faulting VCPU may come in and mess
326 * with things behind our backs.
327 */
__unmap_stage2_range(struct kvm_s2_mmu * mmu,phys_addr_t start,u64 size,bool may_block)328 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
329 bool may_block)
330 {
331 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
332 phys_addr_t end = start + size;
333
334 lockdep_assert_held_write(&kvm->mmu_lock);
335 WARN_ON(size & ~PAGE_MASK);
336 WARN_ON(stage2_apply_range(mmu, start, end, KVM_PGT_FN(kvm_pgtable_stage2_unmap),
337 may_block));
338 }
339
kvm_stage2_unmap_range(struct kvm_s2_mmu * mmu,phys_addr_t start,u64 size,bool may_block)340 void kvm_stage2_unmap_range(struct kvm_s2_mmu *mmu, phys_addr_t start,
341 u64 size, bool may_block)
342 {
343 __unmap_stage2_range(mmu, start, size, may_block);
344 }
345
kvm_stage2_flush_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,phys_addr_t end)346 void kvm_stage2_flush_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
347 {
348 stage2_apply_range_resched(mmu, addr, end, KVM_PGT_FN(kvm_pgtable_stage2_flush));
349 }
350
stage2_flush_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)351 static void stage2_flush_memslot(struct kvm *kvm,
352 struct kvm_memory_slot *memslot)
353 {
354 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
355 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
356
357 kvm_stage2_flush_range(&kvm->arch.mmu, addr, end);
358 }
359
360 /**
361 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
362 * @kvm: The struct kvm pointer
363 *
364 * Go through the stage 2 page tables and invalidate any cache lines
365 * backing memory already mapped to the VM.
366 */
stage2_flush_vm(struct kvm * kvm)367 static void stage2_flush_vm(struct kvm *kvm)
368 {
369 struct kvm_memslots *slots;
370 struct kvm_memory_slot *memslot;
371 int idx, bkt;
372
373 idx = srcu_read_lock(&kvm->srcu);
374 write_lock(&kvm->mmu_lock);
375
376 slots = kvm_memslots(kvm);
377 kvm_for_each_memslot(memslot, bkt, slots)
378 stage2_flush_memslot(kvm, memslot);
379
380 kvm_nested_s2_flush(kvm);
381
382 write_unlock(&kvm->mmu_lock);
383 srcu_read_unlock(&kvm->srcu, idx);
384 }
385
386 /**
387 * free_hyp_pgds - free Hyp-mode page tables
388 */
free_hyp_pgds(void)389 void __init free_hyp_pgds(void)
390 {
391 mutex_lock(&kvm_hyp_pgd_mutex);
392 if (hyp_pgtable) {
393 kvm_pgtable_hyp_destroy(hyp_pgtable);
394 kfree(hyp_pgtable);
395 hyp_pgtable = NULL;
396 }
397 mutex_unlock(&kvm_hyp_pgd_mutex);
398 }
399
kvm_host_owns_hyp_mappings(void)400 static bool kvm_host_owns_hyp_mappings(void)
401 {
402 if (is_kernel_in_hyp_mode())
403 return false;
404
405 if (static_branch_likely(&kvm_protected_mode_initialized))
406 return false;
407
408 /*
409 * This can happen at boot time when __create_hyp_mappings() is called
410 * after the hyp protection has been enabled, but the static key has
411 * not been flipped yet.
412 */
413 if (!hyp_pgtable && is_protected_kvm_enabled())
414 return false;
415
416 WARN_ON(!hyp_pgtable);
417
418 return true;
419 }
420
__create_hyp_mappings(unsigned long start,unsigned long size,unsigned long phys,enum kvm_pgtable_prot prot)421 int __create_hyp_mappings(unsigned long start, unsigned long size,
422 unsigned long phys, enum kvm_pgtable_prot prot)
423 {
424 int err;
425
426 if (WARN_ON(!kvm_host_owns_hyp_mappings()))
427 return -EINVAL;
428
429 mutex_lock(&kvm_hyp_pgd_mutex);
430 err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
431 mutex_unlock(&kvm_hyp_pgd_mutex);
432
433 return err;
434 }
435
kvm_kaddr_to_phys(void * kaddr)436 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
437 {
438 if (!is_vmalloc_addr(kaddr)) {
439 BUG_ON(!virt_addr_valid(kaddr));
440 return __pa(kaddr);
441 } else {
442 return page_to_phys(vmalloc_to_page(kaddr)) +
443 offset_in_page(kaddr);
444 }
445 }
446
447 struct hyp_shared_pfn {
448 u64 pfn;
449 int count;
450 struct rb_node node;
451 };
452
453 static DEFINE_MUTEX(hyp_shared_pfns_lock);
454 static struct rb_root hyp_shared_pfns = RB_ROOT;
455
find_shared_pfn(u64 pfn,struct rb_node *** node,struct rb_node ** parent)456 static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node,
457 struct rb_node **parent)
458 {
459 struct hyp_shared_pfn *this;
460
461 *node = &hyp_shared_pfns.rb_node;
462 *parent = NULL;
463 while (**node) {
464 this = container_of(**node, struct hyp_shared_pfn, node);
465 *parent = **node;
466 if (this->pfn < pfn)
467 *node = &((**node)->rb_left);
468 else if (this->pfn > pfn)
469 *node = &((**node)->rb_right);
470 else
471 return this;
472 }
473
474 return NULL;
475 }
476
share_pfn_hyp(u64 pfn)477 static int share_pfn_hyp(u64 pfn)
478 {
479 struct rb_node **node, *parent;
480 struct hyp_shared_pfn *this;
481 int ret = 0;
482
483 mutex_lock(&hyp_shared_pfns_lock);
484 this = find_shared_pfn(pfn, &node, &parent);
485 if (this) {
486 this->count++;
487 goto unlock;
488 }
489
490 this = kzalloc(sizeof(*this), GFP_KERNEL);
491 if (!this) {
492 ret = -ENOMEM;
493 goto unlock;
494 }
495
496 this->pfn = pfn;
497 this->count = 1;
498 rb_link_node(&this->node, parent, node);
499 rb_insert_color(&this->node, &hyp_shared_pfns);
500 ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1);
501 unlock:
502 mutex_unlock(&hyp_shared_pfns_lock);
503
504 return ret;
505 }
506
unshare_pfn_hyp(u64 pfn)507 static int unshare_pfn_hyp(u64 pfn)
508 {
509 struct rb_node **node, *parent;
510 struct hyp_shared_pfn *this;
511 int ret = 0;
512
513 mutex_lock(&hyp_shared_pfns_lock);
514 this = find_shared_pfn(pfn, &node, &parent);
515 if (WARN_ON(!this)) {
516 ret = -ENOENT;
517 goto unlock;
518 }
519
520 this->count--;
521 if (this->count)
522 goto unlock;
523
524 rb_erase(&this->node, &hyp_shared_pfns);
525 kfree(this);
526 ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1);
527 unlock:
528 mutex_unlock(&hyp_shared_pfns_lock);
529
530 return ret;
531 }
532
kvm_share_hyp(void * from,void * to)533 int kvm_share_hyp(void *from, void *to)
534 {
535 phys_addr_t start, end, cur;
536 u64 pfn;
537 int ret;
538
539 if (is_kernel_in_hyp_mode())
540 return 0;
541
542 /*
543 * The share hcall maps things in the 'fixed-offset' region of the hyp
544 * VA space, so we can only share physically contiguous data-structures
545 * for now.
546 */
547 if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to))
548 return -EINVAL;
549
550 if (kvm_host_owns_hyp_mappings())
551 return create_hyp_mappings(from, to, PAGE_HYP);
552
553 start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
554 end = PAGE_ALIGN(__pa(to));
555 for (cur = start; cur < end; cur += PAGE_SIZE) {
556 pfn = __phys_to_pfn(cur);
557 ret = share_pfn_hyp(pfn);
558 if (ret)
559 return ret;
560 }
561
562 return 0;
563 }
564
kvm_unshare_hyp(void * from,void * to)565 void kvm_unshare_hyp(void *from, void *to)
566 {
567 phys_addr_t start, end, cur;
568 u64 pfn;
569
570 if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from)
571 return;
572
573 start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
574 end = PAGE_ALIGN(__pa(to));
575 for (cur = start; cur < end; cur += PAGE_SIZE) {
576 pfn = __phys_to_pfn(cur);
577 WARN_ON(unshare_pfn_hyp(pfn));
578 }
579 }
580
581 /**
582 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
583 * @from: The virtual kernel start address of the range
584 * @to: The virtual kernel end address of the range (exclusive)
585 * @prot: The protection to be applied to this range
586 *
587 * The same virtual address as the kernel virtual address is also used
588 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
589 * physical pages.
590 */
create_hyp_mappings(void * from,void * to,enum kvm_pgtable_prot prot)591 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
592 {
593 phys_addr_t phys_addr;
594 unsigned long virt_addr;
595 unsigned long start = kern_hyp_va((unsigned long)from);
596 unsigned long end = kern_hyp_va((unsigned long)to);
597
598 if (is_kernel_in_hyp_mode())
599 return 0;
600
601 if (!kvm_host_owns_hyp_mappings())
602 return -EPERM;
603
604 start = start & PAGE_MASK;
605 end = PAGE_ALIGN(end);
606
607 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
608 int err;
609
610 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
611 err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
612 prot);
613 if (err)
614 return err;
615 }
616
617 return 0;
618 }
619
__hyp_alloc_private_va_range(unsigned long base)620 static int __hyp_alloc_private_va_range(unsigned long base)
621 {
622 lockdep_assert_held(&kvm_hyp_pgd_mutex);
623
624 if (!PAGE_ALIGNED(base))
625 return -EINVAL;
626
627 /*
628 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
629 * allocating the new area, as it would indicate we've
630 * overflowed the idmap/IO address range.
631 */
632 if ((base ^ io_map_base) & BIT(VA_BITS - 1))
633 return -ENOMEM;
634
635 io_map_base = base;
636
637 return 0;
638 }
639
640 /**
641 * hyp_alloc_private_va_range - Allocates a private VA range.
642 * @size: The size of the VA range to reserve.
643 * @haddr: The hypervisor virtual start address of the allocation.
644 *
645 * The private virtual address (VA) range is allocated below io_map_base
646 * and aligned based on the order of @size.
647 *
648 * Return: 0 on success or negative error code on failure.
649 */
hyp_alloc_private_va_range(size_t size,unsigned long * haddr)650 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr)
651 {
652 unsigned long base;
653 int ret = 0;
654
655 mutex_lock(&kvm_hyp_pgd_mutex);
656
657 /*
658 * This assumes that we have enough space below the idmap
659 * page to allocate our VAs. If not, the check in
660 * __hyp_alloc_private_va_range() will kick. A potential
661 * alternative would be to detect that overflow and switch
662 * to an allocation above the idmap.
663 *
664 * The allocated size is always a multiple of PAGE_SIZE.
665 */
666 size = PAGE_ALIGN(size);
667 base = io_map_base - size;
668 ret = __hyp_alloc_private_va_range(base);
669
670 mutex_unlock(&kvm_hyp_pgd_mutex);
671
672 if (!ret)
673 *haddr = base;
674
675 return ret;
676 }
677
__create_hyp_private_mapping(phys_addr_t phys_addr,size_t size,unsigned long * haddr,enum kvm_pgtable_prot prot)678 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
679 unsigned long *haddr,
680 enum kvm_pgtable_prot prot)
681 {
682 unsigned long addr;
683 int ret = 0;
684
685 if (!kvm_host_owns_hyp_mappings()) {
686 addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
687 phys_addr, size, prot);
688 if (IS_ERR_VALUE(addr))
689 return addr;
690 *haddr = addr;
691
692 return 0;
693 }
694
695 size = PAGE_ALIGN(size + offset_in_page(phys_addr));
696 ret = hyp_alloc_private_va_range(size, &addr);
697 if (ret)
698 return ret;
699
700 ret = __create_hyp_mappings(addr, size, phys_addr, prot);
701 if (ret)
702 return ret;
703
704 *haddr = addr + offset_in_page(phys_addr);
705 return ret;
706 }
707
create_hyp_stack(phys_addr_t phys_addr,unsigned long * haddr)708 int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr)
709 {
710 unsigned long base;
711 size_t size;
712 int ret;
713
714 mutex_lock(&kvm_hyp_pgd_mutex);
715 /*
716 * Efficient stack verification using the NVHE_STACK_SHIFT bit implies
717 * an alignment of our allocation on the order of the size.
718 */
719 size = NVHE_STACK_SIZE * 2;
720 base = ALIGN_DOWN(io_map_base - size, size);
721
722 ret = __hyp_alloc_private_va_range(base);
723
724 mutex_unlock(&kvm_hyp_pgd_mutex);
725
726 if (ret) {
727 kvm_err("Cannot allocate hyp stack guard page\n");
728 return ret;
729 }
730
731 /*
732 * Since the stack grows downwards, map the stack to the page
733 * at the higher address and leave the lower guard page
734 * unbacked.
735 *
736 * Any valid stack address now has the NVHE_STACK_SHIFT bit as 1
737 * and addresses corresponding to the guard page have the
738 * NVHE_STACK_SHIFT bit as 0 - this is used for overflow detection.
739 */
740 ret = __create_hyp_mappings(base + NVHE_STACK_SIZE, NVHE_STACK_SIZE,
741 phys_addr, PAGE_HYP);
742 if (ret)
743 kvm_err("Cannot map hyp stack\n");
744
745 *haddr = base + size;
746
747 return ret;
748 }
749
750 /**
751 * create_hyp_io_mappings - Map IO into both kernel and HYP
752 * @phys_addr: The physical start address which gets mapped
753 * @size: Size of the region being mapped
754 * @kaddr: Kernel VA for this mapping
755 * @haddr: HYP VA for this mapping
756 */
create_hyp_io_mappings(phys_addr_t phys_addr,size_t size,void __iomem ** kaddr,void __iomem ** haddr)757 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
758 void __iomem **kaddr,
759 void __iomem **haddr)
760 {
761 unsigned long addr;
762 int ret;
763
764 if (is_protected_kvm_enabled())
765 return -EPERM;
766
767 *kaddr = ioremap(phys_addr, size);
768 if (!*kaddr)
769 return -ENOMEM;
770
771 if (is_kernel_in_hyp_mode()) {
772 *haddr = *kaddr;
773 return 0;
774 }
775
776 ret = __create_hyp_private_mapping(phys_addr, size,
777 &addr, PAGE_HYP_DEVICE);
778 if (ret) {
779 iounmap(*kaddr);
780 *kaddr = NULL;
781 *haddr = NULL;
782 return ret;
783 }
784
785 *haddr = (void __iomem *)addr;
786 return 0;
787 }
788
789 /**
790 * create_hyp_exec_mappings - Map an executable range into HYP
791 * @phys_addr: The physical start address which gets mapped
792 * @size: Size of the region being mapped
793 * @haddr: HYP VA for this mapping
794 */
create_hyp_exec_mappings(phys_addr_t phys_addr,size_t size,void ** haddr)795 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
796 void **haddr)
797 {
798 unsigned long addr;
799 int ret;
800
801 BUG_ON(is_kernel_in_hyp_mode());
802
803 ret = __create_hyp_private_mapping(phys_addr, size,
804 &addr, PAGE_HYP_EXEC);
805 if (ret) {
806 *haddr = NULL;
807 return ret;
808 }
809
810 *haddr = (void *)addr;
811 return 0;
812 }
813
814 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = {
815 /* We shouldn't need any other callback to walk the PT */
816 .phys_to_virt = kvm_host_va,
817 };
818
get_user_mapping_size(struct kvm * kvm,u64 addr)819 static int get_user_mapping_size(struct kvm *kvm, u64 addr)
820 {
821 struct kvm_pgtable pgt = {
822 .pgd = (kvm_pteref_t)kvm->mm->pgd,
823 .ia_bits = vabits_actual,
824 .start_level = (KVM_PGTABLE_LAST_LEVEL -
825 ARM64_HW_PGTABLE_LEVELS(pgt.ia_bits) + 1),
826 .mm_ops = &kvm_user_mm_ops,
827 };
828 unsigned long flags;
829 kvm_pte_t pte = 0; /* Keep GCC quiet... */
830 s8 level = S8_MAX;
831 int ret;
832
833 /*
834 * Disable IRQs so that we hazard against a concurrent
835 * teardown of the userspace page tables (which relies on
836 * IPI-ing threads).
837 */
838 local_irq_save(flags);
839 ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level);
840 local_irq_restore(flags);
841
842 if (ret)
843 return ret;
844
845 /*
846 * Not seeing an error, but not updating level? Something went
847 * deeply wrong...
848 */
849 if (WARN_ON(level > KVM_PGTABLE_LAST_LEVEL))
850 return -EFAULT;
851 if (WARN_ON(level < KVM_PGTABLE_FIRST_LEVEL))
852 return -EFAULT;
853
854 /* Oops, the userspace PTs are gone... Replay the fault */
855 if (!kvm_pte_valid(pte))
856 return -EAGAIN;
857
858 return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level));
859 }
860
861 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
862 .zalloc_page = stage2_memcache_zalloc_page,
863 .zalloc_pages_exact = kvm_s2_zalloc_pages_exact,
864 .free_pages_exact = kvm_s2_free_pages_exact,
865 .free_unlinked_table = stage2_free_unlinked_table,
866 .get_page = kvm_host_get_page,
867 .put_page = kvm_s2_put_page,
868 .page_count = kvm_host_page_count,
869 .phys_to_virt = kvm_host_va,
870 .virt_to_phys = kvm_host_pa,
871 .dcache_clean_inval_poc = clean_dcache_guest_page,
872 .icache_inval_pou = invalidate_icache_guest_page,
873 };
874
kvm_init_ipa_range(struct kvm_s2_mmu * mmu,unsigned long type)875 static int kvm_init_ipa_range(struct kvm_s2_mmu *mmu, unsigned long type)
876 {
877 u32 kvm_ipa_limit = get_kvm_ipa_limit();
878 u64 mmfr0, mmfr1;
879 u32 phys_shift;
880
881 if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK)
882 return -EINVAL;
883
884 phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
885 if (is_protected_kvm_enabled()) {
886 phys_shift = kvm_ipa_limit;
887 } else if (phys_shift) {
888 if (phys_shift > kvm_ipa_limit ||
889 phys_shift < ARM64_MIN_PARANGE_BITS)
890 return -EINVAL;
891 } else {
892 phys_shift = KVM_PHYS_SHIFT;
893 if (phys_shift > kvm_ipa_limit) {
894 pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n",
895 current->comm);
896 return -EINVAL;
897 }
898 }
899
900 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
901 mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
902 mmu->vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift);
903
904 return 0;
905 }
906
907 /*
908 * Assume that @pgt is valid and unlinked from the KVM MMU to free the
909 * page-table without taking the kvm_mmu_lock and without performing any
910 * TLB invalidations.
911 *
912 * Also, the range of addresses can be large enough to cause need_resched
913 * warnings, for instance on CONFIG_PREEMPT_NONE kernels. Hence, invoke
914 * cond_resched() periodically to prevent hogging the CPU for a long time
915 * and schedule something else, if required.
916 */
stage2_destroy_range(struct kvm_pgtable * pgt,phys_addr_t addr,phys_addr_t end)917 static void stage2_destroy_range(struct kvm_pgtable *pgt, phys_addr_t addr,
918 phys_addr_t end)
919 {
920 u64 next;
921
922 do {
923 next = stage2_range_addr_end(addr, end);
924 KVM_PGT_FN(kvm_pgtable_stage2_destroy_range)(pgt, addr,
925 next - addr);
926 if (next != end)
927 cond_resched();
928 } while (addr = next, addr != end);
929 }
930
kvm_stage2_destroy(struct kvm_pgtable * pgt)931 static void kvm_stage2_destroy(struct kvm_pgtable *pgt)
932 {
933 unsigned int ia_bits = VTCR_EL2_IPA(pgt->mmu->vtcr);
934
935 stage2_destroy_range(pgt, 0, BIT(ia_bits));
936 KVM_PGT_FN(kvm_pgtable_stage2_destroy_pgd)(pgt);
937 }
938
939 /**
940 * kvm_init_stage2_mmu - Initialise a S2 MMU structure
941 * @kvm: The pointer to the KVM structure
942 * @mmu: The pointer to the s2 MMU structure
943 * @type: The machine type of the virtual machine
944 *
945 * Allocates only the stage-2 HW PGD level table(s).
946 * Note we don't need locking here as this is only called in two cases:
947 *
948 * - when the VM is created, which can't race against anything
949 *
950 * - when secondary kvm_s2_mmu structures are initialised for NV
951 * guests, and the caller must hold kvm->lock as this is called on a
952 * per-vcpu basis.
953 */
kvm_init_stage2_mmu(struct kvm * kvm,struct kvm_s2_mmu * mmu,unsigned long type)954 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type)
955 {
956 int cpu, err;
957 struct kvm_pgtable *pgt;
958
959 /*
960 * If we already have our page tables in place, and that the
961 * MMU context is the canonical one, we have a bug somewhere,
962 * as this is only supposed to ever happen once per VM.
963 *
964 * Otherwise, we're building nested page tables, and that's
965 * probably because userspace called KVM_ARM_VCPU_INIT more
966 * than once on the same vcpu. Since that's actually legal,
967 * don't kick a fuss and leave gracefully.
968 */
969 if (mmu->pgt != NULL) {
970 if (kvm_is_nested_s2_mmu(kvm, mmu))
971 return 0;
972
973 kvm_err("kvm_arch already initialized?\n");
974 return -EINVAL;
975 }
976
977 err = kvm_init_ipa_range(mmu, type);
978 if (err)
979 return err;
980
981 pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT);
982 if (!pgt)
983 return -ENOMEM;
984
985 mmu->arch = &kvm->arch;
986 err = KVM_PGT_FN(kvm_pgtable_stage2_init)(pgt, mmu, &kvm_s2_mm_ops);
987 if (err)
988 goto out_free_pgtable;
989
990 mmu->pgt = pgt;
991 if (is_protected_kvm_enabled())
992 return 0;
993
994 mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
995 if (!mmu->last_vcpu_ran) {
996 err = -ENOMEM;
997 goto out_destroy_pgtable;
998 }
999
1000 for_each_possible_cpu(cpu)
1001 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
1002
1003 /* The eager page splitting is disabled by default */
1004 mmu->split_page_chunk_size = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
1005 mmu->split_page_cache.gfp_zero = __GFP_ZERO;
1006
1007 mmu->pgd_phys = __pa(pgt->pgd);
1008
1009 if (kvm_is_nested_s2_mmu(kvm, mmu))
1010 kvm_init_nested_s2_mmu(mmu);
1011
1012 return 0;
1013
1014 out_destroy_pgtable:
1015 kvm_stage2_destroy(pgt);
1016 out_free_pgtable:
1017 kfree(pgt);
1018 return err;
1019 }
1020
kvm_uninit_stage2_mmu(struct kvm * kvm)1021 void kvm_uninit_stage2_mmu(struct kvm *kvm)
1022 {
1023 kvm_free_stage2_pgd(&kvm->arch.mmu);
1024 kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
1025 }
1026
stage2_unmap_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)1027 static void stage2_unmap_memslot(struct kvm *kvm,
1028 struct kvm_memory_slot *memslot)
1029 {
1030 hva_t hva = memslot->userspace_addr;
1031 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
1032 phys_addr_t size = PAGE_SIZE * memslot->npages;
1033 hva_t reg_end = hva + size;
1034
1035 /*
1036 * A memory region could potentially cover multiple VMAs, and any holes
1037 * between them, so iterate over all of them to find out if we should
1038 * unmap any of them.
1039 *
1040 * +--------------------------------------------+
1041 * +---------------+----------------+ +----------------+
1042 * | : VMA 1 | VMA 2 | | VMA 3 : |
1043 * +---------------+----------------+ +----------------+
1044 * | memory region |
1045 * +--------------------------------------------+
1046 */
1047 do {
1048 struct vm_area_struct *vma;
1049 hva_t vm_start, vm_end;
1050
1051 vma = find_vma_intersection(current->mm, hva, reg_end);
1052 if (!vma)
1053 break;
1054
1055 /*
1056 * Take the intersection of this VMA with the memory region
1057 */
1058 vm_start = max(hva, vma->vm_start);
1059 vm_end = min(reg_end, vma->vm_end);
1060
1061 if (!(vma->vm_flags & VM_PFNMAP)) {
1062 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
1063 kvm_stage2_unmap_range(&kvm->arch.mmu, gpa, vm_end - vm_start, true);
1064 }
1065 hva = vm_end;
1066 } while (hva < reg_end);
1067 }
1068
1069 /**
1070 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
1071 * @kvm: The struct kvm pointer
1072 *
1073 * Go through the memregions and unmap any regular RAM
1074 * backing memory already mapped to the VM.
1075 */
stage2_unmap_vm(struct kvm * kvm)1076 void stage2_unmap_vm(struct kvm *kvm)
1077 {
1078 struct kvm_memslots *slots;
1079 struct kvm_memory_slot *memslot;
1080 int idx, bkt;
1081
1082 idx = srcu_read_lock(&kvm->srcu);
1083 mmap_read_lock(current->mm);
1084 write_lock(&kvm->mmu_lock);
1085
1086 slots = kvm_memslots(kvm);
1087 kvm_for_each_memslot(memslot, bkt, slots)
1088 stage2_unmap_memslot(kvm, memslot);
1089
1090 kvm_nested_s2_unmap(kvm, true);
1091
1092 write_unlock(&kvm->mmu_lock);
1093 mmap_read_unlock(current->mm);
1094 srcu_read_unlock(&kvm->srcu, idx);
1095 }
1096
kvm_free_stage2_pgd(struct kvm_s2_mmu * mmu)1097 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
1098 {
1099 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
1100 struct kvm_pgtable *pgt = NULL;
1101
1102 write_lock(&kvm->mmu_lock);
1103 pgt = mmu->pgt;
1104 if (pgt) {
1105 mmu->pgd_phys = 0;
1106 mmu->pgt = NULL;
1107 free_percpu(mmu->last_vcpu_ran);
1108 }
1109 write_unlock(&kvm->mmu_lock);
1110
1111 if (pgt) {
1112 kvm_stage2_destroy(pgt);
1113 kfree(pgt);
1114 }
1115 }
1116
hyp_mc_free_fn(void * addr,void * mc)1117 static void hyp_mc_free_fn(void *addr, void *mc)
1118 {
1119 struct kvm_hyp_memcache *memcache = mc;
1120
1121 if (memcache->flags & HYP_MEMCACHE_ACCOUNT_STAGE2)
1122 kvm_account_pgtable_pages(addr, -1);
1123
1124 free_page((unsigned long)addr);
1125 }
1126
hyp_mc_alloc_fn(void * mc)1127 static void *hyp_mc_alloc_fn(void *mc)
1128 {
1129 struct kvm_hyp_memcache *memcache = mc;
1130 void *addr;
1131
1132 addr = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1133 if (addr && memcache->flags & HYP_MEMCACHE_ACCOUNT_STAGE2)
1134 kvm_account_pgtable_pages(addr, 1);
1135
1136 return addr;
1137 }
1138
free_hyp_memcache(struct kvm_hyp_memcache * mc)1139 void free_hyp_memcache(struct kvm_hyp_memcache *mc)
1140 {
1141 if (!is_protected_kvm_enabled())
1142 return;
1143
1144 kfree(mc->mapping);
1145 __free_hyp_memcache(mc, hyp_mc_free_fn, kvm_host_va, mc);
1146 }
1147
topup_hyp_memcache(struct kvm_hyp_memcache * mc,unsigned long min_pages)1148 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages)
1149 {
1150 if (!is_protected_kvm_enabled())
1151 return 0;
1152
1153 if (!mc->mapping) {
1154 mc->mapping = kzalloc(sizeof(struct pkvm_mapping), GFP_KERNEL_ACCOUNT);
1155 if (!mc->mapping)
1156 return -ENOMEM;
1157 }
1158
1159 return __topup_hyp_memcache(mc, min_pages, hyp_mc_alloc_fn,
1160 kvm_host_pa, mc);
1161 }
1162
1163 /**
1164 * kvm_phys_addr_ioremap - map a device range to guest IPA
1165 *
1166 * @kvm: The KVM pointer
1167 * @guest_ipa: The IPA at which to insert the mapping
1168 * @pa: The physical address of the device
1169 * @size: The size of the mapping
1170 * @writable: Whether or not to create a writable mapping
1171 */
kvm_phys_addr_ioremap(struct kvm * kvm,phys_addr_t guest_ipa,phys_addr_t pa,unsigned long size,bool writable)1172 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1173 phys_addr_t pa, unsigned long size, bool writable)
1174 {
1175 phys_addr_t addr;
1176 int ret = 0;
1177 struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO };
1178 struct kvm_s2_mmu *mmu = &kvm->arch.mmu;
1179 struct kvm_pgtable *pgt = mmu->pgt;
1180 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
1181 KVM_PGTABLE_PROT_R |
1182 (writable ? KVM_PGTABLE_PROT_W : 0);
1183
1184 if (is_protected_kvm_enabled())
1185 return -EPERM;
1186
1187 size += offset_in_page(guest_ipa);
1188 guest_ipa &= PAGE_MASK;
1189
1190 for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
1191 ret = kvm_mmu_topup_memory_cache(&cache,
1192 kvm_mmu_cache_min_pages(mmu));
1193 if (ret)
1194 break;
1195
1196 write_lock(&kvm->mmu_lock);
1197 ret = KVM_PGT_FN(kvm_pgtable_stage2_map)(pgt, addr, PAGE_SIZE,
1198 pa, prot, &cache, 0);
1199 write_unlock(&kvm->mmu_lock);
1200 if (ret)
1201 break;
1202
1203 pa += PAGE_SIZE;
1204 }
1205
1206 kvm_mmu_free_memory_cache(&cache);
1207 return ret;
1208 }
1209
1210 /**
1211 * kvm_stage2_wp_range() - write protect stage2 memory region range
1212 * @mmu: The KVM stage-2 MMU pointer
1213 * @addr: Start address of range
1214 * @end: End address of range
1215 */
kvm_stage2_wp_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,phys_addr_t end)1216 void kvm_stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
1217 {
1218 stage2_apply_range_resched(mmu, addr, end, KVM_PGT_FN(kvm_pgtable_stage2_wrprotect));
1219 }
1220
1221 /**
1222 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1223 * @kvm: The KVM pointer
1224 * @slot: The memory slot to write protect
1225 *
1226 * Called to start logging dirty pages after memory region
1227 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1228 * all present PUD, PMD and PTEs are write protected in the memory region.
1229 * Afterwards read of dirty page log can be called.
1230 *
1231 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1232 * serializing operations for VM memory regions.
1233 */
kvm_mmu_wp_memory_region(struct kvm * kvm,int slot)1234 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1235 {
1236 struct kvm_memslots *slots = kvm_memslots(kvm);
1237 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1238 phys_addr_t start, end;
1239
1240 if (WARN_ON_ONCE(!memslot))
1241 return;
1242
1243 start = memslot->base_gfn << PAGE_SHIFT;
1244 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1245
1246 write_lock(&kvm->mmu_lock);
1247 kvm_stage2_wp_range(&kvm->arch.mmu, start, end);
1248 kvm_nested_s2_wp(kvm);
1249 write_unlock(&kvm->mmu_lock);
1250 kvm_flush_remote_tlbs_memslot(kvm, memslot);
1251 }
1252
1253 /**
1254 * kvm_mmu_split_memory_region() - split the stage 2 blocks into PAGE_SIZE
1255 * pages for memory slot
1256 * @kvm: The KVM pointer
1257 * @slot: The memory slot to split
1258 *
1259 * Acquires kvm->mmu_lock. Called with kvm->slots_lock mutex acquired,
1260 * serializing operations for VM memory regions.
1261 */
kvm_mmu_split_memory_region(struct kvm * kvm,int slot)1262 static void kvm_mmu_split_memory_region(struct kvm *kvm, int slot)
1263 {
1264 struct kvm_memslots *slots;
1265 struct kvm_memory_slot *memslot;
1266 phys_addr_t start, end;
1267
1268 lockdep_assert_held(&kvm->slots_lock);
1269
1270 slots = kvm_memslots(kvm);
1271 memslot = id_to_memslot(slots, slot);
1272
1273 start = memslot->base_gfn << PAGE_SHIFT;
1274 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1275
1276 write_lock(&kvm->mmu_lock);
1277 kvm_mmu_split_huge_pages(kvm, start, end);
1278 write_unlock(&kvm->mmu_lock);
1279 }
1280
1281 /*
1282 * kvm_arch_mmu_enable_log_dirty_pt_masked() - enable dirty logging for selected pages.
1283 * @kvm: The KVM pointer
1284 * @slot: The memory slot associated with mask
1285 * @gfn_offset: The gfn offset in memory slot
1286 * @mask: The mask of pages at offset 'gfn_offset' in this memory
1287 * slot to enable dirty logging on
1288 *
1289 * Writes protect selected pages to enable dirty logging, and then
1290 * splits them to PAGE_SIZE. Caller must acquire kvm->mmu_lock.
1291 */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1292 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1293 struct kvm_memory_slot *slot,
1294 gfn_t gfn_offset, unsigned long mask)
1295 {
1296 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1297 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
1298 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1299
1300 lockdep_assert_held_write(&kvm->mmu_lock);
1301
1302 kvm_stage2_wp_range(&kvm->arch.mmu, start, end);
1303
1304 /*
1305 * Eager-splitting is done when manual-protect is set. We
1306 * also check for initially-all-set because we can avoid
1307 * eager-splitting if initially-all-set is false.
1308 * Initially-all-set equal false implies that huge-pages were
1309 * already split when enabling dirty logging: no need to do it
1310 * again.
1311 */
1312 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1313 kvm_mmu_split_huge_pages(kvm, start, end);
1314
1315 kvm_nested_s2_wp(kvm);
1316 }
1317
kvm_send_hwpoison_signal(unsigned long address,short lsb)1318 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
1319 {
1320 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1321 }
1322
fault_supports_stage2_huge_mapping(struct kvm_memory_slot * memslot,unsigned long hva,unsigned long map_size)1323 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
1324 unsigned long hva,
1325 unsigned long map_size)
1326 {
1327 gpa_t gpa_start;
1328 hva_t uaddr_start, uaddr_end;
1329 size_t size;
1330
1331 /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
1332 if (map_size == PAGE_SIZE)
1333 return true;
1334
1335 /* pKVM only supports PMD_SIZE huge-mappings */
1336 if (is_protected_kvm_enabled() && map_size != PMD_SIZE)
1337 return false;
1338
1339 size = memslot->npages * PAGE_SIZE;
1340
1341 gpa_start = memslot->base_gfn << PAGE_SHIFT;
1342
1343 uaddr_start = memslot->userspace_addr;
1344 uaddr_end = uaddr_start + size;
1345
1346 /*
1347 * Pages belonging to memslots that don't have the same alignment
1348 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1349 * PMD/PUD entries, because we'll end up mapping the wrong pages.
1350 *
1351 * Consider a layout like the following:
1352 *
1353 * memslot->userspace_addr:
1354 * +-----+--------------------+--------------------+---+
1355 * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz|
1356 * +-----+--------------------+--------------------+---+
1357 *
1358 * memslot->base_gfn << PAGE_SHIFT:
1359 * +---+--------------------+--------------------+-----+
1360 * |abc|def Stage-2 block | Stage-2 block |tvxyz|
1361 * +---+--------------------+--------------------+-----+
1362 *
1363 * If we create those stage-2 blocks, we'll end up with this incorrect
1364 * mapping:
1365 * d -> f
1366 * e -> g
1367 * f -> h
1368 */
1369 if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1370 return false;
1371
1372 /*
1373 * Next, let's make sure we're not trying to map anything not covered
1374 * by the memslot. This means we have to prohibit block size mappings
1375 * for the beginning and end of a non-block aligned and non-block sized
1376 * memory slot (illustrated by the head and tail parts of the
1377 * userspace view above containing pages 'abcde' and 'xyz',
1378 * respectively).
1379 *
1380 * Note that it doesn't matter if we do the check using the
1381 * userspace_addr or the base_gfn, as both are equally aligned (per
1382 * the check above) and equally sized.
1383 */
1384 return (hva & ~(map_size - 1)) >= uaddr_start &&
1385 (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1386 }
1387
1388 /*
1389 * Check if the given hva is backed by a transparent huge page (THP) and
1390 * whether it can be mapped using block mapping in stage2. If so, adjust
1391 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
1392 * supported. This will need to be updated to support other THP sizes.
1393 *
1394 * Returns the size of the mapping.
1395 */
1396 static long
transparent_hugepage_adjust(struct kvm * kvm,struct kvm_memory_slot * memslot,unsigned long hva,kvm_pfn_t * pfnp,phys_addr_t * ipap)1397 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot,
1398 unsigned long hva, kvm_pfn_t *pfnp,
1399 phys_addr_t *ipap)
1400 {
1401 kvm_pfn_t pfn = *pfnp;
1402
1403 /*
1404 * Make sure the adjustment is done only for THP pages. Also make
1405 * sure that the HVA and IPA are sufficiently aligned and that the
1406 * block map is contained within the memslot.
1407 */
1408 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
1409 int sz = get_user_mapping_size(kvm, hva);
1410
1411 if (sz < 0)
1412 return sz;
1413
1414 if (sz < PMD_SIZE)
1415 return PAGE_SIZE;
1416
1417 *ipap &= PMD_MASK;
1418 pfn &= ~(PTRS_PER_PMD - 1);
1419 *pfnp = pfn;
1420
1421 return PMD_SIZE;
1422 }
1423
1424 /* Use page mapping if we cannot use block mapping. */
1425 return PAGE_SIZE;
1426 }
1427
get_vma_page_shift(struct vm_area_struct * vma,unsigned long hva)1428 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva)
1429 {
1430 unsigned long pa;
1431
1432 if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP))
1433 return huge_page_shift(hstate_vma(vma));
1434
1435 if (!(vma->vm_flags & VM_PFNMAP))
1436 return PAGE_SHIFT;
1437
1438 VM_BUG_ON(is_vm_hugetlb_page(vma));
1439
1440 pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start);
1441
1442 #ifndef __PAGETABLE_PMD_FOLDED
1443 if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) &&
1444 ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start &&
1445 ALIGN(hva, PUD_SIZE) <= vma->vm_end)
1446 return PUD_SHIFT;
1447 #endif
1448
1449 if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) &&
1450 ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start &&
1451 ALIGN(hva, PMD_SIZE) <= vma->vm_end)
1452 return PMD_SHIFT;
1453
1454 return PAGE_SHIFT;
1455 }
1456
1457 /*
1458 * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be
1459 * able to see the page's tags and therefore they must be initialised first. If
1460 * PG_mte_tagged is set, tags have already been initialised.
1461 *
1462 * The race in the test/set of the PG_mte_tagged flag is handled by:
1463 * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs
1464 * racing to santise the same page
1465 * - mmap_lock protects between a VM faulting a page in and the VMM performing
1466 * an mprotect() to add VM_MTE
1467 */
sanitise_mte_tags(struct kvm * kvm,kvm_pfn_t pfn,unsigned long size)1468 static void sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn,
1469 unsigned long size)
1470 {
1471 unsigned long i, nr_pages = size >> PAGE_SHIFT;
1472 struct page *page = pfn_to_page(pfn);
1473 struct folio *folio = page_folio(page);
1474
1475 if (!kvm_has_mte(kvm))
1476 return;
1477
1478 if (folio_test_hugetlb(folio)) {
1479 /* Hugetlb has MTE flags set on head page only */
1480 if (folio_try_hugetlb_mte_tagging(folio)) {
1481 for (i = 0; i < nr_pages; i++, page++)
1482 mte_clear_page_tags(page_address(page));
1483 folio_set_hugetlb_mte_tagged(folio);
1484 }
1485 return;
1486 }
1487
1488 for (i = 0; i < nr_pages; i++, page++) {
1489 if (try_page_mte_tagging(page)) {
1490 mte_clear_page_tags(page_address(page));
1491 set_page_mte_tagged(page);
1492 }
1493 }
1494 }
1495
kvm_vma_mte_allowed(struct vm_area_struct * vma)1496 static bool kvm_vma_mte_allowed(struct vm_area_struct *vma)
1497 {
1498 return vma->vm_flags & VM_MTE_ALLOWED;
1499 }
1500
kvm_vma_is_cacheable(struct vm_area_struct * vma)1501 static bool kvm_vma_is_cacheable(struct vm_area_struct *vma)
1502 {
1503 switch (FIELD_GET(PTE_ATTRINDX_MASK, pgprot_val(vma->vm_page_prot))) {
1504 case MT_NORMAL_NC:
1505 case MT_DEVICE_nGnRnE:
1506 case MT_DEVICE_nGnRE:
1507 return false;
1508 default:
1509 return true;
1510 }
1511 }
1512
user_mem_abort(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa,struct kvm_s2_trans * nested,struct kvm_memory_slot * memslot,unsigned long hva,bool fault_is_perm)1513 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1514 struct kvm_s2_trans *nested,
1515 struct kvm_memory_slot *memslot, unsigned long hva,
1516 bool fault_is_perm)
1517 {
1518 int ret = 0;
1519 bool write_fault, writable, force_pte = false;
1520 bool exec_fault, mte_allowed, is_vma_cacheable;
1521 bool s2_force_noncacheable = false, vfio_allow_any_uc = false;
1522 unsigned long mmu_seq;
1523 phys_addr_t ipa = fault_ipa;
1524 struct kvm *kvm = vcpu->kvm;
1525 struct vm_area_struct *vma;
1526 short vma_shift;
1527 void *memcache;
1528 gfn_t gfn;
1529 kvm_pfn_t pfn;
1530 bool logging_active = memslot_is_logging(memslot);
1531 long vma_pagesize, fault_granule;
1532 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
1533 struct kvm_pgtable *pgt;
1534 struct page *page;
1535 vm_flags_t vm_flags;
1536 enum kvm_pgtable_walk_flags flags = KVM_PGTABLE_WALK_HANDLE_FAULT | KVM_PGTABLE_WALK_SHARED;
1537
1538 if (fault_is_perm)
1539 fault_granule = kvm_vcpu_trap_get_perm_fault_granule(vcpu);
1540 write_fault = kvm_is_write_fault(vcpu);
1541 exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
1542 VM_BUG_ON(write_fault && exec_fault);
1543
1544 if (fault_is_perm && !write_fault && !exec_fault) {
1545 kvm_err("Unexpected L2 read permission error\n");
1546 return -EFAULT;
1547 }
1548
1549 if (!is_protected_kvm_enabled())
1550 memcache = &vcpu->arch.mmu_page_cache;
1551 else
1552 memcache = &vcpu->arch.pkvm_memcache;
1553
1554 /*
1555 * Permission faults just need to update the existing leaf entry,
1556 * and so normally don't require allocations from the memcache. The
1557 * only exception to this is when dirty logging is enabled at runtime
1558 * and a write fault needs to collapse a block entry into a table.
1559 */
1560 if (!fault_is_perm || (logging_active && write_fault)) {
1561 int min_pages = kvm_mmu_cache_min_pages(vcpu->arch.hw_mmu);
1562
1563 if (!is_protected_kvm_enabled())
1564 ret = kvm_mmu_topup_memory_cache(memcache, min_pages);
1565 else
1566 ret = topup_hyp_memcache(memcache, min_pages);
1567
1568 if (ret)
1569 return ret;
1570 }
1571
1572 /*
1573 * Let's check if we will get back a huge page backed by hugetlbfs, or
1574 * get block mapping for device MMIO region.
1575 */
1576 mmap_read_lock(current->mm);
1577 vma = vma_lookup(current->mm, hva);
1578 if (unlikely(!vma)) {
1579 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1580 mmap_read_unlock(current->mm);
1581 return -EFAULT;
1582 }
1583
1584 /*
1585 * logging_active is guaranteed to never be true for VM_PFNMAP
1586 * memslots.
1587 */
1588 if (logging_active) {
1589 force_pte = true;
1590 vma_shift = PAGE_SHIFT;
1591 } else {
1592 vma_shift = get_vma_page_shift(vma, hva);
1593 }
1594
1595 switch (vma_shift) {
1596 #ifndef __PAGETABLE_PMD_FOLDED
1597 case PUD_SHIFT:
1598 if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
1599 break;
1600 fallthrough;
1601 #endif
1602 case CONT_PMD_SHIFT:
1603 vma_shift = PMD_SHIFT;
1604 fallthrough;
1605 case PMD_SHIFT:
1606 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
1607 break;
1608 fallthrough;
1609 case CONT_PTE_SHIFT:
1610 vma_shift = PAGE_SHIFT;
1611 force_pte = true;
1612 fallthrough;
1613 case PAGE_SHIFT:
1614 break;
1615 default:
1616 WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
1617 }
1618
1619 vma_pagesize = 1UL << vma_shift;
1620
1621 if (nested) {
1622 unsigned long max_map_size;
1623
1624 max_map_size = force_pte ? PAGE_SIZE : PUD_SIZE;
1625
1626 ipa = kvm_s2_trans_output(nested);
1627
1628 /*
1629 * If we're about to create a shadow stage 2 entry, then we
1630 * can only create a block mapping if the guest stage 2 page
1631 * table uses at least as big a mapping.
1632 */
1633 max_map_size = min(kvm_s2_trans_size(nested), max_map_size);
1634
1635 /*
1636 * Be careful that if the mapping size falls between
1637 * two host sizes, take the smallest of the two.
1638 */
1639 if (max_map_size >= PMD_SIZE && max_map_size < PUD_SIZE)
1640 max_map_size = PMD_SIZE;
1641 else if (max_map_size >= PAGE_SIZE && max_map_size < PMD_SIZE)
1642 max_map_size = PAGE_SIZE;
1643
1644 force_pte = (max_map_size == PAGE_SIZE);
1645 vma_pagesize = min(vma_pagesize, (long)max_map_size);
1646 }
1647
1648 /*
1649 * Both the canonical IPA and fault IPA must be hugepage-aligned to
1650 * ensure we find the right PFN and lay down the mapping in the right
1651 * place.
1652 */
1653 if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE) {
1654 fault_ipa &= ~(vma_pagesize - 1);
1655 ipa &= ~(vma_pagesize - 1);
1656 }
1657
1658 gfn = ipa >> PAGE_SHIFT;
1659 mte_allowed = kvm_vma_mte_allowed(vma);
1660
1661 vfio_allow_any_uc = vma->vm_flags & VM_ALLOW_ANY_UNCACHED;
1662
1663 vm_flags = vma->vm_flags;
1664
1665 is_vma_cacheable = kvm_vma_is_cacheable(vma);
1666
1667 /* Don't use the VMA after the unlock -- it may have vanished */
1668 vma = NULL;
1669
1670 /*
1671 * Read mmu_invalidate_seq so that KVM can detect if the results of
1672 * vma_lookup() or __kvm_faultin_pfn() become stale prior to
1673 * acquiring kvm->mmu_lock.
1674 *
1675 * Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs
1676 * with the smp_wmb() in kvm_mmu_invalidate_end().
1677 */
1678 mmu_seq = vcpu->kvm->mmu_invalidate_seq;
1679 mmap_read_unlock(current->mm);
1680
1681 pfn = __kvm_faultin_pfn(memslot, gfn, write_fault ? FOLL_WRITE : 0,
1682 &writable, &page);
1683 if (pfn == KVM_PFN_ERR_HWPOISON) {
1684 kvm_send_hwpoison_signal(hva, vma_shift);
1685 return 0;
1686 }
1687 if (is_error_noslot_pfn(pfn))
1688 return -EFAULT;
1689
1690 /*
1691 * Check if this is non-struct page memory PFN, and cannot support
1692 * CMOs. It could potentially be unsafe to access as cachable.
1693 */
1694 if (vm_flags & (VM_PFNMAP | VM_MIXEDMAP) && !pfn_is_map_memory(pfn)) {
1695 if (is_vma_cacheable) {
1696 /*
1697 * Whilst the VMA owner expects cacheable mapping to this
1698 * PFN, hardware also has to support the FWB and CACHE DIC
1699 * features.
1700 *
1701 * ARM64 KVM relies on kernel VA mapping to the PFN to
1702 * perform cache maintenance as the CMO instructions work on
1703 * virtual addresses. VM_PFNMAP region are not necessarily
1704 * mapped to a KVA and hence the presence of hardware features
1705 * S2FWB and CACHE DIC are mandatory to avoid the need for
1706 * cache maintenance.
1707 */
1708 if (!kvm_supports_cacheable_pfnmap())
1709 return -EFAULT;
1710 } else {
1711 /*
1712 * If the page was identified as device early by looking at
1713 * the VMA flags, vma_pagesize is already representing the
1714 * largest quantity we can map. If instead it was mapped
1715 * via __kvm_faultin_pfn(), vma_pagesize is set to PAGE_SIZE
1716 * and must not be upgraded.
1717 *
1718 * In both cases, we don't let transparent_hugepage_adjust()
1719 * change things at the last minute.
1720 */
1721 s2_force_noncacheable = true;
1722 }
1723 } else if (logging_active && !write_fault) {
1724 /*
1725 * Only actually map the page as writable if this was a write
1726 * fault.
1727 */
1728 writable = false;
1729 }
1730
1731 if (exec_fault && s2_force_noncacheable)
1732 return -ENOEXEC;
1733
1734 /*
1735 * Potentially reduce shadow S2 permissions to match the guest's own
1736 * S2. For exec faults, we'd only reach this point if the guest
1737 * actually allowed it (see kvm_s2_handle_perm_fault).
1738 *
1739 * Also encode the level of the original translation in the SW bits
1740 * of the leaf entry as a proxy for the span of that translation.
1741 * This will be retrieved on TLB invalidation from the guest and
1742 * used to limit the invalidation scope if a TTL hint or a range
1743 * isn't provided.
1744 */
1745 if (nested) {
1746 writable &= kvm_s2_trans_writable(nested);
1747 if (!kvm_s2_trans_readable(nested))
1748 prot &= ~KVM_PGTABLE_PROT_R;
1749
1750 prot |= kvm_encode_nested_level(nested);
1751 }
1752
1753 kvm_fault_lock(kvm);
1754 pgt = vcpu->arch.hw_mmu->pgt;
1755 if (mmu_invalidate_retry(kvm, mmu_seq)) {
1756 ret = -EAGAIN;
1757 goto out_unlock;
1758 }
1759
1760 /*
1761 * If we are not forced to use page mapping, check if we are
1762 * backed by a THP and thus use block mapping if possible.
1763 */
1764 if (vma_pagesize == PAGE_SIZE && !(force_pte || s2_force_noncacheable)) {
1765 if (fault_is_perm && fault_granule > PAGE_SIZE)
1766 vma_pagesize = fault_granule;
1767 else
1768 vma_pagesize = transparent_hugepage_adjust(kvm, memslot,
1769 hva, &pfn,
1770 &fault_ipa);
1771
1772 if (vma_pagesize < 0) {
1773 ret = vma_pagesize;
1774 goto out_unlock;
1775 }
1776 }
1777
1778 if (!fault_is_perm && !s2_force_noncacheable && kvm_has_mte(kvm)) {
1779 /* Check the VMM hasn't introduced a new disallowed VMA */
1780 if (mte_allowed) {
1781 sanitise_mte_tags(kvm, pfn, vma_pagesize);
1782 } else {
1783 ret = -EFAULT;
1784 goto out_unlock;
1785 }
1786 }
1787
1788 if (writable)
1789 prot |= KVM_PGTABLE_PROT_W;
1790
1791 if (exec_fault)
1792 prot |= KVM_PGTABLE_PROT_X;
1793
1794 if (s2_force_noncacheable) {
1795 if (vfio_allow_any_uc)
1796 prot |= KVM_PGTABLE_PROT_NORMAL_NC;
1797 else
1798 prot |= KVM_PGTABLE_PROT_DEVICE;
1799 } else if (cpus_have_final_cap(ARM64_HAS_CACHE_DIC) &&
1800 (!nested || kvm_s2_trans_executable(nested))) {
1801 prot |= KVM_PGTABLE_PROT_X;
1802 }
1803
1804 /*
1805 * Under the premise of getting a FSC_PERM fault, we just need to relax
1806 * permissions only if vma_pagesize equals fault_granule. Otherwise,
1807 * kvm_pgtable_stage2_map() should be called to change block size.
1808 */
1809 if (fault_is_perm && vma_pagesize == fault_granule) {
1810 /*
1811 * Drop the SW bits in favour of those stored in the
1812 * PTE, which will be preserved.
1813 */
1814 prot &= ~KVM_NV_GUEST_MAP_SZ;
1815 ret = KVM_PGT_FN(kvm_pgtable_stage2_relax_perms)(pgt, fault_ipa, prot, flags);
1816 } else {
1817 ret = KVM_PGT_FN(kvm_pgtable_stage2_map)(pgt, fault_ipa, vma_pagesize,
1818 __pfn_to_phys(pfn), prot,
1819 memcache, flags);
1820 }
1821
1822 out_unlock:
1823 kvm_release_faultin_page(kvm, page, !!ret, writable);
1824 kvm_fault_unlock(kvm);
1825
1826 /* Mark the page dirty only if the fault is handled successfully */
1827 if (writable && !ret)
1828 mark_page_dirty_in_slot(kvm, memslot, gfn);
1829
1830 return ret != -EAGAIN ? ret : 0;
1831 }
1832
1833 /* Resolve the access fault by making the page young again. */
handle_access_fault(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa)1834 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1835 {
1836 enum kvm_pgtable_walk_flags flags = KVM_PGTABLE_WALK_HANDLE_FAULT | KVM_PGTABLE_WALK_SHARED;
1837 struct kvm_s2_mmu *mmu;
1838
1839 trace_kvm_access_fault(fault_ipa);
1840
1841 read_lock(&vcpu->kvm->mmu_lock);
1842 mmu = vcpu->arch.hw_mmu;
1843 KVM_PGT_FN(kvm_pgtable_stage2_mkyoung)(mmu->pgt, fault_ipa, flags);
1844 read_unlock(&vcpu->kvm->mmu_lock);
1845 }
1846
kvm_handle_guest_sea(struct kvm_vcpu * vcpu)1847 int kvm_handle_guest_sea(struct kvm_vcpu *vcpu)
1848 {
1849 /*
1850 * Give APEI the opportunity to claim the abort before handling it
1851 * within KVM. apei_claim_sea() expects to be called with IRQs enabled.
1852 */
1853 lockdep_assert_irqs_enabled();
1854 if (apei_claim_sea(NULL) == 0)
1855 return 1;
1856
1857 return kvm_inject_serror(vcpu);
1858 }
1859
1860 /**
1861 * kvm_handle_guest_abort - handles all 2nd stage aborts
1862 * @vcpu: the VCPU pointer
1863 *
1864 * Any abort that gets to the host is almost guaranteed to be caused by a
1865 * missing second stage translation table entry, which can mean that either the
1866 * guest simply needs more memory and we must allocate an appropriate page or it
1867 * can mean that the guest tried to access I/O memory, which is emulated by user
1868 * space. The distinction is based on the IPA causing the fault and whether this
1869 * memory region has been registered as standard RAM by user space.
1870 */
kvm_handle_guest_abort(struct kvm_vcpu * vcpu)1871 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
1872 {
1873 struct kvm_s2_trans nested_trans, *nested = NULL;
1874 unsigned long esr;
1875 phys_addr_t fault_ipa; /* The address we faulted on */
1876 phys_addr_t ipa; /* Always the IPA in the L1 guest phys space */
1877 struct kvm_memory_slot *memslot;
1878 unsigned long hva;
1879 bool is_iabt, write_fault, writable;
1880 gfn_t gfn;
1881 int ret, idx;
1882
1883 if (kvm_vcpu_abt_issea(vcpu))
1884 return kvm_handle_guest_sea(vcpu);
1885
1886 esr = kvm_vcpu_get_esr(vcpu);
1887
1888 /*
1889 * The fault IPA should be reliable at this point as we're not dealing
1890 * with an SEA.
1891 */
1892 ipa = fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1893 if (KVM_BUG_ON(ipa == INVALID_GPA, vcpu->kvm))
1894 return -EFAULT;
1895
1896 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1897
1898 if (esr_fsc_is_translation_fault(esr)) {
1899 /* Beyond sanitised PARange (which is the IPA limit) */
1900 if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) {
1901 kvm_inject_size_fault(vcpu);
1902 return 1;
1903 }
1904
1905 /* Falls between the IPA range and the PARange? */
1906 if (fault_ipa >= BIT_ULL(VTCR_EL2_IPA(vcpu->arch.hw_mmu->vtcr))) {
1907 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
1908
1909 return kvm_inject_sea(vcpu, is_iabt, fault_ipa);
1910 }
1911 }
1912
1913 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
1914 kvm_vcpu_get_hfar(vcpu), fault_ipa);
1915
1916 /* Check the stage-2 fault is trans. fault or write fault */
1917 if (!esr_fsc_is_translation_fault(esr) &&
1918 !esr_fsc_is_permission_fault(esr) &&
1919 !esr_fsc_is_access_flag_fault(esr)) {
1920 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1921 kvm_vcpu_trap_get_class(vcpu),
1922 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1923 (unsigned long)kvm_vcpu_get_esr(vcpu));
1924 return -EFAULT;
1925 }
1926
1927 idx = srcu_read_lock(&vcpu->kvm->srcu);
1928
1929 /*
1930 * We may have faulted on a shadow stage 2 page table if we are
1931 * running a nested guest. In this case, we have to resolve the L2
1932 * IPA to the L1 IPA first, before knowing what kind of memory should
1933 * back the L1 IPA.
1934 *
1935 * If the shadow stage 2 page table walk faults, then we simply inject
1936 * this to the guest and carry on.
1937 *
1938 * If there are no shadow S2 PTs because S2 is disabled, there is
1939 * nothing to walk and we treat it as a 1:1 before going through the
1940 * canonical translation.
1941 */
1942 if (kvm_is_nested_s2_mmu(vcpu->kvm,vcpu->arch.hw_mmu) &&
1943 vcpu->arch.hw_mmu->nested_stage2_enabled) {
1944 u32 esr;
1945
1946 ret = kvm_walk_nested_s2(vcpu, fault_ipa, &nested_trans);
1947 if (ret) {
1948 esr = kvm_s2_trans_esr(&nested_trans);
1949 kvm_inject_s2_fault(vcpu, esr);
1950 goto out_unlock;
1951 }
1952
1953 ret = kvm_s2_handle_perm_fault(vcpu, &nested_trans);
1954 if (ret) {
1955 esr = kvm_s2_trans_esr(&nested_trans);
1956 kvm_inject_s2_fault(vcpu, esr);
1957 goto out_unlock;
1958 }
1959
1960 ipa = kvm_s2_trans_output(&nested_trans);
1961 nested = &nested_trans;
1962 }
1963
1964 gfn = ipa >> PAGE_SHIFT;
1965 memslot = gfn_to_memslot(vcpu->kvm, gfn);
1966 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1967 write_fault = kvm_is_write_fault(vcpu);
1968 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1969 /*
1970 * The guest has put either its instructions or its page-tables
1971 * somewhere it shouldn't have. Userspace won't be able to do
1972 * anything about this (there's no syndrome for a start), so
1973 * re-inject the abort back into the guest.
1974 */
1975 if (is_iabt) {
1976 ret = -ENOEXEC;
1977 goto out;
1978 }
1979
1980 if (kvm_vcpu_abt_iss1tw(vcpu)) {
1981 ret = kvm_inject_sea_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1982 goto out_unlock;
1983 }
1984
1985 /*
1986 * Check for a cache maintenance operation. Since we
1987 * ended-up here, we know it is outside of any memory
1988 * slot. But we can't find out if that is for a device,
1989 * or if the guest is just being stupid. The only thing
1990 * we know for sure is that this range cannot be cached.
1991 *
1992 * So let's assume that the guest is just being
1993 * cautious, and skip the instruction.
1994 */
1995 if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1996 kvm_incr_pc(vcpu);
1997 ret = 1;
1998 goto out_unlock;
1999 }
2000
2001 /*
2002 * The IPA is reported as [MAX:12], so we need to
2003 * complement it with the bottom 12 bits from the
2004 * faulting VA. This is always 12 bits, irrespective
2005 * of the page size.
2006 */
2007 ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
2008 ret = io_mem_abort(vcpu, ipa);
2009 goto out_unlock;
2010 }
2011
2012 /* Userspace should not be able to register out-of-bounds IPAs */
2013 VM_BUG_ON(ipa >= kvm_phys_size(vcpu->arch.hw_mmu));
2014
2015 if (esr_fsc_is_access_flag_fault(esr)) {
2016 handle_access_fault(vcpu, fault_ipa);
2017 ret = 1;
2018 goto out_unlock;
2019 }
2020
2021 ret = user_mem_abort(vcpu, fault_ipa, nested, memslot, hva,
2022 esr_fsc_is_permission_fault(esr));
2023 if (ret == 0)
2024 ret = 1;
2025 out:
2026 if (ret == -ENOEXEC)
2027 ret = kvm_inject_sea_iabt(vcpu, kvm_vcpu_get_hfar(vcpu));
2028 out_unlock:
2029 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2030 return ret;
2031 }
2032
kvm_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)2033 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
2034 {
2035 if (!kvm->arch.mmu.pgt)
2036 return false;
2037
2038 __unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT,
2039 (range->end - range->start) << PAGE_SHIFT,
2040 range->may_block);
2041
2042 kvm_nested_s2_unmap(kvm, range->may_block);
2043 return false;
2044 }
2045
kvm_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)2046 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
2047 {
2048 u64 size = (range->end - range->start) << PAGE_SHIFT;
2049
2050 if (!kvm->arch.mmu.pgt)
2051 return false;
2052
2053 return KVM_PGT_FN(kvm_pgtable_stage2_test_clear_young)(kvm->arch.mmu.pgt,
2054 range->start << PAGE_SHIFT,
2055 size, true);
2056 /*
2057 * TODO: Handle nested_mmu structures here using the reverse mapping in
2058 * a later version of patch series.
2059 */
2060 }
2061
kvm_test_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)2062 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
2063 {
2064 u64 size = (range->end - range->start) << PAGE_SHIFT;
2065
2066 if (!kvm->arch.mmu.pgt)
2067 return false;
2068
2069 return KVM_PGT_FN(kvm_pgtable_stage2_test_clear_young)(kvm->arch.mmu.pgt,
2070 range->start << PAGE_SHIFT,
2071 size, false);
2072 }
2073
kvm_mmu_get_httbr(void)2074 phys_addr_t kvm_mmu_get_httbr(void)
2075 {
2076 return __pa(hyp_pgtable->pgd);
2077 }
2078
kvm_get_idmap_vector(void)2079 phys_addr_t kvm_get_idmap_vector(void)
2080 {
2081 return hyp_idmap_vector;
2082 }
2083
kvm_map_idmap_text(void)2084 static int kvm_map_idmap_text(void)
2085 {
2086 unsigned long size = hyp_idmap_end - hyp_idmap_start;
2087 int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
2088 PAGE_HYP_EXEC);
2089 if (err)
2090 kvm_err("Failed to idmap %lx-%lx\n",
2091 hyp_idmap_start, hyp_idmap_end);
2092
2093 return err;
2094 }
2095
kvm_hyp_zalloc_page(void * arg)2096 static void *kvm_hyp_zalloc_page(void *arg)
2097 {
2098 return (void *)get_zeroed_page(GFP_KERNEL);
2099 }
2100
2101 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
2102 .zalloc_page = kvm_hyp_zalloc_page,
2103 .get_page = kvm_host_get_page,
2104 .put_page = kvm_host_put_page,
2105 .phys_to_virt = kvm_host_va,
2106 .virt_to_phys = kvm_host_pa,
2107 };
2108
kvm_mmu_init(u32 * hyp_va_bits)2109 int __init kvm_mmu_init(u32 *hyp_va_bits)
2110 {
2111 int err;
2112 u32 idmap_bits;
2113 u32 kernel_bits;
2114
2115 hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
2116 hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
2117 hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
2118 hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
2119 hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
2120
2121 /*
2122 * We rely on the linker script to ensure at build time that the HYP
2123 * init code does not cross a page boundary.
2124 */
2125 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
2126
2127 /*
2128 * The ID map is always configured for 48 bits of translation, which
2129 * may be fewer than the number of VA bits used by the regular kernel
2130 * stage 1, when VA_BITS=52.
2131 *
2132 * At EL2, there is only one TTBR register, and we can't switch between
2133 * translation tables *and* update TCR_EL2.T0SZ at the same time. Bottom
2134 * line: we need to use the extended range with *both* our translation
2135 * tables.
2136 *
2137 * So use the maximum of the idmap VA bits and the regular kernel stage
2138 * 1 VA bits to assure that the hypervisor can both ID map its code page
2139 * and map any kernel memory.
2140 */
2141 idmap_bits = IDMAP_VA_BITS;
2142 kernel_bits = vabits_actual;
2143 *hyp_va_bits = max(idmap_bits, kernel_bits);
2144
2145 kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
2146 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
2147 kvm_debug("HYP VA range: %lx:%lx\n",
2148 kern_hyp_va(PAGE_OFFSET),
2149 kern_hyp_va((unsigned long)high_memory - 1));
2150
2151 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
2152 hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) &&
2153 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
2154 /*
2155 * The idmap page is intersecting with the VA space,
2156 * it is not safe to continue further.
2157 */
2158 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
2159 err = -EINVAL;
2160 goto out;
2161 }
2162
2163 hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
2164 if (!hyp_pgtable) {
2165 kvm_err("Hyp mode page-table not allocated\n");
2166 err = -ENOMEM;
2167 goto out;
2168 }
2169
2170 err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
2171 if (err)
2172 goto out_free_pgtable;
2173
2174 err = kvm_map_idmap_text();
2175 if (err)
2176 goto out_destroy_pgtable;
2177
2178 io_map_base = hyp_idmap_start;
2179 __hyp_va_bits = *hyp_va_bits;
2180 return 0;
2181
2182 out_destroy_pgtable:
2183 kvm_pgtable_hyp_destroy(hyp_pgtable);
2184 out_free_pgtable:
2185 kfree(hyp_pgtable);
2186 hyp_pgtable = NULL;
2187 out:
2188 return err;
2189 }
2190
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)2191 void kvm_arch_commit_memory_region(struct kvm *kvm,
2192 struct kvm_memory_slot *old,
2193 const struct kvm_memory_slot *new,
2194 enum kvm_mr_change change)
2195 {
2196 bool log_dirty_pages = new && new->flags & KVM_MEM_LOG_DIRTY_PAGES;
2197
2198 /*
2199 * At this point memslot has been committed and there is an
2200 * allocated dirty_bitmap[], dirty pages will be tracked while the
2201 * memory slot is write protected.
2202 */
2203 if (log_dirty_pages) {
2204
2205 if (change == KVM_MR_DELETE)
2206 return;
2207
2208 /*
2209 * Huge and normal pages are write-protected and split
2210 * on either of these two cases:
2211 *
2212 * 1. with initial-all-set: gradually with CLEAR ioctls,
2213 */
2214 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
2215 return;
2216 /*
2217 * or
2218 * 2. without initial-all-set: all in one shot when
2219 * enabling dirty logging.
2220 */
2221 kvm_mmu_wp_memory_region(kvm, new->id);
2222 kvm_mmu_split_memory_region(kvm, new->id);
2223 } else {
2224 /*
2225 * Free any leftovers from the eager page splitting cache. Do
2226 * this when deleting, moving, disabling dirty logging, or
2227 * creating the memslot (a nop). Doing it for deletes makes
2228 * sure we don't leak memory, and there's no need to keep the
2229 * cache around for any of the other cases.
2230 */
2231 kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
2232 }
2233 }
2234
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)2235 int kvm_arch_prepare_memory_region(struct kvm *kvm,
2236 const struct kvm_memory_slot *old,
2237 struct kvm_memory_slot *new,
2238 enum kvm_mr_change change)
2239 {
2240 hva_t hva, reg_end;
2241 int ret = 0;
2242
2243 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
2244 change != KVM_MR_FLAGS_ONLY)
2245 return 0;
2246
2247 /*
2248 * Prevent userspace from creating a memory region outside of the IPA
2249 * space addressable by the KVM guest IPA space.
2250 */
2251 if ((new->base_gfn + new->npages) > (kvm_phys_size(&kvm->arch.mmu) >> PAGE_SHIFT))
2252 return -EFAULT;
2253
2254 hva = new->userspace_addr;
2255 reg_end = hva + (new->npages << PAGE_SHIFT);
2256
2257 mmap_read_lock(current->mm);
2258 /*
2259 * A memory region could potentially cover multiple VMAs, and any holes
2260 * between them, so iterate over all of them.
2261 *
2262 * +--------------------------------------------+
2263 * +---------------+----------------+ +----------------+
2264 * | : VMA 1 | VMA 2 | | VMA 3 : |
2265 * +---------------+----------------+ +----------------+
2266 * | memory region |
2267 * +--------------------------------------------+
2268 */
2269 do {
2270 struct vm_area_struct *vma;
2271
2272 vma = find_vma_intersection(current->mm, hva, reg_end);
2273 if (!vma)
2274 break;
2275
2276 if (kvm_has_mte(kvm) && !kvm_vma_mte_allowed(vma)) {
2277 ret = -EINVAL;
2278 break;
2279 }
2280
2281 if (vma->vm_flags & VM_PFNMAP) {
2282 /* IO region dirty page logging not allowed */
2283 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2284 ret = -EINVAL;
2285 break;
2286 }
2287
2288 /*
2289 * Cacheable PFNMAP is allowed only if the hardware
2290 * supports it.
2291 */
2292 if (kvm_vma_is_cacheable(vma) && !kvm_supports_cacheable_pfnmap()) {
2293 ret = -EINVAL;
2294 break;
2295 }
2296 }
2297 hva = min(reg_end, vma->vm_end);
2298 } while (hva < reg_end);
2299
2300 mmap_read_unlock(current->mm);
2301 return ret;
2302 }
2303
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)2304 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
2305 {
2306 }
2307
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)2308 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2309 {
2310 }
2311
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)2312 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2313 struct kvm_memory_slot *slot)
2314 {
2315 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2316 phys_addr_t size = slot->npages << PAGE_SHIFT;
2317
2318 write_lock(&kvm->mmu_lock);
2319 kvm_stage2_unmap_range(&kvm->arch.mmu, gpa, size, true);
2320 kvm_nested_s2_unmap(kvm, true);
2321 write_unlock(&kvm->mmu_lock);
2322 }
2323
2324 /*
2325 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2326 *
2327 * Main problems:
2328 * - S/W ops are local to a CPU (not broadcast)
2329 * - We have line migration behind our back (speculation)
2330 * - System caches don't support S/W at all (damn!)
2331 *
2332 * In the face of the above, the best we can do is to try and convert
2333 * S/W ops to VA ops. Because the guest is not allowed to infer the
2334 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2335 * which is a rather good thing for us.
2336 *
2337 * Also, it is only used when turning caches on/off ("The expected
2338 * usage of the cache maintenance instructions that operate by set/way
2339 * is associated with the cache maintenance instructions associated
2340 * with the powerdown and powerup of caches, if this is required by
2341 * the implementation.").
2342 *
2343 * We use the following policy:
2344 *
2345 * - If we trap a S/W operation, we enable VM trapping to detect
2346 * caches being turned on/off, and do a full clean.
2347 *
2348 * - We flush the caches on both caches being turned on and off.
2349 *
2350 * - Once the caches are enabled, we stop trapping VM ops.
2351 */
kvm_set_way_flush(struct kvm_vcpu * vcpu)2352 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2353 {
2354 unsigned long hcr = *vcpu_hcr(vcpu);
2355
2356 /*
2357 * If this is the first time we do a S/W operation
2358 * (i.e. HCR_TVM not set) flush the whole memory, and set the
2359 * VM trapping.
2360 *
2361 * Otherwise, rely on the VM trapping to wait for the MMU +
2362 * Caches to be turned off. At that point, we'll be able to
2363 * clean the caches again.
2364 */
2365 if (!(hcr & HCR_TVM)) {
2366 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2367 vcpu_has_cache_enabled(vcpu));
2368 stage2_flush_vm(vcpu->kvm);
2369 *vcpu_hcr(vcpu) = hcr | HCR_TVM;
2370 }
2371 }
2372
kvm_toggle_cache(struct kvm_vcpu * vcpu,bool was_enabled)2373 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2374 {
2375 bool now_enabled = vcpu_has_cache_enabled(vcpu);
2376
2377 /*
2378 * If switching the MMU+caches on, need to invalidate the caches.
2379 * If switching it off, need to clean the caches.
2380 * Clean + invalidate does the trick always.
2381 */
2382 if (now_enabled != was_enabled)
2383 stage2_flush_vm(vcpu->kvm);
2384
2385 /* Caches are now on, stop trapping VM ops (until a S/W op) */
2386 if (now_enabled)
2387 *vcpu_hcr(vcpu) &= ~HCR_TVM;
2388
2389 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2390 }
2391